
Force: Highly Efficient Four-Party
Privacy-Preserving Machine Learning on GPU

Yufan Jiang1,2, Tianxiang Dai1, Yong Li⋆1, Fei Mei1, Li Duan1, and Yulian
Sun1

1 Huawei European Research Center, Germany
{yufan.jiang,tianxiangdai,yong.li1,fei.mei,li.duan,yulian.sun1}@huawei.com

2 Karlsruhe Institute of Technology, Germany
yufan.jiang@partner.kit.edu

Abstract. Tremendous efforts have been made to improve the efficiency
of secure Multi-Party Computation (MPC), which allows n ≥ 2 parties
to jointly evaluate a target function without leaking their own private
inputs. It has been confirmed by previous research that Three-Party
Computation (3PC) and outsourcing computations to GPUs can lead
to huge performance improvement of MPC in computationally intensive
tasks such as Privacy-Preserving Machine Learning (PPML). A natural
question to ask is whether super-linear performance gain is possible for a
linear increase in resources. In this paper, we give an affirmative answer to
this question. We propose Force, an extremely efficient Four-Party Com-
putation (4PC) system for PPML. To the best of our knowledge, each
party in Force enjoys the least number of local computations, smallest
graphic memory consumption and lowest data exchanges between par-
ties. This is achieved by introducing a new sharing type X -share along
with MPC protocols in privacy-preserving training and inference that are
semi-honest secure in the honest-majority setting. By comparing the re-
sults with state-of-the-art research, we showcase that Force is sound and
extremely efficient, as it can improve the PPML performance by a factor
of 2 to 38 compared with other latest GPU-based semi-honest secure
systems, such as Piranha (including SecureML, Falcon, FantasticFour),
CryptGPU and CrypTen.

Keywords: MPC · Privacy-preserving machine learning · Four-party
computation

1 Introduction

Values have been constantly generated from machine learning (ML) over mass
data collected from different users. On the other hand, the importance of privacy
and data security have also been increasingly recognized, and more than 70%
of world countries and regions have installed legislation for privacy and data
security [52]. Technically, it is a good starting point to always keep sensitive
⋆ Corresponding author



2 Y. Jiang et al.

Table 1: Comparison of Force and state-
of-the-art works against semi-honest
adversaries, with max boosting factor.

Setting Ref. LAN WAN
Training Inference Inference

2PC Cheetah - CPU[23] - 1234x 70x
P-SecureML[40, 55] 14x 5.8x 13x

3PC CryptGPU[50] 6.5x 14x 10x
P-Falcon[54, 55] 2.1x 3.1x 2.4x

4PC
CrypTen[28] 38x 10x 29x

P-FantasticFour[12, 55] 4.7x 7.4x 10x
Force 1 1 1

Force

CNN
Layer

Conv.
FC. Pool. Act. Norm.

Operation Mult. Division Comparison

Protocol
L.-1

ΠMult(4.1) ΠDiv(4.1) ΠComp(4.4)

Protocol
L.-0

Πtrunc ΠBitToA(4.3) ΠchMode(4.1)

Pre-
processing

FPre
4PC impl. by ΠCMSGen(4.1)

and X -dabit(4.3)

Fig. 1: Overview of Force protocols

data at local storage and never reveal them on the Internet in plaintext, but to
preserve the usability of data distributed across owners remains challenging.

Secure multi-party computation protocols (MPC) have been designed for
multiple parties to jointly compute a function without revealing their own secret
inputs. Starting from the two-party case (2PC), frameworks have been proposed
[25, 27, 43] to offer various trade-offs of security and performance. Extending 2PC
to three party protocols (3PC), especially by tailoring the secret shares such that
a single corrupted party cannot learn anything useful about the complete secret
value, leads to a large leap in performance [2, 3] in the honest majority setting.
Although a giant gap in performance still remains, follow-up works [1, 28, 50]
have proposed algorithmic and engineering optimizations to bring MPC closer to
real-world and high-throughput applications, such as privacy-preserving machine
learning (PPML). Thus, a natural question to ask is: Can 4PC be non-trivially
faster than 3PC? In this paper, we give an affirmative answer. By introducing
a new sharing type X -share and a new set of protocols, our new Force frame-
work for 4PC is not only secure at its cryptographic core, but more impor-
tantly, it outperforms cutting-edge semi-honest secure 2PC/3PC/4PC solutions
for privacy-preserving machine learning remarkably by a factor of 2 to 38.

More specifically, we made the following contributions:

– New 4PC Protocols. Benefiting from a brand new sharing type called
X -share (Section 4.1), our 4PC matrix multiplication protocol achieves the
lowest number of local multiplications and number of ring elements sent/re-
ceived by each party. Besides, we design novel share conversion and com-
parison protocols with a new type of correlated randomness, the X -dabit
(Section 4.3), to achieve the least computational and communication costs.
Due to the symmetry property of X -share, we can eliminate the communi-
cation in 3PC by turning to the communication-free truncation proposed by
SecureML [40] to keep the precision consistent.

– Extensive Evaluations. With all the X -share optimized operations as
building blocks, shown in Fig. 1, Force greatly improves overall PPML per-
formance. We make fair comparisons between different systems under the
same setting. An overview of the evaluation is shown in Table 1. For a bet-
ter insight, we also include the latest CPU-only framework Cheetah [23].



Force 3

– Optimized Graphic Memory Usage. Unlike [25, 34, 38, 46], which pro-
vide inference-only implementations, our aim is to train real-world ML mod-
els such as VGG16 [49] with large batch size even for large datasets in MPC
over GPU. Given X -share (Section 4.1), Force greatly reduce the graphic
memory consumption of each party so that it can perform PPML train-
ing of one large dataset, ImageNet [48] on large networks like VGG16 with
BatchSize = 16, which was not possible in prior solutions.

2 Related Work

2.1 Privacy Preserving Machine Learning

In 2017, SecureML [40] firstly attempted to execute neural networks (NN) in
2PC, using ABY [13] shares with correlated randomness and mixed protocols
with pre-processing. Later attempts like miniONN (2017) [37], secureNN (2019)
[53], Falcon (2020) [54], Cheetah (2022) [23] and [22, 25, 34, 38, 39, 46, 56] still
follow the mixed protocol approach with various optimization for multiplication
and approximation methods for other non-linear operations. Recent 4PC systems
[5, 10, 12, 29, 30, 35] also continue with similar approach. All these mainly focus
on demonstrating the asymptotic feasibility of PPML and provable security of
the system. This might be the primary reason why few of them have taken
advantages of GPUs or adapted the solutions for specific ML frameworks.

2.2 PPML on GPU

Research on implementing PPML on GPU can be seen as a tour that starts from
two ends and finally meets in the middle.

On one hand, crypto researchers turn to GPUs for faster computation. Pu
et al. [45] in 2011 implemented Yao’s Garbled Circuit (GC) [16] on GPU. Later in
2013, Husted et al. [24] and Frederiksen and Nielsen [17] worked on more modern
GC protocols on GPUs. cuHE [11] brought homomorphic encryption (HE) onto
GPU in 2015. These pioneering works uncovered the potential of GPU-friendly
MPC, which could be up to 60 times faster than CPU-based solutions [17].

