
On Succinct Non-Interactive Arguments in Relativized Worlds

Megan Chen
megchen@bu.edu

Boston University

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Nicholas Spooner
nicholas.spooner@warwick.ac.uk

University of Warwick

March 24, 2022

Abstract

Succinct non-interactive arguments of knowledge (SNARKs) are cryptographic proofs with strong
efficiency properties. Applications of SNARKs often involve proving computations that include the
SNARK verifier, a technique called recursive composition. Unfortunately, SNARKs with desirable
features such as a transparent (public-coin) setup are known only in the random oracle model (ROM). In
applications this oracle must be heuristically instantiated and used in a non-black-box way.

In this paper we identify a natural oracle model, the low-degree random oracle model, in which there
exist transparent SNARKs for all NP computations relative to this oracle. Informally, letting O be a low-
degree encoding of a random oracle, and assuming the existence of (standard-model) collision-resistant
hash functions, there exist SNARKs relative to O for all languages in NPO. Such a SNARK can directly
prove a computation about its own verifier. This capability leads to proof-carrying data (PCD) in the
oracle model O based solely on the existence of (standard-model) collision-resistant hash functions.

To analyze this model, we introduce a more general framework, the linear code random oracle model
(LCROM). We show how to obtain SNARKs in the LCROM for computations that query the oracle, given
an accumulation scheme for oracle queries in the LCROM. Then we construct such an accumulation
scheme for the special case of a low degree random oracle.

Keywords: succinct non-interactive arguments; random oracle model; accumulation schemes

1

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Related work . 5

2 Techniques 7
2.1 Linear code random oracles . 7
2.2 Accumulation scheme for low-degree random oracles . 8
2.3 A forking lemma for linear code random oracles . 11
2.4 A zero-finding game for low-degree random oracles . 12
2.5 SNARKs for oracle computations . 14
2.6 Proof-carrying data from relativized SNARKs . 17

3 Preliminaries 18
3.1 Notations . 18
3.2 Non-interactive arguments in oracle models . 18
3.3 Proof-carrying data . 20
3.4 Accumulation schemes . 21
3.5 Commitment schemes . 22
3.6 Vector commitment schemes . 23

4 Linear code random oracles 25
4.1 Query transcripts and partial oracles . 25
4.2 Constraints . 26
4.3 Query complexity . 27
4.4 Low-degree random oracles . 28

5 Forking lemmas for linear code random oracles 29
5.1 Basic forking algorithm . 29
5.2 Generic forking algorithm . 31

6 Oracle zero-finding games 34

7 Accumulation scheme for low-degree random oracles 36

8 SNARKs for low-degree oracle computations 41
8.1 SNARKs for oracle computations via query accumulation 41
8.2 SNARKs for non-oracle computations in any oracle model 44
8.3 Lower bound . 48

9 Proof-carrying data from relativized SNARKs 49
9.1 PCD in the LDROM . 51

Acknowledgments 52

References 52

2

1 Introduction

Succinct non-interactive arguments (SNARGs) are short cryptographic proofs of NP computations. Many
SNARG constructions also have the property of succinct verification: a SNARG proof can be verified faster
than the original NP witness. An exciting application of this property, which motivates this paper, is building
incrementally-verifiable computation (IVC) [Val08] and, more generally, proof-carrying data (PCD) [CT10].

IVC and PCD both address the problem of how untrusted provers can efficiently demonstrate the
correctness of an indefinite (and, in the case of PCD, distributed) computation. The key efficiency requirement
is that, after producing a proof for t−1 computation steps, the additional time required to prove t computation
steps should be independent of t. Recursive proof composition is a general technique for “bootstrapping” a
SNARG of knowledge (SNARK) to build IVC and PCD. The basic idea is relatively simple: to prove t steps
of a computation, prove the NP statement “step t of the computation is correct, and there exists a proof of
correctness for the previous t− 1 steps”. Clearly this is an incremental proof: this statement depends only on
a single step of the computation and the previous proof.

This technique is “recursive” in that it uses the SNARK to prove a statement about its own verifier.
The succinct verification property ensures that the statement size can be bounded independently of t. This
“non-black-box” use of the SNARK verifier leads to theoretical and practical issues, which we now discuss.

The first efficient approach to recursive composition [BCTV14] was based on a class of pairing-based
SNARKs (which includes [Gro10; GGPR13; BCIOP13; Gro16; GKMMM18]) that are proven secure under
knowledge assumptions or in the generic bilinear group model. This family of constructions yields extremely
small proofs and highly efficient verification, but has two significant limitations.

First, all such constructions rely on a secret setup: sampling the structured reference string involves secret
trapdoor values (“toxic waste”) that can be used to attack the scheme. Hence the security of the system
depends on these values being discarded — but this is difficult to ensure, even when accounting for the
cryptographic ceremonies that researchers have designed to mitigate this sampling problem [BCGTV15;
BGG17; BGM17; ABLSZ19]. Second, efficient recursion for these SNARKs relies on pairing-friendly cycles
of elliptic curves. Only a single construction of such cycles is known, and that cycle’s curves have undesirable
algebraic properties that weaken their security.

A flurry of recent work has focused on developing new techniques that avoid both of these drawbacks
[BGH19; COS20; BCMS20; BCLMS21; BDFG21; KST21]. However, all of the proposed schemes share an
unfortunate detail: they rely on proving statements about computations that query random oracles.

To see how this arises, we consider as an example the construction of [COS20] (the other schemes work
in different ways but the issue is the same in each case). This work presents a SNARK that is secure in the
random oracle model, and then applies the recursive composition technique to obtain IVC and PCD. This
entails producing a SNARK proof about a verifier that queries the random oracle. It was not previously
known whether there exist SNARKs for such computations in the random oracle model. To avoid this issue,
[COS20] perform a heuristic step: they assume that there exists a concrete hash function that, when used in
place of the random oracle in their construction, yields a secure SNARK in the standard model.1 SNARKs in
the standard model can be (provably) recursively composed [BCCT12]. All of the cited constructions have
similar heuristic steps.

This leads to a natural question: can we retain the benefits of these new constructions without this
heuristic step? One approach would be to attempt to design better schemes in the standard or generic group
models, but there has been little progress in this direction. In this work we propose a new approach: to build
a SNARK in an oracle model that can prove statements about its own oracle. Such an oracle model admits a

1“Standard model” refers to the usual cryptographic setting without oracles (and parties may access a common reference string).

3

proof of security for recursive composition “within the model”, without any heuristic step.

On security in idealized models. Of course, the resulting system is proven secure only in an idealized
model. Nonetheless, we argue that a black-box security proof in an oracle model has several advantages.

• Flexibility. The heuristic step in prior constructions requires instantiating the oracle via an efficient circuit.
This rules out certain oracle instantiations, such as multi-party protocols or hardware tokens. In contrast,
any instantiation of the oracle is possible if the oracle is used as a black box by the construction.

• Efficiency. The random oracle is typically instantiated in practice via a concrete “unpredictable” hash
function such as SHA-3 or BLAKE. Unfortunately, producing SNARKs about these functions is expensive.
This has motivated a line of work on hash functions designed to be more efficient for SNARKs [Alb+19a;
Alb+19b; AABDS20; GKRRS21]. These new constructions have received far less scrutiny and cryptanaly-
sis than standard hash functions. Our approach offers a possible alternative: if we can make only black-box
use of the oracle, then we do not need to worry about an instantiation’s “SNARK-friendliness”.

• Understanding security. A proof in an idealized model can give more insight into the scheme’s security
than one involving heuristic assumptions.

– Heuristic assumptions make it harder to assess a scheme’s concrete security, while security proofs in
idealized models (such as the random oracle model) often lead to precise security expressions.

– Recursive composition in prior work involves a heuristic step in the “middle” of the security proof. Any
change to the heuristic may require revisiting the security proof, or possibly even change the construction.
In contrast, security proofs in idealized models provide “end-to-end” guarantees.

– Choosing the correct heuristic analogue of a ROM security property is a balancing act between the
requirements of the standard model proof and what can be justified by the idealized proof. There are
many details, and the precise choice of assumption can affect the validity of the result; in the worst case,
security flaws might be hidden in the heuristic step!

1.1 Our results

We identify a natural oracle model, the low-degree random oracle model, in which there exist SNARKs for all
NP computations relative to the same oracle. That is, there is a natural distribution over oracles O such that,
assuming the existence of (standard-model) collision-resistant hash functions, there exist SNARKs relative to
O for all languages in NPO. As a result, via recursive composition, we obtain provably secure IVC and PCD
in the low-degree random oracle model, assuming the existence of collision-resistant hash functions.

We first introduce a more general model we call the linear code random oracle model, and investigate its
structural and cryptographic properties. We then describe our construction of SNARKs in the low-degree
random oracle model. This construction relies on an accumulation scheme for queries to the oracle, which
we consider to be of independent interest. We now discuss these contributions in more detail.

(1) Linear code random oracles. We introduce the linear code random oracle model (LCROM) and study
its structural and security properties. In the LCROM, all parties have oracle access to a codeword ρ̂ sampled
uniformly at random from a linear code C ⊆ (D → F). We require that C have an associated efficient
injective mapping f : {0, 1}m → D such that the restriction of ρ̂ to im(f) is distributed as a uniformly
random function im(f)→ F. This property ensures that we can query the random oracle by querying ρ̂ ◦ f .
We show that, while there exist exponential separations between the two models, all linear code random
oracles are collision-resistant within im(f).

4

A low-degree random oracle is a linear code random oracle where C is a Reed-Muller code: the space of
evaluation tables of multivariate polynomials of bounded (individual) degree. The polynomial structure of
this code is important in several ways. First, these oracles can be efficiently simulated, which directly implies
that standard model computational assumptions continue to hold in this model. Second, it allows for possible
concrete instantiations via structured PRFs (see Section 2.1). Finally, our accumulation scheme (and hence
also our SNARK) relies on polynomial interpolation to perform query reduction.
(2) SNARKs in the low-degree random oracle model. We show that, if collision-resistant hash functions
exist (in the standard model), there exist SNARKs in the low-degree random oracle model (LDROM) that can
prove NP computations relative to the same oracle. Our construction is transparent: the only setup required
is a uniform reference string (specifically, the choice of a collision-resistant hash function).

Theorem 1. There exists a transparent (zero-knowledge) SNARK in the LDROM for computations in the
LDROM, assuming the existence of collision-resistant hash functions in the standard model.

As a corollary of the theorem, obtained by adapting known techniques in [BCCT13; COS20], is an
analogous result about PCD. The PCD construction inherits the transparency property of the SNARK.

Theorem 2. There exists transparent (zero-knowledge) PCD in the LDROM (for computations in the LDROM),
assuming the existence of collision-resistant hash functions in the standard model.

(3) Building blocks. The result is obtained by combining a SNARK in the LDROM for NP computations
without oracles and an accumulation scheme for oracle queries in the LDROM. We consider each of these to
be notable contributions in their own right, and obtaining them requires developing new tools for analyzing
security in the LDROM.

• SNARK in the LDROM. We show that Micali’s construction of a SNARK in the random oracle model
[Mic00; Val08] is secure in the LDROM. The central difficulty is to show that the construction satisfies a
knowledge property, because the straightline knowledge extractor in [Val08] fails in the LDROM.

• Accumulation for the LDROM. An accumulation scheme for an oracle is a primitive that allows a verifier,
with the help of an untrusted prover, to “store” oracle queries in an accumulator that can be efficiently
checked later by a decider. For non-triviality, the verifier cannot query the oracle, and the size of the
accumulator and the query complexity of the decider cannot depend on the number of accumulated queries.
This is a variation on the notion of accumulation schemes for predicates as introduced by [BCMS20].

We build an accumulation scheme for the low-degree random oracle. To do so, we build on a prior
interactive query reduction protocol [KR08; CFGS22], which reduces any number of queries to a low-
degree polynomial to a single query via interpolation. To obtain an accumulation scheme, we use a variant
of the Fiat-Shamir transformation to make (a variant of) the query reduction protocol non-interactive; this
introduces an additional oracle query which must also be accumulated.

1.2 Related work

PCD from signature cards. PCD was first defined and constructed in [CT10], which achieved PCD in
a model where all parties have access to a signed random oracle. Such an oracle, on input x, samples a
random answer y, generates a signature σ on (x, y) under a secret signing key embedded in the oracle, and
outputs (y, σ). They showed that there exist SNARKs for all NP computations relative to this oracle: to prove
that querying the oracle at x yields (y, σ), one proves that σ is a valid signature on (x, y). This allows the
SNARK verifier to avoid querying the oracle entirely: instead, it can simply verify the signature.

5

Our work can be viewed as trading the cryptographic structure of [CT10] for algebraic structure. Both
constructions yield similar security guarantees when instantiated with hardware tokens. However, we believe
that our oracle is likely to be more amenable to concrete heuristic instantiations.

Random low-degree oracles and zero knowledge. Random polynomial oracles have been used to achieve
zero knowledge in the context of interactive PCPs [BCFGRS17; CFS17] and multi-prover interactive proofs
with soundness against entangled strategies [CFGS22]. In these protocols, the oracle is provided by the
prover(s), as opposed to being a part of the model. [BCFGRS17] introduced the succinct constraint detection
technique, which enables the design of efficient zero knowledge simulators for protocols with random
polynomial oracles. We use the same technique in the present work to prove computational soundness.

Probabilistic proofs in relativized worlds. Chiesa and Liu [CL20] give several impossibility results for
probabilistic proofs in relativized worlds. They show that there do not exist nontrivial PCPs (or IOPs) for
computations relative to a variety of types of oracle, including random oracles, generic group oracles, and,
most relevant to us, random low-degree polynomial oracles. It is argued that these separations give evidence
that SNARKs relative to these oracles do not exist. We view this work as a counterpoint: the LDROM does
not admit efficient PCPs but does admit SNARKs (under a cryptographic assumption). This suggests that the
relationship between PCPs and SNARKs in relativized worlds is more complex than previously thought.

Algebrization. Low-degree random oracles are reminiscent of the algebrization framework [AW09],
introduced to understand the algebraic techniques used to prove non-relativizing results like PSPACE ⊆ IP.
An example of an “algebrizing” inclusion is that for every oracle θ, PSPACEθ ⊆ IPθ̂, where θ̂ is any low-
degree extension of θ. Note that the left side of the containment is relative to the original oracle, whereas the
right side is relative to θ̂. This is incomparable to our setting: on the one hand, we want the same low-degree
oracle on “both sides”; on the other hand, our results hold only for specific choices of (distributions over)
oracles. Nonetheless, some of our techniques for analyzing linear code random oracles are inspired by the
study of algebraic query complexity in [AW09].

Generic group model. Shoup [Sho97] introduced the generic group model (GGM), which represents a
prime-order group via two oracles: a random injection L : Zp → {0, 1}k and a mapping from (L(x), L(y))
to L(x+ y). Boneh and Boyen [BB04] introduced the generic bilinear group model (GBM), which augments
the GGM with an oracle providing a bilinear map. Zhandry and Zhang [ZZ21] show that a generic group or
generic bilinear group oracle can be used to construct a random oracle by taking ρ(x) to be the first (say)
k/2 bits of L(x).2 A natural question, which we leave to future work, is whether there exist SNARKs in the
GGM/GBM (based on standard assumptions) that can prove GGM/GBM computations.

2This result is sensitive to definition of a generic group: it is not known to hold for the definition of the GGM in [Mau05].

6

2 Techniques

We overview the main ideas behind our results. In Section 2.1 we introduce linear code random oracles, as
well as the special case of low-degree random oracles. In Section 2.2 we describe an accumulation scheme for
queries to a low-degree random oracle. Then we discuss technical tools that we use to establish the security of
the accumulation scheme: in Section 2.3 a forking lemma for algorithms that query any linear code random
oracle; and in Section 2.4 the hardness of a certain zero-finding game for low-degree random oracles. In
Section 2.5 we describe our SNARK construction that relativizes in the low-degree random oracle model. In
Section 2.6 we describe how we then achieve PCD in the low-degree random oracle model.

2.1 Linear code random oracles

We informally introduce the model of linear code random oracles, in which the oracle is a uniformly random
codeword of a linear code. Then, we explain why collision resistance holds for the linear code random oracle.
Finally we discuss a notable special case for this paper, low-degree random oracles.

Definition. The (standard) random oracle model considers the setting where every party (honest or malicious)
is granted oracle access to the same random function. In this paper we consider the setting where every party
is granted oracle access to the same random codeword sampled from a given linear code C.

Recall that a linear code C is a subspace of the vector space of functions from a domain D to a field F. A
linear code random oracle is a codeword ρ̂ : D → F chosen uniformly at random from the code C.

For cryptographic applications, it will be helpful to impose an additional requirement on the code C,
which we call the “full-rank” condition. Intuitively, the full-rank condition ensures that there is an efficient
embedding of the standard random oracle ρ in ρ̂. More precisely, we require that C have an associated
efficiently-computable injection f : {0, 1}m → D for some m ∈ N known as the arity of (C, f). We require
that the restriction of C to the image of f has dimension 2m (equivalently, C is systematic on im(f)). This
ensures that the function ρ̂ ◦ f : {0, 1}m → F is uniformly random when ρ̂ : D → F is uniformly random in
C. In fact, we can view ρ̂ as a (randomized) systematic encoding of the random oracle using C.

Definition 2.1 (informal). A linear code random oracle ρ̂ is an oracle drawn uniformly at random from
a full-rank linear code C. A C-oracle algorithm is an algorithm with oracle access to c ∈ C. A systematic
oracle algorithm is an oracle algorithm making queries in {0, 1}m.

A systematic oracle algorithm is a C-oracle algorithm for any full-rank C via the associated injection. If C
is the space of all functions {0, 1}m → F (and f is the identity) then we recover the standard random oracle.3

Query complexity. We wish to understand what additional power is granted to the adversary by giving it
access to an encoding of the random oracle.

A key difference between general linear code random oracles ρ̂ and the standard random oracle ρ
is that querying ρ̂ outside of {0, 1}m can yield information about evaluations inside {0, 1}m that would
otherwise be hard to obtain with a small number of queries. To illustrate this, consider the full-rank
linear code C ⊆ {0, 1}m ∪ {?} → F (for a special symbol ?), consisting of all functions c such that
c(?) =

∑
a∈{0,1}m c(a). Clearly, with oracle access to c ∈ C, one can determine

∑
a∈{0,1}m c(a) with a

single query. On the other hand, it is not hard to show that no algorithm making fewer than 2m queries to the
standard random oracle can compute this quantity.

3Setting F to be the field of size 2λ yields the more familiar definition of a random oracle mapping {0, 1}m → {0, 1}λ; for
generality we prefer not to fix the field choice.

7

Hence in general there is an exponential gap in query complexity between a linear code random oracle
model and the standard random oracle model. What about for problems of cryptographic interest? We show
that linear code random oracles are collision-resistant; in fact, having access to an encoding of the random
oracle using a linear code provides no advantage in collision finding.

Lemma 2.2. Given oracle access to ρ̂← C, a t-query adversary finds x, y ∈ {0, 1}m such that ρ̂(x) = ρ̂(y)
with probability at most t2/|F|.

Note that for this lemma to hold it is crucial that C be full-rank and that x, y are restricted to {0, 1}m.
Otherwise finding collisions may be very easy: consider the repetition code {(α, α) : α ∈ F}. We will make
use of the collision-resistance property to prove security of our SNARK construction.

Low-degree random oracles. Our protocols rely on a special class of linear code random oracles that
we call low-degree random oracles, obtained by choosing C to be the space F≤d[X1, . . . , Xm] of m-variate
polynomials over F of individual degree at most d ∈ N, evaluated over the domain Fm. This code is full-rank
via the natural bijection between {0, 1}m and {0F, 1F}m ⊆ Fm, because the latter is an interpolating set for
the space of multilinear polynomials.

There is an efficient and perfect stateful simulation of all low-degree random oracles (for polynomialm, d)
[BCFGRS17]. This implies that low-degree random oracles do not grant any additional computational power;
in particular, it does not impact any “standard model” cryptography. We will use this fact in Section 2.2,
where our accumulation scheme will require a standard model collision-resistant hash function.

We briefly discuss the possibility of instantiating this model. Given that the low-degree random oracle
can be simulated efficiently, it can at least be implemented by a trusted party or hardware token. A candidate
cryptographic instantiation is to obfuscate the algebraic pseudorandom functions of Benabbas, Gennaro and
Vahlis [BGV11]. They construct a pseudorandom function F : [d]m → G (for group G of prime order p) that
additionally allows, given the secret key, the efficient computation of group elements

P (x1, . . . , xm) =
∑

~a∈[d]m

F (~a) · xa1
1 · · ·x

am
m

for x1, . . . , xm ∈ Fp. Note that if F is a random function then P is uniformly random in F≤dp [X1, . . . , Xm].4

Hence if F is pseudorandom, P is indistinguishable from a random polynomial.
Another natural instantiation strategy is to start with some “strong” hash function that we believe suffices

to replace the random oracle in existing constructions, then arithmetize it to obtain a polynomial that extends
the hash function. Of course, all of the security properties of the original hash function are maintained
under this transformation. Unfortunately, directly arithmetizing a hash function yields a polynomial of quite
high degree: approximately 2D, where D is the circuit depth. The latter ranges from 25 to about 3000 for
widely-used “strong” hash functions [Sma]. Since our SNARK construction involves proving a statement of
size linear in the degree, this cost becomes prohibitive. While there exist techniques to reduce the degree
of an arithmetization, these modify the function significantly so that it no longer behaves like a low-degree
random oracle. We leave the question of instantiation via arithmetization to future work.

