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Abstract. In known security reductions for the Fujisaki-Okamoto transformation, decryp-
tion failures are handled via a reduction solving the rather unnatural task of finding failing
plaintexts given the private key, resulting in a Grover search bound. Moreover, they require
an implicit rejection mechanism for invalid ciphertexts to achieve a reasonable security bound
in the QROM. We present a reduction that has neither of these deficiencies: We introduce two
security games related to finding decryption failures, one capturing the computationally hard
task of using the public key to find a decryption failure, and one capturing the statistically hard
task of searching the random oracle for key-independent failures like, e.g., large randomness.
As a result, our security bounds in the QROM are tighter than previous ones with respect to
the generic random oracle search attacks: The attacker can only partially compute the search
predicate, namely for said key-independent failures. In addition, our entire reduction works
for the explicit-reject variant of the transformation and improves significantly over all of its
known reductions. Besides being the more natural variant of the transformation, security of
the explicit reject mechanism is also relevant for side channel attack resilience of the implicit-
rejection variant. Along the way, we prove several technical results characterizing preimage
extraction and certain search tasks in the QROM that might be of independent interest.
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1 Introduction

The Fujisaki-Okamoto (FO) transform [FO99, FO13] is a well known transformation that combines
a weakly secure public-key encryption scheme and a weakly secure secret-key encryption scheme
into an IND-CCA secure public-key encryption scheme in the random oracle model. Dent [Den03,
Table 5] gave an adoption for the setting of key-encapsulation. This adoption for key encapsulation
mechanisms (KEM) is now the de-facto standard to build secure KEMs. In particular, it was used
in virtually all KEM submissions to the NIST PQC standardisation process [NIS17]. In the context
of post-quantum security, however, two novel issues surfaced: First, many of the PKE schemes being
transformed into KEM are not perfectly correct, i.e., they sometimes fail to decrypt a ciphertext
to its plaintext. Second, security proofs have to be done in the quantum-accessible random oracle
model (QROM) to be applicable to quantum attackers.

Both problems were tackled in [HHK17] and a long sequence of follow-up works (among others
[SXY18, JZC+18, BHH+19, HKSU20, KSS+20]). While these works made great progress towards
achieving tighter reductions in the QROM, the treatment of decryption failures did not improve
significantly. In this work, we make significant progress on the treatment of decryption failures.
Along the way, we obtain several additional results relevant on their own.

An additional quirk of existing QROM reductions for the FO transform is that they require
an implicit rejection variant, where pseudorandom session keys are returned instead of reporting
decapsulation errors, to avoid extreme reduction losses. (The only known concrete bound [DFMS21]
for Dent’s variant is much weaker then those known for the implicit rejection variant.)
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The Fujisaki-Okamoto transformation.We recall the FO transformation for KEM as introduced
in [Den03, Table 5] and revisited by [HHK17], there called FO⊥m. FO⊥m constructs a KEM from
a public-key encryption scheme PKE, and the overall transformation FO⊥m can be described by
first modifying PKE to obtain a deterministic scheme PKEG, and then applying a PKE-to-KEM
transformation (called U⊥m in [HHK17]) to PKEG:
Modified scheme PKEG. Starting from PKE and a hash function G, deterministic encryption
scheme PKEG is built by letting EncG encrypt messages m according to the encryption algorithm
Enc of PKE, but using the hash value G(m) as the random coins for Enc:

EncG(pk,m) := Enc(pk,m; G(m)) ,

DecG uses the decryption algorithm Dec of PKE to decrypt a ciphertext c to obtain m′, and rejects
by returning a failure symbol ⊥ if c fails to decrypt or m′ fails to encrypt back to c. (For the formal
definition, see Fig. 3 on page 8).
PKE-to-KEM transformation U⊥m. Starting from a deterministic encryption scheme PKE’ and
a hash function H, key encapsulation algorithm KEM⊥m := U⊥m[PKE′,H] is built by letting

Encaps(pk) := (c := Enc′(pk,m),K := H(m)),

where m is picked at random from the message space. Decapsulation will return K := H(m) unless
c fails to decrypt, in which case it returns failure symbol ⊥. (For the formal definition, see Fig. 2 on
page 7).
Combined PKE-to-KEM transformation FO⊥m. The ’full FO’ transformation FO⊥m is defined
by taking PKE and hash functions G and H, and defining FO⊥m[PKE,G,H] := U⊥m[PKEG,H]. While
there exists a plethora of variants that differ from FO⊥m, it was proven [BHH+19] that security of
these variants is either equivalent to or implied by security of FO⊥m. To offer a more complete picture,
we recap these variants and their relations in Appendix A (page 43). The take-away message is that
any security result for FO⊥m also covers its variants.
The role of correctness errors in security proofs for FO. Correctness errors play a role during
the proof that an FO-transformed KEM is IND-CCA secure: To tackle the CCA part, it is necessary
to simulate the decapsulation oracle oDecaps without the secret key, meaning the plaintext has to
be obtained via strategies different from decrypting. While different strategies for this exist in both
ROM and QROM, they all have in common that the obtained plaintext is rather a plaintext that
encrypts to the queried ciphertext (a “ciphertext preimage”) than the decryption. Consequently,
the simulation fails to recognise failing ciphertexts, i.e., ciphertexts for which decryption results
in a plaintext different from the ciphertext preimage (or even in ⊥), and will in this case behave
differently from oDecaps. Hence, the simulations are distinguishable from oDecaps if the attacker
can craft such failing ciphertexts.

The approach chosen by [HHK17] was to show that the distinguishing advantage between the two
cases can be bounded by the advantage in a game COR. Game COR (defined in [HHK17]) provides
an adversary with a key pair (including the secret key) and asks to return a failing message, i.e., a
message that encrypts to a failing ciphertext, for the derandomized scheme PKEG. [HHK17] further
bounded the maximal advantage in game COR for PKEG in terms of a statistical worst-case quantity
δwc of PKE, which is the expected maximum probability for plaintexts to cause a decryption failure,
with the expectation being taken over the key pair. This results in a typical search bound as the
adversary can use the secret key to check if a ciphertext fails. In the QROM, the resulting bound is
therefore 8q2δwc, q being the number of queries to G.3

3 Some publications (e.g., [JZC+18]) use the bound 2q ·
√
δwc, it is however straightforward to verify that

the bound above can be achieved by using [HKSU20, Lemma 2.9] as a drop-in replacement. Note that this
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Intuitively, this notion suffers from two related unnatural features:

– First, it looks rather unnatural to provide any adversary with the secret key, as long as the
scheme achieves at least some basic notion of security.4 In particular, this observation applies
to adversaries tasked with finding failing plaintexts, and in fact, this is not a mere issue of
aesthetics: If the secret key is given to the adversary, an analysis of this bound cannot make use
of computational assumptions without becoming heuristic.5

– Second, it seems unnatural that the bound contains a Grover-like search term with regard to
δwc: As IND-CCA adversaries do not have access to the secret key, they can only check whether
ciphertexts fail via their classical CCA oracle, which should render a Grover search impossible.
Furthermore, in both ROM and QROM, it should be the (usually much smaller) number of
CCA queries that limits the adversary’s ability to search, and not the number of random oracle
queries. Hence this bound seems overly conservative as long as the scheme achieves at least some
basic notion of security.

While follow-up works have used different games in place of COR to deal with decryption errors,
all result in the same quantum search bound in terms of δwc.

Main contribution. Our main contribution is a new security reduction for the FO transformation
that improves over existing ones in two ways.

Decryption failures. We introduce a family of new security games, the Find Failing Plaintext
(FFP) games. These provide a much more natural framework for dealing with decryption errors in
the FO transformation, and it is the novel structure of our reduction that allows their usage. Two
important members of the FFP family are as follows: The first one, Find Failing Plaintext that is
Non-Generic (FFP-NG), gives a public key to the adversary and asks it to find a message that triggers
a decryption failure more likely with respect to this key pair than with respect to an independent
key pair. The second one, Find Failing Plaintext with No Key (FFP-NK), tasks an adversary with
producing a message that triggers a decryption failure with respect to an independently sampled key
pair, without providing any key to the adversary. As summarised in Fig. 1, we provide a reduction
from FFP-NG and passive security of PKE together with FFP-NK for PKEG to IND-CCA security of
the FO-transformed of PKE. This new reduction structure avoids both unnatural features mentioned
above:

– None of the two failure-related games FFP-NG and FFP-NK provide the adversary with the
secret key. In particular, we show how to bound an adversary’s advantage in game FFP-NK
in terms of δik, the worst-case decryption error rate when the message is picked independently
of the key, and additional statistical parameters of the probability distributions of decryption
failures for fixed message. We give two concrete example bounds, one involving the variance
based on Chebyshev’s inequality and one based on a Gaussian-shaped tail bound. We expect
that these “independent-key” statistical parameters can be estimated more conveniently and
without heuristics, by exploiting the computational assumptions of the PKE scheme at hand.

– Game FFP-NK still allows for a Grover search advantage, but only when searching for messages
that are more likely to cause a failure on average over the key. This game corresponds, e.g., to
the first attempt at finding a failure in attacks like [DVV18, BS20, DRV20]. In the context of
the entire security reduction for the FO transformation, the advantage in this game is multiplied

is indeed a quadratic improvement unless 4q ·
√
δwc > 1, in which case the IND-CCA bound is meaningless,

anyways.
4 Schemes that allow for a key recovery attack serve as pathological examples why this argument does not
hold in generality.

5 An example we happen to be aware of is the analysis of the correctness error bound of Kyber [BDK+18].
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with the number of decapsulation queries a CCA attacker makes, correctly reflecting the fact
that the ability of identifying a decryption failure should depend on the CCA oracle and is thus
limited.

Game FFP-NG defines a property of the underlying PKE scheme, it thus allows to analyze the
hardness of finding meaningful decryption failures independently from the hardness of searching
a random oracle for them. FFP-NG seems thus more amenable to both security reductions and
cryptanalysis.

FO with explicit rejection. Our reduction employs a technique for generalized preimage ex-
traction in the QROM that was recently introduced in [DFMS21]. As shown by [DFMS21], this
technique is well-suited for proving FO⊥m secure. We furthermore generalize the one-way to hiding
(OWTH) lemma [AHU19] such that it is compatible with the technique from [DFMS21]. OWTH
was used to derive the state-of-the-art bounds for implicitly rejecting variants, and combining the
two techniques, we obtain a security bound for FO⊥m that is competitive with said state-of-the-art
bounds.
QROM tools. To facilitate the above-described reduction, we provide two technical tools that
might be of independent interest: Firstly, we generalize the OWTH framework from [AHU19] such
that it can be combined with the extractable quantum random oracle simulation from [DFMS21],
rendering the two techniques compatible with being used together in the same security reduction. We
make crucial use of this possibility to avoid the additional reduction losses that [DFMS21] need to
accept to be able to use the plain one-way to hiding framework in juxtaposition with the extractable
simulator.

Secondly, we prove query lower bounds for tasks where an algorithm has access to a QRO (or
even an extractable simulator thereof) and has to output an input value x which, together with the
corresponding oracle output RO(x), achieves a large value under some figure-of-merit function. We
use this technical result to provide the aforementioned bounds for the adversarial advantage in the
FFP-NK game, but they might prove of independent interest.

Organisation of this work. Section 2 recalls standard definitions for PKE schemes/KEMs, and
the formal definition of FO⊥m. Section 3 gives our random oracle model reduction, substantiating the
upper half of Fig. 1 in the ROM. Section 5 is the QROM equivalent of Section 3. Since Section 5
uses the extractable quantum random oracle simulation from [DFMS21], we squeeze in a recap of
this extension in Section 4 to establish notation and for the reader’s convenience. Section 6 analyzes
FFP-CPA security of PKEG further, thereby substantiating the lower half of Fig. 1. Section 7 ties
together Section 3/5 with Section 6 by providing corollaries that use concrete bounds for the IND-CCA
security of FO⊥m[PKE,G,H]. The bounds include a term in γ, the spreadness of PKE. In Section 8,
we calculate this term for two easy-to-analyze candidates, HQC.PKE and FrodoPKE.

TL;DR for scheme designers. Section 7 provides concrete bounds for the IND-CCA security of
FO⊥m[PKE,G,H]. Besides having to analyze the conjectured passive security of PKE, applying the
bounds to a concrete scheme PKE requires to analyze the following computational and statistical
properties:

– γ, the spreadness of PKE.
– An upper bound for FFP-NG against PKE.
– Either an upper bound for FFP-NK for PKEG, in our extended oracle model that allows preimage

extractions, or alternatively, two statistical values: δik, the worst-case decryption error rate when
the message is picked independently of the key, and σδik , the maximal variance of δik.
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PKEG
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IND-CPA
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FFP-CCA

Thm. 11

Thm. 10

Fig. 1. Summary of our results. Top: ”Ths. X/Y“ indicates that we provide a ROM theorem X (in Section 3)
and a QROM theorem Y (in Section 5). Bottom: Breaking down FFP-CPA security of PKEG (Section 6). Solid
(dashed) arrows indicate tight (non-tight) reductions in the QROM. We want to emphasize that Theorems 2
and 5 have comparably mild tightness loss: The loss is linear in the number of decryption queries. The
QROM loss for Theorems 8 and 9 is like the one for previously known reductions.

Acknowledgements. We would like to thank Dominique Unruh for valuable discussions about the
semi-classical one-way to hiding lemma and Manuel Barbosa for pointing out the use of heuristics
in bounds for delta.

2 Preliminaries.

For convenience, we recall the formal definition of the Fujisaki-Okamoto transformation with ex-
plicit rejection (as already described above) in Section 2.1, and standard definitions for public-key
encryption and key encapsulation algorithms in Section 2.2.

For a finite set S, we denote the sampling of a uniform random element x by x ←$ S, and we
denote deterministic computation of an algorithm A on input x by y := A(x). By JBK we denote
the bit that is 1 if the Boolean statement B is true, and otherwise 0.

2.1 The Fujisaki-Okamoto transformation with explicit rejection

This section recalls the definition of FO⊥m. To a public-key encryption scheme PKE = (KG,Enc,Dec)
with message space M, randomness space R, and hash functions G : M → R and H : {0, 1}∗ →
{0, 1}n, we associate

KEM⊥m := FO⊥m[PKE,G,H] := (KG,Encaps,Decaps) .

Its constituting algorithms are given in Fig. 2. FO⊥m uses the underlying scheme PKE in a deran-
domized way by using G(m) as the encryption coins (see line 02) and checks during decapsulation
whether the decrypted plaintext does re-encrypt to the ciphertext (see line 06). This building block
of FO⊥m, i.e., the derandomisation of PKE and performing a reencryption check, is incorporated in
the following transformation T:

PKEG := T[PKE,G] := (KG,EncG,DecG) ,
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with its constituting algorithm given in Fig. 3.

2.2 Security Notions for Public-Key Encryption

We also consider all security games in the (quantum) random oracle model, where PKE and adversary
A are given access to (quantum) random oracles. (How we model quantum access is made explicit
in Section 4.)

Definitions for PKE

Definition 1 (γ-spreadness). We say that PKE is γ-spread iff for all key pairs (pk, sk) ∈ supp(KG)
and all messages m ∈M it holds that

max
c∈C

Pr[Enc(pk,m) = c] ≤ 2−γ ,

where the probability is taken over the internal randomness Enc.

We also recall two standard security notions for public-key encryption: One-Wayness under
Chosen Plaintext Attacks (OW-CPA) and Indistinguishability under Chosen-Plaintext Attacks (IND-CPA).

Definition 2 (OW-CPA, IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption scheme
with message space M. We define the OW-CPA game as in Fig. 4 and the OW-CPA advantage
function of an adversary A against PKE as

AdvOW-CPA
PKE (A) := Pr[OW-CPAAPKE ⇒ 1] .

Furthermore, we define the ’left-or-right’ version of IND-CPA by defining games IND-CPAb, where
b ∈ {0, 1} (also in Fig. 4), and the IND-CPA advantage function of an adversary A = (A1,A2) against
PKE (where A2 has binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA0 ⇒ 1]− Pr[IND-CPAA1 ⇒ 1]| .

Standard notions for KEM We now define Indistinguishability under Chosen-Plaintext Attacks
(IND-CPA) and under Chosen-Ciphertext Attacks (IND-CCA).

Encaps(pk)
01 m←$ M
02 c := Enc(pk,m; G(m))
03 K := H(m)
04 return (K, c)

Decaps(sk, c)
05 m′ := Dec(sk, c)
06 if m′ = ⊥ or c 6= Enc(pk,m′; G(m′))
07 return ⊥
08 else
09 return K := H(m′)

Fig. 2. Key encapsulation mechanism KEM⊥m = (KG,Encaps,Decaps), obtained from PKE = (KG,Enc,Dec)
by setting KEM⊥m := FO⊥m [PKE,G,H].
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EncG(pk)
01 m←$ M
02 c := Enc(pk,m; G(m))
03 return c

DecG(sk, c)
04 m′ := Dec(sk, c)
05 if m′ = ⊥ or c 6= Enc(pk,m′; G(m′))
06 return ⊥
07 else
08 return m′

Fig. 3. Derandomized PKE scheme PKEG = (KG,EncG,DecG), obtained from PKE = (KG,Enc,Dec) by
encrypting a message m with randomness G(m) for a random oracle G, and incorporating a re-encryption
check during DecG.

Game OW-CPA
01 (pk, sk)← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk,m∗)
04 m′ ← A(pk, c∗)
05 return Jm′ = m∗K

Game IND-CPAb
06 (pk, sk)← KG
07 (m∗0,m∗1, st)← A1(pk)
08 c∗ ← Enc(pk,m∗b)
09 b′ ← A2(pk, c∗, st)
10 return b′

Fig. 4. Games OW-CPA and IND-CPAb for PKE.

Definition 3 (IND-CPA, IND-CCA). Let KEM = (KG,Encaps,Decaps) be a key encapsulation mech-
anism with key space K. For ATK ∈ {CPA,CCA}, we define IND-ATK-KEM games as in Fig. 5, where

OATK :=
{
− ATK = CPA
oDecaps ATK = CCA .

We define the IND-ATK-KEM advantage function of an adversary A against KEM as

AdvIND-ATK-KEM
KEM (A) := |Pr[IND-ATK-KEMA ⇒ 1]− 1/2| .

Game IND-ATK-KEM
01 (pk, sk)← KG
02 b←$ {0, 1}
03 (K∗0 , c∗)← Encaps(pk)
04 K∗1 ←$ K
05 b′ ← AOATK (pk, c∗,K∗b )
06 return Jb′ = bK

oDecaps(c 6= c∗)
07 K := Decaps(sk, c)
08 return K

Fig. 5. Game IND-ATK-KEM for KEM, where ATK ∈ {CPA,CCA} and OATK is defined in Definition 3.

