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Abstract. Recently, significant progress has been made toward quantumly secure multi-party compu-
tation (MPC) in the stand-alone setting. In sharp contrast, the picture of concurrently secure MPC (or
even 2PC), for both classical and quantum functionalities, still remains unclear. Quantum information
behaves in a fundamentally different way, making the job of adversaries harder and easier at the same
time. Thus, it is unclear if the positive or negative results from the classical setting still apply. This
work initiates a systematic study of concurrent secure computation in the quantum setting. We obtain
a mix of positive and negative results.

We first show that assuming the existence of post-quantum one-way functions (PQ-OWFs), con-
currently secure 2PC (and thus MPC) for quantum functionalities is impossible. Next, we focus on
the bounded-concurrent setting, where we obtain simulation-sound zero-knowledge arguments for both
NP and QMA, assuming PQ-OWFs. This is obtained by a new design of simulation-sound gadget,
relying on the recent post-quantum non-malleable commitments by Liang, Pandey, and Yamakawa
[FOCS’23], and the quantum rewinding strategy recently developed by Ananth, Chung, and La Placa
[CRYPTO’21] for bounded-concurrent post-quantum ZK.

Moreover, we show that our technique is general enough—It also leads to quantum-secure bounded-
concurrent coin-flipping protocols, and eventually general-purpose 2PC and MPC, for both classical and
quantum functionalities. All these constructions can be based on the quantum hardness of Learning
with Errors.
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1 Introduction

Secure multi-party computation (MPC) [Yao86, GMW87] enables two or more mutually distrustful parties
to compute any functionality without compromising the privacy of their inputs. Since its introduction, MPC
has soon become a cornerstone of cryptography. Most papers study MPC only in the so-called stand-alone
setting, which guarantees the privacy of honest parties for a single execution of the underlying protocol.

More realistic setting is the concurrent setting where parties might participate in multiple session at
a time. A broad study of MPC in the concurrent setting was undertaken starting with the work of Feige
and Shamir [FS90, Fei90] on witness-indistinguishable proofs in the concurrent setting, and Dwork, Naor and
Sahai [DNS98] on concurrent zero-knowledge proofs. Unfortunately broad impossibility results for concurrent
self composition [Lin03, Lin04, BPS06] as well as general composition like universal composability [Can01,
CF01, CKL03] were soon obtained thereafter.

To overcome this limitation, a number of settings were studied to bypass these results, including

– Standard ideal-world security notion but in weaker real-world model: For example, bounded concurrency
[Lin03], CRS model [CLOS02], hardware token model [Kat07], etc.

– Weaker notions of security: For example, super-polynomial-time simulation [Pas03, PS04], input indistin-
guishable computation [MPR06], simulation with the ability to receive multiple outputs [GJO10, GJ13],
etc.

Concurrent MPC in the Quantum Era. All the above impossibility results are in the classical setting.
However, it is known that quantum information behaves in a fundamentally different way. For example, the
no-cloning theorem [WZ82] might allow us to restrict the ability of the adversary to copy messages. This
raises the tantalizing possibility that assuming laws of quantum physics, concurrently secure computation
maybe possible after all! However, one should also note that, e.g., no cloning also makes the design of the
simulator harder since the simulator is no longer free to rewind the (quantum) adversary as in the classical
setting. This on the other hand raises the tantalizing possibility that assuming laws of quantum physics, even
results in the weaker setting such as bounded-concurrent secure computation maybe impossible to obtain!

Our goal in this paper is to initiate a systematic study of concurrently secure computation in the
quantum setting.

1.1 Our Results

Notation. We call a protocol post-quantum if the honest parties and their communication channels are en-
tirely classical but the adversary is allowed to be a quantum machine. We use PQ-MPCC (resp. PQ-2PCC)
to denote post-quantum multi-party (resp. two-party) secure computation for classical functionalities. Simi-
larly, we use MPQC (resp. 2PQC) to denote secure multi-party (resp. two-party) computation for quantum
functionalities (over quantum channels), where both the honest parties and the adversaries could be quantum
machines.

First, we obtain the following no-go theorem ruling out concurrently secure 2PQC protocols. It can be
viewed as a generalization of the [BPS06] impossibility to quantum functionalities.

Theorem 1 (Impossibility). Assuming the existence of PQ-OWFs, it is impossible to build concurrently
secure 2PQC (and thus MPQC) protocols (even assuming quantum computation and communication).

We remark that assuming the existence of post-quantum one-way functions (PQ-OWFs), concurrently
secure PQ-2PCC (and thus PQ-MPCC) is impossible. This follows from an observation that the impossibility
results in [BPS06] for concurrently secure 2PCC in the classical world extend to the post-quantum setting
directly. We do not claim this as our contribution. In contrast, the proof of Thm. 1 is not immediate because
of quantum computational and communication.

Next, we investigate possibilities in the bounded-concurrent model, where a bound m is a priori fixed (so
the protocol design can depend on m) and the adversary is allowed to participate in at most m simultaneous
executions of the same protocol4. This model is interesting because it does not rely on any setup assumptions

4 We follow the convention that the term “bounded-concurrent” actually means bounded self composition.
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or relaxations of the security (e.g., super-polynomial-time simulation). It has been demonstrated in the
classical setting (e.g., [Lin03, PR03, Pas04]) that a crucial step to build composable computation protocols
is to obtain simulation-sound ZK systems secure in the (bounded) concurrent setting. Simulation soundness
[Sah99] is a form of non-malleability; It requires that the soundness of each of the protocols in the (bounded)
concurrent setting is preserved even when the other protocols are simulated at the same time with the roles
of the prover and verifier reversed (see Def. 11). Intuitively, this notion is crucial for composable 2PC/MPC
because it provides a tool for the simulator to “cheat” while ensuring that the adversary cannot, in the
concurrent setting.

However, bounded-concurrent simulation-sound ZK arguments are not known in the quantum setting.
Therefore, we first propose a new approach to build post-quantum bounded-concurrent simulation-sound ZK
arguments. At a high-level, we take the bounded-concurrent ZK argument from [ACL21] and build simulation
soundness into it. Moreover, we will show that our technique is general enough—It also leads to bounded-
concurrent coin-flipping protocols, and eventually general-purpose 2PC and MPC, for both classical and
quantum functionalities. (See for Sec. 2 details.) We summarize the positive results in the following theorem.

Theorem 2 (Positive Results). There exist constructions, secure against quantum-polynomial-time (QPT)
adversaries, for the following tasks in the bounded-concurrent setting:

1. Simulation-sound ZK arguments for NP, based on the minimal assumption of PQ-OWFs. Honest parties
of this protocol do not need to perform any quantum computation/communication;

2. Simulation-sound ZK arguments for QMA, assuming the existence of PQ-OWFs;

3. Two-party coin-flipping, multi-party coin-flipping, PQ-2PCC and PQ-MPCC, assuming the quantum
hardness of Learning with Errors; Honest parties of these protocols do not need to perform any quan-
tum computation/communication;

4. 2PQC and MPQC, assuming the quantum hardness of Learning with Errors.

1.2 Related Work

In the classical setting, Lindell [Lin03] presented the first m-concurrent two-party protocol for any a priori
fixed m. Pass and Rosen [PR03] then improved Lindell’s results from O(m) rounds to constant rounds. Sub-
sequently, Pass [Pas04] presented a constant-round multi-party protocol (and under improved assumptions).
The state of the art is from [GLPV20], which can be understood as a black-box version5 of [Pas04].

In the quantum setting, a recent line of research gave a beautiful characterization of stand-alone MPC.
For classical functionalities, after Watrous’ breakthrough work on post-quantum zero-knowledge [Wat06],
the works of [DL09, LN11, HSS11] considered variants of quantum-secure computation protocols in the
two-party setting. Recently, constant-round PQ-MPC was also achieved [ABG+21, LPY23]. For quantum
functionalities, [DNS12] obtained the first 2PQC protocol. Later, MPQC with dishonest majority was ob-
tained [DGJ+20, ACC+21, GLSV21, BCKM21b, BCKM21a, LPY23].

In contrast, the situation of concurrently secure MPC in the quantum setting is less satisfactory. The
closest work in this regard is the recent results by Ananth, Chung, and La Placa [ACL21], who built a
bounded-concurrently secure protocol for the special case of zero-knowledge arguments.6 In the plain model,
important questions regarding the (im)possibility of composable secure two-party/multi-party computation
in the quantum world remained open before the current work.

2 Technical Overview

2.1 Overview of [ACL21]

We first recall the bounded-concurrent post-quantum zero-knowledge (PQ-ZK) arguments from [ACL21].
Let Q(λ) be a polynomial of the security parameter λ that denotes the number of concurrent sessions. The
[ACL21] protocol proceeds in two stages:

5 [GLPV20] obtained the same results as [Pas04] while making only block-box use of the underlying primitives.
6 [ACL21] also obtained a zero-knowledge proof of knowledge protocol. This protocol is bounded-concurrent ZK, but
[ACL21] only established its proof of knowledge property in the stand-alone setting.
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– Preamble Stage: the prover P and verifier V repeat sequentially for ℓslot := 120Q7λ times the following
basic slot: P sends a statistically binding commitment SBCom to a random bit a, V replies by sending
another random bit b (in plain). Such a slot is said to match if the bit a committed in P ’s SBCom equals
to V ’s bit b.

– Proof Stage: P and V run a witness-indistinguishable (WI) argument where P proves to V that either
the concerned statement x is true (dubbed the true statement) or there are more than Th := 60Q7λ+Q4λ
slots match from the above stage (dubbed the trapdoor statement).

The idea behind the Q-concurrent ZK property of this protocol is as follows:7 A simulator can always rewind
a particular slot until it matches. Therefore, if one can find a proper way to rewind the slots so that the
trapdoor statement becomes true for all the sessions, then the simulator can just use the trapdoor to finish
the Proof Stage.

However, since the adversary is a quantum machine, finding a proper rewinding strategy in this Q-
concurrent setting is not easy. [ACL21] makes use of Watrous’ quantum rewinding lemma [Wat06]. Roughly,
this lemma allows one to rewind a quantum adversary under the condition that the decision of rewinding
should be (almost) independent of the adversary’s internal (quantum) state. [ACL21] designs a special block
rewinding strategy as follows: Let T denote the total number of messages across all sessions in the Q-
concurrent execution of their protocol. They partition these T messages into L := 24Q6λ equal-size blocks
{B1, . . . , BL}. That is, block B1 contains the first T

L = 10Q2 messages8, block B2 contains the next 10Q2

messages, and so on (messages are ordered according to their order of appearing in the execution). Note that
the adversary can stagger the messages of a particular session across the different blocks such that the first
message of a slot is in one block but the second message of this slot could be in a different block.

As the execution goes on, the simulator monitors each block Bj to see if there is a slot fully nested9 in Bj .
If not, it tosses a random coin to decide whether to rewind the execution of the whole block Bj ; Otherwise
(i.e., there are at least one fully nested slot), it chooses at random a fully nested slot in Bj , and rewind the
execution of the whole block Bj iff the chosen slot matches.

Observe that if there is no fully nested slots in a block, it would be rewound with probability exactly 1
2 ;

Otherwise, it would be rewound with probability 1
2 ± negl(λ) (due to the computationally hiding proeprty

of SBCom). Thus, any block would be rewound with probability 1
2 ± negl(λ), independent of the adversary’s

behavior, thus satisfying the condition of Watrous rewinding lemma, which implies that this block rewinding
strategy will not change the adversary’s view.

On the other hand, [ACL21] also shows that by their choice of parameters, the above rewinding strategy
will make the trapdoor statement available in each session. Roughly, that is because in each session, there
are approximately ℓslot

2 = 60Q7λ matching slots even if there are no rewindings (as each slot will naturally
match with probability 1

2 ± negl(λ)); Then, by a combinatorial argument, the authors manage to show that
the above rewinding strategy will contribute at least Q4λ extra matching slots in each session. Thus, the
total number of matching slots in each session will exceed the threshold Th = 60Q7λ+Q4λ. This eventually
completes the proof of the Q-concurrent ZK property.

2.2 Getting Simulation Soundness

Our first goal is to build simulation-sound ZK arguments in the bounded-concurrent setting. In this setting,
a polynomial Q(λ) (of the security parameter λ) is a priori fixed so the protocol design can depend on Q.
It considers an adversary A (dubbed the MIM adversary) participates in 2Q instances of the same protocol
simultaneously; In Q instances (dubbed the left sessions), A controls the verifiers talking to honest provers;
In the other Q instances (dubbed the right sessions), A controls the provers talking to honest verifiers. Each
of the sessions is associated with an ID (or tag), and no right-session ID is equal to any left-session IDs.10

Henceforth, we will refer to this setting as the Q-Q MIM execution if the Q is known. Simulation soundness
requires the existence of a simulator who could simulate the view of A in this Q-Q MIM execution without

7 The soundness of this protocol is less relevant to this overview.
8 Assuming the SBCom is non-interactive, each slot consists of two messages. The total number T is then ℓslot ·2 ·Q =
240Q8λ, which implies that T

L
= 10Q2.

9 That is, both messages of this slot are contained in block Bj .
10 Without IDs, a man-in-the-middle attack can not be prevented. See [Pas04] for related discussions.
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the witness for any of the left sessions, while ensuring that A cannot generate a convincing proof for a false
statement in any of the right sessions even in this simulated execution.

The [ACL21] protocol does not satisfy this requirement, because in the man-in-the-middle setting, when
the simulator performs their rewinding strategy to generate matching slots in left sessions, the MIM adversary
may also be able to make extra slots match in some right sessions so that she can use the trapdoor witness
to cheat in these right sessions.

Our idea is to equip the slots in [ACL21] with a certain simulation-sound property, while retaining the
overall structure of their protocol so that we can re-use their block rewinding strategy. This will eventually
yield a protocol so that in the Q-Q MIM setting, a simulator can use the trapdoor on the left (due to the
[ACL21] block rewinding strategy), but the MIM adversary cannot in any of the right sessions (due to the
simulation soundness that we will add to the [ACL21] slots.)

Organization. In the sequel, we first give a warm-up discussion in Sec. 2.3 about how to build a certain flavor
of simulation soundness into a single [ACL21] slot (i.e., in the 1-1 MIM setting). Next, we show how to gener-
alize this result to the Q-QMIM setting in Sec. 2.4. Then, we show that this bounded-concurrent simulation-
sound component can be used to build more applications including bounded-concurrent simulation-sound
ZK arguments for both NP and QMA (Sec. 2.5), secure 2PC for both classical and quantum functionalities
(in Sec. 2.6), and secure MPC for both classical and quantum functionalities (in Sec. 2.7). Finally, we discuss
the impossibility of (unbounded) concurrent 2PC for quantum functionalities in Sec. 2.8.

2.3 Simulation-Sound Gadgets: 1-1 MIM Setting

Intuition. In this subsection, we consider the man-in-the-middle execution of the [ACL21] slot. That is, a
MIM adversary A participates in two instances of the [ACL21] slot simultaneously; A corrupts the sender
(the role of the played by the prover in the [ACL21] slot) in one instance (dubbed the right slot) and corrupts
the receiver (the role of the played by the verifier in the [ACL21] slot) in the other (dubbed the left slot). We
will modify the [ACL21] slot so that in this MIM execution, the right slot matches with probability almost
1
2 , even if conditioned on the left slot matching.

To do that, we ask the receiver to commit to the bit b in advance using a post-quantum statistically-
binding commitment SBCom, and ask the sender to commit to the bit a using a constant-round post-
quantum non-malleable commitment, followed by the receiver’s decommitment to b. In the MIM execution,
the receiver’s SBCom will allow us to learn the bit b non-uniformly in the left slot. Then, a non-uniform
reduction to the sender’s non-malleable commitment will show that the match probability of the right slot
cannot deviate from 1

2 even if conditioned on the left slot matching. This construction is shown in Prot. 1,
where ENMC is a post-quantum constant-round statistically-binding commitment that is both non-malleable
and extractable. For a reason that will become clear later, we additionally require ENMC to be first-message
binding, which roughly means that the first message of ENMC already statistically determines the committed
value. The ENMC from [LPY23] satisfies this property (see Rmk. 4).

Protocol 1: A 1-1 Simulation-Sound Gadget

This protocol is between a sender (dubbed S) and a receiver (dubbed R); Both of them take a string
id ∈ {0, 1}λ as the common input, denoting the ID associated with this execution.

1. R samples b
$←− {0, 1} and commits to it using SBCom.

2. S samples a
$←− {0, 1} and commits to it using ENMC, where S and R use id as the ID (or tag) for this

ENMC.

3. R sends b together with the decommitment information w.r.t. the SBCom in Step 1.

(Through out this overview, we assume for simplicity that both SBCom and ENMC are perfectly binding
and that the MIM adversary A does not abort the execution before it completes. In the main body, we will
show that these assumptions can be removed easily.)

Let T denote the transcript (i.e., all the messages exchanged on both the left and right sides) resulted
from the above MIM execution. We claim that

Pr
T←MIM

[a = b] =
1

2
, (1)
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(a) (b)

Fig. 1: Different Schedules for the MIM Execution of Prot. 1

where b is the value committed in the left SBCom by A, and a is the value committed in the left ENMC by
S. Eq. (1) follows simply from the fact that the left (honest) S samples a uniformly at random, after A’s b
committed in SBCom was fixed.

We also claim that

Pr
T←MIM

[ã = b̃] =
1

2
± negl(λ), (2)

where b̃ is the value committed in the right SBCom by R, and ã is the value committed in the right ENMC by
A. Eq. (2) follows from the computationally hiding property of SBCom and the extractability of ENMC. In
more details, if Eq. (2) is false, then we can extract the ã (due to the extractability of the right-side ENMC)
and break the computationally hiding property of the right-side SBCom using ã as a reasonable guess for
the value b̃ committed in SBCom.

Next, we prove a lemma establishing a certain flavor of simulation soundness of Prot. 1 in the MIM
execution. Intuitively, this lemma says that even if we conditioned on the left side a = b, A cannot force
ã = b̃ on the right side with probability significantly different from half. This is essentially due to the
non-malleability of ENMC.

Lemma 1. Assuming id ̸= ĩd, it holds that PrT←MIM[ã = b̃ | a = b] = 1
2 ± negl(λ).

Proof. Recall that A is in charge of the schedule of messages. We use the first message of the left ENMC as a
pivot to divide all possible schedules into two mutually exclusive and collectively exhaustive types and show
Lem. 1 for them using different strategies.

– Type-1: They are the schedules where the right ENMC starts after (or in parallel with) the first messages
of the left ENMC. (An example is depicted in Fig. 1a.)

– Type-2: They are the schedules where the right ENMC starts before the first message of the left ENMC.
(An example is depicted in Fig. 1b.)

Proof for Type-1 Schedules. We assume for contradiction that Lem. 1 is false and build an adversary Anm

who can break the (non-uniform) non-malleability of ENMC. W.l.o.g., we assume

Pr
T←MIM

[ã = b̃ | a = b] ≥ 1

2
+

1

poly(λ)
. (3)

A standard calculation with Eq. (1) , Eq. (2) and Inequality (3) implies that

Pr
T←MIM

[ã = b̃ | a ̸= b] ≤ 1

2
− 1

poly(λ)
+ negl(λ). (4)

We now build the adversary Anm against the non-malleability of ENMC.

– Anm internally emulates the MIM game until the moment when A sends the left-side SBCom to b. Anm

then pauses the execution and performs brute-force search to learn the value b. We remark that this step is
not efficient. But it happens before the beginning of the ENMCs on both sides (due to Type-1 schedules).
Thus, the information in this step can be thought as a non-uniform advice to Anm.
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– Anm starts to participate in the non-malleability game: She sets m0 := b and m1 := 1 − b, and sends
(m0,m1) to the external non-malleability challenger Ch. By the definition of non-malleability, Ch will
flip a random coin b and performs a MIM execution of ENMC with Anm (see Def. 8 for details). Anm

simply relays messages so that these external ENMCs are used as the left and right ENMCs for the internal
emulation of the MIM game with A.

Notice that if Ch chooses to commit to m0 (resp. m1) on the left, the view of the internal A is identical
to that from the MIM execution conditioned on a = b (resp. a ̸= b) on the left. Thus, Anm’s advantage in
winning the non-malleability game is exactly the difference between the LHS of Inequality (3) and the LHS
of Inequality (4), which is lower-bounded by 2

poly(λ) − negl(λ). This breaks the non-malleability of ENMC.

Proof for Type-2 Schedules. Security in this case simply follows from the first-message binding property of
the right ENMC. That is, the message ã committed in the ENMC is determined by its first message; For
Type-2 schedules, this message is fixed before the beginning of the left ENMC. Therefore, conditioning on
a = b on the left does not change the probability of ã = b̃ for Type-2 schedules. Lem. 1 then follows directly
from Eq. (2) in this case.

This completes the proof of Lem. 1.

Remark 1. We remark that there is an alternative construction of the 1-1 simulation-sound gadget shown in
Prot. 1: One can remove the first SBCom(b) round, and only ask R to sends the random b after S’s ENMC.
By a sightly more involved argument, one can prove that this construction satisfies the same 1-1 simulation
soundness as Prot. 1. We provide in Appx. A a formal proof of this possibility.

In the sequel, we keep using the current version of Prot. 1 for the following reasons: (1) the version in
Appx. A does not have any advantages over Prot. 1 in terms of the required hardness assumptions and the
asymptotic round complexity; (2) importantly, the security proof for Prot. 1 is conceptually cleaner than that
in Appx. A, which requires us to first prove an intermediate lemma regarding the property of non-malleable
commitments.

2.4 Simulation-Sound Gadgets: Q-Q MIM Setting

Intuition. In this part, we show that the “simulation soundness” of Prot. 1 extends to the more demanding
many-many MIM setting. That is, consider a many-many MIM execution of a protocol consisting of sequential
repetitions of the gadget shown in Prot. 1. We want to argue that: even if one performs the [ACL21] block
rewinding strategy in this many-many MIM execution to make some gadgets match on the left, it still holds
that each gadget (in all the right sessions) matches with probability almost 1

2 .
Here, the challenge is that the [ACL21] block rewinding needs to be performed over a coherent execution

of the concerned protocol. However, the simulation soundness shown in Lem. 1 is regarding the de-coherent
execution of a gadget, and in a straight-line execution (i.e., where there is no rewindings). Generalizing Lem. 1
to this setting requires new ideas. Roughly, we will introduce extra intermediate hybrids (in addition to those
in [ACL21]) to make the execution de-coherent for the blocks that the Watrous rewinding has not reached.
Then, by a careful design of induction-type arguments, we manage to reduce the simulation soundness in
the Q-Q MIM setting to that in the straight-line 1-1 MIM setting shown in Lem. 1. We provide more details
below.

Simulation-Sound Gadgets in the Q-Q MIM Setting. To ensure simulation soundness in the Q-Q
MIM setting, we simply repeat the basic gadget in Prot. 1 for sufficiently many times:

Protocol 2: Simulation-Sound Gadgets Secure in the Q-Q MIM Setting

Let Q(λ) be a polynomial of λ, denoting the maximum number of concurrent sessions. Both S and R take
a string id ∈ {0, 1}λ as the common input.
Repeat the following steps for k = 1 to ℓgad := 120Q7λ:

1. R samples bk
$←− {0, 1} and commits to it using SBCom.

2. S samples ak
$←− {0, 1} and commits to it using ENMC, where S and R use id:k as the ID for this ENMC

execution so that each ENMC uses a different ID.

3. R sends bk together with the decommitment information w.r.t. the SBCom in Step 1.
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Terminology. We call each repetition of Step 1 to Step 3 a gadget. We say that the k-th gadget matches if
the ak committed by S in Step 2 is equal to the bk validly decommitted by R in Step 3. We emphasize that
this condition of match is always well-defined regardless of the honesty of S (or R), because both SBCom
and ENMC are perfectly binding.

Similar as [ACL21], we partition all the messages into L := 24Q6λ equal-size blocks {B1, . . . , BL}, in the
same manner as we explained when recalling the [ACL21] protocol.11 In the following, we define a sequence
of games (or hybrids) G0 and {Gj}j∈[L], the “simulation soundness” of Prot. 2 will appear in the form of
two lemmas (Lem. 2 and 3) related to these games.

Game G0: This is the Q-Q MIM execution of Prot. 2 described above, but executed coherently. At the end
of this game, we measure (in computational basis) and output the transcript (i.e., all the messages exchanged
on both the left and right sides).

Also, we additionally setup L single-qubit registers ⊗L
j=1Wj , which will be used for Watrous rewinding

only in later games. To explain the meaning of these registers, let us briefly recall the Watrous rewinding
lemma. It considers a quantum circuit U operating on the tensor of a single-qubit Watrous control register
W and another multi-qubit register; As long as the output of U induces a distribution on W that is (almost)
independent on the other input register, U can be converted into a new circuit W that on the same input is
guaranteed to yield the (almost) same output of U conditioned on the Watrous control register being 0. Here,
each Wj will be used as the Watrous control register for the rewinding of block Bj . We use a similar strategy
as in [ACL21] to ensure that they are (almost) independent of the adversary’s behavior: If block Bj does not
contain any fully nested gadget from any left sessions (dubbed left gadget), Wj is set to 0 with probability
1/2; Otherwise (i.e., there exists at least one fully nested left gadget), Wj is set to 0 iff a randomly-chosen
fully nest left gadget in Bj matches.

Game Gj (∀j ∈ [L]): This game is identical to Gj−1 except that it uses Watrous rewinding for block Bj ,
using the Wj (defined in G0) as the Watrous control register.

Two Critical Properties of Prot. 2. We prove two lemmas (Lem. 2 and 3) that play a central role in all
the positive results in this work.

The following Lem. 2 says that in a hybrid Gj , if a left session is finished before the last messages of
block Bj , then the total number of matching gadgets in that session is large enough, which means that it
exceeds a certain threshold Th that we choose properly.

Lemma 2 (Enough Matching Gadgets). Let Th := 60Q7λ + Q4λ. For all j ∈ [L], let Σj denote the
indices of left sessions that completes before the last message of block Bj. Then, it holds that for all hybrid
Gj (∀j ∈ [L]) and all i ∈ Σj that in hybrid Gj, the number of matching gadgets in the left session i is greater
than Th, except for with negligible probability.

(Proof Sketch for Lem. 2). The proof of this lemma is almost identical to [ACL21], where the authors also
need to prove that there are enough matching “slots” (i.e., our gadgets in their term). Intuitively, it is

because the natural execution will contribute
ℓgad
2 = 60Q7λ matching gadgets, and the block rewinding

will in additional contribute Q4λ matching ones in each left session. We refer to Appx. B for a formal
treatment.

Definition 1. For a Q-Q MIM execution of Prot. 2 we say that the invariant condition holds iff

∀i ∈ [Q], k ∈ [ℓgadget], Pr
[
ã
(i)
k = b̃

(i)
k

]
=

1

2
± negl(λ),

where ã
(i)
k is the value committed in the k-th ENMC (i.e., the ENMC of the k-th gadget) in the i-th right

session, b̃
(i)
k is the value committed in the k-th SBCom (i.e., the SBCom in the k-th gadget) of the i-th right

session, and the probability is taken over the Q-Q MIM execution.

Lemma 3 (Indistinguishability and Invariant Condition). The view of the adversary in all the games
{G0, G1, . . . , GL} are computationally indistinguishable. Moreover, the invariant condition (as per Def. 1)
holds in all the games, assuming no left-session ID is equal to any right-session ID.
11 But notice that we are in the Q-Q MIM setting. Both the left and right sessions contribute messages to blocks.
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(Proof Sketch for Lem. 3). We first prove that A’s view is indistinguishable in games {G0, G1, . . . , GL}. This
follows from a rather straight-forward manner from Watrous’ rewinding lemma. To see that, recall that for
any j ∈ [L], the only difference between Gj−1 and Gj is: Gj will finish block Bj using Watrous rewinding
with Wj playing the role of the Watrous control register. Therefore, the indistinguishability of the views will
follow once we show that Wi is set to 0 (almost) independent of A’s behavior. This simply follows from the
way we definition of Wj (defined in G0):

1. If there is no fully nested left gadgets in block Bj , Wj is set to 0 with probability exactly 1/2;

2. Otherwise, the game will pick a fully nested left gadget at random and set Wj to 0 iff that gadget matches.
Note that a left gadget matches with probability exactly 1/2 as well, because the left honest sender S(i)

(of the i-th left session) samples the bit a
(i)
k uniformly at random (in all left session i ∈ [Q] and all its

gadget k ∈ [ℓgad]).

Therefore, the Watrous control register is set to 0 with probability exactly 1/2, independent of A’s behavior.
This establishes the view indistinguishability of A in all the games. We note that this proof (for view
indistinguishability) is not new to this work. A similar argument already appears in [ACL21].

Invariant Condition. In the following, we prove the invariant condition. This proof relies on new techniques
developed in this work.

This proof is of the form of mathematical induction. We first establish the invariant condition in game
G0. Next, we show that for all j ∈ [L], if the invariant condition holds in game Gj−1, then it must hold in
game Gj as well.

Invariant condition in G0. In game G0, there is no Watrous rewinding; All the blocks are executed in straight-
line. This makes the proof of invariant condition straightforward—IfAmanages to break the invariant condition

for the k-th gadget in the i-th right session, then we can extract the ã
(i)
k (due to the extractability of ENMC)

and break the computationally hiding property of SBCom using ã
(i)
k as a reasonable guess for the value b̃

(i)
k

committed in the corresponding SBCom.

One caveat is that we define G0 to be a coherent execution. But the above argument is in the de-coherent
setting, where all the messages are classical. This is not a problem because of the following observation: due
to the deferred measurement principle, the classical transcript12 resulted from G0 is identically distributed as
that from the real (de-coherent) Q-QMIM execution. Since the invariant condition is information-theoretically
determined by the transcript, proving it in the de-coherent Q-Q MIM execution is equivalent to proving it
in (the coherent) game G0.

Invariant condition in Gj . Assume that the invariant condition holds in Gj−1. We now show that it must hold
in Gj as well. Similar as in the above proof for G0, game Gj is a coherent execution. We will instead consider
a new game G′j that de-coherentizes the blocks in Gj that are not reached by Watrous rewinding.

– Game G′j (j ∈ [L]): This game is identical to Gj , except that at the end of block Bj , it measures (in
computational basis) the transcript so far, and then finish the remaining execution de-coherently.

As we argued before, the invariant condition in G′j is equivalent to that in Gj , due to the deferred measurement
principle. In the following, we focus on an arbitrary gadget k ∈ [ℓgad] and right session i ∈ [Q] in G′j ; we

denote this gadget by g̃adget
(i)

k .

Note that the only difference between G′j−1 and G′j is the Watrous rewinding performed by G′j for block
Bj . By definition, this rewinding could happen for two reasons: (i) there is no left gadget fully nested in block
Bj , but we decide to perform a “dummy” rewinding (w.p. 1/2); (ii) there exists at least one left gadget fully
nested in block Bj , and the randomly selected gadget does not match. First, note that Case (i) is degenerated,
because it corresponds to a “dummy” rewinding that essentially does not change the transcript. For this
case, the invariant condition in G′j is inherited from that in G′j−1. Therefore, in this proof sketch, we only

focus on Case (ii).13

12 Recall that the transcript output by G0 is classical, because G0 measured it at the end of the execution.
13 We refer to Sec. 4.5 for a formal treatment of Case (i) and how we combine Cases (i) and (ii).
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Recall that the schedule of messages is controlled by A. Similar as in the proof of Lem. 1, we divide the
possible schedules into different types and prove the invariant condition for them one by one. This time, we
use the last message of block Bj−1 as the pivot:

Type-1 Schedules: The first message of ENMC to ã
(i)
k happens before (or in parallel with) the final message

of Bj−1. This is an easy case. Note that G′j−1 and G′j are identical until the end of block Bj−1, by when the

the first message of the g̃adet
(i)

k ENMC is already fixed. By the first-message binding property of ENMC, this

already fixed the committed value ã
(i)
k and thus the invariant condition. Therefore, the invariant condition in

G′j is inherited from that in G′j−1.