2.2 Accumulation scheme for low-degree random oracles

We describe our construction of an accumulation scheme for accumulating queries to the low-degree random
oracle. First we review the notion of an accumulation scheme. Then we describe an interactive protocol based

4We view P as a polynomial over Fp via some isomorphism G→ Fp (which need not be efficiently computable).

8

on the query-reduction technique for IPCPs in [KR08; CFGS22], and how this leads, via the Fiat–Shamir
transformation, to our accumulation scheme. We conclude by discussing the challenges of proving security,
which motivates developing the new tools that we introduce in subsequent sections.

Review: accumulation schemes. We review the notion of an accumulation scheme [BCMS20], stated for
an arbitrary oracle distribution (rather than specifically for the random oracle model) and specialized to the
accumulation of oracle queries rather than general predicates.

Definition 1. An accumulation scheme for queries to an oracle θ (sampled according to some distribution)
is a triple of algorithms (P,V,D), known as the prover, verifier, and decider, that satisfies the following.
• Completeness: For all accumulators acc and query-answer pairs (x, y), if Dθ(acc) = 1 and θ(x) = y,

then for (acc′, πV)← Pθ(x, y, acc) it holds that V(x, y, acc, acc′, πV) = 1 and Dθ(acc′) = 1.
• Soundness: For efficiently generated accumulators acc, acc′, query-answer pairs (x, y) and accumulation

proofs πV, if Dθ(acc′) = 1 and V(x, y, acc, acc′, πV) = 1 then θ(x) = y and Dθ(acc) = 1 with all but
negligible probability.

The definition extends in a natural way to accumulate n query-answer pairs [(xi, yi)]
n
i=1 and ` old

accumulators [accj]
`
j=1 (see details in Section 3.4). For simplicity, below we present our accumulation

scheme below for the case of general n and ` = 1. Note that we do not grant the accumulation verifier V
access to the oracle θ — this is a key requirement achieved by our construction and used in our applications.

Review: an interactive query reduction protocol. [KR08] describe an interactive query reduction protocol
for interactive PCPs (IPCPs), a class of probabilistic proofs; subsequently, [CFGS22] adapted and simplified
this protocol in their “low-degree” IPCP model. We recast this simplified protocol as an interactive query
reduction protocol in the low-degree random oracle model.

Let ρ̂ : Fm → F be a polynomial of individual degree at most d (for now, ρ̂ need not be random) and let
[qi]

k
i=1 = {(x1, y1), . . . , (xn, yn)} be a list of (alleged) query-answer pairs. The prover P wishes to convince

the verifier V that ρ̂(xi) = yi for every i ∈ [n], in a setting where both parties have oracle access to ρ̂. While
the verifier V can straightforwardly check this claim with n queries to ρ̂ (and no help from the prover P),
the protocol below enables the verifier V to check this claim with a single query to ρ̂ (up to some soundness
error). Let b1, . . . , bn ∈ F be a list of n distinct field elements, fixed in advance.

1. Both P and V compute the unique polynomial g of degree less than n such that g(bi) = xi for all i ∈ [n].
2. The prover P computes the composed polynomial f := ρ̂ ◦ g, and sends f : F→ F to the verifier.
3. The verifier V chooses a random β ∈ F and checks that f(β) = ρ̂(g(β)) (by querying ρ̂ at g(β)). Finally,

the verifier V checks that f(bi) = yi for every i ∈ [n].

Observe that ρ̂ ◦ g is a univariate polynomial of degree less than nmd, and so the communication complexity
of this protocol is O(nmd · log |F|) bits. If the prover is honest, then ρ̂(xi) = ρ̂(g(bi)) = f(bi) = yi for
every i ∈ [n]. On the other hand, if a cheating prover sends some polynomial f̃ 6= ρ̂◦ g, then f̃(β) 6= ρ̂(g(β))
with probability 1− nmd

|F| over the choice of β ∈ F, in which case the verifier rejects.

Our accumulation scheme. We construct an accumulation scheme for accumulating queries to the low-
degree random oracle, based on the above query reduction protocol. At a high level, the accumulation prover
and verifier engage in the above query reduction protocol, except that rather than directly checking that
f̃(β) = ρ̂(g(β)), the prover outputs the new accumulator acc′ := (g(β), f̃(β)) containing the query g(β)
and claimed answer f̃(β). The decider can check that acc′ contains a valid query-answer pair with a single
query to the oracle ρ̂. Notice that because an accumulator consists of a query-answer pair, we can simply
include the old accumulator in the input to the query reduction protocol as an extra pair (xn+1, yn+1).

9

The challenge now is that an accumulation scheme is a non-interactive protocol while the above query-
reduction protocol is interactive. Superficially, achieving non-interactivity appears to be a standard application
of the Fiat–Shamir transform [FS86] because the interactive query-reduction protocol is public-coin. That
is, since a low-degree random oracle ρ̂ embeds a (standard) random oracle, the accumulation prover can
use that random oracle to generate the verifier’s random challenge β from the composed polynomial f as
β := ρ̂(x1, . . . , xn+1, f) (the embedding from binary strings into the domain of ρ̂ is implicit). Note that we
include x1, . . . , xn+1 as input to ρ̂ to achieve adaptive security. However, this setting is quite different from
the familiar one for Fiat–Shamir: (i) the original interactive protocol already involves the oracle; (ii) the
oracle is a random low-degree oracle rather than a standard random oracle; and (iii) the accumulation verifier
cannot query ρ̂! We discuss the latter point in more detail next, since resolving it requires modifying the
construction; the other two points will be addressed later when we discuss the security proof.

Since the accumulation verifier is not allowed to query the oracle (this is the point of designing an
accumulation scheme for oracle queries), it cannot check the query-answer pair ((x1, . . . , xn+1, f), β) for
correctness. The natural approach is to store the pair ((x1, . . . , xn+1, f), β) in the accumulator, so that an
accumulator contains an additional query-answer pair (xn+2, yn+2). Unfortunately, this results in the length
of the Fiat–Shamir query, and hence the accumulator, increasing without bound (it will simply contain all
accumulated queries). To address this, we rely on a succinct commitment scheme Commit, and derive the
challenge as β := ρ̂(cm) for cm := Commit(x1, . . . , xn+2, f) instead. This ensures that the query to derive
the challenge β does not grow in size with each accumulation.

These considerations lead us to design the following accumulation scheme.

• Accumulation prover: P receives as input an old accumulator acc and a list of query-answer pairs
[(xi, yi)]

n
i=1, and outputs a new accumulator acc′ and accumulation proof πV computed as follows.

1. Query-answer list. The old accumulator acc consists of two query-answer pairs, which we denote by
(xn+1, yn+1) and (xn+2, yn+2). Set the query-answer list Q := [(xi, yi)]

n+2
i=1 .

2. Interpolate queries. Compute the unique polynomial g : F→ Fm of degree less than n+ 2 such that
g(bi) = xi for all i ∈ [n+ 2].

3. Compose polynomials. Compute the polynomial f := ρ̂ ◦ g.
4. Commit to polynomials. Compute the commitment cm := Commit(x1, . . . , xn+2, f).
5. Fiat–Shamir challenge. Compute the challenge β := ρ̂(cm) ∈ F.
6. Output. Output the new accumulator acc′ :=

(
(cm, β), (g(β), f(β))

)
and accumulation proof πV := f .

• Accumulation verifier: V receives as input ([qi]
k
i=1, acc, acc

′, πV), where acc′ =
(
(cm′, β), (x, y)

)
, and

works as follows. Compute the query-answer list Q as in Step 1 of the prover, the polynomial g as in Step 2
of the prover, and the commitment cm as in Step 4 of the prover. Then check that cm′ = cm, f(bi) = yi
for every i ∈ [n+ 2], x = g(β), and y = f(β).

• Decider: D checks that the input accumulator acc =
(
(cm, β), (x, y)

)
satisfies y = ρ̂(x) and β = ρ̂(cm).

Intuitively, the accumulation scheme is secure against efficient attackers because the binding property of
the commitment scheme ensures that setting the challenge β to ρ̂(cm) is as good as ρ̂(x1, . . . , xn+2, f), which
gives a random challenge based on the prover’s first message of the interactive query-reduction protocol.

We remark that the commitment scheme is the only part of the construction that uses cryptography outside
of the oracle (i.e., is not information theoretic).
Zero-knowledge. Zero-knowledge for an accumulation scheme means that there exists a simulator that can
sample a new accumulator acci =

(
(cm, β), (x, y)

)
, without access to inputs [qi]

k
i=1 or an old accumulator

acci−1. The accumulation scheme described above is not zero knowledge, because acci includes the value

10

g(β), which depends on [qi]
k
i=1 and acci−1. To remedy this, we modify the accumulation scheme so that the

prover P additionally accumulates a random query xn+3 ∈ Fm. This ensures that g(β) is uniformly random
in Fm.5 We also require Commit to be a hiding commitment, and include the commitment randomness in πV.

Finally, we note that if zero-knowledge is not required, then the commitment scheme used by the prover
to obtain cm does not need to be hiding; in this case a collision-resistant hash function suffices.
How to prove security? Proving the security of the above accumulation scheme is not straightforward,
despite the intuition that underlies its design. The main difficulty is that existing tools for establishing security
work for standard random oracles rather than low-degree random oracles (e.g., security analyses of the
Fiat–Shamir transform). We develop new tools to overcome the above problems. We formulate a zero-finding
game lemma for low-degree random oracles, which shows that it is computationally hard for an adversary to
find f 6≡ ρ̂ ◦ g such that f(z) = (ρ̂ ◦ g)(z) for z := ρ̂(Commit(x1, . . . , xn+2, f)).6 To prove this lemma, we
additionally prove a forking lemma for algorithms that query any linear code random oracle. We discuss
these next: first our forking lemma in Section 2.3, and then our zero-finding game lemma in Section 2.4.

2.3 A forking lemma for linear code random oracles

We review a forking lemma for the standard random oracle, and then describe a new forking lemma for any
linear code random oracle.
Review: a forking lemma for random oracles. In cryptography a forking lemma relates the probability
of an adversary winning some game in multiple related executions, as a function of the adversary’s winning
probability in a single execution. Below we describe a forking lemma (based on [BN06]) that considers the
setting of non-interactive protocols with forks of size 2 via algorithms that run in strict time.7

Let p be a predicate that captures the winning condition. Consider an adversary A that queries the
random oracle t times and produces an output (x, o) such that p(x, o, tr) = 1 with probability δ, where
tr = {(x1, y1), . . . , (xt, yt)} are the query-answer pairs of A. We think of x as the adversary’s “chosen”
query point, and o as some additional input to the predicate p.

Now suppose that we additionally run A in a forked execution. Let i := FPC(tr, x) ∈ [t] be the location
of the query x in its query-answer list tr (abort if x does not appear in tr). Consider the forking algorithm
Fork that, given access to A and input (tr, i), works as follows: (i) run A answering the first i− 1 queries to
the random oracle according to tr; (ii) answer subsequent queries uniformly at random; (iii) output the output
(x′, o′) of A and the query transcript tr′ induced by this execution of A.

The forking lemma below gives a lower bound on the probability that: (1) p(x, o, tr) = 1 (A wins the
original game); (2) p(x′, o′, tr′) = 1 (A wins the game in the forked execution); (3) x = x′ (the queries
output by A in the two related executions are equal).8

Lemma 2.3. Suppose that A is a t-query random oracle algorithm such that

δ := Pr
ρ

[
p(x, o, tr) = 1

∣∣ (x, o; tr)← Aρ
]
.

5Both [KR08] and [CFGS22] also add a random point to the curve. In contrast to our construction, in both cases this point
is added by the verifier to ensure soundness: the query-reduction protocol is composed with a low-degree test, whose proximity
guarantee holds only with respect to a uniform query. In our setting, the oracle is guaranteed to be low degree.

6Equivalently, the commitment can be written as Commit(g, f) since g is an equivalent representation of x1, . . . , xn+2.
7The cryptography literature contains several types of forking lemmas, depending on aspects such as: (i) they apply to interactive

protocols (without any oracles) or non-interactive protocols (in the random oracle model); (ii) they have a fork of size 2, or any
size; (iii) the forking algorithm runs in strict time or expected time. The specific setting that we study is motivated by the present
application, though we expect that the ideas for linear code random oracles that we introduce will extend to other settings as well.

8The lower bound that appears in [BN06] is δ
2

t
−negl(λ). The negligible term arises from an additional condition: tr(x) 6= tr′(x).

Our applications of the forking lemma refer directly to the distribution of tr′(x) and so we do not need this explicit condition.

11

Then

Pr
ρ

 x = x′

∧ p(x, o, tr) = 1
∧ p(x′, o′, tr′) = 1

∣∣∣∣∣∣
(x, o; tr)← Aρ
i← FPC(tr, x)

(x′, o′, tr′)← ForkA(tr, i)

 ≥ δ2/t .

Extending the forking lemma to any linear code random oracle. When extending Lemma 2.3 to the
linear code random oracle setting, a key difficulty is choosing the fork point i. The role of the fork point is
to ensure that the answer to query x is resampled in the fork, while all prior queries stay the same. For the
standard random oracle case, this point is easy to find: it is simply the index of the query x.

In contrast, for linear code random oracles, recall from Section 2.1 that A may learn the evaluation of
unqueried points due to the structure of the code (e.g., if the code is locally decodable). This makes it unclear
at which query A learns the value of ρ̂(x), or even if a single such query exists at all! We show that the linear
structure of the code C implies that there does exist a query xi at which A first learns the value of ρ̂ at x (and
before that A knows nothing about it); we define FPC(x, tr) := i.

Can FPC be efficiently computed? Note that A may try to obfuscate the fork point by trying to learn
ρ̂(x) in some complicated way via the structure of the code. The problem of finding the fork point can be
solved via constraint detection [BCFGRS17]: the fork point is the first query i at which there is a linear
constraint over the set {ρ̂(x1), . . . , ρ̂(xi), ρ̂(x)}. For low-degree random oracles, we can implement FPC
efficiently using the efficient constraint detection algorithm for Reed–Muller codes of [BCFGRS17]. For
many interesting linear codes, efficient constraint detection is an open problem.

To state the forking lemma requires one additional consideration. Strictly speaking, Lemma 2.3 holds
only for adversaries that do not repeat queries (otherwise the adversary can distinguish a fork from the
original execution), which is without loss of generality. In the LCROM, this restriction is not enough: the
structure of the code might allow an adversary to learn a single query point in a variety of ways. Instead we
must restrict our adversary further, so that it does not make any query whose answer it can already infer.
Any adversary can be converted into a non-redundant adversary via constraint detection; hence we assume
non-redundancy for efficient adversaries if C has efficient constraint detection. Due to this complication we
prefer to state the non-redundancy condition explicitly in our forking lemma below.

Lemma 2.4. Let ρ̂← C be a linear code random oracle. Suppose thatA is a t-query non-redundant C-oracle
algorithm such that

δ := Pr
ρ̂

[
p(x, o, tr) = 1

∣∣ (x, o; tr)← Aρ̂
]
.

Then

Pr
ρ̂

 x = x′ ∈ {0, 1}m
∧ p(x, o, tr) = 1
∧ p(x′, o′, tr′) = 1

∣∣∣∣∣∣
(x, o; tr)← Aρ̂
i← FPC(tr, x)

(x′, o′, tr′)← Fork(tr, i)

 ≥ δ2/t .

Note that the Fork algorithm here is the same as in Lemma 2.3, except that we choose the random answers
from the alphabet F of C.

2.4 A zero-finding game for low-degree random oracles

We review the zero-finding game for standard random oracles in [BCMS20], and then we describe our variant
for low-degree random oracles.

Review: a zero-finding game for the standard random oracle. Bünz, Chiesa, Mishra, and Spooner
[BCMS20] consider a zero-finding game where an efficient adversaryA with query access to a random oracle

12

ρ is challenged to output a commitment cm and a non-zero polynomial f ∈ F≤d[X1, . . . , Xm] such that
cm is a commitment to f and f(ρ(cm)) = 0. Intuitively, the binding property of the commitment scheme
implies that A is unlikely to win the game because the polynomial f is “fixed” before A learns the value of
ρ(cm), and so the probability that this value is a zero of f is small by the Schwartz–Zippel lemma. Indeed,
[BCMS20] shows that every efficient adversary A that makes at most t queries to ρ wins with probability at
most negligibly more than

√
(t+ 1)md/|F| (note that md is the total degree of f).

Their proof is based on the forking lemma for the standard random oracle (Lemma 2.3), as we now sketch.
We define the forking lemma predicate p(x, f, tr) to be satisfied if and only if: (i) f 6≡ 0; (ii) f(tr(x)) 6= 0;
and (iii) x is a commitment to f . By increasing the query complexity of A to t+ 1 we can ensure that x is
in the support of tr. It follows that if A wins the zero-finding game with probability δ, then it satisfies the
premise of Lemma 2.3, and so the forking experiment succeeds with probability at least δ2/(t+ 1).

Suppose that the forking experiment succeeds: we obtain (x, f, f ′, tr, tr′) such that f and f ′ are non-zero
polynomials that are both valid openings of the same commitment x, and it holds that f(tr(x)) 6= 0 and
f ′(tr′(x)) 6= 0. In the forked execution, tr′(x) is sampled uniformly at random independently of f , and
so Pr[f(tr′(x)) = 0] ≤ md/|F|. If f = f ′ then the probability that p(x, f ′, tr′) is satisfied in this case is
at most md/|F|; if instead f 6= f ′, then we break the commitment scheme, which can occur with at most
negligible probability. Hence δ2/(t+ 1) ≤ md/|F|+ negl(λ); rearranging yields the bound.

A zero-finding game for low-degree random oracles. We require a variant of the zero-finding game to
prove security of our accumulation scheme from Section 2.2. In more detail, we want to bound the probability
that an efficient adversary with query access to a low-degree random oracle ρ̂ outputs a commitment cm and
two polynomials f, g such that: (1) cm is a commitment to (f, g); (2) f 6≡ ρ̂ ◦ g; and (3) the oracle answer
z := ρ̂(cm) satisfies f(z) = (ρ̂ ◦ g)(z). For this we prove the following lemma.

Lemma 2.5 (informal). Let Commit be a binding commitment scheme, and let ρ̂ be a low-degree random
oracle defined over a field F. Then for every efficient t-query oracle algorithm A,

Pr
ρ̂

 cm = Commit(f, g;ω)
∧ f(X) 6≡ ρ̂(g(X))

∧ f(ρ̂(cm)) = ρ̂(g(ρ̂(cm)))

∣∣∣∣∣∣ (cm, f, g, ω)← Aρ̂
 = O

(√
t · m · deg(ρ̂) · deg(g)

|F|

)
+negl(λ) .

A key difference of our zero-finding game compared to the one in [BCMS20] (besides the different oracle
models) is in the polynomial equation: the polynomial equation not only involves a random evaluation at
a point ρ̂(cm) determined by the oracle ρ̂ (analogous to ρ(cm) before) but it also involves the low-degree
oracle ρ̂ itself as a polynomial. This causes significant complications to the security proof, as we discuss next.

A natural approach to prove Lemma 2.5 would be to adapt the proof of the zero-finding game in
[BCMS20], using our forking lemma for linear code random oracles (Lemma 2.4) rather than the standard
forking lemma. Recall that the non-redundancy requirement is satisfied without loss of generality because
low-degree random oracles have efficient constraint detection. To invoke the lemma we must choose a forking
predicate p(cm, (f, g, ω), tr) that captures the three conditions on the left. Similarly to before, one condition
is “cm = Commit(f, g;ω)”. However, translating the other two conditions to be compatible with the forking
lemma is much more involved, and requires overcoming several challenges.

Since the predicate p cannot query the oracle ρ̂, these conditions must be converted into a statement
about the query transcript tr. In the [BCMS20] proof, the corresponding condition becomes f(tr(cm)) = 0.
This is justified in their setting because adversaries that do not query the oracle at cm cannot win the game.
This is not true for low-degree oracles! An adversary can, for example, learn ρ̂(cm) by querying points on a
curve that passes through cm. To handle this issue, we use the structure of the linear code to define a partial

13

function tr which captures all of the information that the adversary knows about ρ̂ given the points it has
queried. We show that if tr(x) = ⊥, no adversary can determine ρ̂(x) from tr better than guessing.