3 ROM reduction

This section substantiates the upper half of Fig. 1 in the random oracle model. The first step of
common security reductions for the FO transformation consists of simulating the decapsulation oracle
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without using the secret key. This simulation allows transforming an IND-CCA-KEM-adversary A
against KEM⊥m := FO⊥m[PKE,G,H] into an IND-CPA-KEM-adversary Ã against the same KEM⊥m. The
oracle simulation, however, will not accurately simulate the behaviour of Decaps for ciphertexts that
trigger decryption errors. We will show that from an adversary capable of distinguishing between
the real decapsulation oracle and its simulation, we can construct an adversary B that is able to
extract failing plaintexts for the derandomised version PKEG of PKE (as defined in Fig. 3 on page
8). In more detail, we formalise extraction of failing plaintexts as the winning condition of two
Find Failing Plaintext (FFP) games, which we formally define in Definition 4 (also see Fig. 6).
For ATK ∈ {CPA,CCA}, an adversary B playing the FFP-ATK game for a deterministic encryption
scheme PKE gets access to the same oracles as in the respective IND-ATK game, outputs a message
m, and wins if Dec(Enc(m)) 6= m. (Here, and in the following, we sometimes omit the arguments
pk and sk, respectively.) For such messages m we say that m is a failing plaintext, or shorter, that
m fails. We will first show in Theorem 1 that any attacker against the IND-CCA-KEM security
of FO⊥m[PKE,G,H] can be used to construct an IND-CPA-KEM attacker against FO⊥m[PKE,G,H]
and an attacker against the correctness of PKEG that has access to oDecrypt, i.e., an attacker
that succeeds in game FFP-CCA. The maximum winning probability in the FFP-CCA game is still
quite an unwieldy object. In particular, clever strategies have been devised to make adaptive use
of a decryption oracle towards finding failing plaintexts. Fortunately, we can use the same strategy
underlying our simulation of oDecaps once more to show in Theorem 2 that any successful FFP-CCA
adversary can be used to construct an adversary succeeding in the FFP-CPA game, meaning that it
is sufficient to analyse the success probability of attackers trying to come up with failing plaintexts,
having nothing on their hands but the public key. It is then shown how [HHK17] can be used to
argue that IND-CPA-KEM security of FO⊥m[PKE,G,H] can be based on either OW-CPA or IND-CPA
security of PKE, with the latter implication being tight up to a factor of 3. Lastly, we discuss that the
main result of this section also works if we consider the implicitly rejecting variant FO 6⊥m[PKE,G,H]
instead of FO⊥m[PKE,G,H] (see Remark 1). The final bounds we obtain are essentially similar to
the ones in [HHK17] except for involving a different correctness definition, see the discussion after
Remark 1.

Definition 4 (FFP-ATK). Let PKE = (KG,Enc,Dec) be a deterministic public-key encryption
scheme. For ATK ∈ {CPA,CCA}, we define FFP-ATK games as in Fig. 6, where

OATK :=
{
− ATK = CPA
oDecrypt ATK = CCA .

We define the FFP-ATK advantage function of an adversary A against PKE as

AdvFFP-ATK
PKE (A) := Pr[FFP-ATKAPKE ⇒ 1] .

Note that in neither FFP-ATK game, the adversary has access to the secret key. In particular, the
FFP-CPA game only differs from the correctness game COR defined in [HHK17] in exactly this fact, as
game COR additionally provides the secret key. We note that an adversary winning either FFP-ATK
game for a deterministic scheme PKE can be used to win in game COR.

We begin by introducing two simulations of the Decaps oracle, oracle oDecaps′ and a vari-
ant oDecaps′′ of oDecaps′. oDecaps′′ extracts failing plaintexts from adversarial decapsulation
queries, and is simulatable by FFP adversaries with access to the decryption oracle oDecrypt for
PKEG. Both simulations of the Decaps oracle make use of a list L of previous queries to G and their
respective encryptions. For this to work, we replace G with a modification G′ that keeps track of all
issued queries and compiles L. The original Decaps oracle and its simulations are defined in Fig. 7,
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Game FFP-ATK
01 (pk, sk)← KG
02 m← AOATK,G(pk)
03 c := Enc(pk,m)
04 m′ := Dec(sk, c)
05 return Jm′ 6= mK

oDecrypt(c)
06 m := Dec(sk, c)
07 return m

Fig. 6. Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA,CCA}. OATK is the decryption oracle
present in the respective IND-ATK-KEM game (see Definition 4) and G is a random oracle, provided if it is
used in the definition of PKE.

oDecaps(c)
01 m′ := Dec(sk, c)
02 if m′ = ⊥
03 return K:=⊥
04 else
05 c′ := Enc(pk,m′; G(m′))
06 if c 6= c′

07 return ⊥
08 else
09 return H(m′)

G′(m)
10 r := G(m)
11 c := Enc(pk,m; r)
12 LG := LG ∪ {(m, c)}
13 return r

oDecaps′(c 6= c∗)
14 m := L−1

G (c)
15 if m = ⊥
16 return K:=⊥
17 else
18 return K := H(m)

oDecrypt(c 6= c∗)
19 m′ := Dec(sk, c)
20 if m′ = ⊥
21 return ⊥
22 else
23 if Enc(pk,m′; G(m′)) 6= c
24 return ⊥
25 else return m′

oDecaps′′(c 6= c∗)
26 m := L−1

G (c)
27 m′ := oDecrypt(c)
28 if m 6= ⊥and m 6= m′

29 LFAIL := LFAIL ∪ {m}
30 if m = ⊥
31 return K:=⊥
32 else
33 return K := H(m)

Fig. 7. Simulation oDecaps′ of oracle oDecaps for KEM⊥m , failing-plaintext-extracting version oDecaps′′
of oDecaps′, and decryption oracle oDecrypt for PKEG. Oracles oDecaps′ and oDecaps′′ use in lines 14
and 26 the notation introduced in Equation (1). Note that G′ only differs from G by compiling list LG (which
we assume to be initialized to ∅).

using the following conventions. For a set of pairs L ⊂ X ×Y, we assume that a total order is chosen
on X and Y. We denote by L−1(y) the first preimage of y. Formally, we define L−1(y) by setting

L−1(y) :=
{
x if (x, y) ∈ L and x ≤ x′ for all x′ s. th. (x′, y) ∈ L
⊥ @ x s. th. (x, y) ∈ L.

(1)

The simulation oDecaps′ can, however, only reverse encryptions that were already computed
by the adversary (with a query to oracle G′) before their query to oracle oDecaps′, which is where
the spreadness of PKE comes into play: If γ is large, it becomes unlikely that the attacker can guess
an encryption c = Enc(pk,m; G(m)) without a respective query to G. oDecaps′ will furthermore
answer inconsistently if the reversion (in other words, the preimage) of c differs from its decryption,
meaning that c belongs to a failing plaintext that can be recognized by the failure-extracting variant
oDecaps′′.

Theorem 1 (FO⊥m[PKE] IND-CPA and PKEG FFP-CCA ROM⇒ FO⊥m[PKE] IND-CCA). Let PKE be
a (randomised) PKE scheme that is γ-spread, and let KEM⊥m := FO⊥m[PKE,G,H]. Let A be an



FO and decryption failures 11

IND-CCA-KEM-adversary (in the ROM) against KEM⊥m, making at most qD many queries to its
decapsulation oracle oDecaps. Then there exist an IND-CPA-KEM adversary Ã and an FFP-CCA
adversary B against PKEG such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤ AdvIND-CPA-KEM
KEM⊥m

(
Ã
)

+ AdvFFP-CCA
PKEG (B) + qD · 2−γ . (2)

Adversary Ã makes qG queries to G and qH + qD queries to H, adversary B makes qG queries to G
and qD decryption queries, and both adversaries run in about the time of A.

Proof. Let A be an adversary against KEM⊥m. We define Ã as the IND-CPA-KEM adversary against
KEM⊥m that runs b′ ← AG′,H,oDecaps′ and returns b′. We furthermore define our FFP-CCA adversary B
against PKEG as follows: B runs AG′,H,oDecaps′′ , using its own FFP-CCA oracle oDecrypt to simulate
oDecaps′′. As soon as oDecaps′′ adds a plaintext m to LFAIL, B aborts A and returns m. If A
finishes and LFAIL is still empty, B returns ⊥.

First, we will relate A’s success probability to the one of Ã. Note that unless Ã’s simulation
oDecaps′ of the decapsulation oracle fails, Ã perfectly simulates the game to A and wins if A wins.
Let DIFF be the event that A makes a decryption query c such that Decaps(sk, c) 6= oDecaps′(c).
We bound

1
2 + AdvIND-CCA-KEM

KEM⊥m
(A) = Pr [A wins] (3)

= Pr [A wins ∧ ¬DIFF] + Pr [A wins ∧ DIFF] (4)
= Pr

[
Ã wins ∧ ¬DIFF

]
+ Pr [A wins ∧ DIFF] (5)

≤Pr
[
Ã wins

]
+ Pr [DIFF] (6)

=1
2 + AdvIND-CPA-KEM

KEM⊥m

(
Ã
)

+ Pr [DIFF] . (7)

To analyze the probability of event DIFF, we note that it covers several cases:

- Original oracle oDecaps(c) rejects, whereas simulation oDecaps′(c) does not, meaning that
c is an encryption belonging to a previous query m to G′, but fails the reencryption check
performed by oDecaps(c). Since the latter means that either m′ := Dec(sk, c) = ⊥ or that
Enc(pk,m′; G(m′)) 6= c = Enc(pk,m; G(m)), this cases only occurs if Dec(sk, c) 6= m, meaning m
fails.

- Neither oracle rejects, but the return values differ, i.e., c is an encryption belonging to a previous
query m to G′, but decrypts to some message m′ 6= m.

- oDecaps′(c) rejects, whereas oDecaps(c) does not, i.e., while c would pass the reencryption
check, its decryption m has not yet been queried to G′.

In either of the former two cases, G′ has been queried on a failing plaintext m and the decapsu-
lation oracle has been queried on its encryption c, meaning that the failing plaintext can be found
and recognized by B since B can use its own FFP-CCA oracle oDecrypt to simulate oDecaps′′.
We will denote the last case by GUESS since A has to find a guess for a ciphertext c that passes
the reencryption check, meaning it is indeed of the form c = Enc(pk,m; G′(m)) for m := Dec(sk, c),
while not having queried G′ on m yet. Whenever DIFF occurs, B succeeds unless GUESS occurs. In
formulae,

Pr [DIFF] = Pr [DIFF ∧ ¬GUESS] + Pr [DIFF ∧ GUESS]
≤AdvFFP-CCA

PKEG (B) + Pr [GUESS] .

Together with Lemma 1 below, this yields the desired bound. ut
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We continue by bounding the probability of event GUESS. We will also need to analyze a very
similar event in Theorem 2, in which we revisit the FFP-CCA attacker B against PKEG, and where we
will simulate B’s oracle oDecrypt via an oracle oDecrypt′ (see Fig. 8). Therefore, we generalize
the definition of event GUESS accordingly.

Lemma 1. Let PKE be γ-spread, and let A be an adversary expecting random oracles G, H as well
as either a decapsulation oracle oDecaps for KEM⊥m := FO⊥m[PKE,G,H] or a decryption oracle
oDecrypt for PKEG, issuing at most qD queries to the latter. When run with G′ and simulated
oracle oDecaps′ (or oDecrypt′, respectively), there is only a small probability that original ora-
cle oDecaps (oDecrypt) would not have rejected, but simulation oDecaps′ (oDecrypt′) does.
Concretely, we have

Pr [GUESS] ≤ qD · 2−γ . (8)

Proof. The event GUESS, i.e. the case that oDecaps′ (oDecrypt′) rejects on a ciphertext c where
oDecaps (oDecrypt) does not, requires that c = Enc(pk,m; G(m)) for m := Dec(sk, c), and that
G′ was not yet queried on m. Let c be any ciphertext queried by the adversary for which oDecaps
does not reject, and let m := Dec(sk, c). We can bound

Pr
[
oDecaps′(c) = ⊥

]
≤Pr[Enc(pk,m,G′(m)) = c ∧ G′ not yet queried on m]
≤ Pr
r←$R

[Enc(pk,m; r) = c] ≤ 2−γ ,

where the penultimate step used that G′ has the same distribution as random oracle G and that
G(m) has not yet been sampled, and the last step used that PKE scheme is γ-spread. Applying a
union bound, we conclude that

Pr [GUESS] ≤ qD · 2−γ . ut

So far, we have shown that whenever an IND-CCA adversaryA’s behaviour is significantly changed
by being run with simulation oDecaps′ instead of the real oracle oDecaps, we can use A to find a
failing plaintext, assuming access to the FFP-CCA decryption oracle oDecrypt for PKEG. We now
proceed by showing that oDecrypt can be simulated via oracle oDecrypt′ (see Fig. 8) without
the secret key, thereby being able to construct an FFP-CPA adversary from any FFP-CCA adversary
that succeeds with the same probability up to (at most) a multiplicative factor equal to the number
of decryption queries the FFP-CCA adversary makes.

Theorem 2 (PKEG FFP-CPA ROM⇒ PKEG FFP-CCA). Let PKE be -γ-spread, and let B be an
FFP-CCA adversary against PKEG (in the ROM), issuing at most qD many decryption queries. Then
there exists an FFP-CPA adversary B̃ such that

AdvFFP-CCA
PKEG (B) ≤ (qD + 1) ·AdvFFP-CPA

PKEG

(
B̃
)

+ qD · 2−γ . (9)

Adversary B̃ makes at most the same number of queries to G as B and runs in about the time of B .

Proof. To simulate oDecrypt, we use a similar strategy as in the proof of Theorem 1. We define
the events DIFF and GUESS in the same way as in the proof of Theorem 1, except now with respect
to the adversary B and oracles oDecrypt (oDecrypt′) instead of oDecaps (oDecaps′). If our
simulation does not fail, then a reduction can simulate the FFP-CCA game to B and use B’s output
to win its own FFP-CPA game. The simulation will fail if either GUESS happens (with probability at
most qD · 2−γ due to Lemma 1), or DIFF, while GUESS does not, meaning that the failing message
triggering DIFF can be extracted from LG. Our reduction B̃ combines both approaches (using B’s
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oDecrypt′(c)
01 m := L−1

G (c)
02 return m

G′(m)
03 c := Enc(m; G(m))
04 LG := LG∪{(m, c)}
05 return G(m)

B̃G

06 i←$ {1, ..., qD + 1}
07 if i < qD + 1
08 Run BG′,oDecrypt′(pk) until i-th query ci to oDecrypt′
09 m := L−1

G (ci)
10 else
11 m← BG′,oDecrypt′(pk)
12 return m

Fig. 8. Simulation oDecrypt′ of oracle oDecrypt for PKEG, which is defined analogously to oDecaps′
(see Figure 7), and FFP-CPA adversary B̃. For the reader’s convenience, we repeat the definition of G′.

output and LG). Since B̃ has no knowledge of the secret key, it cannot determine which message will
let it succeed and hence has to guess.

Assume without loss of generality that B makes exactly qD many queries to oracle oDecrypt.
Consider the adversary B̃G in Fig. 8. B̃ samples i ← {1, ..., qD + 1} and either runs BG′,oDecrypt′

until its i-th query to oDecrypt′ or until the end if i = qD + 1. To implement G′, B̃ uses its oracle
G. Simulation oDecrypt′ is defined in Fig. 8 and works analogous to oDecaps′ in the previous
proof. Finally, B̃ outputs query preimage L−1

G (ci), where ci is B’s i-th query to decryption oracle
oDecrypt′, unless i = qD + 1, in which case B̃ outputs the output of B.

Using the same chain of inequalities as in the proof of Theorem 1, and again using Lemma 1, we
obtain

AdvFFP-CCA
PKEG (B) ≤ Pr [B wins ∧ ¬DIFF] + Pr [DIFF ∧ ¬GUESS] + qD · 2−γ . (10)

Adversary B̃ perfectly simulates game FFP-CCA unless DIFF occurs, and wins with probability
1/qD +1 if B wins by returning a failing plaintext or if B issues a decryption query that triggers DIFF
but not GUESS.

AdvFFP-CPA
PKEG

(
B̃
)

= 1
qD + 1 · (Pr [B wins ∧ ¬DIFF] + Pr [DIFF ∧ ¬GUESS]) (11)

Combining Equations (10) and (11) yields the desired bound. ut

Combining Theorems 1 and 2, we obtain the following straightforwardly.

Corollary 1 (FO⊥m[PKE] IND-CPA and PKEG FFP-CPA ROM⇒ FO⊥m[PKE] IND-CCA). Let PKE be
γ-spread, and let KEM⊥m := FO⊥m[PKE,G,H]. Let A be an IND-CCA-KEM adversary (in the ROM)
against KEM⊥m, issuing at most qG many queries to its oracle G, qH many queries to its oracle H, and
at most qD many queries to its decapsulation oracle oDecaps. Then there exist an IND-CPA-KEM
adversary Ã and an FFP-CPA adversary B such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤ AdvIND-CPA-KEM
KEM⊥m

(
Ã
)

+ (qD + 1) ·AdvFFP-CPA
PKEG (B) + 2qD · 2−γ . (12)

Adversary Ã makes qG queries to G and qH + qD queries to H, adversary B makes qG queries to G,
and both run in about the time of A.

We remark that the factor 2 in front of the additive term qD ·2−γ is an artefact of our modular proof
(in terms of Theorems 1 and 2). It is straightforward to show that the bound of Corollary 1 can
be proven without the factor of 2, when directly analyzing the composition of the reductions from
Theorems 1 and 2.
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Next, we observe in Theorem 3 that IND-CPA security of FO⊥m[PKE,G,H] can be based on passive
security of PKE. While Theorem 3 is implicitly contained in [HHK17], we make explicit in Appendix B
how it can be easily obtained.

Theorem 3 (PKE OW-CPA or IND-CPA ROM⇒ FO⊥m[PKE] IND-CPA). Let KEM⊥m := FO⊥m[PKE,G,H]
for some PKE scheme PKE. For any IND-CPA adversary A against KEM⊥m, issuing at most qG many
queries to its oracle G and qH many queries to its oracle H, there exist an OW-CPA adversary BOW-CPA
and an IND-CPA adversary BIND-CPA of roughly the same running time such that

AdvIND-CPA
KEM⊥m

(A) ≤ (qG + qH + 1) ·AdvOW
PKE(BOW-CPA)

and
AdvIND-CPA

KEM⊥m
(A) ≤ 3 ·AdvIND-CPA

PKE (BIND-CPA) + 2 · (qG + qH) + 1
|M|

.

Combining Corollary 1 and Theorem 3, we obtain the following straightforward

Corollary 2 (PKE OW-CPA or IND-CPA and PKEG FFP-CPA ROM⇒ FO⊥m[PKE] IND-CCA). Let
PKE be a (randomized) PKE scheme that is γ-spread, and let KEM⊥m := FO⊥m[PKE,G,H]. Let A be
an IND-CCA-KEM adversary (in the ROM) against KEM⊥m, making at most qRO many queries to
its random oracles G and H, and qD many queries to its decapsulation oracle oDecaps. Then there
exist a OW-CPA adversary BOW-CPA and an IND-CPA adversary BIND-CPA such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤(qRO + qD + 1) ·AdvOW
PKE(BOW-CPA)

+ (qD + 1) ·AdvFFP-CPA
PKEG (C) + 2qD · 2−γ

and

AdvIND-CCA-KEM
KEM⊥m

(A) ≤ 3 ·AdvIND-CPA
PKE (BIND-CPA) + 2 · (qRO + qD) + 1

|M|
+ (qD + 1) ·AdvFFP-CPA

PKEG (B) + 2qD · 2−γ .

Adversary C makes qG queries to G, and all adversaries run in about the time of A.

When comparing our bounds with the respective bounds from [HHK17], we note that our bounds
are still in the same asymptotic ball park and differ from the bounds in [HHK17] essentially by replac-
ing the worst-case correctness term δwc (there denoted by δ) present in [HHK17] by AdvFFP-CPA

PKEG (B),
and having an additional term in γ even for KEM6⊥m. We believe that the additional γ-term could be
removed by doing a direct proof for KEM6⊥m, but redoing the whole proof for this variant was outside
the scope of this work. We will further analyze AdvFFP-CPA

PKEG (B) in Section 6.

