
The Problem of Half Round Key XOR
Anubhab Baksi

Nanyang Technological University, Singapore

anubhab001@e.ntu.edu.sg

Abstract. In the design of GIFT, half round key XOR is used. This leads to the
undesired consequence that the security against the differential/linear attacks are
overestimated. This comes from the observation that; in the usual DDT/LAT based
analysis of the differential/linear attacks, the inherent assumption is the full round
key is XORed at each round.
Keywords: block cipher · gift · differential attack · linear attack

1 Introduction
As race of the lightweight ciphers is underway for about a decade or so, we have seen many
tricks to reduce the hardware/software footprint. This brings us neatly to GIFT [BPP+17],
which has gained a lot of popularity.

One of the interesting traits of GIFT is that the full state is not XORed with the round
keys, rather only half the round keys are XORed in all rounds except the first (which does
not have round key XOR). This creates the problem that it underestimates the power of
the differential/linear attacks (among others). Though not explicitly stated, the usual
DDT/LAT based analysis inherently assumes the full round key XOR. Moreover, other
attacks which work on similar principle (integral, impossible differential, higher order
differential) are also underestimated.

In a loose sense, the observation can be stated as follows. Due to the round key XOR
happens on 2 (out of 4 bits) per SBox. This leaves the rest two bits unchanged, thus any
difference in these 2 bits propagates with probability 1. So the SBox works as if it has 4
linear structure. This is comparable to the 4-LS SBox in DEFAULT-LAYER [Bak21, Chapter
8] (note that DEFAULT uses full round key XOR, hence this problem does not arise).
Curiously, the analysis done by [NDE21] is very close to uncovering the danger of half
round key XOR.

The analysis in [SHW+14,ZDY18,Bak20,SWW21,SPWW22] are all correct with the
assumption that the rounds are independent, which is not true due to half round key
XOR1. In order for the rounds to be independent, the full round key XOR at each round is
essential. As half of the bits at each round of the state is not XORed with any round key,
these bits are passed to the next round in a deterministic way; this violates the assumption
that each round is independent.

In the usual DDT/LAT based analysis, each round is treated as independent. The
independence assumption, though not accurate in absolute terms, simplifies the problem a
lot (also, this assumption mostly holds up in an empirical evaluation). In the analysis,
only the unkeyed permutation is taken into account; this may create the feeling that the
round key XOR is not important to ascertain the security against the differential/linear
attacks. However, one has to note that the the round keys are crucial in making the (input,

1The problem we state here is not related to the independence of the round keys.

mailto:anubhab001@e.ntu.edu.sg

output) distribution of the SBoxes non-deterministic, and are unavoidable while figuring
out the security.

Contribution
Despite receiving a large number of third-party analysis, we argue that the security claims
made for GIFT [BPP+17] (and also in SKINNY [BJK+16]) are overestimated. In order to
match the claimed security, the round keys at each round needs to be XORed with the
full state, which is not true as per GIFT specification. Even if we assume all the round
keys are independent, still the full state at each round is to be XORed for the inherent
DDT/LAT based analysis to hold.

2 Background Information
In order to see why the round keys are crucial in determining the security of a cipher
against the differential attack, we show a simple scenario (a similar argument will hold
for the linear attack). Assume there is a 4-bit SBox, and a 4-bit key k0 is XORed at the
SBox input and another 4-bit key k1 is XORed at the SBox output (i.e., first k0 is XORed
to the plaintext, then it is fed to the SBox, then k1 is XORed to the SBox output). The
attacker, Eve, does not know k0 and k1, though she knows the specification of the SBox.
At this point, she wants to recover the key with the help of differential attack.

She first chooses an arbitrary 4-bit plaintext p0 and observes the output c0. Then she
chooses a distinct plaintext p1 and obtains the corresponding ciphertext c1. Since k0 and
k1 are unknown, she does not know which is the exact input to the SBox and which is the
exact output from the SBox. However, she can compute the input difference δ = p0 ⊕ p1
and the output difference ∆ = c0 ⊕ c1. Since k1 does not impact δ or ∆, now she can use
this (δ, ∆) information to retrieve k0.