We summarize the above discussion by describing the forking lemma predicate explicitly. On input query
point cm, auxiliary input (f, g, ω), and query transcript tr, p accepts if the following three conditions hold:

(1) cm = Commit(f, g;ω),
(2) f 6≡ tr ◦ g, and
(3) f(tr(cm)) = tr(g(tr(cm))).

Note that since tr is a partial function, so is tr ◦ g, in general. If tr ◦ g is not total then condition (2) holds
immediately, since f is total.

We now continue following the template of [BCMS20]. Let A be an adversary winning the Lemma 2.5
game with probability δ. Invoking our forking lemma (Lemma 2.4), we obtain, with probability δ2/t,
(cm, (f, g, ω), (f ′, g′, ω′), tr, tr′), where p holds for (cm, (f, g, ω), tr) and (cm, (f ′, g′, ω′), tr′). Similarly to
before, by the binding property of Commit we can focus on the case where (f, g) = (f ′, g′). The analogous
next step would be to conclude by applying Schwartz–Zippel to the polynomial f − tr ◦ g. Here, however,
we run into another issue: since this polynomial depends on tr, it may differ between the two forks!

To resolve this, we use a slightly different polynomial. Denote by tr|i−1 the truncation of tr to the
first i − 1 entries, where i is the fork point. By construction, tr′|i−1 = tr|i−1. Hence tr|i−1 ◦ g is the
same function in both forks. Of course, it may be that tr|i−1 ◦ g is not total (even if tr ◦ g is). We show
that in this case the adversary is very unlikely to win: in particular, it can be shown that tr|i−1 ◦ g is not
total only if tr|i−1(g(α)) = ⊥ for all but m · deg(ρ̂) · deg(g) choices of α ∈ F. But then since tr′(cm) is
chosen uniformly at random independently of tr|i−1, in this case condition (3) holds with probability at most
m · deg(ρ̂) · deg(g)/|F|.

In the case that tr|i−1 ◦ g is total, we can now apply Schwartz–Zippel to the polynomial f − tr|i−1 ◦ g,
which concludes the proof by rearranging to bound δ as before.

2.5 SNARKs for oracle computations

We outline the proof of Theorem 1, which provides a transparent (zero-knowledge) SNARK in the LDROM
for computations in the LDROM, assuming the existence of collision-resistant hash functions in the standard
model. Technical details about this result are in Section 8.

The proof is in two steps: first we generically construct a SNARK relative to a given oracle model from a
SNARK for non-oracle computations and an accumulation scheme for queries to oracles in that model; then
we instantiate this generic construction specifically for the low-degree random oracle model.

2.5.1 Step 1: a generic construction

Let θ ← O be any oracle (for now not necessarily low-degree). Informally, we can view a computation
that has oracle access to θ as made of two parts that share a common (untrusted) witness of query-answer
pairs: (i) a non-oracle computation where oracle answers are read from the witness; and (ii) a computation
that checks all query-answer pairs for consistency with the oracle θ. We prove the former using a SNARK
ARGin = (Pin,Vin) for non-oracle computations (whose security holds in a model where parties have access
to θ), and the latter via an accumulation scheme AS = (P,V,D) for queries to θ. We then combine these
two components to obtain a SNARK for computations that query θ in a model where parties have access to θ.

14

In more detail, letRθ := {(x,w) : M θ(x,w) = 1} ∈ NPθ be the target oracle relation, described by a
polynomial-time oracle Turing machine M . We define the following associated non-oracle relation:

Rin :=
{(

(x, acc), (w, tr, πV)
)

: M◦(x,w, tr) = 1 ∧V(tr,⊥, acc, πV) = 1
}
∈ NP ,

where M◦ works like M except that its oracle queries are answered using the query-answer transcript tr, V
is the accumulation verifier, ⊥ denotes an empty (old) accumulator, and πV is the accumulation scheme’s
verification proof. Intuitively, if (x, acc) ∈ L(Rin) and acc is a valid accumulator, then for tr consistent with
θ and some witness w, M◦(x,w, tr) = 1. This implies that M θ(x,w) = 1, and so x ∈ L(Rθ).

We construct the SNARK ARGout = (Pout,Vout) forRθ from a SNARK ARGin forRin and an accumu-
lation scheme AS for queries to θ, as follows.

• Pθout(x,w):

1. Simulate M θ(x,w) and record the query-answer transcript tr.
2. Accumulate the queries in tr using the accumulation prover: (acc, πV)← Pθ(tr,⊥).
3. Run the SNARK prover to obtain a proof that (x, acc) ∈ Rin: πin ← Pθin((x, acc), (w, tr, πV)).
4. Output πout := (acc, πin).

• Vθout(x, πout = (acc, πin)):

1. Check that the accumulation decider accepts: Dθ(acc) = 1.
2. Check that the SNARK verifier accepts: Vθin((x, acc), πin) = 1.

For simplicity, we have omitted public parameters from the above description. If parameter generation is
transparent for ARGin and AS (as in our instantiation in Section 8), then parameter generation is transparent
for ARGout as well.

We briefly comment on the knowledge soundness and zero knowledge of ARGout.
Knowledge soundness. Consider a malicious prover P̃θout that outputs an instance x and a proof (acc, πin)

that Vθout accepts (which means that Vθin((x, acc), πin) = 1 and Dθ(acc) = 1). By the knowledge guarantee
of the SNARK ARGin, we can extract a witness (w, tr, πV) for the instance (x, acc). If tr is not consistent
with θ, then the soundness of the accumulation scheme implies that Dθ(acc) = 1 with at most negligible
probability. Hence tr is consistent with θ, which implies that (x,w) ∈ Rθ by definition ofRin.9

Zero knowledge. We prove that ARGout is zero knowledge, assuming ARGin and AS are both zero
knowledge. This requires a careful consideration of zero knowledge definitions for both ARGin and AS. In
particular, zero knowledge simulators for zkSNARKs often need to program the oracle; this is the case, for
example, in Micali’s zkSNARK construction. This causes problems when composing with an accumulation
scheme for the oracle, because whether the statement “θ(x) = y” is actually true may be affected by
programming. As such, our definition of zero knowledge for SNARKs allows the simulator to program the
oracle only after the statement has been chosen. Implicitly this prevents the simulator from changing the
truth value of a statement, because this would be easily detectable by a distinguisher. We show that Micali’s
SNARK (which we discuss next in Section 2.5.2) satisfies this zero knowledge definition.

2.5.2 Step 2: instantiating the building blocks

We instantiate the above generic construction of ARGout in the case where θ is a low-degree random oracle.
9Interestingly, we do not know how to merely establish soundness of ARGout while only relying on soundness of ARGin. The

difficulty is that, if we cannot efficiently extract a witness (w, tr, πV) for the instance (x, acc), then we cannot invoke AS’s soundness
to detect when the adversary uses a tr that is inconsistent with θ. We leave investigating this implication as an open question.

15

• We set the accumulation scheme AS to be our construction for low-degree oracle queries from Section 2.2.
• We set the SNARK ARGin to be the Micali construction [Mic00], brought over to the LDROM.

In this instantiation, ARGin has no public parameters and AS’s public parameters are those of the underlying
collision resistant hash function. In particular, parameter generation for ARGout can be transparent.

The main technical challenge here is proving that the Micali construction is a SNARK in the low-degree
random oracle model. We describe the problem that arises and how we solve it.

Problem. The Micali construction, when instantiated with a PCP of knowledge, is a SNARG of knowledge
in the random oracle model via a (straightline) extractor [Val08]. From a syntactic perspective, the Micali
construction naturally carries over to the low-degree random oracle model. However the proof of knowledge
soundness does not because the extractor in [Val08] fails in the LDROM. Briefly, the extractor in [Val08]
needs all random oracle entries that the adversary knows, which in the ROM coincide with the adversary’s
query-answer pairs. However, in the LDROM, the adversary may learn the answers to unqueried entries
(e.g., via interpolation), so the extractor in [Val08] does not work as-is. In fact, we do not know how to
efficiently recover the set of “learned” answers, given the adversary’s query-answer transcript; thus we cannot
implement the [Val08] extractor in the LDROM.

Solution. We leverage a rewinding extractor that uses a forking lemma, and is inspired by the extractor for
Kilian’s protocol [Kil92; BG08]. The extractor forks the malicious prover’s oracle transcript polynomially-
many times, in order to obtain a large number of (accepting) PCP verifier views; to achieve this we extend our
2-fork forking lemma in the LCROM (Lemma 2.4) to support polynomially-many forks. Next, the extractor
constructs a PCP string by combining these views, aborting if any of them are inconsistent. Finally, it gives
this constructed PCP string to the PCP’s knowledge extractor to recover the witness.

This rewinding extractor runs in expected polynomial time, as the forking algorithm samples oracle
transcripts until a sufficient number satisfy the forking predicate. If the extractor obtains inconsistent views,
this can be used to obtain a collision in the oracle, and so by collision-resistance in the LCROM the extractor
aborts with only negligible probability.

To prove knowledge soundness, we argue that the extracted PCP string convinces the PCP verifier with
high-enough probability for the PCP extractor to succeed. Suppose that the malicious prover causes the
argument verifier to accept with probability at least ε, and fix any “bad” PCP string Π̃ (i.e., it causes the PCP
verifier to accept with probability less than ε/3). If the extractor outputs Π̃, it must be that the malicious
prover answers consistently with Π̃; in particular, the probability that the argument verifier accepts is less than
ε/3. Thus the running time of the extractor when it outputs Π̃ is more than, say, 2N/ε with overwhelming
probability for N large enough. By a union bound over all possible PCP strings, the running time of the
extractor when it outputs any bad PCP string is more than 2N/ε with high probability. On the other hand, the
argument verifier accepts with probability at least ε, so the running time of the extractor is less than 2N/ε
with high probability. Thus the probability that the extractor outputs a bad PCP string is exponentially small.

Beyond the LDROM. Our proof of security for Micali’s SNARK works in every linear code random oracle
with an efficient constraint detection algorithm; the LDROM is one example. Indeed, all linear code random
oracles are collision-resistant (Lemma 2.2), and our forking lemma supports every linear code random oracle
with efficient constraint detection (Lemma 2.4). It follows that, in order to build SNARKs for other linear
code oracle computations, it suffices to design an accumulation scheme for oracle queries and an efficient
constraint detection algorithm for the code.

Zero knowledge. In the ROM, Micali’s construction can be adapted to achieve (statistical) zero knowledge
when the underlying PCP is honest-verifier zero knowledge [BCS16]. This remains the case, via essentially
the same adaptation, in any LCROM with efficient constraint detection and, in particular, in the LDROM. The

16

simulator relies on constraint detection to “program” the oracle (after the adversary has chosen the statement,
as discussed in Section 2.5.1); this is more complex than in the ROM case because of the code structure.

2.6 Proof-carrying data from relativized SNARKs

We outline the proof of Theorem 2, which provides transparent PCD in the LDROM (for computations in
the LDROM), assuming the existence of collision-resistant hash functions in the standard model. Technical
details about this result are in Section 9.

The theorem follows directly by applying a generic transformation, which we now describe, to the SNARK
in the LDROM for computations in the LDROM described in Section 2.5 (and provided in Theorem 1).

The generic transformation is a direct adaptation to the relativized setting of the PCD construction
based on recursive proof composition of SNARKs [BCCT13; COS20]. Informally, we transform a SNARK
relative to O for NPO into a PCD scheme relative to O for NP (in fact, even for NPO). If the SNARK is
zero-knowledge, then the PCD scheme is also zero knowledge.

The PCD construction is as in prior work except that we give all PCD algorithms access to the oracle
(due to the underlying SNARK) and allow oracle calls in the recursively-proved statement (so to express the
SNARK verifier’s computation). In particular, we do not need to heuristically instantiate any oracles for the
recursive composition, because the SNARK is capable of proving oracle computations.

The security analysis involves some delicate differences to prior work, because the knowledge property
that we obtain is slightly different from those that were previously hypothesized from knowledge assumptions
or heuristics. In prior work the SNARK’s knowledge extractor is assumed to run in (non-uniform) strict
polynomial time, which in turn means that the resulting PCD knowledge extractor also runs in (non-uniform)
strict polynomial time. In contrast, the SNARK knowledge extractor that we construct in this work runs in
expected polynomial time (see Section 2.5), and in turn so does the PCD knowledge extractor.

In light of the above considerations, in Section 9, we explicitly describe a PCD construction and provide
a full security analysis for our setting. In particular, unlike in prior work, we are able to provide a concrete
expression for the (expected) running time of the PCD extractor, which determines the tradeoff between
recursion depth and security.

Note that there are two complementary PCD constructions based on recursive composition of SNARKs:10

fully-succinct PCD from fully-succinct SNARKs [BCCT13]; and preprocessing PCD from preprocessing
SNARKs [COS20]. For concreteness, in the technical section we choose to describe the preprocessing case.
The description can be straightforwardly ported to the fully-succinct case.

10There is no need to consider accumulation-based constructions of PCD [BGH19; BCMS20; BCLMS21; BDFG21; KST21] to
establish our results because we obtain a SNARK whose efficiency properties suffice for “plain” recursive composition.

17

3 Preliminaries

3.1 Notations

We define [n] := {1, . . . , n}. We use F≤d[X1, . . . , Xm] to denote to the set of m-variate polynomials of
individual degree at most d with coefficients in F; we write deg(·) to denote individual degree.
Functions. We use (X → Y) to denote the set of all functions {f : X → Y }. We denote by f : X ⇀ Y a
partial function from X to Y . We use im(f) to denote the image of a function f . For a set S ⊆ X we denote
by f |S : S → Y the restriction of f to S.
Distributions. For finite set X , we write x← X to denote that x is drawn uniformly at random from X .
We use supp(X) to denote the support of the distribution X .
Random oracles. A random oracle is typically defined as a function ρ sampled uniformly at random
from ({0, 1}m → {0, 1}n) for some m,n ∈ N. However, since in this paper we work with oracles whose
outputs are in finite fields, a random oracle in this paper is a function ρ sampled uniformly at random from
({0, 1}m → F) for a given finite field F.
Oracle algorithms. For a function θ : X → Y , we write Aθ for an algorithm with oracle access to θ. We
say that A is t-query if A makes at most t queries to θ.
Indexed relations. An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L(R) is the set of index-instance pairs (i,x) for
which there exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable
Boolean circuits consists of triples where i is the description of a Boolean circuit, x is a partial assignment to
its input wires, and w is an assignment to the remaining wires that makes the circuit output 0.
Oracle relations. For a distribution over oracles O, we write RO to denote the set of indexed relations
{Rθ : θ ∈ supp(O)}. We define RO ∈ NPO if and only if there exists a polynomial-time oracle Turing
machine M such that, for every θ ∈ supp(O),Rθ = {(i,x,w) : M θ(i,x,w) = 1}.
Security parameters. We assume for simplicity that all public parameters have length at least λ, so that
efficient algorithms which receive such parameters can run in time (at least) polynomial in λ.
Adversaries. An adversary (or extractor) is polynomial-size if it can be expressed as a circuit of polynomial
size. We also consider a relaxed definition: an adversary (or extractor) running in (non-uniform) expected
polynomial-time is a Turing machine provided with a polynomial-size non-uniform advice string and access
to an infinite random tape, whose expected running time for all choices of advice is polynomial.

An adversary A with expected running time t and success probability p can be converted into a circuit of
size O(t/ε) with success probability p− ε as follows: first truncate the execution of A at running time t/ε;
then choose as advice the randomness that maximizes the success probability of the truncated A.

3.2 Non-interactive arguments in oracle models

A (preprocessing) non-interactive argument relative to an oracle distribution O for an indexed oracle relation
RO is a tuple of algorithms ARG = (G, I,P,V) that works as follows.

• G(1λ)→ pp. On input a security parameter λ (in unary), the generator G samples public parameters pp.

• Iθ(pp, i) → (ipk, ivk). On input public parameters pp and an index i for the relation R, the indexer I
deterministically computes index-specific proving and verification keys (ipk, ivk).

• Pθ(ipk,x,w)→ π. On input an index-specific proving key ipk, an instance x, and a corresponding witness
w, the prover P computes a proof π that attests to the claim that (i,x,w) ∈ Rθ.

18

• Vθ(ivk,x, π) → b. On input an index-specific verification key ivk, an instance x, and a corresponding
proof π, the verifier V computes a bit indicating whether π is a valid proof.

We require ARG to satisfy the following completeness and soundness properties.

• Completeness. For every adversary A,

Pr

(i,x,w) ∈ Rθ

⇓
Vθ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 = 1 .

• Soundness. For every polynomial-size adversary P̃ ,

Pr

 V
θ(ivk,x, π) = 1

∧
(i,x) 6∈ L(Rθ)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)

(i,x, π)← P̃θ(pp)
(ipk, ivk)← Iθ(pp, i)

 ≤ negl(λ) .

The above formulation of completeness allows (i,x,w) to depend on the oracle θ and public parameters pp,
and the above formulation of soundness allows (i,x) to depend on the oracle θ and public parameters pp.

We additionally consider properties of knowledge soundness and zero knowledge for ARG.
Knowledge soundness. ARG has knowledge soundness (with respect to auxiliary input distribution D)
if there exists an (non-uniform) expected polynomial-time extractor E such that for every (non-uniform)
expected polynomial-time adversary P̃ ,

Pr

Vθ(ivk,x, π) = 1

∧
(i,x,w) 6∈ Rθ

∣∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)
ai← D(pp)

(i,x, π)← P̃θ(pp, ai)
(ipk, ivk)← Iθ(pp, i)

w← Eθ,P̃(pp, ai)

≤ negl(λ) .

Above, we write expected polynomial-time to mean that the expectation is taken over the random variables
θ ← O(λ), pp← G(1λ), and ai← D(pp).
Zero knowledge. ARG has statistical zero knowledge if there exists a probabilistic polynomial-time stateful
simulator S such that for every polynomial-size honest stateful adversary A, the following distributions are
negl(λ)-close in statistical distance:A

θ(π)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 and

AS
θ
(π)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
(i,x,w; tr)← Aθ(pp)

π ← Sθ(i,x, tr)

 . (1)

An adversary A is honest if it outputs (i,x,w) ∈ Rθ with probability 1. Above, the notation ASθ indicates
that the simulator S (with oracle access to θ) answers the oracle queries of A.

19

Succinctness. In this work, we say that a non-interactive argument system ARG forRO is succinct if there
is a fixed polynomial p such that both the length of the proof and the running time of the argument verifier
are bounded by p(λ, |x|). In this case we refer to ARG as a SNARG; if ARG also has knowledge soundness
then it is a SNARK.

3.3 Proof-carrying data

A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data scheme (PCD scheme)
for a class of compliance predicates F relative to an oracle distribution O if the properties below hold.

Definition 3.1. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled by local
data z(u)

loc and each edge e ∈ E(T) is labeled by a message z(e) 6= ⊥. The output of a transcript T, denoted
o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 3.2. A vertex u ∈ V (T) is Φ-compliant for Φ ∈ F if for all outgoing edges e = (u, v) ∈ E(T):
• (base case) if u has no incoming edges, Φθ(z(e), z

(u)
loc ,⊥, . . . ,⊥) = 1;

• (recursive case) if u has incoming edges e1, . . . , em, Φθ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) = 1.
We say that T is Φ-compliant if all of its vertices are Φ-compliant.

Completeness. For every adversary A,

Pr

 Φ ∈ F

∧
(

(∧mi=1zi = ⊥) ∨ (∧mi=1Vθ(ivk, zi, πi) = 1)
)

∧ Φθ(z, zloc, z1, . . . , zm) = 1

⇓

Vθ(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

(Φ, z, zloc, [zi, πi]
m
i=1)← Aθ(pp)

(ipk, ivk)← Iθ(pp,Φ)
π ← Pθ(ipk, z, zloc, [zi, πi]mi=1)

 = 1 .

Knowledge soundness. PCD = (G, I,P,V) has knowledge soundness (with respect to auxiliary input
distribution D) if there exists an (non-uniform) expected polynomial-time extractor EP̃ such that for every
(non-uniform) expected polynomial-time adversary P̃,

Pr

Φ ∈ F
∧V(ivk, o, π) = 1

∧
(
T is not Φ-compliant ∨ o(T) 6= o

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)
ai← D(pp)

(Φ, o, π, ao)← P̃θ(pp, ai)
(ipk, ivk)← Iθ(pp,Φ)

T← Eθ,P̃(pp, ai)

≤ negl(λ) .

Above, we write expected polynomial-time to mean that the expectation is taken over the random variables
θ ← O(λ), pp← G(1λ), and ai← D(pp).
Zero knowledge. PCD has statistical zero knowledge if there exists a probabilistic polynomial-time stateful
simulator S such that for every polynomial-size honest (stateful) adversary A, the following distributions are
negl(λ)-close in statistical distance:A

θ(π)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(Φ, z, zloc, [zi, πi]

m
i=1)← Aθ(pp)

(ipk, ivk)← Iθ(pp,Φ)
π ← Pθ(ipk,Φ, z, zloc, [zi, πi]mi=1)

 and

ASθ(π)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
(Φ, z, zloc, [zi, πi]

m
i=1; tr)← Aθ(pp)
π ← Sθ(Φ, z, tr)

 .