Remark 1 (Obtaining the results for FO 6⊥m[PKE]). We can use the results from [BHH+19] to further-
more show that the bounds given in Corollary 2 also hold if KEM⊥m := FO⊥m[PKE,G,H] is replaced
with KEM 6⊥m := FO⊥m[PKE,G,H]: In more detail, it follows directly from [BHH+19, Theorem 3] that
for any IND-CCA-KEM attacker A against KEM6⊥m, there exists an IND-CCA-KEM attacker B against
KEM⊥m such that

AdvIND-CCA-KEM
KEM6⊥m

(A) ≤ AdvIND-CCA-KEM
KEM⊥m

(B) ,

and Corollary 2 does not contain any terms relative to KEM⊥m itself, it only contains terms relative
to the underlying schemes PKE and PKEG.
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4 Compressed oracles and extraction

We want to generalize the ROM results obtained in Section 3 to the QROM. To this end, we will use
an extension of the compressed oracle technique [Zha19] that was introduced in [DFMS21] and that
we will now quickly recap. To describe the technique, we start with the observation that for each
input value x, its oracle value O(x) is a uniformly distributed random variable that can equivalently
be sampled by measuring a uniform superposition in the computational basis. It was shown in [Zha19]
how a quantum-accessible random oracle O : X → Y can be simulated by preparing a database D
with an entry Dx for each input value x, with each Dx being initialized as a uniform superposition
of all elements of Y , and omitting the “oracle-generating” measurements until after the algorithm
accessing O has finished. In [DFMS21], this oracle simulation was generalized to obtain an extractable
oracle simulator eCO (for extractable Compressed Oracle) that has two interfaces, the random oracle
interface eCO.RO and an extraction interface eCO.Ef , defined relative to a function f : X × Y → T .
Informally, eCO.Ef takes as input a classical value t. Consider the classical procedure of going through
a lexicographically ordered list of lazy-sampled input output pairs (x, y) and outputting the first
one such that f(x, y) = t. eCO.Ef performs the quantum analogue of that: a measurement that
partially collapses the oracle database, just enough so that the classical procedure would yield one
particular outcome x for all parts of the superposition. After the measurement, D is thus in a state
such that the superposition held in database entry Dx only contains possibilities y for eCO.RO(x)
such that f(x, y) = t, and no entry Dx′ for any x′ < x will have any possibilities y′ left such that
also f(x′, y′) = t. Whenever it is clear from context which function f is used, we simply write eCO.E
instead of eCO.Ef .

In general, eCO.Ef can extract preimage entries from the “database” D during the runtime of
an adversary instead of only after the adversary terminated. This allows for adaptive behaviour of a
reduction, based on an adversary’s queries. In [DFMS21], it was already used for the same purpose we
need it for – the simulation of a decapsulation oracle, by having eCO.E extract a preimage plaintext
from the ciphertext on which the decapsulation oracle was queried. We will denote oracles modelled
as extractable quantum-accessible ROs by eQROf , and a proof that uses an eQROf will be called
a proof in the eQROMf .

We will now make this description more formal, closely following notation and conventions from
[DFMS21]. Like in [DFMS21], we keep the formalism as simple as possible by describing an inefficient
variant of the oracle that is not (yet) “compressed”. Efficient simulation is possible via a standard
sparse encoding, see [DFMS21, Appendix A]. The simulator eCO for a random function O : {0, 1}m →
{0, 1}n is a stateful oracle with a state stored in a quantum register D = D0m . . . D1m , where for each
input value x ∈ {0, 1}m, register Dx has n + 1 qubits used to store superpositions of n-bit output
strings y, encoded as 0y, and an additional symbol ⊥, encoded as 10n. We adopt the convention that
an operator expecting n input qubits acts on the last n qubits when applied to one of the registers
Dx. The compressed oracle has the following three components.

– The initial state of the oracle, |φ〉 = |⊥〉2
m

– A quantum query with query input register X and output register Y is answered using the oracle
unitary OXYD defined by

OXYD |x〉X = |x〉X ⊗
(
FDxCNOT⊗nDx:Y FDx

)
, (13)

where F |⊥〉 = |φ0〉, F |φ0〉 = |⊥〉 and F |ψ〉 = |ψ〉 for all |ψ〉 such that 〈ψ|⊥〉 = 〈ψ|φ0〉 = 0,
with |φ0〉 = |+〉⊗n being the uniform superposition. The CNOT operator here is responsible
for XORing the function value (stored in Dx, now in superposition) into the query algorithm’s
output register.

– A recovery algorithm that recovers a standard QRO O: apply F⊗2m to D and measure it to
obtain the function table of O.
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In section 5.2, we will use the superposition oracle to analyze algorithms that make parallel
(quantum) queries to a random oracle. For a standard quantum oracle for a function H, an algorithm
that makes w parallel queries sends 2w quantum regisers Xi, Yi, i = 1, ..., w to the oracle. The query
is then processed by applying the oracle unitary UH to each pair Xi, Yi. We can think of this parallel-
query oracle as being implemented by a simulator with query access to the non-parallel oracle for H:
upon input regisers Xi, Yi, i = 1, ..., w the simulator sends the register pairs Xi, Yi to its own oracle
sequentially. Using this trivial reformulation, it is clear how parallel queries can be handled when H
is a random function and the oracle for H is simulated using the compressed oracle.

We now make our description of the extraction interface eCO.E formal: Given a random oracle
O : {0, 1}m → {0, 1}n, let f : {0, 1}m×{0, 1}n → {0, 1}` be a function. We define a family of measure-
ments (Mt)t∈{0,1}` . The measurementMt has measurement projectors {Σt,x}x∈{0,1}m∪{∅} defined
as follows. For x ∈ {0, 1}m, the projector selects the case where Dx is the first (in lexicographical
order) register that contains y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′

D′x
⊗Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y〉〈y| (14)

and Π̄ = 1−Π. The remaining projector corresponds to the case where no register contains such a
y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m
Π̄t,x′

D′x
. (15)

As an example, say we model a random oracle H as such an eQROf . Using f(x, y) := JH(x) = yK,
M1 allows us to extract a preimage of y.

eCO is initialized with the inital state of the compressed oracle. eCO.RO is quantum-accessible
and applies the compressed oracle query unitary OXYD. eCO.E is a classical oracle interface that,
on input t, appliesMt to eCO’s internal state (i.e. the state of the compressed oracle) and returns
the result. The simulator eCO has several useful properties that were characterized in [DFMS21,
Theorem 3.4], for convenience included below. These characterisations are in terms of the quantity

Γ (f) = max
t
ΓRf,t , with

Rf,t(x, y) :⇔ f(x, y) = t and
ΓR := max

x
|{y | R(x, y)}|. (16)

For f = Enc(·; ·), the encryption function of a PKE that takes as first input a message m and as
second input an encryption randomness r, we have Γ (f) = 2−γ |R| if PKE is γ-spread. In this case,
eCO.E(c) outputs a plaintext m such that Enc(m, eCO.RO(m)) = c, or ⊥ if the ciphertext c has not
been computed using eCO.RO before.

We now state the parts of [DFMS21, Theorem 3.4] that we will use in our proofs.

Lemma 2 (Part of theorem 3.4 in [DFMS21]). The extractable RO simulator eCO described
above, with interfaces eCO.RO and eCO.E, satisfies the following properties.
1. If eCO.E is unused, eCO is perfectly indistinguishable from a random oracle.

2.a Any two subsequent independent queries to eCO.RO commute. In particular, two subsequent
classical eCO.RO-queries with the same input x give identical responses.

2.b Any two subsequent independent queries to eCO.E commute. In particular, two subsequent eCO.E-
queries with the same input t give identical responses.

2.c Any two subsequent independent queries to eCO.E and eCO.RO 8
√

2Γ (f)/2n-almost-commute.
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Game FFP-ATK
01 (pk, sk)← KG
02 m← AOATK,eCO(pk)
03 c := Enc(pk,m)
04 m′ := Dec(sk, c)
05 return Jm′ 6= mK

oDecrypt(c)
06 m := Dec(sk, c)
07 return m

Fig. 9. Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA,CCA}, in the eQROMf . Like in its clas-
sical counterpart (see Fig. 6, page 10), OATK is the decryption oracle present in the respective IND-ATK-KEM
game (see Definition 4 on page 9). The only difference is that the random oracle G is now modelled as an
extractable superposition oracle eCO.

Furthermore, the total runtime and quantum memory footprint of eCO, when using the sparse rep-
resentation of the compressed oracle, are bounded as

Time(eCO, qRO, qE) = O
(
qRO · qE · Time[f ] + q2

RO

)
, and

QMem(eCO, qRO, qE) = O
(
qRO

)
.

where qE and qRO are the number of queries to eCO.E and eCO.RO, respectively.

5 QROM reduction

In this section, we generalize the reductions from Section 3 to the quantum-accessible random oracle
model. To do so, we give in Fig. 10 the quantum analogues of the simulated decapsulation oracles
oDecaps′ and oDecaps′′ from Fig. 7, which were (essentially) developed in [DFMS21]. We have
to adapt our simulations since the ROM simulations from Fig. 7 use book-keeping techniques and
therefore cannot be easily implemented in the standard QROM. Instead, we use the formalism
described in Section 4, i.e., we use a simulation of a quantum-accessible random oracle and make
use of the additional extraction interface eCO.E: While the simulations in Fig. 7 had access to a list
LG that could be used to extract potential ciphertext preimages, the simulations in Fig. 10 can now
extract them by accessing extractor eCO.E (see lines 12 and 17). The rest of the simulation is exactly
as before. Using the notation from Section 4, we denote the modelling of the ROM as extractable
by eQROMEnc, as we extract preimages relative to function f = Enc(pk, ·, ·), with the message being
f ’s first and the randomness being f ’s second input.

While Section 3 concluded by showing in Theorem 3 how to base IND-CPA-KEM security of
FO⊥m[PKE,G,H] on passive security of PKE in the ROM, we need to develop an additional tool
to do the same in the eQROMEnc. Therefore, we split this section as follows: Section 5.1 ends
with IND-CCA security of FO⊥m[PKE,G,H] being based on IND-CPA security of FO⊥m[PKE,G,H] and
FFP-CPA security of PKEG. Note that the notions on which we base IND-CCA security are now
in the eQROMEnc.We give the eQROMf definition of FFP-ATK in Fig. 9. Section 5.2 develops
the necessary eQROMEnc tools to further analyze IND-CPA security of FO⊥m[PKE,G,H]. Concretely,
Section 5.2 provides an eQROMEnc-compatible variant of the one-way to hiding (OWTH) lemma for
semi-classical oracles as introduced in [AHU19]. Intuitively, the eQROMEnc-OWTH lemma states that
input depending on particular random oracle values eCO.RO(x) (like, e.g., G(m∗)) can be replaced
with input that replaced all involved oracle values with fresh uniform randomness. The change goes
unnoticed unless one of the x can be detected in the oracle queries. Section 5.2 is given in a general
way and might prove to be of independent interest. Equipped with the results from Section 5.2, we
show in Section 5.3 that also in the eQROMEnc, IND-CPA security of FO⊥m[PKE,G,H] can be based
on passive security of PKE.
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oDecaps(c 6= c∗)
01 m′ := Dec(sk, c)
02 if m′ = ⊥
03 return K:=⊥
04 else
05 c′ := Enc(pk,m′; G(m′))
06 if c 6= c′

07 return ⊥
08 else
09 return H(m′)

G′, input registers X,Y
10 Apply eCO.ROXYD

11 return registers XY

oDecaps′(c 6= c∗)
12 m← eCO.E(c)
13 if m = ⊥
14 return ⊥
15 else
16 return H(m)

oDecaps′′(c 6= c∗)
17 m← eCO.E(c)
18 m′ := oDecrypt(c)
19 if m 6= ⊥and m 6= m′

20 LFAIL := LFAIL ∪ {m}
21 if m = ⊥
22 return ⊥
23 else
24 return H(m)

oDecrypt(c)
25 m′ := Dec(sk, c)
26 if m′ = ⊥
27 return ⊥
28 else
29 if Enc(pk,m′; G(m′)) 6= c
30 return ⊥
31 else
32 return m′

Fig. 10. Simulated and failing-plaintext-extracting versions of the decapsulation oracle oDecaps for
FO⊥m [PKE,G,H], using the extractable QRO simulator eCO from [DFMS21] (see Section 4). The simula-
tions of oDecaps are exactly like the ROM ones in Fig. 7 except for how they extract ciphertext preimages
in lines 12 and 17. We assume eCO to be freshly initialized before oDecaps′ or oDecaps′′ is used for the first
time in a security game, and extraction interface eCO.E is defined with respect to function f = Enc(pk, ·; ·),
where Enc is the encryption algorithm of PKE.

5.1 From IND-CPAFO[PKE] and FFP-CCAG
PKE to IND-CCAFO[PKE]

We begin by proving a quantum analogue of Theorem 1.

Theorem 4 (FO⊥m [PKE] IND-CPA and PKEG FFP-CCA eQROMEnc⇒ FO⊥m [PKE] IND-CCA). Let PKE be a
(randomized) PKE that is γ-spread, and KEM⊥m := FO⊥m[PKE,G,H]. Let A be an IND-CCA-KEM-
adversary (in the QROM) against KEM⊥m, making at most qD many queries to its decapsulation
oracle oDecaps, and making qG, qH queries to its respective random oracles .Let furthermore d and
w be the combined query depth and query width of A’s random oracle queries. Then there exist an
IND-CPA-KEM adversary Ã and an FFP-CCA adversary B against PKEG, both in the eQROMEnc,
such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤AdvIND-CPA-KEM
KEM⊥m

(
Ã
)

+ AdvFFP-CCA
PKEG (B)

+ 12qD(qG + 4qD) · 2−γ/2. (17)

The adversary Ã makes qG + qH + qD queries to eCO.RO with a combined depth of d + qD and a
combined width of w, and qD queries to eCO.E. Here, eCO.RO simulates G × H. The adversary B
makes qD many queries to oDecrypt and eCO.E and qG queries to eCO.RO, and neither Ã nor B
query eCO.E on the challenge ciphertext. The running times of the adversaries Ã and B are bounded
as Time(Ã) = Time(A) +O(qD) and Time(B) = Time(A) +O(qD).



FO and decryption failures 19

Before proving the theorem, we briefly point out similarities and differences to the ROM coun-
terpart, Theorem 1. First note that the bounds look very similar. The only difference lies in the
additive error term that depends on the spreadness parameter γ. In the above theorem, this additive
error term O(qDqG2−γ/2) is much larger than the term O(qD2−γ) present in Theorem 1. This larger
additive loss originates from dealing with the fact that the extraction technique used to simulate the
Decaps oracle inflicts an error onto the simulation of the QRO. We expect that for many real-world
schemes, the additive security loss of O(qDqG2−γ/2) is still small enough to be neglected, and calcu-
late the term for two example cases in Section 8. Another important difference between Theorem 4
and Theorem 1 is of course that the adversaries Ã and B are now in the non-standard eQROMEnc.
Looking ahead, we provide further reductions in Section 5.3 culminating in Corollary 9 which gives
a standard-QROM IND-CCA-KEM security bound for KEM⊥m in terms of (standard model) security
properties of PKE.

Proof. We prove this theorem via a number of hybrid games, drawing some inspiration from the
reduction for the entire FO transformation given in [DFMS21].

Game G0 is IND-CCA-KEMKEM⊥m (A).
Game G1 is like Game G0, except for two modifications: The quantum-accessible random

oracle G is replaced by G′ as defined in Fig. 10 (i.e., it is simulated using an eQROEnc), and after
the adversary has finished, we compute oracle preimages for all ciphertexts on which oDecaps was
queried, i.e., we compute m̂i := eCO.E(ci) for all i = 1, ..., qD, where ci is the input to the adversary’s
ith decapsulation query. By property 1 in [DFMS21, Lem. 3.4]/Lemma 2, G′ perfectly simulates G
until the first eCO.E-query, and since the first eCO.E-query occurs only after A finishes, we have

AdvIND-CCA-KEM
KEM⊥m

(A) = AdvGame G0 = AdvGame G1 . (18)

Game G2 is like Game G1, except that m̂i := eCO.E(ci) is computed right after A submits ci
instead of computing it in the end. Note that Game G2 can be obtained from Game G1 by first
swapping the eCO.E call that produces m̂1 with all eCO.RO calls that happen after the adversary
submits c1, including the calls inside oDecaps, then continuing with the eCO.E-call that produces
m̂2, etc. We will now use that eCO.RO and eCO.E almost-commute: By property 2.c and possibly
2.b) of [DFMS21, Lem. 3.4]/Lemma 2 and since Γ (Enc(·; ·)) = 2−γ |R| for γ-spread PKE schemes,
we have that ∣∣AdvGame G1 −AdvGame G2

∣∣ ≤ 8
√

2qD(qG + qD) · 2−γ/2 . (19)

Game G3 is the same as Game G2, except that A in run with access to the oracle oDecaps′
instead of oDecaps, meaning that upon a decapsulation query on ci, A receives oDecaps′(ci) =
H(m̂i) instead of oDecaps(ci) = Decaps(sk, ci) (using the convention H(⊥) := ⊥). We still let the
game also compute oDecaps(ci), as oDecaps makes queries to eCO.RO which can influence the
behavior of eCO.E in subsequent queries. (Note that the reencryption step of oDecaps triggers a
call to G′, which in turn uses eCO.RO.) We define B exactly as in the proof of Theorem 1, except
that it uses the oracles G′ and oDecaps′′ defined in Fig. 10: B runs AG′,H,oDecaps′′ , using its own
FFP-CCA oracle oDecrypt to simulate oDecaps′′ and answering H queries by simulating a fresh
compressed oracle.6 As soon as oDecaps′′ adds a plaintext m to LFAIL, B aborts A and returns m.
If A finishes and LFAIL is still empty, B returns ⊥.

6 We remark that a t-wise independent function for sufficiently large t = O(qH + qD) also suffices, which is
more efficient as it doesn’t require (nearly as much) quantum memory.
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Let DIFF be the event that A makes a decryption query c in Game G2 such that oDecaps(c) 6=
oDecaps′(c). Like in the respective proof step for Theorem 1, we bound

1
2 + AdvGame G2 = Pr [A wins in Game G2]

= Pr [A wins in Game G2 ∧ ¬DIFF] + Pr [A wins in Game G2 ∧ DIFF]
= Pr [A wins in Game G3 ∧ ¬DIFF] + Pr [A wins in Game G2 ∧ DIFF]
≤Pr [A wins in Game G3] + Pr [DIFF]

=1
2 + AdvGame G3 + Pr [DIFF] .

Again, event DIFF encompasses three cases: For some decapsulation query c,
- Original decapsulation oracle oDecaps(c) rejects, but the simulation oDecaps′(c) does not,
the latter meaning that oDecaps′(c) = H(m̂i) for m̂ := eCO.E(c). By construction of the oracles
this implies that while m̂ encrypts to c, c does not decrypt to m̂ (under PKEG, right after).
(Otherwise, oDecaps(c) would not reject.) Hence, this case only occurs if c’s preimage m̂ fails.

- Neither oracle rejects, but the return values differ, i.e., calling eCO.E(c) in line 12 yielded some-
thing different than Dec(sk, c). Like above, this implies that preimage m̂ := eCO.E(c) fails

- oDecaps(c) does not reject, while oDecaps′(c) does, i.e., m̂ := eCO.E(c) in line 12 yielded
⊥, but the re-encryption check inside the oDecaps call in line 18 checked out, meaning that
Enc(pk,m, eCO.RO(m) = c form := Dec(sk, c). (Equivalently, the latter means that oDecrypt(c) =
m.) Intuitively, this case again implies that A managed to compute a valid encryption without
the respective oracle query on m.