On the other hand, ML researchers pay more attention to privacy. Google
in 2016 proposed secure aggregation and Federated Learning (FL) [4] to train
shared models over data distributed across users. TensorFlow added support for
differential privacy (DP) [14] in 2019 [19]. Although being quite efficient, FL and
DP cannot guarantee the same security as MPC does [26, 51].

Finally, the two lines of research meet at CrypTen (2020) [28]. While still hav-
ing an ABY-style cryptographic core, the underlying MPC protocols in CrypTen
are abstracted in a more ML-oriented way so that it can offer PyTorch-like [42] in-
terfaces for ML practitioners, making the PPML framework more approachable
for non-cryptographers and extensible for arbitrary number of parties. CryptGPU
[50] further extends CrypTen with other GPU-friendly MPC components in a spe-
cial case: 3PC. In 2022, Watson et al. proposed Piranha [55], a modular frame-
work for accelerating generic secret sharing-based MPC protocols over GPU.



4 Y. Jiang et al.

With novel engineering optimizations, Piranha can train real PPML model such
as VGG [49], which was previously impossible on CryptGPU or CrypTen.

For other approaches to implement PPML such as using designated hardware,
we refer the reader to the nice surveys [6, 20, 41].

3 Preliminaries

We let a bold x denote a vector x := {x0, ..., xm−1} with size m.

3.1 Fixed-point computation

We define a fixed-point value as an ℓ-bit integer using two’s complement repre-
sentation, consisting of both integer part and decimal part with ℓ− p bits and p
bits respectively. Normally, addition and subtraction will be directly performed
over a Z2ℓ ring, since the result is supposed to remain below 2ℓ. Meanwhile,
although the multiplication could be performed in the same manner, the result
must be divided by 2p to maintain the same p-bit decimal precision.

3.2 Correlated Randomness

Correlated randomness are random values with special (algebraic) structural
relations that are generated during the pre-processing phase [13, 27, 39, 43] to
accelerate the online phase in MPC.

Replicated Shared Secrets and Zero Shares. As defined in [1], a secret
value x ∈ Z2ℓ is said to be replicated shared in 3PC, if three random values
x0, x1, x2 ∈ Z2ℓ are sampled with x = x0+x1+x2, and the pairs (x0, x1), (x1, x2)
and (x2, x0) are owned by each of the three parties respectively. We denote such
a sharing type as [·]RS. Addition and subtraction of two replicated shares [x]RS
and [y]RS can be locally computed by parties. The multiplication of [x]RS and
[y]RS in 3PC, however, requires parties to interact. More specifically, Pi is able
to compute zi = xiyi + xi+1yi + xiyi+1, yielding a 3-out-of-3 sharing of xy. In
order to recover the replicated share [xy]RS, Pi has to re-share their masked local
result zi+αi to one of the other two parties, where

∑
αi = 0. Such zero sharing

is the correlated randomness that can be derived from a pseudorandom function
PRF() with pre-shared keys [50]. We also call such a sharing type as replicated
share in general, if any share value xi is held by more than one party.

For Type Conversion : dabit. The dabit (doubly authenticated bit) is
a type of correlated randomness proposed by Rotaru and Wood [47] to mainly
support secure comparison protocol and sharing type conversion. Let b $← Z2 be
the randomness to be shared,

∑
the arithmetic sum in the ring, ⊕ the binary

XOR operation. Formally, dabit is defined as

dabit := ([b], ⟨b⟩) , such that b =
∑
i

[b]i = ⊕
i
⟨b⟩i, [b]i

$← Z2ℓ and ⟨b⟩i
$← Z2.



Force 5

Extended dabit : edabit. Recent work [15] of Escudero et al. extends dabit
to edabit (extended doubly authenticated bit). Similar to dabit, an edabit is a
tuple of shares for b $← Z2m defined as

edabit := ([b], ⟨r⟩ := (⟨r0⟩, ⟨r1⟩, · · ·, ⟨rm−1⟩)),

such that b =
∑
i

[b]i, [b]i
$← Z2ℓ and b =

m−1∑
j=0

rj2
j , ⟨rj⟩i

$← Z2.

3.3 Threat Model

A semi-honest adversary cannot deviate from the protocol description, but may
try to infer information about the secret input. As a well studied model, security
against semi-honest adversaries [36] in the honest majority setting often leads
to 2PC and 3PC protocols with good efficiency [1, 2, 3, 8, 39, 40, 43, 46, 50, 56],
while the ones with malicious security [9, 18, 27, 44, 54] are still too heavy for
large-scale applications in practice [16]. The honest majority setting is also
adopted by 4PC frameworks with semi-honest or malicious security [5, 10, 12,
28, 29, 30, 35], where (strictly) less than one half of the parties can be controlled
by an adversary.

We assume confidential, authenticated, and peer-to-peer channels between
different parties. Thanks to the channel, the adversary can only see, delay or
delete encrypted messages and any non-trivial modification can be detected.

Let REALΠ,A,Z denote the output of an environment machine Z interacting
with the adversary A executing the protocol Π in the real world. Let IDEALF,S,Z
denote the output of Z interacting with a simulator S connected to an ideal
functionality F in the ideal world.

Definition 1 (UC security) Let F be a four-party functionality and let Π be
a four-party protocol that computes F . Protocol Π is said to uc-realizes F in
the presence of static semi-honest adversaries if for every non-uniform
probabilistic polynomial time (PPT) adversary A, there exists a non-uniform
PPT adversary S, such that for any environment Z

IDEALF,S,Z
c≡ REALΠ,A,Z .

We follow the universally composable framework (UC) described in detail
in [7]. More specifically, we use the hybrid model, where provably UC-secure
components are abstracted as ideals in the next proof.

4 4PC Protocols

We construct efficient 4PC protocols as building blocks of Force for PPML. In
Section 4.1, we introduce our new sharing type X -share and how parties per-
form 4PC fixed-point computations. We highlight that the multiplication based



6 Y. Jiang et al.

on X -share reduces the local computation of each party to only one multipli-
cation. To the best of our knowledge, this becomes the least computation cost
compared to other sharing constructions such as replicated or 2-out-of-2 shar-
ing. In Section 4.1 and Section 4.3 we show how to perform conversions between
share-modes and sharing types (by using a X -dabit transmitted from dabit [47]).

In all the protocol descriptions, we use the term public parameters to denote
all security parameters and cipher-suites identifiers, and sid the session identifier.

4.1 X -share and Arithmetic Computation

X -share and Share-mode. We begin by introducing our new sharing type
X -share used in our 4PC computations. X -share can work over both Z2ℓ and Z2

rings in two modes.