For this purpose, she first assumes k0 can be any of the 24 possible values. For each of
these 24 cases, she computes the input to the SBox, which further enables use to compute
the output from the SBox. Ultimately, some of the choices of k0 does not conform to the
(δ, ∆) information, which can be discarded.

Now, if the XOR with k0 is missing (or equivalently, k0 is known), she can readily
find out the exact input to the SBox, from which she can find out the exact output from
the SBox. Notice that, when k0 is not known, she does not know the exact input to the
SBox (and the exact output to the SBox). In this case, she has to rely on the differential
information.

Thus, the presence of the initial key XOR makes the huge difference – without it the
full cipher is visible to the attacker, consequently there is no security2.

If t (t ≤ 4) bits of k0 is XORed to the state, then the search space is 2t (Eve knows all
but t bits of the SBox input). In particular, when only 2 bits are XORed, Eve only has 4
options for the SBox. This contrasts the full XOR of k0 (where there are 16 options) as
now the search space is at the square-root.

In the usual DDT based analysis, the inherent assumption is that all the SBoxes at
each round is XORed with the round key. Therefore, the attacker does not know the exact
input/output from any SBox. When computing the DDT of the SBox S, the number
of solutions to ∆ = S(x) ⊕ S(x ⊕ δ) is computed and stored at the (δ, ∆)th cell, where
x is considered over all possible values (i.e., 2n values for an n-bit SBox). This works
only with the assumption that Eve does not have any information about the value of x.
If, on the other hand, she can reduce the search space for x; then this computation no
longer holds. Now, when the full state is not updated at a certain SBox at a certain round
through round key XOR, Eve knows some information about the input x of that SBox.

2The final key (i.e., k1) is also important in this toy example.

2

Consequently, the search space for x becomes smaller than 2n elements. Ultimately, this
lowers down the security of the differential attack.

The assumption that the attacker knows only the (input difference, output difference)
pair and nothing else comes from the full key XOR at the input of the SBox. Since the
key (which is XORed at the input of the SBox) is not known to the attacker, the best she
could do is to consider all possible values for the key, which leads to DDT. In other words,
in the computation of DDT, the full key XOR at the SBox input is inherently assumed.

Role of Unkeyed Permutation
We would like to point out that, the typical papers (such as, [LIM20]) only consider the
unkeyed permutation. This term is somewhat of a misnomer, as the assumption of full
round key XOR at each round is inherently assumed. When it comes to analysis, unkeyed
permutation does not actually mean the construction is publicly known (i.e., there is no
round key XOR), it instead means:

1. The round keys are independent.

2. The full state is made non-deterministic at each round by XORing with the corre-
sponding round key.

The security of the unkeyed permutation cipher is computed based on the assumptions.
However, from what we can gather from the existing literature, the assumptions are never
explicitly stated.

If truly there is no round key, then the full cipher is specified to the attacker, hence there
is no question of security. In case of a truly unkeyed permutation, all the differential/linear
distinguishers are trivial – always. Since there is no key, the attacker knows everything
about the cipher and hence can trace out the propagation of the differential/linear trails
with probability 1. Not only Eve knows about the input difference/mask for each SBox,
but also the actual input(s) to each SBox; this means the full cipher is known. Lest one
disagrees (i.e., the challenger thinks the truly unkeyed permutation offers some security),
we invite to the following game:

1. The challenger will toss a fair coin, and based on that will choose either CIPHER or
RANDOM.

2. We will give one plaintext, and the challenger return us the ciphertext (if CIPHER)
or something random (if RANDOM).

3. We will tell whether the challenger has chosen CIPHER or RANDOM.

Impact of Large Round
We would like to draw attention to another potential pitfall that can be stated as follows:
“While it is true that over very small number of rounds this invalidates the assumption of
independence and leads to probabilities (correlations) significantly higher than expected,
this is hardly true when considering many rounds.”