Type-2 Schedules: The first message of ENMC to ã
(i)
k happens after the final message of Bj−1. Recall that

we are in Case (ii), i.e., G′j rewinds block Bj because the randomly sampled left gadget (fully nested in Bj)

does not match. Let us denote this selected left gadget by gadget(u)v (i.e., it happens to be the v-th gadget of
some u-th left session).

Here, the key observation is: the transcript resulted from G′j is actually identical to that from G′j−1 but

conditioned on gadget(u)v matches (i.e., a
(u)
v = b

(u)
v ). This is because that the effect of Watrous rewinding

is to “kill” the branch in the superposition that corresponds to the Watrous control register being 1, and
only retain the branch that corresponds to the Watrous control register being 0. It then follows from this
observation that proving the invariant condition in G′j is equivalent to proving that in G′j−1 but conditioned on

gadget(u)v matches.14 As a vigilant reader may already notice, this is exactly what we have proven in Lem. 1
for the 1-1 “simulation soundness” of Prot. 1.15 Thus, the same argument applies here to finish the proof of

the invariant condition. In more details, we will view all the execution except for gadget(u)v and g̃adget
(i)

k as a

new MIM adversary, and view gadget(u)v and g̃adget
(i)

k as the left and right gadgets in the 1-1 MIM setting.
This configuration matches exactly the proof of Prot. 1.

This finishes the proof of Lem. 3.

2.5 Bounded-Concurrent Simulation-Sound ZK Arguments for NP and QMA

We show how to use Prot. 2 to build a bounded-concurrent simulation-sound ZK argument protocol Πsszk

for NP. The idea is to first execute a Preamble stage where the prover and the verifier run Prot. 2. Then,
they will execute a WI argument to prove either the concerned statement x is true, or there are more than
Th = 60Q7λ+Q4λ matching gadgets from the execution of Prot. 2 in the Preamble stage; An honest prover
will use the real witness w (for x ∈ L) for this stage. This protocol Πsszk is presented in Prot. 3 below.

Protocol 3: Πsszk: Q-Q Simulation-Sound ZK Arguments for NP (Informal)

A prover (dubbed Pid) and a verifier (dubbed Vid) agree on an ID id ∈ {0, 1}λ and an statement x from
some NP language L; Pid additionally holds a witness w for x ∈ L.
1. Preamble: These two parties run Prot. 2 (using id as the ID), where Pid acts as the sender S and Vid

acts as the receiver R.

2. WI: Then, they run a WI argument where Pid proves that either x is in L or there are more than
Th = 60Q7λ+Q4λ matching gadgets from the execution of Prot. 2 in Stage 1. An honest Pid will always
use the real witness w (for x ∈ L) to perform this WI.

To prove simulation soundness of Πsszk in the Q-Q MIM setting,16 we need to construct a simulator S
in the Q-Q MIM execution of Πsszk, who can simulate the view of the MIM adversary A without using the
real witness w in any of the Q left sessions; Meanwhile, we need to make sure that even in this simulated
execution, A cannot convince the honest verifier on a false statement in any of the Q right sessions.

Intuitively, the properties (i.e., Lem. 2 and 3) of Prot. 2 performed in the Preamble will allow us to
construct the desired simulator S so that S is able to use the trapdoor (i.e., more than Th = 60Q7λ +Q4λ

14 Here, we mean (invariant condition in G′
j) ≡ (invariant condition in G′

j−1 conditioned on gadget(u)v matches).

15 Note that neither gadget(u)v nor g̃adget
(i)

k is interleaved with Watrous rewinding in Gj−1 (due to Type-2 schedules).
16 Completeness and soundness of Πsszk follow from standard techniques. We refer to the main body for details.
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gadgets match) to cheat in the WI stage against the adversary in each left sessions (due to Lem. 2), and
meanwhile ensure that the adversary cannot use the trapdoor and must behave honestly in all right sessions
(due to the invariant condition17 claimed in Lem. 3). However, we cannot use Lem. 2 and 3 in a modular
way, because we only proved them for the Q-Q MIM execution of Prot. 2 itself, where there are no other
protocols. It is unclear if they still hold when Prot. 2 is composed with other messages (i.e., the WI stage
messages). Nevertheless, we will show in the following that the proofs of Lem. 2 and 3 are robust enough to
“tolerate” the WI stage.

We again partition all the messages in the Q-QMIM execution of Πsszk into L = 24Q6λ equal-size blocks,
and define the same hybrids G0 and {Gj}j∈[L] as in Sec. 2.4. This time, these blocks and hybrids are defined
w.r.t. Πsszk. That is, in each session, there exist WI messages (after the execution of the Prot. 2 instance)
that contribute to the total number T of messages in the Q-Q MIM execution. But each block still contain
T/L blocks, and the rule to rewind a block does not change (i.e., it is still based on if there are fully nested
left gadgets as before).

Additionally, we insert the following hybrid Hj−1 between Gj−1 and Gj :
18

Hybrid Hj−1 (∀j ∈ [L]): This hybrid is identical to Gj−1 (defined on Page 7) except that it additionally
monitors the execution of block Bj , and for all left sessions of Πsszk whose WI stage starts in block Bj , it
switches to using the trapdoor (i.e., more than Th gadgets match) to finish that WI stage.

Notice that if we manage to show Lem. 2 and 3 for this new sequence of hybrids (with the intermediate
Hj ’s), the Q-Q simulation soundness of Πsszk is established. Because in GL, we are able to use the trapdoor
to cheat in the WI stage against the adversary in all left sessions (due to Lem. 2); Meanwhile, the adversary
cannot use the trapdoor and thus cannot prove false statements in all right sessions (due to the invariant
condition19 claimed in Lem. 3). It turns out the only step that requires new ideas is the switch from Gj−1 to
the new hybrid Hj−1. In the following, we focus on the challenges and how we resolve them.

Indistinguishability. We first claim that the view of A is computationally indistinguishable between Gj−1 and
Hj−1 (∀j ∈ [L]). Recall that Gj−1 performs Watrous rewinding only for the first j−1 blocks {B1, . . . , Bj−1}.
In particular, it means that the WI that starts in block Bj will be executed in straight-line. Since the only
difference between Gj−1 andHj−1 is the witness used in this WI, the view indistinguishability follows directly
from the WI property.

There are two issues to address in the above argument. First, recall that both Gj−1 and Hj−1 are coherent
executions, so we cannot use the WI property, which is about the de-coherent execution of the WI stage.
This can be resolved using the same technique as for Lem. 3—We consider an intermediate hybrid G′j−1
(resp. H ′j−1) that is identical to Gj−1 (resp. Hj−1) but execute the blocks {Bj , . . . , BL} (i.e., the blocks
Watrous rewinding has not reached) de-coherently. In this way, we can perform the reduction to the WI
property as explained above.

Second, we need to show that the trapdoor will indeed become available when Hj−1 needs it. We want to
prove this using (a similar argument as for) Lem. 2—When the WI stage of some left session starts in block
Bj , it means the Preamgle stage of this left session must complete before block Bj . It then follows from
Lem. 2 that the trapdoor witness of this left session must be available. However, the result in Lem. 2 is about
Gj that performs Watrous rewinding up to block Bj , but the current hybrid G′j−1 only performs rewinding
up to Bj−1. It is possible that one less gadget is made match in G′j−1 (i.e., the one fully nested in block
Bj and picked by Watrous’ rewinding). Fortunately, this does not affect the availability of trapdoor in G′j−1
because the bound in Lem. 2 is derived asymptotically on the security parameter λ, and it still holds even
if one less gadget matches. Another related issue is: Compared with the Gj considered in Lem. 2, there are
more messages in each session (i.e., the WI stage) in G′j−1. But this does not affect the asymptotic bound
in Lem. 2 either, because the WI stage contribute to each session only a constant number (particularly,
independent of λ) of extra messages.

17 Note that the invariant condition only help us to upper bound the expected number of matching right gadgets. But
using a proper concentration bound, we can also show that A cannot make more than Th gadgets match.

18 That is, the current order of hybrids is: G0 → H0 → G1 → H1 → G2 → · · · → GL−1 → HL−1 → GL.
19 Note that the invariant condition only help us to upper bound the expected number of matching right gadgets. But

using a proper concentration bound, we can also show that A cannot make more than Th gadgets match.
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Invariant Condition. We also need to prove the invariant condition (as per Def. 1) in Hj−1. A simple solution
is to require the WI stage to be statistically WI. In this way, the switch of witness in Hj−1 does not affect
the invariant condition as the WI execution contains no information of the used witness at all. However,
constant-round20 statistical WI arguments are not unknown from the minimal assumption of PQ-OWFs. We
thus take a different proof approach (that allows us to keep using the computational WI arguments).

We will keep using the H ′j−1 defined above, because of its advantage that the blocks after Bj−1 are
de-coherent (again, due to the deferred measurement principle, invariant condition in H ′j−1 implies that in
Hj−1). We divide all possible schedules into two types in the same manner as in the proof of Lem. 3 (shown
on Page 9). Type-1 schedules can be handled in exactly the same manner as on Page 9. However, we
cannot re-use the same proof for Type-2 schedules, because the change in the current H ′j−1 is to switch the
WI witness; And the ENMC is non-malleable only w.r.t. another ENMC (but not w.r.t. the concerned WI
argument).

Instead, we re-use the proof for G0 (shown on Page 8) for Type-2 schedules—If A manages to break

the invariant condition, then we can extract the ã
(i)
k (due to the extractability of ENMC) and break the

computationally hiding property of SBCom using ã
(i)
k as a reasonable guess for the value b̃

(i)
k committed in

the corresponding SBCom. However, there is one difficulty in the current setting. Type-2 schedules in H ′j−1

only guarantees the ENMC to ã
(i)
k starts after the final message of Bj−1 (and thus is executed de-coherently

and in straight-line). However, it is possible that the SBCom to b̃
(i)
k happens within some block Bz with

z ≤ j − 1; Since this Bz is performed using Watrous rewinding, we cannot view the concerned g̃adget
(i)

k as a
straight-line, de-coherent execution and perform the above reduction to the hiding property of SBCom.

To solve this issue, we define another hybrid H ′′j−1, which is identical to H ′j−1 except that it guess at
random the block index z and stop performing the Watrous rewinding for block Bz, while executing other

blocks in the same manner as H ′j−1. In this way, if the SBCom to b̃
(i)
k appears within Bz, it will be a de-

coherent execution. Moreover, H ′′j−1 is equivalent to H ′j−1 with probability 1/2. I.e., they are equivalent
as long as the Watrous control register Wz (for the picked z) is set to 0 in hybrid H ′′j−1, and as we proved
earlier, each Watrous control register will be set to 0 with probability exactly 1/2. Then, we can perform
the above reduction to the hiding of SBCom in the new hybrid H ′′j−1. This approach only incurs an 1

2 ·
1

ℓgad

multiplicative loss on the adversary’s advantage in winning the hiding game, where the term 1
2 is due to the

fact that H ′′j−1 ≡ H ′j−1 with probability 1
2 , and the term 1

ℓgad
is due to the fact that H ′′j−1 needs to guess

correctly in which block Bz the SBCom to b̃i,k will appear. Since ℓgad is a polynomial of λ, the reduction still
works.

Remark 2. It is worth noting the following points regarding the above proof:

1. It is not necessary that the post-quantum non-malleable commitment (PQ-NMC) has to be constant-
round. But it is worth noting that [LPY23] is essential to our construction due to its two extra properties:
first-message binding and extractability. No other known constructions of PQ-NMCs achieve these two
properties simultaneously.

2. In contrast to the PQ-NMC, we do require the WI stage to be constant-round. The short expla-
nation is that our proof strategy for simulation soundness scales exponentially with the number of
rounds of the primitives, and therefore it cannot go beyond constant. (See the paragraph starting with
“Simulation Soundness” on Page 28 for details.)

Extension to QMA. Notice that the above security proof for Πsszk makes use of its WI stage in a “black-
box” manner. That is, all the claims above hold as long as the WI stage is constant-round, computationally
WI, and computationally sound. In particular, this is true even if this WI stage involves quantum commu-
nication. Therefore, a bounded-concurrent simulation-sound ZK argument for QMA can be constructed by
replacing the WI stage for NP in Πsszk with a WI argument for QMA, where again the prover proves either

20 If the WI argument is not constant-round, the above proof of indistinguishability may not goes through anymore.
Because it is unclear if the asymptotic bound in Lem. 2 still holds.
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the QMA statement is true or the trapdoor statement is true. We remark that such a constant-round WI
argument for QMA is know from PQ-OWFs in [CCLY22].21

2.6 More Applications: Coin-Flipping Protocols, PQ-2PCC, and 2PQC

To build these applications, we want to follow the same template as in Sec. 2.5. That is, we ask the parties
to run a Preamble stage involving executions of Prot. 2. Then, the parties execute some extra components
implementing the desired functionality (e.g., the WI stage in our Πsszk protocol). As long as the “extra
components” are constant-round and have a straight-line security proof, the proof techniques in Sec. 2.5 will
generalize to this new construction.

But coin-flipping protocols, or general-purpose 2PC in general, have crucial differences with zero-knowledge
arguments:

1. For the Q-Q MIM execution of zero-knowledge arguments, we only need to deal with “fixed-role” corrup-
tions. That is, we know for sure that the MIM adversary corrupts the verifiers of all the left sessions and
corrupts the provers of all the right sessions. In contrast, for the Q-concurrent execution of 2PC protocols,
it is possible that A corrupts P1 of some sessions and P2 of other sessions (this is typically referred to as
interchangeable-role corruptions).

2. ZK arguments require simulation-based security against corrupted verifiers (i.e., the ZK property), and
in this case, the corrupted party (i.e., the verifier) does not have private input. On the other hand, the
security requirement against corrupted provers (i.e., the soundness property) is game-based. Namely, to
prove soundness, the reduction does not need to extract private input (i.e., a potential witness) from
a malicious prover. In contrast, for 2PC protocols, we always require a simulation-based security no
matter which party is corrupted, and the simulator needs to extract the private input of the corrupted
party explicitly. Indeed, this is one of the reasons why ZK arguments are typically easier to build than
general-purpose 2PC protocols.

To address Issue 1, we require that P1 and P2 in each session execute two sequential instances of Prot. 2
in opposite directions in the Preamble stage. That is, they first run an instance of Prot. 2 where P1 acts as
the sender S, and then another instance where P2 acts as the sender S. In the security proof,22 the schedule
of the Q-concurrent execution of the protocol (to be constructed) can be “recast” to a similar pattern as the
Q-Q MIM execution of the ZK protocol discussion in Sec. 2.5 with the adversary sitting in the middle. To
do that, we simply put Q instances of Prot. 2 where the receiver is corrupted on the left, and put the other Q
instances of Prot. 2 where the sender is corrupted on the right. This matches exactly the Q-Q MIM setting
where we proved security of Prot. 2 (and the Q-Q simulation-sound ZK in Sec. 2.5). Intuitively, this allows
us to construct a simulator who is able to use the trapdoor in each session when simulating the behavior
of honest parties for the MIM adversary A; Meanwhile, A cannot use any trapdoor. However, to make the
the proof work, we have to make sure that the other components (except for the Preamble stage) in each
session have only constant rounds and their security proof does not involve rewinding. (E.g., for the Πsszk

in Sec. 2.5, the WI stage plays the role of “other components”.) We need to instantiate these components
carefully to satisfy this requirement (see the following application-specific discussions).

To address Issue 2, our idea is application-specific. In the sequel, we discuss the case of coin-flipping
protocols, 2PC for classical functionalities and quantum functionalities one by one.

Two-Party Coin-Flipping Protocols. We start with a canonical construction: Each party Pb (b ∈ {0, 1})
sequentially commits to a random share rb using an extractable commitment scheme. Then, they sequentially
reveal the committed rb, without giving the associated decommitment information. Finally, they sequentially
give a ZK argument to prove that the revealed rb is indeed the value committed earlier. The coin-flipping
result is defined by r := r0 ⊕ r1. To prove the security, a simulator can extract the committed share rb from
the extractable commitment given by the corrupted party, then enforce the coin-flipping result to the r from
the ideal functionality by setting r1−b := r ⊕ rb as the (simulated) revealed share and cheating in the ZK
argument (using the ZK simulator).

21 In more detail, [CCLY22] constructed a constant-round ε-ZK argument for QMA using only PQ-OWFs. It is
well-known that ε-ZK implies WI.

22 W.l.o.g., we assume that exactly one party is corrupted in each session, in this Q-concurrent execution of 2PCC.
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As discussed earlier, if we find a constant-round, straight-line version of the above canonical two-party
coin-flipping protocol, and add it after the aforementioned Preamble stage, then we will obtain a secure
construction re-using the same proof techniques shown in Sec. 2.5:

– For the commitment to share rb, we ask each party Pb to use a post-quantum statistically binding com-
mitment, and then perform a constant-round post-quantum secure function evaluation (SFE) [BD18], so
that if the other party P1−b knows the trapdoor,23 the SFE will reveal the committed value; Otherwise,
the SFE reveals nothing.

– Note that after revealing the rb’s, each party also needs to prove their honesty for the execution so far.
Instead of using a ZK argument, we ask each party to give a WI argument, where the prover proves
that either the revealed rb, the commitment, and the SFE are generated honestly and consistently, or the
trapdoor statement is true.

Extension to General-Purpose PQ-2PCC. Bounded concurrent PQ-2PCC can be constructed by taking
a (stand-alone-secure) PQ-2PCC protocol Π2pcc in the CRS model and using the above bounded-concurrent
two-party coin-flipping protocol to generate its CRS. Similar as in the previous constructions, as long as
Π2pcc is constant-round and has a straight-line simulator (in the CRS model), the same proof techniques can
be re-used to show its security in the bounded-concurrent setting. We remark that such a Π2pcc is known
from the quantum hardness of learning with Errors (LWE) (by combining [PVW08] and [GS18]).

Extension to General-Purpose 2PQC. This part is similar to our generalization of Πsszk from NP to
QMA (shown on Page 11)—The above construction of the PQ-2PCC protocol makes use of the Π2pcc in
a rather “black-box” manner. That is, all the claims above hold as long as the Π2pcc is constant-round
and straight-line simulatable in the CRS model. In particular, it does not rely on the fact that the Π2pcc

messages are classical. Therefore, a bounded-concurrent 2PQC can be constructed by replacing the Π2pcc in
the above protocol with a constant-round, straight-line simulatable (in the CRS model) 2PC for quantum
functionalities.

2.7 Generalization to the Multi-Party Setting

The above results for two-party coin-flipping and secure computation for both classical and quantum func-
tionalities generalizes to the multi-party setting, if we setup the parameters of the Prot. 2 instances in the
Preamble stage carefully.

Let us consider the direct generalization of the two-part protocol in Sec. 2.6 to the n-party case. Compared
with the two-party protocol, the main difference is the Preamble stage (other stages are less relevant in
this overview and thus suppressed). In the two-party setting, the Preamble stage consists of two executions
of Prot. 2, where in one execution, P1 plays the roles of the sender S and in the other, P2 plays the roles of
the sender S. In the n-party setting, there will be two executions of Prot. 2 between every pair of parties Pi

and Pj in the Preamble stage.
Here, the key observation is: The Preamble stage in the n-party setting can be understood as

(
n
2

)
concur-

rent executions of two-party Preamble Stages. The analysis of the two-party setting (i.e., Sec. 2.6) shows
that if we set the parameter ℓgad = 120Q7λ in Prot. 2, then the Preamble stage will provide “simulation

soundness” in the Q-concurrent execution. Therefore, using the above observation, if we set ℓgad = 120Q̂7λ

with a new Q̂ :=
(
n
2

)
·Q, then the Preamble stage will provide “simulation soundness” in the Q-concurrent

execution of the n-party protocol. Remaining steps of the security proof are almost identical to that for the
two-party setting. We refer to Sec. 7 for details.

2.8 Impossibility of (Unbounded) Concurrent 2PQC

We provide a sketch of the impossibility for concurrent 2PC in the quantum settings, where the adversary is
allowed to be quantum, and the protocol is computing a quantum functionality. Our approach is based on
the classical result of Barak et al. [BPS06], but with important differences that we explain in the following.

23 Specifically, trapdoor in this setting is the witness for the following trapdoor statement: More than Th = 60Q7λ+Q4λ
gadgets match in the Prot. 2 instance (from the Preamble stage) where P1−b acts as the sender S.
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To better understand the challenges involved, let us first recall the high-level intuition for the impossibility
of concurrent zero-knowledge with respect to an oracle O, described in [BPS06]. Let Π be an ℓ-round zero-
knowledge protocol to prove the knowledge of a pre-image of a one-way function, the oracle O plays the role
of the verifier, except that in the last round it outputs some secret information, if the (interactive) proof
verifies. The idea of the separation consists of the following two steps:

1. An adversary interacting in with an honest prover (the real, concurrent protocol) can trivially recover the
secret by simply forwarding the messages of the honest prover to O. Since the honest prover is assumed
to succeed, then the adversary can recover the secret with certainty.

2. An adversary interacting with an ideal functionality (the ideal settings) cannot recover the secret, since
that would require to complete a proof for a witness that the adversary does not posses.

Although this captures the main idea, the proof is actually more subtle, especially for Step 2. The issue is
that the oracle O is not allowed to keep a state across different queries and therefore the adversary may try
to break the zero-knowledge proof by “rewinding” the verifier (represented by the oracle O) or scheduling
messages in the wrong order. The way this is solved classically is to let the verifier sign the transcript of the
protocol in such a way that in the later query it can enforce a straight-line execution of the protocol.

Unfortunately, quantumly this idea does not work, since there is no well-defined notion of “transcript”
of quantum protocols, as quantum states cannot in general be copied. The way we solve this issue (which
significantly complicates the analysis) is to let the oracle compute the internal state (which could be a
quantum state), authenticate it with a quantum authentication code24, and return it as an output. Then
the adversary will be forced to feed the same state in the next query (thus forcing a straight-line execution);
Otherwise, the authentication process will fail and the oracle will just return ⊥. Interestingly, in our proof we
need a strong notion of security for quantum authentication codes, namely simulation security. Fortunately
for us, the work of Broadbent and Wainewright [BW16] shows that the Clifford code and the trap code
satisfy our desired notion of security.

Finally, to lift the theorem from an oracle separation to an actual impossibility, we need to get rid of the
oracle O and substitute it with a two-party functionality, which is not allowed to depend on the protocol Π.
In [BPS06], this is done by substituting the ℓ invocations of the oracle with garbled circuits (which will be
given as part of the parties’ inputs) and letting the functionality compute the encoding for the inputs. This
way, the adversary can simulate the calls to O by simply evaluating the garbled circuits. It turns out that the
same idea works in our settings, using recent results on quantum garbled circuits [BY22]. The only subtlety
is that we need the garbling scheme to satisfy adaptive security, i.e., the distinguisher should be allowed to
choose the input adaptively, after it obtains the garbled circuit. To complete the proof, we show that this
can be achieved with a simple generic transformation. For more details, we refer the reader to Sec. 8.

3 Preliminaries

Basic Notations. Let λ ∈ N denote security parameter. For a positive integer n, let [n] denote the set

{1, 2, ..., n}. For a finite set X , x $←− X means that x is uniformly chosen from X . We denote by poly(·)
an unspecified polynomial and by negl(·) an unspecified negligible function. For two probabilities p1(λ) and
p2(λ), we will often use p1 = p2 ± negl(λ) as a shorthand for |p1 − p2| ≤ negl(λ).

For indistinguishability, we may consider random variables over bit strings or over quantum states. This
will be clear from the context. For ensembles of random variables X = {Xi}λ∈N,i∈Iλ and Y = {Yi}λ∈N,i∈Iλ
over the same set of indices I =

⋃
λ∈N Iλ and a function ε(·), we use X

c
≈ε Y to mean that for any non-

uniform QPT25 algorithm A, there exists a negligible function negl(·) such that for all λ ∈ N, i ∈ Iλ, we
have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ ε(λ) + negl(λ).

24 Note that a good quantum authentication code also serves as an encryption scheme. Therefore, given this authen-
ticated internal state to the adversary does not reveal information about the verifier’s secrets.

25 Unless stated differently, throughout this paper, computational indistinguishability is always w.r.t. non-uniform
QPT adversaries.
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We say that X and Y are ε-computationally indistinguishable if the above holds. In particular, when the

above holds for ε = 0, we say that X and Y are computationally indistinguishable, and simply write X
c
≈ Y.

Statistical indistinguishability (denoted by “
s
≈ε” and “

s
≈”) can be defined similarly but for computationally

unbounded adversaries. Moreover, we write X i.d.
== Y to mean that Xi and Yi are distributed identically for

all i ∈ I.
OR-Composition of NP Languages. For an NP language L and a true statement in this language
x ∈ L, we use RL(x) (R stands for “relation”) to denote the set of all witnesses for x. We will refer to the
OR-composition of NP languages, which is defined in Def. 2.

Definition 2 (OR-Composition of NP Languages). Let L1 and L2 be two NP languages. The OR-
composition of them (dubbed L1 ∨ L2) is the new NP language defined as follows:

L1 ∨ L2 := {(x1, x2) | x1 ∈ L1 ∨ x2 ∈ L2}.

3.1 Post-Quantum Commitments and Extractable Commitments

Def. 3 to 7 in this subsection are taken from [CCLY22] with cosmetic modifications customized to our
applications.

Definition 3 (Post-Quantum Commitment). A post-quantum commitment scheme Π is a classical
interactive protocol between interactive PPT machines C and R. Let m ∈ {0, 1}ℓ(λ) (where ℓ(·) is some
polynomial) is a message that C wants to commit to. The protocol consists of the following stages:

– Commit Stage: C(m) and R interact with each other to generate a transcript (which is also called a com-
mitment) denoted by com, C’s state STC , and R’s output bcom ∈ {0, 1} indicating acceptance (i.e., bcom =
1) or rejection (i.e., bcom = 0). We denote this execution by (com,STC , bcom) ← ⟨C(m), R⟩(1λ). When C
is honest, STC is classical, but when we consider a malicious quantum committer C∗(ρ), we allow it to
generate any quantum state STC∗ . Similarly, a malicious quantum receiver R∗(ρ) can output any quantum
state, which we denote by OUTR∗ instead of bcom.

– Decommit Stage: C generates a decommitment decom from STC . We denote this procedure by decom←
C(STC). Then it sends a message m and decommitment decom to R, and R outputs a bit bdec ∈ {0, 1}
indicating acceptance (i.e., bdec = 1) or rejection (i.e., bdec = 0). We assume that R’s verification procedure
is deterministic and denote it by Verify(com,m, decom). W.l.o.g., we assume that R always rejects (i.e.,
Verify(com, ·, ·) = 0) whenever bcom = 0.

The scheme satisfies the following correctness requirement:

1. Correctness. For any m ∈ {0, 1}ℓ(λ), it holds that

Pr

bcom = bdec = 1 :
(com,STC , bcom)← ⟨C(m), R⟩(1λ)
decom← C(STC)
bdec ← Verify(com,m, decom)

 = 1.

Definition 4 (Computationally Hiding). A post-quantum commitment Π is computationally hiding if
for any m0,m1 ∈ {0, 1}ℓ(λ) and any non-uniform QPT receiver R∗(ρ), the following holds:

{OUTR∗ : (com,STC ,OUTR∗)← ⟨C(m0), R
∗(ρ)⟩(1λ)}λ

c
≈ {OUTR∗ : (com,STC ,OUTR∗)⟨C(m1), R

∗(ρ)⟩(1λ)}λ.

Definition 5 (Statistically Binding). A post-quantum commitment Π is statistically binding if for any
unbounded-time comitter C∗, the following holds:

Pr

[
∃ m,m′, decom, decom′, s.t. m ̸= m′ ∧
Verify(com,m, decom) = Verify(com,m′, decom′) = 1

: (com,STC∗ , bcom)← ⟨C∗, R⟩(1λ)
]
= negl(λ).

Next, we define extractable commitments in the post-quantum setting. We first need a notation for the
“committed” value.

15



Definition 6 (Committed Values). For a post-quantum commitment Π, we define the value function as
follows:

valΠ(com) :=

{
m if ∃ unique m s.t. ∃ decom,Verify(com,m, decom) = 1

⊥ otherwise
.

We say that com is valid if valΠ(com) ̸= ⊥ and invalid if valΠ(com) = ⊥.

Definition 7 (ε-Simulatable Extractability). A commitment scheme Π is extractable with ε-simulation
if there exists a QPT algorithm SE (called the ε-simulation extractor) such that for any noticeable ε(λ) and
any non-uniform QPT C∗(ρ),{

SEC
∗(ρ)(1λ, 1ε

−1

)
}
λ

s
≈ε

{
(valΠ(com),STC∗) : (com,STC∗ , bcom)← ⟨C∗(ρ), R⟩(1λ)

}
λ
. (5)

Remark 3. Def. 7 is identical to [CCLY22, Definition 11], except that we require statistical ε-closeness in
Eq. (5) while [CCLY22, Definition 11] only requires computational ε-closeness. We emphasis that the security
proof in [CCLY22] actually already shows that their construction achieves statistical ε-closeness. Roughly,
the reason is their SE uses identically distributed random coins as the honest receiver so that the simulated
execution is indeed identically distributed as the real one (up to the ε simulation error).

3.2 Post-Quantum Non-Malleable Commitments

The following definition of post-quantum non-malleable commitments are taken from [LPY23].

Man-in-the-Middle Execution. Consider a (non-uniform) QPTman-in-the-middle adversaryM = {Mλ, ρλ}λ∈N
interacting with a committer C on the left, and a receiver R on the right. We denote the relevant entities used
in the right interaction as the “tilde’d” version of the corresponding entities on the left. In particular, suppose
that C commits to m in the left interaction, andM commits to m̃ on the right, i.e., we set m̃ = val(τ̃) where
τ̃ is the transcript of the right session. Let mimM⟨C,R⟩(λ,m, ρλ) denote the random variable that is the pair
(OUTM, m̃), consisting of M’s output as well as the value committed to by M on the right (assuming C
commits to m on the left), where ρλ isM’s non-uniform advice. We use an identity-based specification, and

ensure thatM uses a distinct ID ĩd on the right from the ID id it uses on the left. This is done by stipulating
that mimM⟨C,R⟩(λ,m, ρλ) outputs a special value ⊥id when M uses the same ID in both the left and right
executions. The reasoning is that this corresponds to the uninteresting case when M is simply acting as a
channel, forwarding messages from C on the left to R on the right and vice versa.

Definition 8 (Post-Quantum Non-Malleable Commitments). An identity-based commitment scheme
⟨C,R⟩ with identity space is said to be post-quantumly non-malleable if for every (non-uniform) QPT man-
in-the-middle adversaryM = {Mλ, ρλ}λ∈N and every polynomial ℓ : N→ N, it holds that{

mimMλ

⟨C,R⟩(λ,m0, ρλ)
}
λ∈N,m0,m1∈{0,1}ℓ(λ)

c
≈

{
mimMλ

⟨C,R⟩(λ,m1, ρλ)
}
λ∈N,m0,m1∈{0,1}ℓ(λ) .

Lemma 4 ([LPY23]). Assuming the existence of post-quantum one-way functions, there exists a constant-
round construction of post-quantum non-malleable commitments supporting a O(2λ)-size identity space.
Moreover, this construction is also ε-simulation extractable (as per Def. 7).

Remark 4 (First-Message Binding). The [LPY23] post-quantum non-malleable commitments ⟨C,R⟩ enjoys
the following “first-message binding” property. The first two messages of ⟨C,R⟩ are exactly an execution
of Naor’s commitment, where C (i.e., the committer of the non-malleable commitment) acts as Naor’s
committer and R (i.e., the receiver of the non-malleable commitment) acts as Naor’s receiver, and the
message being committed in this Naor’s commitment is exactly the message being committed in the non-
malleable commitment. Therefore, if we usem to denote the value committed in this Naor’s commitment, then

the value statistically bound in the non-malleable commitment can be defined as Vald(m) :=

{
m if d = 1

⊥ if d = 0
,

where d denotes R’ decision to accept (when d = 1) or reject (when d = 0) the execution of the non-malleable
commitment ⟨C,R⟩. This property plays a critical role in our security proof.
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Moreover, in our constructions, this non-malleable commitment will be used as a building block in some
larger protocol. In that case, this Naor’s commitment can be regarded as non-interactive, because the first
message of Naor’s commitment can be sent in the very beginning of the larger protocol (see, e.g., Stage 1 of
Prot. 4). This is why we call this property “first-message binding” (instead of “first-two-messages binding”).