20

An adversary A is honest if its output satisfies the implicant of the completeness condition with probability
1 (i.e., Φ ∈ F, Φθ(z, zloc, z1, . . . , zm) = 1, and either for all i, zi = ⊥, or for all i, Vθ(ivk, zi, πi) = 1).
Above, the notation AS indicates that the simulator S answers oracle queries of A.

Efficiency. The generator G, prover P, indexer I and verifier V run in polynomial time. A proof π has size
poly(λ, |Φ|); in particular, it does not grow with each application of P.

3.4 Accumulation schemes

We recall the definition of an accumulation scheme from [BCMS20], extended to any oracle distribution; then
in Definition 3.3 below we describe how to specialize that notion to the case of accumulating oracle queries.

Let Φ: O(∗)×({0, 1}∗)3 → {0, 1} be a predicate (for clarity we write Φθ(ppΦ, iΦ, q) for Φ(θ, ppΦ, iΦ, q)).
LetH be a randomized algorithm with access to θ, which outputs predicate parameters ppΦ.

An accumulation scheme for (Φ,H) is a tuple of algorithms AS = (G, I,P,V,D) that have access to
the same oracle θ (except for G). These algorithms satisfy completeness and soundness, and optionally also
zero knowledge, as specified below.
Completeness. For every (unbounded) adversary A,

Pr

∀ j ∈ [`], Dθ(dk, accj) = 1
∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

⇓
Vθ(avk, [qi]

k
i=1, [accj]

`
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

k
i=1, [accj]

`
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

k
i=1, [accj]

`
j=1)

 = 1 .

Note that for ` = n = 0, the precondition on the left-hand side holds vacuously; this is required for the
completeness condition to be non-trivial.
Soundness. For every polynomial-size adversary A,

Pr

Vθ(avk, [qi]

k
i=1, [accj]

`
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

⇓
∀ j ∈ [`], Dθ(dk, accj) = 1
∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)(
iΦ [qi]

k
i=1 [accj]

`
j=1

acc πV

)
← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)

 ≥ 1− negl(λ) .

Zero knowledge. There exists a polynomial-time stateful simulator S such that for every polynomial-size
stateful “honest” adversary A (see below) the following distributions are (statistically/computationally)
indistinguishable:

Aθ(acc)

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

k
i=1, [accj]

`
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

k
i=1, [accj]

`
j=1)

and

21

A
θ(acc)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
ppΦ ← Hθ(1λ)

(iΦ, [qi]
k
i=1, [accj]

`
j=1; tr)← Aθ(pp, ppΦ)

acc← Sθ(ppΦ, iΦ; tr)

 .

HereA is honest if it outputs, with probability 1, a tuple (iΦ, [qi]
k
i=1, [accj]

`
j=1) such that Φθ(ppΦ, iΦ, qi) = 1

and Dθ(dk, accj) = 1 for every i ∈ [n] and j ∈ [`]. Note that the simulator S is not required to simulate the
accumulation verifier proof πV.

Accumulation scheme for oracle queries. We explain how specialize the general notion of an accumulation
scheme above to the special case of accumulating queries to an oracle.

Definition 3.3. LetO be an oracle distribution. An accumulation scheme forO-queries is an accumulation
scheme where: (i) the accumulation verifier V does not access the oracle; (ii) H = ⊥ (and so ppΦ = ⊥);
(iii) predicate inputs q are of the form (x, y); (iv) the predicate Φ is defined such that Φθ(ppΦ, iΦ, x, y) = 1
if and only if θ(x) = y (in particular, ppΦ and iΦ are ignored).

3.5 Commitment schemes

A commitment scheme is a tuple CM = (CM.Setup,CM.Commit) with the following syntax.
• CM.Setup, on input a security parameter 1λ, outputs a commitment key ck.
• CM.Commit, on input a commitment key ck, a message m ∈ {0, 1}∗, and randomness ω, outputs a

commitment cm.
The tuple CM satisfies a binding property and, optionally, a hiding property.

• Binding. For every efficient adversary A,

Pr

 m0 6= m1

∧
CM.Commit(ck,m0;ω0) = CM.Commit(ck,m1;ω1)

∣∣∣∣∣∣ ck← CM.Setup(1λ)
((m0, ω0), (m1, ω1))← A(ck)

 ≤ negl(λ).

• Hiding. For every efficient stateful adversaryA that outputs two messages of the same length, the following
distributions are (statistically or computationally) indistinguishable:

D0(λ) :=

(pp, cm, aux)

∣∣∣∣∣∣∣∣
ck← CM.Setup(1λ)

(m0,m1, aux)← A(ck)

ω ← {0, 1}poly(λ)

cm := CM.Commit(ck,m0;ω)

and D1(λ) :=

(pp, cm, aux)

∣∣∣∣∣∣∣∣
ck← CM.Setup(1λ)

(m0,m1, aux)← A(ck)

ω ← {0, 1}poly(λ)

cm := CM.Commit(ck,m1;ω)

 .

Moreover, we say that CM is s-succinct if for every commitment key ck ∈ CM.Setup(1λ), message
m ∈ {0, 1}∗, and randomness ω, it holds that CM.Commit(ck,m;ω) ∈ {0, 1}s(λ).

We conclude with a simple claim about any binding and hiding commitment scheme.

22

Claim 3.4. Let CM be a binding and hiding commitment scheme. Then for every message m,

Pr
ω,ω′

[
CM.Commit(ck,m, ω) = CM.Commit(ck,m, ω′)

]
= negl(λ) .

Proof. Denote by ε the probability on the left above. Consider the following adversary C for the hiding game:

1. Output (m0,m1) for two arbitrary distinct messages m0 and m1.
2. Receive cm from the challenger.
3. Sample commitment randomness ω and compute cm′ := CM.Commit(ck,m0, ω).
4. If cm′ = cm, output 0; otherwise output 1.

If cm is a commitment to m0, then C outputs 0 with probability ε. By the hiding guarantee, if cm is a
commitment to m1, then C outputs 0 with probability at least ε − negl(λ). In this case, C can break the
binding property of CM (jointly with the challenger) by returning (m0, ω). It follows that ε = negl(λ).

3.6 Vector commitment schemes

Given a vector m, we denote the i-th element of m as m[i]. Further for a set of indices I , we write m[I] to
mean the list of values [mi]i∈I .

A vector commitment scheme over the alphabet Σ is a tuple of algorithms VC = (VC.Setup,VC.Commit,
VC.Open,VC.Check) with the following syntax:

• VC.Setup(1λ, 1N)→ ppVC, on input a (unary) security parameter 1λ and a (unary) input length 1N , outputs
public parameters ppVC.

• VC.Commit(ppVC,m;ω) → cm, on input public parameters ppVC, a vector m ∈ ΣN and randomness ω,
outputs a commitment cm to m.

• VC.Open(ppVC,m, I;ω) → πVC, on input public parameters ppVC, a the input vector m ∈ ΣN , a set of
indices I ⊆ [N], and randomness ω, outputs an opening (a.k.a. proof) πVC that m[i] is the i-th entry of m
for all i ∈ [I].

• VC.Check(ppVC, cm, I,a, πVC)→ b, on input public parameters ppVC, a commitment cm, a query set I , a
set of claimed answers corresponding to the query set a ∈ ΣI , and an opening πVC, outputs a bit b indicating
whether cm is a commitment consistent with a vector m for which the i-th entry is a[i] for all i ∈ [I].

The tuple VC satisfies correctness and position binding properties:

• Correctness. For every unbounded adversary A,

Pr

 VC.Check(ppVC, cm,m[I], πVC) = 1

∣∣∣∣∣∣∣∣
ppVC ← VC.Setup(1λ, 1N)

(m, ω, I)← A(ppVC)
cm← VC.Commit(ppVC,m;ω)
πVC ← VC.Open(ppVC,m, I;ω)

 = 1 .

• Position binding. For every efficient adversary A,

Pr

 VC.Check(ppVC, cm, I,a, πVC) = 1
∧ VC.Check(ppVC, cm, I

′,a′, π′VC) = 1
∧ ∃ i ∈ I ∩ I ′ s.t. a[i] 6= a′[i]

∣∣∣∣∣∣ ppVC ← VC.Setup(1λ, 1N)
(cm, (I,a, πVC), (I ′,a′, π′VC))← A(ppVC)

 ≤ negl(λ) .

23

A vector commitment scheme may also satisfy a hiding property, where openings do not reveal unopened
values. The following definition formalizes this.

• Hiding. For every efficient stateful adversary A,

Pr

m0|I = m1|I
∧ A(cm, πVC) = b

∣∣∣∣∣∣∣∣∣∣∣∣

ppVC ← VC.Setup(1λ, 1N)
(m0,m1, I)← A(ppVC)

b← {0, 1}
ω ← {0, 1}poly(λ)

cm := VC.Commit(ppVC,mb;ω)
πVC := VC.Open(ppVC,mb, I;ω)

 ≤
1

2
+ negl(λ) .

VC in oracle models. In Section 8.2 we consider vector commitments in an oracle model. This means that
given an oracle θ sampled from O(λ), all VC algorithms and the adversary A have access to θ.

24

4 Linear code random oracles

We define linear code random oracles and establish properties about them. We first recall the definition of a
linear code and its dual.

Definition 4.1. A linear code C with domain D and alphabet F is a subspace of FD. The dual code of C is
the set C⊥ := {z ∈ FD : ∀c ∈ C,

∑
x∈D z(x)c(x) = 0}, which is also a subspace of FD.

We focus on a particular class of linear codes which have a certain systematicity property.11

Definition 4.2. Let C ⊆ (D → F) be a linear code and f : X → D a function. We say that C is ψ-systematic
if C|im(ψ) = Fim(ψ) ' FX (in particular, f is an injection). Let C = {Cλ ⊆ (Dλ → Fλ)}λ∈N be a family of
linear codes and F an efficient algorithm. We say that C is Ψ-systematic with arity m if, for every λ ∈ N,
Ψ(1λ) : {0, 1}m(λ) → Dλ is a circuit such that Cλ is Ψ(1λ)-systematic.

We are now ready to state an informal definition of a linear code random oracle:

A linear code random oracle model is a model in which all honest and malicious parties have
access to an oracle chosen uniformly at random from a member of a systematic family.

Formally, this means that in the definitions of oracle primitives in Section 3.2 and Section 3.4, for some
systematic family C = {Cλ}λ, the distributionO(λ) is the uniform distribution over Cλ. To distinguish linear
code random oracles from general oracles, we use the symbol ρ̂ for the oracle (instead of θ).

We often omit Ψ and write c(x) for c(Ψ(1λ)(x)) when c ∈ Cλ and q ∈ {0, 1}m(λ). The standard random
oracle is the linear code random oracle {({0, 1}m(λ) → Fλ)}λ, which is I-systematic with I(1λ)(q) := q for
q ∈ {0, 1}m(λ).

An algorithm with oracle access to c ∈ C, written Ac, can query c at any point in D; we refer to such an
algorithm as a C-oracle algorithm. We say that an oracle algorithm is systematic if it only makes queries in
{0, 1}m for some m ∈ N. Any systematic oracle algorithm B can be interpreted as a Cλ-oracle algorithm via
the efficient injection Ψ(1λ); we write Bρ̂, omitting Ψ. The following statement follows immediately from
the systematicity condition.

Claim 4.3. Let C ⊆ (D → F), ψ : {0, 1}m → D be such that C is ψ-systematic. For every systematic oracle
algorithm B,

Pr
ρ←({0,1}m→F)

[Bρ → 1] = Pr
ρ̂←C

[Bρ̂◦ψ → 1] .

4.1 Query transcripts and partial oracles

We define notions used in security proofs involving linear code random oracles. A C-query transcript is a
list of query-answer pairs consistent with the execution of a C-oracle algorithm; equivalently, it is a partial
function that is consistent with a codeword in C.

Definition 4.4. Let C ⊆ (D → F) be a linear code. A C-transcript is a list tr = [(xi, yi)]
t
i=1 ∈ (D × F)t

for any t ∈ N such that there exists c ∈ C with c(xi) = yi for every i ∈ [t]. A C-transcript tr induces a partial
function D ⇀ F in the natural way, which we also denote by tr:

tr(x) =

{
yi if x = xi

⊥ if x /∈ {x1, . . . , xt}
.

11The typical definition of a systematic linear code is defined with respect to an encoding function Enc: there exists a subset
S ⊆ D such that Enc(m)|S = m for all messages m. Our property is related, in that if C is f -systematic then there exists a function
Enc such that C is systematic with S = im(f).

25

A partial oracle extends a query transcript to include evaluations that are determined by the structure of
the linear code.

Definition 4.5. Let C ⊆ (D → F) be a linear code and tr a C-transcript. The partial oracle trC : D ⇀ F is
defined as:

trC(x) :=

{
β if for every c ∈ C it holds that (∀i ∈ [t], c(xi) = yi)⇒ c(x) = β

⊥ otherwise
.

When C is clear from context we omit it from the notation.

4.2 Constraints

We examine properties of a partial oracle arising from the linear structure of a linear code. We introduce the
notion of a constraint for elements in the domain of a linear code, and then connect constraints and partial
oracles. The results in this section hold for all linear codes, even those that are not systematic.

Definition 4.6. Let C ⊆ (D → F) be a linear code. A subset Q ⊆ D is constrained if there exists a nonzero
z : Q → F such that, for every c ∈ C,

∑
x∈Q z(x)c(x) = 0 (equivalently, if there exists z 6= 0 ∈ C⊥ with

supp(z) ⊆ Q); we refer to z as a constraint on Q. We say that Q is unconstrained if it is not constrained.
We say that Q ⊆ D determines x ∈ D if x ∈ Q or there exists a constraint z on Q∪{x} such that z(x) 6= 0.

Claim 4.7. Let C ⊆ (D → F) be a linear code and tr be a C-transcript. Then, for every x ∈ D, trC(x) 6= ⊥
if and only if supp(tr) determines x. In particular, trC(x) = y ∈ F if and only if tr(x) = y, or tr(x) = ⊥
and there exists z ∈ C⊥ such that supp(z) ⊆ supp(tr) ∪ {x}, z(x) 6= 0, and

y = −z(x)−1
∑

x′∈supp(tr)

z(x′)tr(x′) .

We characterize the distribution of c(x) conditioned on a prior query transcript tr in terms of the value of
trC(x).

Claim 4.8. Let C ⊆ (D → F) be a linear code. For every x ∈ D, Q ⊆ D, c′ ∈ C, and y ∈ F,

Pr
c←C

[c(x) = y | c|Q = c′|Q] =

1
|F| if Q does not determine x

1 if Q determines x and y = c′(x)

0 otherwise

.

Equivalently, for every x∗ ∈ D, C-transcript tr = {(xi, yi)}ti=1, and y ∈ F,

Pr
c←C

[c(x∗) = y | ∀i ∈ [t], c(xi) = yi] =

1
|F| if trC(x∗) = ⊥
1 if trC(x∗) = y

0 otherwise

.

Proof. The equivalence follows from Claim 4.7 and the definition of a C-transcript, so it suffices to prove
the second statement. The cases when tr(x) 6= ⊥ are clear, and so we consider the case when tr(x) = ⊥.
In this case there exist codewords c, c′ ∈ C such that c(xi) = c′(xi) for every i but c(x) 6= c′(x). It follows
by linearity of C that there exists c∗ = c− c′ ∈ C such that c∗(xi) = 0 for every i and c∗(x) 6= 0. We can
sample from the conditional distribution in the claim by choosing a random c′′ ∈ C such that c(xi) = αi for
every i and a random α ∈ F and returning c′′ + αc∗. The claim follows since c′′(x) + αc∗(x) is uniformly
random in F.

26

We recall the definition of a constraint detector [BCFGRS17], which is an algorithm that determines
whether a set Q is constrained and, if so, outputs a constraint.

Definition 4.9. Let C ⊆ (D → F) be a linear code. An algorithm CD is a constraint detector for C if, given
as input a set Q ⊆ D, outputs: (i) a constraint z if Q is constrained; (ii) ⊥ if Q is unconstrained. A code
family {Cλ}λ∈N has efficient constraint detection if there exists a polynomial-time algorithm CD such that,
for every λ ∈ N, CD(1λ, ·) is a constraint detector for Cλ.

A constraint detector directly yields an implementation of the partial oracle via Claim 4.7, which allows
for efficient “lazy” simulation of query access to a random codeword via Claim 4.8. It also allows us to
remove “redundant” queries from any C-oracle algorithm.

Definition 4.10. Let A be a C-oracle algorithm. We say that a query made by A is redundant if it is
determined by the prior queries made by A. Also, A is non-redundant if it never makes a redundant query.

Claim 4.11. Let A be a t-query C-oracle algorithm, and let CD be a constraint detector for C. Then there
exists a non-redundant t-query C-oracle algorithm A′ whose input-output behavior is identical to A, and

TA′ ≤ TA + t · TCD(t) ,

where TCD(t) bounds the running time of CD on a set Q of size at most t. In particular, if A and CD are
efficient, so is A′. Moreover, if A runs in expected polynomial time but makes a strict polynomial number of
queries then A′ runs in expected polynomial time.

4.3 Query complexity

We study query complexity in the linear code random oracle model. We first give an example showing an
exponential gap between linear code random oracles and standard random oracles.

Claim 4.12. For every m ∈ N the following holds. For every algorithm A making fewer than 2m queries,

Pr
ρ←({0,1}m→F)

[
a =

∑
x∈{0,1}mρ(x)

∣∣∣ a← Aρ] =
1

|F|
.

On the other hand, there exists ψ : {0, 1}m → {0, 1}m, a ψ-systematic linear code C and a 1-query C-oracle
algorithm B such that

Pr
ρ̂←C

[
a =

∑
x∈{0,1}m ρ̂(x)

∣∣∣ a← Bρ̂] = 1 .

Despite this gap, linear code random oracles are cryptographically useful. In particular, we show that
they are collision-resistant. To prove this, we use a couple of linear-algebraic tools. First, we show a simple
yet important claim about the existence of codewords with some entries fixed to zero.

Claim 4.13. Let ψ : {0, 1}m → D, and let C ⊆ (D → F) be a ψ-systematic code. Then for every
x1, . . . , xt ∈ D there exists c ∈ C such that
• c(x1) = · · · = c(xt) = 0, and
• there exists a set S ⊆ {0, 1}m, |S| ≥ 2m − t such that for all x ∈ S, c(ψ(x)) = 1.

Proof. For i ∈ [2m], let ei ∈ Fim(ψ) be the vector with zeroes everywhere except at ψ(̄i), where ī is the
binary expansion of i. Since C is ψ-systematic, there is a basis for C where the first 2m elements c1, . . . , c2m

have ci|im(ψ) = ei for every i. The claim follows by elementary linear algebra.

27

We use this to establish an upper bound on the number of points in {0, 1}m determined by a set of size t.

Lemma 4.14. Let ψ : {0, 1}m → D, and let C ⊆ (D → F) be a ψ-systematic code. Fix Q ⊆ D. Define
T := {x ∈ {0, 1}m : Q determines x}. Then |T | ≤ |Q|.

Proof. By Claim 4.13, there exists c ∈ C such that for every x ∈ Q it holds that c(x) = 0, and a set
S ⊆ {0, 1}m of size 2m − |Q| such that for every x ∈ S it holds that c(x) = 1. Suppose that |T | > |Q|. By
the pigeonhole principle, there exists y ∈ S ∩ T . By definition of T , there exists z : D → F with z(y) 6= 0
such that

∑
x∈Q z(x)c(x) + z(y)c(y) = 0, which is a contradiction.

Lemma 4.15. Let C ⊆ (D → F) be a full-rank linear code of arity m. For every t-query C-oracle adversary
A,

Pr
ρ̂←C

 x, x′ ∈ {0, 1}m
∧x 6= x′

∧ ρ̂(x) = ρ̂(x′)

∣∣∣∣∣∣ (x, x′)← Aρ̂
 ≤ t2

|F|
.

Proof. Consider running A and recording its oracle queries in tr. By Lemma 4.14, the set of points
T = {x ∈ {0, 1}m : tr(x) 6= ⊥} is of size at most t. Moreover for every x ∈ T , ρ̂(x) is sampled uniformly
at random. Hence the probability that there exist distinct x, x′ ∈ T such that ρ̂(x) = ρ̂(x′) is less than t2/|F|.
By Claim 4.8, if x or x′ are not in T , then Pr[ρ̂(x) = ρ̂(x′) | tr] = 1/|F|. The lemma follows by a union
bound.