– [·]AC-sharing : We say that a value x is [·]AC-shared among parties {Pi}, if
PA and PB hold the same value x0, PC and PD hold the same value x1
such that x = x0 + x1. We define [·]Pi

AC to be the share value of Pi.
– [·]AB-sharing : We say that a value x is [·]AB-shared among parties {Pi}, if

PA and PC hold the same value x0, PB and PD hold the same value x1
such that x = x0 + x1. Same as above, we denote the share of Pi as [·]Pi

AB.

We denote the share-mode as ψ, ϕ, θ, with ψ, ϕ, θ ∈ {AC,AB}. We say that a
value x is [·]4o4-shared among parties {Pi}, if Pi hold share xi respectively such
that x =

∑
xi.

Linearity. If the share-modes of both shared values are identical, it is easy
to observe that the linear computations can be executed locally with X -share.
Given [·]AC-sharing (or [·]AB-sharing) of secret values x, y and public constants
e0, e1, parties can locally compute e0[x]AC + e1[x]AC. The trick continues when
parties have to compute [x]AC + e2, where e2 is a public constant.

Now we consider the case if the share modes of secret x and secret y are
different, e.g. [x]AC and [y]AB. In order to keep the output to maintain either
[·]AC-sharing or [·]AB-sharing, parties have to jointly change the share mode of y
(or x) by executing ΠchMode (see Section 4.1), then locally compute [x]AC+[y]AC.

4PC Multiplication. The most important application of X -share is 4PC mul-
tiplication. We begin with computing [z]4o4 = [x]ψ[y]ϕ, where ψ ̸= ϕ. To perform
the multiplication of two secret values, parties have to jointly compute:

xy = (x0 + x1)(y0 + y1)

= x0y0 + x0y1 + x1y0 + x1y1

Suppose the secret value x is [·]AC-shared and the secret value y is [·]AB-shared
(or reversely), each party can locally compute exactly one out of four terms
shown in the above equation. This yields a 4-out-of-4 sharing [z]4o4 = [x]AC[y]AB.
For further computations, parties send their own masked share [z]Pi

4o4 + rPi to



Force 7

Protocol ΠMult

Private inputs: Parties hold [x]ψ , [y]ϕ, where ψ ̸= ϕ.
Public inputs: Public parameters, θ.
Outputs: [z]θ with z = xy.
Preprocessing: Pi sends (ZeroSGen,Pi, sid) to FPre

4PC, receives rPi as output.
Protocols:

1. Parties locally compute [z]4o4 = [xy]4o4, where [z]
Pi
4o4 := [x]

Pi
ψ [y]

Pi
ϕ .

2. We denote Pj
Pi as Pi’s reshare partner.

• If θ = AC: PA and PC set Pj
PA = PC and Pj

PC = PA, respectively. PB and
PD set Pj

PB = PD and Pj
PD = PB, respectively.

• If θ = AB: PA and PB set Pj
PA = PB and Pj

PB = PA, respectively. PC and
PD set Pj

PC = PD and Pj
PD = PC, respectively.

3. Each Pi computes ePi := [z]
Pi
4o4 + rPi and sends ePi to its reshare partner Pj.

4. Upon receiving ePj from Pj
Pi , Pi sets [z]

Pi
θ := ePi + ePj .

Fig. 2: Four party multiplication protocol

their reshare partner, where
∑
rPi = 0. Since each zero sharing is fresh, par-

ties can freely choose to rebuild either [z]AC or [z]AB according to the incoming
computations.

Due to the fact that we are using fixed-point numbers to represent both x
and y, the re-shared result z has to be truncated to maintain the p decimal bit
precision. Remark that after re-sharing, both [z]AC and [z]AB yields a 2-out-of-2
sharing, thus we are free to apply the truncation technique Πtrunc introduced by
SecureML [40] to avoid the additional communication overhead and round within
the truncation protocols Πtrunc1 and Πtrunc2 proposed by ABY3 [39]. A detailed
description of our multiplication protocol is shown in Fig. 2.

In contrast to linear operation, an unwilling situation for multiplication is
when the share-modes of both secrets x and y are identical. Parties have to
execute the ΠchMode (Fig. 4) to change the share-mode of either x or y (not
both) before multiplication.

Change Share-mode. Here we present the protocolΠchMode for changing share-
modes. We first define correlated randomness called changeM sharing or shortly
CMS, denoted as JrKψtoϕ.

Suppose parties want to change the share-mode of a shared value x from
[·]AC-sharing to [·]AB-sharing, we require parties to already hold JrKACtoAB after
the pre-processing phase. During the execution of ΠchMode, PA and PC simply
exchange their own 2-out-of-2 sharing masked with r0 and r1, obtaining their
new shares x0+x1−r0−r1, while PB and PD set their shares to be r locally. This
yields a fresh [x]AB. The CMS can be generated by computing PRF() with pre-
shared keys in the pre-processing stage. We formally define our CMS generation
protocol ΠCMSGen in Fig. 3, as well as the online protocol ΠchMode in Fig. 4.

Division. If parties have to jointly divide a shared value x by a public value
γ which is not a power of two, we use the truncation protocol Πtrunc2 in [39]
as a division protocol ΠDiv to avoid two possible bad events explained in [39].



8 Y. Jiang et al.

Protocol ΠCMSGen

Private inputs:
PA holds k0ACtoAB, k1ACtoAB, k0ABtoAC and k1ABtoAC. PB holds k0ACtoAB, k2ACtoAB, k1ABtoAC and k2ABtoAC.
PC holds k1ACtoAB, k2ACtoAB, k0ABtoAC and k2ABtoAC. PD holds k0ACtoAB, k2ACtoAB, k0ABtoAC and k2ABtoAC.

Public inputs: Public parameters, sid, ψtoϕ.
Outputs: JrKψtoϕ.
Protocols:

– If ψtoϕ = ACtoAB:
1. PA computes r0 := PRF

k0
ACtoAB

(sid) − PRF
k1
ACtoAB

(sid) then sets JrKPA
ACtoAB := r0.

2. PC computes r1 := PRF
k1
ACtoAB

(sid) − PRF
k2
ACtoAB

(sid) then sets JrKPC
ACtoAB := r1.

3. PB and PD compute:
r := PRF

k0
ACtoAB

(sid) − PRF
k2
ACtoAB

(sid) and set JrKPB
ACtoAB = JrKPD

ACtoAB := r, respec-

tively.
– Otherwise if ψtoϕ = ABtoAC:

1. PA computes r0 := PRF
k0
ABtoAC

(sid) − PRF
k1
ABtoAC

(sid) then sets JrKPA
ABtoAC := r0.

2. PB computes r1 := PRF
k1
ABtoAC

(sid) − PRF
k2
ABtoAC

(sid) then sets JrKPB
ABtoAC := r1.

3. PC and PD compute:
r := PRF

k0
ABtoAC

(sid) − PRF
k2
ABtoAC

(sid) and set JrKPC
ABtoAC = JrKPD

ABtoAC := r, respec-

tively.