3.3 Post-Quantum Secure Function Evaluation

We define secure function evaluation protocols with statistical circuit privacy and quantum input privacy.
The following materials are taken from [ABG+21].

Definition 9 (Post-Quantum 2-Message Function-Hiding SFE). A post-quantum two-message function-
hiding secure function evaluation (SFE) protocol SFE consists of four algorithms (Gen,Enc,Eval,Dec). They
satisfy the following syntax:

– k← Gen(1λ): It is a PPT algorithm that takes as input a security parameter 1λ, and outputs a secret key
k;

– ct← Enc(k, x): It is a PPT algorithm that takes as input a key k a string x, and outputs a ciphertext ct;

– ĉt ← Eval(C, ct): It is a PPT algorithm that takes as input a classical circuit C and ciphertext ct, and
outputs an evaluated ciphertext ĉt;

– x̂← Dec(k, ĉt): It is a deterministic algorithm that takes as input a ciphertext ĉt, and outputs a string x̂.

For any polynomial-size family of classical circuits {Cλ}λ∈N, the scheme satisfies the following properties:

1. Correctness: For all λ ∈ N, x ∈ {0, 1}∗, and C ∈ Cλ, it holds that

Pr
[
Dec(k, ĉt) = C(x) : k← Gen(1λ); ct← Enc(k, x); ĉt← Eval(C, ct)

]
= 1.

2. Post-Quantum Input Hiding: For all polynomial ℓ(λ) and (non-uniform) QPT adversary A = {Aλ, ρλ}λ∈N,
it holds for two length ℓ(λ) messages {x0λ}λ∈N and {x1λ}λ∈N that

Pr
[
Aλ(ct; ρλ) = b : b

$←− {0, 1}; k← Gen(1λ); ct← Enc(k, xbλ)
]
≤ 1

2
+ negl(λ).

3. Statistical Circuit Privacy: There exist (potentially unbounded) algorithms Sim (simulator) and Ext
(extractor) such that

– For all x ∈ {0, 1}∗ and ct in the support of Enc(k, x) (for some k), it holds that Ext(ct) = x; and

– {Eval(C, ct∗)}λ∈N,C∈Cλ,ct∗∈{0,1}poly(λ)

s
≈

{
Sim

(
C(Ext(ct∗))

)}
λ∈N,C∈Cλ,ct∗∈{0,1}poly(λ) .

We will use the following claim in our analysis, which follows directly from Property 3 in Def. 9.

Lemma 5 (Function Hiding). Let SFE = (Gen,Enc,Eval,Dec) be an SEF satisfies Def. 9. Let {ct∗λ}λ∈N be
any (possibly non-ciphertext) poly(λ)-length string, and let {C0

λ}λ∈N and {C1
λ}λ∈N be two families of circuits

such that for all λ ∈ N, C0
λ and C1

λ have identical truth tables. Then, it holds that

{SFE.Eval(C0
λ, ct

∗
λ)}λ∈N

s
≈ {SFE.Eval(C1

λ, ct
∗
λ)}λ∈N.

Secure function evaluation schemes satisfying Def. 9 are known from the quantum hardness of LWE
[OPP14, BD18].

3.4 Post-Quantum Bounded-Concurrent Simualtion-Sound ZK Arguments

For any interactive protocol ⟨P, V ⟩, we use ⟨{Pi}i∈[m], {Vi}i∈[m]⟩ to denote the concurrent execution of m
instances of ⟨P, V ⟩, where the i-th instance is the execution of ⟨P, V ⟩ with Pi acting as the prover and Vi

acting as the verifier. When defining soundness, we consider the setting where the provers are corrupted; In
this case, we write the execution as ⟨P ∗, {Vi}i∈[m]⟩, meaning that a malicious P ∗ controls all the provers in
the m sessions. Similarly, for properties like zero-knowledge, we can define ⟨{Pi}i∈[m], V

∗⟩, where the verifiers
are corrupted.
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Definition 10 (Post-Quantum Bounded-Concurrent Interactive Arguments). Let ⟨P, V ⟩ be an
interactive protocol between a classical PPT prover P and a classical PPT verifier V . Let m(λ) be a polyno-
mial of λ. For any priori fixed m, ⟨P, V ⟩ is a post-quantum m-bounded concurrent interactive argument for
an NP language L if it satisfies the following requirements:

1. (Completeness.) For any (x1, . . . , xm) ∈ Lm and any (w1, . . . , wm) such that wi ∈ RL(xi) for all i ∈ [m],
it holds that:

Pr[All Vi’s accept in ⟨{Pi(xi, wi)}i∈[m], {Vi(xi)}i∈[m]⟩] = 1.

2. (Computational Soundness.) For any (non-uniform) QPT prover P ∗ = {P ∗λ , ρλ}λ∈N and any (x1, . . . , xm) ∈
({0, 1}λ)m, it holds that

Pr[∃i s.t. (xi /∈ L) ∧ (di = 1) : (d1, . . . , dm)← OUTV

(
⟨P ∗λ (x1, . . . , xm; ρλ), {Vi(xi)}i∈[m]⟩

)
] = negl(λ),

where di denotes the output of Vi in the execution ⟨P ∗λ (x1, . . . , xm; ρλ), {Vi(xi)}i∈[m]⟩, indicating if Vi

accepts (when di = 1) or rejects (when di = 0) in the i-th session.

Man-in-the-Middle Execution. Let m(λ) be a polynomial of λ. Let ⟨P, V ⟩ be an interactive argument
system for a language L ∈ NP with witness relation RL. For any (non-uniform) QPT adversary A =
{Aλ, ρλ}λ∈N, consider the following m-m man-in-the-middle (MIM) setting:

– m Left Sessions: Aλ, on input ({x1, . . . , xm}; ρλ), executes m instances of ⟨P, V ⟩ with m honest provers
{Pi(xi, wi)}i∈[m]. Aλ plays the role of the verifier in all of these m sessions. Similar as for non-malleable
commitments, each session is associated with an identity (or tag). We use idi to denote the identity of the
i-th left session.

– m Right Sessions: The same Aλ with the same input executes anther m instances of ⟨P, V ⟩ with m honest
verifiers {Vi}i∈[m]. Aλ plays the role of the (potentially malicious) provers in all of these m sessions, trying

to prove a statement x̃i in the i-th right session. We use ĩdi to denote the identity of the i-th right session.

We emphasize that Aλ participates in the above executions simultaneously, taking full control over the
schedule of messages on both sides; The statements {x1, . . . , xm} proven in the left sessions are given to
the corresponding Pi’s and Aλ prior to the experiment; In contrast, the statements {x̃1, . . . , x̃m} proven
in the right interaction the identities used on both sides are chosen by Aλ during the experiment. Let
ViewAλ

(ρλ, x1, . . . , xm) denote the view of Aλ in the above experiment.

Definition 11 (Post-Quantum Bounded-Concurrently Simulation-Sound ZK). Letm(λ) be a poly-
nomial of λ. For any priori fixed m, an m-concurrent post-quantum interactive argument system ⟨P, V ⟩ for
an NP language L (as per Def. 10) is post-quantum m-concurrent simulation-sound if there exists a QPT
machine S (simulator) such that for any (potentially non-uniform) QPT adversary A = {Aλ, ρλ}λ∈N, the
following hold:

1. (Indistinguishable Simulation.) It holds that{
ViewAλ

(ρλ, x1, . . . , xm)
}
λ∈N, x1,...,xm∈L∩{0,1}λ

c
≈

{
S(1λ, ρλ, x1, . . . , xm)

}
λ∈N, x1,...,xm∈L∩{0,1}λ

.

2. (Simulation Soundness.) For any x1, . . . , xm ∈ L∩{0, 1}λ and any left-session IDs {idj}j∈[m], it holds
that

Pr

[
∃i ∈ [m] s.t.

(
x̃i /∈ L

)
∧

(
d̃i = 1

)
∧

(
∀j ∈ [m], idj ̸= ĩdi

) : View← S(1λ, ρλ, x1, . . . , xm)

]
≤ negl(λ),

where {ĩdi}i∈[m] are the IDs of the right sessions as specified in View, x̃i is the statement in the i-th right

session as specified in View, and d̃i is the verifier’s decision bit in the i-the right session as specified in
View, indicating if it accepts (d̃i = 1) or rejects (d̃i = 0) this execution.

Remark 5 (On m-Concurrent ZK). We remark that m-concurrent simulation soundness (as per Def. 11)
implies m-concurrent ZK. Thus, we do not need to define bounded-concurrent zero-knowledge separately.
The interested reader can find the definition of post-quantum bounded-concurrent ZK in, e.g., [ACL21,
Section 3.1].
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3.5 Bounded-Concurrent Multi-Party Secure Computation

We refer to [Pas04, Section 2] for the formal model of secure multi-party computation in the bounded-
concurrent setting. In the following, we only hight-light the difference due to quantum computation.

In this work we consider a malicious, static adversary, who is a non-uniform QPT machine. That is, at the
beginning of the execution the adversary is given a set I of corrupted parties which she controls and through
she will not change the set I. Similar as in [Pas04], I could be an arbitrary subsets of parties concurrently
execute the protocol (dubbed sessions), possibly with interchangeable roles, meaning that a corrupted party
could play the role of party i in one session, but play the role of party j ̸= i in another session. The focus of
this work is not on fairness. We therefore present a definition where the adversary always receives its own
output and can then decide when the honest parties will receive their output. The scheduling of message
delivery is decided by the adversary.

Let n denote the total number of parties. In this model, there are n input-selecting machines M1, . . . ,Mn

select input for each party respectively, they are to account for the possibility that the input to parties may
depend on previous executions of other protocols in the bounded-concurrent setting (see [Pas04, Section 2]
for details). The initial input to the input-selecting machines are defined to be x = (x1, . . . , xn). We will
also consider computation for quantum functionalities. In that case, the initial input (x1, . . . , xn) could be
quantum states.

Parties communicate via authenticated point-to-point channels as well as broadcast channels, where
everyone can send messages in the same round. The network is assumed to be synchronous with rushing
adversaries, i.e. adversaries may generate their messages for any round after observing the messages of all
honest parties in that round, but before observing the messages of honest parties in the next round.

Let f be a (potentially quantum) functionality. The ideal execution of f with security parameter λ,
input-selecting machines M = (M1, ...,Mn), initial inputs x = (x1, . . . , xn) and auxiliary input ρλ to the
ideal-world simulator S, is denoted by IDEALf,I,S,M (λ, x, ρλ). For a protocol Π, the real-world execution of
m-bounded concurrent instances of Π with λ, M = (M1, . . . ,Mn), x = (x1, . . . , xn) and a non-uniform QPT
adversary A = {Aλ, ρλ}λ is denoted by REALm

Π,I,A,M (λ, x, ρλ). We refer to [Pas04, Section 2] for a formal
description of the real-world and ideal-world execution.

Definition 12 (Bounded-Concurrent Secure Multi-Party Computation). Let m = m(λ) be a poly-
nomial of the security parameter λ, and let f be a classical (resp. quantum functionality, represented by some
quantum circuit). A n-party protocol protocol Π is said to t-securely compute f under m-concurrent compo-
sition if for every real-world non-uniform QPT adversary A = {Aλ, ρλ}λ∈N, there exists an ideal-world non-
uniform QPT machine S (dubbed the simulator), such that for all input-selecting machines M =M1, ...,Mn,
every x = (x1, . . . , xn), and every I ⊂ [n] with |I| < t, it holds that{

IDEALm
f,I,S,M (λ, x, ρλ)

}
λ∈N

c
≈

{
REALm

Π,I,A,M (λ, x, ρλ)
}
λ∈N.

That is, m concurrent executions of Π with A cannot be distinguished from m concurrent invocations of f
with S in the ideal world. Moreover, if the honest parties only need to perform classical computation to run
Π, we say Π is post-quantum.

3.6 Technical Lemmas

3.6.1 Watrous’ Rewinding Lemma

The following is Watrous’ rewinding lemma [Wat06] in the form of [ACL21, Lemma 8] with cosmetic modi-
fications.

Lemma 6 (Watrous’ Rewinding Lemma [Wat06]). Let U be a quantum circuit acting on 1 + n + k
registers such that for every n-qubit state |ψ⟩, the following holds:

U |0⟩W |ψ⟩ |0
k⟩ =

√
p(ψ) |0⟩W |ϕ0(ψ)⟩+

√
1− p(ψ) |1⟩W |ϕ1(ψ)⟩ ,

where we will refer to register W as the Watrous control register.
Let p0, p1 ∈ (0, 1) and ε ∈ (0, 1/2) be real numbers such that:
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– |p(ψ)− p1| ≤ ε,
– p0(1− p0) ≤ p1(1− p1), and
– p0 ≤ p(ψ),

for all n-qubit input state |ψ⟩. Then, there exists a general quantum circuit W of size O
(
log(1/ε)size(U)

p0(1−p0)

)
that

on any n-qubit input |ψ⟩ outputs a state ρ(ψ) over n+ k qubits satisfying the following property:

⟨ϕ0(ψ)| ρ(ψ) |ϕ0(ψ)⟩ ≥ 1− 16ε log2(1/ε)

p20(1− p0)2
.

In this case, we refer to W as Amplifier(U, ε). If ε is a negligible function in the security parameter, we omit
this from the algorithm.

3.6.2 Martingales and Azuma–Hoeffding Inequality

In our security proof, we need to establish concentration bounds for some (slightly) dependent random
variables. Notice that the Chernoff bound is not applicable in this setting. For our specific application, it
turns out that we can define a martingale over the concerned random variables and use Azuma–Hoeffding
inequality to show a “Chernoff-like” concentration. In the following, we recall the related materials. More
details can be found at [MU05, Chapter 13].

Definition 13 (Martingale). A sequence of random variables {Z0, Z1, . . .} is a martingale with respect to
the sequence {X0, X1, . . .} if, for all n ≥ 0, the following conditions hold:

– Zn is a function of {X0, X1, . . . , Xn};
– E[|Zn|] <∞;

– E[Zn+1 | X0, . . . , Xn] = Zn.

Definition 14 (Doob’s Martingale). Let Y be a random variable with E[|Y |] <∞. Let {X0, X1, . . . , Xn}
be a sequence of random variables. Then Zi := E[Y | X0, . . . , Xi] (i = 0, 1, ..., n,) is a martingale, which is
called Doob’s martingale.

Lemma 7 (Azuma–Hoeffding Inequality). Let {X0, . . . , Xn} be a martingale such that

∀k ∈ [n], |Xk −Xk−1| ≤ ck.

Then, for all t ≥ 1 and all ε > 0, it holds that

Pr
[
|Xt −X0| ≥ ε

]
≤ 2

eε
2/(2

∑t
k=1 c2k)

.

4 Bounded-Concurrent Simulation-Sound ZK Arguments for NP and QMA

4.1 Construction for NP

Our construction for NP makes use of the following building blocks:

– A constant-round statistically binding and computationally hiding commitment SBCom. Let Γsbc.c denote
the round complexity of its Commit Phase, and Γsbc.d the round complexity of its Decommit Phase. Let
Γsbc := Γsbc.c + Γsbc.d. We use Naor’s commitment as SBCom.

– A constant-round post-quantum non-malleable commitment ENMC (as per Def. 8) that is also ε-simulation
extractable (as per Def. 7) and first-message binding (as per Rmk. 4). Let Γenmc denote its round com-
plexity. We use the construction from Lem. 4 as our ENMC.

– A constant-round post-quantum witness indistinguishable argument WI. Let Γwi denote its round com-
plexity. It is known that such a WI can be obtained assuming only post-quantum OWFs.
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Protocol 4: Post-Quantum Bounded-Concurrent Simulation-Sound Zero-Knowledge Argument

Let Q(λ) be a polynomial of λ, denoting the maximum number of concurrent sessions. Prover P takes as
input λ, x ∈ L, and w ∈ RL(x); Verifier V takes as input λ and x ∈ L. P and V agree on an id ∈ {0, 1}λ
as the ID for this execution of the protocol.

1. In this stage, P (resp. V ) samples a random string βP
$←− {0, 1}λ (resp. βV

$←− {0, 1}λ) sends it to V
(resp. P ). The purpose of βP and βV is as follows: In later steps, both P and V need to perform Naor’s
commitments for several times (recall that Naor’s commitment remains secure even if polynomially-many
instances use the same first-round message). We stipulate that whenever P (resp. V ) needs to make a
Naor’s commitment to some value, it uses βV (resp. βP ) as the first message of the two-round Naor’s
commitment. In this way, we can assume w.l.o.g. that all the Naor’s commitments in our construction
are non-interactive (i.e., single-round).

2. (Com-and-Guess Stage.) For k = 1 to ℓgad := 120Q7λ:

(a) V samples bk
$←− {0, 1} and commits to it using SBCom. Note that this is a non-interactive execution

of Naor’s commitment, as we explained in Stage 1.

(b) P samples ak
$←− {0, 1} and commits to it using ENMC. Note that the ENMC requires an ID (see

Def. 8). P and V will use id:k (according to some standard encoding) as the ID for this ENMC so
that each ENMC is executed using a different ID. (Recall that id is the ID for this SSZK.) Also
recall that the first two messages of ENMC constitute a Naor’s commitment. As discussed in Stage 1,
one can think treat this Naor’s commitment as being non-interactive; We denote this message as
comk = ComβV

(ak; rk).

(c) V sends bk together with the decommitment information w.r.t. the SBCom in Step 2a. P continues
only if this decommitment is valid.

Terminology: We call each repetition of Step 2a to Step 2c a gadget. Naturally, we call the ℓgad defined
above the total number of gadgets. The k-th gadget matches if the ak committed by P in Step 2b is equal
to the bk validly decommitted by V in Step 2c. We emphasize that this matching condition is always
well-defined regardless of the honesty of P (or V ), because both SBCom and ENMC are statistically
binding.

3. (WI Stage.) P and V execute an instance of WI where P proves that either x is in the language or no

less than Th := 60Q7λ+Q4λ gadgets are matching. Formally, P proves that
(
x, {(βV , comk, bk)}

ℓgad
k=1

)
∈

L ∨ Lℓgad,Th
match (see Def. 2), where

Lℓgad,Th
match :=

{
{(βV , comk, bk)}

ℓgad
j=1 :

∃G ⊆ [ℓgad], ∃{(ak, rk)}k∈G s.t. |G| ≥ Th ∧
∀k ∈ G, ak = bk ∧ comk = ComβV

(ak; rk)

}
, (6)

where by our parameter setting ℓgad = 120Q7λ and Th = 60Q7λ+Q4λ.

Terminology: Later in the security proof, we will refer to w ∈ RL(x) as the real witness, and refer to

the witness for {(βV , comk, bk)}
ℓgad
k=1 ∈ L

ℓgad,Th
match as the trapdoor witness. Of course, the trapdoor witness

should not exist even for a cheating prover, which we will show when proving soundness. But our ZK
simulator will set up the trapdoor witness and make use of it. Also, we emphasize that the honest P
always finishes this stage using the real witness.

Remark 6 (On the IDs). In the concurrent setting, each executing of Prot. 4 uses a different ID. We will
consider Q concurrent executions of Prot. 4 where Q is a polynomial of λ. Each instance invokes ℓgad ENMCs
(one for each gadget). Therefore, there will be Q · ℓgad ENMCs (or 2Q · ℓgad in the Q-Q MIM setting). Recall
from Lem. 4 that the ENMC supports a exponential-size identity space. Thus, with our encoding idi:k (i.e.,
the k-th ENMC of session idi uses ID idi:k), all these polynomially many ENMCs use different IDs.

Security Proof. The security of Prot. 4 is established by the following Thm. 3. To prove Thm. 3, first
note that completeness follows straightforwardly from the description in Prot. 4. Thus, we only need to
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establish the Q-concurrent soundness (to show that it is a Q-concurrent interactive argument system) and
Q-concurrent simulation soundness, which are provided in Sec. 4.2 and Sec. 4.3 respectively.

Theorem 3. For any Q(λ) that is a polynomial of the security parameter λ, Prot. 4 is a Q-concurrent
simulation-sound ZK argument (as per Def. 11).

4.2 Proving Thm. 3: Q-concurrent Soundness

In this subsection, we prove Q-concurrent soundness of Prot. 4. That is, a (potentially malicious) QPT prover
P ∗ is running Q instances of Prot. 4 concurrently. We want to prove that P ∗ cannot make V accept a false
statement in any session.

We assume for contradiction that for some i ∈ [Q], P ∗ makes Vi (the verifier in the i-th session) accept
a false statement xi /∈ L with non-negligible probability, and drive the desired contradiction by constructing
a malicious prover P ∗sd that breaks the soundness of the Stage 3 WI of the i-th session. In the following, we
assume that our reduction knows this session index i. This is without loss of generality because the reduction
can always guess i correctly with probability 1/Q, which will only introduce a 1/Q multiplicative factor to
P ∗sd’s advantage in breaking soundness. This will not affect the validness of our reduction as 1/Q is an inverse
polynomial of λ.

The P ∗sd works as follows:

– It internally emulates the execution between P ∗ and {V1, . . . , VQ} until the beginning of the Stage 3 WI
of the i-th session.

– It then relays the messages of the Stage 3 WI of the i-th session, between the internal P ∗ and the external
verifier Vsd of the soundness game. All other messages exchanged between P ∗ and {V1, . . . , VQ} are still
emulated internally by P ∗sd.

If we can prove that the trapdoor witness is not available to the internal P ∗ in the i-th session, then it is
easy to see that if the internally emulated P ∗ manages to prove a false statement xi /∈ L in session i, P ∗sd will
convince the external Vsd on xi, breaking the soundness of WI. In the following, we prove that the trapdoor
witness is not available session i.

The intuition. At a high-level, our proof proceeds in two steps:

1. First, notice that any gadget of session i matches with probability 1
2
± negl(λ). This is due to the com-

putationally hiding property of SBCom and the extractability of ENMC. In more detail, if P ∗ manages to
make the k-th gadget of session i match with probability non-negligibly greater than half, we can break
the computationally hiding property of SBCom to bi,k

26 by extracting the value ai,k from the ENMC in the
k-th gadget of session i and using this extracted ai,k as a reasonable guess for the bi,k hidden in SBCom.

2. Next, notice that the first bullet implies that in expectation, there will be ℓgad/2±negl(λ) = 60Q7λ±negl(λ)
matching gadgets in session i. Then, it follows from Chernoff bound that except for negligible probability,
the total number of matching gadgets in session i will not reach the threshold Th = 60Q7λ+Q4λ, which
implies the unavailability of trapdoor witness in session i.

Note that the ENMC we are using for Step 1 has an ε statistical simulation error (see Def. 7). But since the
reduction has the freedom to set ε to any arbitrarily small inverse polynomial of λ, it will not be a problem.
In more detail, when performing the argument for Step 1, we will set ε = δ(λ)

2
, where δ(λ) is such that the

malicious P ∗ manages to make some k-th gadget of some i-th session match with probability ≥ 1
2
+ δ(λ).

Then, the P ∗sd we construct from P ∗ will has advantage ≥ 1
2
+ δ(λ) − ε = 1

2
+ δ(λ)

2
in breaking the hiding

property of SBCom to bi,k. If δ(λ) is non-negligible,
δ(λ)
2

is also non-negligible. Since this proof is standard,
we omit the details.

However, there is a technical issue regarding Step 2—Chernoff bound is not applicable. The reason is:
Whether a later gadget matches or not could potentially depend on earlier gadgets. Though we know the
expectation of the total number of matching gadgets, the status of being matching for different gadgets is not
independent random variables, and thus Chernoff bound does not apply. To address this issue, we claim that

26 This is the value committed in the SBCom of the k-th gadget of the i-th session. Henceforth, we take the
convention that the first index in the subscript indicates the session and the second indicates the gadget.
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a “Chernoff-like” concentration bound can be established using Doob’s martingale and Azuma-Hoeffding
inequality as shown in Sec. 3.6.2. In the following, we present a formal treatment.

Formal Proof of Step 2. In this proof, it suffices to focus on an (arbitrary) session i ∈ [Q]. We first define
a sequence of random variables {X1, . . . , Xℓgad}:
– Xk (for k ∈ [ℓgad]): this is a binary random variable that is equal to 1 iff the k-th gadget of session i

matches. (Since we focus on a fixed session i, we do not put i in the subscript of Xk anymore.)

What we have proven in Step 1 can be formally written as:

∀k ∈ [ℓgad], Pr[Xk] =
1

2
± negl(λ), (7)

which further implies:
E[
∑ℓgad

k=1Xk] =
1
2
· ℓgad ± negl(λ) = 60Q7λ± negl(λ). (8)

Recall that our goal in this step is to establish the following inequality:

Pr
[∑ℓgad

k=1Xk ≥ 60Q7 +Q4λ
]
≤ negl(λ). (9)

We first define a new sequence of random variables {Y0, . . . , Yℓgad} where

Y0 := E
[∑

j∈[ℓgad]Xj

]
, and ∀k ∈ [ℓgad], Yk := E

[∑
j∈[ℓgad]Xj | X1, . . . , Xk

]
.

It follows from the above definition that

Yℓgad = E[
∑

j∈[ℓgad]Xj | X1, . . . , Xℓgad ] =
∑

j∈[ℓgad]Xj .

Also, since
∑

j∈[ℓgad]Xj has a bounded expectation, this sequence of {Y0, . . . , Yℓgad} forms a Doob’s martingale

(recall it from Def. 14).
Next, observe that for any k ∈ [ℓgad], it holds that (where we use Sk as a shorthand for the sequence

{X1, . . . , Xk})

|Yk − Yk−1|

=

∣∣∣∣E[∑j∈[ℓgad]Xj | Sk

]
− E

[∑
j∈[ℓgad]Xj | Sk−1

]∣∣∣∣
=

∣∣∣∣∑j∈[ℓgad]E
[
Xj | Sk

]
−
∑

j∈[ℓgad]E
[
Xj | Sk−1

]∣∣∣∣
≤

∑
j∈[ℓgad]

∣∣∣∣E[Xj | Sk

]
− E

[
Xj | Sk−1

]∣∣∣∣
= sup

x1,...,xk

∣∣∣∣E[Xk | Sk = (x1, . . . , xk)
]
− E

[
Xk | Sk−1 = (x1, . . . , xk−1)

]∣∣∣∣+ ℓgad∑
j=k+1

∣∣∣∣E[Xj | Sk

]
− E

[
Xj | Sk−1

]∣∣∣∣
≤ 1 +

ℓgad∑
j=k+1

∣∣∣∣E[Xj | Sk

]
− E

[
Xj | Sk−1

]∣∣∣∣ (10)

≤ 1 + (ℓgad − k) · negl(λ) (11)

≤ 2 (12)

where Eq. (10) follows from the fact that Xj is a binary random variable, and Eq. (11) follows from the
Claim 4 that we will prove shortly.

Therefore, Eq. (9) follows by applying Azuma-Hoeffding inequality (Lem. 7), with ck = 2 (∀k ∈ [ℓgad])
and ε = Q4λ, to bound |Y0 − Yℓgad |.

Claim 4. Let {X1, . . . , Xℓgad} and Sk be defined as the above. Assume SBCom is computationally hiding and
ENMC is ε-simulation extractable. Then, it holds that

∀k ∈ [ℓgad], ∀j ∈ {k + 1, . . . , ℓgad},
∣∣∣∣E[Xj | Sk

]
− E

[
Xj | Sk−1

]∣∣∣∣ = negl(λ).
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Proof. To prove Claim 4, it suffices to show the following stronger claim:

∀k ∈ [ℓgad], ∀j ∈ {k + 1, . . . , ℓgad},

{
Pr[Xj = 1 | X1, . . . , Xk] =

1
2
± negl(λ)

Pr[Xj = 1 | X1, . . . , Xk−1] =
1
2
± negl(λ)

. (13)

Recall that we have already proven a similar statement in Step 1 (i.e., Eq. (7)). The only different between
Eq. (13) and Eq. (7) is that Eq. (7) is not conditioned on whether earlier gadgets matches or not (i.e.,
X1, . . . , Xk). But it is straightforward to see that Eq. (13) can be proven using the same argument as
explained in Step 1. The reason is because when proving Eq. (13) for a particular j ≥ k + 1, all the earlier
gadgets (i.e., X1, . . . , Xk) can be fixed as non-uniform advice when applying the reduction explained in
Step 1.

This finishes the proof of Claim 4.

4.3 Proving Thm. 3: Q-Concurrent Simulation Soundness

We prove simulation soundness of Prot. 4 in the Q-concurrent setting, for any Q(λ) that is a polynomial of
λ. Recall from Def. 11 that this setting refers to the Q-Q man-in-the-middle execution of Prot. 4.

To prove simulation soundness, we need to construct a simulator S satisfying the requirements in Def. 11.
We will do that through a sequence of hybrids REAL and {(Hj,1, Hj,2)}j∈[L]. Looking ahead, REAL is the
real MIM execution and HL,2 will be our simulator where the witnesses {wi}i∈[Q] are not used in the Q left
sessions any more.

Notation. Before presenting the hybrids, we first set up some notations. Recall that there are

T = 2Q ·
(
ℓgad · (Γsbc + Γenmc) + Γwi

)
messages in total in the Q-Q MIM execution of Prot. 4. We will partition these T messages into L := 24Q6λ
equal-size blocks {B1, . . . , BL}. That is, block B1 contains the first T

L
messages, block B2 contains the next

T
L

messages, and so on (messages are ordered according to their order of appearing in the execution). We
will refer to L as the total number of blocks and refer to sB := T

L
as the size of each block.

Looking ahead, we need to prove that the trapdoor witness is unavailable in any of the Q right sessions,
in order to argue that A cannot give a convincing proof for a false x̃i for some i ∈ [Q]. Toward that, we need
to define an invariant condition which essentially implies the unavailability of the trapdoor witness.

Definition 15 (Invariant Condition). Let T be a transcript corresponding to an Q-Q MIM execution of
Prot. 4. For any i ∈ [Q] and k ∈ [ℓgad], we say that the invariant condition holds for the k-th gadget in the
i-th right session if it holds that

Pr[ãi,k = b̃i,k] =
1

2
± negl(λ),

where ãi,k is the value committed in the k-th ENMC (i.e., the ENMC in the k-th gadget) in the i-th right

session contained in T , b̃i,k is the value committed in the k-th SBCom (i.e., the SBCom in the k-th gadget)
in the i-th right session contained in T , and the probability is taken over the random procedure generating
T .

If for all i ∈ [Q] and k ∈ [ℓgad] the invariant condition holds for the k-th gadget in the i-th right session,
then we simply say the invariant condition holds.

Remark 7. W.l.o.g., we assume that if A decides to abort a session before it completes, the honest party
simply sends the special symbol “⊥” as dummy messages until that session completes. Note that if A aborts,
then the values ãi,k and b̃i,k (after the abortion) are not defined. In this case, we ask the hybrid to sample

ãi,k and b̃i,k uniformly at random (so that they are defined). This will not affect the security and is only for
the convenience of our presentation.

Hybrids. In the following, we define the hybrids. Along the way, we will prove two properties:

1. Each pair of adjacent hybrids are computationally indistinguishable. Looking ahead, this will allow us to
argue that the simulator S generates A’s view that is computationally indistinguishable to that in the
real Q-Q MIM execution (i.e., Property 1 in Def. 11).
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2. The invariant condition holds in all hybrids. Indeed, we only care about the invariant condition in the last
hybrid because (looking ahead) it will allow us to argue that A cannot make Vi accept a false x̃i even if
the left sessions are simulated by S (i.e., Property 2 in Def. 11). However, due to our hybrid design, the
invariant condition in a later hybrid will depend on that in earlier ones. This is why we need to establish
the invariant condition in all hybrids.

In the following, we formally define these hybrids, and prove the above two properties.

Hybrid REAL: This is the real Q-Q MIM execution of Prot. 4. The output of this hybrid OUT(REAL) is
defined to be the internal state of A together with the transcript of the whole execution (i.e., all the messages
exchanged on both sides).