4.4 Low-degree random oracles

We denote by F≤d[X1, . . . , Xm] the vector space of m-variate polynomials over F of individual degree at
most d. The low-degree polynomial evaluation code is defined as follows:

LD[F,m, d] := {c ∈ (Fm → F) : ∃ p ∈ F≤d[X1, . . . , Xm] s.t. ∀x ∈ Fm, c(x) = p(x)} .

For d ≥ 1 this code is ψF,m-systematic for ψF,m(b1, . . . , bm) := (i(b1), . . . , i(bm(λ))), where i : {0, 1} → F
is the natural injection (that maps 0 to 0F and maps 1 to 1F).

Definition 4.16. Let F = {Fλ}λ∈N be a family of fields, m : N → N an arity function, and d : N → N a
degree function. We define

LD[F ,m, d] := {LD[Fλ,m(λ), d(λ)]}λ∈N .

The above code family is Ψ-systematic for Ψ(1λ) := ψFλ,m(λ).

The following theorem is proved in [BCFGRS17]:

Theorem 4.17. The code family LD[F ,m, d] has a constraint detector that runs in time poly(m, d, log |F|).
In particular, it has efficient constraint detection.

28

5 Forking lemmas for linear code random oracles

We state and prove our forking lemmas for linear code random oracles. Let ψ : {0, 1}m → D and let
C ⊆ (D → F) be a ψ-systematic linear code. The code C induces a corresponding fork-point function.

Definition 5.1. Given a query/answer transcript tr of size t and a query x, the fork-point function FPC(tr, x)
outputs the smallest index i ∈ [t] such that {x1, . . . , xi, x} is constrained, or ⊥ if there is no such i.12

The fork-point function can be computed via constraint detection (see Definition 4.9): for i = 1, . . . , t
invoke the constraint detection algorithm on the set {x1, . . . , xi, x} and output i ∈ [t] if the algorithm outputs
a constraint; if no constraint is found (in any iteration) then output⊥. In particular, if C has efficient constraint
detection then the fork-point function for C can be computed efficiently.13

In Section 5.1 we introduce and analyze a basic forking algorithm that obtains two winning executions. In
Section 5.2 we build on this to construct a forking algorithm that obtains any number of winning executions.

5.1 Basic forking algorithm

We describe the basic forking algorithm for linear code random oracles.

Definition 5.2. Let A be a t-query adversary, tr = ((x1, y1), . . . , (xt, yt)) a query-answer transcript,
i ∈ [t] ∪ {⊥} an index (or abort symbol), and ai an auxiliary input. The forking algorithm Fork, given
access to A and input (tr, i, ai), works as follows:

(i) if i = ⊥ then abort and output ⊥;
(ii) run A(ai), answering the first i− 1 queries to the random oracle according to tr;

(iii) answer each subsequent query with a random element in F;
(iv) return (o′, tr′) where (x′, o′) is the output of A and tr′ is the query transcript of this execution of A.

For a t-query C-oracle algorithm A, we denote by (x, o; tr) ← Aρ̂(ai) the following procedure: run
A(ai) with oracle access to ρ̂ until it outputs a pair (x, o) (where x ∈ D and o is arbitrary), and let
tr := ((x1, y1), . . . , (xt, yt)) be the query/answer transcript of this execution.

Below we state our forking lemma; note that it applies for non-redundant adversaries, which is without
loss of generality if the linear code has efficient constraint detection (see Claim 4.11).

Lemma 5.3. Let p : {0, 1}∗ → {0, 1} be a predicate, Z be an auxiliary-input distribution, and A be a
t-query C-oracle deterministic algorithm that is non-redundant. If we define

δ := Pr

 i 6= ⊥
∧ x ∈ {0, 1}m
∧ p(x, o, tr) = 1

∣∣∣∣∣∣∣∣
ρ̂← C
ai← Z

(x, o; tr)← Aρ̂(ai)
i← FPC(tr, x)

 (2)

12The fork-point function depends only on the queries; the answers are included in the transcript for notational simplicity.
Moreover, since the zero word is a member of any linear code, any algorithm computing FP given query-answer pairs can be used to
compute FP given queries alone by setting the answers to zero.

13Conversely, if the fork-point function for C can be computed efficiently then one can efficiently detect whether a constraint for C
exists on a set of points {x1, . . . , xt, x} (but not necessarily learn what the constraint is): set tr := {(x1, 0), . . . , (xt, 0)}; and run
FPC(tr, x). FPC(tr, x) = ⊥ if and only if {x1, . . . , xt, x} is unconstrained.

29

then it holds that

Pr

i 6= ⊥
∧ x ∈ {0, 1}m
∧ p(x, o, tr) = 1
∧ p(x, o′, tr′) = 1

∣∣∣∣∣∣∣∣∣∣
ρ̂← C
ai← Z

(x, o; tr)← Aρ̂(ai)
i← FPC(tr, x)

(o′, tr′)← ForkA(tr, i, ai)

 ≥ δ2/t . (3)

Remark 5.4 (probabilistic adversaries). The lemma can express probabilistic adversaries by considering
auxiliary input distributions Z that output a random string (and possibly other relevant information). In fact,
because the lemma does not require that Z has finite or even countable support, it can even capture infinite
random tapes, which naturally arise when considering adversaries that run in expected polynomial time.

Proof. For ~y ∈ Ft, denote by (x, o; tr) ← A~y(ai) the same procedure as Aρ̂(ai), but where the i-th query
xi ∈ {0, 1}m to the oracle is answered with the i-th entry of ~y. For every i ∈ [t] and x ∈ {0, 1}m, we define
the (measurable) set

Si,x := {(~y, ai) ∈ Ft × supp(Z) : (x, o; tr)← A~y(ai) ∧ FPC(tr, x) = i ∧ p(x, o, tr) = 1} .

Next, for field elements y1, . . . , yi−1 ∈ F and ai ∈ supp(Z), define the probability

δi,x(y1, . . . , yi−1; ai) := Pr
y′i,...,y

′
t∈F

[(
(y1, . . . , yi−1, y

′
i, . . . , y

′
t), ai

)
∈ Si,x

]
. (4)

We argue that δ = E~y,ai[
∑

i∈[t],x∈{0,1}m δi,x(y1, . . . , yi−1; ai)], where ~y ← Ft and ai← Z . By linearity

of expectation, it suffices to prove that δ =
∑

i∈[t],x∈{0,1}m E~y,ai
[
δi,x(y1, . . . , yi−1; ai)

]
. Let S be the

(measurable) set of all pairs (~y, ai) such that (x, o; tr) ← A~y(ai) and p(x, o, tr) = 1. Because A is non-
redundant, the answers to its queries to ρ̂ are uniformly random field elements, and so δ = Pr~y,ai[(~y, ai) ∈ S].
It follows directly from the definition of δi,x that

E~y,ai[δi,x(y1, . . . , yi−1; ai)] = Ey1,...,yi−1,ai[Eyi,...,yt [1Si,x(~y, ai)]] = Pr
~y,ai

[(~y, ai) ∈ Si,x] .

Since {Si,x}i∈[t],x∈{0,1}m is a partition of S,∑
i,x

E~y,ai
[
δi,x(~y; ai)

]
=
∑
i,x

Pr
~y,ai

[(~y, ai) ∈ Si,x] = Pr
~y,ai

[(~y, ai) ∈ S] = δ .

Denote by E the event in Equation 3. First, we observe that by the definition of Fork (and since A is
non-redundant) the following holds:

Pr[E] = Pr
~y,~y′,ai

[∃i ∈ [t], x ∈ {0, 1}m, (~y, ai) ∈ Si,x ∧
(
(y1, . . . , yi−1, y

′
i, . . . , y

′
t), ai

)
∈ Si,x]

where ~y,~y′ ← Ft and ai← Z . Since the sets {Si,x}i∈[t],x∈{0,1}m are disjoint, we have that

Pr[E] =
∑

i∈[t],x∈{0,1}m
Pr

~y,~y′,ai
[(~y, ai) ∈ Si,x ∧

(
(y1, . . . , yi−1, y

′
i, . . . , y

′
t), ai

)
∈ Si,x]

=
∑
i,x

E~y,~y′,ai
[
1Si,x(~y, ai) · 1Si,x

(
(y1, . . . , yi−1, y

′
i, . . . , y

′
t), ai

)]
30

=
∑
i,x

Ey1,...,yi−1,ai

[
Eyi,...,yt,y′i,...,y′t

[
1Si,x(~y, ai) · 1Si,x

(
(y1, . . . , yi−1, y

′
i, . . . , y

′
t), ai

)]]
=
∑
i,x

Ey1,...,yi−1,ai

[
δi,x(y1, . . . , yi−1; ai)2

]
where the last equality holds by independence, and by definition of δi,x.

Next, we bound the number of nonzero terms in the above sum. Let Qi,~y,ai := {x ∈ {0, 1}m :
δi,x(y1, . . . , yi−1; ai) > 0}.

Claim 5.5. For every ~y ∈ Ft and ai ∈ {0, 1}∗,
∑

i∈[t] |Qi,~y,ai| ≤ t.

Proof. Fix any t-query transcript tr = ((x1, y1), . . . , (xt, yt)) where the query answers are from ~y, and
define Qi,tr := {x ∈ {0, 1}m : FPC(tr, x) = i}. Note that Qi,tr is a function of (x1, . . . , xi) only, since
Qi,tr contains all queries x such that FPC(tr, x) = i (as i is the earliest index where x is determined). Since
x ∈ {0, 1}m, Lemma 4.14 implies that

∑
i∈[t] |Qi,tr| ≤ t.

We show that Qi,~y,ai ⊆ Qi,tr for every i ∈ [t]. Fix any x ∈ Qi,~y,ai, that is, any x ∈ {0, 1}m such that
δi,x(y1, . . . , yi−1; ai) > 0. Then there exists y′i, . . . , y

′
t such that ((y1, . . . , yi−1, y

′
i, . . . , y

′
t), ai) ∈ Si,x. This

implies that

(x′, o′; tr′) := A(y1,...,yi−1,y
′
i,...,y

′
t)(ai) and FPC(tr

′, x′) = i and x′ = x

where tr′ = ((x1, y1), . . . , (xi−1, yi−1), (xi, y
′
i), . . . , (xt, y

′
t)). For every i ∈ [t], (x1, . . . , xi) is a function of

y1, . . . , yi−1, ai only; when running A, the i-th query depends only on prior queries and ai. So FPC(tr
′, x) =

FPC(tr
′, x′) = i is a function of y1, . . . , yi−1, ai only. Since Qi,tr is a function of (x1, . . . , xi) only, Qi,tr is

also a function of y1, . . . , yi−1, ai only. This implies that FPC(tr, x) = i, so x ∈ Qi,tr.

We conclude that

Pr[E] = E~y,ai
[∑

i∈[t]

∑
x∈Qi,~y,aiδi,x(y1, . . . , yi−1; ai)2

]
≥ 1

t
· E~y,ai

[(∑
i∈[t]

∑
x∈{0,1}mδi,x(y1, . . . , yi−1; ai)

)2
]

≥ 1

t
·
(
E~y,ai

[∑
i∈[t]

∑
x∈{0,1}mδi,x(y1, . . . , yi−1; ai)

])2

=
1

t
· δ2 ,

where the first inequality holds because the number of terms in the sum is at most t (by Claim 5.5), and the
second holds by the inequality E[X2] ≥ E[X]2 (for general random variables X).

5.2 Generic forking algorithm

We define the algorithm MFork, which uses the basic forking algorithm Fork (Definition 5.2) as a subroutine
to produce N winning executions.

Definition 5.6. Let A be a t-query adversary, N ∈ Z+ the target number of winning executions, tr =
((x1, y1), . . . , (xt, yt)) a query-answer transcript, i ∈ [t] ∪ {⊥} an index (or abort symbol), and ai an
auxiliary input. The multi-fork algorithm MFork, given black-box access to A and predicate p, and input
(N, tr, i, ai), works as follows:

31

(i) if i = ⊥ then abort; else run (x, o)← Atr(ai); if p(x, o, tr) = 0 or x /∈ {0, 1}m then abort;
(ii) repeatedly run ForkA(tr, i, ai) until we collect a set of N valid executions S = {(oi, tri)}i∈[N] (i.e., for

every i ∈ [N], p(x, oi, tri) = 1);
(iii) return S.

We analyze the running time of MFork as a random variable. The negative binomial distribution naturally
captures the number of repetitions of Fork required to obtain a given number of transcripts.

Definition 5.7. For N ∈ N and δ ∈ [0, 1], the negative binomial distribution with parameters N, δ,
denoted NB(N, δ), is the distribution of the random variable X in the following experiment: sample from a
Bernoulli distribution with parameter δ until N successes are observed; let X be the total number of trials.

Lemma 5.8. Let p : {0, 1}∗ → {0, 1} be a predicate, Z be an auxiliary-input distribution, and A be a t-
query C-oracle deterministic algorithm that is non-redundant. Denote by K := K(N, tr, i, ai) the number of
repetitions of Step (ii) in MForkA,p(N, tr, i, ai), and let δ := δi,x(y1, . . . , yi−1; ai) where tr = ((xj , yj))

t
j=1.

If MFork does not abort in Step (i) then we have K ∼ NB(N, δ). Moreover,

E

time(MForkA,p(N, tr, i, ai))

∣∣∣∣∣∣∣∣
ρ̂← C
ai← Z

(x, o; tr)← Aρ̂(ai)
i← FPC(tr, x)

 ≤ (tN +O(1)) · E[time(A)] .

Proof. Fix a choice of N, tr, i, ai. Recall from Eq. 4 and the definition of Fork that

Pr
[
p(x, o′, tr′) = 1

∣∣ (o′, tr′)← ForkA(tr, i, ai)
]

= δi,x(y1, . . . , yi−1; ai) .

The distribution of K follows immediately from the description of MFork. Next, let T := T (N,~y, ai) denote
the running time of Step (ii) (as a random variable). Let τ(y1, . . . , yi−1; ai) be the random variable denoting
the running time of A inside ForkA(tr, i, ai). Let Evalid be the event that Fork outputs a valid execution.
Finally, define

t := t(y1, . . . , yi−1; ai) := E[τ(y1, . . . , yi−1; ai)]

tvalid := tvalid(y1, . . . , yi−1; ai) := E[τ(y1, . . . , yi−1; ai) | Evalid]

tinvalid := tinvalid(y1, . . . , yi−1; ai) := E[τ(y1, . . . , yi−1; ai) | Evalid]

and observe that t = δ · tvalid + (1− δ) · tinvalid by total expectation. Now we can compute

E[T] =

∞∑
k=N

E[T | K = k] Pr[K = k] = N ·tvalid+

∞∑
k=N

Pr[K = k](k−N)tvalid = N tvalid+(E[K]−N)tinvalid .

Since E[K] = N/δ, E[T] = N(tvalid + (1/δ − 1)tinvalid) = N t/δ. Then, averaging over all ~y, ai (and the
randomness of MFork),

E~y,ai[T] =
t∑
i=1

E~y,ai
[∑
x∈{0,1}m

1Si,x(~y, ai) · T (N,~y, ai)
]

=

t∑
i=1

Ey1,...,yi−1,ai

[∑
x∈{0,1}m

Eyi,...,yt [1Si,x(~y, ai)] · T (N,~y, ai)
]

32

=

t∑
i=1

Ey1,...,yi−1,ai

[∑
x∈Qi,~y,ai

δi,x(y1, . . . , yi−1; ai) ·N · t(y1, . . . , yi−1; ai)

δi,x(y1, . . . , yi−1; ai)

]

= N · E~y,ai
[t∑
i=1

|Qi,~y,ai| · t(y1, . . . , yi−1; ai)
]
≤ tN · E[time(A)] .

The lemma follows by noting that the expected running time of Step (i) is O(E[time(A)]).

33

6 Oracle zero-finding games

We state and prove our lemma for zero-finding games in the low-degree random oracle model.

Lemma 6.1 (formal restatement of Lemma 2.5). Let C = LD[F,m, d] be the code of m-variate polynomials
of individual degree at most d. Let ` ∈ N be a degree bound, and CM a commitment scheme (that is binding
though not necessarily hiding). For every efficient probabilistic t-query oracle algorithm A that outputs
tuples of the form (f ∈ F≤dm`[X], g ∈ (F≤`[X])m, ω), the following holds:

Pr

 f(X) 6≡ ρ̂(g(X))
∧ f(z) = ρ̂(g(z))

∣∣∣∣∣∣∣∣∣∣
ρ̂← C

ck← CM.Setup(1λ)
(f, g, ω)← Aρ̂(ck)

cm← CM.Commit(ck, (f, g);ω)
z ∈ F← ρ̂(cm)

 ≤ O
(√

tdm`

|F|

)
+ negl(λ) .

Remark 6.2. The definition of a commitment scheme in Section 3.5 for simplicity allows the message to
have any size. If instead the commitment scheme were to require specifying a bound on the message size,
then this bound should be large enough to allow a message that describes the two polynomials f and g. In
particular, the bound can be O(dm`) field elements, because f can be described via dm` + 1 evaluations
(it is a univariate polynomial of degree at most dm`) and g can be described via m · (`+ 1) evaluations (it
consists of m univariate polynomials of degree at most `).

Proof. Let A be an adversary that wins the above game with probability δ. Theorem 4.17 tells us that C has
efficient constraint detection and, therefore, by Claim 4.11 we may assume without loss of generality that A
is non-redundant. We can therefore invoke Lemma 5.3, which applies only to non-redundant algorithms. To
do so we define the following objects.

• An auxiliary-input distribution Z that is the joint distribution of commitment keys ck← CM.Setup(1λ)
and the random tape σ for A.

• A deterministic (forking lemma) adversary B that receives auxiliary input (ck, σ) ∈ Z , accesses an oracle
ρ̂, and works as follows: (i) run Aρ̂(ck) on random tape σ to obtain its output (f, g, ω); (ii) compute the
commitment cm := CM.Commit(ck, (f, g);ω); (iii) output (x, o, tr) := (cm, (f, g, ω, ck), tr).

• A forking predicate p that, on input (x, o, tr) = (cm, (f, g, ω, ck), tr), checks the following conditions:

Condition 1. cm = CM.Commit(ck, (f, g);ω);
Condition 2. either tr ◦ g : F→ F is not total or f(X) 6≡ tr(g(X)); and
Condition 3. f(z) = tr(g(z)), where z := tr(cm).

Here tr is as defined in Definition 4.5.

Recall from the assumption that A wins the zero-finding game with probability δ. We show that B satisfies p
with probability at least δ − 1

|F| .
First, any A winning the zero-finding game satisfies Condition 1 directly; hence so does B.
Second, we show that whenever A wins the zero-finding game, then Condition 2 is satisfied. (Since

B’s queries are the same as A’s, the same is then true for B.) We argue this via the contrapositive: if
f(X) ≡ tr(g(X)), then A does not win the zero-finding game. For any oracle input x, if tr(x) is defined,
then it is equal to ρ̂(x). Thus if f(X) ≡ tr(g(X)), tr must be defined over the image of g, and so
f(X) ≡ ρ̂(g(X)); hence A cannot win the zero-finding game by definition.

34

Third, we argue that the probability that A wins the zero-finding game but B fails to satisfy Condition 3
is at most 1

|F| . There are two cases: either tr(g(z)) is defined, or not. If tr(g(z)) is defined then tr(g(z)) =

ρ̂(g(z)), and ifA wins the zero-finding game then ρ̂(g(z)) = f(z); hence Condition 3 is satisfied in this case.
If tr(g(z)) = ⊥, then the probability that A wins the zero-finding game is 1

|F| , since it must guess the value
of ρ̂(g(z)).

Thus overall B satisfies p with probability at least δ − 1
|F| . We deduce, via Lemma 5.3, that

µ := Pr

cm 6= ⊥
∧ cm ∈ {0, 1}m
∧ p(cm, o, tr) = 1
∧ p(cm, o′, tr′) = 1

∣∣∣∣∣∣∣∣∣∣
ρ̂← C

(ck, σ)← Z
(cm, o; tr)← Bρ̂(ck, σ)

i← FPC(tr, cm)

(o′, tr′)← ForkB(tr, i, (ck, σ))

 ≥
(
δ − 1

|F|

)2
/t .

To conclude the proof, we upper bound µ. Denote by E1 the event on the left of the above expression.
The probability that E1 occurs and o 6= o′ is at most negl(λ). Indeed, by definition of p, if E1 holds then

CM.Commit(ck, o) = cm = CM.Commit(ck, o′). However, by the binding property of the commitment
scheme CM, the probability that this happens and o 6= o′ occurs is at most negl(λ).

Let E2 := E1 ∧ (o = o′). From the above it holds that Pr[E2] ≥ µ− negl(λ).
Let i := FPC(tr, cm), and let tr|i−1 denote the truncation of tr to the first i− 1 queries. Define the point

z′ := tr′(cm′). We show that if E2 occurs then, with high probability, tr|i−1 ◦ g is total.