Even when considering many rounds of the cipher, the full round key XOR at each
round is essential. Say, we have a half key XOR at the ith round (i is sufficiently large);
then the security from the ith to the (i + 1)th round will be lower than what it otherwise
would be for a full round key XOR. Overall, if the full state is not XORed with the round
key at any round, the security from that particular round to its next will be lower. Stated
in other words, even the security bounds reach a substantially high level, we still need
full XOR of the round key to the cipher state in order to make security claim for the
next round onward. If full key XOR is missed at a round (no matter how large the round
counter is), the security claim for that round is to be properly adjusted.

3

3 Observation
3.1 Basic
One notable feature in the construction of GIFT [BPP+17] is to XOR the round key to
half of the state bits. This is a deviation from the usual design choice of XORing the full
state with the round keys.

Despite what it may seem, XORing the full state with the round key is of paramount
importance. The round keys are crucial in making the (input, output) distribution of the
SBoxes non-deterministic. Note in order for the usual DDT/LAT-based analysis (including,
but not limited to [ZDY18, Bak20, SWW21]) to work, this condition is to be satisfied.
Otherwise, the usual DDT/LAT-based analysis would overestimate the actual bound.

For a simple thought experiment with respect to the classical differential attack, consider
the trivial case of the unkeyed permutation of GIFT-128. Since there is no key, the entire
cipher is known to Eve. This means, she can trace out any input difference propagating
through the permutation with probability 1. Thus, the usual DDT-based modelling (which
does not consider any round key XOR for simplicity) for the differential bound would be
completely wrong. For the exact analysis, one has to treat as if the SBox (no matter the
actual description) has 24 linear structures (so, the cipher has a trivial differential bound
with probability 1).

Building on this, consider the next step where only the initial key XOR is performed3

(i.e., before the first SBox layer). Let, we encrypt two plaintexts p0 and p1(= p0 ⊕ δ) for a
pre-determined δ ̸= 0. In this case, Eve knows the input difference to the SBox layer but
does not know what the input pairs are. For this round, the usual DDT-based analysis will
apply. For the next round onward, one has to keep in mind that the input differences to the
SBoxes are all deterministic, thus the difference transition would not happen according to
the DDT-based prediction – rather it would behave as if the SBox has 24 linear structures.

Going on this way, we can see that, if the round key XOR is missed in a round, then for
that round the usual DDT-based analysis does not hold anymore. Although it is true that
during the analysis we only consider the unkeyed permutation [ZDY18,Bak20,SWW21], it
is inherently assumed that the full round key is XORed at each round (so that the usual
DDT-based assumption holds at each round). The term of unkeyed permutation is not
wrong per-se, as the round keys are not explicitly considered, rather the impact of the
round key XOR is obtained by probabilistic transition in DDT/LAT.

The case for GIFT is more complicated than this, as the ciphers have 2-bit round key
XOR at each SBox. Still, for the 2 bits (which do not pass through any key XOR), the
difference transition is deterministic. This somewhat comparable to the situation where
the SBox has is replaced by a weak one. During our study of literature, it has become
apparent that this crucial fact has evaded the designers as well as the third party reviewers.
It thus seems plausible that the bounds against the differential, linear and probably some
other classical attacks are overestimated in the literature.

3.2 Detailed
The problem with half key XOR per SBox (as done in GIFT [BPP+17]) is not visible at the
first glance. However, at a deeper look, it appears to be huge oversight. In summary, we
claim that the half key XOR is a new/different paradigm and the usual classical analysis
(that internally assume full key XOR) cannot be not directly used.

In order to address the potential problem that arises when only the half of the state
bits are XORed, one has to look deeper than what has been considered in the literature

3As there is no round key XOR thereafter, it is trivially possible to retrieve the secret key by going
backward; but this is beyond the point. We are only considering why it is essential to have full-state XOR
with the round keys with respect to some classical attacks

4

so far. It is valid that when the round key is XORed to the full state (which makes the
inputs to the SBoxes non-deterministic), the usual analysis based on DDT/LAT applies.
This apparently does not hold when some bits of the SBoxes does not receive a round key
XOR, as now those bits become deterministic in nature (with respect to the attacker, any
transition relating to those bits happen in a deterministic way, i.e., with either probability
1 or 0). Loosely speaking, when 2 bits of a 4-bit SBox does not have the initial round key
XOR, the SBox becomes much weak against classical attacks like differential or linear.