Lemma 8. If SBCom is computationally hiding and ENMC is extractable (as per Def. 7), then the invariant
condition (as per Def. 15) holds in hybrid REAL.

Proof. The idea for this proof is straightforward—If A manages to break the invariant condition for the k-th
gadget in the i-th right session, then we can extract the ãi,k (due to the extractability of ENMC) and break

the computationally hiding property of SBCom using ãi,k as a reasonable guess for the value b̃i,k committed
in the corresponding SBCom. This is exactly the same argument that we used in the proof of soundness in
Sec. 4.2. We omit the details.

Figure 1: Registers

We explain the meaning of the registers defined in hybrid H0,2:

– Ins stores the instances {x1, . . . , xQ} that the left provers {P1, . . . , PQ} are going to prove;

– RW stores the real witnesses {w1, . . . , wQ}, i.e., wi ∈ RL(xi) for all i ∈ [Q];

– TW will be used to store the trapdoor witnesses for each left sessions; Sometimes, we will view |0⟩TW as

⊗Q
i=1 |0⟩TWi , where TWi will be used to store the trapdoor witness for the i-th left session.

– RTi (for i ∈ [Q]) stores a single bit indicating if the hybrid should use the real witness (when it is |0⟩RTi)
or the trapdoor witness (when it is |1⟩RTi) in the i-th left session. (See Step 2b of Hj,0 and Step 2 of
{Hj,1}j∈[L]for details.)

– AIns stores the instances {x̃1, . . . , x̃Q} that A tries to prove in the Q right sessions;

– Adv stores A’s internal state;
– PR and VR will be used to store the random coins used by the left provers and right verifiers respectively;

Sometimes, we will view |+⟩PR as ⊗
Q
i=1 |+⟩PRi where PRi stores the randomness for the i-th left prover Pi.

– Tran will be used to store the transcript of the MIM execution, i.e., all the messages exchanged on both
sides;

– For any j ∈ [L], Wj is a single-qubit register that will be used for Watrous rewinding purpose (see Step 2c
of hybrid H0,2 and Step 2 of {Hj,2}j∈[L] for details);

– Anc stores the ancilla qubits that will be used by the hybrids for purposes like purification and dilation
etc.

We emphasize that all of these registers need to be initialized to proper length. To simplify the notation, we
do not specify the length of them. But it is easy to see that their length is bounded by a fixed polynomial
of the security parameter, and this polynomial can be determined in advance.

Hybrid H0,2: This hybrid is essentially identical to REAL but will be described in a different way. We define
this hybrid only to set up some notations and registers that will be useful in later hybrids. Formally, H0,2

proceeds as follows:
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1. (Initialization–“Block B0”.) On input {xi}i∈[Q], {wi}i∈[Q], {x̃i}i∈[Q]
27, and {|ϕi⟩}i∈[Q], initialize the

following state |ψ0⟩:

|ψ0⟩ := |{xi}Qi=1⟩Ins|{wi}Qi=1⟩RW |0⟩TW (⊗
Q
i=1 |0⟩RTi)|{x̃i}

Q
i=1⟩AIns|{ϕi}Qi=1⟩Adv |+⟩PR |+⟩VR |0⟩Tran (⊗

L
j=1 |0⟩Wj ) |0⟩Anc .

(14)
The meaning of each register is explained in Fig. 1. For notation consistency, we will refer to this step as
block B0 in later hybrids, and refer to |ψ0⟩ as the state at the end of block B0.

2. (Coherently Executing the Protocol.) Starting from |ψ0⟩, finish the remaining blocks (i.e., {Bj}Lj=1)
in exactly the same manner as REAL but coherently; Meanwhile, we also perform extra work to setup
the values in registers ⊗L

j=1Wj . Details are provided below.
Formally, we define a sequence of unitary operators {Uj}Lj=1 as follows: For any j ∈ [L], Uj is the dilated
(or purified) procedure of the following classical28 algorithm: Generate (and receive) messages in block
Bj in the same manner as hybrid REAL with the following extra work:

(a) Storing Transcript in Tran: When a new message is generated, put it into the next unused region
in register Tran;29

(b) Handling WI Messages: For any i ∈ [Q], when a left Pi needs to generate a Stage 3 WI message,
it checks the RTi register and proceeds as follows:

– If the value in RTi is 0, it generates this WI message using the real witness wi stored in RW. Note
that this case is identical to hybrid REAL.

– Otherwise (i.e., when it sees |1⟩RTi), it generates this WI message using the trapdoor witness stored
in TWi.

Comment: We remark that the case that RTi contains 1 will not happen in the current hybrid, as this
hybrid never modifies the RTi register since its initialization. However, in later hybrids, it is possible
that this case happens but TWi does not contain a valid trapdoor witness for {(βV , comi,k, bi,k)}

ℓgad
k=1 ∈

Lℓgad,Th
match (recall that Lℓgad,Th

match is defined in Language (6)). Looking ahead, we will prove this will
not happen except for negligible probability (see Step 2 of hybrid Hj,1 and Claim 5 for more
information).

(c) Setting Up Wj: At the end of block Bj , modify register Wj as |0⟩Wj → |cj⟩Wj where cj is defined as

follows:

– If block Bj does not contain any fully-nested left gadget, sample cj
$←− {0, 1} uniformly at random;

– Otherwise (i.e., Bj contains at least one fully-nested left gadget), sample a random left gadget

fully-nested in Bj , say it is the k-th gadget of the i-th left session. Then, set cj :=

{
0 ai,k = bi,k

1 ai,k ̸= bi,k
,

where recall that ai,k is the value committed in the Step 2b ENMC of the k-th gadget in the i-th
left session and bi,k is the value committed in the Step 2a SBCom of the k-th gadget in the i-th
left session (note that bi,k is decommitted in Step 2c).

With the {Uj}Lj=1 defined above, H0,2 in this step computes |ψL⟩ = ULUL−1 · · ·U1 |ψ0⟩. We refer to this
step as “finishing blocks {B1, . . . , BL} coherently”, and refer to |ψL⟩ as the state at the end of block BL.

3. (Output.) Perform a measurement (in the computational basis) on all the registers in |ψL⟩ except for
the Adv register. Output the contents in registers Adv and Tran.

This finishes the description of H0,2.

27 Recall that Def. 11 says the x̃i’s can be adaptively chosen by the MIM A during the execution, but our
notation here assumes that they are known in advance. One can think that the AIns register is initialized to
0’s and the x̃i will be put into it once A chooses the x̃i. This will not affect any claims in this paper.

28 By “classical”, we mean that the honest {Pi}i∈[Q] on the left, the honest {Vi}i∈[Q] on the right, and all the
exchanged messages are classical. Of course, A could perform local quantum computation because she is a
QPT adversary.

29 Note that at the end of the execution, Tran will contain all the messages exchanged in the MIM execution
(i.e., the full transcript).
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Lemma 9. It holds that OUT(REAL)
i.d.
== OUT(H0,2). Moreover, if the invariant condition (as per Def. 15)

holds in REAL, it must hold in H0,2 as well.

Proof. The “OUT(REAL)
i.d.
== OUT(H0,2)” part follows directly from the description of H0,2 and the deferred

measurement principle. Note that in Step 2, H0,2 performs some extra work. But it is straightforward to see
that it will not affect OUT(H0,2) at all—Step 2a only stores the transcript; Step 2b will always handle the
WI messages in exactly the same manner as REAL because RTi (∀i ∈ [Q]) is initialized to 0 and remains 0
through H0,2; Step 2c modifies the values in registers ⊗L

j=1Wj , but this information has no impact on other
registers at all.

The “Moreover” part follows from OUT(REAL)
i.d.
== OUT(H0,2) and the fact that the invariant condition

is fully determined by the output of the hybrid.

Hybrid Hj,1 (∀j ∈ [L]): This hybrid is identical to Hj−1,2, except for its behavior in block Bj . Intuitively,
Hj,1 uses the same Uj as defined in H0,2 but with the following difference: If the Stage 3 WI of some left
session starts in block Bj , Hj,1 will use the trapdoor witness to finish this WI. Details are provided blow.

Formally, Hj,1 proceeds as follows:

1. (Until the end of Bj−1.) Proceed in the same manner as Hj−1,2 until the end of block Bj−1. Let |ψj−1⟩
denote the state over all registers at the end of block Bj−1.

Remark 8. If j = 1, then |ψj−1⟩ is simply the |ψ0⟩ defined in Expression (14). For j ≥ 2, this |ψj−1⟩ is
of the form |ψj−1⟩ = Wj−1Wj · · ·W1 |ψ0⟩, where {Wk}j−1k=1 are unitary operators (that will be) defined in
Step 2 of {Hk,2}j−1k=2.

2. (U ′j for Block Bj.) Compute |ψj⟩ = U ′j |ψj−1⟩, where U ′j is defined to be the dilation of the following
classical algorithm: Proceed in the same manner as the de-coherent algorithm in Step 2 of H0,2 (i.e., the
de-coherent version of Uj), but perform the following extra work:

– If a left Pi (for some i ∈ [Q]) is required to send the first message30 of the Stage 3 WI of the i-th
left session, it first pauses the execution and checks if the trapdoor witness for this session is available.
Note that this can be determined efficiently by check Pi’s randomness stored in register PRi and the
transcript register Tran. Then, it proceeds as follows:

• If the trapdoor witness for this left session is not available, Hj,1 halts immediately and outputs a
special symbol Abortnt. (The “nt” stands for “no trapdoor witness”).

• Otherwise, Hj,1 records the trapdoor witness in register TWi, and modifies the RTi register as |0⟩RTi →
|1⟩RTi . Then, it continues in the same manner as the de-coherent version of Uj to finish this block Bj .

Remark 9. We make two remarks regarding this step: (i) When (right before) this Stage 3 WI starts in
this block Bj , the value in RTi must be 0, because this value has not been modified since its initialization;
(ii) If the hybrid sets |0⟩RTi → |1⟩RTi , then all the following steps (including the the remaining part of
block Bj and all future blocks {Bj+1, . . . , BL}) will start to use the trapdoor witness for this i-th left
session. This is by the definition of the Uj ’s defined in Step 2 of H0,2.

3. (Remaining Blocks as in Hj−1,2.) Starting from |ψj⟩, Hj,1 behaves identically as in Hj−1,2 and outputs
whatever the latter outputs.

Remark 10. In other wrods, this step simply computes |ψL⟩ = ULUL−1 · · ·Uj+1 |ψj⟩ (where {Uj+1, . . . , UL}
are defined in Step 2 of H0,2), performs a measurement (in the computational basis) on all the registers
in |ψL⟩ except for the Adv register, and outputs the contents in registers Adv and Tran. (As we will define
shortly, Hj−1,2 does not differ from H0,2 in blocks {Bj+1, . . . BL}.)

This finishes the description of Hj,1.

Hybrid Hj,2 (∀j ∈ [L]): This hybrid is identical to Hj,1, except for its behavior to handle block Bj messages.
Intuitively, recall that Hj,1 executes block Bj using U

′
j ; In contrast, the current hybrid Hj,2 will use Watrous

rewinding to perform block Bj . Formally, Hj,2 proceeds as follows:

30 Notice that the Stage 3 WI has more than one round. It is possible that it starts in block Bj but its messages
are scattered over several future blocks Bj′ where j′ > j.
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1. (Until the end of Bj−1.) Proceed in the same manner as Hj,1 until the end of block Bj−1. That is,
compute |ψj−1⟩ =Wj−1Wj · · ·W1 |ψ0⟩ (see also Rmk. 8).

2. (Watrous Rewinding for Bj.) Recall that unitary U ′j denotes Hj,1’s behavior for block Bj (see Step 2
of Hj,1). The current hybrid Hj,2 invokes Lem. 6 to compute Wj = Amplifier(U ′j) with Wj playing the
role of the Watrous control register (recall that register Wj is initialized in Step 1 of H0,2 and modified in
Step 2c of Hj−1,2). Next, Hj,2 computes |ψj⟩ = Wj |ψj−1⟩ (this is what we mean by “finishing block Bj

by Watrous rewinding”). We will refer to |ψj⟩ as the state at the end of block Bj .

3. (Remaining Blocks as in Hj,1.) Starting from |ψj⟩, Hj,2 proceeds identically as Hj,1 and outputs
whatever the latter outputs. That is, compute |ψL⟩ = ULUL−1 · · ·Uj+1 |ψj⟩, perform a measurement (in
the computational basis) on all the registers in |ψL⟩ except for the Adv register, and output the contents
in registers Adv and Tran.

This finishes the description of Hj,2.
The following Lem. 10 and 11 establish the indistinguishability and the invariant condition in the above

hybrids. The proof of these two claims will be provided in Sec. 4.4 and Sec. 4.5 respectively. For now, we
make use of them to finish the current proof of Q-concurrent simulation soundness.

Lemma 10. If WI is witness indistinguishable, then for any j ∈ [L], it holds that OUT(Hj−1,2)
c
≈ OUT(Hj,1).

Moreover, if SBCom is computationally hiding, ENMC is both extractable (as per Def. 7) and first-message
binding (as per Rmk. 4), and that the invariant condition holds in Hj−1,2 (∀j ∈ [L]), then the invariant condition
hold in Hj,1 (∀j ∈ [L]) as well.

Lemma 11. If ENMC is computationally hiding and WI is witness indistinguishable, then for any j ∈ [L],

it holds that OUT(Hj,1)
c
≈ OUT(Hj,2). Moreover, if we additionally assume that ENMC is both non-malleable

and first-message binding (as per Rmk. 4), and the invariant condition holds in Hj,1 (∀j ∈ [L]), then the
invariant condition hold in Hj,2 (∀j ∈ [L]) as well.

Finishing the Proof of Q-Concurrent Simulation Soundness. To finish the proof of Q-concurrent
simulation soundness, we need to construct a simulator S as required by Def. 11. Our S works as follows:

1. Initialize the following state |ψ′0⟩:

|ψ′
0⟩ := |{xi}

Q
i=1⟩Ins|0⟩RW |0⟩TW (⊗

Q
i=1 |0⟩RTi)|{x̃i}

Q
i=1⟩AIns|{ϕi}

Q
i=1⟩Adv |+⟩PR |+⟩VR |0⟩Tran (⊗

L
j=1 |0⟩Wj ) |0⟩Anc .

(15)

2. For the remaining steps, proceed identically as HL,2 and output whatever HL,2 outputs.

Compare |ψ′0⟩ with the |ψ0⟩ defined Expression (14). The only difference is that the RW register (used
to store the real witnesses for the Q left sessions) is initialized to 0’s (i.e., no real witness is provided). It
is straightforward that the output of S is identical to OUT(HL,2), because HL,2 never uses the real witness
(recall that it always used the trapdoor witness when the left Stage 3 WI starts due to the U ′j defined in
Step 2 of Hj,1). In the following, we show that S satisfies the requirements in Def. 11.

Indistinguishable Simulation. It follows from Lem. 9 to 11 that OUT(REAL)
c
≈ OUT(HL,2). As discussed in

the previous paragraph, OUT(HL,2) is identical to the output of S. Therefore, it follows that the output S
is identical to the view of A in the real MIM execution.

Simulation Soundness. Since the outputs of S and HL,2 are identical, it suffices to show that (except for
negligible probability over λ) HL,2 cannot output a transcript where in the i-th (for some i ∈ [Q]) right
session, the verifier Vi accepts a false statement x̃i /∈ L. To show that, we will use the invariant condition in
HL,2 (note that Lem. 8 to 11 imply that the invariant condition holds in HL,2).

The intuition behind this proof is straightforward—The invariant condition implies that when the Stage 3
WI of the i-th right session starts, the trapdoor witness for this session is not available to the MIM adversary
A.31 Therefore, if x̃i is a false statement and A manages to convince Vi in the Stage 3 WI of this session,

31 This can be proven using a martingale-based argument as we did in the proof of soundness in Sec. 4.2. Thus,
we omit the details
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then we can build from HL,2(A) a new adversary P ∗sd breaking the soundness of the WI—P ∗sd emulates the
execution of HL,2 internally where A is the MIM adversary, and forwards the WI messages of the i-th right
session to the external verifier for the soundness game. If A convinces Vi on some x̃i /∈ L with advantage
δ(λ) in HL,2, then P

∗
sd convinces the external verifier on the same x̃i /∈ L with the same advantage δ(λ).

But we emphasize that there is a caveat in the above argument. To build the reduction to the right
Stage 3 WI, we need to define a malicious P ∗sd running in straight-line. However, in hybrid HL,2, all the blocks
{Bj}j∈[L] are executed using Watrous rewinding. Thus, the P ∗sd as defined above will also rewind the external
verifier’s messages, which is not allowed in the reduction to soundness.

To deal with this issue, we ask P ∗sd to guess at random in which blocks the messages of the concerned WI
will appear. Since the WI has Γwi rounds, P

∗
sd will guess correctly with probability at least ( 1

L
)Γwi . Assume

that the WI messages are scattered in blocks {Bj1 , . . . , Bjm} (for some m ≤ Γwi) and P ∗sd guesses these
blocks correctly, we can define another hybrid H ′L,2(A) which is identical to HL,2(A) except that blocks
{Bj1 , . . . , Bjm} are executed in straight-line (i.e., no Watrous rewindings for them any more). It is easy to
show that H ′L,2(A), when conditioned on registers Wj1 , . . . , Wjm all measuring to 0, is equivalent to HL,2(A) (a
similar argument has been used in Claim 6). Then, we can perform the above reduction with P ∗sd emulating
H ′L,2(A) internally. Notice that H ′L,2(A) is equivalent to HL,2(A) with probability ( 1

2
)m (this is exactly

the probability of registers Wj1 , . . . , Wjm all measuring to 0). Thus, if A has advantage δ(λ) in HL,2(A),
P ∗sd (first guessing blocks and then emulating H ′L,2(A)) will break the soundness with probability at least(
1
L

)Γwi ·
(
1
2

)m · δ(λ). Finally, recall from our choice of parameters that L is a polynomial of λ, and that both

Γwi and m (≤ Γwi) are constants. So, the term
(
1
L

)Γwi ·
(
1
2

)m
is an inverse polynomial of λ. Thus, if δ(λ) is

non-negligible, then P ∗sd also has a non-negligible advantage in breaking the soundness of WI.
This finishes the proof of Thm. 3.

4.4 Proving Lem. 10

4.4.1 Proving Indistinguishability

We first explain the intuition behind this proof. Notice that hybrids Hj−1,2 and Hj,1 are identical until the
end of block Bj−1. They start to differ only if there exists some i ∈ [Q] such that the Stage 3 WI of the
i-th left session starts in block Bj . If that happens, Hj−1,2 proceeds using the real witness wi, but Hj,1

proceeds using the trapdoor witness for this WI. Also note that starting from block Bj , the execution in both
hybrids are straight-line (albeit coherently). Thus, the indistinguishability follows from the WI property of
this Stage 3 WI (of the i-th left session). To make this argument formal, we need to:

1. Make the coherent execution in blocks {Bj , . . . , BL} de-coherent (in the sense of Footnote 28). This is
necessary if we want to build a reduction to the WI property.

2. Prove that if the Stage 3 WI of some left session really starts in block Bj , the trapdoor witness must be
available for that session (i.e., Hj,1 does not output Abortnt in Step 2). Otherwise, we will not be able to
prepare the second witness for the reduction to the WI property.

In the following, we handle these two steps formally.

For Step 1. We define two intermediate hybrids that can be understood as Hj−1,2 and Hj,1 executed de-
coherently for blocks Bj , . . . , BL:

– Hybrid H ′j−1,2: Proceed identically as Hj−1,2 until the end of block Bj−1. That is, compute |ψj−1⟩ =
Wj−1Wj−2 · · ·W1 |ψ0⟩. Then, measure all the registers in |ψj−1⟩ except for register Adv. Next, proceed
using the classical (see Footnote 28) algorithm described in Step 2 of H0,2 (i.e., the de-coherent version of
Uj ’s) to finish the remaining blocks {Bj , . . . , BL}. Finally, output A’s internal state and the transcript of
this execution. Let OUT(H ′j−1,2) denote its output.

– Hybrid H ′j,1: Proceed identically as Hj,1 until the end of block Bj−1. That is, compute |ψj−1⟩ =
Wj−1Wj−2 · · ·W1 |ψ0⟩. Then, measure all the registers in |ψj−1⟩ except for register Adv. Next, proceed
using the classical (see Footnote 28) algorithm described in Step 2 of Hj,1 (i.e., the de-coherent version of
U ′j) to finish block Bj . Then, proceed using the classical (see Footnote 28) algorithm described in Step 2 of
H0,2 to finish the remaining blocks {Bj+1, . . . , BL}. Finally, output A’s internal state and the transcript
of this execution. Let OUT(H ′j,1) denote its output.
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It follows directly from the deferred measurement principle that OUT(H ′j−1,2)
i.d.
== OUT(Hj−1,2) and OUT(H ′j,1)

i.d.
==

OUT(Hj,1). Thus, we only need to show that OUT(H ′j−1,2)
c
≈ OUT(H ′j,1).

For Step 2. Let Ent denote the event that hybrid H ′j,1 outputs Abortnt in Step 2. As mentioned above, we
need to prove the following claim:

Claim 5. It holds that PrH′
j,1

[Ent] ≤ negl(λ).

Proof. This claim follows from a similar proof template from [ACL21], where the authors also need to prove
that the trapdoor witness for a session is available, i.e., there are enough “slots” (our gadgets in their term)
are matching, when the hybrid needs to perform the WI of that session. Since our derivation is slightly
different from [ACL21], we still provide this proof (in Appx. B).

With Claim 5, the indistinguishability OUT(H ′j−1,1)
c
≈ OUT(H ′j,2) can be reduced to the WI property

of the Stage 3 WI as explained at the beginning of Sec. 4.4.1. Since this reduction is standard, we omit the
details.

4.4.2 Proving Invariant Condition

We keep using the hybrids H ′j−1,2 and H ′j,1 defined in Sec. 4.4.1. Since OUT(Hj,1)
i.d.
== OUT(H ′j,1), it suffices

to prove that in hybrid H ′j,1, for any i ∈ [Q] and k ∈ [ℓgad], the invariant condition holds for k-th gadget of
the i-th right session. For any i ∈ [Q] and k ∈ [ℓgad], we will use the final message of block Bj−1 as a pivot
to divide all possible schedules into the following four cases (illustrated in Fig. 2) and show the invariant
condition for each of them separately:

1. The decommitment to b̃i,k ends before (or in parallel with) the final message of Bj−1 (illustrated in
Fig. 2a);

2. The SBCom to b̃i,k starts after the final message of Bj−1 (illustrated in Fig. 2b);

3. The SBCom to b̃i,k ends before (or in parallel with) the final message of Bj−1, but the ENMC to ãi,k starts
after the final message of Bj−1 (illustrated in Fig. 2c);

4. The ENMC to ãi,k starts before (or in parallel with) the final message of Bj−1, but this ENMC but ends
after final message of Bj−1 (illustrated in Fig. 2d).

For Case 1: This is an easy case. Note that H ′j−1,2 and H ′j,1 are identical until the end of block Bj−1, by
when the invariant condition for the k-th gadget of the i-th right session is already determined (for Case 1
schedules). By the condition in the statement of Lem. 10, the invariant condition holds in H ′j−1,2. Thus, it
must hold in in H ′j,1 as well.

For Case 2: This is also an easy case. Note that after the final message of the block Bj−1, the execution
of H ′j,1 is in straight-line. Thus, using the same argument as in the proof of Lem. 8, it is easy to see that
the invariant condition follows from the computationally hiding property of SBCom and the extractability of
ENMC.

For Case 3: We want to handle this case in the same manner as for Case 2. That is, if A manages to violate
the invariant condition, we can build a new adversary Ahd breaking the computational hiding property of
the SBCom. In more detail, Ahd uses the external hiding challenger’s SBCom in place of SBCom to b̃i,k,
extracts ãi,k using the extractor for ENMC, and uses this extracted ãi,k as a reasonable guess for the secret
bit committed by the external hiding challenger.

However, there is one difference from Case 2 that stops us from doing so—The SBCom to b̃i,k happens
within some block Bz with z ≤ j − 1; This Bz is performed using Watrous rewinding. Thus, we cannot view
the this right gadget as a straight-line execution and perform the same reduction to the hiding property of
SBCom.

To resolve this issue, we define another hybrid H ′′j,1(A) which is identical to H ′j,1(A) except that block
Bz is executed in straight-line. Thus, H ′′j,1(A) conditioned on register Wz measuring to 0 is equivalent to the
original H ′j,1(A) (a similar argument has been used in Claim 6). We can perform the above reduction in
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Fig. 2: Different Schedules

H ′′j,1(A). Notice that H ′′j,1(A) is equivalent to H ′j,1(A) with probability 1/2 (this is exactly the probability of
register Wz measuring to 0). Thus, if Ahd has advantage ≥ 1

2
+ δ(λ) using H ′j,1(A), then she has advantage

≥ 1
2
+ δ(λ)

2ℓgad
using H ′′j,1(A), which still suffices to break the hiding property of SBCom. (The term 1

ℓgad
is to

account for the fact that Ahd needs to guess correctly in which block Bz the SBCom to b̃i,k will appear.)

For Case 4: The invariant condition in this case follows from the first-message binding property of the ENMC

(to ãi,k) and the indistinguishability H ′j−1,2
c
≈ H ′j,1. To see it, recall that H ′j−1,2 and H ′j,1 are identical until

the end of block Bj−1. Thus, the value statistically-bound in the first message of ENMC (see Rmk. 4) remains
unchanged when we switch from H ′j−1,2 to H ′j,1. Next, recall that the value committed in ENMC is defined
by the value statistically bound in the first message of ENMC together with the receiver’s final decision.
That is, if we denote the value statistically bound in the first message as ãi,k, then the committed value in

ENMC is Vald(ãi,k) :=

{
ãi,k d = 1

⊥ d = 0
, where d denotes if the receiver accepts (d = 1) or rejects (d = 0) this

ENMC. Also note that this bit d can be derived efficiently from the transcript of this ENMC execution. By
the conditions in the statement of Lem. 10, the invariant condition holds in H ′j−1,2. Thus, it must hold in H ′j,1
as well; Otherwise, it breaks the computational indistinguishability between these two hybrids (by checking
the value d).

4.5 Proving Lem. 11

4.5.1 Proving Indistinguishability

Hybrids Hj,1 and Hj,2 differ only at block Bj , where Hj,2 performs Watrous rewinding over Hj,1’s strategy.

Thus, the indistinguishability OUT(Hj,1)
c
≈ OUT(Hj,2) follows from the Watrous’ rewinding lemma (and
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the computational hiding property of ENMC via a standard argument (almost identical to that in [ACL21,
Section 4.2.1]). For the sake of completeness, we provide the formal proof in Appx. C. In the following, we
establish the invariant condition in Hj,2.

4.5.2 Proving Invariant Condition

We define an intermediate hybrid H ′j,1 that proceeds as follows:

1. (Until the End of Bj−1.) Proceed identically as Hj,1 until the end of block Bj−1. That is, compute
|ψj−1⟩ =Wj−1 · · ·W1 |ψ0⟩. Then, it measures all the registers in |ψj−1⟩ except for register Adv.

2. (De-coherently Executing Bj.) Proceed using the classical (see Footnote 28) algorithm described in
Step 2 of H0,1 (i.e., the de-coherent version of U ′j) to finish block Bj .

3. (De-coherently Executing {Bj+1, . . . , BL}.) Proceed using the classical (see Footnote 28) algorithm
described in Step 2 of H0,2 (i.e., the de-coherent version of {Uj+1, . . . , UL}) to finish the remaining blocks
{Bj+1, . . . , BL}. Finally, output A’s internal state and the transcript of this execution.

Similarly, we also define an intermediate hybrid H ′j,2 that proceeds as follows:

1. (Until the End of Bj−1.) Proceed identically as Hj,2 until the end of block Bj−1. That is, compute
|ψj−1⟩ =Wj−1 · · ·W1 |ψ0⟩.

2. (Watrous Rewinding for Bj.) Compute |ψj⟩ = Wj |ψj−1⟩. Then, it measures all the registers in |ψj⟩
except for register Adv.

3. (De-coherently Executing {Bj+1, . . . , BL}.) Proceed using the classical (see Footnote 28) algorithm
described in Step 2 of H0,2 (i.e., the de-coherent version of {Uj+1, . . . , UL}) to finish the remaining blocks
{Bj+1, . . . , BL}. Finally, output A’s internal state and the transcript of this execution.

It follows directly from the deferred measurement principle that OUT(H ′j,1)
i.d.
== OUT(Hj,1) and OUT(H ′j,2)

i.d.
==

OUT(Hj,2). Thus, to establish the invariant condition in Hj,2, it suffices to prove the it in hybrid H ′j,2.
Toward that, we first define an event E0 in hybrid H ′j,1:

– Event E0: At the end of block Bj , the Wj register contains value 0.

We prove a useful claims regarding event E0.

Claim 6. For any QPT adversary A, it holds that:

∀i ∈ [Q],∀k ∈ [ℓgad], Pr
H′

j,2(A)
[ãi,k = b̃i,k]

s
≈ Pr

H′
j,1(A)

[ãi,k = b̃i,k | E0],

where H ′j,1(A) (resp. H ′j,2(A)) denotes the execution of H ′j,1 (resp. H ′j,2) with A acting as the MIM adversary.

Proof. Recall that H ′j,1 and H ′j,2 only differ at block Bj , where H
′
j,1 uses the (de-coherent version of) U ′j but

H ′j,2 use Watrous rewinding circuit Wj . Thus, Claim 6 holds as long as the following holds:

Wj |ψj−1⟩
s
≈ |ψ0

j ⟩|0⟩Wj , (16)

where |ψ0
j ⟩|0⟩Wj is the branch correpsonding to Wj containing 0 in the superposition of U ′j |ψj−1⟩.

We remark that Eq. (16) is a direct result of the Watrous rewinding lemma, which says the effect of
Watrous’ rewinding is to “kills” the branch corresponding to the Watrous control register bing 1, and only
retains the branch corresponding to the Watrous control register bing 0. Indeed, this Eq. (16) is formally
established as Eq. (85) when we prove the indistinguishability between Hj,1 and Hj,2 using the Watrous’
rewinding lemma. We refer to Appx. C for details.

This finishes the proof of Claim 6.

It follows from Claim 6 that to show the invariant condition in H ′j,2, we only need to show it in H ′j,1
conditioned on E0. Formally, we need to prove that for any QPT adversary A, it holds that

∀i ∈ [Q],∀k ∈ [ℓgad], Pr
H′

j,1

[ãi,k = b̃i,k | E0] =
1

2
± negl(λ). (17)
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The remainder of this proof is devoted to establishing Eq. (17).
Fix any i ∈ [Q] and k ∈ [ℓgad], we divide all possible schedules into the following two types:

1. Type-1: The first message of ENMC to ãi,k starts before (or in parallel with) the last message of block
Bj−1;

2. Type-2: The first message of ENMC to ãi,k starts after the last message of block Bj−1.

First, we claim that Eq. (17) holds for Type-1 schedules. Recall that ENMC is first-message binding (see
Rmk. 4). That is, the first message of ENMC already fixed the value ãi,k. Thus, whether E0 happens or not
(which depends only on the execution after the first message of ENMC to ãi,k for Type-1 schedule) does not

affect the probability of “ãi,k = b̃i,k”
32. Therefore, the following holds for Type-1 schedules:

Pr
H′

j,1

[ãi,k = b̃i,k | E0] = Pr
H′

j,1

[ãi,k = b̃i,k] = Pr
Hj,1

[ãi,k = b̃i,k] =
1

2
± negl(λ), (18)

where the last equation follows from the invariant condition in Hj,1.
Therefore, in the following, we only need to prove Eq. (17) for Type-2 schedules. To do that, we further

divide Type-2 schedules into two sub-types, based on if there exist fully nested left gadgets in block Bj :

– Type-2-1: these are Type-2 schedules where there are no fully nested left gadgets in block Bj ;

– Type-2-2: these are Type-2 schedules where there exists at least one fully nested left gadgets in block
Bj ;

For Type-2-1 schedules, recall that the the Watrous control register is set to be cj sampled uniformly at
random from {0, 1} (because there are no fully nested left gadgets in Bj). Thus, whether E0 happens or not
is independent to other parts of the execution for Type-2-1 schedules. In particular, E0 will not affect the
event “ãi,k = b̃i,k” for Type-2-1 schedules. Therefore, in this case, Eq. (17) simply follows from the invariant
condition in Hj,1.