Fig. 3: Four party changeM share generation protocol

ΠDiv consumes a correlated randomness that we call a division share ([r]ψ, [r
′]ϕ),

where r′ = r/γ. The idea behind this protocol is to first reveal [x]ψ masked
with [r]ψ. Parties then compute publicly (x − r)/γ and unmask this value by
computing (x − r)/γ + [r′]ϕ locally. Note that we do not require ϕ = ψ, so the
share-mode of the shared division result can be chosen freely.

4.2 Boolean Computation

This is the special case for ℓ = 1 in Z2ℓ . The linearity preserves and parties can
simply replace all additions (and subtractions) with XORs and multiplications
with ANDs while executing boolean operations.

4.3 Share Conversion

For PPML, non-linear functions (such as ReLU, max-pooling etc.) can be evalu-
ated more appropriate with MPC protocols over boolean inputs [28, 39, 43, 50,
55], while other linear functions (multiplication, convolutions etc.) prefer arith-
metic shared values. In the following, we show how conversion between sharing
types works, and how parties can determine the share-mode of outputs.

X -dabit. As an important building block, we extend edabit introduced by Es-
cudero et al. [15] to X -dabit. Here b $← Z2m , and ψ and ϕ can be identical.

X -dabit := ([b]ψ, ⟨r⟩ϕ := (⟨r0⟩ϕ, · · · , ⟨rm−1⟩ϕ)) s.t. [b]Pi

ψ
$← Z2ℓ , ⟨rj⟩Pi

ϕ
$← Z2



Force 9

Protocol ΠchMode

Private inputs: Parties hold [x]ψ .
Public inputs: Public parameters, ϕ.
Outputs: [x]ϕ.
Preprocessing: Pi sends (CMSGen, ψtoϕ Pi, sid) to FPre

4PC, receives JrKPi
ψtoϕ as output.

Protocols:
– If ψ = AC and ϕ = AB:

1. PA computes d0 := [x]
PA
ψ − JrKPA

ψtoϕ, then sends d0 to PC.

2. PC computes d1 := [x]
PC
ψ − JrKPC

ψtoϕ, then sends d1 to PA.

3. Upon receiving d0 and d1, PA and PC set [x]
PA
ϕ := d0 + d1, [x]

PC
ϕ := d0 + d1

respectively.
4. PB and PD set [x]

PB
ϕ := JrKPB

ψtoϕ, [x]PD
ϕ := JrKPD

ψtoϕ respectively.
– Otherwise if ψ = AB and ϕ = AC, switch the role of PC with PB, do the same as

above.

Fig. 4: Four party change share-mode protocol

Protocol ΠBitToA

Private inputs: Parties hold ⟨x⟩ϕ, where x ∈ {0, 1}.
Public inputs: Public parameters, ψ.
Outputs: [x]ψ.
Preprocessing: Pi sends (X -dabitGen, ψ, ϕ,m, Pi, sid) to FPre

4PC with m = 1, receives ([b]
Pi
ψ ,

⟨b⟩Pi
ϕ ) as output.

Protocols:
1. Parties locally compute and then reveal h := ⟨x⟩ϕ ⊕ ⟨b⟩ϕ, where h ∈ {0, 1}.
2. If h = 0, parties set [x]ψ = [b]ψ , otherwise [x]ψ = 1 − [b]ψ .

Fig. 5: Four party bit to arithmetic protocol

To generate X -dabit (in the pre-processing), four parties are assigned into two
groups. Then following the protocols proposed by [15] for 2PC setting, each group
ends up holding the same randomness and generate shares in both arithmetic
and boolean worlds. This allows parties to generate ([b]ψ, ⟨b⟩ϕ), where ψ = ϕ.
To change the share-mode of either [b]ψ or ⟨b⟩ϕ, parties run ΠchMode (Fig. 4).

Arithmetic vs. Boolean. We first consider one bit case, where parties have
to convert [x]ψ to ⟨x⟩ϕ with x ∈ Z2 (an A2B protocol for one single bit). Note
that in this case, parties sample b $← Z2 in X -dabit. The boolean share of this
X -dabit becomes one-bit share among parties. By using such an X -dabit, parties
simply open their local shares [x]Pi

ψ masked with [b]Pi

ψ , then locally "unmask"
the revealed value x − b with ⟨b⟩ϕ. Converting ⟨x⟩ϕ to [x]ψ works in the same
manner vice versa. A detailed protocol description (B2A for one bit) is placed
in Fig. 5. If x ∈ Z2ℓ , parties can generate an X -dabit with m = ℓ to support an
A2B protocol, and ℓ pieces X -dabits with m = 1 to support a B2A protocol. We
refer to [15, 47] for more details.



10 Y. Jiang et al.

Table 2: Force compared to the existing works regarding Dot Product (in bits).
Setting Framework Preparation Online Local with Trunc

Comm Comm Rounds Mult Comm Rounds
2PC (S.H.)3 P-SecureML [40, 55] TTP4 4nℓ 1 3 4nℓ 1

3PC (S.H.) CryptGPU [50] 0 2ℓ 1 3 3ℓ 2
P-Falcon [54, 55] 0 2ℓ 1 3 4ℓ 1

4PC (S.H.)
CrypTen [28] TTP 8nℓ 1 2 (8n+ 4)ℓ 2
P-FantasticFour [12, 55] 0 4ℓ 1 7 6ℓ 2
PrivPy [35] 0 4ℓ 1 2 4ℓ 1

4PC (M.)5
Trident [10] 3ℓ 4ℓ 1 3 5ℓ(4ℓ) 2(1)
Swift [29] 3ℓ 3ℓ 2 3 4ℓ(3ℓ) 2(1)
Tetrad [30] 2ℓ 4ℓ(3ℓ) 2(1) 4 4ℓ(3ℓ) 2(1)

4PC (S.H.) Force 0 2ℓ 1 1 2ℓ 1

4.4 Secure Comparison

We now introduce our secure 4PC comparison protocol ΠComp. We refer the
reader to Section 6 for the security of holding both ⟨r⟩ψ and ⟨r⟩ϕ at the same
time. For the following computation, we first assume that parties hold ([b]ψ,
⟨r⟩ψ, ⟨r⟩ϕ), such that ψ ̸= ϕ. Using the same technique mentioned in [55], parties
first reveal [x]ψ by masking it with [b]ψ (arithmetic part of an X -dabit). After
computing the bit decomposition of x−b (we denote those bits as x′), parties can
jointly evaluate a parallel prefix adder (PPA) circuit to securely extract the sign
bit of [x]ψ. To do so, parties have to prepare a shared propagator ⟨p⟩ψ = x′⊕⟨r⟩ψ
and a shared generator ⟨g⟩ϕ = x′ ∗ ⟨r⟩ϕ, where A ∗B denotes a bit-wise AND of
A and B, and ψ ̸= ϕ. In return now 50% of the secure AND protocols are already
executable in an efficient 4PC way. For the rest of AND computations, we choose
to let parties call ΠchMode once in each round to change the share-mode of the
updated propagator. As a result, the overall AND computations can be executed
in a 4PC way.