In the above, any statements about eCO calls that are not actually performed by the adversary
or an oracle are assumed to be made right after the query c and do not cause any measurement
disturbance in that case.

We will again denote the last case by GUESS. Whenever DIFF occurs, B succeeds unless only case
GUESS occurs: If DIFF ∧ ¬GUESS occurs, then a failing plaintext is extractable from the ciphertext
that triggered DIFF ∧ ¬GUESS (this time due to access to eCO.E), and the plaintext is recognisable
as failing by B due to its FFP-CCA oracle oDecrypt. In formulae,

Pr[DIFF]=Pr[DIFF∧¬GUESS]+Pr[DIFF∧GUESS]≤AdvFFP-CCA
PKEG [B]+Pr [GUESS].

In summary, we can bound the difference in advantages between Game G2 and Game G3 as∣∣AdvGame G2 −AdvGame G3
∣∣ ≤AdvFFP-CCA

PKEG (B) + Pr [GUESS] .

The following two steps are in a certain sense symmetric to the steps for Games 0-2: A playing
Game G3 can almost be simulated without using the oDecaps oracle, except that oDecaps is still
invoked before each call of oDecaps′, without the result ever being used. This is an artifact from
Game G2. Omitting the oDecaps invocations might introduce changes in A’s view, as these invo-
cations might influence the behavior of eCO.E in subsequent queries. We therefore define Game G4
like Game G3, except that the oDecaps invocations are postponed until after A finishes. By a
similar argument as for the transition from Game G1 to Game G2, we obtain∣∣AdvGame G3 −AdvGame G4

∣∣ ≤ 8
√

2q2
D2−γ/2 .

Finally, Game G5 is like Game G4, except that the computations of oDecaps(ci) are omitted
entirely. In game 4, all invocations of oDecaps already happened after the execution of A, hence
this omission does not influence A’s success probability and

AdvGame G4 = AdvGame G5 .
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oDecrypt′(c)
01 m← eCO.E(c)
02 return m

G′, input registers X,Y
03 Apply eCO.ROXYD

04 return registers XY

Fig. 11. Simulation oDecrypt′ of oracle oDecrypt for PKEG. For the reader’s convenience, we repeat the
definition of G′.

Let Ã be an IND-CPA-KEM adversary against KEM⊥m in the eQROMEnc, simulating Game G5
to A: Ã has access to a single extractable oracle whose oracle interface eCO.RO simulates the
combination of G and H, i.e., eCO.RO simulates G × H. (We decided to combine G and H into
one oracle to simplify the subsequent analysis of the IND-CPA advantage against KEM⊥m that will
be carried out in Section 5.3.) Ã runs b′ ← AG′,H,oDecaps′ and returns b′. The simulation of A’s
oracles using eCO.RO is straightforward (preparing the redundant register in uniform superposition,
querying the combined oracle, and uncomputing the redundant register), but for completeness, we
now explain the technique in more detail: For any algorithm A expecting an eQROEnc-modelled
oracle G and a QRO H, one can define an algorithm Ã with access to a single oracle eCO whose
oracle interface eCO.RO represents G× H and whose extraction interface is only relative to G, that
perfectly simulates A’s view. Whenever A issues a query to G, Ã prepares an additional output
register Hout for H in a uniform superposition, queries eCO.RO, uncomputes Hout by applying the
Hadamard transform to Hout, and forwards the input-output registers belonging to G to A. The
same idea with reversed oracle roles can be used to answer queries to H. The extraction oracle
eCO.E represents an extraction interface for Enc(pk, ·; ·) with respect to G: This is possible as the
oracle database for G × H : M → R× K consists of registers Dm, of which each register Dm now
consist of one register Rm to accommodate a superposition of elements in R (or ⊥) and one register
Km to accommodate a superposition of elements in K (or ⊥). The projectors of the measurements
performed by extraction interface eCO.E can hence be defined in a way such that when eCO.E is
queried on some ciphertext c, they select the message m where Dm is the first (in lexicographical
order) register whose register Rm contains an r such that Enc(pk,m; r) = c.

We now have
AdvGame G5 = AdvIND-CPA-KEM

KEM⊥m
(Ã). (20)

Collecting the terms from the hybrid transitions, using Lemma 3 below, and bounding qD2−γ ≤
q2

D2−γ/2 yields the desired bound. The statements about query numbers, width and depth, as well
as the runtime, are straightforward. ut

Like in Section 3, we continue by bounding the probability of event GUESS, and Lemma 3 below is
the eQROMEnc analogue of Lemma 1. Again, we will soon revisit FFP-CCA attacker B against PKEG,
and we will simulate B’s oracle oDecrypt via an oracle oDecrypt′ (see Fig. 11) that differs from
oDecrypt if an event equivalent to GUESS occurs. Therefore, we again generalize the definition of
event GUESS accordingly.

Lemma 3. Let PKE be γ-spread, and let A be an eQROMEnc adversary that expects random or-
acles G, H as well as either a decapsulation oracle oDecaps for KEM⊥m := FO⊥m[PKE,G,H] or a
decryption oracle oDecrypt for PKEG, issuing at most qD queries to the latter. Let A be run
with G′ and oDecaps or oDecaps′ (oDecrypt or oDecrypt′), but for each query ci, both
m̂i = oDecrypt′(ci) and mi = oDecrypt(ci) are computed in that order, regardless of which
of the two oracles oDecaps and oDecaps′ (oDecrypt and oDecrypt′) A has access to. Then
GUESS, the event that m̂i = ⊥ while mi 6= ⊥, is very unlikely. Concretely,

Pr [GUESS] ≤ 2qD · 2−γ . (21)
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Proof. We begin by bounding the probability that for some fixed i ∈ {1, ..., qD} we have m̂i = ⊥ but
mi 6= ⊥. From the definitions of oDecaps and oDecaps′, as well as the definitions of the interfaces
eCO.RO and eCO.E, we obtain the expression√

Pr[m̂i = ⊥ ∧mi 6= ⊥] =
√

Pr[m̂i = ⊥ ∧ Enc(mi, eCO.RO(mi)) = ci]

=
∥∥∥Πc,x

Y OXY FΣ
c,∅
F |mi〉X |0〉Y |ψi〉FE

∥∥∥ (22)

Here, |ψi〉 is the adversary-oracle state before A submits the query ci and the projectors Πc,x
Y and

Σc,∅ are with respect to f = Enc (see Eq. (14)). We begin by simplifying the expression on the
right hand side. We have OXY F |mi〉X = FFmiCNOT⊗nFmi :Y FFmi ⊗ |mi〉X and ΠY CNOT⊗nFmi :Y |0〉Y =
CNOT⊗nFmi :YΠFmi

|0〉Y for any projector Π that is diagonal in the computational basis. We can thus
simplify ∥∥∥Πc,x

Y OXY FΣ
c,∅
F |mi〉X |0〉Y |ψi〉FE

∥∥∥ =
∥∥∥Πc,x

Fmi
FFmiΣ

c,∅ |mi〉X |0〉Y |ψi〉FE
∥∥∥

≤
∥∥∥FFmiΠc,x

Fmi
Σc,∅
F |mi〉X |0〉Y |ψi〉FE

∥∥∥+ ‖[Πc,x, F ]‖

≤
∥∥∥FFmiΠc,x

Fmi
Σc,∅
F |mi〉X |0〉Y |ψi〉FE

∥∥∥+
√

2 · 2−γ/2 (23)

where we have applied the two observations and omitted any final unitary operators in the first
equality, and the last inequality is due to Lemma 3.3 in [DFMS21]. But the remaining norm term
vanishes as

Πc,x
Fmi

Σc,∅
F = (Πc,xΠ̄c,x)Fmi ⊗ (Π̄c,x)⊗|M|−1

FM\{mi}
= 0. (24)

Combining Eqs. (22) to (24) and squaring the resulting inequality yields

Pr[m̂i = ⊥ ∧mi 6= ⊥] ≤ 2 · 2−γ . (25)

Collecting the terms and applying a union bound over the qD decapsulation queries yields the desired
bound. ut

So far, we have shown that whenever an IND-CCA adversaryA’s behaviour is significantly changed
by being run with simulation oDecaps′ instead of the real oracle oDecaps, we can use A to find
a failing plaintext, assuming access to the decryption oracle oDecrypt provided in the FFP-CCA
game. We continue by proving an eQROMEnc-analogue of Theorem 2, i.e., we show that oDecrypt
can be simulated via oracle oDecrypt′ (see Fig. 11) without the secret key, thereby being able to
construct an FFP-CPA adversary from any FFP-CCA adversary (both in the eQROMEnc).

Theorem 5 (PKEG FFP-CPA eQROMEnc⇒ PKEG FFP-CCA). Let PKE be γ-spread, and let B be an
FFP-CCA adversary in the eQROMEnc against PKEG that makes at most qD many decryption queries,
and at most qeCO.RO and qeCO.E to the two interfaces of the eQROMEnc, respectively. Then there exist
an FFP-CPA adversary B̃ in the eQROMEnc such that

AdvFFP-CCA
PKEG (B) ≤ (qD + 1)AdvFFP-CPA

PKEG (B̃) + 12qD(qG + 4qD)2−γ/2 (26)

The adversary B̃ makes qeCO.RO queries to eCO.RO and qeCO.E +qD queries to eCO.E, and its runtime
satisfies Time(B̃) = Time(B) +O(qD).
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Proof. On a high level, the proof works as follows. Analogous to Theorem 4, we simulate oDecrypt
by oDecrypt′. As we wish to remove the usage of oDecrypt entirely, however, we cannot use it to
determine at which oDecrypt′ query a failure occurs. We thus resort to guessing that information.

On a technical level this proof follows the proof of Theorem 4 with deviations similar as in
the proof of Theorem 2. Let oDecrypt′ be the simulation defined in Fig. 11. Let Game G0 be
the FFP-CCA-game, and let Games G1 −G5 be defined based on Game G0 like in the proof of
Theorem 4. Like in the proof of Theorem 4, we have

AdvGame G0 ≤ AdvGame G5 + 12qD(qG + 2qD)2−γ/2 + Pr[DIFF]
≤AdvGame G5 + 12qD(qG + 2qD)2−γ/2 + Pr[DIFF ∧ ¬GUESS] + Pr[GUESS]. (27)

Assume without loss of generality that B makes exactly qD many queries to the oracle for DecG (if it
does not, we modify B by adding a number of useless decryption queries in the end). We define an
FFP-CPA adversary B̃eCO defined exactly like the classical one in Fig. 8 (except that it has quantum
access to its oracles), i.e., B̃ samples i ← {1, ..., qD + 1} and runs BG′,oDecrypt′ until the i-th query,
or until the end if i = qD + 1. Finally, B̃ outputs mi, the output of BG′,oDecrypt′ ’s i-th decryption
query, unless i = qD + 1, in which case B̃ outputs the output of BG′,oDecrypt′ . By construction,

AdvFFP-CPA
PKEG (B̃) ≥ 1

qD + 1
(
AdvGame G5 + Pr[DIFF ∧ ¬GUESS]

)
(28)

(note that all instances of AdvGame i are for B playing Game i.) Combining Eqs. (27) and (28)
and Lemma 3 yields the desired bound. The statement about B̃’s running time and number of queries
is straightforward. ut

Combining Theorems 4 and 5, we obtain the eQROM-analogue of Corollary 1.

Corollary 3 (FO⊥m[PKE] IND-CPA and PKEG FFP-CPA eQROMEnc⇒ FO⊥m[PKE] IND-CCA). Let PKE and
A be as in Theorem 4. Then there exist an IND-CPA-KEM adversary Ã and an FFP-CPA adversary
B, both in the eQROMEnc, such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤AdvIND-CPA-KEM
KEM⊥m

(
Ã
)

+ (qD + 1)AdvFFP-CPA
PKEG (B)

+ 24qD(qG + 4qD)2−γ/2 (29)

Both adversaries Ã and B make qG +qH +qD queries to eCO.RO, with a combined depth of d+qD and
a combined width of w, and qD queries to eCO.E. The running times of Ã and B satisfy Time(Ã) =
Time(A) +O(qD) and Time(B) = Time(A) +O(qD).

Again, we remark that the additive error terms are a factor of 2 larger due to our modular proof
(in terms of Theorems 4 and 5). It is straightforward to show that the bound of Corollary 3 can
be proven without the factor of 2, when directly analyzing the composition of the reductions from
Theorems 4 and 5.

While the additive error term that depends on the spreadness parameter γ improves by roughly
a power 2 over the corresponding term in the security bound of [DFMS21], the only known concrete
bound for FO⊥m, we remark that we do not expect it to be tight. It turns out, however, that many
relevant schemes have abundantly randomized ciphertexts. In Section 8, we bound the spreadness
parameter for some schemes where this was relatively easy to do: the alternate candidates in the
NIST post-quantum cryptography competition Frodo and HQC.
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5.2 Semi-classical OWTH in the eQROMf

To further analzye IND-CPA-KEM security of FO⊥m[PKE,G,H], in the eQROMEnc, we want to apply an
eQROMEnc argument to show that keys encapsulated by FO⊥m[PKE,G,H] are random-looking unless
the adversary can be used to attack the underlying scheme PKE. In slightly more detail, we will
need to argue that the challenge key K∗ := H(m∗) and the encryption randomness G(m∗) used for
challenge ciphertext c∗ can be replaced with fresh random values, in the eQROMEnc. To theoretically
justify this argument, this section develops eQROMf generalizations of the semi-classical OWTH
theorems from [AHU19].

We will first describe how we model this ’replacing with fresh randomness’ on a subset S ⊂ X
for superposition oracle, and how our approach generalizes previous approaches. Previous work
(like [AHU19]) used two oracles O0 and O1 that only differ on some set S, while algorithm A’s
input is always defined relative to oracle O0. In the case where A’s oracle is O1, the input uses
fresh randomness from the adversary’s point of view. Here we meet the first eQROMEnc-related
roadblock: Superposition oracles have the property that initially, each value eCO.RO(x) is in quantum
superposition, which complicates equating two oracles everywhere but on S. As it suffices for our
purpose, we define the ’resampling’ set S as follows: We assume A’s input inp to be classical,
generated by an algorithm GenInp with classical access to eCO0. We can then define S as the set of
all inputs x queried by GenInp, e.g., for input (c∗,K∗) := (Enc(pk,m∗; G(m∗))),H(m∗)), S is {m∗}.)
Apart from how we model S, we proceed as in [AHU19]: Use eCO0 to generate A’s input and replace
A’s access to eCO0 with access to eCO1, an independent extractable compressed oracle.

Clearly, if GenInp does not query eCO0, the two oracles eCO0 and eCO1 are perfectly indistinguish-
able to A. But what if A’s input depends on eCO0? [AHU19] related A’s distinguishing advantage
to the probability of “FIND”, the event that an element of S is detected in A’s queries to the QRO
via a quantum measurement. This result, however, is in the (plain) QROM, and FIND is not be the
only distinction opportunity in the eQROMf as there are now two oracle interfaces, eCO.RO and
eCO.E. As an example, let A have input (x, t := f(x, eCO.0RO(x))) for some oracle input value x.
Without any eCO.RO query, A can tell the two cases apart by querying eCO.E on t: Querying eCO.0E
on t results in output x with overwhelming probability, while querying eCO.1E on t yields output ⊥.
Extraction queries hence have to be taken into account.

Before stating this section’s main theorems, we will describe our approach more formally. Borrow-
ing the notation from [AHU19], we define ‘punctured’ versions eCO\S of extractable superposition
oracles eCO: When an eCO.RO query is performed, we first apply a ’semi-classical’ oracle OSC

S , and
then oracle unitary OXYD. Intuitively, OSC

S marks if an element of S was found in one of the query
registers. (The plural is used since we consider parallel queries.) Formally, OSC

S acts on the query
input registers X1, · · ·Xw and an additional ‘flag’ register F that holds one qubit per oracle query,
by first mapping

|x1, · · ·xw〉X1···Xw ⊗ |b〉F 7→ |x1, · · ·xw〉X1···Xw ⊗ |b⊕ Jx1 ∈ S ∨ · · · ∨ xw ∈ SK〉F ,

and then measuring register F in the computational basis.
Like in [AHU19], we denote the event that any measurement of F returns 1 by FIND. In that

case, the query has collapsed to a superposition of states where at least one input register only
contains elements of S. If FIND does not occur, then all oracle queries collapsed to states not
containing any elements of S, and in consequence, set S defining A’s input is effectively removed
from the query input domain. In this case, the only way to distinguish between eCO0 and eCO1 is
to perform an extraction query where eCO.0E might returns an element of S. We will call this event
EXT. If neither FIND nor EXT occur, the two scenarios are indistinguishable to A.

The following helper lemma formalizes the above reasoning and extends it to some other proba-
bility distances: Eq. (30) formalizes that if A neither triggers FIND (and hence never sees a random
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oracle value on S) nor EXT (meaning no extraction is performed an on a critical point), its be-
haviour in the two cases is the same: arbitrary events will be equally likely in both cases. Eq. (31)
states that if A does not trigger FIND, any event will only become more likely in the resampled
scenario than in the honest scenario if EXT happens. During the proof of one of this section’s main
theorems, we need to also reason about the probability of FIND in the two cases. Eq. (32) states that
the likelihood of FIND only differs in the two scenarios if EXT happens. (To make this statement
more intuitive, consider an adversary with input (x, t := f(x, eCO.0RO(x))) that first performs an
extraction query on t and then queries the oracle on the result.) The proof of Lemma 4 is mostly
reworking the probabilities by reasoning about the cases and eliminating the case where neither
FIND nor EXT occurs. It is given in Appendix C (page 45).
Lemma 4. Let eCO0 and eCO1 be two extractable superposition oracles from X to Y for some
function f : X × Y → T , and let GenInp be an algorithm with classical output inp, having access
to eCO0. Let S be the set of elements x ∈ X whose oracle values are needed to compute inp, and
let TS := {t | ∃x ∈ S s.th. t = f(x, eCO0(x))}. Let FIND be the event that flag register F is ever
measured to be in state 1 during a call to A’s punctured oracle, and let EXT be the event that A
performs an extraction query on any t ∈ TS . Let E be an arbitrary (classical) event. Then

Pr[E ∧ ¬FIND ∧ ¬EXT : AeCO0\S ]

= Pr[E ∧ ¬FIND ∧ ¬EXT : AeCO1\S ] , (30)

|Pr[E ∧ ¬FIND : AeCO0\S ]− Pr[E ∧ ¬FIND :AeCO1\S ]|

≤ Pr[EXT : AeCO0\S ] , (31)

|Pr[FIND : AeCO0\S ]− Pr[FIND : AeCO1\S ]| ≤ Pr[EXT : AeCO0\S ] , (32)

where all probabilities are taken over the coins of GenInp and the internal randomness of A and we
used AO0 as a shorthand for AO0(inp).

The following theorem relates the distinguishing advantage between eCO0 and eCO1 to the prob-
ability that FIND or EXT occur. Intuitively, the theorem states that no algorithm A will recognize
the reprogramming unless A makes a random oracle or an extraction query related to its input.
Theorem 6 is the eQROMf counterpart of [AHU19, Th. 1, ’Semi-classical O2H’]. Its proof is given in
Appendix D (page 47). In the special case where EXT never happens, e.g., when extraction queries
are triggered by an oracle simulation like oDecaps′ that forbids critical inputs, we obtain the same
bound as [AHU19, Th. 1], but in the eQROMf .