In the following, we only need to focus on Type-2-2 schedules. In this case, we will reduce Eq. (17) to
the non-malleability of ENMC. Indeed, this is the only interesting type of schedules. We show the result by
the following Claim 7, whose proof is given in Sec. 4.5.3.

Claim 7. Assume the invariant condition holds in Hj,1 and the ENMC is non-malleable. Then Eq. (17) holds
for Type-2-2 schedules.

4.5.3 Proving Claim 7

First, note that for Type-2-2 schedules, event E0 means that a randomly-picked fully nested left gadget in
Bj matches. Also, even for Type-2-2 schedules, we know that E0 must happen with probability 1

2
. This is

because that the picked left gadget matches with probability 1
2
(since the left honest prover always picks the

value ãi,k uniformly at random in Step 2b of Prot. 4). That is, the following holds for Type-2-2 schedules:

Pr
H′

j,1(A)
[E0] = Pr

H′
j,1(A)

[¬E0] =
1

2
. (19)

Moreover, for any i ∈ [Q] and k ∈ [ℓgad], the following holds for Type-2-2 schedules (we omit H ′j,1(A) from
the subscript of “Pr” for succinctness)

Pr[ãi,k = b̃i,k | E0] · Pr[E0] + Pr[ãi,k = b̃i,k | ¬E0] · Pr[¬E0] = Pr[ãi,k = b̃i,k] =
1

2
± negl(λ), (20)

where Eq. (20) follows from the invariant condition in Hj,1.
Eq. (19) and (20) together imply that

∀i ∈ [Q],∀k ∈ [ℓgad], Pr[ãi,k = b̃i,k | E0] + Pr[ãi,k = b̃i,k | ¬E0] = 1± negl(λ) (21)

32 Actually, it is possible that A decides to abort the execution of ENMC to ãi,k depending on even E0, which

leads to ãi,k = ⊥. But this will not affect Eq. (18) since in that case, ãi,k and b̃i,k will be re-defined to be

independently sampled bits (see Rmk. 7), for which Pr[ãi,k = b̃i,k] is exactly
1
2
.
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In the following, we prove Claim 7 by a reduction to the non-malleability of ENMC. Formally, we assume
for contradiction that Claim 7 is false, i.e., there exist an i ∈ [Q], a k ∈ [ℓgad], and a δ(λ) = 1

poly(λ)
such that

the following holds for infinitely many λ∣∣Pr[ãi,k = b̃i,k | E0]−
1

2

∣∣ ≥ δ(λ). (22)

For such λ’s, it follows from Eq. (21) and (22) that∣∣Pr[ãi,k = b̃i,k | E0]− Pr[ãi,k = b̃i,k | ¬E0]
∣∣ ≥ 2δ(λ)− negl(λ). (23)

Next, we build a QPT adversary Anm and the associated QPT distinguisher Dnm that breaks the (non-
uniform) non-malleability of ENMC (recall it from Def. 8).

Recall that for Type-2-2 schedules, the event E0 means the following: Picking a random left gadget that
is fully nested in block Bj (say, it is the v-th gadget of the u-th left session), the value bu,v committed by A
in SBCom is equal to the value au,v committed by the left honest prover in ENMC. With this observation,
Anm can be designed as follows:

– Anm internally emulates the game H ′j,1(A) until the moment when A sends SBCom to bu,v, pauses the
execution, and performs brute-force search to learn the value bu,v. We remark that this step is not efficient.
But it happens before Anm starts participating in the non-malleability game (which starts from next step).
Thus, the information in this step can be thought as a non-uniform advice to Anm.

– Anm starts to participate in the non-malleability game: She sets m0 := bu,v and m1 := 1− bu,v, and sends
(m0,m1) to the external non-malleability challenger Ch. Ch will flip a random coin b and performs a MIM
execution of ENMC with Anm where on the left side, Ch commits to mb as an honest committer, and on
the right side, Ch acts as an honest receiver, expecting to receive an ENMC to some m̃ with Anm acting
as a (potentially malicious) committer.

– Anm participates in this game by relaying messages between the external Ch and the internal A. In
particular, she will use Ch’s messages on the left side as the ENMC to au,v (i.e., au,v := mb), and use A’s
ENMC to ãi,k as the messages in the right execution with Ch (i.e., m̃ := ãi,k). All other messages are still
emulated by Anm internally.

The distinguisher Dnm works as follows: It first checks if m̃ is equal to b̃i,k. Recall that m̃ is the value
committed by Anm to Ch in the MIM execution of ENMC (Indeed, this is exact the ENMC to ãi,k made by

the A internally emulated by Anm). If m̃ = b̃i,k, Dnm outputs 1; Otherwise, it outputs 0.
To analyze (Anm,Dnm)’s advantage, notice that if Ch commits to m0 = bu,v, then the internal A’s view is

identical to H ′j,1(A) conditioned on au,v = bu,v (aka, conditioned on E0). Also recall that Dnm by definition

outputs 1 iff ãi,k = m̃ (= b̃i,k). In this case, it implies

Pr
mim0

[OUT(Dnm) = 1] = Pr
H′

j,1(A)
[ãi,k = b̃i,k | E0], (24)

where mim0 denotes the non-malleability game where Ch commits to m0. By a symmetric argument, we can
show that

Pr
mim1

[OUT(Dnm) = 1] = Pr
H′

j,1(A)
[ãi,k = b̃i,k | ¬E0], (25)

where mim1 corresponds to the case where Ch commits to 1− bu,v = m1 (= au,v) (Therefore, au,v ̸= bu,v and
thus ¬E0.)

Eq. (24) and (25) together with Eq. (23) imply that Dnm has non-negligible advantage 2δ(λ)− negl(λ) in
the non-malleability game, thus completing the proof.

Remark 11. The above argument assumed that Anm knows which left gadget u-v is picked to determine E0

(so that Anm can use this left u-v gadget and the concerned right i-k gadget to finish the above reduction to
non-malleability). However, for Type-2-2 schedules, Anm only knows there exists at least one fully nested
left gadget in Bj , but she does not known which fully nested left gadget is the u-v that determines E0.
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This issue can be handled as follows. We simply ask Anm to guess randomly in advance which left gadget
will be used as the u-v left gadget, and behaves as if she guessed correctly using the above reduction. Note
that there are only polynomially many left gadgets in total (the accurate number is Q · ℓgad). Thus, Anm will
guess correctly with probability 1

Q·ℓgad
.33 Thus, this random guess will only introduce a 1

Q·ℓgad
multiplicative

factor over (Anm,Dnm)’s eventual advantage. So the above reduction still go through.

This finishes the proof of Claim 7.

4.6 Extension to QMA

As discussed in the technical overview, we remark that the proof of Thm. 3 makes use of the Stage 3 WI
of Prot. 4 in a “black-box” manner. That is, all the claims/lemmas above hold as long as the Stage 3 WI
is constant-round, computationally WI, and computationally sound. In particular, this is true even if this
Stage 3 WI involves quantum communication.

Therefore, a bounded-concurrent simulation-sound ZK argument for QMA can be constructed by re-
placing the Stage 3 WI for NP in Prot. 4 with a WI argument for QMA, where again the prover proves
either the QMA statement is true or the trapdoor statement is true. (We refer to [CCLY22, Section 6.4] for
definitions of QMA, WI arguments for QMA, etc.) We remark that such a constant-round WI argument
for QMA is known from the existence of PQ-OWFs in [CCLY22]. In more detail, [CCLY22] constructed
a constant-round ε-ZK argument for QMA using only PQ-OWFs. It is well-known that ε-ZK implies WI.
This leads to the following theorem:

Theorem 8. Assuming the existence of PQ-OWFs, bounded-concurrent simulation-sound ZK arguments for
QMA exist.

5 Bounded-Concurrent Post-Quantum Two-Party Coin-Flipping Protocols

5.1 Construction

Our construction makes use of all the building blocks for our bounded-concurrent simulation-sound ZK
protocol in Prot. 4, i.e., SBCom, ENMC, and WI. Additional, we need the following extra building block:

– A two-round34 function-hiding PQ-SFE scheme SFE = (Gen,Enc,Dec,Eval) (as per Def. 9). Let Γsfe denote
the round complexity of SFE. (In our case, Γsfe is equal to 2.)

Our bounded-concurrent post-quantum two-party coin-flipping protocol is presented in Prot. 5. (Similar
as in Prot. 4, we assume w.l.o.g. that all the instances of Naor’s commitment SBCom is non-interactive.) We
explain the purpose of each step in the following “Comment” environment.

Protocol 5: Bounded-Concurrent Post-Quantum Two-Party Coin-Flipping Protocol

Let Q(λ) be a polynomial of λ, denoting the maximum number of concurrent sessions. P1 and P2 take the
security parameter λ and an ID id ∈ {0, 1}λ as the common input.

1. (Com-and-Guess: P1 is Sender.) For k = 1 to ℓgad := 120Q7λ:

(a) P2 samples b1,k
$←− {0, 1} and commits to it using SBCom.

(b) P1 samples a1,k
$←− {0, 1} and commits to it using ENMC. P1 and P2 will use id:1:k as the ID for

this ENMC so that each ENMC is executed using a different ID.

(c) P2 sends b1,k together with the decommitment information w.r.t. the SBCom in Step 1a. P1 continues
only if this decommitment is valid.

33 Actually, Anm only needs to guess within the block Bj . Her probability of correct guess is lower-bounded by
the inverse of the max number of left gadgets that Bj could possibly contain. This probability is even higher
than 1

Q·ℓgad
. But we choose to use 1

Q·ℓgad
as it already suffices for our purpose.

34 Actually, any constant-round construction suffices.
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Comment. This step is identical to Stage 2 of Prot. 4. Similarly, we call each repetition a Stage 1
gadget. The k-th Stage 1 gadget matches if the a1,k committed by P1 in Step 1b is equal to the b1,k
validly decommitted by P2 in Step 1c. This step is designed to allow the simulator to learn a trapdoor
witness (i.e., there are more than Th := 60Q7λ+Q4λ Stage 1 gadgets matching) when P2 is corrupted,
while ensuring that the corrupted P2 cannot learn the trapdoor witness. We say that P1 is the sender and
P2 is the receiver of this Com-and-Guess Stage. This terminology will be useful in Sec. 5.2.

2. (Com-and-Guess: P2 is Sender.) For k = 1 to ℓgad := 120Q7λ:

(a) P1 samples b2,k
$←− {0, 1} and commits to it using SBCom.

(b) P2 samples a2,k
$←− {0, 1} and commits to it using ENMC. P1 and P2 will use id:2:k as the ID for

this ENMC.

(c) P1 sends b2,k together with the decommitment information w.r.t. the SBCom in Step 2a. P2 continues
only if this decommitment is valid.

Comment. This step is designed to allow the simulator to learn a trapdoor witness (as the simulator
for Prot. 4 does) when P1 is corrupted, while ensuring that the corrupted P1 cannot learn any trapdoor
witness. Similar as in Stage 2 of Prot. 4, We call each repetition a Stage 2 gadget. The k-th Stage 2
gadget matches if the a2,k committed by P2 in Step 2b is equal to the b2,k validly decommitted by P1

in Step 2c. We say that P2 is the sender and P1 is the receiver of this Com-and-Guess Stage. This
terminology will be useful in Sec. 5.2.

3. (Commitment to P1’s Share.) P1 samples a random string r1. P1 commits to r1 using the statistically-
binding commitment SBCom.

4. (Commitment to P2’s Share.) P2 samples a random string r2. P2 commits to r2 using the statistically-
binding commitment SBCom.

5. (SFE: P1 is Receiver.) We first define a classical circuit C1:

– Circuit C1: It has r2 and the transcript of Stage 1 hard-wired in; It takes as input a string w. If w
is a witness for the fact that there are more than Th := 60Q7λ + Q4λ Stage 1 gadgets matching, it
outputs r2; Otherwise, it outputs a dummy symbol ⊢.

P1 computes k1 ← SFE.Gen(1λ) and ct1 ← SFE.Enc(k1, w1), where w1 is set to an all-0 string. P1 sends
ct1 to P2. P2 computes ĉt1 ← SFE.Eval(C1, ct1) and sends ĉt1 to P1. P1 simply ignores the message ĉt1.

Comment. This step is designed to allow the simulator learn P2’s committed share r2, when P2 is
corrupted. In that case, the simulator will set w1 to the trapdoor witness it learned from Stage 1, so that
she can learn r2 by decrypting ĉt1. Note that an honest P1 will always get ⊢ when decrypting ĉt1 (as w1

is set to an all-0 string). So the message ĉt1 is useless for an honest P1.

6. (SFE: P2 is Receiver.) We first define a classical circuit C2:

– Circuit C2: It has r1 and the transcript of Stage 2 hard-wired in; It takes as input a string w. If w
is a witness for the fact that there are more than Th := 60Q7λ + Q4λ Stage 2 gadgets matching, it
outputs r1; Otherwise, it outputs a dummy symbol ⊢.

P2 computes k2 ← SFE.Gen(1λ) and ct2 ← SFE.Enc(k2, w2), where w2 is set to an all-0 string. P2 sends
ct2 to P1. P1 computes ĉt2 ← SFE.Eval(C2, ct2) and sends ĉt2 to P2. P2 simply ignores the message ĉt2.

Comment. This step is symmetric to Stage 5.

7. (P1 Reveals r1.) P1 sends the r1 that is committed in Stage 3. We emphasize that P1 only sends the
value r1, without the associated decommitment information.

8. (P2 Reveals r2.) P2 sends the r2 that is committed in Stage 4. We emphasize that P2 only sends the
value r2, without the associated decommitment information.

9. (P1 Proves Honesty.) P1 and P2 execute an instance of WI where P1 proves that
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(a) either it behaves honestly by following the instructions in Stages 3, 5 and 7; or

(b) there are more that Th := 60Q7λ+Q4λ Stage 1 gadgets matching.

We remark that an honest P1 will use the witness for Item 9a to finish this WI.

Comment. This step is designed to protect against a corrupted P2. In that case, the simulator will use
the trapdoor witness (i.e., witness for Item 9b) to finish this WI so that the simulator does not need to
perform Stages 3, 5 and 7 honestly. Meanwhile, we will show that even a cheating P2 cannot make the
trapdoor witness available for her; So, she has to perform Stages 4, 6 and 8 honestly.

10. (P2 Proves Honesty.) P1 and P2 execute an instance of WI where P2 proves that

(a) either it behaves honestly by following the instructions in Stages 4, 6 and 8; or

(b) there are more than Th := 60Q7λ+Q4λ Stage 2 gadgets matching.

We remark that an honest P2 will use the witness for Item 10a to finish this WI.

Comment. This step is symmetric to Stage 10.

Output: Both parties then output r := r1 ⊕ r2 as the coin-flipping result.

Remark 12 (Potential Simplification of Prot. 5). We remark that Prot. 5 can be simplified. The security of
it holds even if we remove Stage 6. The reason is: P1 is the first party that reveals the random share r1. In
the case where P1 is corrupted, the simulator can see this revealed r1 before preparing the (simulated) share
r2. Thus, Stage 6 (which is designed for the extraction of r1 when P1 is corrupted) is not really necessary.
But we choose to use the current version of Prot. 5 because it maintains symmetric roles for P1 and P2; This
version generalizes to the multi-party setting (in Sec. 7) more easily.

Security Proof. The security of Prot. 5 is established by the following Thm. 9, whose proof is provided in
Sec. 5.2.

Theorem 9. For any Q(λ) that is a polynomial of the security parameter λ, Prot. 5 is a Q-concurrent
post-quantum two-party coin-flipping protocol.

5.2 Security Proof (Proving Thm. 9)

In this section, we prove that Prot. 5 is secure in the Q-concurrent setting. We assume w.l.o.g. that the
adversary corrupts exactly one party in each of the Q sessions. The sessions where both parties are corrupted
or neither party is corrupted are not degenerated.

Recast the Execution to the MIM Setting. First, we recast the Q-concurrent execution of Prot. 5 into
the main-in-the-middle setting. The purpose of this step is to present the schedule of messages in a similar
pattern as the MIM execution of Q-concurrent simulation-sound ZK we discussed in Sec. 4, so that we can
re-use the same proof technique as for the Q-concurrent simulation-sound of Prot. 4.

We first explain the intuition behind this recasting (to be specified formally later). Recall the Stage 2 of
Prot. 4. In Prot. 4, let us call P the sender of Stage 2 and call V the receiver of Stage 2. Then, a feature
of the Q-concurrent MIM execution of Prot. 4 is: On the left, A controls the receiver of the Stage 2 of each
left session; On the right, A controls the sender of the Stage 2 in each right session. This structure played
a central role when we prove Q-concurrent simulation soundness of Prot. 4. Now, we want to maintain this
structure when recasting the Q-concurrent execution of Prot. 5 into the MIM setting. That is, we want to
re-arrange the schedule of the Q-concurrent execution of Prot. 5 so that all the Com-and-Guess Stages
where the receiver is corrupted appear on the left, and all the Com-and-Guess Stages where the sender is
corrupted appear on the right.

This is a little more complex compared with the Q-concurrent MIM execution of Prot. 4. Because in each
instance of Prot. 4 (in the Q-QMIM setting), there is only one Com-and-Guess Stage (i.e., Stage 2) where
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Fig. 3: Q-Concurrent Execution of Prot. 5 Recast to the MIM Setting

P is the sender and V is the receiver. In contrast, there are two Com-and-Guess Stages in Prot. 5 (i.e.,
Stages 1 and 2), where in Stage 1 P1 is the sender, but in Stage 2, P2 is the sender. Therefore, to maintain the
aforementioned pattern, we do the following. For each session of Prot. 5 in the Q-concurrent execution, we
put its Com-and-Guess Stage where the receiver is corrupted on the left, and put its Com-and-Guess
Stage where the sender is corrupted on the right. Note that there are other stages apart from the two Com-
and-Guess Stages in Prot. 5. They can be put on either side and it will not affect our analysis (roughly,
that is because they have only constant rounds for each session). W.l.o.g., we choose to put them on the left.

We now formally describe the recast schedule. Let Corrupt1 be a subset of [Q] such that for all sessions

i ∈ [Q], party P
(i)
1 is corrupted; Let Corrupt2 be a subset of [Q] such that for all sessions i ∈ [Q], party P

(i)
2

is corrupted. We first determine the messages that appear on the right. The right interaction consists of the
following messages:

– The Stage 1 of session i for all i ∈ Corrupt1, and

– The Stage 2 of session i for all i ∈ Corrupt2.

All other stages will be put on the left. That is, the left interaction consists of the following messages

– The Stage 2 of session i for all i ∈ Corrupt1,

– The Stage 1 of session i for all i ∈ Corrupt2, and

– All other stages (i.e., except for Stages 1 and 2) of session i for all i ∈ [Q].

This recast MIM schedule is depicted in Fig. 3. Finally, we highlight the following properties of it: (1) all
the corrupted parties (controlled by A) appears in the middle and all the left and right parties are honest;
(2) all the Com-and-Guess Stages where the receiver is corrupted appear on the left; (3) all the Com-
and-Guess Stages where the sender is corrupted appear on the right. Therefore, this schedule retains the
structure of that of the Q-Q MIM execution of the simulation-sound ZK in Sec. 4. This is the reason why
we can use a similar technique when proving security.

Number of Messages. We define some notations related to the round complexity of the execution shown
in Fig. 3. Let T denote the total number of messages shown in Fig. 3. Since there are Q sessions in total, it
follows that

T = Q ·
(
2 · ℓgad · sgad + 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi)

)
, (26)
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where sgad := Γsbc +Γenmc is the number of messages of each Com-and-Guess gadget. Let Tright denote the
number of messages shown on the right in Fig. 3. By the way we arrange the messages above, it follows that

Tright = Q · ℓgad · sgad. (27)

Each session i ∈ [Q] has exactly

T
(i)
right := ℓgad · sgad (28)

messages on the left in Fig. 3.
Let Tleft denote the number of messages shown on the left in Fig. 3. By the way we arrange the messages

above, it follows that
Tleft = Q ·

(
ℓgad · sgad + 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi)

)
. (29)

Each session i ∈ [Q] has exactly

T
(i)
left := ℓgad · sgad + 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi) (30)

messages on the left in Fig. 3.

Intuition. Recall that we recast the execution to a similar structure as the case of simulation-sound ZK.
Thus, the security proof follows from similar techniques used in Sec. 4.3. We will again partition these T
messages (as shown in Fig. 3) into L := 24Q6λ equal-size blocks {B1, . . . , BL}. That is, block B1 contains
the first T

L
messages, block B2 contains the next T

L
messages, and so on (messages are ordered according

to their order of appearing in the execution). We will refer to L as the total number of blocks and refer
to sB := T

L
as the size of each block. We will also define a sequence of hybrids indexed by j ∈ [L], where

roughly speaking, the j-th hybrid performs Watrous rewinding for the first (j − 1) blocks, but leaves the
execution of the remaining blocks in straight-line. In the j-th hybrid, we check if any SBCom given by a
(simulated) honest party (to his share of randomness) starts in the j-th block: If not, this hybrid is identical
to the previous one; Otherwise, the (simulated) honest party will start to use a trapdoor extracted from the
Com-and-Guess Stage to “cheat” in all his messages for the SBCom to his share, SFE, and WI. In this
way, the simulator can extract the corrupted party’s share and “enforce” the final coin-flipping result to the
one from the ideal functionality.

Of course, we also need to ensure that the trapdoor witness is indeed available when a hybrid needs it,
while the A cannot learn any trapdoor witness. Similar as in Sec. 4.3, this will be established with the help of
a invariant condition which essentially says: the (simulated) honest parties can learn the trapdoor due to the
performed Watrous rewinding, while the A cannot.35 In the following, we first defined the invariant condition
and then show the hybrids.

Definition 16 (Invariant Condition). Let T be a transcript corresponding to an Q-concurrent execution
of Prot. 5. Let Corrupt1 and Corrupt2 be as defined above. We say that the invariant condition holds if the
following two requirements are satisfied:

– For all i ∈ Corrupt1 and k ∈ [ℓgad], it holds that

Pr[a
(i)
1,k = b

(i)
1,k] =

1

2
± negl(λ),

where a
(i)
1,k is the value committed in the k-th ENMC in Stage 1 of session i contained in T , b(i)1,k is the

value committed in the k-th SBCom in Stage 1 of session i contained in T , and the probability is taken
over the random procedure generating T .

– For all i ∈ Corrupt2 and k ∈ [ℓgad], it holds that

Pr[a
(i)
2,k = b

(i)
2,k] =

1

2
± negl(λ),

where a
(i)
2,k is the value committed in the k-th ENMC in Stage 2 of session i contained in T , b(i)2,k is the

value committed in the k-th SBCom in Stage 2 of session i contained in T , and the probability is taken
over the random procedure generating T .

35 This is essentially a “simulation-sound” type of requirement. That is why the current proof is highly similar
to that in Sec. 4.3.
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Hybrid REAL: This is the real Q-concurrent execution of Prot. 5 recast to the MIM execution as explain
earlier (shown in Fig. 3). Let OUT(REAL) denote the output of the honest parties and the view of A in this
game.

Lemma 12. If SBCom is computationally hiding and ENMC is extractable (as per Def. 7), then the invariant
condition (as per Def. 16) holds in hybrid REAL.

Proof. This lemma is the counterpart of Lem. 8. It follows from the same argument as in the proof of Lem. 8.
Assume for contradiction that A manages to break the invariant condition for some i ∈ [Q] and k ∈ [ℓgad].

If i ∈ Corrupt1 we can extract the a
(i)
1,k (due to the extractability of ENMC) and break the computationally

hiding property of SBCom using a
(i)
1,k as a reasonable guess for the value b

(i)
1,k committed in the corresponding

SBCom. Similarly, if i ∈ Corrupt2 we can extract the a
(i)
2,k and break the computationally hiding property of

SBCom using a
(i)
2,k as a reasonable guess for the value b

(i)
2,k committed in the corresponding SBCom. This is

exactly the same argument that we used in the proof of Lem. 8 (which is also used in Sec. 4.2). We omit the
details.

Hybrid G0,6: This hybrid is the counterpart of the H0,2 defined on Page 25. It sets up necessary quantum
registers and performs the REAL execution in a coherent manner. By comparing with the H0,2 on Page 25,
it is straightforward to see how this hybrid should be defined. The only difference that we want to high-light
is how the Watrous control registers ⊗L

j=1Wj are set:

– ⊗L
j=1Wj : Similar as in theH0,2 defined on Page 25, we need LWatrous control registers ⊗L

j=1Wj to control the
rewinding behavior for each block. Formally, for all j ∈ [L], each Wj is set using the Modify(Wj) algorithm
shown in Algo. 5.1.

Algorithm 5.1: Modify(Wj)

For all i ∈ [Q] and j ∈ L, let K(i)
j be a subset of [ℓgad] defined as follows:

– If i ∈ Corrupt1, then k ∈ K
(i)
j if and only if the k-th Stage 2 gadget of session i is fully nested in block

Bj .

– If i ∈ Corrupt2, then k ∈ K
(i)
j if and only if the k-th Stage 1 gadget of session i is fully nested in block

Bj .

For all j ∈ [L], let Tj be a subset of [Q] such that i ∈ Tj if and only if K
(i)
j ̸= ∅.

Then, for all j ∈ L, the Watrous control register Wj is set to a binary bit cj defined as follows:

– If Tj = ∅, then sample cj
$←− {0, 1} uniformly at random;

– Otherwise (i.e., Tj ̸= ∅), sample i
$←− Tj and then sample k

$←− K
(i)
j . In this case, cj is defined as follows

according to the sampled i and k:

• If i ∈ Corrupt1, then cj = 1 if and only if a
(i)
2,k ̸= b

(i)
2,k, where a

(i)
2,k is the value committed in the ENMC in

the k-th Stage 2 gadget of session i, and b
(i)
2,k is the value committed in the SBCom in the k-th Stage 2

gadget of session i;

• If i ∈ Corrupt2, then cj = 1 if and only if a
(i)
1,k ̸= b

(i)
1,k, where a

(i)
1,k is the value committed in the ENMC in

the k-th Stage 1 gadget of session i, and b
(i)
1,k is the value committed in the SBCom in the k-th Stage 1

gadget of session i.

Comment. This algorithm should be interpreted as follows. In each block Bj, it checks if there exist any

fully nested gadgets where the receiver is corrupted (i.e., a gadget on the left in Fig. 3)—That is, if P
(i)
1

(resp. P
(i)
2 ) is corrupted, then it checks if there exist any fully nested Stage 2 (resp. Stage 1) gadgets of

session i. If so, it samples at random a fully nested gadget (by i
$←− Tj and k

$←− K
(i)
j ) and sets cj = 1 if

and only if this sampled gadget does not match. If not (i.e., there is no fully nested gadgets in Bj where
the receiver is corrupted), it sets cj to 1 with probability 1/2.
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Lemma 13. It holds that OUT(REAL)
i.d.
== OUT(G0,6). Moreover, if the invariant condition (as per Def. 16)

holds in REAL, it must hold in G0,6 as well.

Proof. This lemma is the counterpart of Lem. 9. It follows from exactly the same proof techniques. We omit
the details.

Comment. In the following, we define the hybrids {Gj,1, . . . , Gj,5}. These five hybrids together can be viewed
as the counterpart of the Hj,1 defined on Page 27. One may wonder why the Hj,1 has five (instead of just
one) counterparts in this proof. The reason is: In the proof shown in Sec. 4.3, there is only one component for
which we want to get rid of the real input (i.e., the witness w in the ZK setting), which is the WI; However,
in the current proof, the counterparts of this component include the SBCom to share of randomness, SFE, and
the WI messages given by the (simulated) honest party. The simulator will consume one hybrid to “cheat” in
one of them. See the following for details.

Hybrid Gj,1 (∀j ∈ [L]): This hybrid is the counterpart of the Hj,1 defined on Page 27. It is identical to
Gj−1,6 except that Gj,1 starts to use the trapdoor witness in the WI where the verifier is corrupted. In more
detail:

– For all session i where P
(i)
1 is corrupted, if its Stage 4 SBCom starts in block Bj , then P

(i)
2 starts to use the

trapdoor witness (i.e., there are more than Th := 60Q7λ+Q4λ Stage 2 gadget matching) in the Stage 10
WI.

– For any session i where P
(i)
2 is corrupted, if its Stage 3 SBCom starts in block Bj , then P

(i)
1 starts to use

the trapdoor witness (i.e., there are more than Th := 60Q7λ+Q4λ Stage 1 gadget matching) in the Stage 9
WI.

Similar as in Hj,1, it is possible that when the P
(i)
1 (or P

(i)
2 ) needs to use the trapdoor witness, this trapdoor

witness is not available. In that case, Gj,1 halts immediately and outputs a special symbol Abortnt. We denote
this event by Ent. (Looking ahead, we will prove in Lem. 14 that this happens with negligible probability.)
This finishes the description of Gj,1.

Lemma 14. If WI is witness indistinguishable, then for any j ∈ [L], it holds that OUT(Gj−1,6)
c
≈ OUT(Gj,1).

Moreover, if SBCom is computationally hiding, ENMC is both extractable (as per Def. 7) and first-message
binding (as per Rmk. 4), and that the invariant condition holds in Gj−1,6 (∀j ∈ [L]), then the invariant condition
hold in Gj,1 (∀j ∈ [L]) as well.

Proof. This lemma can be proven following the same argument as for Lem. 10.

Proving Indistinguishability. To prove OUT(Gj−1,6)
c
≈ OUT(Gj,1), notice that hybrids Gj−1,6 and Gj,1 are

identical until the end of block Bj−1. They start to differ only if for some i ∈ [Q], the SBCom (given by the
uncorrupted party) of session i starts in block Bj . If that happens, Gj−1,6 proceeds using the real witness,
but Gj,1 proceeds using the trapdoor witness (if the trapdoor witness is available). Also note that starting
from block Bj , the execution in both hybrids are straight-line. So the indistinguishability follows from the
WI property of this WI. Thus, to finish this proof, the only thing we need to prove is the following Claim 10,
which can be understood as the counterpart of Claim 5.

Claim 10. It holds that PrGj,1
[Ent] ≤ negl(λ).

Proof. This proof is almost identical to that of Claim 5. We present it in Sec. 5.3.

Proving Invariant Condition. The invariant condition can be proven using exactly the same technique as in
Sec. 4.4.2. Consider the invariant condition for the k-th gadget in Stage 1 of session i ∈ Corrupt1. We use the
final message of block Bj−1 as a pivot to divide the schedule into the following four cases (similar as those
shown in Fig. 2) and establish the invariant condition for each them separately:

1. The decommitment to b
(i)
1,k ends before (or in parallel with) the final message of Bj−1.

2. The SBCom to b
(i)
1,k starts after the final message of Bj−1;
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3. The SBCom to b
(i)
1,k ends before (or in parallel with) the final message of Bj−1, but the ENMC to a

(i)
1,k

starts after the final message of Bj−1;

4. The ENMC to a
(i)
1,k starts before (or in parallel with) the final message of Bj−1, but this ENMC but ends

after final message of Bj−1.

The invariant condition for each of the above four cases follows from exactly the same argument as shown on
Page 30. We thus omit the details.

The invariant condition for the k-th gadget in Stage 2 of session i ∈ Corrupt2 can be proven similarly. The

only difference is: instead of the a
(i)
1,k and b

(i)
1,k in the Stage 1 gadgets, we will focus on the a

(i)
2,k and b

(i)
2,k in the

Stage 2 gadgets to perform the above proof.
This finishes the proof of Lem. 14.