Claim 6.3. The probability that E2 occurs and tr|i−1 ◦ g is not total is at most (dm`+ 1)/|F|.

Proof. Note that, for every c ∈ C, deg(c ◦ g) ≤ d · `. Hence, if tr|i−1 ◦ g is not total, then there are at most
d · ` points x ∈ F such that tr|i−1(g(x)) 6= ⊥.

By the choice of fork point i, since tr|i−1 contains only queries before the i-th query, tr|i−1(cm) = ⊥.
Hence z′ is uniformly random conditioned on tr|i−1. Thus Pr[tr|i−1(g(z′)) 6= ⊥] ≤ dm`

|F| . Finally, if

tr|i−1(g(z′)) = ⊥ then Pr[tr′(g(z′)) = f(z′)] ≤ 1
|F| , as f and tr′ are independent conditioned on tr|i−1.

By the claim, the probability that E2 occurs and tr|i−1 ◦ g is total is at least µ− (dm`+ 1)/|F|−negl(λ).
In this case it holds that tr|i−1 ◦ g 6≡ f , but tr|i−1(g(z′)) = f(z′). Since z′ is drawn independently of
tr|i−1, g, f , this equality holds with probability at most dm`/|F|.

Rearranging, we conclude that

µ ≤ 2dm`+ 1

|F|
+ negl(λ) .

Since µ ≥
(
δ − 1

|F|

)2
/t, we deduce that

δ ≤

√
t ·
(

2dm`+ 1

|F|

)
+

1

|F|
+ negl(λ) ,

which implies the statement.

35

7 Accumulation scheme for low-degree random oracles

We construct an accumulation scheme to accumulate queries to any low-degree random oracle (over a
sufficiently large field). See Definition 3.3 for the definition of an accumulation scheme for oracle queries.

Theorem 7.1. Let LD[F ,m, d] = {Cλ = LD[Fλ,m(λ), d(λ)]}λ∈N be a family of low-degree polynomial
evaluation codes, where F = {Fλ}λ∈N is a family of fields, m : N→ N an arity function, and d : N→ N a
degree function (see Definition 4.16). Let CM = (CM.Setup,CM.Commit) be a standard-model commitment
scheme that is hiding, binding, and m-succinct (see Section 3.5). Then, AS from Construction 1 below is a
zero-knowledge accumulation scheme for queries to LD[F ,m, d] with the following properties.

• Soundness error. When accumulating n oracle queries and ` old accumulators, the soundness error is

O

(√
t · d(λ) ·m(λ) · (n+ `)

|Fλ|

)
+ negl(λ)

against any t-query efficient adversary. In particular, if t,m, d, n, ` = λO(1) and |Fλ| = λω(1), then the
soundness error is negligible in λ.

• Accumulator size. The accumulator contains 2 oracle query-answer pairs (i.e., 2(m(λ)+1) field elements).
• Decider efficiency. The decider consists of checking 2 oracle query-answer pairs.

Remark 7.2. If CM is statistically hiding, then AS achieves statistical zero knowledge. Further, if AS is not
required to be zero knowledge, then CM need not be hiding and so can be replaced by a collision-resistant
hash function family.

We give the construction below. For notational simplicity, we omit the dependence on the security
parameter λ on the low-degree random oracle’s parameters and thus write: C = Cλ, F = Fλ, d = d(λ),
m = m(λ). Moreover, we assume a global ordering of the field F, so that F = {b1, . . . , b|F|}.

Construction 1. The accumulation scheme AS = (G, I,P,V,D) is specified below. An accumulator acc is
a tuple ((x1, y1), (x2, y2)) where each (xi, yi) is a query-answer pair in Fm × F. Note that a predicate input
q is a query-answer pair (x, y) ∈ Fm × F.

• G(1λ): Sample a commitment key ck← CM.Setup(1λ), and output the public parameters pp := ck.

• Iρ̂(pp = ck): Output (apk, avk, dk) := (ck, ck, 1λ).

• Pρ̂(apk = ck, [qi]
k
i=1, [accj]

`
j=1):

1. Sample a random point xn+2`+1 ∈ Fm, and set yn+2`+1 := ρ̂(xn+2`+1).
2. Let Q = [(xk, yk)]

n+2`+1
k=1 be the concatenation of query-answer pairs in the predicate inputs [qi]

k
i=1,

old accumulators [accj]
`
j=1, and the above pair (xn+2`+1, yn+2`+1).

3. Compute the polynomial g ∈ (F[X])m of degree less than n+ 2`+ 1 that interpolates the query points
in Q over the fixed domain {bk}n+2`+1

k=1 (i.e., such that g(bk) = xk for every k ∈ [n+ 2`+ 1]).
4. Compute the polynomial f ∈ F[X] such that f(X) ≡ ρ̂(g(X)). Note that the degree of f is less than
m · d · (n + 2` + 1), and so f can also be computed by interpolation by evaluating the expression
ρ̂(g(X)) at m · d · (n+ 2`+ 1) points (which involves a corresponding number of queries to ρ̂).

5. Sample commitment randomness ω and then compute the commitment

cm := CM.Commit(ck, ((x1, . . . , xn+2`+1), f);ω) ∈ {0, 1}m .

36

6. Compute the challenge β := ρ̂(cm) ∈ F. (Since C is Ψ-systematic, any query in {0, 1}m to ρ̂ ∈ C is
efficiently embedded in C’s domain using the injection Ψ.) If ρ̂(cm) ∈ {b1, . . . , bn+2`+1}, go to step 5;
except if this has happened λ times, in which case we proceed.

7. Output the new accumulator acc and accumulation proof πV defined as follows:

acc :=
(
(cm, β), (g(β), f(β))

)
,

πV :=
(
(xn+2`+1, yn+2`+1), f, ω

)
.

• V
(
avk = ck, [qi]

k
i=1, [accj]

`
j=1, acc =

(
(cm, β), (x, y)

)
, πV = ((xn+2`+1, yn+2`+1), f, ω))

)
:

1. Compute the listQ = [(xk, yk)]
n+2`+1
k=1 and the polynomial g from [qi]

k
i=1, [accj]

`
j=1, and (xn+2`+1, yn+2`+1)

as P does. However, rather than sampling the (n+ 2`+ 1)-th pair, use the pair received in πV.
2. Check that cm = CM.Commit(ck, ((x1, . . . , xn+2`+1), f);ω), x = g(β), and y = f(β).
3. For every k ∈ [n+ 2`+ 1], check that f(bk) = yk.

• Dρ̂
(
dk = 1λ, acc =

(
(x1, y1), (x2, y2)

))
: Check that ρ̂(x1) = y1 and ρ̂(x2) = y2.

Proof of Theorem 7.1. We discuss completeness, soundness, zero knowledge, and efficiency.

Completeness. The accumulation prover P receives as input a list of predicate inputs [qi]
k
i=1 and a list of

old accumulators [accj]
`
j=1. Suppose that Φρ̂(qi) = 1 for every i ∈ [n] and Dρ̂(accj) = 1 for every j ∈ [`].

Completeness requires showing that Pρ̂ outputs a new accumulator acc and accumulation proof πV that
satisfy two conditions.

• Condition 1: V(avk, [accj]
`
j=1, acc, [qi]

k
i=1, πV) = 1.

By construction of V, this holds if acc =
(
(cm, β), (x, y)

)
and πV = ((xn+2`+1, yn+2`+1), f, ω) are such

that (i) cm = CM.Commit(ck, ((x1, . . . , xn+2`+1), f);ω); (ii) x = g(β) (where V computes g exactly
as P does); (iii) y = f(β); and (iv) f(bk) = yk for every k ∈ [n+ 2`+ 1]. The accumulation prover Pρ̂

outputs acc :=
(
(cm, β), (g(β), f(β))

)
. Thus, Conditions ii and iii are satisfied directly. Condition i is

satisfied because V computes cm using the same inputs and commmitment key (since apk = avk = ck) as
Pρ̂. For Condition iv: g(bk) = xk for every k ∈ [n+2`+1] by definition of g; thus, ρ̂(g(bk)) = ρ̂(xk) = yk
for every k ∈ [n+ 2`+ 1]; we defined f := ρ̂ ◦ g, so f(bk) = yk for every k ∈ [n+ 2`+ 1].

• Condition 2: Dρ̂(acc) = 1.

This occurs when both points in acc are valid query-answer pairs. In the first pair, the honest Pρ̂ sets β to
ρ̂(cm). For the second pair, (g(β), f(β)) satisfies ρ̂(g(β)) = f(β) because f ≡ ρ̂ ◦ g.

Soundness. Since AS is an accumulation scheme for oracle queries, we show that the probability below is
bounded from above by the expression in the theorem statement:

Pr

V(avk, [qi]

k
i=1, [accj]

`
j=1, acc, πV) = 1

Dρ̂(dk, acc) = 1

∧
∃ j ∈ [`], Dρ̂(dk, accj) = 0 ∨
∃ i ∈ [n], Φρ̂(qi) = 0

∣∣∣∣∣∣∣∣∣∣∣

ρ̂← C
pp← G(1λ)(

[qi]
k
i=1 [accj]

`
j=1

acc πV

)
← Aρ̂(pp)

(apk, avk, dk)← Iρ̂(pp)

 . (5)

Since iΦ = ⊥ and ppΦ = ⊥ in oracle query accumulation schemes, we omit them from the above equation.

37

In the above equation, let acc =
(
(cm, β), (x, y)

)
and πV = ((xn+2`+1, yn+2`+1), f, ω).

We argue that the event in the left side of Equation 5, which we denote by E, is equivalent to the condition
“f(X) 6≡ ρ̂(g(X)) and f(β) = ρ̂(g(β))”.

• First, we show that f(β) = ρ̂(g(β)). Note that

– Dρ̂(dk, acc) = 1 implies that ρ̂(x) = y, and
– V(avk, [qi]

k
i=1, [accj]

`
j=1, acc, πV) = 1 implies that x = g(β) and y = f(β).

Then substitution gives ρ̂(g(β)) = f(β).

• Second, we show that f(X) 6≡ ρ̂(g(X)). Consider the expression

∃ j ∈ [`], Dρ̂(dk, accj) = 0 ∨ ∃ i ∈ [n], Φρ̂(ppΦ, iΦ, qi) = 0 .

This means there is a query qk∗ = (xk∗ , yk∗) ∈ [qi]
k
i=1 ∪ [accj]

`
j=1 ⊆ Q such that ρ̂(xk∗) 6= yk∗ , for some

k∗ ∈ [n+ 2`+ 1]. By g’s definition, we have xk = g(bk) for every k ∈ [n+ 2`+ 1], so ρ̂(g(bk∗)) 6= yk∗ .
Also since V(avk, [qi]

k
i=1, [accj]

`
j=1, acc, πV) = 1, we have f(bk) = yk for every k ∈ [n+ 2`+ 1]. Hence,

we get f(bk∗) 6= ρ̂(g(bk∗)), and thus conclude that f(X) 6≡ ρ̂(g(X)).

Since the low-degree random oracle has efficient constraint detection (Theorem 4.17), any adversary in
the LDROM that breaks CM can also break CM in the standard model (by simulating the oracle). Hence CM
is a secure commitment scheme in the LDROM.

Next, we wish to invoke our oracle zero-finding game lemma (Lemma 6.1). We apply Lemma 6.1 with
respect to the commitment scheme CM′ obtained by modifying CM as follows: CM′.Commit(ck, (g, f);ω) =
CM.Commit(ck, ((g(b1), . . . , g(bn+2`+1)), f);ω). Note that this is binding to g since g is of degree less than
n+ 2`. The winning event in the zero-finding game is then that

cm = CM′.Commit(ck, (g, f);ω) = CM.Commit(ck, ((x1, . . . , xn+2`+1) , f);ω),

f(X) 6≡ ρ̂(g(X)), and f(β) = ρ̂(g(β)) for β := ρ̂(cm). Note that V(avk, [qi]
k
i=1, [accj]

`
j=1, acc, πV) = 1

implies that cm = CM.Commit(ck, ((x1, . . . , xn+2`+1), f);ω). Note also that deg(g) ≤ n+ 2`. Thus, by
our oracle zero-finding game lemma, the probability that f(X) 6≡ ρ̂(g(X)) and f(β) = ρ̂(g(β)) is at most√

t ·
(

2dm(n+ 2`) + 1

|F|

)
+

1

|F|
+ negl(λ) .

Since the event E is equivalent to f(X) 6≡ ρ̂(g(X)) and f(β) = ρ̂(g(β)), the above probability is an upper
bound on the probability in Equation 5, as desired.

Zero knowledge. We describe a zero-knowledge simulator S that has access to ρ̂ and simulates: (i) the
scheme’s public parameters pp; and (ii) the distribution of P’s accumulator acc without access to P’s inputs
(the predicate inputs [qi]

k
i=1 and old accumulators [accj]

`
j=1). Then we show that if the commitment CM is

statistically (resp. computationally) hiding, then the simulated joint distribution (ρ̂, pp, acc) is statistically
(resp. computationally) indistinguishable from (ρ̂, pp, acc) produced in the real protocol.

• Parameter generation: S(1λ)→ pp.

1. Sample ck← CM.Setup(1λ).
2. Output pp := ck (and store ck in the internal state).

38

• Proving: Sρ̂(ppΦ = ⊥, iΦ = ⊥)→ acc.

1. Sample commitment randomness ω and compute a commitment cm :=CM.Commit(ck, ((0, . . . , 0), f ′);ω)
where f ′ ∈ F[X] is the zero polynomial (appropriately padded).

2. Query the oracle to compute β := ρ̂(cm). If β ∈ {b1, . . . , bn+2`}, resample ω and recompute cm until
this is not the case. Abort if we resample more than κ := λ/(log |F| − log(n+ 2`)) times.14

3. Sample a random point x ∈ Fm.
4. Query the oracle to compute y := ρ̂(x).
5. Output the accumulator acc :=

(
(cm, β), (x, y)

)
.

Observe that the probability that the simulator aborts in Step 2 is at most negl(λ). By Claim 3.4, with all but
negligible probability, all of the sampled cm are distinct; hence the probability that ρ̂(cm) ∈ {b1, . . . , bn+2`}
for all sampled cm is at most

(
n+2`
|F|
)κ

+ negl(λ) = negl(λ).
We argue that (ρ̂, pp, acc) above is indistinguishable from that produced by the accumulation prover.

Since S does not program any oracle points, we fix an oracle ρ̂← C, then argue that pp and acc output by S
are distributed correctly, given ρ̂.

First, the real and simulated pp have the same distribution: they are a commitment key ck← CM.Setup(1λ).
Next, we show that the real and simulated acc =

(
(cm, β), (x, y)

)
are indistinguishable. It suffices to

argue the indistinguishability of cm and x (between the real protocol and the simulation), because β = ρ̂(cm)
and y = ρ̂(x) in both the real protocol and the simulation.

• cm: Since CM is (statistically/computationally) hiding, cm is (statistically/computationally) indistinguish-
able from a commitment to any other message of the same length. This is true even if the adversary is given
many independent commitments to the same message. Note that apart from the choice of message, the
prover and simulator sample cm in the same way.

• x: Since β 6∈ {b1, . . . , bn+2`} (else the simulator aborts), in the real protocol, as in the simulation, g(β) is
uniformly random in Fm. This follows from a standard algebraic fact, stated below.

Fact 7.3. Let b1, . . . , bN+1 ∈ F be distinct field elements, and let x1, . . . , xN ∈ Fm. Sample xN+1 ← Fm
uniformly and construct g to be the (unique) interpolation of the points (b1, x1), . . . , (bN+1, xN+1) ∈
F× Fm of minimal degree. Then for any point β ← F \ {b1, . . . , bN}, g(β) is uniformly random in Fm.

Efficiency. We discuss the efficiency of Construction 1.

• Generator. Efficiency follows from the efficiency of CM.Setup, which takes poly(λ) time.

• Indexer. This takes poly(λ) time.

• Accumulation prover. Running Pρ̂ involves computing the polynomial g via polynomial interpolation,
committing to (f, g), evaluating g at n+ 2`+ 1 points, computing the polynomial f via making n+ 2`+ 1
queries to ρ̂ then interpolating. These are all operations that can be accomplished in time polynomial in λ.

• Accumulator size. Consider the first point (cm, ρ̂(cm)). Since the commitment scheme CM has commitment
size m, we know that cm ∈ {0, 1}m ⊆ Fm. Then, the point (cm, ρ̂(cm)) is in Fm × F. The second point
of acc is (g(β), f(β)), which is in Fm × F due to the definitions of f, g.

• Accumulation proof size. The accumulation proof πV includes of a single-variate polynomial f of degree
at most m · d · (n + 2` + 1), which can be represented with d · (n + 2` + 1) + 1 elements of F. It also
includes commitment randomness, which is a bitstring of poly(λ) length.
14If the field F is of superpolynomial size (and n, ` are polynomially bounded) then resampling is not necessary.

39

• Accumulation verifier. The accumulation verifier V computes the polynomial g via interpolation, a single
evaluation of g, n+2`+1 evaluations of f , and the commitment CM.Commit(ck, ((x1, . . . , xn+2`+1), f);ω).
Note that V makes no oracle queries.

• Decider. Dρ̂ makes 2 queries to ρ̂.

40

8 SNARKs for low-degree oracle computations

We prove that there exist SNARKs in the low-degree random oracle model for low-degree oracle computations.

Theorem 8.1 (restatement of Theorem 1). Let C = LD[F ,m, d] be a low-degree random oracle, where
F = {Fλ}λ∈N is a family of fields, m : N → N an arity function, and d : N → N a degree function (see
Definition 4.16) such that m(λ) ≥ 2 log |Fλ| and |Fλ| = λω(1). If (standard model) collision-resistant
functions exist, then there exists a transparent (zero-knowledge) SNARK relative to C for NPC .

The theorem follows immediately from the following three steps. First, in Section 8.1 we prove that, for
any given oracle distribution O, we can construct a SNARK in the O-model for O-oracle computations given
(i) a SNARK in the O-model for non-oracle computations, and (ii) an accumulation scheme for O-queries.
Second, in Section 8.2 we prove that there exist SNARKs for non-oracle computations in any linear code
random oracle model with efficient constraint detection. Third, we instantiate the accumulation scheme from
the first step with the one for low-degree random oracles in Section 7; this allows us to setO := LD[F ,m, d].

8.1 SNARKs for oracle computations via query accumulation

We describe a generic SNARK construction in any oracle model from a SNARK for non-oracle computations
and an accumulation scheme for queries to the oracle in that model.

Lemma 8.2. Let O be an oracle distribution. Suppose that:
• ARGin = (Gin, Iin,Pin,Vin) is a SNARK in theO-oracle model for NP computations (with no oracles), and
• AS = (G, I,P,V,D) is an accumulation scheme for O-queries (in particular, V makes no oracle query).
Then ARGout = (Gout, Iout,Pout,Vout) in Construction 2 is a SNARK relative to O for NPO. Moreover, if
ARGin is zero-knowledge and AS is zero-knowledge, then ARGout is zero-knowledge.

Construction 2. Fix a security parameter λ ∈ N and an oracle θ in the support of the oracle distribution
O(λ). Let Rθ = {(i,x,w) : M θ(i,x,w) = 1} ∈ NPθ be an oracle (indexed) relation. We define a
non-oracle (indexed) relationRin capturing the same computation:

Rin :=

{(
(i, avk), (x, acc), (w, tr, πV)

)
:
M◦(i,x,w, tr) = 1
∧ V(avk, tr,⊥, acc, πV) = 1

}
∈ NP ,

where M◦ works like M except that oracle queries are answered using the query-answer transcript tr,
V is the verifier of the accumulation scheme AS, and ⊥ denotes an empty (old) accumulator. Note that
M θ(i,x,w) = M◦(i,x,w, tr) if tr is the correct query-answer transcript for the oracle θ.

We construct a SNARK ARGout forRθ from a SNARK ARGin forRin and AS, as follows.

• Gout(1λ):

1. Sample public parameters for the accumulation scheme: ppAS ← G(1λ).
2. Sample public parameters for the SNARK: ppin ← Gin(1λ).
3. Output the public parameters ppout := (ppAS, ppin).

• Iθout
(
ppout = (ppAS, ppin), i

)
:

1. Compute the accumulation keys: (apk, avk, dk) := Iθ(ppAS).
2. Compute the SNARK keys: (ipkin, ivkin) := Iθin(ppin, (i, avk)).
3. Set the proving key ipkout := (apk, ipkin).

41

4. Set the verification key ivkout := (dk, ivkin).
5. Output the key pair (ipkout, ivkout).

• Pθout(ipkout = (apk, ipkin),x,w):

1. Run M θ(i,x,w) and record the transcript tr of queries to θ and corresponding answers.
2. Compute an accumulator for these queries: (acc, πV)← Pθ(apk, tr,⊥).
3. Compute a SNARK: πin ← Pθin(ipkin, (x, acc), (w, tr, πV)).
4. Output πout := (acc, πin).