Theorem 6 (Semi-classical OWTH in the eQROMf : Distinguishing to Finding). Let eCO0,
eCO1, GenInp, S, FIND and EXT be like in Lemma 4. We define the OWTH distinguishing advan-
tage function of A as

AdvOWTH
eQROf (A) := |Pr[1← AeCO0

(inp)]− Pr[1← AeCO1
(inp)]| ,

where the probabilities are taken over the coins of GenInp and the internal randomness of A. For
any algorithm A of query depth d with respect to eCO.RO, we have that

AdvOWTH
eQROf (A) ≤4 ·

√
d · Pr[FIND : AeCO1\S ]

+ 2 · (
√
d+ 1) ·

√
Pr[EXT : AeCO0 ] + Pr[EXT : AeCO1

] . (33)
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In the special case where Pr[EXT : AeCO0\S ] = Pr[EXT : AeCO1\S ] = 0, we obtain

AdvOWTH
eQROf (A) ≤ 4 ·

√
d · Pr[FIND : AeCO1\S ] . (34)

In many cases, a desired reduction will not know the ’resampled’ set S. We therefore proceed by
giving Theorem 7 which relates the probability of FIND to the advantage of a preimage extractor
algorithm ExtractSet that extracts an element of S without knowing S: ExtractSet will simply run A
with the unpunctured oracle eCO and measure one of its queries to generate its output. In one of our
proofs, we additionally need to puncture on a set different from S. We therefore prove Theorem 7
for arbitrary sets S ′′ .

Theorem 7 (Semi-classical OWTH in the eQROMf : Finding to Extracting). Let A be an
algorithm with access to an extractable superposition oracle eCO from X to Y for some function
f : X × Y → T , with query depth d with respect to eCO.RO, and let GenInp be like in Lemma 4.
Let FIND be the event that flag register F is ever measured to be in state 1 during a call to A’s
punctured oracle, where the puncturing happens on a set S ′′.

Let ExtractSet be the algorithm that on input inp chooses i ←$ {1, · · · d}, runs AeCO(inp) until
(just before) the i-th query to eCO.RO; then measures all query input registers in the computational
basis and outputs the set S ′ of measurement outcomes. Then

Pr[FIND : AeCO\S′′ ] ≤ 4d · Pr[S ′′ ∩ S ′ 6= ∅ : S ′ ← ExtractSet] . (35)

The proof directly follows from [AHU19, Th. 2, ’Search in semi-classical oracle’] since [AHU19,
Th. 2] gives a bound with the same ride-hand side as in Theorem 7 for algorithms B accessing a
semi-classical oracle OSC

S′′ itself (rather than some oracle punctured on S ′′). An algorithm BOSC
S′′ hence

can perfectly simulate eCO\S ′′ to A by simulating eCO and having the puncturing done by its own
oracle OSC

S′′ .

Proof. Given an algorithm AeCO\S , we define an algorithm BOSC
S′′ as follows: BOSC

S′′ initializes a fresh
extractable superposition oracle simulation eCO. After generating A’s input inp, B runs AeCO\S

by simulating eCO\S as follows: Extraction queries are simply answered using eCO.E, and random
oracle queries with query registers XY are answered by first performing a query to its own oracle
OSC
S′′ with these registers and then applying eCO.RO.
Since B perfectly simulates eCO\S to A and since B’s queries to OSC

S′′ are exactly A’s queries to
eCO\S,

Pr[FIND : AeCO\S′′ ] = Pr[FIND : BO
SC
S′′ ] . (36)

Applying [AHU19, Th. 2] to B yields

Pr[FIND : BO
SC
S′′ ] ≤ 4d · Pr[S ′′ ∩ S ′ 6= ∅ : S ′ ← ExtractSet′(B)] , (37)

where ExtractSet′ randomly measures one of B’s queries to generate its output. Unwrapping B
into ExtractSet′ defines the theorem’s extractor ExtractSet that randomly measures one of A’s queries
to generate its output.

Pr[S ′′ ∩ S ′ 6= ∅ : S ′ ← ExtractSet′(B)] = Pr[S ′′ ∩ S ′ 6= ∅ : S ′ ← ExtractSet(A)] . (38)

Collecting the probabilities yields the desired bound. ut

In the case that the input inp of A is independent of S ′′, we furthermore get the following
extraction bound. Corollary 4 is the eQROMf counterpart of [AHU19, Cor. 1].
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Corollary 4 (Semi-classical OWTH in the eQROMf : Extracting independent values). If
S and inp are independent, then for any algorithm AeCO issuing q many queries to eCO.RO in total,

Pr[FIND : AeCO\S′′ ] ≤ 4q · pmax ,

where pmax := maxxinX PrS′′ [x ∈ S]. As a special case, we obtain that

Pr[FIND : AeCO\{x}] ≤ 4q
|X|

, (39)

for S ′′ = {x} with uniformly chosen x ∈ X, assuming that x was not needed to generate the input
to A.

The proof is the same as in [AHU19]: W.l.o.g., we can assume that A does not perform parallel
queries, meaning that q = d and the probability of ExtractSet succeeding is the probability that
ExtractSet outputs an element x ∈ S ′′ that is independent of its input. Hence Pr[S ′′ ∩ S ′ 6= ∅ : S ′ ←
ExtractSet(inp)] ≤ pmax, and the corollary follows from Theorem 7.

5.3 From IND-CPAPKE or OW-CPAPKE to IND-CPAFO[PKE]

We will now use the OWTH results from Section 5.2 to show that the IND-CPA security of FO⊥m[PKE,G,H]
can be based on the passive security of PKE. In Theorem 8, we base IND-CPA security of FO⊥m[PKE,G,H]
on the IND-CPA security of PKE, and for the sake of completeness, we base it on OW-CPA security
of PKE in Theorem 9. The obtained bounds are the same as their known plain QROM counterparts.

Theorem 8 (PKE IND-CPA eQROMEnc⇒ FO[PKE] IND-CPA-KEM). Let A be an IND-CPA adversary
against KEM⊥m := FO⊥m[PKE,G,H] in the eQROMEnc, issuing q many queries to eCO.RO in total,
with a query depth of d, and qE many queries to eCO.E, where none of them is with its challenge
ciphertext. Then there exists an IND-CPA adversary BIND-CPA against PKE such that

AdvIND-CPA-KEM
KEM⊥m

(A) ≤ 4 ·
√
d ·AdvIND-CPA

PKE (BIND-CPA) + 8q√
|M|

.

The running time and quantum memory footprint of BIND-CPA satisfy Time(BIND-CPA) = Time(A) +
Time(eCO, q, qE) and QMem(BIND-CPA) = QMem(A) + QMem(eCO, q, qE).

Note that forbidding extraction queries to eCO.E on c∗ is no limitation in in the context of the
overall result: In the bigger picture, eCO.E queries are only triggered by an IND-CCA adversary
querying its simulated oracle oDecaps′, and oDecaps′ rejects queries on c∗ right away.

To summarise the proof, we first define a Game G1 like the IND-CPA-KEM game for KEM⊥m, except
that encryption randomness r∗ := G(m∗) and honest KEM key K0 := H(m∗) are replaced with fresh
uniform randomness. In Game G1, the forwarded KEM key is a uniformly random key either way,
the advantage of A in Game G1 hence is 0. It remains to bound the distinguishing advantage between
the IND-CPA-KEM game and Game G1. We apply the ’Distinguishing to Finding’ Theorem 6 which
bounds this distinguishing advantage in terms of the probability of event FINDm∗ , the event thatm∗
is detected in the adversary’s random oracle queries. To further bound Pr[FINDm∗ ], we use IND-CPA
security of PKE to replace A’s ciphertext input c∗ with an encryption of an independent message.
As m∗ now is independent of A’s input, FINDm∗ is highly unlikely for large enough message spaces.
(This uses the ’independent values’ Corollary 4 .)
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Games G0 −G1
01 (pk, sk)← KG
02 b←$ {0, 1}
03 m∗ ←$ M
04 (r∗,K∗0 ) := eCO.RO(m∗) �G0
05 (r∗,K∗0 )←$ R×K �G1
06 c∗ := Enc(pk,m∗; r∗)
07 K∗1 ←$ K
08 b′ ← AeCO(pk, c∗,K∗b )
09 return Jb′ = bK

Fig. 12. Games G0 −G1 for the proof of Theorem 8.

Proof. Let A be an adversary against the IND-CPA security of KEM⊥ = FO⊥m[PKE,G,H], issuing
random oracle queries to both its oracles of query depth d, and q many in total. Consider the two
games given in Fig. 12.

Game G0 essentially is game IND-CPA-KEMKEM⊥ , the only difference is that we combined oracles
G and H into a single oracle eCO. As discussed in the proof of Theorem 4 (before Eq. (20), see page 21),
this change is merely of a conceptual nature, simplifying our later reasoning about the synchronous
reprogramming of G and H on m∗.

AdvIND-CPA-KEM
KEM⊥ (A) = |AdvGame G0 − 1

2 | .

In Game G1, we replace oracle values r∗ := G(m∗) and K0 := H(m∗) with fresh random values
(see line 05). Since K∗b is now an independent random value regardless of the challenge bit,

AdvGame G1 = 1
2 .

We will now apply Theorem 6 to relate A being able to distinguish between Game G0 and Game
G1 to the probability that A’s queries contain m∗, or more precisely, the probability that A would
trigger event FINDm∗ in Game G1, would it be run with the punctured oracle eCO\{m∗} that
additionally measures whether any of A’s random oracle queries contained m∗ and in that case sets
flag FINDm∗ to 1. We claim that

|AdvGame G0 −AdvGame G1 | ≤ 4 ·
√
d · Pr[FINDm∗ in Game G1

eCO\{m∗}] . (40)

To verify this claim, we identify each Game Gb (where b ∈ {0, 1}) with one of the OWTH games
defined in Theorem 6 as follows: As GenInp, we define the algorithm that samples a key pair and a
random message m∗, queries eCO0 on m∗ to obtain r∗ and K∗0 , and outputs as inp the public key
as well as c∗ := Enc(pk,m∗; r∗) and K∗0 . With this identification, set S from Theorem 6 is {m∗}.

As the OWTH distinguisher, we define algorithm D that gets inp, picks a random bit b and a
random key K∗1 and then forwards pk, c∗ and K∗b to A. It forwards all of A’s random oracle and
extraction queries to its own respective oracle, and at the end, it returns 1 iff A’s output bit is equal
to b. When D is run with access to eCO0, it perfectly simulates Game G0, and when D is run with
access to eCO1, the input is defined relative to oracle eCO0, while the oracle to which A’s queries are
forwarded by D is eCO1. Since everything except for the values r∗ and K∗0 computed by GenInp is
now independent of the oracle eCO0 which is furthermore inaccessible to D and A, this is equivalent
to simply sampling random values r∗ and K∗0 instead, therefore

|AdvGame G0 −AdvGame G1 | = AdvOWTH
eQROf (D) .
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Note that EXT from Theorem 6 corresponds to the event that A queries its extraction oracle
eCO.E on c∗, which we ruled out in the theorem statement as a prerequisite. Therefore, we can apply
the special case bound Eq. (34) of Theorem 6, and since D has exactly the query behaviour of A
and triggers FIND exactly if A triggers FIND,

AdvOWTH
eQROf (D) ≤ 4 ·

√
d · Pr[FINDm∗ in Game G1

eCO\{m∗}] .

What we have shown so far is that

AdvIND-CPA-KEM
KEM⊥ (A) ≤ 4 ·

√
d · Pr[FINDm∗ in Game G1

eCO\{m∗}] . (41)

In order to take the last step towards our reduction, consider the two games given in Fig. 13.

Games G2 −G3
01 (pk, sk)← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk,m∗) �G2
04 m̃←$ M �G3
05 c∗ ← Enc(pk, m̃) �G3
06 K∗ ←$ K
07 b′ ← AeCO\{m∗}(pk, c∗,K∗)
08 if FINDm∗ return 1

Reduction B1
IND-CPA(pk)

09 m∗, m̃←$ M
10 return (m∗, m̃, st := m∗)

Reduction B2
IND-CPA(pk, c∗, st = m∗)

11 K∗ ←$ K
12 b′ ← AeCO\{m∗}(pk, c∗,K∗)
13 if FINDm∗ return 1

Fig. 13. Games G2−G3 and IND-CPA reduction BIND-CPA = (B1
IND-CPA, B

2
IND-CPA) for the proof of Theorem 8.

Game G2 exactly formalises Pr[FINDm∗ in Game G1
eCO\{m∗}]. We cleaned up some variables

that are not needed any longer - since r∗ is uniformly random in Game G1 and since it will be used
nowhere but in line 06 (of Game G1), we can drop it altogether and simply write c∗ ← Enc(pk,m∗)
instead. Similarly, sinceK∗0 is uniformly random in Game G1 (as isK∗1 ), we do not need to distinguish
between K∗0 and K∗1 any longer, thereby also rendering bit b redundant.

Pr[FINDm∗ in Game G1
eCO\{m∗}] = AdvGame G2 . (42)

In Game G3, we replace c∗ with an encryption of another random message, while sticking with
puncturing the oracle on m∗. With this change, m∗ becomes independent of A’s input, and using
Eq. (39) from Corollary 4 yields

AdvGame G3 ≤ 4q
|M|

. (43)

To upper bound |AdvGame G2 − AdvGame G3 |, consider the reduction given in Fig. 13. Since
BIND-CPA perfectly simulates either Game G2 or Game G3, depending on which message is encrypted
in its IND-CPA challenge,

|AdvGame G2 −AdvGame G3 | = AdvIND-CPA
PKE (BIND-CPA) . (44)

Combining equations (42), (43) and (44) yields

Pr[FINDm∗ in Game G1
eCO\{m∗}] ≤ AdvIND-CPA

PKE (BIND-CPA) + 4q
|M|

. (45)
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Plugging Eq. (45) into Eq. (40) and using that d ≤ q yields the bound claimed in Theorem 8.
The statement about BIND-CPA’s runtime is straightforward.

ut

Theorem 9 (PKE OW-CPA eQROMEnc⇒ FO[PKE] IND-CPA). For any IND-CPA adversary A against
KEM⊥m := FO⊥m[PKE,G,H] in the eQROMEnc that issues q many queries to eCO.RO in total, with
a query depth (width) of d (w), and qE many queries to eCO.E, where none of them is with its
challenge ciphertext. there furthermore exists an OW-CPA adversary BOW-CPA such that

AdvIND-CPA
KEM⊥m

(A) ≤ 8d ·
√
w ·AdvOW

PKE(BOW-CPA).

The running time and quantum memory footprint of BOW-CPA satisfy Time(BOW-CPA) = Time(A) +
Time(eCO, q, qE) and QMem(BOW-CPA) = Time(A) + QMem(eCO, q, qE).

In a nutshell, the proof proceeds by going through exactly the same steps as the one of Theorem 8,
up to the point where we bound Pr[FINDm∗ ]. To bound Pr[FINDm∗ ], we use the ’Finding to
Extracting’ Theorem 7 to relate Pr[FINDm∗ ] to the OW-CPA advantage of an algorithm that extracts
m∗ from A’s oracle queries.

Proof. Let A again be an adversary against the IND-CPA security of KEM⊥, issuing random oracle
queries of query depth d, and q many in total. Defining Game G0 to Game G2 exactly like in the
proof of Theorem 8 and combining Eq. (41) and Eq. (42), we obtain

AdvIND-CPA
KEM⊥ (A) ≤ 4 ·

√
d ·AdvGame G2 . (46)

To bound AdvGame G2 , we use Theorem 7 to relate AdvGame G2 to the OW-CPA advantage of an
algorithm that extracts m∗ from the oracle queries: In order to relate AdvGame G2 to OW-CPA
security using Theorem 7, consider reduction BOW-CPA given in Fig. 14. BOW-CPA is exactly the query
extractor ExtractSet from Theorem 7 until BOW-CPA’s last additional step, where BOW-CPA randomly
chooses its output from the candidate list it extracted (in line 11). Since Game G2 exactly models
the probability that A triggers FINDm∗ , applying Theorem 7 yields

AdvGame G2 ≤ 4d · Pr[m∗ ∈ S ′ : S ′ ← ExtractSet(pk, c∗)] , (47)

where ExtractSet is the query extractor from Theorem 7, meaning S ′ is the result of running
AeCO(inp) until (just before) the i-th query, measuring all query input registers, and returning
as S ′ the set of measurement outcomes. Since BOW-CPA does exactly the same and then picks a
random element of S ′, and since BOW-CPA wins if it randomly picked m∗ from S ′,

Pr[m∗ ∈ S ′ : S ′ ← ExtractSet(pk, c∗)] ≤ |S ′| ·AdvOW
PKE(BOW-CPA) . (48)

Combining equations (47) and (48) yields

AdvGame G2 ≤ 4d · w ·AdvOW
PKE(BOW-CPA) , (49)

where we used that |S ′|, the number of parallel queries issued during A’s i-th query, can be upper
bounded by w, the maximal query width.

Plugging Eq. (49) into Eq. (46) yields the bound claimed in Theorem 9. Again, the statement
about BOW-CPA’s runtime is straightforward.

ut
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Game G2
01 (pk, sk)← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk,m∗)
04 K∗ ←$ K
05 b′ ← AeCO\{m∗}(pk, c∗,K∗)
06 if FINDm∗ return 1

Reduction BOW-CPA(pk, c∗)
07 i←$ {1, · · · , d}
08 K∗ ←$ K
09 Run AeCO(pk, c∗,K∗)

until its i-th query to eCO.RO
10 {m′1,m′2, · · · } ←Measure query input registers
11 m′ ←$ {m′1,m′2, · · · }
12 return m′

Fig. 14. Game G2 and OW-CPA reduction BOW-CPA for the proof of Theorem 9.

6 Characterizing FFP-CPAPKEG

While it may very well be that the maximal success probability in game FFP-CPA for PKEG can
already be bounded for particular instantiations of PKEG without too much technical overhead, even
in the eQROMEnc, this section offers an alternative way to bound this probability: In Theorem 10, we
relate the success probability in game FFP-CPA for PKEG to two failure-related success probabilities
that are easier to analyze. This reduction separates the computationally hard problem of exploiting
knowledge of the public key to find failing ciphertexts for PKE, from the statistically hard problem
of searching the QRO G for failing plaintexts m for PKEG without knowledge of the key.

We begin by defining these two new notions related to decryption failures: In Fig. 15 we define
a new variant of the FFP game that differs from game FFP-CPA by providing A not even with the
public key. Since the adversary obtains No Key whatsoever, the game is called FFP-NK, and we
define the advantage of an FFP-NK adversary A against PKE as

AdvFFP-NK
PKE (A) := Pr[FFP-NKAPKE ⇒ 1] .

Furthermore, we define a Find non-generically Failing Plaintext (FFP-NG) game, also in Fig. 15. In
this game, the adversary gets a public key pk0 as input and is allowed to issue a single message-
randomness pair to a Failure Checking Oracle FCO that is defined either relative to (sk0, pk0), the
key pair whose public key constitutes A’s input, or relative to a key pair (sk1, pk1) which is an
independent key pair. We define the advantage of an FFP-NG adversary A against PKE as

AdvFFP-NG
PKE (A) :=

∣∣∣∣Pr[FFP-NGAPKE ⇒ 1]− 1
2

∣∣∣∣ .
While the game is formalized as an oracle distinguishing game, A can only win the game with an
advantage over random guessing if it queries oracle FCO on a message-randomness pair that fails with
a different probability with respect to key pair (sk0, pk0) than with respect to key pair (sk1, pk1), the
latter being a key pair about which B can only gather information by its query to FCO. We expect
this game to be a more palatable target for both provable security and cryptanalysis compared to
FFP-CPAPKEG or correctness-related games from the existing literature.