5 Communication and Computation Analysis

We use DotP to denote the dot product computation (convolution) of two secret
vectors, for conciseness. And we let n denote the length of a vector. As already
mentioned in Section 4, parties have to rescale (truncate) the shared output of
DotP for consistence in precision. A summary of Force and existing works for
DotP at each active party (followed by the truncation) is shown in Table 2.

In 2PC, P-SecureML proposed by [40, 55] consumes Beaver Triples to support
DotP in the online stage. Instead of implementing a heavy pre-processing com-
putation, P-SecureML simply lets a trusted third party to allocate the shares.
Meanwhile, the local truncation technique allows parties to simply truncate the
last p bits without any interaction. So the total communication overhead for the
online stage is still 4nℓ bits.
3 Semi-Honest
4 Trusted Third-Party
5 Malicious



Force 11

In 3PC, both CryptGPU [50] and P-Falcon [54, 55] use replicated sharing
scheme. Parties need to send/receive overall 2ℓ bits after each DotP to recon-
struct the replicated share holdings (re-sharing), which yields one communica-
tion round. Since a local truncation [40] fails in replicated sharing scheme in 3PC
(proven by [39]), parties perform Πtrunc2 [39] with the help of a pre-computed
truncation share ([r], [r′]), where r′ = r/2p. This protocol can be executed com-
bined with re-sharing, which requires parties to exchange 4ℓ bits data in a single
communication round. On the other hand, CryptGPU [50] chooses to implement
another truncation protocol ΠTrunc1 [39] to avoid generating truncation share.
This results in two rounds and 3ℓ bits communication volume totally.

CrypTen [28] implements 4PC protocols with a 4-out-of-4 sharing scheme.
Regardless the triple generation in the pre-processing stage, a party still has
to send/receive 8nℓ bits and 4ℓ bits within the DotP protocol and the trunca-
tion protocol, respectively. Compared to CrypTen, P-FantasticFour [12, 55] uses
replicated sharing scheme over four shares, which improves the communication
overhead to 6ℓ.

Recently some 4PC protocols such as [10, 29, 30] achieves active security in
the honest majority setting (tolerating one malicious corruption). All of those
rely on correlated randomnesses generated in the pre-processing stage to ac-
celerate the online computation. While all four parties stay active in the pre-
processing stage, some work (such as [29, 30]) choose to activate three parties
in the online stage to complete the computation. Parties benefit from having
continuous multiplication gates with amortized communication overhead of 3ℓ
in one round. We point out that in CNN (e.g. [21, 49]), a convolution layer is
followed directly by an activation layer, which requires parties to execute a com-
parison protocol. As a result, such a construction requires parties to exchange
overall 4ℓ elements in two rounds.

Given X -share in Force, we observe a huge computational and communication
complexity reduction and a much simplified connection channel establishment.
Without relying on a pre-processing stage 6, parties only have to compute one
single multiplication locally for DotP. And in fact, parties exchange their local
shares with one single partner instead of two, which yields a simpler peer-to-
peer connection. Since the local truncation is compatible with X -share, the total
communication overhead of Force is only 2ℓ bits in one round.

6 Accelerated Backward in Training

Backward phase is more complicated than the forward phase: for example, it is
possible that parties hold a shared x in [·]AC-sharing, which has to be multiplied
by two shared values y in [·]AC-sharing and y′ in [·]AB-sharing. Yet, it can get
accelerated by X -share. First of all, we exclude this situation from the forward
phase (except for the comparison protocol), as the computation moves only in
one direction without reusing any shared values in multiple computations. The

6 Recall that generating Zero Sharing does not require parties to interact.



12 Y. Jiang et al.

easiest way to implement the backward phase is to let parties execute ΠchMode

if needed. Such a naive solution results in an extra round and communication
overhead, but it already has a huge performance improvement compared to other
frameworks. A more efficient solution is to let parties hold one shared value in
both share-modes, which then enables parties to perform 4PC computations
everywhere during the backward phase. Such critical values are normally only
weights in each layer, meaning that parties are capable to trade a small portion
of memory for a huge computation acceleration. Remark that holding a shared
value in both share-modes does not leak any information to parties, since local
shares of each shared value in different share-modes will be chosen freshly (e.g.
x = x0 + x1 and x = x′0 + x′1).

7 Evaluation

In this section, we thoroughly evaluate X -share and make in-depth comparisons
against other state-of-the-art solutions. We build Force on top of Piranha [55] 7,
at commit bd9c8c4, in C++. We implement the new 4-party sharing type X -share
for all relevant PPML operations. Besides, we add support for batch normal-
ization and complex ResNet like ResNet152, while Piranha only supports layer
normalization and basic ResNet18.

7.1 Evaluation Setup

Testbed Environment. We run our evaluations on 4 cloud servers, with 2
CPUs, Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz, and 12×128GB of
RAM. Each of our servers is equipped with one GPU, NVIDIA Tesla P100-PCIE
with 16GB of video RAM (VRAM). We consider two types of network environ-
ments: LAN and WAN, with 10Gbps bandwidth + 0.2ms round-trip latency
and 100Mbps bandwidth + 40ms round-trip latency, both simulated by the tc
tool 8. Our server is running Ubuntu 18.04.6 LTS with CUDA 10.1.243.

Baseline. We choose as baselines several state-of-the-art systems that have
semi-honest security, as summarized in Table 1. For 2PC, Cheetah [23] is the
most recent PPML work using FHE and correlated oblivious transfer (cOT) on
CPUs, which is completely different from ours. We run it on the same server
as a baseline of CPU-based PPML. SecureML [40] is the only 2-party system
supporting both private inference and training, which is improved by Piranha
[55] via porting it to GPU. We refer to the GPU version as P-SecureML. For
both 3-party and 4-party, we only consider the honest-majority setting. Falcon
[54] is the fastest 3-party system on CPU. Piranha [55] ports the semi-honest
version to GPU with huge boost. We mark it as P-Falcon. CryptGPU [50] is
another 3-party system on GPU similar to P-Falcon. We include both of them
as baselines. CryptGPU [50] is deployed with the latest Github source code 9, at
7 https://github.com/ucbrise/piranha/
8 https://man7.org/linux/man-pages/man8/tc.8.html
9 https://github.com/jeffreysijuntan/CryptGPU

https://github.com/ucbrise/piranha/
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/jeffreysijuntan/CryptGPU


Force 13

commit 2ff57b2. As for 4-party, CrypTen [28] is the only one with semi-honest
security in an honest-majority setting by design. We deploy it using their
latest Github source code 10, at commit efe8eda. All the other 4-party or more-
party systems are for malicious adversaries, which are slowed down by heavy
verification or validations. For fairness, we should not compare with them. Yet,
Piranha [55] re-implemented the semi-honest version of FantasticFour [12] on
GPU. We include this simplified version and refer to it as P-FantasticFour. We run
all the evaluations with 20 bits of fixed-point precision. The calculations are over
the 64-bit ring Z264 , except Cheetah [23], which supports maximum 44-bit. All the
experiments are performed multiple times, with BatchSize = 1, considering that
some systems do not support large batch sizes. Then we calculate the benchmarks
by averaging all the results except the first run, to mitigate the influence of
system initialization and runtime randomness.