Hybrid Gj,2 (∀j ∈ [L]): This hybrid is identical to Gj,1 except that Gj,2 makes the SFE stage independent
of honest parties’ committed share of randomness. In more detail:

– For any session i where P
(i)
1 is corrupted, if its Stage 4 SBCom starts in block Bj , then P

(i)
2 finishes this

Stage 5 SFE using a different circuit C ′1 (in place of C1) defined as follows:

• C ′1: it is a dummy circuit that always outputs the symbol ⊢, but padded to the same topology and size
of the C1 defined in Stage 5. Importantly, C ′1 does not have r2 hard-wired any more.

We remark that all other steps are performed in exactly the same manner as in Gj,1. The only thing that
changes is the definition of the circuit (from C1 to C ′1) in this SFE.

– For any session i where P
(i)
2 is corrupted, if its Stage 3 SBCom starts in block Bj , then P

(i)
1 finishes this

Stage 6 SFE using a different circuit C ′2 (in place of C2) defined as follows:

• C ′2: it is a dummy circuit that always outputs the symbol ⊢, but padded to the same topology and size
of the C2 defined in Stage 6. Importantly, C ′2 does not have r1 hard-wired any more.

We remark that all other steps are performed in exactly the same manner as in Gj,1. The only thing that
changes is the definition of the circuit (from C2 to C ′2) in this SFE.

This finishes the description of Gj,2.

Lemma 15. If SFE is function hiding (as per Lem. 5), then for any j ∈ [L], it holds that OUT(Gj,1)
c
≈

OUT(Gj,2). Moreover, if SBCom is computationally hiding, ENMC is both extractable (as per Def. 7) and
first-message binding (as per Rmk. 4), and that the invariant condition holds in Gj,1 (∀j ∈ [L]), then the
invariant condition hold in Gj,2 (∀j ∈ [L]) as well.

Proof. The proof of this lemma is almost identical to that of Lem. 14. The only difference is: when proving

OUT(Gj,1)
c
≈ OUT(Gj,2), we rely on the function hiding property of SFE (instead of the WI property of WI

as in the proof of Lem. 14).
One caveat is that we need to make sure that the C ′1 (resp. C ′2) should be functionally identical to C1

(resp. C2) w.r.t. A. That is, A cannot find an input that distinguishes the original circuit and the prime’d
version (except for with negligible probability). To see that, recall that C ′1 and C1 (resp. C ′2 and C2) differ
only if the input is a valid trapdoor witness. Since the trapdoor witness is not available to A in the concerned
session (due to the invariant condition, which could be proven using exactly the same argument as in Lem. 14.),
the above claim holds. We omit the details.

Hybrid Gj,3 (∀j ∈ [L]): This hybrid is identical to Gj,2 except that Gj,3 makes the honest parties commit
to an all-0 string as the share of randomness. In more detail:

– For any session i where P
(i)
1 is corrupted, if its Stage 4 SBCom starts in block Bj , then P

(i)
2 finishes this

SBCom by committing to an all-0 string of the same length of r2.

– For any session i where P
(i)
2 is corrupted, if its Stage 3 SBCom starts in block Bj , then P

(i)
1 finishes this

SBCom by committing to an all-0 string of the same length of r1.

This finishes the description of Gj,3.
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Lemma 16. If SBCom is computationally hiding, then for any j ∈ [L], it holds that OUT(Gj,2)
c
≈ OUT(Gj,3).

Moreover, if ENMC is both extractable (as per Def. 7) and first-message binding (as per Rmk. 4), and that
the invariant condition holds in Gj,2 (∀j ∈ [L]), then the invariant condition hold in Gj,3 (∀j ∈ [L]) as well.

Proof. The proof of this lemma is almost identical to that of Lem. 14. The only difference is: when proving

OUT(Gj,2)
c
≈ OUT(Gj,3), we rely on the computationally hiding property of SBCom (instead of the WI

property of WI as in the proof of Lem. 14). We omit the details.

Hybrid Gj,4 (∀j ∈ [L]): This hybrid is identical toGj,3 except thatGj,4 tries to learnA’s share of randomness
from the SFE stage. In more detail:

– For any session i where P
(i)
1 is corrupted, if its Stage 4 SBCom starts in block Bj , then P

(i)
2 finishes the

Stage 6 SFE in the following manner. It sets w
(i)
2 to the trapdoor witness; When it receives ĉt

(i)

2 from the

corrupted P
(i)
1 , it computes r

(i)
1 = SFE.Dec(k

(i)
2 , ĉt

(i)

2 ).

– For any session i where P
(i)
2 is corrupted, if its Stage 3 SBCom starts in block Bj , then P

(i)
1 finishes the

Stage 5 SFE in the following manner. It sets w
(i)
1 to the trapdoor witness; When it receives ĉt

(i)

1 from the

corrupted P
(i)
2 , it computes r

(i)
2 = SFE.Dec(k

(i)
1 , ĉt

(i)

1 ).

This finishes the description of Gj,4.

Lemma 17. If SFE is input hiding (as per Property 2 in Def. 9), then for any j ∈ [L], it holds that

OUT(Gj,3)
c
≈ OUT(Gj,4). Moreover, if SBCom is computationally hiding, ENMC is both extractable (as per

Def. 7) and first-message binding (as per Rmk. 4), and that the invariant condition holds in Gj,3 (∀j ∈ [L]),
then the invariant condition hold in Gj,4 (∀j ∈ [L]) as well.

Proof. The proof of this lemma is almost identical to that of Lem. 14. The only difference is: when proving

OUT(Gj,3)
c
≈ OUT(Gj,4), we rely on the input hiding property of SFE (instead of the WI property of WI as

in the proof of Lem. 14). We omit the details.

Hybrid Gj,5 (∀j ∈ [L]): This hybrid is identical to Gj,4 except that Gj,5 starts to “force” the coin-flipping
result to the one from the ideal coin-flipping functionality, by making use of the adversary’s share of ran-
domness extracted from hybrid Gj,4. In more detail:

– For any session i where P
(i)
1 is corrupted, if its Stage 4 SBCom starts in block Bj , P

(i)
2 sends r

(i)
2 := r(i)⊕r(i)1

in Stage 8, where the r(i) is the coin-flipping result from the ideal functionality (see also Rmk. 13) and

r
(i)
1 is the corrupted P

(i)
1 ’s share extracted from hybrid Gj,4.

– For any session i where P
(i)
2 is corrupted, if its Stage 3 SBCom starts in block Bj , P

(i)
1 sends r

(i)
1 := r(i)⊕r(i)2

in Stage 7, where the r(i) is the coin-flipping result from the ideal functionality (see also Rmk. 13) and

r
(i)
2 is the corrupted P

(i)
2 ’s share extracted from hybrid Gj,4.

This finishes the description of Gj,5.

Remark 13. Note that starting from G1,5, we start to use the ideal coin-flipping functionality Fcp, which
does not take any input but output a random string r(i) to the parties of the i-th session, where i is as

described above (i.e., the sessions i where P
(i)
1 is corrupted and the Stage 4 SBCom starts in block Bj , or

P
(i)
2 is corrupted and the Stage 3 SBCom starts in block Bj). Let us call these sessions as the concerned

session i.

Lemma 18. For any j ∈ [L], it holds that OUT(Gj,4)
i.d.
== OUT(Gj,5). Moreover, if the invariant condition

holds in Gj,4 (∀j ∈ [L]), then it holds in Gj,5 (∀j ∈ [L]) as well. Also, if the WI is computationally sound,

then for the concerned session i described above, the output of P
(i)
1 and P

(i)
2 will be the r(i) from the ideal Fcp

as described in Rmk. 13.
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Proof. Both the view indistinguishability and invariant condition follows from the fact that A’s view in Gj,5

are identically distributed to that in Gj,4

Also, for the concerned session i, it is straightforward that the coin-flipping result will be “forced” to the

r(i) from Fcp, as long as the corrupted party, say P
(i)
b , cannot make the share r

(i)
b hard-wired in the SFE

circuit inconsistent with the r
(i)
b committed in the SBCom. To prove this, notice that the trapdoor witness

is not available to this corrupted P
(i)
b due to the invariant condition. Therefore, the consistency between SFE

and SBCom follows immediately from the soundness of WI.

Hybrid Gj,6 (∀j ∈ [L]): This hybrid is the counterpart of the Hj,2 defined on Page 27. That is, Gj,6 finishes
block Bj using Watrous rewinding, with Wj playing the role as the Watrous control register. All other steps
are performed in exactly the same manner as in Gj,5. This finishes the description of Gj,6.

Lemma 19. If ENMC is computationally hiding and WI is witness indistinguishable, then for any j ∈ [L],

it holds that OUT(Gj,5)
c
≈ OUT(Gj,6). Moreover, if we additionally assume that ENMC is both non-malleable

and first-message binding (as per Rmk. 4), and the invariant condition holds in Gj,5 (∀j ∈ [L]), then the
invariant condition hold in Gj,6 (∀j ∈ [L]) as well.

Proof. This proof is identical to that of Lem. 11 (shown in Sec. 4.5). We omit the details.

Finishing the Proof. The final simulator S in the Q-concurrent execution can be constructed in the
following way:

– S simply emulates the hybrid GL,6. Note that GL,6 needs to access A, which S will provide because S
has access to A for simulation; Also, GL,6 needs to access the ideal functionality Fcp, which will also be
through S, who will simply forward the output of Fcp to GL,6.

It follows from Lem. 12 to Lem. 19 that OUT(REAL)
c
≈ OUT(GL,6), which further implies that the ideal-

world Q-concurrent execution simulated by S is computationally indistinguishable to that in the real world.
This finishes the proof of Thm. 9.

5.3 Proof of Claim 10

Intuition. This claim follows from the same technique as for the proof of Claim 5 shown in Appx. B.
At a high-level, for any session i ∈ [Q], we again divide all the its gadgets appearing on the left (in

Fig. 3) into two types: (1) matching by rigging, and (2) matching by luck, following the same definition as
in Appx. B. We will then argue that with overwhelming probability, the total number of these two types of
gadgets exceeds the threshold Th := 60Q7λ + Q4λ, which implies that the trapdoor witness in session i is
available to the uncorrupted party (i.e., the role played by the simulator) in this session.

Almost all the steps are identical as in Appx. B. It is only the derivation of the bounds for Rigi and Lucki
that will be slightly different. But even for this step, the eventual bounds we obtain are still identical to
those in Appx. B. Therefore, we only need to focus on this derivation in the following.

Notation. Similar as in Appx. B, we use Rigi to denote the number of left gadgets of session i that matches
because of the Watrous rewinding in hybrid Gj,1, and use Lucki to denote the number of left gadgets of
session i that matches because of pure luck in hybrid Gj,1. Again, our actual proof will only focus on the
Rig′i and Luck′i, which are the counterparts of Rigi and Lucki but in the REAL game, because it can be
shown (following exactly the same argument in Sec. B.1) that bounding Rig′i and Luck′i already suffices for
the current proof.

In the following, we first prove a claim (Claim 11) that can be considered as a counterpart of Claim 19.
Then, we proceed to define Rig′i and Luck′i formally, and show lower-bounds for them.

For a session where P1 (resp. P2) is corrupted, we first bound (in Claim 11) the max number of its Stage 1
(resp. Stage 2) gadgets that can be fully nested in a block. Claim 11 is the counterpart of Claim 19.

Claim 11. For any session i ∈ Corrupt1, it can have at most 12Q2 Stage 2 gadgets fully nested in any single
block. For session i ∈ Corrupt2, it can have at most 12Q2 Stage 1 gadgets fully nested in any single block.
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Proof. Recall from our parameter setting that ℓgad = 120Q7λ and L = 24Q6λ. Also recall from Eq. (26) that
there are

T = Q ·
(
2 · ℓgad · sgad + 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi)

)
messages in the Q-concurrent MIM execution of Prot. 5, where sgad = Γsbc + Γenmc denotes the size of each
gadget. If we let sB denote the size of each block, then it holds that

sB =
T

L
= 10Q2 · sgad +

C

24Q5λ
≤ 12Q2 · sgad,

where C := 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi) is a constant.
This implies that each block can at most contain 12Q2 fully nested gadgets, which further implies Claim 11.

Defining Rig′i and Luck′i. Similar as in Algo. B.2, we first define the random variables Σ′, X ′i,j , Θ
′
i, and

Z ′i,k in REAL. Recall that the current hybrid is Gj,1. Similar as in Algo. B.2, we writes this j as j∗ in the
following to emphasize this index and to avoid potential index conflicts.

Algorithm 5.2: Procedure Pick regarding REAL

Execute the REAL game. This yields a schedule S. Let {B1, . . . , BL} be the partition associated with S.
For this S, consider the following sub-procedure:

Procedure SubPick(S). Iterate for j = 1 to j∗ − 1:

1. Let Tj and K
(i)
j (∀i ∈ [Q]) be defined as in Algo. 5.1;

2. Sample i
$←− Tj ; It is possible that Tj = ∅. In that case, directly move onto the next iteration.

3. Sample k
$←− K(i)

j .

Random Variables: We define some random variables w.r.t. the above random procedure:

– Let Σ′ denote the subset of [Q] such that i ∈ Σ′ iff the Stage-∗ SBCom of session i starts in block Bj∗ .
(The “Stage-∗” will be determined depending on which party is corrupted in session i—If i ∈ Corrupt1,
then Stage-∗ stands for Stage 4; If i ∈ Corrupt2, then Stage-∗ stands for Stage 3.)

– For any i ∈ Σ′ and any j ∈ [j∗ − 1], let X ′i,j be a binary random variable defined to be 1 iff in Step 2 of
the j the iteration of the above SubPick(S) procedure, the index i is sampled.

– For any i ∈ Σ′, let Θ′i denote the indices of the first 3Q4λ Stage-∗ gadgets that are sampled by the
above procedure in session i. (The “Stage-∗” will be determined depending on which party is corrupted
in session i—If i ∈ Corrupt1, then Stage-∗ stands for Stage 2; If i ∈ Corrupt2, then Stage-∗ stands for
Stage 1.)

– For any i ∈ Σ′ and any k ∈ [ℓgad] \Θ′i, let Z ′i,k be a binary random variable defined as follows:

• (Type-1 k): If this k-th Stage-∗ gadget of session i is sampled by the above procedure, let Z ′i,k be a

Bernoulli random variable with p = 1
2
;

• (Type-2 k): Otherwise, let Z ′i,k = 1 iff the k-th Stage-∗ gadget of session i matches,

where, again, the “Stage-∗” will be determined by which party is corrupted in session i—If i ∈ Corrupt1,
then Stage-∗ stands for Stage 2; If i ∈ Corrupt2, then Stage-∗ stands for Stage 1.

The Rig′i and Luck′i are defined in exactly the same way as on Page 69. That is, we define

∀i ∈ Σ′, Rig′i :=

{
3Q4λ if

∑
j∈[j∗−1]X

′
i,j ≥ 3Q4λ∑

j∈[j∗−1]X
′
i,j if

∑
j∈[j∗−1]X

′
i,j < 3Q4λ

, (31)

and
∀i ∈ Σ′, Luck′i :=

∑
k∈[ℓgad]\Θ′

i

Z ′i,k, (32)
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where the probability is taken over the whole random procedure Pick shown by Algo. 5.2.

Bounding Rig′i and Luck′i. To bound Rig′i and Luck′i, it suffices to show the counterparts of Claims 21
and 22. The remainder of this proof is devoted to that.

We first prove the following Claim 12, which is the counterpart of Claim 20.

Claim 12. Fix an S in the support of Pick shown in Algo. 5.2. For any i ∈ [Q], we define Ni as follows:

– If i ∈ Corrupt1, Ni denotes the number of blocks that have at least one fully nested Stage 2 gadget of the
session i in S.

– If i ∈ Corrupt2, Ni denotes the number of blocks that have at least one fully nested Stage 1 gadget of the
session i in S.

It holds that for all i ∈ [Q], Ni ≥ 6Q5λ− const, where

const := 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi)

is a constant.

Proof. This proof follows the same argument as for Claim 20.
Note that if i ∈ Corrupt1, the Stage 2 gadgets of the session i in S appear on the left in the MIM execution

(shown in Fig. 3); if i ∈ Corrupt2, the Stage 1 gadgets of the session i in S also appear on the left in the
MIM execution (shown in Fig. 3). Thus, our proof actually does not need to distinguish between the case
i ∈ Corrupt1 and the case i ∈ Corrupt2. We just need to focus on the Com-and-Guess Stages that appear
on the left.

For any i ∈ [Q], we call the messages appearing on the left side in Fig. 3 as the left messages of session

i. Recall from Eq. (30) that there are T
(i)
left = ℓgad · sgad + const left messages of session i in total, where

const := 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi)

Let ui denote the number of blocks that contain at least 2sgad left messages of session i (recall that sgad is
the size of each gadget). Note that (ui − const) lower-bounds Ni.

Let {b1, . . . , bui
} be the number of left messages of session i that are contained in each of these ui

blocks. Let the number of left messages of session i contained in the remaining L− ui blocks be denoted as
{a1, . . . , aL−ui

}. Notice that by definition, each ak (∀k ∈ [L − ui]) block contains < 2sgad left messages of
session i. Thus, it holds that

L−ui∑
k=1

ak < (L− ui) · 2sgad. (33)

Also, since the total number of messages contained in each block is sB, it holds that

ui∑
k=1

bk ≤ ui · sB. (34)

Also recall sB is equal to the total number of messages in the Q-concurrent execution divided by the number
of blocks L. That is,

sB =
Q ·

(
2 · ℓgad · sgad + 2 · Γsbc.c + 2 · (Γsfe + 1 + Γwi)

)
L

=
2Q(ℓgad · sgad + const′)

L
, (35)

where const′ := const
2

.
Observe that the sum of these bk’s and ak’s is exactly the total number of the left messages of session i,

which is exactly T
(i)
left . That is,

ui∑
k=1

bk +

L−ui∑
k=1

ak = T
(i)
left = ℓgad · sgad + const. (36)
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Eq. (36) together with Inequalities (33) and (34) imply that:

ui · sB + (L− ui) · 2sgad ≥ ℓgad · sgad + const,

which further implies that:

ui ≥
ℓgad · sgad + const− 2sgadL

sB − 2sgad

=
ℓgad · sgad + const− 2sgadL
2Q(ℓgad·sgad+const′)

L
− 2sgad

(37)

=
L

2Q
· ℓgad · sgad + const− 2sgadL

ℓgad · sgad + const′ − 2sgad · L
2Q

>
L

2Q
· ℓgad · sgad + const− 2sgadL

ℓgad · sgad + const− 2sgad · L
2Q

(38)

≥ L

2Q
· ℓgad · sgad + const− 2sgadL

ℓgad · sgad + const

=
L

2Q
·
(
1− 2sgadL

ℓgad · sgad + const

)
≥ L

2Q
·
(
1− 2L

ℓgad

)
=

L

2Q
·
(
1− 2

5Q

)
(39)

≥ L

2Q
·
(
1− 1

2

)
= 6Q5λ (40)

where Eq. (37) follows Eq. (35), Eq. (38) follows from the fact that const′ < const, Eq. (39) follows from
our parameter setting of L = 24Q6λ and ℓgad = 120Q7λ, and Eq. (40) follows from our parameter setting of
L = 24Q6λ.

As mentioned before, ui − const lower-bounds Ni. It then follows from Eq. (40) that Ni ≥ 6Q5λ− const.
This finishes the proof of Claim 12.

Next, we show the following Claim 13, which is a counterpart of Claim 21.

Claim 13 (Matching by Rigging). It holds that

Pr

[
∃i ∈ Σ′ s.t.

∑
j∈[j∗−1]

X ′i,j < 3Q4λ

]
≤ negl(λ), (41)

where both the expectation and the probability is taken over the whole random procedure Pick defined by
Algo. 5.2.

Proof. This proof is identical to that of Claim 21. Following the same argument, one can show the following
counterpart of Inequality (64) (which makes use of Claim 12):

∀i ∈ σ′, E
[∑

j∈[j∗−1]X
′
i,j

]
≥ 6Q4λ− const

Q
− 12Q, (42)

where σ′ is an instantiation of Σ′ resulted from the transcript S. Then, Claim 13 follows from an application
of the Chernoff bound to Inequality (42). We refer the reader to the proof of Claim 21 for details.

This finishes the proof of Claim 13.

Next, we show the following Claim 14, which is the counterpart of Claim 22.
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Claim 14 (Matching by Luck). Let Z ′i,k and Θ′i be as defined in Algo. B.2. It holds that

Pr
[
∃i ∈ Σ′ s.t.

∑
k∈[ℓgad]\Θ′

i
Z ′i,k < 60Q7λ− 2Q4λ

]
≤ negl(λ),

where the probability is taken over the whole random procedure Pick as defined by Algo. 5.2.

Proof. This proof is identical to that of Claim 22. We omit the details.

Finishing the Proof of Claim 10. Similar as in the proof of Claim 5, for any session i ∈ Corrupt1 (resp.
i ∈ Corrupt2), Claim 13 lower-bounds the number of matching Stage 2 (resp. Stage 1) gadgets in session i due
to Watrous rewinding, and Claim 14 lower-bounds the number of matching Stage 2 (resp. Stage 2) gadgets
in session i by pure luck.

Claims 13 and 14 together imply that the trapdoor witness must be available when the simulator needs
it (except for with negligible probability). This step is identical to the argument presented in Appx. B.4. We
omit the details.

6 Bounded-Concurrent PQ-2PCC and 2PQC

6.1 Construction

Our constructions of bounded-concurrent PQ-2PCC and 2PQC will follow the same template. In the follow-
ing, we take PQ-2PCC as an example to explain the intuition.

Intuition. We need a constant-round PQ-2PCC protocol Π2pcc in the CRS model, which has a straight-line
simulator. That is, if P ∗b (b ∈ {0, 1}) denote the corrupted party and xb denotes its initial input, then the
simulator S can be partitioned into two stages S1 and S2 that work in the following way:

– First, S1(1λ) outputs a fake CRS crs′ together with a “trapdoor” td which is supposed to contain some
information that helps S2 finish the simulation in straight-line. Importantly, S1 does not need to access
the corrupted party.

– Then, SP∗
b

2 (crs′, td, xb) will finish the remaining job of simulation. Importantly, S2 needs access to the
corrupted party P ∗b , but it does not rewind P ∗b . That is, it can generated the simulated execution by
talking with P ∗b in straight-line.

If we have such a protocol Π2pcc for an ideal F , our construction will then proceed in two steps:

1. First, P1 and P2 run the bounded-concurrent coin-flipping protocol we constructed in Sec. 5 (i.e., Prot. 5)
to securely generate a CRS crs;

2. Then, P1 and P2 execute the above constant-round Π2pcc to compute F . Note that Π2pcc is in the CRS
model; These two parties just use the crs generated in Step 1 as the required CRS.

Roughly speaking, this construction is secure (in the Q-concurrent setting) because the CRS generation
step (which is implemented by Prot. 5) enjoys Q-concurrent security. But the actual security proof is more
involved: Since Prot. 5 is only Q-concurrently secure (instead of being UC secure), we cannot claim directly
that the above construction is also Q-concurrently secure, due to the existence of the extra constant-round
Π2pcc messages in each session. However, thanks to the straight-line behavior of the simulator for Π2pcc, it
can be easily composed with the simulator for Prot. 5, and eventually allows us to prove the Q-concurrent
security of the above construction using a similar proof as for Prot. 5.

To do that, let us recall (from Sec. 5.2) how we prove the security of Prot. 5. We built a sequence of
hybrids {Gj,1, . . . , Gj,6}j∈[L], where

– {Gj,1, . . . , Gj,5} are for the following purpose: In a hybrid index by j, the Watrous rewinding is performed
for the first (j−1) blocks. The hybrid monitors the next block Bj . If an honest party’s SBCom to his share
in some session (say, session i) starts in block Bj , we ask this honest party in session i to use the trapdoor
(extracted from the corresponding Com-and-Guess Stage) to cheat in its SBCom to his share, SFE,
and WI. Our special design of Com-and-Guess Stage guarantees that the trapdoor is available when the
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(simulated) honest party of session i needs it, but the corrupted party cannot learn any trapdoor. Note
that in hybrid Gj,5, all the honest-party messages in the session i are already replaced by the simulated
ones. That is, the simulation for this session i is essentially done at hybrid Gj,5.

– Then, Gj,6 goes to perform Watrous rewinding for the next block Bj so that the next iteration of hybrids
{Gj+1,1, . . . , Gj+1,5} start to monitor the messages in block Bj+1, and finish the simulation for the sessions
where the honest party’s SBCom to his share starts in block Bj+1.

Now, to prove the security our current construction, we simply add one more hybrid Gj,5.5 between
Gj,5 and Gj,6. As explained above, Gj,5 already finished the simulation for the underlying CRS generating
protocol (i.e., the Step 1) for session i. That means hybrid Gj,5 already “forces” the corrupted party in
session i to accept the simulated CRS crs′ (generated by S1(1λ)), which has a trapdoor td hidden from the
corrupted party. Then, in hybrid Gj,5.5, we can use the Π2pcc simulator S2(crs′, td) to simulate the extra
constant rounds of Π2pcc (shown in Step 2). We can prove the indistinguishability and invariant condition for
Gj,5.5 using exactly the same technique as for {Gj,5}—Since the S2(crs′, td′) talks to the corrupted party in
session i in straight-line, the simulation of these extra constant rounds is no difference from the changes for
WI (or the SBCom and SFE) in earlier hybrids; Therefore, the indistinguishability and invariant condition can
be proven using the same technique. Now, the new sequence of hybrids {Gj,1, . . . , Gj,5, Gj,5.5, Gj,6}j∈[L] will
allow us to finish the security proof.

Extension to 2PQC. Notice that the above security proof for the PQ-2PCC protocol makes use of the
Π2pcc in a “black-box” manner. That is, all the claims above hold as long as the Π2pcc is constant-round
and straight-line simulatable in the CRS model. In particular, it does not rely on the fact that the Π2pcc

messages are classical.

Therefore, a bounded-concurrent 2PQC can be constructed by replacing the Π2pcc in the above protocol
with a constant-round, straight-line simulatable (in the CRS model) 2PC for quantum functionalities.

Formal Construction. As discussed above, our constructions of the bounded-concurrent PQ-2PCC and
2PQC are almost identical, they only differ at the underlying stand-alone secure protocol. Therefore, we
present them at one stroke in Prot. 6. This protocol makes use of all the building blocks as for our coin-
flipping protocol shown in Sec. 5, i.e., SBCom, ENMC, WI, and SFE. Additional, we need a constant-round
2PQC protocol Π2pqc (resp. a PQ-2PCC protocol Π2pcc) in the CRS model that has a straight-line simulator.
Such a Π2pqc is known from the quantum hardness of LWE [BCKM21a]; Such a Π2pcc is also known from
the quantum hardness of LWE (e.g., [PVW08, GS18]).

Protocol 6: Bounded-Concurrent 2PQC (and PQ-2PCC)

Let F denote a quantum (resp. classical) functionality that two parties want to jointly evaluate. Let Q(λ)
be a polynomial of λ, denoting the maximum number of concurrent sessions. One party P1 takes as input
λ and a (potentially quantum) input x1; The other party P2 takes as input λ and a (potentially quantum)
input x2. P1 and P2 agree on an id ∈ {0, 1}λ as the ID for this execution of the protocol.

– Stages 1-10: P1 and P2 execute an instance of the bounded-concurrent tow-party coin-flipping protocol
shown in Prot. 5. At the end of this phase, both P1 and P2 learn the same output crs.

Comment. We denote this phase as Stages 1-10 because it is an execution of Prot. 5 which has ten
stages.

– Stage 11: P1 and P2 execute the constant-round 2PQC protocol Π2pqc (resp. PQ-2PCC protocol Π2pcc

for the classical functionality) to compute the functionality F . Note that this protocol is in the CRS
model; P1 and P2 use the crs obtained from the previous phase as the CRS.

Security Proof. The security of Prot. 6 is established by the following Thm. 15, whose proof is provided
in Sec. 6.2.

Theorem 15. If Π2pqc (resp. Π2pcc) is a constant-round, straight-line simulatable 2PQC (resp. PQ-2PCC)
protocol in the CRS model for a quantum (resp. classical) functionality F , then Prot. 6 is a Q-concurrent
2PQC (resp. PQ-2PCC) for the same functionality F .
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6.2 Security Proof (Proving Thm. 15)

As explain in the Intuition part in Sec. 6.1, the proof of Thm. 15 is almost identical to that of Thm. 9. Thus,
in the following, we will only focus on the places where this proof differs from the one shown in Sec. 5.2.

Similar as in Sec. 5.2, we first recast the Q-concurrent execution of Prot. 6 into the MIM setting (similar
to the one shown in Fig. 3), using exactly the same recasting strategy defined in the Recast the Execution
to the MIM Setting part on Page 37.

Then, we partition this recast MIM execution into L := 24Q6λ equal-size blocks {B1, . . . , BL}, in exactly
the same manner as explained in the Intuition part on Page 39.

Next, we define a sequence of hybrids. We define hybrids REAL, G0,6, and {Gj,1, . . . , Gj,6}j∈[L] in the
same way as in Sec. 5.2, except for the following slight modification of {Gj,5}j∈[L]:

– Recall that in {Gj,5}j∈[L] (defined on Page 43), the hybrid makes use of the extracted share from the
corrupted party to “force” the coin-flipping result (which is the crs in our current construction) to the
one from the ideal functionality Fcp. In our current proof, there is no Fcp any more. This hybrid simply
run the simulator of the underlying Π2pqc (resp. Π2pcc) to learn the crs′ to which the coin-flipping result
should be enforced.
In more detail, we modify {Gj,5}j∈[L] as follows: It executes the straight-line simulator (crs′, td)← S1(1λ);
Then, it stores td (for the use later in hybrid Gj,5.5 we will define soon) and set the (simulated) honest

party’s share to r
(i)
b := crs′⊕ r(i)1−b, where r

(i)
1−b is the corrupted party’s share extracted from hybrid Gj,4 (b

denotes the uncorrupted party). In this way, both parties will output crs′ as the coin-flipping result. Other
steps are performed in exactly the same manner as the {Gj,5}j∈[L] defined on Page 43. It is straightforward
to see that this modification does not affect the indistinguishability and invariant condition of {Gj,5}j∈[L].

Next, we insert one more hybrid {Gj,5.5}j∈[L] between hybrid {Gj,5}j∈[L] and {Gj,6}j∈[L], which is defined
as follows:

Hybrid Gj,5.5 (∀j ∈ [L]): This hybrid is identical to Gj,5 except that Gj,5.5 uses the straight-line simulator
of Π2pqc (resp. Π2pcc) to finish Stage 11 of Prot. 6. In more detail:

– For any session i where P
(i)
1 is corrupted, if its Stage 4 SBCom starts in block Bj , then P

(i)
2 uses the straight-

line simulator SP
(i)
1

2 (crs′, td′,x
(i)
1 ) to talk with the corrupted P

(i)
1 , where the crs′ and td′ are generated by

S1(1λ) in Gj,5, and x
(i)
1 is the corrupted P

(i)
1 ’s input.

– For any session i where P
(i)
2 is corrupted, if its Stage 3 SBCom starts in block Bj , then P

(i)
1 uses the straight-

line simulator SP
(i)
2

2 (crs′, td′,x
(i)
2 ) to talk with the corrupted P

(i)
2 , where the crs′ and td′ are generated by

S1(1λ) in Gj,5, and x
(i)
2 is the corrupted P

(i)
2 ’s input.

This finishes the description of Gj,5.5.
As explained earlier, the straight-line simulator S2 for Π2pqc (resp. Π2pcc) works in straight-line and

generates the simulated Stage-11 messages that are computationally indistinguishable from a real execution
of Π2pqc (resp. Π2pcc). Thus, the switch we made in hybrid Gk,5.5 is no different from our switch of witness
in the WI (as we did in hybrid Gj,1 defined on Sec. 5.2). Therefore, we have the following lemma.

Lemma 20. If Π2pqc (resp. Π2pcc) is constant-round and straight-line simulatable in the CRS model, then

for any j ∈ [L], it holds that OUT(Gj,5)
c
≈ OUT(Gj,5.5). Moreover, if SBCom is computationally hiding,

ENMC is both extractable (as per Def. 7) and first-message binding (as per Rmk. 4), and that the invariant
condition holds in Gj,5 (∀j ∈ [L]), then the invariant condition hold in Gj,5.5 (∀j ∈ [L]) as well.