For the sake of simplicity and conciseness, here we only consider the traditional
differential attack (it should be possible to extend this methodology with respect to other
attacks in an analogous way) against GIFT-128. First, note that, the DDT only shows
the frequency – but not the probability, which is to be calculated by dividing each entry
with 24). In our case, we need the exact probability, so we define Probabilistic Difference
Distribution Table (PDDT4) which is derived from the DDT and it shows the transition
probability from each input difference (δ) to each output difference (∆). For instance, the
PDDT for the GIFT SBox (1A4C6F392DB7508E) is shown in Table 1. The entry at row δ
and column ∆ indicates the probability that; with the assumption of the attacker does
know any information on δ (i.e., δ has full entropy), the δ (input difference) → ∆ (output
difference) transition will take place. Thus, the PDDT has the property that the sum of
each row (and also column) is 1. Note that (at the initial round) where Eve chooses the
plaintext pair, she still does not know the input pair to the SBox thanks to the full key
XOR.

Table 1: PDDT for GIFT SBox

δ

∆
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0001 0 0 0 0 0 1
8

1
8 0 1

8
1
8

1
8

1
8

1
8 0 0 1

8

0010 0 0 0 0 0 1
4

1
4 0 0 1

8
1
8 0 0 1

8
1
8 0

0011 0 0 0 0 0 1
8

1
8 0 1

8 0 0 1
8

1
8

1
8

1
8

1
8

0100 0 0 0 1
8 0 1

4 0 3
8 0 1

8 0 0 0 1
8 0 0

0101 0 0 1
8 0 0 1

8 0 0 1
8 0 0 0 1

8
1
8

1
8

1
4

0110 0 0 1
4

3
8 0 0 0 1

8 0 0 1
8 0 0 0 1

8 0

0111 0 0 1
8 0 0 1

8 0 0 1
8

1
8

1
8

1
4

1
8 0 0 0

1000 0 0 0 1
4 0 0 0 1

4 0 0 0 1
4 0 0 0 1

4

1001 0 1
8 0 1

8 0 0 1
8

1
8

1
8 0 1

8 0 1
8

1
8 0 0

1010 0 1
4 0 0 0 0 1

4 0 0 1
8

1
8 0 0 1

8
1
8 0

1011 0 1
8 0 1

8 0 0 1
8

1
8

1
8

1
8 0 0 1

8 0 1
8 0

1100 0 0 1
4 0 1

4 0 0 0 1
8 0 1

8 0 1
8 0 1

8 0

1101 0 1
8

1
8 0 1

4 0 0 0 0 0 1
8

1
8 0 1

8 0 1
8

1110 0 1
4 0 0 1

4 0 0 0 1
8

1
8 0 0 1

8
1
8 0 0

1111 0 1
8

1
8 0 1

4 0 0 0 0 1
8 0 1

8 0 0 1
8

1
8

This PDDT is actually used in the usual DDT-based modelling such as [ZDY18,Bak20,
SWW21,SPWW22]. It is not explicitly stated that the full round key XOR is assumed;
rather it is assumed that the probability transition happens according to the PDDT – for
this assumption to hold, the all the input bits to the SBoxes has to be non-deterministic –
which is achieved only through XORing the full state with the round keys. In this case, the
attacker only knows the input difference δ, but does not know the pair of inputs (which
are δ apart). Thus, this is the maximum narrowed down search space she could have.

On the other extreme, when the δ is fully known (happens where there is no round
key XOR), the form of PDDT changes. Note that the entries which are 0 do not change,

4This is not to be confused with the Partial Difference Distribution Table (pDDT) of [BV13].

5

but each non-zero value becomes 1. This is because, having the full knowledge of δ, the
attacker can determine exactly which δ → ∆ to follow (with probability 1) and discard
the rest transitions. To describe this new PDDT in the same framework as the regular
situation (i.e., when δ has full entropy), we introduce the concept of mask. In general,
for an n-bit SBox, the mask is a 2n-bit binary string; where maski = 1 if the ith bit is
not known to the attacker, 0 otherwise. Thus, for the 4-bit SBox of GIFT; when δ has full
entropy, mask = 1111; but when δ is fully known, mask = 0000. The PDDT [mask= 0000]
for the GIFT SBox is shown in Table 2.