Theorem 10 (PKE FFP-NG and PKEG FFP-NK ⇒ PKEG FFP-CPA). Let PKE be a public-key
encryption scheme. For any FFP-CPA adversary A in the eQROMEnc against PKEG making qR and
qE queries to eCO.RO and eCO.E, respectively, there exist an FFP-NK adversary C in the eQROMEnc
against PKEG and an FFP-NG adversary B against PKE with

AdvFFP-CPA
PKEG (A) ≤ 2AdvFFP-NG

PKE (B) + AdvFFP-NK
PKEG (C) .
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Game FFP-NK
01 m← A
02 (pk, sk)← KG
03 c := Enc(pk,m)
04 m′ := Dec(sk, c)
05 return Jm′ 6= mK

Game FFP-NG
06 (sk0, pk0)← KG
07 (sk1, pk1)← KG
08 b← {0, 1}
09 b′ ← AFCOb(pk0)
10 return Jb = b′K

FCOb(m; r) �one query
11 c← Enc(pkb,m; r)
12 m′ := Dec(skb, c)
13 return Jm 6= m′K

Fig. 15. Key-independent game FFP-NK for deterministic schemes PKE, and the find non-generically failing
ciphertexts game FFP-NG, for PKE. A can make at most one query to FCOskb .

The running time of C is about that of A, Time(B) = Time(A)+Time(eCO, qRO, qE) and QMem(B) =
QMem(A) + QMem(eCO, qRO, qE).

Proof. By definition of the FFP-CPA advantage, we have

AdvFFP-CPA
PKEG (A) = Pr

m←AeCO(pk)
[(m, eCO.RO(m)) fails wrt. (sk, pk)] .

To upper bound this probability, we begin by defining FFP-NG adversary B: On input pk, B runs
A(pk), simulating eCO to A. When A finishes by outputting its message m, B computes r :=
eCO.RO(m), uses its failure-checking oracle to compute b′ := FCOb(m, r) and outputs b′. In the case
where the challenge bit b of B’s FFP-NG game is 0, B perfectly simulates the FFP-CPA game to A
and wins iff A wins in game FFP-CPA. Therefore,

Pr
m←AeCO(pk)

[(m, eCO.RO(m)) fails wrt. (sk, pk)] = Pr[1← B(pk)|b = 0]

≤ Pr[1← B(pk)|b = 1] + 2AdvFFP-NG
PKE (B) ,

where the last line used the definition of the FFP-NG advantage.
To upper bound Pr[1 ← B(pk)|b = 1], note that this probability formalizes A outputting a

message that fails to decrypt, but under an independently drawn key pair (sk ′, pk ′):

Pr[1← B(pk)|b = 1] = Pr
m←AeCO(pk)

[(m, eCO.RO(m)) fails wrt. (sk ′, pk ′)] , (50)

where the probability is taken additionally over (sk ′, pk ′)← KG.
To upper bound this probability, we define FFP-NK adversary CeCO against PKEG: Upon initiali-

sation, C computes a key pair (pk, sk) on its own and runs AeCO(pk). When A finishes by outputting
its message m, C forwards the message to its own game. Since C perfectly simulates the game in
Eq. (84) to A and wins iff A wins,

Pr
m←AeCO(pk)

[(m, eCO.RO(m)) fails wrt. (sk ′, pk ′)] = AdvFFP-NK
PKEG (C) . ut

6.1 Characterizing FFP-NKPKEG

In the last section, we have related the success probability of an adversary in game FFP-CPA for PKEG

to the success property of an adversary in game FFP-NK for PKEG, in the eQROMEnc. Intuitively,
an adversary in game FFP-NK will succeed if it can find oracle inputs m such that m and r :=
eCO.RO(m) satisfy a certain predicate, i.e., the predicate that (m, r) fails with respect to pk. To prove
the upper bound we provide in Theorem 11, we therefore generically bound the success probability for
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a certain search problem in Section 6.2. While we note that the search bound might be of independent
interest, it in particular allows us to characterize the maximal advantage in game FFP-NK in terms
of two statistical values for the underlying randomised scheme PKE.

We begin with the definitions of δik and σδik : Below, we define the worst-case decryption error
rate δik under independent keys, and the maximal variance of the decryption error rate σδik .

Definition 5 (worst-case independent-key decryption error rate, maximal decryption
error variance). We define the worst-case decryption error rate under independent keys δik and
the maximal decryption error variance under independent keys σδik of a public-key encryption scheme
PKE as

δik := max
m∈M

[ Pr
(sk,pk),r

[(m, r) fails]] = max
m∈M

Er[ Pr
(sk,pk)

[(m, r) fails]] , and

σ2
δik

:= max
m∈M

Vr[ Pr
(sk,pk)

[(m, r) fails]]

for uniformly random r.

We want to stress that δik differs from the worst-case term δwc that was introduced in [HHK17]
(there denoted by δ) since δwc is defined by

δwc := EKG max
m∈M

Pr
r←$R

[(m, r) fails] .

Intuitively, δwc is the best possible advantage of an an adversary, trying to find the message most
likely to fail for a given key pair, while for δik, the key pair will be randomly sampled after the
adversary had made its choice m. On a formal level, it is easy to verify that δwc serves as an upper
bound for δik.

Theorem 11 (Upper bound for FFP-NK of PKEG). Let PKE be a public-key encryption scheme
with worst-case independent-key decryption error rate δik and decryption error rate variance σδik .
For any FFP-NK adversary A in the eQROMEnc against PKEG, setting C = 304, we have that

AdvFFP-NK
PKEG (A) ≤ δik + 3

√
Cqσδik + 2Cq2σ2

δik
δik

(
− log

√
Cqσδik

)
,

In Section 6.3 , we give an alternative bound that grows with the logarithm of the number of RO
queries, assuming a Gaussian -shaped tail bound for the decryption error probabilitydistribution.

Proof. The claimed bounds result from applying Corollaries 5 and 7 that we give in Section 6.2 below:
The success probability of A in game FFP-NK is the probability that A’s output message fails to de-
crypt. If we define function F by setting F (m, r) := Pr[(m; r) fails wrt. (sk, pk)], we can alternatively
describe A’s task as the task to find a superposition oracle input m such that F (m, eCO.RO(m))
is large, having access to the extractable oracle simulation eCO. We prove general upper bounds
for the success probability in finding large values for arbitrary functions F in Section 6.2, which
immediately yields the claimed bound. ut

6.2 Finding large values of a function in the eQROMf

In this section, we provide the technical results for the eQROMf that we need to prove Theorem 11.
Throughout this section, f is a fixed function such that eQROMf is well-defined. We begin by
providing a bound for the success probability of an algorithm in the eQROMf that searches for a
value x that, together with its oracle value eCO.RO(x), satisfies a relation R. In the lemma below that
provides this upper bound, we will use the quantity ΓR that was defined in Eq. (16) (see page 16).
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Lemma 5 (Slight generalization of [DFMS21, Proposition 3.5]). Let R ⊂ X×Y be a relation
and AeCO an algorithm with access to eQROf from X to Y for some function f : X ×Y → T , making
q queries to eCO.RO. Then

Pr
x←AeCO

[R(x, eCO.RO(x))] ≤ 152(q + 1)2 ΓR
|Y|

, (51)

independently of the number of queries A makes to eCO.E. Here it is understood that eCO.RO is
queried once in the very end to determine eCO.RO(x).

The generalization consists of allowing A to query eCO.E as well.

Proof. The only difference between [DFMS21, Proposition 3.5] and Lemma 5 is that A now addi-
tionally has access to eCO.E. The proof is thus the same as for [DFMS21, Proposition 3.5], with
the additional observation that queries to eCO.E commute with the progress measure operator M
for any relation R. This is because i) both M and the operator applied upon an eCO.E query are
controlled unitaries controlling on the database register of the compressed oracle database of the
eQROf , and ii) the target registers of M and eCO.E are disjoint. ut

According to Lemma 5, it is hard to search a random oracle, even given extraction access. We
will now use Lemma 5 to show that it is also hard to produce an input to the oracle so that the
resulting input-output pair has a large value under a function F , in expectation. To state a theorem
making this intuition precise and quantitative, let F : X × Y → I ⊂ [0, 1], and let I be ordered as
I = {t1, ..., tR} with ti > ti−1. The hardness of the task of finding large values is related to a “tail
bound” G(t) for the probability of F (x, r) being larger than t .

Theorem 12. Let F and I be as above. Let further G : [0, 1] → [0, 1] be non-increasing such that
G(t) ≥ Prr←Y [F (x, r) ≥ t] for all x. Let C := 304, ∆G(i) := G(ti) − G(ti+1) (setting formally
G(tR+1) = 0), and let κq := min{i|Cq2G(ti) ≤ 1}. Then for any algorithm AeCO making at most
q ≥ 1 queries to eCO.RO,

Ex←AeCO [F (x, eCO.RO(x))] ≤ tκq + Cq2
R∑

i=κq+1
ti∆G(i) . (52)

eCO.RO is queried once in the end to determine eCO.RO(x).

Proof. Let x← AeCO. We bound

E [F (x, eCO.RO(x))] =
R∑
i=1

ti Pr[F (x, eCO.RO(x)) = ti]

=
R∑
i=1

ti (Pr[F (x, eCO.RO(x)) ≥ ti]− Pr[F (x, eCO.RO(x)) ≥ ti+1])

= t1 +
R∑
i=2

Pr[F (x, eCO.RO(x)) ≥ ti](ti − ti−1)

≤ t1 +
R∑
i=2

min(1, Cq2G(ti))(ti − ti−1)

= tκq + Cq2
R∑

i=κq+1
G(ti)(ti − ti−1),
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where we have used Lemma 5 with the relation Rf,≥ti defined by Rf,≥ti(x, y) :⇔ f(x, y) ≥ ti in the
second-to-last line.

We further bound
R∑

i=κq+1
G(ti)(ti − ti−1) = −G(tκq+1)tκq +

R∑
i=κq+1

ti∆G(i)

≤
R∑

i=κq+1
ti∆G(i),

finishing the proof. ut

We provide a corollary for the case where G is given by Chebyshev’s inequality.

Corollary 5. Let F , I, and C be as in Theorem 12, and let the expectation values and variances of
F (x, r) for random r ← Y be bounded as Er[F (x, r)] ≤ µ and Vr[F (x, r)] ≤ σ2, respectively. Then,
for an algorithm AeCO making at most q ≥ 1 quantum queries to eCO.RO,

Ex←AeCO [F (x, eCO.RO(x))] ≤ µ+ 3
√
Cqσ + 2Cq2σ2µ log 1√

Cqσ
. (53)

Proof. By Chebyshev’s inequality, we can set

G(t) = σ2

(t− µ)2 . (54)

We thus obtain tκq ≤
√
Cqσ + µ. We bound

R∑
i=κq+1

ti∆G(i) =−
R∑

i=κq+1
ti

∫ ti+1

ti

G′(t)dt (55)

≤−
∫ 1

tκq

tG′(t)dt (56)

=2σ2
∫ 1

tκq

t

t− µ
dt (57)

=2σ2
∫ 1−µ

tκq−µ

u+ µ

u
du (58)

=2σ2
(

1− tκq + µ log 1− µ
tκq − µ

)
. (59)

We arrive at the bound

Ex←AeCO [F (x, eCO.RO(x))] ≤ µ+
√
Cqσ + 2Cq2σ2

(
1 + µ log 1− µ√

Cqσ

)
.

If
√
Cqσ ≥ 1, the claimed bound trivially holds, else

√
Cqσ ≥ Cq2σ2 and thus

Ex←AeCO [F (x, eCO.RO(x))] ≤ µ+ 3
√
Cqσ + 2Cq2σ2µ log 1− µ√

Cqσ
. ut
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6.3 Alternative bound for FFP-NK based on a stronger tail bound

In this subsection, we show how to use a stronger uniform tail bound in place of Chebyshev’s
inequality to obtain a stronger bound for the adversarial advantage in FFP-NK.

We begin by defining the decryption error tail envelope.

Definition 6 (decryption error tail envelope). We define the decryption error tail envelope as

τ(t) := max
m

Pr
r←R

[
Pr

(sk,pk)
[(m, r) fails] ≥ t

]
.

We obtain the following stronger bound for FFP-NK that scales logarithmically with the adversary’s
random oracle queries.

Theorem 13 (Upper bound for FFP-NK of PKEG). Let PKE be a public-key encryption scheme
with worst-case random-key decryption error rate δik and decryption error tail envelope τ . For any
FFP-NK adversary A in the eQROMEnc against PKEG, setting C = 304, we have that

AdvFFP-NK
PKEG (A) ≤ δik + 2β−1/2

√
ln(2C

√
β) + 2 ln(q).

The above theorem follows directly by an application of Corollary 7 given below. Combining Theo-
rem 13 with the reductions from Sections 5.1 and 5.3 we get the following alternative to Corollary 9.

Corollary 6 (PKE FFP-NG and pass. secure ⇒ FO⊥m[PKE] IND-CCA). Let PKE be a (ran-
domized) PKE scheme that is γ-spread and with worst-case random-key decryption error rate δik,
decryption error rate variance σδik and decryption error tail envelope τ . Let A be an IND-CCA-KEM
adversary (in the QROM) against KEM⊥m := FO⊥m[PKE,G,H], issuing at most qG many queries to
its oracle G, qH many queries to its oracle H, and at most qD many queries to its decapsulation
oracle oDecaps. Let q = qG + qH, and let d and w be the query depth and query width of the com-
bined queries to G and H. Set C = 304 and assume

√
CqGσδik ≤ 1/2. Then there exist an IND-CPA

adversary BIND, a OW-CPA adversary BOW and an FFP-NG adversary C against PKE, such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤ÃdvPKE + (qD + 1)
(

2AdvFFP-NG
PKE (C) + εδik

)
+ εγ (60)

with

ÃdvPKE =


4 ·
√

(d+ qD) ·AdvIND-CPA
PKE (BIND) + 8(q+qD)√

|M|
or

8 (d+ qD) ·
√
w ·AdvOW

PKE(BOW).
(61)

The additive error term εδik is given by

εδik ≤ δik + (3 + 2δrk)
√
CqGσδik , (62)

and the additive error term εγ is given by

εγ = 24qD(qG + 2qD)2−γ/2 + 4qD · 2−γ .

Here, δik, σδik and γ are the worst-case random-key decryption error rate, the maximal decryption
failure variance under random keys, and the ciphertext spreadness parameter, respectively. If the
Gaussian tail bound

max
m

Pr
r←R

[
Pr

(sk,pk)
[Dec(sk,Enc(pk,m; r)) 6= m] ≥ t

]
≤ exp

(
−β(t− δik)2)
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holds for some parameter β, the dependency of εδik on qG can be improved to

εδik ≤ δik + 2η1

√
ln (η2q2

G) (63)

with η1 = β−1/2 and η2 = 2C
√
β. The running time of the adversaries BIND, BOW and C are all

bounded by
Time(A) + Time(eCO, qG + qH + qD) +O(qD).

We continue to prove the corollary of Theorem 12 which yields Theorem 13
Corollary 7. Let F , I, and C be as in Theorem 12. Let furthermore E[F (x,H(x))] ≤ µ for some
µ ∈ [0, 1] and suppose in addition that we can set G(t) = c exp(−β(t−µ)2) with β ≥ e/(2C) . Then,
for an algorithm AeCO making at most q ≥ 1 quantum queries to eCO.RO

Ex←AeCO [F (x, eCO.RO)] ≤ µ+ 2β−1/2
√

ln(2C
√
β) + 2 ln(q) (64)

Proof. Here, we directly use Lemma 5 for simplicity (a slightly tighter but less pretty bound can be
obtained from Theorem 12). For any a ∈ [0, 1], we have

Ex←AeCO [F (x, eCO.RO(x))] ≤ a+ Pr
x←AeCO

[F (x, eCO.RO(x)) ≥ a]. (65)

Setting a = µ+ â and using the definition of G as well as Lemma 5 (in the same way as in the proof
of Theorem 12), we obtain

Pr
x←AeCO

[F (x, eCO.RO(x)) ≥ µ+ â] ≤ Cq2 exp(−βâ2) (66)

Setting â =
√

ln(2Cq2√β)/β and using ln(2Cq2√β) ≥ 1, we obtain

Ex←AeCO [F (x, eCO.RO(x))] ≤µ+ β−1/2
(

1 +
√

ln(2Cq2
√
β)
)

(67)

≤µ+ 2β−1/2
√

ln(2C
√
β) + 2 ln(q), (68)

where ln is the natural logarithm. ut

7 Tying everything together

Combining the reductions from Sections 5.1 and 5.3, we obtain a first corollary that still relies on
FFP-CPA of PKEG.

Corollary 8 (PKEG FFP-CPA and PKE pass. secure ⇒ FO⊥m[PKE] IND-CCA). Let PKE be a
(randomized) PKE scheme that is γ-spread, and let A be an IND-CCA-KEM adversary (in the QROM)
against KEM⊥ := FO⊥m[PKE,G,H], issuing at most qG many queries to its oracle G, qH many queries
to its oracle H, and at most qD many queries to its decapsulation oracle oDecaps. Let q = qG + qH,
and let d and w be the query depth and query width of the combined queries to G and H. Then there
exist an IND-CPA adversary BIND, a OW-CPA adversary BOW and an FFP-CPA adversary C against
PKEG in the eQROMEnc such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤ ÃdvPKE + (qD + 1)AdvFFP-CPA
PKE (C) + εγ , with (69)

ÃdvPKE =


4 ·
√

(d+ qD) ·AdvIND-CPA
PKE (BIND) + 8(q+qD)√

|M|
or

8 (d+ qD) ·
√
w ·AdvOW

PKE(BOW).
(70)
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The additive error term is given by

εγ = 24qD(qG + 4qD)2−γ/2 .

C makes qG + qH + qD queries to eCO.RO and qD to eCO.E. The running time of the adversaries
BIND, BOW and C are bounded as Time(BIND/OW) = Time(A) +Time(eCO, qG + qH + qD) +O(qD) and
Time(C) = Time(A) +O(qD).

Combining Corollary 8 with Theorem 10 from Section 6 and Theorem 11 from Section 6.1, we
now obtain our main result as a corollary.

Corollary 9 (PKE FFP-NG and pass. secure ⇒ FO⊥m[PKE] IND-CCA). Let PKE be a (ran-
domized) PKE scheme that is γ-spread and with worst-case random-key decryption error rate δik,
decryption error rate variance σδik and decryption error tail envelope τ . Let A be an IND-CCA-KEM
adversary (in the QROM) against KEM⊥m := FO⊥m[PKE,G,H], issuing at most qG many queries to
its oracle G, qH many queries to its oracle H, and at most qD many queries to its decapsulation
oracle oDecaps. Let q = qG + qH, and let d and w be the query depth and query width of the com-
bined queries to G and H. Set C = 304 and assume

√
CqGσδik ≤ 1/2. Then there exist an IND-CPA

adversary BIND, a OW-CPA adversary BOW and an FFP-NG adversary C against PKE such that

AdvIND-CCA-KEM
KEM⊥m

(A) ≤ÃdvPKE + (qD + 1)
(

2AdvFFP-NG
PKE (C) + εδik

)
+ εγ (71)

with

ÃdvPKE =


4 ·
√

(d+ qD) ·AdvIND-CPA
PKE (BIND) + 8(q+qD)√

|M|
and

8 (d+ qD) ·
√
w ·AdvOW

PKE(BOW).
(72)

The additive error term εδik is given by

εδik ≤ δik + (3 + 2δik)
√
CqGσδik , (73)

and the additive error term εγ is given by

εγ = 24qD(qG + 2qD)2−γ/2 + 4qD · 2−γ .