Proof. The proof of this lemma is almost identical to that of Lem. 14. The only difference is: when proving

OUT(Gj,5)
c
≈ OUT(Gj,5.5), we rely on the security (i.e., straight-line simulatability) of Π2pqc (resp. Π2pcc),

instead of the WI property of WI as in the proof of Lem. 14. We omit the details.

Then, following exactly the same proof as for Lem. 19, we can show that OUT(Gj,5.5)
c
≈ OUT(Gj,6) and

the invariant condition in Gj,6.
Finally, by repeating the same argument as shown in the Finishing the Proof part on Page 44, we

finish the proof of Thm. 15.
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7 Bounded-Concurrent Multi-Party Coin-Flipping, PQ-MPCC, and MPQC

Our constructions in this section follow the same framework as for the two-party results shown earlier. We will
first build a bounded-concurrent multi-party coin-flipping protocol (in Sec. 7.1). Then, bounded-concurrent
general-purpose MPC for both classical and quantum functionality can be built from this multi-party coin-
flipping protocol. The compiler is also similar to that from Sec. 6. That is, we first use the coin-flipping
protocol to generate a CRS, and then run a constant-round, straight-line simulatable general-purpose MPC
protocol in the CRS model using the generated CRS. Again, this step does not follow from a modular
composition lemma (since the coin-flipping protocol is not universally composable); But we can still make
the proof go through by performing “non-black-box” modifications to the proof for the coin-flipping protocol,
in an almost identical manner as we build general-purpose 2PC from the two-party coin-flipping protocol
(i.e., using the same techniques shown in Sec. 6.2).

7.1 Bounded-Concurrent Multi-Party Coin-Flipping: Construction

Our construction of multi-party coin-flipping protocol is a direct generalization of the two-party protocol
shown in Sec. 5. The main difference is, we set the parameter ℓgad in a more generous manner to tolerate more
concurrent instances of the Com-and-Guess Stage due to the increased number of parties. In particular,
this ℓgad is set to 120Q̂7λ with Q̂ := n2Q. We refer to Sec. 7.2 for why this parameter setting suffices in the
security proof.

Construction. Our construction makes use of the same building blocks as for our two-party coin-flipping
protocol in Sec. 5, i.e., the SBCom, ENMC, SFE, and WI. The construction is presented in Prot. 7.

Protocol 7: Bounded-Concurrent Post-Quantum Multi-Party Coin-Flipping Protocol

Let n(λ) be a polynomial of λ, denoting the number of parties in a session. Let Q(λ) be a polynomial of
λ, denoting the maximum number of concurrent sessions. All the parties take the security parameter λ as
the common input. All pairs of two parties Pu and Pv are associated with a unique ID idu,v ∈ {0, 1}λ for
the communication between them.

1. (Com-and-Guess.) All pairs of parties Pu and Pv perform the following task.

For k = 1 to ℓgad := 120Q̂7λ where Q̂ := n2Q, do the following sequentially:

(a) Pv samples bu,k
$←− {0, 1} and commits to it using SBCom.

(b) Pu samples au,k
$←− {0, 1} and commits to it using ENMC. Pu and Pv will use idu,v:u:k as the ID for

this ENMC so that each ENMC is executed using a different ID.

(c) Pv sends bu,k together with the decommitment information w.r.t. the SBCom in Step 1a. Pu con-
tinues only if this decommitment is valid.

We remark that though the above repetition between Pu and Pv must be executed sequentially, this
Com-and-Guess Stage between different pairs of parties can happen in parallel. For example, while
P1 and P2 are performing this Com-and-Guess Stage, P2 can perform the Com-and-Guess Stage
with all the other (n− 2) parties (i.e., P3, . . . , Pn) simultaneously in parallel. So, this step is considered
as ℓgad · (Γsbc + Γenmc) rounds. I.e., it does not explicitly depend on n; Rather, it depends on n only
through ℓgad.

Comment. Again, we call each repetition a Stage 1 gadget. The k-th Stage 1 gadget matches if the
au,k committed by Pu in is equal to the bu,k validly decommitted by Pv. This step is designed to allow
the simulator to learn a trapdoor witness (i.e., there are more than Th := 60Q7λ+Q4λ Stage 1 gadgets
matching) when Pv is corrupted, while ensuring that the corrupted Pv cannot learn the trapdoor witness.
We say that Pu is the sender and Pv is the receiver of this Com-and-Guess Stage.

2. (Commitment to Pu’s Share.) Each party Pu samples a random string ru. Each pair of parties Pu

and Pv execute a statistically-binding commitment SBCom where Pu commits to ru.
We remark that all the parties can perform this stage in parallel. So, this step is considered as Γsbc.c

rounds (i.e., independent of the number of parties).
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3. (SFE with Pu as the Receiver.) All pairs of parties Pu and Pv perform the following task.
We first define a classical circuit Cu:

– Circuit Cu: It hard-wires the value rv and the transcript of Stage 1 Com-and-Guess Stage where
Pu is the sender and Pv is the receiver; It takes as input a string w. If w is a witness for the fact that
there are more than Th := 60Q7λ+Q4λ Stage 1 gadgetsmatching in the hard-wired Com-and-Guess
Stage transcript, it outputs ru; Otherwise, it outputs a dummy symbol ⊢.

Pu computes ku ← SFE.Gen(1λ) and ctu ← SFE.Enc(ku, wu), where wu is set to an all-0 string. Pu sends
ctu to Pv. Pv computes ĉtu ← SFE.Eval(Cu, ctu) and sends ĉtu to Pu. Pu simply ignores the message ĉtu.
We remark that all the parties can perform this stage in parallel. So, this step is considered as Γsfe

rounds (i.e., independent of the number of parties).

Comment. This step is designed to allow the simulator learn Pv’s committed share rv, when Pv is
corrupted. In that case, the simulator will set wu to the trapdoor witness it learned from the Com-and-
Guess Stage, so that she can learn rv by decrypting ĉtu. Note that an honest Pu will always get ⊢ when
decrypting ĉtu (as wu is set to an all-0 string). So the message ĉtu is useless for an honest Pu.

4. (Pu Reveals ru.) Each Pu broadcasts the ru that is committed in Stage 2. We emphasize that Pu sends
the value ru only, without the associated decommitment information.
We remark that all the parties announce their own ru simultaneously using the broadcast channel. So,
this step is considered as a single round (i.e., independent of the number of parties).

5. (Pu Proves Honesty.) All pairs of parties Pu and Pv execute an instance of WI where Pu proves that

(a) either its messages sent to Pv in Stages 2 to 4 are generated by honestly following the protocol; or

(b) there are more that Th := 60Q7λ+Q4λ Stage 1 gadgets matching in the Stage 1 Com-and-Guess
Stage where Pu is the sender and Pv is the receiver.

An honest Pu will use the witness for Item 5a to finish this WI.
We remark that that all the parties can perform this stage in parallel. So, this step is considered as Γwi

rounds (i.e., independent of the number of parties).

Comment. This step is designed to protect against a corrupted Pv. In that case, the simulator will use
the trapdoor witness (i.e., witness for Item 5b) to finish this WI so that it does not need to perform
Stages 2 to 4 honestly with the corrupted Pv. Meanwhile, we will show that even a cheating Pv cannot
make the trapdoor witness available for her, so she has to perform Stages 2 to 4 honestly with other
uncorrupted parties.

Output: All parties then output r := ⊕n
u=1ru as the coin-flipping result.

Security Proof. The security of Prot. 7 is established by the following Thm. 16, whose proof is provided
in Sec. 7.2.

Theorem 16. For any Q(λ) that is a polynomial of the security parameter λ, Prot. 7 is a Q-concurrent
post-quantum multi-party coin-flipping protocol.

7.2 Bounded-Concurrent Multi-Party Coin-Flipping: Security Proof

The security proof follows the same template as for the two-party case shown in Sec. 5.2. First, we recast the
Q-concurrent execution of Prot. 7 into the main-in-the-middle setting. The purpose of this step is to present
the schedule of messages in a similar pattern as the MIM execution of Q-concurrent simulation-sound ZK we
discussed in Sec. 4, so that we can re-use the same proof technique as for the Q-concurrent simulation-sound
of Prot. 4.

Recast to the MIM Setting. To do that, we follow the same strategy as in the two-party setting (i.e., at
the beginning of Sec. 5.2). Recall the the major principle is to recast the schedule so that: (1) A controlling
all the corrupted parties sitting in the middle; (2) all the Com-and-Guess Stags where the receiver is
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Fig. 4: Q-Concurrent Execution of Prot. 7 Recast to the MIM Setting. Only the messages exchanged between
a corrupted party and an uncorrupted party are shown (In the shown session i, t parties are corrupted)

corrupted appear on the left; (3) all the Com-and-Guess Stags where the sender is corrupted appear on
the right. As long as we recast the schedule in this way, the “simulation soundness” of the Com-and-Guess
Stags will allow a simulator to learn a trapdoor for each Com-and-Guess Stags on the left, while ensuring
that A that cannot learn any trapdoor from any Com-and-Guess Stags on the right.

The current multi-party case is a little more complex than the two-party case, because even in a fixed
session, there are n parties and there are two Com-and-Guess Stags between each pair of parties with the
reversed roles of sender and receiver. Thus, there are totally 2·

(
n
2

)
Com-and-Guess Stags in a single session.

The key observation here is that we only need to focus on the Com-and-Guess Stags happen between a
corrupted party and an uncorrupted party. Assume that in session i, t parties are corrupted. Then, there will
be exactly t · (n− t) Com-and-Guess Stags where the receiver is corrupted and t · (n− t) Com-and-Guess
Stags where the sender is corrupted. We call these 2 · t · (n − t) Com-and-Guess Stags “effective”. The
remaining 2 ·

(
n
2

)
−2 · t ·(n− t) Com-and-Guess Stags must happen either between two uncorrupted parties

or two corrupted parties, and we do not need to consider them when recasting the schedule. Then, we can
recast the schedule into the pattern shown in Fig. 4, where only the effective Com-and-Guess Stags will
appear on the left or right side.

Note that Fig. 4 is almost identical to (the recast) schedule of the Q-concurrent two-party setting (i.e.,
Fig. 3). The only difference is, in Fig. 3, there are exactly Q Com-and-Guess Stags on the the left (and
right) side where each session contributes exactly one Com-and-Guess Stag on each side. However, in
Fig. 4, each session will contribute t · (n− t) Com-and-Guess Stag on the left, and t · (n− t) Com-and-
Guess Stag on the right. But our proof will still go through because we modified the parameters: In Prot. 7,
we change ℓgad from 120Q7λ to 120Q̂7λ with Q̂ := n2Q. This is exactly to reconcile the fact that each session
in Fig. 3 will contribute more than one (but less than n2, since t · (n− t) < n2) Com-and-Guess Stag on
each side.

Again, there are other stages apart from the Com-and-Guess Stages in Prot. 7. They can be put on
either side in Fig. 4 and it will not affect our proof (roughly, that is because they have only constant rounds
for each session). Similar as in the two-party setting, we choose to put all these stages on the left.

We now formally describe the recast schedule. For all i ∈ [Q], let Corrupt(i) be a subset of [n] that P
(i)
u is

corrupted iff u ∈ Corrupt(i), and let Honest(i) := [n] \Corrupt(i). We first determine the messages that appear
on the right. The right interaction consists of the following messages:

– For all session i ∈ [Q], the Stage 1 messages between P
(i)
u and P

(i)
v , where P

(i)
u with u ∈ Corrupt(i) is the

sender and P
(i)
v with v ∈ Honest(i) is the receiver.
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All other stages will be put on the left. That is, the left interaction consists of the following messages

– For all session i ∈ [Q], the Stage 1 messages between P
(i)
u and P

(i)
v , where P

(i)
u with u ∈ Honest(i) is the

sender and P
(i)
v with v ∈ Corrupt(i) is the receiver.

– For all session i ∈ [Q], all other stages (i.e., except for Stage 1) of session i.

This recast MIM schedule is depicted in Fig. 4.

Block Rewindings. With the recast schedule shown in Fig. 4, the remaining proof is identical to that
for the two-party case (shown in Sec. 5.2). The only difference is that when we divide the messages into
equal-size blocks, we only consider the effective messages (shown on the left and right sides in Sec. 5.2), and
ignores the messages exchanged among uncorrupted parties (or among corrupted parties).

In more details, let T denote the total number of these effective messages. We will again partition these
T messages (as shown in Fig. 3) into L := 24Q̂6λ equal-size blocks {B1, . . . , BL}. That is, block B1 contains
the first T

L
messages, block B2 contains the next T

L
messages, and so on (messages are ordered according to

their order of appearing in the execution, skipping the messages that are not effective).
Then, we define a similar sequence of hybrids as in Sec. 5.2, to perform the following block-rewinding

simulation:

1. In the hybrids indexed by j ∈ [L], we perform Watrous rewindings for the first (j−1) blocks and monitor
the execution of messages in block j. If there is at least one a fully nested left gadget36 in block Bj , the
hybrid pick one of these fully nested left gadget and rewind the whole block Bj iff this gadget does not
match; Otherwise, a “dummy rewinding” is performed for this block with probability 1

2
.

This is the counterpart step of the G0,6 in the two-party case (defined on Page 40).

2. If all the left Com-and-Guess Stages of some session i completes in block Bj (note that the broadcast

SBComs to r
(i)
u ’s in Fig. 4 signals the completion of all Com-and-Guess Stages of session i), it means

the hybrid learned a trapdoor from each of these Com-and-Guess Stages of session i. This can be
proven following the same argument as in the tow-party setting (i.e., Sec. 5.3) together with our new

parameters ℓgad = 120Q̂7λ and L = 24Q̂6λ where Q̂ := n2Q.
The hybrid then use the extracted trapdoor to “cheat” in his WI, SFE, and SBCom to ru one-by-one,
so that it effectively enforces the coin-flipping result to the one from the ideal functionality. Meanwhile,
because of the invariant condition (which can be defined and proven using the same technique as in the
two-party setting), A cannot cheat. These are the counterpart steps of the Gj,1 to Gj,5 in the two-party
case (on Pages 41 and 43).

3. After the above changes, we go to perform Watrous rewinding for the j-th block (this is the counterpart
step of the Gj,6 in the two-party case (on Page 44)), and then enter the next iteration of hybrids to deal
with the (j + 1)-th block.

Using the same arguments as in Sec. 5.2, we can prove the view indistinguishability and invariant condition
in all these hybrids, which further implies the security of this multi-party coin-flipping protocol in the Q-
concurrent setting. Since the same proof has been used earlier for our ZK arguments, two-party coin-flipping
protocols, and PQ-2PCC and 2PQC, we believe the reader is already familiar with it. So, the details are
omitted.

7.3 Bounded-Concurrent PQ-MPCC and MPQC

Given the bounded-concurrent multi-party coin-flipping protocol, we can build bounded-concurrent MPC for
both classical and quantum functionality following the same template as in the two-party setting. That is,
we take a constant-round, straight-line simulatable PQ-MPQC protocol Πmpqc (or a MPCC protocol Πmpcc

for quantum functionalities) in the CRS model as the base protocol. We then compile this base protocol into
a bounded-concurrent protocol in the following way: (1) all parties first run the multi-party coin-flipping
protocol we built above to generate a CRS; (2) they then execute the base protocol (Πmpqc or Πmpcc) using
the generated CRS. Such a Πmpqc is known from the quantum hardness of LWE [BCKM21a]; Such a Πmpcc

is also known from the quantum hardness of LWE (e.g., [PVW08, GS18]).

36 Here, “left gadget” means a gadget from some Com-and-Guess Stage appearing on the left side in Fig. 4.
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We present the construction in Prot. 8. Similar as Prot. 6, we present the protocols for both classical and
quantum functionalities at one stroke.

Protocol 8: Bounded-Concurrent MPQC (and PQ-MPCC)

Let n(λ) be a polynomial of the security parameter λ. Let F denote a quantum (resp. classical) functionality
that n parties want to jointly evaluate. Let Q(λ) be a polynomial of λ, denoting the maximum number
of concurrent sessions. Party Pu takes as input λ and a (potentially quantum) input xu. All pairs of two
parties Pu and Pv are associated with an unique ID idu,v ∈ {0, 1}λ for the communication between them.

– Stages 1-5: The n parties execute an instance of the bounded-concurrent multi-party coin-flipping
protocol shown in Prot. 7. At the end of this phase, all parties learn the same output crs.

Comment. We denote this phase as Stages 1-5 because it is an execution of Prot. 7 which has five
stages.

– Stage 6: The n parties execute the constant-round MPQC protocol Πmpqc (resp. PQ-MPCC protocol
Πmpcc for the classical functionality) to compute the functionality F . Note that this protocol is in the
CRS model; The parties use the crs obtained above as the CRS.

To prove the security of Prot. 8 in the Q-concurrent setting, notice that this protocol is almost identical
to our multi-party coin-flipping protocol (i.e., Prot. 7), except that there are extra constant rounds (i.e.,
the Πmpcc or Πmpqc messages) appended at the end of each session. These extra rounds can be treated as a
new constant-round component whose security proof is in straight-line (assuming the trapdoor of the CRS
is available to the simulator S2, which is true due to the security of the multi-party coin-flipping protocol
executed to generate the CRS). Therefore, the security of Prot. 8 can be shown following exactly the same
techniques, where we will deal with these extra Πmpcc (or Πmpqc) messages in the same manner as we deal
with the WI arguments (or the commitment or SFE) in the security of our multi-party coin-flipping protocol
in Sec. 7.1. Since the same proof has appeared several times before (for our ZK arguments, two-party coin-
flipping protocols, and PQ-2PCC and 2PQC), we omit the details.

8 Impossibility of (Unbounded) Concurrent 2PQC

In this section, we show that there exists a functionality for which realizing an unbounded concurrent 2PQC
is impossible, even with quantum communication. We start by recalling a few useful building blocks (in
Sec. 8.1 to 8.3) that will be instrumental to prove our theorem (in Sec. 8.4 and 8.5).

8.1 Quantum Teleportation

We briefly recall the quantum teleportation [BBC+93] procedure, which is a protocol between Alice and
Bob, sharing the maximally entangled state

e =
|00⟩+ |11⟩√

2
,

where Alice wants to send a state ρ to Bob. Alice measures her registers in the{
|00⟩+ |11⟩√

2
,
|00⟩ − |11⟩√

2
,
|01⟩+ |10⟩√

2
,
|01⟩ − |10⟩√

2

}
basis and returns the bits (x, z), denoting the outcome of the measurement, to Bob. Using this information,
Bob can apply the map Xx, Zz to his local state to recover ρ. For the purpose of this work, it suffices to
use the fact that, for all states ρ (for convenience, we only describe the experiment for single-qubit states),
the following two experiments are identical, from the perspective of Bob. The first experiment proceeds as
follows.

– Alice sends one qubit of the state e to Bob.

– Alice teleports ρ using the above procedure, and sends to Bob the output of the teleportation measurement.
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Whereas the second experiment is defined below.

– Alice samples two random bits (x, z) and sends XxZzρ to Bob.

– Alice returns (x, z) to Bob.

The fact that these two experiments are identical follows from the fact that, from Bob’s perspective, the
state sent in the first step is maximally mixed in both experiments.

8.2 Simulation Secure Quantum Message Authentication

We recall the notion of quantum message authentication, and in particular the definition with simulation
security from Broadbent and Wainewright [BW16]. In the same work, the authors show that the Clifford
code and the trap code satisfy this strong notion of security.

Definition 17 (Quantum MAC). A quantum message authentication code (MAC) consists of a polyno-
mial size set of encoding and decoding channels{

Encode
(k)
M→C,Decode

(k)
C→MF,

}
k∈K(λ)

where K(λ) is the set of all possible keys, M is the message register, C is the codeword register, and F is a
flag register spanned by two orthogonal states |acc⟩⟨acc| and |rej⟩⟨rej|. We require the following properties.

– Correctness: For all λ ∈ N, all k ∈ K(λ), and all ρM it holds that(
Decode

(k)
C→MF ◦ Encode

(k)
M→C

)
(ρM) = ρM ⊗ |acc⟩⟨acc| .

– Simulation Security: For a fixed key k, let us define the real channel as

Real
(k)
MR→MRF : ρMR 7→

(
Decode

(k)
C→MF ⊗ IR

)(
AMR

(
Encode

(k)
M→C ⊗ IR

)
(ρMR)A†MR

)
where A is an adversarial unitary and R is some auxiliary input register. Similarly, let us define the ideal
channel as

IdealMR→MRF : ρMR 7→
(
IM ⊗ S(acc)

R

)
ρMR ⊗ |acc⟩⟨acc|+ trM

((
IM ⊗ S(rej)

R

)
ρMR

)
⊗Ω ⊗ |rej⟩⟨rej|

where Ω is some fixed state and S(acc)
R and S(rej)

R are two completely-positive (CP) maps acting on R such

that S(acc)
R + S(rej)

R = I.
We say that a quantum MAC is simulation-secure if for all λ ∈ N, all states ρMR, all polynomial-time

unitaries A, there exists a pair of polynomial-time CP maps (S(acc)
R ,S(rej)

R ) such that the trace distance
between the following states

1

|K(λ)|
∑

k∈K(λ)

Real
(k)
MR→MRF(ρMR) ≈ IdealMR→MRF(ρMR)

is negligible in λ.

8.3 Adaptively Secure Quantum Garbled Circuits

For the impossibility result, we need a notion of quantum garbled circuits that is adaptively secure. We show
that such a quantum garbling scheme can be obtained by slightly modifying the construction from [BY22].
We first recall the notion of quantum garbled circuits [BY22]. As will become clear in our proof, we need the
quantum garbling scheme to enjoy decomposable input encoding, i.e., each of the n input qubits is encoded
individually. In the following Def. 18, we define explicitly the decomposable variant. The construction from
[BY22], which only assumes the existence of post-quantum OWFs, satisfies Def. 18.
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Definition 18 (Quantum Garbled Circuits). A garbling scheme for Clifford plus measurement quantum
circuits consists of three procedures (QGarble,QGEncode,QGEval,QGSim) with the following syntax.

– QGarble(1λ, Q, e0,1, . . . , e0,n, r): A QPT procedure that takes as input the security parameter 1λ, a quan-
tum circuit Q, n registers containing half of a maximally entangled state e0,1, . . . , e0,n, and some local

randomness r, and returns a quantum garbled circuits Q̃, along with n classical strings r1, . . . , rn.

– QGEncode(i, ri, e1,i,xi): A QPT procedure that takes as input and index i ∈ [n], a classical string ri, a

register containing half of a maxiamally enangled state e1,i, and a qubit xi and returns an encoding Ẽi.

– QGEval(Ẽ1, . . . , Ẽn, Q̃): A QPT procedure that takes as input a garbled input Ẽ1, . . . , Ẽn and a garbled

circuit Q̃ and returns an output state ϕ.

– QGSim(1λ, par,ϕ): A QPT procedure that takes as input the security parameter 1λ, parameters par for
a quantum circuit, and an output state ϕ, and outputs a simulated garbled input and garbled circuit
(Ẽ1, . . . , Ẽn, Q̃).

We require the following properties.

– Correctness: For all λ ∈ N, all circuits Q with parameters par, all states ψ along with a (possibly
entangled) auxiliary input z, it holds that the following two states are statistically close:{

z,QGEval(Ẽ1, . . . , Ẽn, Q̃)
}

s
≈ {z, Q(ψ)}

where (Q̃, r1, . . . , rn) ← QGarble(1λ, Q, e0,1, . . . , e0,n, r), Ẽi ← QGEncode(i, ri, e1,i,ψi) for all i ∈ [n], and
e0,i and e1,i (for each i ∈ [n]) are the two halves of a maximally entangled state.

– (Selective) Security: For all λ ∈ N, all circuits Q with parameters par, all states ψ along with a (possibly
entangled) auxiliary input z, it holds that the following two states are computationally close:{

z, Ẽ1, . . . , Ẽn, Q̃
}

c
≈ {z,QGSim(1λ, par, Q(ψ))}.

where (Q̃, r1, . . . , rn) ← QGarble(1λ, Q, e0,1, . . . , e0,n, r), Ẽi ← QGEncode(i, ri, e1,i,ψi), and e0,i and e1,i
are the two halves of a maximally entangled state.

Adaptive Security. In this work, we are going to require the quantum garbled circuit to satisfy the stronger
notion of adaptive simulation security, where the distinguisher can choose the input state ψ adaptively,
possibly depending on the garbled circuit Q̃. In the following, we provide a generic transformation that turns
any selectively secure garbling scheme into an adaptively secure one.

– Garbling: Sample n EPR pairs {(e0,i, e1,i)}i∈[n]. Run the selectively secure algorithm (Q̃, r1, . . . , rn) ←
QGarble(1λ, Q, e0,1, . . . , e0,n, r). Store (r1, . . . , rn) for the use of the input encoding procedure, and return

R̃ = X x̃Z z̃Q̃

where x̃ ∈ {0, 1}m and z̃ ∈ {0, 1}m are uniformly sampled bit-strings, for an m-qubit state Q̃, which are
also kept as part of the input encoding.

– Input Encoding: Compute Ẽi ← QGEncode(i, ri, e1,i,xi) for all i ∈ [n] and, in addition, return x̃, z̃.

– Evaluation: Compute Q̃ = X x̃Z z̃R̃ and run QGEval(Q̃, Ẽ1, . . . , Ẽn).

– Simulation: Sample m EPR pairs {(r0,i, r1,i)}i∈[m]. . Set R̃ to be a collection of m registers, each con-

taining the qubit r0,i. Sent R̃ to the distinguisher as the (simulated) garbled circuit. Upon receiving the
output state ϕ, run the simulator of the selectively secure scheme

(Ẽ1, . . . , Ẽn, Q̃)← QGSim(1λ, par,ϕ)

For each qubit of Q̃, apply a teleportation measurement together with r1,i, and denote by xi, zi the output

bits of the measurement. Return x̃ = (x1, . . . , xm), z̃ = (z1, . . . , zm), along with Ẽ1, . . . , Ẽn.
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It is easy to see that the scheme is correct. To see why the scheme satisfies adaptive security, it suffices to
observe that, from the point of view of the distinguisher, the state R̃ is the maximally mixed state in both the
real and the simulated distribution. Therefore, the distribution induced by the teleportation measurement
is identical to the real one (see also Sec. 8.1). Indistinguishability then follows from the indistinguishability
of the selectively secure garbling scheme.

8.4 Oracle Separation

Our impossibility result will follow closely the outline of [BPS06], although with some non-trivial modification
to handle the quantum nature of the protocol. We will start with the following warm-up result in an oracular
model, which will be a useful intermediate step for our final result.

Lemma 21. Let f be a one-way function, and let Rf be the following NP-relation

Rf = {(x,w) : f(w) = x}.

Let ΠZK be a stand-alone zero-knowledge proof of knowledge for Rf with ℓ = ℓ(λ) prover messages. There
exists a functionality G, a distribution D, a function secret, and a polynomial-time adversary A such that:

– In a concurrent execution scheduled by A of one copy of ΠZK (with A playing the role of the verifier) and
ℓ ideals calls to G with A providing the second input and receiving the output, if the inputs to the honest
parties are chosen from d← D, then A learns secret(d) with probability one.

– In any execution of ℓ copies of the ideal calls to G and a copy of the ideal functionality FZK, with honest
inputs chosen from d ← D, any polynomial time adversary Ã will only output secret(d) with negligible
probability.

Proof. Let VerZKSZJ→SZ be the channel that computes the next message function of the verifier, where S is the
register storing the internal state of the verifier, Z is the register storing the message of the ZK protocol, and
J is the register storing the round counter. We define the two-party functionality G as follows.

– Sender Input: The keys (k1 . . . , kℓ−1) ∈ K(λ), the seeds (r2, . . . , rℓ) ∈ {0, 1}λ, a secret s ∈ {0, 1}λ, and a
basis state ρS.

– Receiver Input: A state ρZC, a round counter j, and a seed r̃j .

– The functionality computes its output as follows.

• If j = 1: Apply the map((
Encode

(k1)
S→C ⊗ IZ

)
◦ VerZKSZJ→SZ

)
(ρS ⊗ trC(ρZC)⊗ |1⟩⟨1|) 7→ ρCZ

and return the resulting state ρCZ to the adversary, along with r2.

• If 1 < j < ℓ: Check if r̃j = rj and return ⊥ if this is not the case. Apply the map(
Decode

(kj−1)
C→SF ⊗ IZ

)
(ρZC) 7→ ρSZF

and project the F register onto |acc⟩⟨acc|. Return ⊥ if the projection fails. Else denote by ρSZ the partial
trace on registers S and Z and compute the mapping((

Encode
(kj)
S→C ⊗ IZ

)
◦ VerZKSIJ→SZ

)
(ρSZ ⊗ |j⟩⟨j|) 7→ ρCZ.

Return the resulting state ρCZ to the adversary, along with rj+1.

• If j = ℓ: Check if r̃ℓ = rℓ and return ⊥ if this is not the case. Apply the map(
Decode

(kℓ−1)
C→SF ⊗ IZ

)
(ρZC) 7→ ρSZF
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and project the F register onto |acc⟩⟨acc|. Return ⊥ if the projection fails. Else denote by ρSZ the partial
trace on registers S and Z and compute the mapping

VerZKSZJ→SZ (ρSZ ⊗ |ℓ⟩⟨ℓ|) 7→ ρSZ.

Check if the output state corresponds to an accepting state of the verifier and return s if this is the
case, otherwise return ⊥.

First, we argue that an attacker with a concurrent scheduling of ΠZK can recover the secret s with probability
1. This is because the attacker can simply forward the messages of the prover to the verifier, along with the
register C while keeping it untouched. Since the (honest) prover is assumed to succeed with probability 1,
then so does the attacker.

Second, we need to show that any attacker Ã interacting with the ideal functionality, cannot extract the
secret s, except with negligible probability. Our first step is to establish that the ℓ queries of the adversary
must correspond to a straight-line execution, i.e., they must be on input the counter 1, . . . , ℓ in increasing
order. Consider the ℓ-th query: We claim that, with all but negligible probability, it must be the case that
either the output is ⊥ (in which case the adversary does not learn s) or that the adversary must have
previously queried the oracle on counter ℓ − 1. This is because the adversary needs to guess the value of
rℓ to receive a non-⊥ output, which is only sent to the attacker on a query on input ℓ − 1. Applying this
argument recursively, and using the fact that the adversary has at most ℓ queries at their disposal, we obtain
the desired implication. The same argument also shows that all queries of the adversary must be non-⊥.

Next, we show that Ã must be computing a valid zero-knowledge proof. Without loss of generality we
model the adversary’s next message function as a unitary U acting on some internal register A, on the message
register Z, and on the codeword register C. Let ρSZA be the state consisting of the output by one application
of the VerZKSZJ→SZ channel during the j-th round, along with the current internal state of the attacker. Then,
by construction, the state undergoes the following evolution before being fed again into the verifier channel(

Decode
(kj)
C→SF ⊗ IZA

)(
U
(
Encode

(kj)
S→C ⊗ IZA

)
(ρSZA)U

†
)
.

By Def. 17 this state is negligibly close in trace distance to the state produced by the simulator acting only
on registers Z⊗ A. Since we are post-selecting on the decoding channel being accepting, we obtain that

trF

((
Decode

(kj)
C→SF ⊗ IZA

)(
U
(
Encode

(kj)
S→C ⊗ IZA

)
(ρSZA)U

†
))
≈

(
IS ⊗ S(acc)

ZA

)
(ρSZA)

since the key kj is uniformly sampled and used only once. Repeating this argument for each round, we
can therefore obtain an efficient algorithm that acts only on registers Z ⊗ A and convinces the verifier with
approximately the same probability as A recovers s. Note that this is a valid prover for the zero-knowledge
protocol. This means that we can run the extractor on this prover to output the pre-image of x and thus
break the one-wayness of f .

8.5 Impossibility of Concurrent 2PQC

Here we state and prove the main theorem of this section.