Table 2: PDDT [mask = 0000] for GIFT SBox

δ

∆
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0001 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1

0010 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0

0011 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1

0100 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0

0101 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1

0110 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0

0111 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0

1000 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1001 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0

1010 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0

1011 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0

1100 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0

1101 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1

1110 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0

1111 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1

This PDDT is useful to find the trivial case of unkeyed permutation (thus the attacker
fully knows the cipher state at any round). In this case, the attacker knows the exact
input pair, thus she can determine the exact output pair (with probability 1). For example,
say, the input pair to a particular SBox at a particular round is (0, 2), thus the input
difference is 2. As this is known to Eve, she can compute the outputs from the description
of the SBox as (0, 4), leading to the output difference of e. In this case, the difference
transition 2 → 5 happens with probability 1. From the corresponding PDDT in Table 2,
note that this transition indeed happens with probability 1.

The dissimilarity of the PDDT [mask = 1111] (Table 1) and the PDDT [mask = 0000]
(Table 2) stems from Eve’s knowledge (or, lack thereof) about the pair of inputs. In both sit-
uations, the input difference δ is known to her with probability 1; but in the former situation
the input pair that generates δ is known but not with probability 1, whereas in the latter sit-
uation the input pair is known with certainty. Going back to the toy example just described,
in the former situation Eve knows δ = 2 with probability 1; but it could come from any
pair from {{0, 2}, {1, 3}, {4, 6}, {5, 7}, {8, a}, {9, b}, {c, e}, {d, f}}, each with probability
1
8 . Thus, she obtains the following output pairs: {{1, 4}, {a, c}, {6, 3}, {f, 9}, {2, b}, {d, 7},
{5, 8}, {0, e}}, each with probability 1

8 . Ultimately, she is able to compute the output
difference ∆ as (5, 6, 9, a, d, e), with respective probability as (1

4 , 1
4 , 1

8 , 1
8 , 1

8 , 1
8). The

PDDT [mask = 1111] reflects this scenario (match with δ = 2 in Table 1). Contrary to
this, when the exact input pair (i.e., (0, 2) by presumption) is known, this probability
distribution is no longer respected, rather that from PDDT [mask = 0000] is respected.
Here, Eve can pinpoint the output difference (which is 5) with probability 1. Now, this
PDDT can be used to get the differential bound (i.e., by replacing the DDT with it) for
the unkeyed permutation.

6

In this way, the concept of DDT can be adjusted to take into account the attacker’s
knowledge about the input pair to the SBox (i.e., after round key XOR). The δ → ∆
transition is to be interpreted as a probability conditioned by the fact that the attacker
precisely knows some bits of the input pair to the SBox.

In the middle of the two scenarios lies the case of the GIFT-128, where the middle two
bits are XORed with the round key bits. This corresponds to mask = 0110. Note that
the half key XOR does not change the grouping: {0∗∗0, 0∗∗1, 1∗∗0, 1∗∗1}, where ∗ can be
either 0 or 1; for any input to the SBox. The attacker always knows the MSB and the
LSB of the input pairs which are fed to the SBox. This contrasts the usual setting where
no bit of the input pair is known (only the input difference is known). It seems possible to
continue further in this direction to ultimately model the entire cipher by keeping half key
XOR in mind.

It is understandably more complex to find the exact model for half round key XOR.
As a back-of-the-envelope computation, one may note that the minimum non-zero entry
in the DDT where only 2 bits of the SBox input is not known is 1

4 ; thus all the non-zero
entries less than 1

4 can be replaced by 1
4 to get a more accurate estimate. For the exact

bound, one has to consider four distinct PDDTs, each corresponding to four values of the
key that the attacker presumably knows.