The running time of the adversaries BIND, BOW and C is bounded by

Time(A) + Time(eCO, qG + qH + qD) +O(qD).

In 6.3 we give an alternative corollary with an εδik that only grows logarithmically with the number of
RO queries, assuming a Gaussian-shaped tail bound for the decryption error probability distribution.

Proof. The corollary follows by combining Corollary 3 and Theorems 8 to 10. Exploiting the very
mild condition

√
CqGσδik ≤ 1/27 we have used the inequality x2/ log(x) ≤ x for x ≤ 1/2 for

x =
√
CqGσδik to simplify the error term εδik from Theorem 10. ut

We remark that the two alternative bounds in Eqs. (63) and (73) are just examples. If, e.g., an
exponential tail bound is available instead of a Gaussian one, the techniques from Section 6.2 can
be used to prove a similar, intermediate bound. The above result has two main advantages over
previous theorems for the FO transformation:
7 Without it the bound involving σδik from Theorem 10 is almost trivial
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– The additive loss (qD + 1)
(

AdvFFP-NG
PKE (C) + εδik

)
, with the two alternative bounds for εδik given

in Eqs. (63) and (73), can be much smaller than the additive loss of roughly q2
Gδwc that is

present in all previous bounds for the FO transformation. In particular, instead of the quadratic
dependence on the number of hash queries qG, the asymptotic dependence is at most linear. If
an appropriate tail bound can be proven, it is even logarithmic.

– It holds for the explicit rejection variant of the transformation, while the bounds are competitive
with previous ones in the literature that were limited to the implicit rejection variant.

8 γ-Spreadness of selected NIST proposals

Theorem 4 provides a tight reduction of IND-CCA-KEM to IND-CPA-KEM and FFP-CCA, albeit
at the cost of an additive error depending on the spreadness factor γ of the underlying PKE. In
this section, we will analyze the spreadness of some of the alternates candidates of the NIST post-
quantum competition. Since this work is considered with schemes that exhibit decryption failure
and get derandomized to a scheme PKEG, we do not consider ClassicMcEliece, NTRU, NTRU prime
and SIKE (since they are perfectly correct) and BIKE (as BIKE encrypts deterministically without
incorporating PKEG). We chose our two examples, HQC.PKE and FrodoPKE, because computing γ for
these two examples requires little additional technical overhead. Computing γ for other submissions
to the NIST PQC standardisation process, like, e.g., Kyber or Saber, is out of the scope of this work.

If qD is upper bounded by 264 as in NIST’s CFP, we can give a simpler upper bound for the term
showing up in Theorem 4 by computing

qD · (qG + 2qD) · 2−γ/2 ≤ 264 · (qG + 265) · 2−γ/2 ≤ qG · 265−γ/2 .

The following lemma makes the bound above explicit for FrodoPKE.

Lemma 6 (γ-Spreadness of FrodoPKE). FrodoPKE-i is γ-spread for

γ =


10752 i = 1344
15616 i = 976
10240 i = 640

,

hence

qG · 265−γ/2 ≤


qG · 2−5311 i = 1344
qG · 2−7743 i = 976
qG · 2−5055 i = 640

.



40 K. Hövelmanns, A. Hülsing, C. Majenz

Proof. Let (pk = (seedA, B), sk) ∈ supp(FrodoPKE.KG), letm ∈ FrodoPKE.M, and let c = (B′, V ′) ∈
FrodoPKE.C. According to the definition of FrodoPKE.Enc, we have that

Pr
FrodoPKE.Enc

[FrodoPKE.Enc(pk,m) = (B′, V ′)]

= Pr
S′,E′←χm×n,E′′←χm×n

[S′A+ E′ = B′ ∧ S′B + E′′ + Frodo.Encode(m) = V ′]

≤ Pr
S′,E′←χm×n

[S′A+ E′ = B′]

=
∑

s′∈supp(χm×n)

Pr
S′,E′←χm×n

[S′A+ E′ = B′ ∧ S′ = s′]

=
∑

s′∈supp(χm×n)

Pr
E′←χm×n

[s′A+ E′ = B′] · Pr
S′←χm×n

[S′ = s′]

≤
∑

s′∈supp(χm×n)

Pr
E′←χm×n

[E′ = 0] · Pr
S′←χm×n

[S′ = s′]

= Pr
E′←χm×n

[E′ = 0] ≤
(

Pr
x←χ

[x = 0]
)m×n

,

where we applied the law of total probability and used the fact that χ is a symmetric distribution
centered at zero.

We will now plug in the parameters of FrodoPKE-i: For all instantiations of i as specified in
[NAB+20], m = 8 and n = i. According to table 3 of [NAB+20], we furthermore have that

Pr
x←χ

[x = 0] = 2−16 ·


18286 i = 1344
11278 i = 976
9288 i = 640

<

{
2−1 i = 1344
2−2 i ∈ {976, 640}

.

Hence we obtain

max
c∈FrodoPKE.C

Pr
FrodoPKE.Enc

[FrodoPKE.Enc(pk,m) = c] ≤
{

2−8·1344 i = 1344
2−16·i i ∈ {976, 640}

.

The following lemma makes the bound above explicit for HQC.PKE.

Lemma 7 (γ-Spreadness of HQC.PKE). HQC.PKE-i is γ-spread for

γ =2 ·


log2

(57600
149

)
> 1490 i = 256

log2
(35840

114
)
> 1105 i = 192

log2
(17664

75
)
> 694 i = 128

,

hence

qG · 265−γ/2 ≤


qG · 2−1425 i = 256
qG · 2−1040 i = 192
qG · 2−629 i = 128

.
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Proof. Let (pk = (h, s), sk) ∈ supp(HQC.PKE.KG), let m ∈ HQC.PKE.M, and let c = (u, v) ∈
HQC.PKE.C. According to the definition of HQC.PKE.Enc, we have that

Pr
HQC.PKE.Enc

[HQC.PKE.Enc(pk,m) = (u, v)]

= Pr
R1,R2←U(Sn1·n2

wr ),E←U(Sn1·n2
we )

[R1 + h ·R2 = u ∧ mG+ s ·R2 + E = v] ,

where Sn1·n2
w denotes the subset of elements of hamming weight w in {0, 1}n1·n2 .

By the law of total probability,

Pr
R1,R2←U(Sn1·n2

wr ),E←U(Sn1·n2
we )

[R1 + h ·R2 = u ∧ mG+ s ·R2 + E = v]

=
∑

r2∈S
n1·n2
wr

Pr
R1←U(Sn1·n2

wr ),E←U(Sn1·n2
we )

[R1 = u− h · r2 ∧ E = v − (mG+ s · r2)]

· Pr
R2←U(Sn1·n2

wr )
[R2 = r2]

≤
∑

r2∈S
n1·n2
wr

1(
n1·n2
wr

) · 1(
n1·n2
we

) · Pr
R2←U(Sn1·n2

wr )
[R2 = r2] = 1(

n1·n2
wr

) · 1(
n1·n2
we

) ,

where we used the fact that |SNw | =
(
N
w

)
in the last line.

We will now plug in the parameters of HQC.PKE-i: For the instantiations of i as specified in
[MAB+21, Section 2.7], we have that

we = wr =


149 i = 256
114 i = 192
75 i = 128

,

and that

n1 · n2 =


90 · 640 i = 256
56 · 640 i = 192
46 · 384 i = 128

=


57600 i = 256
35840 i = 192
17664 i = 128

.

Hence we obtain

max
c∈HQC.PKE.C

Pr
HQC.PKE.Enc

[HQC.PKE.Enc(pk,m) = c] ≤


( 1
(57600

149 ) )2 i = 256

( 1
(35840

114 ) )2 i = 192

( 1
(17664

75 ) )2 i = 128
.
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A Overview: Relations between FO-like transformations

There exists a plethora of FO-like transformations, and one might wonder if a result for transfor-
mation variant X also is applicable to transformation variant Y. In order to systematize existing
knowledge and to simplify such considerations, this section recaps known relations between the
security properties of FO variants on a high level.

We will now revisit other well-known variants for the FO transformation, introduced by [HHK17]
as FO 6⊥m, FO 6⊥ and FO⊥m,c. In all variants, the ⊥ and 6⊥ stands for the way in which the KEMs reject
ciphertexts that are not well-formed, i.e., ciphertexts that either fail to decrypt or whose decrypted
plaintexts fail to re-encrypt: FO⊥m and FO⊥m,c will return a dedicated failure symbol ⊥, FO 6⊥m and
FO 6⊥m,c will instead use an additional hash function to compute from the ciphertext a deterministic,
but pseudorandom value. Since this pseudorandom value does not communicate explicitly that the
ciphertext was rejected, FO 6⊥m and FO 6⊥m,c are often called FO with implicit rejection (or a ’silent’
KEM), and FO⊥m and FO⊥m,c are called FO with explicit rejection. In both FO⊥m and FO 6⊥m, the m

represents how the KEM computes its keys: the key is computed by simply feeding the message m
into the key derivation oracle. In FO⊥m,c and FO 6⊥m,c, the key instead is computed by including both
message m and ciphertext c into the key derivation oracle’s input. FO⊥m,c and FO 6⊥m,c are hence also
called ciphertext-contributing variants.

At the time [HHK17] was written, all transformations above only had proofs in the classical ROM.
In order to facilitate a proof that also holds against quantum attackers, [HHK17] further modified
transformations FO⊥m and FO 6⊥m and denoted these modifications by QFO⊥m and QFO 6⊥m, respectively.
The only difference between FO⊥m/FO 6⊥m and their Q counterpart is that during encapsulation, the
ciphertext is concatenated with the hash value of m (using a length-preserving hash function),
which is then used during decapsulation to perform an additional validity check. This additional
hash value is often called key confirmation tag, and QFO⊥m and QFO 6⊥m are often called FO with key
confirmation. Since appending a length-preserving hash value induces communicative overhead, and
since the original proofs were highly non-tight, a lot of effort has been invested into improving on
both aspects.

Fortunately, the situation can be simplified a bit: It was proven in [BHH+19] that for either
rejection variant FO ∈ {FO 6⊥,FO⊥}, it does not matter which mode of key derivation is chosen, since
FOm is as secure as FOm,c and vice versa. (A summary of the proven relations is given in Fig. 16.)
We can hence neglect this distinction and drop the subscript for the rest of this discussion. It was
furthermore shown first in [SXY18] that FO 6⊥ is secure even against quantum attackers with bounds
similar to QFO 6⊥m, assuming that the underlying encryption scheme is perfectly correct. For schemes
that are not perfectly correct, established strategies can be used to generalise the result from [SXY18]

https://frodokem.org/files/FrodoKEM-specification-20200930.pdf
https://frodokem.org/files/FrodoKEM-specification-20200930.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
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IND-CCA
KEM U⊥

IND-CCA
KEM U 6⊥

IND-CCA
KEM U⊥m

IND-CCA
KEM U 6⊥m

IND-CCA
KEM U⊥m+keyconf

[BHH+19, Thm. 5]

[BHH+19, Thm. 5]
[BHH+19, Thm. 3]

[BHH+19, Thm. 4]

Fig. 16. Relations between the security of different types of U -constructions as shown in [BHH+19]. The
hooked arrow indicates a theorem with an ε-injectivity constraint on the underlying deterministic scheme.
Figure taken from [BHH+19] with updated references.

(e.g., see [HKSU20]). To achieve security against quantum attackers, we can hence dispense with the
more costly ’key confirmation variant’ QFO 6⊥m and simply use FO 6⊥. One might wonder if a similar
result could be achieved for the explicit rejection variant QFO⊥m, and while an asymptotic security
proof for FO⊥ has already been established [Zha19, DFMS21], giving a proof for FO⊥ with bounds
comparable to the bounds for FO 6⊥ was still an open problem until now. While it has been proven in
[BHH+19] that security of FO⊥ implies security of FO 6⊥, and that security of FO 6⊥ implies security
of QFO⊥m, it was hence not clear until now whether explicit rejection variants might not turn out to
be less robust against quantum attackers than their implicit rejection counterparts.

B Proof of Theorem 3 (From IND-CPAPKE or OW-CPAPKE to
IND-CPAFO[PKE])

For easier reference, we repeat the statement of Theorem 3.

Theorem 3 (PKE OW-CPA or IND-CPA ROM⇒ FO⊥m[PKE] IND-CPA). Let KEM⊥m := FO⊥m[PKE,G,H]
for some PKE scheme PKE. For any IND-CPA adversary A against KEM⊥m, issuing at most qG many
queries to its oracle G and qH many queries to its oracle H, there exist an OW-CPA adversary BOW-CPA
and an IND-CPA adversary BIND-CPA of roughly the same running time such that

AdvIND-CPA
KEM⊥m

(A) ≤ (qG + qH + 1) ·AdvOW
PKE(BOW-CPA)

and
AdvIND-CPA

KEM⊥m
(A) ≤ 3 ·AdvIND-CPA

PKE (BIND-CPA) + 2 · (qG + qH) + 1
|M|

.

Proof. In [HHK17], the security proof for KEM6⊥m = FO⊥m[PKE,G,H] = U⊥[PKEG,H] is modularized
into one proof for PKEG and one proof for transformation U⊥m, as sketched in Fig. 17. Here, One-
Wayness under Validity checking Attacks (OW-VA) is an intermediate helper notion that models
OW-CPA security in the presence of an additional Ciphertext Validity Oracle CVO that tells the
attacker whether a ciphertext is valid. To avoid confusion when looking up the theorems, Theorems
3.1 and 3.2 actually prove a security notion stronger than OW-VA security, called OW-PCVA security.
The OW-PCVA game is like the OW-VA one except that it provides one more additional oracle to
the adversary. Since OW-PCVA security immediately implies OW-VA security by dismissing the
additional oracle, and since Theorem 3.5 only requires OW-VA security, we omitt further details on
OW-PCVA security.

[HHK17, Theorem 3.5] states that IND-CCA security of KEM6⊥m = U⊥[PKEG,H] can be based on
OW-VA security of PKEG, tightly. Clearly, the same holds when IND-CCA is replaced with IND-CPA,
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as one can simply set the number qD of decapsulation queries to 0. In fact, when we only need
IND-CPA security, we can disregard all terms in the bound of [HHK17, Theorem 3.5] that stem from
how the random oracle and the decapsulation oracle were changed during the proof in order for the
the decapsulation oracle to be simulatable without the secret key. Dismissing the respective changes,
we obtain from [HHK17, Theorem 3.5] that for any IND-CPA adversary A against KEM⊥, issuing
at most qG/qH many queries to its respective random oracles, there exist an OW-VA adversary Ã of
roughly the same running time, issuing no queries to its oracle CVO, such that

AdvIND-CPA
KEM6⊥m

(A) ≤ AdvOW-VA
PKEG (Ã) .

[HHK17, Theorem 3.1] states that OW-PCVA security of PKEG can be based on OW-CPA security
of PKE, non-tightly. Since in our use case, we are only considering adversaries Ã that do not pose
any queries to oracle CVO or the other oracle present in the OW-PCVA game, we can again disregard
all terms in the bound of [HHK17, Theorem 3.1] that stem from how the additional oracles got
simulated during the proof. Dismissing the simulation of the redundant additional oracles, we obtain
from [HHK17, Theorem 3.1] that for any OW-VA adversary Ã against PKEG as the reduction above,
there exist an OW-CPA adversary BOW-CPA of roughly the same running time such that

AdvOW-VA
PKEG (Ã) ≤ (qG + qH + 1) ·AdvOW-VA

PKE (BOW-CPA) .

[HHK17, Theorem 3.2] states that OW-PCVA security of PKEG can be based on IND-CPA security
of PKE, tightly. Again, we can dismiss the simulation of the redundant additional oracles and obtain
from [HHK17, Theorem 3.2] that for any OW-VA adversary Ã against PKEG as the reduction above,
there exist an IND-CPA adversary BOW-CPA of roughly the same running time such that

AdvOW-VA
PKEG (Ã) ≤ 3 ·AdvIND-CPA

PKE (BIND-CPA) + 2 · (qG + qH) + 1
|M|

.

PKE
IND-CPA

PKE
OW-CPA

PKE’
OW-VA

KEM⊥m
IND-CCA

PKEG, Th. 3.2

PKEG, Th. 3.1

U⊥m , Th. 3.5

Fig. 17. Modular approach in [HHK17] for transformation FO⊥m , in the ROM. Solid arrows indicate tight
reductions, dashed arrows indicate non-tight reductions. The used theorem numbers are the respective
theorem numbers in [HHK17].

C Proof of Lemma 4 (OWTH: event prob. distances if ¬FIND etc)

For easier reference, we repeat the statement of Lemma 4.

Lemma 4. Let eCO0 and eCO1 be two extractable superposition oracles from X to Y for some
function f : X × Y → T , and let GenInp be an algorithm with classical output inp, having access
to eCO0. Let S be the set of elements x ∈ X whose oracle values are needed to compute inp, and
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let TS := {t | ∃x ∈ S s.th. t = f(x, eCO0(x))}. Let FIND be the event that flag register F is ever
measured to be in state 1 during a call to A’s punctured oracle, and let EXT be the event that A
performs an extraction query on any t ∈ TS . Let E be an arbitrary (classical) event. Then

Pr[E ∧ ¬FIND ∧ ¬EXT : AeCO0\S ]

= Pr[E ∧ ¬FIND ∧ ¬EXT : AeCO1\S ] , (30)

|Pr[E ∧ ¬FIND : AeCO0\S ]− Pr[E ∧ ¬FIND :AeCO1\S ]|

≤ Pr[EXT : AeCO0\S ] , (31)

|Pr[FIND : AeCO0\S ]− Pr[FIND : AeCO1\S ]| ≤ Pr[EXT : AeCO0\S ] , (32)

where all probabilities are taken over the coins of GenInp and the internal randomness of A and we
used AO0 as a shorthand for AO0(inp).

Proof. During this proof, we use AeCO\S as a shorthand for AeCO\S(inp) and F for FIND. As argued
in Section 5.2, A’s view is exactly the same in both games unless FIND or EXT occur, therefore
Eq. (30) holds. We will first use Eq. (30) to prove Eq. (31): We have∣∣∣Pr[E ∧ ¬F : AeCO0\S ]− Pr[E ∧ ¬F : AeCO1\S ]

∣∣∣
=
∣∣∣Pr[E ∧ ¬F ∧EXT : AeCO0\S ]− Pr[E ∧ ¬F ∧EXT : AeCO1\S ]

∣∣∣
=
∣∣∣Pr[E : AeCO0\S |¬F ∧EXT] · Pr[¬F ∧EXT : AeCO0\S ]

−Pr[E : AeCO1\S |¬F ∧EXT] · Pr[¬F ∧EXT : AeCO1\S ]
∣∣∣

(∗)=
∣∣∣Pr[E : AeCO0\S |¬F ∧EXT]− Pr[E : AeCO1\S |¬F ∧EXT]

∣∣∣
· Pr[¬F ∧EXT : AeCO0\S ]

≤ Pr[¬F ∧EXT : AeCO0\S ] ≤ Pr[EXT : AeCO0\S ] ,

where (*) used that if FIND does not occur, all case-depending information is hidden from A until
EXT occurs, hence EXT is equally likely in that case and the common factor can hence be moved
to outside of the absolute value.