Models and Datasets. For our evaluations, we consider three datasets
and three neural networks in different sizes: Small ones: CIFAR10 [31] and
AlexNet [32]. Medium ones: TinyImageNet [33] (Tiny for short) and VGG16 [49].
Large ones: ImageNet [48] and ResNet152 [21]. We try to keep the models as
much as they are in their original publications. However, due to the various in-
put sizes of different datasets, as well as performance considerations, we slightly
adjust the structure similarly to CryptGPU [50] and Falcon [54].

7.2 End-to-End Running Time Evaluation

In Table 3 and 4, we list the running time of an inference pass for all datasets and
models described in Section 7.1 in LAN and WAN settings. Our Force completely
outperforms all the baseline systems in all evaluations. CPU-based Cheetah is
slower than all the other GPU-based systems in LAN. In WAN, Cheetah (im-
plemented in C++) can perform better than the Python-implemented (CryptGPU
and CrypTen) in deep network like ResNet152, while still slower than the C++-
implemented (P-SecureML, P-Falcon, P-FantasticFour and Force). When compar-
ing all GPU-based systems, the C++-implemented perform much better than the
Python-implemented. This could result from the language performance differ-
ence. Among those C++-implemented, Force beats the other three Piranha-based
systems, P-SecureML, P-Falcon and P-FantasticFour, in all experiments, with the
acceleration brought by our novel sharing type X -share.

Benchmarks of a training pass are similar, as shown in Table 6. Cheetah
is omitted here as it does not support training. Again, our Force completely
dominates in all evaluations.

7.3 Linear vs. Non-Linear Operations

We group common computation tasks into two categories: linear and non-linear.
Linear operations include convolution, matrix multiplication and batch normal-
ization. Non-linear operations include ReLU, pooling and SoftMax.
10 https://github.com/facebookresearch/CrypTen

https://github.com/facebookresearch/CrypTen


14 Y. Jiang et al.

Table 3: Running time (Second) of an inference pass in LAN , BatchSize = 1.
CIFAR10 Tiny ImageNet

AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152
P-SecureML 0.41 1.48 7.89 0.55 2.19 9.44 2.50 15.70 31.46
CryptGPU 1.15 2.91 35.58 1.14 3.83 38.21 2.42 12.74 49.54
P-Falcon 0.29 0.89 5.18 0.35 1.37 6.24 1.12 10.03 20.39
CrypTen 1.05 3.48 26.04 1.25 5.20 29.10 4.59 32.75 62.58

P-FantasticFour 0.72 2.20 12.81 0.87 3.40 15.59 2.72 24.03 49.74
Force 0.12 0.35 2.54 0.14 0.54 3.01 0.43 3.26 9.70

Cheetah 2.67 80.43 66.96 19.74 325.30 263.87 383.97 4026.87 3226.62
PyTorch 0.0008 0.0017 0.0264 0.0009 0.0017 0.0266 0.0009 0.0017 0.0268

Table 4: Running time (Second) of an inference pass in WAN , BatchSize = 1.
CIFAR10 Tiny ImageNet

AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152
P-SecureML 12.20 57.54 239.81 21.64 121.05 241.73 179.19 1126.83 1907.65
CryptGPU 18.41 44.17 807.32 19.46 65.15 846.11 48.53 359.46 1387.28
P-Falcon 2.85 11.08 91.06 3.80 28.27 119.33 30.79 370.70 730.97
CrypTen 34.37 103.26 721.67 43.47 256.77 876.92 397.49 2203.29 4649.98

P-FantasticFour 7.60 41.39 218.33 13.00 125.80 368.82 135.93 1489.91 2853.29
Force 2.60 6.75 75.28 2.94 14.21 85.85 13.59 155.15 324.17

Cheetah 12.64 233.34 220.16 52.59 908.09 711.77 827.68 11012.47 8101.88

Table 5: Communication volume (MByte) of an inference pass, BatchSize = 1.
CIFAR10 Tiny ImageNet

AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152
P-SecureML 65.93 381.39 1178.82 130.16 849.01 2082.17 1186.00 8361.98 15718.33
CryptGPU 2.32 53.59 236.17 13.32 214.12 677.61 226.08 2622.02 7376.14
P-Falcon 3.72 84.48 168.85 20.83 337.62 680.50 350.09 4134.47 8441.19
CrypTen 74.67 579.78 1409.07 178.98 1641.77 3034.04 2005.10 18069.92 27607.43

P-FantasticFour 7.01 159.50 300.42 39.24 637.43 1218.99 659.45 7805.96 15150.84
Force 1.49 33.76 79.95 8.38 134.93 316.65 140.95 1652.33 3907.41

Cheetah 40.10 951.35 773.51 249.24 3792.40 3091.30 4493.92 46450.00 37876.50

Table 6: Running time (Second) of a training pass in LAN , BatchSize = 1.
CIFAR10 Tiny ImageNet

AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152 AlexNet VGG16 ResNet152
P-SecureML 1.62 4.55 29.20 7.53 5.99 27.81 7.41 28.82 65.51
CryptGPU 2.27 5.49 40.24 3.23 8.06 41.37 9.10 38.86 53.28
P-Falcon 0.75 2.44 12.08 0.96 3.04 13.55 4.13 16.14 35.78
CrypTen 13.48 40.86 27.68 18.39 50.34 33.35 FAIL FAIL 74.07

P-FantasticFour 1.65 4.99 25.65 2.17 6.64 29.96 9.69 37.10 79.78
Force 0.35 1.23 6.40 0.51 1.59 7.53 2.89 8.57 22.77

PyTorch 0.0031 0.0067 0.0659 0.0027 0.0049 0.0637 0.0034 0.0077 0.0683

Table 7: Maximum batch size when
training ImageNet in VGG16.

Batch Size 1 2 4 8 16 32
P-SecureML ✓ ✓ ✓
CryptGPU ✓
P-Falcon ✓ ✓ ✓
CrypTen

P-FantasticFour✓ ✓
Force ✓ ✓ ✓ ✓ ✓

Table 8: Inference accuracy comparison of
Force and PyTorch.

Inference CIFAR10 Tiny ImageNet

AlexNet
PyTorch 69.65% 26.38% 22.84%
Force 69.69% 26.39% 22.84%

VGG16
PyTorch 88.31% 54.90% 56.41%
Force 88.34% 54.89% 56.42%

ResNet152
PyTorch 83.99% 65.14% 67.36%
Force 83.98% 65.15% 67.36%



Force 15

0.0 0.5 1.0 1.5 2.0 2.5

Cheetah

P-SecureML

CryptGPU

P-Falcon

CrypTen

P-FantasticFour

Force Linear
ReLU
Pool

(a) CIFAR10+ AlexNet

0 10 20 30 40 50 60

Linear
ReLU
Pool

(b) CIFAR10+ ResNet152

Fig. 6: Running time of different operations during an inference pass in LAN
setting with BatchSize = 1. X-axis is time in seconds.