• Vθout
(
ivkout = (dk, ivkin),x, πout = (acc, πin)

)
:

1. Check that Dθ(dk, acc) = 1.
2. Check that Vθin(ivkin, (x, acc), πin) = 1.

Proof of Lemma 8.2. We discuss completeness, knowledge soundness, and zero-knowledge.

Completeness. Fix an oracle θ ∈ O(λ), (i,x,w) ∈ Rθ, public parameters ppout ∈ Gout(1λ), and
SNARK keys (ipkout, ivkout) ∈ Iθout(ppout, i). We argue that for πout ← Pθout(ipkout,x,w) it holds that
Vθout(ivkout,x, πout) = 1 with probability 1, as follows.

• Dθ(dk, acc) = 1:

The prover Pθout runs the accumulation prover (acc, πV)← Pθ(apk, tr,⊥) where tr is the (correct) query-
answer transcript of the computation M θ(i,x,w) (and the list of old accumulators is set to ⊥). By the
completeness of the accumulation scheme AS (which is for accumulating queries to θ), we know that
Dθ(dk, acc) = 1 and V(avk, tr,⊥, acc, πV) = 1 (we use this latter fact below).

• Vθin(ivkin, (x, acc), πin) = 1:

The prover Pθout runs the SNARK prover πin ← Pθin(ipkin, (x, acc), (w, tr, πV)), where (ipkin, ivkin) are a
SNARK key pair computed by Iθin on input (ppin, (i, avk)). Note that ((i, avk), (x, acc), (w, tr, πV)) ∈ Rin

because: (i)M◦(i,x,w, tr) = 1 since (i,x,w) ∈ Rθ and tr containsM θ’s correct query-answer transcript;
and (ii) V(avk, tr,⊥, acc, πV) = 1 (by the previous bullet point). By the completeness of the SNARK
ARGin, we know that Vθin(ivkin, (x, acc), πin) = 1.

Knowledge soundness. Suppose that ARGin has knowledge soundness error εin(λ) and AS has soundness
error εAS(λ). We argue that ARGout has knowledge soundness error εin(λ) + εAS(λ).

We explain how to transform an adversary P̃out for ARGout for auxiliary-input distribution Dout into an
adversary P̃in for ARGin for a related auxiliary-input distribution Din.

• Din equals Dout augmented with public parameters for the accumulation scheme AS: Din(ppin) samples
ppAS ∈ G(1λ), sets ppout := (ppAS, ppin), samples aiout ← Dout(ppout), and outputs aiin := (ppAS, aiout).

• The adversary P̃in receives query access to θ ∈ O(λ) and input (ppin, aiin) where ppin ← Gin(1λ) and
aiin = (ppAS, aiout) ∈ Din(ppin) and works as follows.

P̃θin(ppin, aiin):
1. Run (i,x, πout)← P̃θout(ppout, aiout) for ppout := (ppAS, ppin).
2. Parse πout as (acc, πin).
3. Run the accumulation indexer (apk, avk, dk) := Iθ(ppAS).
4. Output ((i, avk), (x, acc), πin).

42

Let Ein be an extractor (for the auxiliary-input distribution Din) for ARGin. Below we construct an
extractor Eout (for the auxiliary-input distribution Dout) for ARGout.

Eθ,P̃out
out (ppout, aiout):

1. Construct the algorithm P̃in from the algorithm P̃out as above (black-box access suffices).
2. Parse ppout as (ppAS, ppin).
3. Run (w, tr, πV)← Eθ,P̃in

in (ppin, aiin).
4. Output w.

We argue that the probability that Vout(ivkout,x, πout) = 1 and Eθ,P̃out
out (ppout, aiout) fails to output a

witness w such that (i,x,w) ∈ Rθ is at most εin(λ) + εAS(λ).We first define the following events.

• E1: Vθout(ivkout,x, πout) = 1.
• E2: ((i, avk), (x, acc), (w, tr, πV)) 6∈ Rin.
• E3: tr is inconsistent with θ.

Note that if (i,x,w) 6∈ Rθ then E2 or E3 holds (because M◦ agrees with M when the oracle transcript tr is
consistent with θ). Hence it suffices to upper bound the probability:

Pr[E1 ∧ (E2 ∨ E3)] ≤ Pr[E1 ∧ E2] + Pr[E1 ∧ E3] .

We bound each term separately.

• Pr[E1 ∧ E2]: By the knowledge soundness of ARGin, we have that Vθin(ivkin, (x, acc), πin) = 1 (E1 holds
in particular) and ((i, avk), (x, acc), (w, tr, πV)) 6∈ Rin (E2 holds) with probability at most εin(λ).

• Pr[E1 ∧ E3]: By the soundness of AS, we have that Dθ(dk, acc) = 1 (E1 holds in particular) and tr is
inconsistent with θ (E3 holds) with probability at most εAS(λ).

Zero knowledge. We argue that if ARGin is zero knowledge and AS is zero knowledge then so is ARGout.
Consider the simulator Sout for ARGout defined as follows.

• Parameter generation: Sout(1λ)→ ppout.

1. Simulate public parameters for AS: ppAS ← SAS(1
λ).

2. Simulate public parameters for ARGin: ppin ← Sin(1λ).
3. Output ppout := (ppAS, ppin).

• Proving: Sθout(i,x)→ πout.

1. Run the AS indexer to compute accumulation keys: (apk, avk, dk) := Iθ(ppAS).
2. Run the AS simulator to sample an accumulator: acc← SθAS(ppΦ = ⊥, iΦ = ⊥).
3. Run the ARGin simulator to sample a SNARK: πin ← Sθin((i, avk), (x, acc)).
4. Output πout := (acc, πin).

• Query responses: Sθout(x)→ y.

1. Run y ← Sθin(x) and output y.

To prove zero knowledge we consider the following hybrid simulator.

• Parameter generation: Shyb(1λ)→ ppout.

43

1. Run the AS generator to get the accumulation scheme’s public parameters ppAS ← G(1λ).
2. Simulate public parameters for ARGin: ppin ← Sin(1λ).
3. Output ppout := (ppAS, ppin).

• Proving: Sθhyb(i,x,w)→ πout.

1. Run M θ(i,x,w) and record the transcript tr of queries to θ and the corresponding answers.
2. Run the AS indexer to compute the accumulation keys: (apk, avk, dk) := Iθ(ppAS).
3. Compute an accumulator: (acc, πV)← Pθ(apk, tr,⊥).
4. Simulate a SNARK proof: πin ← Sθin((i, avk), (x, acc)).
5. Output πout := (acc, πin).

• Query responses: Sθhyb(x)→ y.

1. Run y ← Sθin(x) and output y.

LetA be a polynomial-size honest stateful adversary (per the definition of zero knowledge in Section 3.2).
We define three hybrids.

• H0 (real experiment): The distribution of Aθ(πout) when interacting with Pout (the LHS of Eq. 1).
• H1 (hybrid experiment): The distribution of AShyb(πout) when interacting with Shyb.
• H2 (simulated experiment): The distribution of ASout(πout) when interacting with Sout (the RHS of Eq. 1).

Since A is honest, by the completeness of AS, A induces an honest adversary for ARGin. Hence by the
zero-knowledge property of ARGin, H0 and H1 are negl(λ)-close in statistical distance.

Since tr is generated using θ, Shyb induces an honest adversary for AS. Hence H1 and H2 are negl(λ)-
close in statistical distance by the zero-knowledge property of AS.

We conclude that the statistical distance between H0 and H2 is negligible.

Remark 8.3. We do not know whether if we merely assume that ARGin is a SNARG then we can conclude
that ARGout in Construction 2 is a SNARG. In the above proof, we establish soundness of ARGout by
efficiently extracting the query-answer transcript tr, which we then use to construct an efficient adversary
against the computational soundness property of AS. But if we merely assume that ARGin is (computationally)
sound then it is not clear how to appeal to the computational soundness of AS. More generally, we leave it as
an open question to construct a SNARG relative to O for NPO from a SNARG relative to O for NP (and a
suitable accumulation scheme for O).

8.2 SNARKs for non-oracle computations in any oracle model

We show that there exists a SNARK for non-oracle computations in any linear code random oracle model
with efficient constraint detection.

Lemma 8.4. Let C = {Cλ ⊆ (Dλ → Fλ)}λ∈N be a family of linear codes with efficient constraint detection
where |Fλ| = λω(1). Suppose moreover that C is systematic with arity m for m(λ) ≥ 2 log |Fλ|. Then there
exists a SNARK relative to C for anyR ∈ NP (unconditionally).

We prove Lemma 8.4 by instantiating the construction below with: (i) a PCP of knowledge with polyno-
mial proof length and knowledge soundness error negl(λ) (e.g. from [BFLS91]); and (ii) the unconditional
vector commitment in the C -oracle model guaranteed by Lemma 8.6.

44

Construction 3 (Micali SNARK [Mic00] in a linear code random oracle model). Fix a security parameter
λ ∈ N and an oracle ρ̂ in the support of Cλ. Let (I,P,V) be a (holographic) PCP with proof length `. The
(preprocessing) Micali SNARK ARGMic = (G, I,P,V) is constructed as follows.

For simplicity we assume that F is sufficiently large to encode the PCP randomness r; if not, we can
obtain additional randomness from the oracle in some canonical way. Throughout the construction, we use ρ̂
as a function ρ̂ : {0, 1}m → F (i.e., there is no need to query ρ̂ outside of the systematic part); all calls to ρ̂
should therefore be interpreted as calls to ρ̂ ◦ ψ for the canonical injection ψ : {0, 1}m → D.

• G(1λ):

1. Sample public parameters for the vector commitment scheme: ppVC ← VC.Setup(1λ, 1`).
2. Output the public parameters pp := ppVC.

• I ρ̂(pp, i):

1. Compute the encoded index I(i).
2. Compute a (vector) commitment cm0 := VC.Commitρ̂(pp, I(i);⊥).
3. Create the proving key ipk := (pp, i, I(i)) and the verification key ivk := (pp, cm0, ρ̂(i)).
4. Output the key pair (ipk, ivk).

• P ρ̂(ipk,x,w):

1. Parse ipk as (ppVC, i, I(i)).
2. Compute the PCP string: Π← P(i,x,w).
3. Sample commitment randomness ω1, and compute the commitment cm1 := VC.Commitρ̂(ppVC,Π;ω1).
4. Choose a random salt s← {0, 1}λ.
5. Derive the PCP randomness r := ρ̂(s, ρ̂(i),x, cm1).
6. Simulate VI(i),Π(x; r). Denote V’s queries to I(i) as Q0 ⊆ [|I(i)|] and to Π as Q1 ⊆ [`].
7. Open I(i) at Q0: πVC,0 ← VC.Openρ̂(ppVC, I(i), Q0;⊥).
8. Open Π at Q1: πVC,1 ← VC.Openρ̂(ppVC,Π, Q1;ω1).
9. Output the proof π := (s, ρ̂(i), cm1, (Q0, I(i)|Q0 , πVC,0), (Q1,Π|Q1 , πVC,1)).

• V ρ̂(ivk,x, π):

1. Parse ivk as (ppVC, cm0, ρ̂(i)).
2. Parse π as (cm1, (Q0,a0, πVC,0), (Q1,a1, πVC,1)), where a0 : Q0 → Σ and a1 : Q1 → Σ.
3. Derive the PCP randomness r := ρ̂(ρ̂(i),x, cm1).
4. Check that

– VC.Checkρ̂(ppVC, cm0, Q0,a0, πVC,0) = 1,
– VC.Checkρ̂(ppVC, cm1, Q1,a1, πVC,1) = 1, and
– Simulate the PCP verifier V to see if it accepts, on input x, randomness r, and with

* queries to I(i) answered with the corresponding answer in a0, and
* queries to Π answered with the corresponding answer in a1.
If any query answer is undefined, abort and output 0.

Proof. We prove completeness, knowledge soundness, and zero knowledge.

Completeness. Fix an oracle ρ̂ ∈ supp(Cλ), tuple (i,x,w) ∈ Rθ, public parameters pp ∈ Gρ̂(1λ, 1`), and
SNARK keys (ipk, ivk) ∈ I ρ̂(pp, i). We argue that for every π ∈ P ρ̂(ipk,x,w) it holds that V ρ̂(ivk,x, π) =
1, by establishing that the three conditions below hold.

45

• VC.Checkρ̂(ppVC, cm0, Q0,a0, πVC,0) = 1:

The indexer I ρ̂(pp, i) outputs a verification key ivk containing cm0 := VC.Commitρ̂(ppVC, I(i);⊥). The
prover P ρ̂(ipk,x,w) simulates a set of queries to the encoded index I(i), denoted Q0, and records
corresponding set of query answers I(i)|Q0 from I(i). Next, P ρ̂ computes the VC opening πVC,0 =
VC.Openρ̂(ppVC, I(i), Q0;⊥). By the correctness of VC, VC.Checkρ̂(ppVC, cm0, Q0, I(i)|Q0 , πVC,0) = 1.

• VC.Checkρ̂(ppVC, cm1, Q1,a1, πVC,1) = 1:

The prover P ρ̂(ipk,x,w) runs the PCP prover Π ← P(i,x,w), samples commitment randomness ω1,
and computes the commitment cm1 := VC.Commitρ̂(ppVC,Π;ω1). Next, P ρ̂ simulates a set of queries
to the PCP string Π, denoted Q1, and records corresponding set of query answers Π|Q1 from Π. Fi-
nally, P ρ̂ computes the VC opening πVC,1 = VC.Openρ̂(ppVC,Π, Q1;ω1). By the correctness of VC,
VC.Checkρ̂(ppVC, cm1, Q1,Π|Q1 , πVC,1) = 1.

• The simulated PCP verifier V accepts, on input x, randomness r, and with

– queries to I(i) answered with the corresponding answer in a0 : q0 → Σ, and
– queries to Π answered with the corresponding answer in a1 : q1 → Σ.

Both the prover P ρ̂ and verifier V ρ̂ compute the same PCP randomness r, which is used by the PCP
verifier V. Since P ρ̂ simulates VI(i),Π(x; r) honestly, V ρ̂’s execution of V will make the same queries
(but answering queries with P ρ̂’s recorded oracle answers). Since (i,x,w) ∈ R, the completeness of the
PCP implies that the simulated PCP verifier V accepts.

Knowledge soundness. We argue that ARGMic has knowledge soundness error κ = O(t·κPCP)+t2/|Fλ|.15

We define the extractor E as follows.

E ρ̂,P̃(pp, ai):
1. Run the malicious prover (i,x, π; tr)← P̃ ρ̂(ai).
2. Compute (ipk, ivk) := I(i). If V ρ̂(ivk,x, π) = 0, stop.
3. Let y∗ := ρ̂(i). Compute the fork index i := FPCλ(tr, (y∗,x, cm1)).
4. Compute the number of forks N := 8 · (λ+ ` log |Σ|).
5. Run the N -fork forking algorithm MFork: ((ij , πj), trj)j∈[N] ← MForkP̃,p(N, tr, i, ai), where

p((y∗,x, cm1), i′, π′, tr′) := Vtr(ivk,x, π′) for (ipk, ivk) := Itr(i).
6. If ij 6= i for any j ∈ [N], output COL and abort.
7. If there exist q ∈ [`] and j, j′ ∈ [N] such that a(j)

1 [q] 6= a
(j′)
1 [q], output COL and abort.

8. Construct a PCP string Π: for each q ∈ [`], if there exists j ∈ [N] such that q ∈ Q(j)
1 , set

Π[q] := a
(j)
1 [q]. If not, set Π[q] := 0.

9. Run the PCP extractor w := EPCP(i,x,Π).
10. Output w.

We fix some (tr, i, ai). Let ((x1, y1), . . . , (xt, yt)) := tr, and (y∗,x, cm1) := xi. We bound the prob-
ability, for any fixed choice of tr, that the extractor outputs a “bad” PCP. For a proof string Π, define
µ(i,x,Π) := Prr[V

I(i),Π(x; r) = 1].

Claim 8.5. Pr[¬COL ∧ µ(i,x,Π) < δi,x(y1, . . . , yi−1; ai)/4] ≤ 2−λ, where δi,x is as defined in Eq. 4.
15An identical soundness argument yields κ = O(t ·κPCP) + negl(λ) when VC is instantiated with any (computationally) binding

vector commitment.

46

Proof. Let δ := δi,x(y1, . . . , yi−1; ai). We show that for any fixed string Π∗ ∈ Σ` such that µ := µ(i,x,Π∗) <
δ/4,

Pr
Π←E ρ̂,P̃

[Π = Π∗] ≤ |Σ|−` · 2−λ .

We consider an execution of the MFork algorithm as in E , and define the following random variables over
this joint probability space. For K is as in Lemma 5.8, define the random variable

X :=

{
K if MFork outputs Π∗

∞ otherwise
.

Let ri := tri(cm) be the PCP verifier randomness sampled in the i-th invocation of Fork. Let Y be the
random variable whose value is the smallest integer ` such that

∑`
i=1 V

Π∗(i,x; ri) = N , or∞ if there is no
such `. Observe that Y ≤ X with probability 1. Hence for all τ ,

Pr
Π←E ρ̂,P̃

[Π = Π∗] = Pr[X <∞] ≤ Pr[Y ≤ τ] + Pr[τ < X <∞] .

Let τ := 2N/δ. Note that Y ≤ τ if and only if
∑K

i=1 V
Π∗(i,x; ri) ≥ N ; the mean of this sum is

2Nµ/δ < N/2 by assumption on Π∗. Hence by a Chernoff bound, Pr[Y ≤ τ] ≤ e−N/6. Next observe that

Pr[τ < X <∞] ≤ Pr[K > τ] .

By Lemma 5.8, E[K] = N/δ. Hence by a Chernoff bound, Pr[K > 2N/δ] ≤ e−N/8. Thus Pr
Π←E ρ̂,P̃ [Π =

Π∗] ≤ 2e−N/8 ≤ |Π|−` · 2−λ. The claim follows by a union bound over all Π∗ with µ(i,x,Π∗) < δ/4 (of
which there are at most |Σ|`).

Let κPCP be the knowledge error of PCP. By the construction of E , it holds that

κ = E~y,ai[
∑
i,x

1Si,x(~y, ai) · 1(µ(i,x,Π) < κPCP)]

=
∑
i,x

Ey1,...,yi−1,ai[δi,x(y1, . . . , yi−1; ai) · Pr[µ(i,x,Π) < κPCP]]

≤ t ·max{4κPCP, 2−λ}+ Pr[COL] .

Zero knowledge. Let SPCP be the honest-verifier zero-knowledge simulator for PCP.

• Parameter generation: S(1λ)→ pp.

1. Run pp← G(1λ) and output pp.

• Proving: Sθ(pp, i,x, tr)→ π.

1. Sample PCP randomness r ← F.
2. Sample a PCP local view (a1 : Q1 → Σ)← SPCP(i,x, r).
3. For x ∈ Q1, set Π[x] := a[x]; for x /∈ Q1, set Π[x] := 0.
4. Sample a salt s← {0, 1}λ.
5. Generate π as in Steps 6 to 9 of the honest prover P .
6. If tr(s, ρ̂(i),x, cm1) 6= ⊥, abort.
7. If tr(s, ρ̂(i),x, cm1) = ⊥, add the mapping (s, ρ̂(i),x, cm1) 7→ r to tr, and store tr as the state.

47

8. Output π.

• Query responses: Sθ(x)→ y.

1. If tr(x) 6= ⊥, return tr(x). (tr is stored as the state of S.)
2. If tr(x) = ⊥, sample a random y ∈ F, add the mapping x 7→ y to tr, and return y.

Above, the simulator uses efficient constraint detection to evaluate tr given tr. Provided tr(s, ρ̂(i),x, cm1) =
⊥, indistinguishability can be argued by the hiding property of VC and the honest-verifier zero-knowledge
guarantee of PCP. By Lemma 4.14, the number of points x ∈ {0, 1}m such that tr(x) 6= ⊥ is at most t.
Hence the probability (over the choice of s) that tr(s, x) 6= ⊥ for any x is at most t/2λ.

The following lemma is a straightforward application of the collision-resistance of linear code random
oracles (Lemma 4.15).

Lemma 8.6. Merkle trees [Mer87] are a secure vector commitment in any systematic linear code random
oracle model with arity m(λ) ≥ 2 log |Fλ| and |Fλ| = λω(1). Moreover, this construction can be made hiding
following [BCS16].

The arity requirement ensures that the oracle is sufficiently compressing to be used as the hash function
in the Merkle tree construction (and could be relaxed somewhat).

8.3 Lower bound

We show that Theorem 8.1 is false, even for deterministic computations, if we replace C with a standard
random oracle. It follows by Lemma 8.2 that there does not exist an accumulation scheme for oracle queries
in the ROM (since there exist SNARKs for NP in the ROM).