To prove Eq. (32), it is sufficient to instead upper bound the difference between the probabilities
of event ¬FIND for the two oracles: since the equation Pr[E] = 1 − Pr[¬E] holds for arbitrary
events, we have that

|Pr[F : AeCO0\S ]− Pr[F : AeCO1\S ]| = |Pr[¬F : AeCO0\S ]− Pr[¬F : AeCO1\S ]| .

The bound then follows directly from Eq. (31): We have that

|Pr[¬F : AeCO0\S ]− Pr[¬F : AeCO1\S ]|

= |Pr[true ∧ ¬F : AeCO0\S ]− Pr[true ∧ ¬F : AeCO1\S ]|
Eq. (31)
≤ Pr[EXT : AeCO0\S ] .
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D Proof of Theorem 6 (OWTH: Distinguishing to Finding)

For easier reference, we repeat the statement of Theorem 6.

Theorem 6 (Semi-classical OWTH in the eQROMf : Distinguishing to Finding). Let eCO0,
eCO1, GenInp, S, FIND and EXT be like in Lemma 4. We define the OWTH distinguishing advan-
tage function of A as

AdvOWTH
eQROf (A) := |Pr[1← AeCO0

(inp)]− Pr[1← AeCO1
(inp)]| ,

where the probabilities are taken over the coins of GenInp and the internal randomness of A. For
any algorithm A of query depth d with respect to eCO.RO, we have that

AdvOWTH
eQROf (A) ≤4 ·

√
d · Pr[FIND : AeCO1\S ]

+ 2 · (
√
d+ 1) ·

√
Pr[EXT : AeCO0 ] + Pr[EXT : AeCO1

] . (33)

In the special case where Pr[EXT : AeCO0\S ] = Pr[EXT : AeCO1\S ] = 0, we obtain

AdvOWTH
eQROf (A) ≤ 4 ·

√
d · Pr[FIND : AeCO1\S ] . (34)

Proof. In the following helper definitions, we will again use AO as a shorthand for AO(inp). For
either oracle eCO ∈ {eCO0, eCO1}, we let

pb := Pr[1← AeCOb ]

pb,¬EXT := Pr[b′ = 1 ∧ ¬EXT : b′ ← AeCOb ]

pb,¬EXT,¬F := Pr[b′ = 1 ∧ ¬FIND ∧ ¬EXT : b′ ← AeCOb\S ]

pb,¬EXT,F := Pr[FIND ∧ ¬EXT : AeCOb\S ] .

In order to prove Theorem 6, we want to bound AdvOWTH
eQROf (A) = |p0− p1|. Applying the triangle

inequality yields

|p0 − p1| ≤|p0 − p0,¬EXT|+ |p1 − p1,¬EXT|+ |p0,¬EXT − p1,¬EXT|
(∗)
≤ Pr[EXT : AeCO0

] + Pr[EXT : AeCO1
]

+ |p0,¬EXT − p1,¬EXT| , (74)

where (*) used that |pb − pb,¬EXT| = Pr[b′ = 1 ∧ EXT : b′ ← AeCOb ] ≤ Pr[EXT : AeCOb ], it hence
remains to bound |p0,¬EXT − p1,¬EXT|.

We claim that for either oracle eCO ∈ {eCO0, eCO1}, we have that

|pb,¬EXT − pb,¬EXT,¬F| ≤ 2 ·
√
d · Pr[FIND : AeCOb\S ] . (75)
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Assuming that claim (75) is true, we can then once more apply the triangle inequality to obtain

|p0,¬EXT−p1,¬EXT| ≤ |p0,¬EXT − p0,¬EXT,¬F|+ |p1,¬EXT − p0,¬EXT,¬F|
(∗)= |p0,¬EXT − p0,¬EXT,¬F|+ |p1,¬EXT − p1,¬EXT,¬F|

(75)
≤ 2 ·

√
d · Pr[FIND : AeCO0\S ] + 2 ·

√
d · Pr[FIND : AeCO1\S ]

(∗∗)
≤ 2 ·

√
d · (Pr[FIND : AeCO1\S ] + Pr[EXT : AeCO0 ]) + 2 ·

√
d · Pr[FIND : AeCO1\S ]

≤4 ·
√
d · Pr[FIND : AeCO1\S ] + 2 ·

√
d · Pr[EXT : AeCO0 ] . (76)

Here, (*) replaced p0,¬EXT,¬F with p1,¬EXT,¬F in the last term, using Eq. (30) from Lemma 4 which
states that all events are equally likely regardless which oracle is used if neither EXT nor FIND
occur. (**) used Eq. (32) from Lemma 4 which states that Pr[FIND : AeCO0\S ] can be upper bounded
by Pr[FIND : AeCO1\S ]+Pr[EXT : AeCO0 ], and then used that the square root function is monotone
increasing.

Plugging Eq. (76) into Eq. (74) yields the bound claimed in Theorem 6, it hence remains to prove
Eq. (75), which we break down into the following steps: Due to the deferred measurement principle,
both the puncturing operation OSC

S and extraction oracle eCO.E can be rewritten such that they
consist of a unitary, acting on the adversary-oracle registers and an additional measurement outcome
register, and a final measurement of the outcome register at the end of the execution of A. We will
denote the respective outcome registers by LF (for ’finding’) and LE (for extractions). Second, show
that it suffices to bound the distance of the states before this final measurement of LF and LE . Third,
show that it suffices to bound the distance of the states for any fixed instantiation of set S, oracle
values (yx)x∈S , and input string inp. Lastly, prove the distance bound for any fixed instantiation by
considering that the two states that emerge from the same initial state; and that the two chains of
state transitions only increase the distance in terms of the probability that FIND occurs.

To flesh out this summary, we will first write OSC
S as a concrete combination of unitaries and

measurements: A ´logging’ register LF holding bitstrings of length d is initialised in state |0 · · · 0〉.
Intuitively, LF will log at its i-th position if the i-th query triggered FIND: Whenever A performs an
oracle query, say it is the i-th, we slot in a unitary U iS that marks in the i-th position of LF whether
the query register holds an element of S. More formally, U iS acts on query register X = X1 · · ·Xw

(recall that A can issue parallel oracle queries) and logging register LF by

U iS |x1, · · · , xw〉X |b1, · · · , bd〉LF :=
{
|x1, · · · , xw〉X |b1, · · · , bd〉LF xj /∈ S ∀j
|x1, · · · , xw〉X |flipi(b1, · · · , bd)〉LF ∃j : xj ∈ S

.

Processing oracle queries according to eCO\S consists of first applying U iS to X and LF , then
measuring LF in the computational basis, and then applying the oracle unitary OXYD (see Section 4
for a brief description how parallel queries are answered).

Next, we also write eCO.E for function f : X×Y → {0, 1}` as a concrete combination of unitaries
and measurements: Let A be the register that holds the state of A, and let D be the oracle database
register. Note that A contains a register LE that accommodates qE many elements of X, which is
used to log the outcome of the i-th query to eCO.E at its i-th position. Whenever A performs a
query to eCO.E, say it is the i-th, we apply a unitary U if that adds to the i-th position of LE the
extraction outcome. More formally, U if acts on query register T , database register D and register
LE by

U if |t〉T := |t〉T ⊗
∑

x∈X∪{⊥}

Σx,t ⊗ U if,x ,
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where Σx,t acts on D and is defined by

Σx,t :=
{⊗

x′<x

(∑
y∈Y :f(x,y) 6=t |y〉〈y|Dx′

)⊗(∑
y∈Y :f(x,y)=t |y〉〈y|Dx

)
x ∈ X

id−
∑
x∈X Σx,t x = ⊥

,

and U if,x acts on LE by

U if,x |x1, · · · , xqE〉LE := |x1, · · · , xi−1, xi + x, xi+1, · · · , xqE〉LE .

Processing the i-th extraction query according to eCO.E consists of first applying U if to T , D and
LE , and then measuring LE in the computational basis.

We can now lift the final joint adversary-oracle state ρ′0 of A, when run with access to original
oracle eCO0, to the joint adversary-oracle-log state ρ′′0 := ρ′0 ⊗ |0 · · · 0〉〈0 · · · 0|LF . (Note that LF is
initialised to and will maintain to be in state |0 · · · 0〉.) We will furthermore denote by ρ′′1 the joint
adversary-oracle-log state when A is run with access to eCO1\S. This means that ρ′0 is the final state
of A without puncturing, and ρ′′1 is the final state of A with puncturing. Let M be the measurement
that measures, given the registers A, D, LF , whether A outputs 1, EXT did not occur, and LF is
equal to |0 · · · 0〉, the latter meaning that FIND did not happen. Let PM (Φ) denote the probability
that M returns 1 when measuring a state Φ. As our arguments will work for both oracle cases,
we will simply write p¬EXT instead of pb,¬EXT and pEXT,¬F instead of pb,¬EXT,¬F. We have that
p¬EXT = PM (ρ′′0) and that p¬EXT,¬F = PM (ρ′′1), hence we want to upper bound

|p¬EXT − p¬EXT,¬F| = |PM (ρ′′0)− PM (ρ′′1)| , (77)

and due to [AHU19, Lemma 4], we know that

|PM (ρ′′0)− PM (ρ′′1)| ≤ B(ρ′′0 , ρ′′1) , (78)

where B is the Bures distance. I.e., for two density operators τ1 and τ2, B(τ1, τ2) :=
√

2− 2F (τ1, τ2),
and the fidelity F is defined by F (τ1, τ2) := Tr

√√
τ1τ2
√
τ1. According to the definition of the Bures

distance,

B(ρ′′0 , ρ′′1)2 = 2(1− F (ρ′′0 , ρ′′1)) .

Combining Eq. (78)) with Eq. (78) and plugging in the definition of the Bures distance hence
yields

|p¬EXT − p¬EXT,¬F| ≤
√

2(1− F (ρ′′0 , ρ′′1)) .

To show that |pb,¬EXT − pb,¬EXT,¬F| ≤ 2 ·
√
d · Pr[FIND : AeCOb\S ], it hence suffices to prove

that
F (ρ′′0 , ρ′′1) ≥ 1− 2d · Pr[FIND : AeCO\S(inp)] . (79)

To lower bound F (ρ′′0 , ρ′′1), we make the following observation: The measurements performed by OSC
S

and eCO.E can be delayed, i.e., when processing an oracle query, we apply the respective unitary
U iS , but do not perform the measurement of LF . Similarly, when performing extraction queries, we
apply the respective unitary U if , but do not perform the measurement of LF . Instead, we perform a
measurement of LF and LE in the end, which we will denote by ELF ,LE . Let ρ0 denote the final state
of A, when run with access to original oracle eCO0, but without the extraction measurements. Since
the ’FIND’ register LF of ρ′′0 will never be touched as ρ′′0 represents the case where no puncturing
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is performed, ρ′′0 is stable under ’FIND’ measurements, we hence have that ρ′′0 = ELF ,LE (ρ0). Let
ρ1 denote the final state of A when run with access to eCO\S, but without the final measurement
ELF ,LE , meaning ρ′′1 = ELF ,LE (ρ1). Using monotonicity of fidelity, we obtain

F (ρ′′0 , ρ′′1) = F (ELF ,LE (ρ0), ELF ,LE (ρ1)) ≥ F (ρ0, ρ1) .

We will now break down the fidelity term F (ρ0, ρ1) into an expected value for instances of
set S, oracle values −→y := (yx)x∈S and input inp: Let GenInst denote the sampling of an instance
ins := (S, (yx)x∈S , inp) according to their distribution. Let |φins0 〉 be the pure state corresponding
to ρ0 that would be obtained by running A with a fixed instance ins. Similarly, let |φins1 〉 be the
state corresponding to ρ1. Then ρ0 = Eins[||φins0 〉〉〈|φins0 〉|], and ρ1 = Eins[||φins1 〉〉〈|φins1 〉|]. Hence we
can identify

F (ρ0, ρ1) = F ( E
ins
|φins0 〉〈φins0 | , E

ins
|φins1 〉〈φins1 |)

(∗)
≥ E

ins
F (|φins0 〉〈φins0 | , |φins1 〉〈φins1 |)

(∗∗)
≥ 1− 1

2 E
ins

∥∥|φins0 〉 − |φins1 〉
∥∥2

,

Here, (*) follows from the joint concavity of the fidelity, and (**) uses the fact that for any two
normalised states |Ψ〉 and |Φ〉, we have that F (|Ψ〉〈Ψ | , |Φ〉〈Φ|) ≥ 1− 1

2 ‖|Ψ〉 − |Φ〉‖
2. (This was proven

in [AHU19, Lemma 3]).
In order to prove Eq. (79), it hence remains to show that for any instantiation ins = (S,−→y , inp),

it holds that ∥∥|φins0 〉 − |φins1 〉
∥∥2 ≤ 4d · P insFIND , (80)

where P insFIND denotes the probability of measuring the LF register of the final state |φins1 〉 resulting
in anything else than |0, · · · , 0〉. For the rest of the proof, we hence consider ins = (S,−→y , inp) to be
fixed and omit the indices from our notation.

Both final states |φ0〉 and |φ1〉 result from a chain of state transitions, applied to the same initial
state |Φ(0)〉. Out of these transitions, d many represent oracle queries and hence are either of the
form T

(j)
0 = UA ◦OXYD (to end up with |φ0〉), where UA models the adversary’s behaviour, or of the

form T
(j)
1 = UA ◦OXYD ◦U

ij
S for some ij (to end up with |φ1〉). The remaining qE many transitions

represent extraction queries and are of the form T
(j)
0 = T

(j)
1 = UA ◦U

ij
f for some ij , where UA again

models the adversary’s behaviour. Let |Φj0〉 denote the j-th intermediate state on the way to final
state |φ0〉, i.e., let |Φj0〉 = T

(j)
0 ◦ T (j−1)

0 ◦ · · · ◦ T (0)
0 |Φ(0)〉, and let |Φj1〉 denote the j-th intermediate

state on the way to final state |φ1〉, i.e., let |Φj1〉 = T
(j)
1 ◦T (j−1)

1 ◦ · · · ◦T (1)
1 |Φ(0)〉. Furthermore, let εj

denote the distance between these intermediate states, i.e., εj :=
∥∥∥|Φj0〉 − |Φj1〉∥∥∥. With this notation,

we have that

‖|φ0〉 − |φ1〉‖ = εd+qE =
d+qE∑
j=1

εj − εj−1 ,

hence

‖|φ0〉 − |φ1〉‖2 ≤

d+qE∑
j=1
|εj − εj−1|

2

. (81)

We will now bound this sum by bounding the summands |εj − εj−1|, depending on which kind of
query they represent. To this end, let QOr ⊂ {1, · · · , d+ qE} be the index set of oracle queries, i.e.,
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the set of indices j such that T (j)
b = UA ◦OXYD ◦ (U ijS )b for some ij , and let QExt ⊂ {1, · · · , d+ qE}

be the index set of extraction queries, i.e., the set of indices j such that T (j)
b = UA ◦U

ij
f for some ij .

We claim that for any oracle query, i.e., for any j ∈ QOr, we have that

|εj − εj−1| ≤ 2 ·
∥∥∥PS |Φj−1

1 〉
∥∥∥ , (82)

where PS is the projector unto the subspace spanned by S. For any extraction query, i.e., for any
j ∈ QExt, we furthermore claim that

εj = εj−1 . (83)
Plugging claims (82) and (83) into Eq. (81), we obtain

‖|φ0〉 − |φ1〉‖2 ≤

d+qE∑
j=1
|εj − εj−1|

2

≤

 ∑
j∈QOr

2 ·
∥∥∥PS |Φj−1

1 〉
∥∥∥
2

(∗)
≤ 4d ·

 ∑
j∈QOr

∥∥∥PS |Φj−1
1 〉

∥∥∥2
 (∗∗)
≤ 4d · (PFIND) ,

where (*) used Jensen’s inequality; and (**) used that PS is precisely the measurement operator
corresponding to the event FIND.

It hence remains to prove claims (82) and (83). In order to prove claim (82), note that for j ∈ QOr,
we have that

εj =
∥∥∥|Φj0〉 − |Φj1〉∥∥∥ =

∥∥∥UA ◦OXYD |Φj−1
0 〉 − UA ◦OXYD ◦ U

ij
S |Φ

j−1
1 〉

∥∥∥
=
∥∥∥UA ◦OXYD (|Φj−1

0 〉 − U ijS |Φ
j−1
1 〉

)∥∥∥ (∗)=
∥∥∥|Φj−1

0 〉 − U ijS |Φ
j−1
1 〉

∥∥∥
≤
∥∥∥|Φj−1

0 〉 − |Φj−1
1 〉

∥∥∥+
∥∥∥|Φj−1

1 〉 − U ijS |Φ
j−1
1 〉

∥∥∥ = εj−1 +
∥∥∥(id− U ijS ) |Φj−1

1 〉
∥∥∥ ,

where (*) used that UA and OXYD are unitaries. Using that id and U
ij
S coincide on the image of

(id− PS), we can identify∥∥∥(id− U ijS ) |Φj−1
1 〉

∥∥∥ =
∥∥∥(id− U ijS )PS |Φj−1

1 〉
∥∥∥ ≤ ∥∥∥(id− U ijS )

∥∥∥
∞

∥∥∥PS |Φj−1
1 〉

∥∥∥ ≤ 2 ·
∥∥∥PS |Φj−1

1 〉
∥∥∥ ,

where the second-to-last inequality holds by definition of the operator norm, and the last follows
from the triangle inequality.

In order to prove claim (83), note that

εj =
∥∥∥|Φj0〉 − |Φj1〉∥∥∥ =

∥∥∥UA ◦ U ijf |Φj−1
0 〉 − UA ◦ U

ij
f |Φ

j−1
1 〉

∥∥∥ (∗)=
∥∥∥|Φj−1

0 〉 − |Φj−1
1 〉

∥∥∥ ,

where (*) used that UA and U if are unitaries.
ut

Proof. By definition of the FFP-CPA advantage, we have

AdvFFP-CPA
PKEG (A) = Pr

m←AeCO(pk)
[(m, eCO.RO(m)) fails wrt. (sk, pk)] .

To upper bound this probability, we begin by defining FFP-NG adversary B: On input pk, B runs
A(pk), simulating eCO to A. When A finishes by outputting its message m, B computes r :=
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eCO.RO(m), uses its failure-checking oracle to compute b′ := FCOb(m, r) and outputs b′. In the case
where the challenge bit b of B’s FFP-NG game is 0, B perfectly simulates the FFP-CPA game to A
and wins iff A wins in game FFP-CPA. Therefore,

Pr
m←AeCO(pk)

[(m, eCO.RO(m)) fails wrt. (sk, pk)] = Pr[1← B(pk)|b = 0]

≤ Pr[1← B(pk)|b = 1] + 2AdvFFP-NG
PKE (B) ,

where the last line used the definition of the FFP-NG advantage.
To upper bound Pr[1 ← B(pk)|b = 1], note that this probability formalizes A outputting a

message that fails to decrypt, but under an independently drawn key pair (sk ′, pk ′):

Pr[1← B(pk)|b = 1] = Pr
m←AeCO(pk)

[(m, eCO.RO(m)) fails wrt. (sk ′, pk ′)] , (84)

where the probability is taken additionally over (sk ′, pk ′)← KG.
To upper bound this probability, we define FFP-NK adversary CeCO against PKEG: Upon initiali-

sation, C computes a key pair (pk, sk) on its own and runs AeCO(pk). When A finishes by outputting
its message m, C forwards the message to its own game. Since C perfectly simulates the game in
Eq. (84) to A and wins iff A wins,

Pr
m←AeCO(pk)

[(m, eCO.RO(m)) fails wrt. (sk ′, pk ′)] = AdvFFP-NK
PKEG (C) . ut
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