2000 4000 6000 8000 10000
0

100

200

300

400

500

(a) Matrix Multiplication

2000 4000 6000 8000 10000
0

25

50

75

100
P-SecureML
P-Falcon
P-FantasticFour
Force

(b) ReLU

Fig. 7: Micro-benchmark of matmul and ReLU in four Piranha-based systems.
X-axis is data dimension and Y-axis is time in Milliseconds. For matmul, we
multiply an x× x matrix by an x× 1 vector.

We plot the running time of different operations during an inference pass in
Fig. 6. Due to the huge time difference between Cheetah and all other systems,
all the experiments other than the two shown are rarely visible as bar charts.
Thus we omit them. We can see that the most time-consuming operation in
Python-implemented CryptGPU and CrypTen is ReLU, while linear operations
cost more in those C++-implemented. CryptGPU can be faster than P-SecureML
and P-FantasticFour in linear operations, but slower than P-Falcon and Force.
The implementation language still makes a difference here.

To further compare the effect of different sharing types, we make some micro-
benchmark of matrix multiplication and ReLU in four Piranha-based systems. We
perform matmul and ReLU of different input data size and record the average
running time. The results are plotted in Fig. 7. Force, with the new sharing type
X -share, shows outstanding improvement over the other three. Besides, Force
scales much better as the problem size increases.

7.4 Communication Cost

One of the main contribution of Cheetah is low communication cost. We make it
even better. As shown in Table 5, we have the minimal communication volume



16 Y. Jiang et al.

LAN
CIFAR10

LAN
Tiny

LAN
ImageNet

WAN
CIFAR10

WAN
Tiny

WAN
ImageNet

0%

25%

50%

75%

100%
Communication Computation

Fig. 8: Time ratio when Force runs
inference on ResNet152.

0 2 4 6 8
38.0%

40.0%

42.0%

44.0%

46.0%

48.0%

50.0%
PyTorch
Force
Piranha

Fig. 9: Validation accuracy of 9 training
epochs for AlexNet+ CIFAR10.

when performing inference with BatchSize = 1 for all the evaluations. However,
we still notice high communication cost during all phases, especially for large
datasets and WAN settings. As an example, we plot the ratio of communication
and computation time of Force in Fig. 8. We can see that as the dataset gets
larger, mainly the image dimensions, communication consumes more time. When
the network latency is high, like in WAN, the whole running time is dominated
by communication.

7.5 Memory Efficiency

Compared with RAM, which could easily reach 1TB nowadays, VRAM is an ex-
tremely limited resource, which is normally 16GB or 24GB per card. To measure
the utilization efficiency of VRAM, we run a simple experiment. We train one
large dataset, ImageNet, on one of the large models, VGG16, and try to find out
the maximum possible batch size. The result is displayed in Table 7. Force is the
only system which supports training ImageNet on VGG16 with BatchSize = 8 and
BatchSize = 16. This is achieved by getting rid of Beaver’s Triple and reducing
the number of local shares to just one. All the other systems can only train with
batch size up to 4. CrypTen could not even train with BatchSize = 1.

7.6 Accuracy Comparison

To measure the accuracy, we run both inference and training with Force. We first
train the models on all the datasets with PyTorch to get pre-trained models.
Starting from those pre-trained models, we perform the accuracy evaluation.
We run all the evaluation with 26 bits of fixed-point precision, as suggested by
Piranha. The inference accuracy on validation sets is shown in Table 8. Force
provides almost the same accuracy as the plaintext PyTorch, only with a tiny
relative error of less than 0.1% for all models and datasets. For training, we
use AlexNet + CIFAR10 as an example. Starting from a pre-trained model, we
train AlexNet on CIFAR10 with Piranha, Force and PyTorch for 9 epochs. The
validation accuracy is plotted in Fig. 9. After 9 epochs, the accuracy of PyTorch
is 49.59%, of Force is 49.71%, which is even 0.12% higher, indicating extremely
low accuracy loss.



Force 17

8 Conclusion

In this paper, we construct a highly efficient 4PC framework Force for PPML.
Our implementation and evaluation showcase that Force is by far the most effi-
cient in terms of time, memory consumption and overall performance. It can be
meaningful future work to extend Force with malicious security and guarantee
of delivery, as well as to generalize it for any number of parties.



Bibliography

[1] Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput
semi-honest secure three-party computation with an honest majority. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 805–817 (2016)

[2] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: European Symposium on Research in
Computer Security. pp. 192–206. Springer (2008)

[3] Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure
multi-party computation for data mining applications. International Journal
of Information Security 11(6), 403–418 (2012)

[4] Bonawitz, K.A., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B.,
Patel, S., Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for
federated learning on user-held data. CoRR abs/1611.04482 (2016)

[5] Byali, M., Chaudhari, H., Patra, A., Suresh, A.: Flash: Fast and robust
framework for privacy-preserving machine learning. Proceedings on Privacy
Enhancing Technologies 2, 459–480 (2020)

[6] Cabrero-Holgueras, J., Pastrana, S.: Sok: Privacy-preserving computation
techniques for deep learning. Proceedings on Privacy Enhancing Technolo-
gies 2021(4), 139–162 (2021)

[7] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science. pp. 136–145. IEEE (2001)

[8] Catrina, O., Hoogh, S.d.: Improved primitives for secure multiparty integer
computation. In: International Conference on Security and Cryptography
for Networks. pp. 182–199. Springer (2010)

[9] Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: Astra: high through-
put 3pc over rings with application to secure prediction. In: Proceedings of
the 2019 ACM SIGSAC Conference on Cloud Computing Security Work-
shop. pp. 81–92 (2019)

[10] Chaudhari, H., Rachuri, R., Suresh, A.: Trident: Efficient 4pc framework
for privacy preserving machine learning. In: 27th Annual Network and Dis-
tributed System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society (2020)

[11] Dai, W., Sunar, B.: cuhe: A homomorphic encryption accelerator library.
In: International Conference on Cryptography and Information Security in
the Balkans. pp. 169–186. Springer (2015)

[12] Dalskov, A., Escudero, D., Keller, M.: Fantastic four: Honest-majority four-
party secure computation with malicious security. In: 30th USENIX Security
Symposium (USENIX Security 21). pp. 2183–2200 (2021)

[13] Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient
mixed-protocol secure two-party computation. In: NDSS (2015)



Force 19

[14] Dwork, C., Roth, A., et al.: The algorithmic foundations of differential pri-
vacy. Foundations and Trends® in Theoretical Computer Science 9(3–4),
211–407 (2014)

[15] Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primi-
tives for mpc over mixed arithmetic-binary circuits. In: Annual International
Cryptology conference. pp. 823–852. Springer (2020)

[16] Evans, D., Kolesnikov, V., Rosulek, M., et al.: A pragmatic introduction to
secure multi-party computation. Foundations and Trends® in Privacy and
Security 2(2-3), 70–246 (2018)