Theorem 8.7. Let O be the standard random oracle. For any polynomial T there is a language LO ∈
DTIME(T)O such that if (I,P,V) is a (preprocessing) non-interactive argument system for LO relative to
O then V must make T (λ) queries.

Proof. Consider the indexed language LO given by: for each λ ∈ N, B ∈ [2λ] and θ ∈ supp(O(λ)),
(⊥, B) ∈ Lθ if and only if

⊕T (λ)
i=1 θ(B + i)1 = 1, where θ(B + i)1 denotes the first bit of θ(B + i). Let

(I,P,V) be a SNARK for LO, and suppose that V makes fewer than T queries.
To attack the scheme we generate a proof π as follows. Choose B ∈ [2λ] uniformly at random, and

output (⊥, B) as the index-instance pair. We have that (⊥, B) ∈ Lθ with probability 1/2 over the choice of
θ. Suppose now that (⊥, B) /∈ Lθ. Choose i ∈ [T] uniformly at random, and let θi be defined as

θi(x) :=

{
θ(x) if x = B + i, and
θ(x) otherwise.

Compute (ipk′, ivk′) := Iθi(⊥), and compute π as π ← Pθi(ipk′, B). (Note that θi can be efficiently
simulated via queries to θ.)

Observe that (⊥, B) ∈ Lθi . Hence by the completeness guarantee, Vθi(ivk′, B, π) = 1. If Vθ(ivk, B, π) =
0 where (ipk, ivk) := Iθ(⊥), then I or V must query θ at B + i. Since I does not know B, the probability
that I queries θ at B + i is negligible. Since V makes fewer than T queries, the probability that V queries θ
at B + i is at most 1− 1

T . Thus Vθ(pp, 1λ, π) = 1 with probability at least 1/T − negl(λ).

We remark that the step at which the above proof fails in the LDROM is “either I or V must query θ at
B + i.” Since low-degree oracles have distance, changing the value of θ(B + i) has a global effect.

48

9 Proof-carrying data from relativized SNARKs

We give a generic construction, for any oracle O, of a PCD scheme relative to O (for compliance predicates
with access toO) from a SNARK relative toO for NPO. The construction and its proof are a direct adaptation
to the relativized setting of the construction in [COS20]. The only changes are that we grant oracle access
to the appropriate algorithms in the construction, and we adapt the proof of knowledge soundness to our
definition of knowledge soundness for non-interactive arguments (see Section 3.2), which differs somewhat
from that of [COS20]. We first recall the definition of depth for compliance predicates.

Definition 9.1. The depth of a PCD transcript T, denoted ∆(T), is the depth of the underlying rooted DAG.
For λ ∈ N, the depth of a compliance predicate Φ with access to O(λ), denoted ∆(Φ, λ), is defined to be
maximum of ∆(T) over all Φθ-compliant transcripts T and θ ∈ supp(O(λ)).

Theorem 9.2. There exists a polynomial-time transformation T such that if ARG = (G, I,P,V) is a
(preprocessing) SNARK relative to O for NPO, then PCD = (G, I,P,V) := T(ARG) is a (preprocessing)
PCD scheme relative to O for constant-depth compliance predicates with access to O. Moreover, if ARG is
zero-knowledge, then PCD is also zero-knowledge.

Remark 9.3. As in [COS20], the efficiency requirement for the SNARK verifier in Theorem 9.2 can be
relaxed to sublinear in the index (circuit) size.

Construction 4. Fix a security parameter λ ∈ N and an oracle θ in the support of the oracle distributionO(λ).
We denote by V(λ,N,k) the circuit corresponding to the computation of the SNARK verifier V , for the security
parameter λ, checking indices of size at most N , and instances of size at most k. Let Φ: F(m+2)` → F be an
oracle compliance predicate represented by a circuit with θ-gates. The circuit that realizes the recursion is as
follows:

[R
(λ,N,k)
V,Φ,pp]θ((ivk, zout), (zloc, (z

(i)
in , π

(i)
in)i∈[m])):

1. Check that the compliance predicate Φ(zout, zloc, z
(1)
in , . . . , z

(m)
in) accepts.

2. If there exists i such that (z
(i)
in , π

(i)
in) 6= ⊥,

check that the SNARK verifier [V(λ,N,k)]θ(ivk, (ivk, z
(i)
in), π

(i)
in) accepts for every i ∈ [m].

We describe the PCD scheme’s generator, indexer, prover, and verifier.

• G(1λ):

1. Sample public parameters for the SNARK: pp := G(1λ).
2. Output pp.

• Iθ(pp,Φ):

1. Compute N := N(λ, |Φ|,m, `), as given in [COS20, Lemma 11.8].16

2. Construct the (oracle) circuit R := R
(λ,N,|ivk(λ,N)+`|)
V,Φ,pp .

3. Compute the index key pair (ipk, ivk)← Iθ(pp, R).

• Pθ(ipk, zout, zloc, ~zin, ~πin): output the proof πout ← Pθ(ipk, (ivk, zout), (zloc, ~zin, ~πin)).

16Since Fractal ([COS20, Construction 11.7]) and Construction 4 are the same, except that Construction 4’s SNARK verifier also
checks the oracle transcript, we can define N(λ, |Φ|,m, `) using [COS20, Lemma 11.8]. Note that the lemma’s v describes the size
of the SNARK verifier relative to O for NPO computations and includes the complexity of checking oracle queries.

49

• Vθ(ivk, zout, πout): accept if Vθ(ivk, (ivk, zout), πout) accepts.

The correctness and efficiency of the PCD scheme is essentially the same as in [COS20]. Below we
provide an adapted knowledge soundness analysis.

Proof of knowledge soundness. We present and then analyze the knowledge extractor.

Construction. The construction of the malicious SNARK prover P̃ and the PCD extractor Eθ,P̃ are the
same as in [COS20], except for the following differences.
• All SNARK and PCD algorithms (except G and G) have access to the oracle θ. In particular, this includes

sequence of extractors Eθ1, . . . ,Eθ∆ that define Eθ,P̃, where ∆ := ∆(λ) := maxΦ∈F ∆(Φ, λ).
• The SNARK’s malicious prover P̃ and extractor Eθ,P̃ run in (non-uniform) expected polynomial-time.

Hence, we discuss the efficiency of Eθ,P̃ via running time instead of circuit size.

Running time. This analysis is essentially identical to that of [COS20], except that we analyze expected
running time because P̃ and Eθ,P̃ run in expected polynomial-time.

The j-th adversary P̃θj runs in expected time: E[time(Eθj−1)] + poly(λ) +O(2j). Thus, Eθ,P̃
θ
j runs in

(expected) time: e(E[time(Eθj−1)] + poly(λ) +O(2j)), where e is a function mapping the expected running

time of P̃θj to the expected running time of Eθ,P̃
θ
j . This means that E[time(Eθj)] ≤ e(E[time(Eθj−1)] +

poly(λ) + c · 2j) for some c ∈ N.
A solution for this recurrence (for e(n) ≥ n) is E[time(Eθ∆)] ≤ e(∆)(E[time(P̃)]+∆ ·poly(λ)+2c ·2∆)

for some c ∈ N, where e(∆) is the function e iterated ∆ times. In particular, since e is some polynomial, if
∆(Φ) is a constant, Eθ,P̃ runs in expected polynomial time.

Correctness. Suppose that P̃ causes Vθ to accept with probability µ. We show by induction that for all
j ∈ {0, . . . ,∆}, the transcript Tj output by Eθj is Φ-compliant up to depth j, Vθ(ivk, (ivk, z(v)), π(v)) = 1
for all v ∈ T, o(Tj) = o, and the predicate Φ ∈ F with probability µ− negl(λ).

For j = 0, this follows from Vθ accepting.
Now suppose that Tj−1 output by Eθj−1 is Φ-compliant up to depth j − 1, Vθ(ivk, (ivk, z(v)), π(v)) = 1

for all v ∈ T, o(Tj−1) = o, and the predicate Φ ∈ F with probability µ− negl(λ).
Let (~i, (ivk, z(v))v, (π

(v))v, (Φ,T
′), ~w)← Eθ,P̃ . By the knowledge soundness of ARG, with probability

µ−negl(λ), for v ∈ lT′(j), we have ([R
(λ,N,k)
V,Φ,pp]θ, (ivkv, z

(v)), ~w) ∈ Rθ, where ivkv = ivk where (ivk, ipk)←
Iθ(pp, [R(λ,N,k)

V,Φ,pp]θ).

Next, consider some v ∈ lT′(j). Since ([R
(λ,N,k)
V,Φ,pp]θ, (ivkv, z

(v)), ~w) ∈ Rθ, we obtain from ~w either:

• local data z(v)
loc and input messages (z

(i)
in , π

(i))i∈[m] such that Φ(zout, zloc, z
(1)
in , . . . , z

(m)
in) = 1 and for all

i ∈ [m] the SNARK verifier [V(λ,N,k)]θ(ivk, (ivk, z
(i)
in), π

(i)
in) = 1; or

• local data z(v)
loc such that Φ(zout, zloc,⊥, . . . ,⊥) = 1.

In both cases, z(v)
loc is appended to the label of v. In the former case, we label v’s children with

(z
(i)
in , π

(i))i∈[m] and so v is Φ-compliant, and for all of its descendantsw we have that [V(λ,N,k)]θ(ivk, (ivk, z
(w)
in), π

(w)
in) =

1. In the latter case, v has no children; by the base case, v is Φ-compliant. Thus, Tj ← Eθj is Φ-compliant up
to depth j.

Since ∆(Φ, λ) ≤ ∆, it must be the case that all vertices v at depth ∆ have no children, i.e. are in the base
case. Hence by induction, (Φ,T)← Eθ∆ outputs a Φ-compliant T, o(T) = o, and Φ ∈ F with probability at
least µ− negl(λ).

50

Remark 9.4. The generator G of the SNARK that we construct in Section 8 does not require access to the
oracle, and neither does the generator G of the resulting PCD scheme via the transformation Theorem 9.2. In
light of this, the definitions for SNARK and PCD in Sections 3.2 and 3.3 do not give generators access to the
oracle. That said, the transformation in Theorem 9.2 also works with generators that require the oracle: if the
SNARK generator G needs oracle access to θ, then the PCD generator G will also have oracle access to θ.

9.1 PCD in the LDROM

The following corollary is directly obtained by combining our SNARK in the low-degree random oracle
model (Theorem 8.1) with Theorem 9.2.

Corollary 9.5. Let C = LD[F ,m, d] = {Cλ = LD[Fλ,m(λ), d(λ)]}λ∈N be a family of low-degree
polynomial evaluation codes, where F = {Fλ}λ∈N is a family of fields, m : N→ N an arity function, and
d : N → N a degree function (see Definition 4.16) such that m(λ) ≥ 2 log |Fλ| and |Fλ| = λω(1). There
exists a PCD scheme relative to C for constant-depth compliance predicates with access to C , assuming the
existence of (standard-model) collision-resistant hash functions.

Since the proof of Theorem 8.1 yields an explicit knowledge extractor, we can provide a tighter character-
ization of the running time of the PCD extractor than the general bound in the prior section. This enables us
to give meaningful guarantees in the logarithmic depth regime, as we discuss below.

Running time of the extractor. Since C has efficient constraint detection (Theorem 4.17) and P̃ makes a
strict polynomial number of queries, we may assume without loss of generality that P̃ is non-redundant (by
Claim 4.11). Moreover, if P̃ is non-redundant then so is Eθ,P̃ .

For non-redundant adversaries P̃ , by examining Construction 3 and by Lemma 5.8, it holds that

e(τ) ≤ 2tN · τ + poly(λ)

where t is the number of queries made by P̃ and N = poly(λ) is the number of forks generated by MFork.
Plugging e into the generic expression for the running time of the PCD extractor, we obtain

time(Eθ∆) ≤ (2tN)∆ ·
(

time(Pθ) + 2c · 2∆ + poly(λ)
)
.

Considering the regime ∆ = O(log λ), this is poly(λ)∆; in particular, we can obtain meaningful guarantees
for logarithmic depth from superpolynomial assumptions. By comparison, the generic bound e(τ) ≤ τ c for
unknown constant c yields time(Eθ∆) ≤ poly(λ)c

∆
, which is exponential in λ in the same regime.

51

Acknowledgments

This research was supported in part by a donation from the Ethereum Foundation, and by DARPA under
Agreement No. HR00112020023.

References
[AABDS20] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of Symmetric-Key Primi-

tives for Advanced Cryptographic Protocols”. In: IACR Transactions on Symmetric Cryptology 2020.3
(2020), pp. 1–45.

[ABLSZ19] B. Abdolmaleki, K. Baghery, H. Lipmaa, J. Siim, and M. Zajac. “UC-Secure CRS Generation for
SNARKs”. In: Proceedings of the 11th International Conference on Cryptology in Africa. AFRICACRYPT ’19.
2019, pp. 99–117.

[Alb+19a] M. R. Albrecht et al. “Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVEL-
lous and MiMC”. In: Proceedings of the 25th International Conference on the Theory and Application
of Cryptology and Information Security. ASIACRYPT ’19. 2019, pp. 371–397.

[Alb+19b] M. R. Albrecht et al. “Feistel Structures for MPC, and More”. In: Proceedings of the 24th European
Symposium on Research in Computer Security. ESORICS ’19. 2019, pp. 151–171.

[AW09] S. Aaronson and A. Wigderson. “Algebrization: A New Barrier in Complexity Theory”. In: ACM
Transactions on Computation Theory 1.1 (2009), 2:1–2:54.

[BB04] D. Boneh and X. Boyen. “Short Signatures Without Random Oracles”. In: Proceedings of the 23rd
Annual International Conference on Theory and Application of Cryptographic Techniques. EURO-
CRYPT ’04. 2004, pp. 56–73.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “From Extractable Collision Resistance to Succinct
Non-Interactive Arguments of Knowledge, and Back Again”. In: Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference. ITCS ’12. 2012, pp. 326–349.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the Theory of
Computing. STOC ’13. 2013, pp. 111–120.

[BCFGRS17] E. Ben-Sasson, A. Chiesa, M. A. Forbes, A. Gabizon, M. Riabzev, and N. Spooner. “Zero Knowledge
Protocols from Succinct Constraint Detection”. In: Proceedings of the 15th Theory of Cryptography
Conference. TCC ’17. 2017, pp. 172–206.

[BCGTV15] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. “Secure Sampling of Public Parameters
for Succinct Zero Knowledge Proofs”. In: Proceedings of the 36th IEEE Symposium on Security and
Privacy. S&P ’15. 2015, pp. 287–304.

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. “Succinct Non-Interactive Arguments
via Linear Interactive Proofs”. In: Proceedings of the 10th Theory of Cryptography Conference.
TCC ’13. 2013, pp. 315–333.

[BCLMS21] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. “Proof-Carrying Data Without Succinct
Arguments”. In: Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21.
2021, pp. 681–710.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Proof-Carrying Data from Accumulation Schemes”.
In: Proceedings of the 18th Theory of Cryptography Conference. TCC ’20. 2020.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Proceedings of the 14th
Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

52

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: Proceedings of the 34th Annual International Cryptology Conference. CRYPTO ’14.
2014, pp. 276–294.

[BDFG21] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. “Halo Infinite: Proof-Carrying Data from Additive
Polynomial Commitments”. In: Proceedings of the 41st Annual International Cryptology Conference.
CRYPTO ’21. 2021, pp. 649–680.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. “Checking computations in polylogarithmic
time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing. STOC ’91.
1991, pp. 21–32.

[BG08] B. Barak and O. Goldreich. “Universal Arguments and their Applications”. In: SIAM Journal on
Computing 38.5 (2008). Preliminary version appeared in CCC ’02., pp. 1661–1694.

[BGG17] S. Bowe, A. Gabizon, and M. Green. A multi-party protocol for constructing the public parameters of
the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report 2017/602. 2017.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive Proof Composition without a Trusted Setup.
Cryptology ePrint Archive, Report 2019/1021. 2019.

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party Computation for zk-SNARK Parameters in
the Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050. 2017.

[BGV11] S. Benabbas, R. Gennaro, and Y. Vahlis. “Verifiable Delegation of Computation over Large Datasets”.
In: Proceedings of the 31st Annual International Cryptology Conference. CRYPTO ’11. 2011, pp. 111–
131.

[BN06] M. Bellare and G. Neven. “Multi-signatures in the plain public-Key model and a general forking
lemma”. In: Proceedings of the 13th ACM Conference on Computer and Communications Security.
CCS ’06. 2006, pp. 390–399.

[CFGS22] A. Chiesa, M. A. Forbes, T. Gur, and N. Spooner. “Spatial Isolation Implies Zero Knowledge Even in
a Quantum World”. In: Journal of the ACM 69.2 (2022), pp. 1–44.

[CFS17] A. Chiesa, M. A. Forbes, and N. Spooner. A Zero Knowledge Sumcheck and its Applications. Cryptol-
ogy ePrint Archive, Report 2017/305. 2017.

[CL20] A. Chiesa and S. Liu. “On the Impossibility of Probabilistic Proofs in Relativized Worlds”. In:
Proceedings of the 11th Innovations in Theoretical Computer Science Conference. ITCS ’20. 2020,
57:1–57:30.

[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and Transparent Recursive Proofs
from Holography”. In: Proceedings of the 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature Cards”. In:
Proceedings of the 1st Symposium on Innovations in Computer Science. ICS ’10. 2010, pp. 310–331.

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186–194.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs and Succinct NIZKs
without PCPs”. In: Proceedings of the 32nd Annual International Conference on Theory and Applica-
tion of Cryptographic Techniques. EUROCRYPT ’13. 2013, pp. 626–645.

[GKMMM18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. “Updatable and Universal Common
Reference Strings with Applications to zk-SNARKs”. In: Proceedings of the 38th Annual International
Cryptology Conference. CRYPTO ’18. 2018, pp. 698–728.

53

[GKRRS21] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Poseidon: A New Hash
Function for Zero-Knowledge Proof Systems”. In: Proceedings of the 30th USENIX Security Sympo-
sium. USENIX Security ’21. 2021, pp. 519–535.

[Gro10] J. Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: Proceedings of the
16th International Conference on the Theory and Application of Cryptology and Information Security.
ASIACRYPT ’10. 2010, pp. 321–340.

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Proceedings of the 35th
Annual International Conference on Theory and Applications of Cryptographic Techniques. EURO-
CRYPT ’16. 2016, pp. 305–326.

[Kil92] J. Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[KR08] Y. Kalai and R. Raz. “Interactive PCP”. In: Proceedings of the 35th International Colloquium on
Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[KST21] A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive Zero-Knowledge Arguments from Folding
Schemes. Cryptology ePrint Archive, Report 2021/370. 2021.

[Mau05] U. M. Maurer. “Abstract Models of Computation in Cryptography”. In: Proceedings of the 10th IMA
International Conference on Cryptography and Coding. IMA ’05. 2005, pp. 1–12.

[Mer87] R. C. Merkle. “A Digital Signature Based on a Conventional Encryption Function”. In: Proceedings
of the 10th Annual International Cryptology Conference. CRYPTO ’87. 1987, pp. 369–378.

[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000). Preliminary
version appeared in FOCS ’94., pp. 1253–1298.

[Sho97] V. Shoup. “Lower bounds for discrete logarithms and related problems”. In: Proceedings of the
16th International Conference on the Theory and Application of Cryptographic Techniques. EURO-
CRYPT ’97. 1997, pp. 256–266.

[Sma] N. P. Smart. ‘Bristol Fashion’ MPC Circuits. https://homes.esat.kuleuven.be/
˜nsmart/MPC/.

[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Ef-
ficiency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–
18.

[ZZ21] M. Zhandry and C. Zhang. The Relationship Between Idealized Models Under Computationally
Bounded Adversaries. Cryptology ePrint Archive, Report 2021/240. 2021.

54

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 Linear code random oracles
	2.2 Accumulation scheme for low-degree random oracles
	2.3 A forking lemma for linear code random oracles
	2.4 A zero-finding game for low-degree random oracles
	2.5 SNARKs for oracle computations
	2.6 Proof-carrying data from relativized SNARKs

	3 Preliminaries
	3.1 Notations
	3.2 Non-interactive arguments in oracle models
	3.3 Proof-carrying data
	3.4 Accumulation schemes
	3.5 Commitment schemes
	3.6 Vector commitment schemes

	4 Linear code random oracles
	4.1 Query transcripts and partial oracles
	4.2 Constraints
	4.3 Query complexity
	4.4 Low-degree random oracles

	5 Forking lemmas for linear code random oracles
	5.1 Basic forking algorithm
	5.2 Generic forking algorithm

	6 Oracle zero-finding games
	7 Accumulation scheme for low-degree random oracles
	8 SNARKs for low-degree oracle computations
	8.1 SNARKs for oracle computations via query accumulation
	8.2 SNARKs for non-oracle computations in any oracle model
	8.3 Lower bound

	9 Proof-carrying data from relativized SNARKs
	9.1 PCD in the LDROM

	Acknowledgments
	References