4 Conclusion
We show danger of deviating from the norm of cipher construction. When the usual
DDT/LAT based analysis was first proposed, all the ciphers at that time used full XOR of
the state with each round key. Then came GIFT [BPP+17] which deviated from the norm,
but made the same security claim as it would be for full round key XOR. Though not clearly
stated, the usual SBox to DDT/LAT conversion inherently assumes full round key XOR at
the SBox input. This means that the usual analysis as in [ZDY18,Bak22,SWW21,SPWW22]
are all valid5 but those work with the inherent assumption that the full state is XORed
with the round key (in order for those results to work; the input difference to each SBox
is to be fully probabilistic, i.e., using 1111 as the mask). Roughly speaking, the actual
bound with respect to the differential and linear attacks would be about square-root of
what is claimed otherwise.

The simplest patch would be to opt for full round key addition instead. This would
inevitably increase the device footprint.

References
[Bak20] Anubhab Baksi. New insights on differential and linear bounds using mixed

integer linear programming (full version). Cryptology ePrint Archive, Report
2020/1414, 2020. https://eprint.iacr.org/2020/1414. 1, 4, 5

[Bak21] Anubhab Baksi. Classical and Physical Security of Symmetric Key Crypto-
graphic Algorithms. PhD thesis, School of Computer Science & Engineering,
Nanyang Technological University, Singapore, 2021. https://dr.ntu.edu.s
g/handle/10356/152003. 1

[Bak22] Anubhab Baksi. New Insights on Differential and Linear Bounds Using Mixed
Integer Linear Programming, pages 109–140. Springer Singapore, Singapore,
2022. 7

5The differential and linear bounds claimed in the GIFT paper [BPP+17] are wrong, so those do not
count anyway.

7

https://eprint.iacr.org/2020/1414
https://dr.ntu.edu.sg/handle/10356/152003
https://dr.ntu.edu.sg/handle/10356/152003

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. IACR
Cryptology ePrint Archive, 2016:660, 2016. 2

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. Gift: A small present. Cryptology ePrint
Archive, Report 2017/622, 2017. https://eprint.iacr.org/2017/622. 1, 2,
4, 7

[BV13] Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails
in arx ciphers (extended version). Cryptology ePrint Archive, Paper 2013/853,
2013. https://eprint.iacr.org/2013/853. 5

[LIM20] Fukang Liu, Takanori Isobe, and Willi Meier. Automatic verification of differ-
ential characteristics: Application to reduced gimli (full version). Cryptology
ePrint Archive, Paper 2020/591, 2020. https://eprint.iacr.org/2020/591.
3

[NDE21] Marcel Nageler, Christoph Dobraunig, and Maria Eichlseder. Information-
combining differential fault attacks on default. Cryptology ePrint Archive,
Report 2021/1374, 2021. https://eprint.iacr.org/2021/1374. 1

[SHW+14] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
Danping Shi, Ling Song, and Kai Fu. Towards finding the best characteristics
of some bit-oriented block ciphers and automatic enumeration of (related-key)
differential and linear characteristics with predefined properties. IACR Cryptol.
ePrint Arch., 2014:747, 2014. 1

[SPWW22] Ling Sun, Bart Preneel, Wei Wang, and Meiqin Wang. A greater gift: Strength-
ening gift against statistical cryptanalysis. Cryptology ePrint Archive, Paper
2022/243, 2022. https://eprint.iacr.org/2022/243. 1, 5, 7

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the sat method. Cryptology ePrint Archive,
Report 2021/213, 2021. https://eprint.iacr.org/2021/213. 1, 4, 5, 7

[ZDY18] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. MILP-based differential attack
on round-reduced gift. Cryptology ePrint Archive, Report 2018/390, 2018.
https://eprint.iacr.org/2018/390. 1, 4, 5, 7

8

https://eprint.iacr.org/2017/622
https://eprint.iacr.org/2013/853
https://eprint.iacr.org/2020/591
https://eprint.iacr.org/2021/1374
https://eprint.iacr.org/2022/243
https://eprint.iacr.org/2021/213
https://eprint.iacr.org/2018/390

	Introduction
	Background Information
	Observation
	Basic
	Detailed

	Conclusion