[17] Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party com-
putation using the gpu. In: International Conference on Applied Cryptog-
raphy and Network Security. pp. 339–356. Springer (2013)

[18] Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure
three-party computation for malicious adversaries and an honest major-
ity. In: Annual international conference on the theory and applications of
cryptographic techniques. pp. 225–255. Springer (2017)

[19] Google LLC: Tensorflow privacy (2019), https://github.com/
tensorflow/privacy

[20] Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: Sok: General purpose
compilers for secure multi-party computation. In: 2019 IEEE symposium on
security and privacy (SP). pp. 1220–1237. IEEE (2019)

[21] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 770–778 (2016)

[22] Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.N.: Privacy-preserving
machine learning as a service. Proc. Priv. Enhancing Technol. 2018(3),
123–142 (2018)

[23] Huang, Z., Lu, W.j., Hong, C., Ding, J.: Cheetah: Lean and fast secure two-
party deep neural network inference. In: 31st USENIX Security Symposium
(USENIX Security 22). pp. 809–826 (2022)

[24] Husted, N., Myers, S., Shelat, A., Grubbs, P.: Gpu and cpu paralleliza-
tion of honest-but-curious secure two-party computation. In: Proceedings
of the 29th Annual Computer Security Applications Conference. pp. 169–
178 (2013)

[25] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: Gazelle: A low latency
framework for secure neural network inference. In: 27th USENIX Security
Symposium (USENIX Security 18). pp. 1651–1669 (2018)

[26] Kanagavelu, R., Li, Z., Samsudin, J., Yang, Y., Yang, F., Goh, R.S.M.,
Cheah, M., Wiwatphonthana, P., Akkarajitsakul, K., Wang, S.: Two-phase
multi-party computation enabled privacy-preserving federated learning. In:
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID). pp. 410–419. IEEE (2020)

[27] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making spdz great again.
In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 158–189. Springer (2018)

https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy


20 Y. Jiang et al.

[28] Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M.,
van der Maaten, L.: Crypten: Secure multi-party computation meets ma-
chine learning. Advances in Neural Information Processing Systems 34,
4961–4973 (2021)

[29] Koti, N., Pancholi, M., Patra, A., Suresh, A.: SWIFT: Super-fast and ro-
bust Privacy-Preserving machine learning. In: 30th USENIX Security Sym-
posium (USENIX Security 21). pp. 2651–2668. USENIX Association (Aug
2021)

[30] Koti, N., Patra, A., Rachuri, R., Suresh, A.: Tetrad: Actively secure 4pc
for secure training and inference. In: 29th Annual Network and Distributed
System Security Symposium, NDSS 2022, San Diego, California, USA, April
24-28, 2022. The Internet Society (2022)

[31] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from
tiny images (2009)

[32] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L.,
Weinberger, K. (eds.) Advances in Neural Information Processing Systems.
vol. 25. Curran Associates, Inc. (2012)

[33] Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7),
3 (2015)

[34] Lehmkuhl, R., Mishra, P., Srinivasan, A., Popa, R.A.: Muse: Secure infer-
ence resilient to malicious clients. In: 30th USENIX Security Symposium
(USENIX Security 21). pp. 2201–2218 (2021)

[35] Li, Y., Xu, W.: Privpy: General and scalable privacy-preserving data min-
ing. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. pp. 1299–1307 (2019)

[36] Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography pp. 277–346 (2017)

[37] Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions
via minionn transformations. In: Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security. pp. 619–631 (2017)

[38] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi:
A cryptographic inference service for neural networks. In: 29th USENIX
Security Symposium (USENIX Security 20). pp. 2505–2522 (2020)

[39] Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine
learning. In: Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. pp. 35–52 (2018)

[40] Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE symposium on security and privacy (SP).
pp. 19–38. IEEE (2017)

[41] Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: Sok: Security and
privacy in machine learning. In: 2018 IEEE European Symposium on Secu-
rity and Privacy (EuroS&P). pp. 399–414. IEEE (2018)

[42] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural
information processing systems 32 (2019)



Force 21

[43] Patra, A., Schneider, T., Suresh, A., Yalame, H.: Aby2. 0: Improved mixed-
protocol secure two-party computation. In: 30th USENIX Security Sympo-
sium (USENIX Security 21). pp. 2165–2182 (2021)

[44] Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine
learning. In: 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The
Internet Society (2020)

[45] Pu, S., Duan, P., Liu, J.: Fastplay-a parallelization model and implemen-
tation of SMC on CUDA based GPU cluster architecture. IACR Cryptol.
ePrint Arch. p. 97 (2011)

[46] Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A.,
Sharma, R.: Cryptflow2: Practical 2-party secure inference. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. pp. 325–342 (2020)

[47] Rotaru, D., Wood, T.: Marbled circuits: Mixing arithmetic and boolean
circuits with active security. In: International Conference on Cryptology in
India. pp. 227–249. Springer (2019)

[48] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale vi-
sual recognition challenge. International journal of computer vision 115(3),
211–252 (2015)

[49] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings (2015)

[50] Tan, S., Knott, B., Tian, Y., Wu, D.J.: Cryptgpu: Fast privacy-preserving
machine learning on the gpu. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 1021–1038. IEEE (2021)

[51] Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R.,
Zhou, Y.: A hybrid approach to privacy-preserving federated learning. In:
Proceedings of the 12th ACM workshop on artificial intelligence and secu-
rity. pp. 1–11 (2019)

[52] United Nations Conference on Trade and Development: Data protec-
tion and privacy legislation worldwide (2022), https://unctad.org/page/
data-protection-and-privacy-legislation-worldwide

[53] Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation
for neural network training. Proc. Priv. Enhancing Technol. 2019(3), 26–49
(2019)

[54] Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin,
T.: Falcon: Honest-majority maliciously secure framework for private deep
learning. Proceedings on Privacy Enhancing Technologies 1, 188–208 (2021)

[55] Watson, J.L., Wagh, S., Popa, R.A.: Piranha: A gpu platform for secure
computation. In: 31st USENIX Security Symposium (USENIX Security 22).
pp. 827–844 (2022)

[56] Zhang, Q., Zhao, Y., Li, L., Zhang, J., Zhang, Q., Zhou, Y., Yin, D., Tan,
S., Yin, S.: MORSE-STF: A privacy preserving computation system. CoRR
abs/2109.11726 (2021)

https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide

	Force: Highly Efficient Four-Party Privacy-Preserving Machine Learning on GPU
	Introduction
	Related Work
	Privacy Preserving Machine Learning
	PPML on GPU

	Preliminaries
	Fixed-point computation
	Correlated Randomness
	Threat Model

	4PC Protocols
	X-share and Arithmetic Computation
	Boolean Computation
	Share Conversion
	Secure Comparison

	Communication and Computation Analysis
	Accelerated Backward in Training
	Evaluation
	Evaluation Setup
	End-to-End Running Time Evaluation
	Linear vs. Non-Linear Operations
	Communication Cost
	Memory Efficiency
	Accuracy Comparison

	Conclusion