Theorem 17. Assume the existence of post-quantum OWFs. Then there exists a functionality F such that,
for any two-party protocol Π to compute F there exists a polynomial t = t(λ), a distribution D, a function
secret, and a polynomial-time adversary A such that:

– In a concurrent execution scheduled by A of t copies of Π with parties receiving inputs from the chosen
from d← D, then A learns secret(d) with probability negligibly close to one.

– In an ideal execution where the parties get access to t copies of the ideal functionality F and receive inputs
chosen from d ← D, then any polynomial time adversary Ã will only output secret(d) with negligible
probability.

Proof. Let f be a post-quantum OWF. We provide the description of the ideal functionality F below.
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– Sender Input: A flag j ∈ {0, 1, 2, 3}, a statement x (which is supposed to be an image of f), a witness
w (which is supposed to be the pre-image satisfying f(w) = x), a string r, an index i, a state e, two

bit-strings ã and b̃, and two bits c and d.

– Receiver Input: A flag j′ ∈ {0, 1, 2, 3}, a statement x, and a qubit x.

– Upon receiving the input from both parties, the functionality computes its output to the Receiver (while
the sender does not receive anything) as follows:

• If j = j′ = 0: Check if f(w) = x and return 1 if this is the case; Return 0 otherwise.

• If j = j′ = 1: Compute X ãZ b̃QGEncode(i, r, e,x).

• If j = j′ = 2: Return (ã, b̃).

• If j = j′ = 3: Return (c, d).

• If j ̸= j′: Return ⊥.

Let Π be a protocol to implement F , we can derive protocols ΠZK and ΠEncode for the zero knowledge and
the input encoding functions, respectively. Let ℓ = ℓ(λ) be the number of rounds needed for ΠZK and let G
be the (quantum) functionality as defined in the proof of Lem. 21. We assume that the adversary is given
as input ℓ copies of the garbled circuits for the function computed by G (where the sender’s inputs to the G
functionality, which are all classical, are hardwired to the function description) and we set t = (m+2n) ·ℓ+1,
where m is the the size (i.e., the number of qubits) of each garbled circuit.

Recall that each garbled circuit corresponds to a state R̃. On the other hand, the sender of F is given
as input the registers e1,i and the strings ri, for all i ∈ [n], and the strings x̃ and z̃ corresponding to the
encoding information for each garbled circuit. For each of the ℓ iterations, we assume that the sender behaves
as follows. We only describe the inputs of the sender that influence the output, whereas for the other inputs
we assume that the sender sends something arbitrary. The following actions are performed in sequence:

– First, it sends all of the (i, ri, e1,i) to the functionality in sequence along with two random bit-strings
(ai, bi), setting j = 1.

– Then, it sends all of the (ai, bi), setting j = 2.

– Finally, it sends all bits (x̃i, z̃i) from the encoding in sequence, setting j = 3.

Given this protocol, we make the following claims.

– Claim: In the real world, there is an adversary that learns the secret with probability negligibly close to
one.

The attack is identical to the one describe in Lem. 21, where the attacker just forwards the prover messages to
the ideal functionality, except that it forwards them qubit-by-qubit to F , setting j = 1. Afterwards it queries
the functionality on input j = 2 and j = 3 for m queries, receiving the keys for the quantum one-time pad.
This allows it to retrieve the encoded input and evaluate each quantum garbled circuit. By the correctness
of the quantum garbling scheme, the output of this procedure is statistically close to the message of G, and
thus the attack succeeds with roughly the same probability.

– Claim: In the ideal world, no adversary can learn the secret with non-negligible probability.

We show this with a reduction to the same claim, except where the function implemented by G is queried
as an oracle, which was already proven in Lem. 21. First observe that the parties need to agree on the flag
j = j′ to obtain a non-⊥ output, and therefore we can assume without loss of generality that the attacker
queries the functionality in the correct order.

The reduction proceeds as follows: For every message of the adversary with flags j = j′ = 1, the reduction
returns the first register of a series of freshly sampled maximally entangled states (one for each qubit of the
encoding). The reduction stores the input qubit ψi sent be the adversary and, after n queries, it sends the
adjoint state ψ to the ideal functionality G. It receives the state ϕ as output and runs

(Ẽ1, . . . , Ẽn, Q̃)← QGSim(1λ, par,ϕ).
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For each encoding Ẽi, the reduction teleports it into the previously sampled maximally entangled state
and sends the teleportation measurements with flag j = j′ = 2. Then teleports also Q̃ into the view of
the adversary (same as done by the adaptive simulator) and sends the teleportation measurements with flag
j = j′ = 3. Note that, except for the fact that the garbled circuit is computed with a simulator, the reduction
perfectly simulates the view of the adversary. By the security of the garbling scheme, the distribution induced
by the reduction is computationally indistinguishable from the original one, and therefore any advantage of
the adversary carries over to the settings where G is queried as an oracle, except for a negligible factor. By
the proof of Lem. 21, we can therefore bound this to a negligible function.
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A An Alternative Construction of 1-1 Simulation Sound Gadget

Toward showing the alternative construction of the 1-1 simulation-sound gadget, we first establish a property
for general post-quantum non-malleable commitments in the following Lem. 22. This lemma considers a
QPT adversaryMλ(ρλ) that can be partitioned into two stagesMλ = (M1

λ,M2
λ). The first adversaryM1

λ

with auxiliary input ρλ participates in the MIM execution of a non-malleable commitment NMCom as in
the standard definition of non-malleability (see Sec. 3.2). At the end of the execution, M1

λ(ρλ) passes its
internal state to the second adversaryM2

λ. Additionally,M2
λ also learns the value m̃ committed in the right

interaction byM1
λ(ρλ) in the MIM execution of NMCom. The following Lem. 22 says that such anM2

λ with
the corresponding input cannot predict the message m (which is a single bit from {0, 1}) committed by the
left honest committer in the MIM execution whereM1

λ(ρλ) participates.

Lemma 22. Assume NMCom is post-quantum non-malleable commitment that is statistically-binding. Then,
for any two-stage QPT adversaryM = {(M1

λ,M2
λ), ρλ}λ∈N, it holds that∣∣∣∣Pr[NMPred(M1

λ,M2
λ, ρλ) = 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the probability is taken over the experiment NMPred(M1
λ,M2

λ, ρλ) defined in the following Expr. 1.

Experiment 1: Bit Prediction for Non-Malleable Commitments

1. Run an MIM execution of NMCom with M1
λ(ρλ) being the MIM adversary. That is, M1

λ(ρλ) simulta-
neously participates in two instances of the NMCom. In one instance (dubbed the left session), M1

λ(ρλ)
plays the role of the receiver, talking with an honest committer C who commits to a randomly sampled
single bit m ∈ {0, 1}; In the other instance (dubbed the right session), M1

λ(ρλ) plays the role of the
committer, talking to an honest receiver R. Let OUTM1

λ
be the final state of M1

λ(ρλ) at the end of this

MIM execution. Let m̃ denote the bit thatM1(ρλ) committed to in the right session (recall that NMCom
is statistically binding).

2. Invoke M2
λ on input (OUTM1

λ
, m̃). M2

λ(OUTM1
λ
, m̃) output a value m′.

3. Decision: This experiment outputs 1 if and only if m′ = m. That is, it outputs 1 if and only if M2
λ

successfully predicts the bit m committed by the left honest committer in the MIM execution in Step 1.

Proof. First, we remark that the execution of Expr. 1 is not efficient. In particular, there is no efficient way
to obtain the value m̃ that is required as the input to M2

λ . This makes Lem. 22 non-trivial. Otherwise (i.e.,
if Expr. 1 were efficient), Lem. 22 would follow straightforwardly from the computationally hiding property
of NMCom. Nevertheless, we show in the following that Lem. 22 can be reduced to the non-malleability of
NMCom, also in a rather straightforward manner.

To see that, notice that Step 1 of Expr. 1 is nothing but the MIM execution as we described when defining
(ordinary) non-malleability (see Sec. 3.2). Therefore, from the non-malleability of NMCom, we know that
no efficient distinguisher Dλ, on input (OUTM1

λ
, m̃), can tell if the value m committed by the left honest

committer is 0 or 1, except for with negligible probability. Then, it is not hard to see that Lem. 22 holds,
because otherwise, the machine M2

λ can be used as a distinguisher Dλ to break the non-malleability of
NMCom. Since this reduction is straightforward, we omit the details.

1-1 Simulation-Sound Gadget. We now present the alternative construction of the 1-1 simulation-sound
gadget (in Prot. 9) and prove its security based on Lem. 22.

Protocol 9: An Alternative 1-1 Simulation-Sound Gadget

This protocol is between a sender (dubbed S) and a receiver (dubbed R); Both of them take a string
id ∈ {0, 1}λ as the common input, denoting the ID associated with this execution.

1. S samples a
$←− {0, 1} and commits to it using NMCom, where S and R use id as the ID (or tag) for this

NMCom.
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2. R samples b
$←− {0, 1} and sends it to S.

The following lemma can be treated as the counterpart of Lem. 1 but w.r.t. Prot. 9. It shows that Prot. 9
enjoys the same 1-1 simulation soundness as Prot. 1.

Lemma 23. Let NMCom be a post-quantum non-malleable commitment that is both statically binding and
first-message binding (as we defined for Lem. 1). Assuming id ̸= ĩd, it holds that

Pr
T←MIM

[ã = b̃ | a = b] =
1

2
± negl(λ),

where we use the similar notation as in Lem. 1. That is, T ← MIM denotes the transcript resulted from the
MIM execution of Prot. 9, ã is the value committed in the right NMCom by A, b̃ is the value sent by R in
the right, and a and b are those on the left.

Proof. Similar as in the proof of Lem. 1, we again use the first message of the left NMCom as a pivot to
divide all possible schedules into two mutually exclusive and collectively exhaustive types:

– Type-1: They are the schedules where the right NMCom starts after (or in parallel with) the first messages
of the left NMCom.

– Type-2: They are the schedules where the right NMCom starts before the first message of the left NMCom.

We remark that Lem. 23 for Type-2 schedules follows from exactly the same argument (i.e., due to the
first-message binding property of NMCom) as in the proof of Lem. 1. In the following, we only need to focus
one Type-1 schedules.

First, it follows from the computational-hiding property of NMCom that

Pr
T←MIM

[a = b] =
1

2
± negl(λ). (43)

We also claim that

Pr
T←MIM

[ã = b̃] =
1

2
. (44)

This follows from the fact that the right honest receiver’s b̃ is sampled independently ofM’s bit ã.
Then, the following holds (we omit the “T ← MIM” in the subscript for simplicity):

Pr[a = b | ã = b̃] =
Pr[ã = b̃ | a = b] · Pr[a = b]

Pr[ã = b̃]
(45)

= (1± negl(λ)) · Pr[ã = b̃ | a = b] (46)

= Pr[ã = b̃ | a = b]± negl(λ), (47)

where Eq. (46) follows from Eq. (43) and (44).
Now, assume for contradiction that Lem. 23 does not hold. That is, there exist an adversaryMλ(ρλ) and

a polynomial poly(λ) such that for infinitely many λ ∈ N it holds that∣∣∣∣ Pr
T←MIM

[ã = b̃ | a = b]− 1

2

∣∣∣∣ ≥ 1

poly(λ)
. (48)

Inequality (48) together with Eq. (47) implies∣∣∣∣ Pr
T←MIM

[a = b | ã = b̃]− 1

2

∣∣∣∣ ≥ 1

poly(λ)
± negl(λ). (49)

Then, we can use this adversaryMλ(ρλ) to break the security property of NMCom as specified by Lem. 22.
To do that, we construct a two-state adversary as follows. LetMλ’s ρλ be the ρλ as required by Expr. 1; We
define the M1

λ(ρλ) as required by Expr. 1 to be the machine Mλ(ρλ) in the MIM execution of Prot. 9 but
truncated right after the right NMCom is sent. Let ϕλ denote the current state ofMλ(ρλ) at this point. Note
that this ϕλ will be the OUTM1

λ
that will be passed as an input to theM2

λ (that we are about to construct).

We construct the requiredM2
λ as follows:
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– On input the residual state ϕλ and ã (i.e., the value committed in the right-side NMCom by theM1
λ(ρλ)

defined about),M2
λ continues the execution of Prot. 9 from the state ϕλ. Recall that this execution was

truncated right after the right NMCom is sent. Therefore, if M2
λ resumes the execution, then the MIM

Mλ is expecting a value b̃ sent by the right receiver R. At this point,M2
λ sends b̃ := ã, i.e., it uses the ã

from its second input as the b̃ from the right honest receiver.

– Output of M2
λ: it outputs the bit b sent by the (resumed) MIM adversaryMλ in the left execution.

It is then straightforward to see that the experiment Expr. 1 executed using the (M1
λ,M2

λ, ρλ) defined above

is identical to the 1-1 MIM execution of Prot. 9 conditioned on ã = b̃, withMλ(ρλ) being the MIM adversary.
Thus, the LHS of Inequality (49) is exactly the probability that theM2

λ defined above correctly predicts the
bit a committed to be the left honest committer in Expr. 1. Therefore, Inequality (49) contradicts Lem. 22,
finishing the proof of the current Lem. 23.

B Proving Claim 5

Intuition. The proof for this claim is similar to [ACL21], where the authors also need to prove that the
trapdoor witness is available, i.e., there are enough “slots” (our gadgets in their term) are matching, when
the hybrid needs to perform WI. In the following, we use Σ ⊆ [Q] to denote the set of indices of the left
sessions whose WI starts in block Bj .

Similar to [ACL21], we divide all the gadgets of the left sessions into two types:

– Type 1: Matching by Rigging. They are left gadgets that match because of the Watrous rewinding
performed over blocks {B1, . . . , Bj−1} (recall that in hybrid H ′j,1, the first j−1 blocks are performed using
Watrous rewinding). For any left session i ∈ Σ, we denote the total number of such gadgets in the i-th left
session by Rigi. By our choice of parameters (i.e., L, ℓgad, etc.), we will show via a combinatorial argument
that Rigi ≥ 3Q4λ except for negligible probability.

– Type 2: Matching by Luck. They are left gadgets that are not “picked” by the Watrous rewinding
procedure, but just happen to match. For any left session i ∈ Σ, we denote the total number of such
gadgets by Lucki. Recall that in our protocol, for the k-th gadget of the i-th left session, the ai,k in Step 2b
is sampled uniformly at random, independent of the bi,k committed by A. This means that each gadget of
the i-th left session matches with probability exactly 1/2, if they are not Type-1. From the first bullet,
we know the total number of Type-1 gadgets in the i-th left session is:37

ℓgad − Rigi = ℓgad − 3Q4λ = 120Q7λ− 3Q4λ.

Therefore, the expectation of Lucki is 60Q7λ − 3
2
Q4λ. It then follows from Chernoff bound that Lucki ≥

60Q7λ− 2Q4λ except for negligible probability.

It then follows from the above bounds for Rigi and Lucki (and an application of the union bound) that

Pr
[
∃i ∈ Σ s.t. Rigi + Lucki < 60Q7λ+Q4λ

]
≤ negl(λ),

which means that for if the WI of a left session starts in block Bj , the total number of matching gadgets
for that session must exceed the threshold Th = 60Q7λ+Q4λ (except for negligible probability). Thus, the
trapdoor witness must be available for the WI of that session.

In the sequel, we formalize the above intuition. Recall that we need to prove them in the current hybrid
H ′j,1. However, since the first j−1 blocks in H ′j,1 involves Watrous rewinding, it is not a good place to derive
bounds for Rigi and Lucki. Thus, we will first show a claim (in Sec. B.1) which allows us to define (the
counterparts of) Rigi and Lucki in the real MIM execution (i.e., hybrid REAL); This claim will tell us that
the bounds derived in REAL serve just as good as those in H ′j,1, which will eventually allow us to finish the
above argument.

37 Note that 3Q4λ is a lower bound for Rigi. Thus, our counting here is conservative in the sense that we may
potentially count Type-1 gadgets (which matches for sure because of Watrous rewinding) as Type-2 gadgets
(which matches with probability 1/2), but not the other way around.

67



B.1 Moving to REAL

The current hybrid is H ′j,1. We write this j as j∗ in this proof to emphasize this index and to avoid potential
index conflicts.

As mentioned at the beginning, we will formally define the number Rigi and Lucki in hybrid H ′j∗,1 (which
is the hybrid we care) and their counterparts in REAL (which will facilitate our computation). Due to some
technical reasons (that will become clear later), we will not define Rigi and Lucki directly; Instead, we first
define some intermediate random variables Σ, Xi,j , Θi, and Zi,k (in Algo. B.1), and then use them to define
Rigi and Lucki.

Algorithm B.1: Random Variables in H ′
j∗,1

Execute hybrid H ′j∗,1. This yields a schedule S. Let {B1, . . . , BL} be the partition associated with S.
Recall that the first j∗− 1 blocks in H ′j∗,1 are performed using Watrous rewinding, where in each block Bj

(j ≤ j∗ − 1), it is possible that a non-matching left gadget is picked by the Watrous rewinding procedure
(to make it match).

Random Variables: We define some random variables w.r.t. the execution of Hj∗,1:

– Let Σ denote the subset of [Q] such that Σ is the collection of the indices of left sessions whose WI starts
in block Bj∗ .

– For any i ∈ Σ and any j ∈ [j∗ − 1], let Xi,j be a binary random variable defined to be 1 iff in block Bj ,
a gadget of the i-th left session is picked by Watrous rewinding.

– For any i ∈ Σ, let Θi denote the indices of the first 3Q4λ gadgets that are picked for Watrous rewinding
in the i-th left session. Note that if less than 3Q4λ gadgets of the i-th left session are picked for Watrous
rewinding, Θi will contain all the gadgets that are picked for Watrous rewinding in this session; In that
case, |Θi| is strictly less than 3Q4λ.

– For any i ∈ Σ and k ∈ [ℓgad] \Θi, let Zi,k be a binary random variable defined as follows:

• (Type-1 k): If the k-th gadget of the i-th left session is picked for Watrous rewinding, let Zi,k be a
Bernoulli random variable with p = 1

2
.

Comment: This corresponds to the case where this k-th gadget is picked for Watrous rewinding in the
i-th left session, but it is not collected in Θi, because Θi already contains 3Q4λ elements.

• (Type-2 k): Otherwise, let Zi,k = 1 iff the k-th gadget of the i-th left session matches. That is, the
bi,k committed in the k-th SBCom is equal to the ai,k committed in the k-th ENMC in the i-th left
session .

Comment: This corresponds to the case where this k-th gadget in the i-th left session is not picked
picked for Watrous rewinding, but it simply matches by luck (when Zi,k = 1).

We now define Rigi and Lucki using the Σ, Xi,j , Θi, and Zi,k defined in Algo. B.1. We let

∀i ∈ Σ, Rigi :=

{
3Q4λ if

∑
j∈[j∗−1]Xi,j ≥ 3Q4λ∑

j∈[j∗−1]Xi,j if
∑

j∈[j∗−1]Xi,j < 3Q4λ
, (50)

and let
∀i ∈ Σ, Lucki :=

∑
k∈[ℓgad]\Θi

Zi,k. (51)

Intuitively, Rigi is the number of gadgets (of the i-th left session) that are made match by Watrous rewinding,
and Lucki is the number of gadgets (of the i-th left session) that are made match by luck. But our definition
actually identifies some matching-by-rigging gadgets as matching-by-luck gadgets, i.e., the k-th left gadget
where k is Type-2 (recall the definition of Type-2 from Algo. B.1). Notice that such a counting method
is conservative (see also Footnote 37) in the sense that Rigi + Lucki serves as a lower bound for the total
number of matching gadgets of the i-th left session in H ′j∗,1. That is,

∀i ∈ Σ, Rigi + Lucki ≤ Total number of matching gadgets of the i-th left session. (52)
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We now define the counterparts of Σ, Xi,j , Θi, and Zi,k in REAL.

Algorithm B.2: Procedure Pick regarding REAL

Execute the REAL game. This yields a schedule S. Let {B1, . . . , BL} be the partition associated with S.
For this S, consider the following sub-procedure:

Procedure SubPick(S). Iterate for j = 1 to j∗ − 1:

1. Let Tj ⊆ [Q] be the indices of the left sessions that have at least one fully nested gadget in Bj ; It is
possible that Tj = ∅. In that case, directly move onto the next iteration;

2. Sample i
$←− Tj uniformly at random;

3. Sample uniformly at random a gadget of session i that is fully nested in Bj .

Random Variables: We define some random variables w.r.t. the above random procedure:

– Let Σ′ denote the subset of [Q] such that Σ′ is the collection of the indices of left sessions whose WI
starts in block Bj∗ .

– For any i ∈ Σ′ and any j ∈ [j∗ − 1], let X ′i,j be a binary random variable defined to be 1 iff in block Bj ,
a gadget of the i-th left session is sampled by the above procedure.

– For any i ∈ Σ′, let Θ′i denote the indices of the first 3Q4λ gadgets that are sampled by the above
procedure in the i-th left session.

– For any i ∈ Σ′ and any k ∈ [ℓgad] \Θ′i, let Z ′i,k be a binary random variable defined as follows:

• (Type-1 k): If this k-th gadget of the i-th left session is picked by the above procedure, let Z ′i,k be a

Bernoulli random variable with p = 1
2
.

• (Type-2 k): Otherwise, let Z ′i,k = 1 iff the k-th gadget of the i-th left session matches.

On the Probability Space. We remark that in the proof, we may use of one the following two different
probability spaces for the above random variables:

1. They can be defined as a result from the whole random procedure Pick, i.e., executing REAL to sample
a schedule S and then executing SubPick(S). In this case, both the sampling of S and the execution of
SubPick(S) contribute randomness.

2. They can also be defined as a result from SubPick(S) for a fixed S. In this case, the sampling of S
does not contribute any randomness; The randomness used to run SubPick(S) constitutes the whole
probability space.

When using these random variables, we will state explicitly which probability space to use.

Similarly, we define

∀i ∈ Σ′, Rig′i :=

{
3Q4λ if

∑
j∈[j∗−1]X

′
i,j ≥ 3Q4λ∑

j∈[j∗−1]X
′
i,j if

∑
j∈[j∗−1]X

′
i,j < 3Q4λ

, (53)

and
∀i ∈ Σ′, Luck′i :=

∑
k∈[ℓgad]\Θ′

i

Z ′i,k, (54)

where the probability is taken over the whole random procedure Pick shown by Algo. B.2.
Next, we prove a claim saying that Rig′i + Luck′i can be used as a good estimation for Rigi + Lucki.

Claim 18. For any number C, it holds that

Pr
[
∃i ∈ Σ s.t. Rigi + Lucki < C

]
= Pr

[
∃i ∈ Σ′ s.t. Rig′i + Luck′i < C

]
± negl(λ),

where the LHS probability is taken over the execution of H ′j∗,1 shown in Algo. B.1 and the RHS probability
is taken over the whole random procedure Pick shown in Algo. B.2.
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Proof. It suffices to prove the following stronger claim:(
Σ, {Xi,j}i∈Σ,j∈[j∗−1], {Θi}i∈Σ , {Zi,k}i∈Σ,k∈[ℓgad]\Θi

) c
≈

(
Σ′, {X ′i,j}i∈Σ′,j∈[j∗−1], {Θ′i}i∈Σ′ , {Z ′i,k}i∈Σ′,k∈[ℓgad]\Θ′

i

)
,

(55)

where the LHS random variables are defined w.r.t. the execution of H ′j∗,1 shown in Algo. B.1 and the RHS
random variables are defined w.r.t. the random procedure Pick shown in Algo. B.2.

We first show the following indistinguishability:(
Σ, {Xi,j}i∈Σ,j∈[j∗−1], {Θi}i∈Σ

) c
≈

(
Σ′, {X ′i,j}i∈Σ′,j∈[j∗−1], {Θ′i}i∈Σ′

)
, (56)

Previously, we proved that the output of REAL and H ′j∗,2 are computationally close. Particularly, it
implies that the distributions of schedule S (i.e., how messages are arranged) yielded by them are compu-
tationally close. Moreover, notice that (Σ′, {X ′i,j}, {Θ′i}) can be efficiently derived from the schedule S (i.e.,
how messages are ordered) of REAL; Similarly, (Σ, {Xi,j}, {Θi}) can be efficiently derived from the schedule
S of H ′j∗,1. Therefore, Eq. (56) holds.

Next, we argue that for any fixed (σ, {xi,j}i∈σ,j∈[j∗−1], {θi}i∈σ), both {Zi,j} and {Z ′i,j} are a sequence of
independent Bernoulli random variables with p = 1

2
. Formally, for any fixed (σ, {xi,j}i∈σ,j∈[j∗−1], {θi}i∈σ) in

the intersection of the support of (Σ, {Xi,j}i∈Σ,j∈[j∗−1], {Θi}i∈Σ) and (Σ′, {X ′i,j}i∈Σ′,j∈[j∗−1], {Θ′i}i∈Σ′), it
holds that

{Zi,k}k∈[ℓgad]\θi
i.d.
== {Z ′i,k}k∈[ℓgad]\θi

i.d.
== {Ai,k}k∈[ℓgad]\θi , (57)

where each Ai,k is an independent Bernoulli random variable with p = 1
2
.

To prove Eq. (57), first notice that each Z ′i,k is an independent Bernoulli random variable with p = 1
2
.

This follows from the definition of Z ′i,k in Algo. B.2:

– If the k is Type-1 (as defined in Algo. B.2), then Z ′i,k is simply an independent Bernoulli random variable

with p = 1
2
.

– If the k is Type-2 (as defined in Algo. B.2), then Z ′i,k is defined to be 1 iff bi,k = ai,k. By our protocol
design, ai,k is sampled by the honest prover (of the i-th left session) uniformly at random from {0, 1}.
Thus, the event “bi,k = ai,k” is also an independent Bernoulli random variable with p = 1

2
.

The same argument applies to the Zi,k in Algo. B.1 as well. The only different is that in H ′j∗,1, the first
j∗ − 1 blocks are performed using Watrous rewinding. However, it is straightforward to see that this will
not change the fact that “ai,k = bi,k with probability 1/2” for the k-th gadget of the i-th left session that is
not picked by the Watrous procedure, simply because for those gadgets, ai,k is sampled by the honest prover
uniformly at random from {0, 1} even if conditioned on the performance of Watrous rewinding.

Eq. (56) and (57) imply Eq. (55). To see that, notice that the sequence {Ai,k}k∈[ℓgad]\θi can be sampled

given (as it is just a sequence of independent Bernoulli random variables with p = 1
2
). If a distinguisher D

can break Eq. (55), then we can build a new distinguisher D′ to break Eq. (56) by invoking D and sampling
sequence {Ai,k}k∈[ℓgad]\θi by himself.

This finishes the proof of Claim 18.

To lower bound the total number of matching gadgets in H ′j∗,1, it follows from Claim 18 that we only

need to focus on the value Rig′i and Luck′i in the REAL game. In Appx. B.2 and Appx. B.3, we show lower
bounds for these two values. After that, we finish the proof for Claim 5 in Appx. B.4

B.2 Lower Bound for Rig′
i

For any left session, we first bound the max number of its gadgets that can be fully nested in a block.

Claim 19. For any left session, it can have at most 12Q2 gadgets fully nested in any single block.

Proof. Recall from our parameter setting that ℓgad = 120Q7λ and L = 24Q6λ. Also recall that there are
T = 2Q · (ℓgad · sgad + Γwi) messages in the Q-Q concurrent MIM execution of our protocol, where sgad =
Γsbc + Γenmc denotes the size of each gadget. If we let sB denote the size of each block, then it holds that

sB =
T

L
=

2Q · (120Q7λ · sgad + Γwi)

24Q6λ
= 10Q2 · sgad +

Γwi

12Q5λ
≤ 12Q2 · sgad,
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which implies that each block can at most contain 12Q2 fully nested left gadgets.
This finishes the proof of Claim 19.

Claim 20. Fix an S in the support of Pick shown in Algo. B.2. For any i ∈ [Q], let Ni denote the number
of blocks that have at least one fully nested gadget of the i-th left session in S. It holds that for all i ∈ [Q],
Ni ≥ 6Q5λ− Γwi.

Proof. For any i ∈ [Q], let ui denote the number of blocks that contain at least 2sgad messages of the i-th
left session (recall that sgad is the size of each gadget). Note that ui − Γwi lower-bounds Ni.

Let {b1, . . . , bui
} be the number of left-session-i messages contained in each of these ui blocks. Let the

number of left-session-i messages contained in the remaining L − ui blocks be denoted as {a1, . . . , aL−ui
}.

Notice that by definition, each ak (∀k ∈ [L − ui]) block contains < 2sgad messages of the i-th left session.
Thus, it holds that

L−ui∑
k=1

ak < (L− ui) · 2sgad. (58)

Also, since the total number of messages contained in each block is sB, it holds that

ui∑
k=1

bk ≤ ui · sB. (59)

Observe that the sum of these bk’s and ak’s is exactly the total number of messages of the i-th left session,
which is exactly the round complexity of our protocol. That is,

ui∑
k=1

bk +

L−ui∑
k=1

ak = ℓgad · sgad + Γwi. (60)

Eq. (60) together with Inequalities (58) and (59) imply that:

ui · sB + (L− ui) · 2sgad ≥ ℓgad · sgad + Γwi,

which further implies that:

ui ≥
ℓgad · sgad + Γwi − 2sgadL

sB − 2sgad

=
ℓgad · sgad + Γwi − 2sgadL
2Q(ℓgad·sgad+Γwi)

L
− 2sgad

(61)

=
L

2Q
· ℓgad · sgad + Γwi − 2sgadL

ℓgad · sgad + Γwi − 2sgad · L
2Q

≥ L

2Q
· ℓgad · sgad + Γwi − 2sgadL

ℓgad · sgad + Γwi

=
L

2Q
·
(
1− 2sgadL

ℓgad · sgad + Γwi

)
≥ L

2Q
·
(
1− 2L

ℓgad

)
=

L

2Q
·
(
1− 2

5Q

)
(62)

≥ L

2Q
·
(
1− 1

2

)
= 6Q5λ (63)

where Eq. (61) follows from our parameter setting of sB =
2Q(ℓgad·sgad+Γwi)

L
, Eq. (62) follows from our parameter

setting of L = 24Q6λ and ℓgad = 120Q7λ, and Eq. (63) follows from our parameter setting of L = 24Q6λ.
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As mentioned before, ui−Γwi lower-bounds Ni. It then follows from Eq. (63) that Ni ≥ 6Q5λ−Γwi. This
finishes the proof of Claim 20.

Claim 21 (Matching by Rigging). It holds that

Pr

[
∃i ∈ Σ′ s.t.

∑
j∈[j∗−1]

X ′i,j < 3Q4λ

]
≤ negl(λ), (64)

where both the expectation and the probability is taken over the whole random procedure Pick shown in
Algo. B.2.

Proof. We emphasize that probability space for Inequality (64) is the whole random procedure Pick. To prove
this claim, it suffices to show the following stronger claim: For any fixed S (resulted from the execution
of REAL), Inequality (64) hold when the probability space is defined to be the sub-random-procedure
SubPick(S) shown in Algo. B.2. (That is, the S is given as an a-priori fixed input; The randomness used
to generate S does not contribute to the above expectation and probability.) In the sequel, we show the
argument for a fix S, using the sub-random-procedure SubPick(S) as the probability space.

Note that if S is fixed, the Σ′ is also fixed to some value σ′. For i ∈ σ′ and j ∈ [j∗−1], let bi,j be a binary
indicator defined to be 1 iff there exists a fully nested left-session-i gadget in block Bj . We claim that

∀i ∈ σ′,
∑

j∈[j∗−1]bi,j ≥ Ni − 12Q2 ≥ 6Q5λ− Γwi − 12Q2, (65)

where Ni is defined in Claim 20. To see why the first “≥” in Inequality (65) holds, notice that the summation
of bi,j is over j ∈ [j∗ − 1]; If i ∈ σ′, we know by the definition of σ′ that the WI of the i-th left session starts
in block Bj∗ , which means all of its gadgets are finished before the end of Bj∗ . But it is possible that some
of it gadgets are fully nested within Bj∗ . By Claim 19, we know that there are at most 12Q2 left gadets that
could be fully nested in a single block. Thus, Ni − 12Q2 is a lower bound for the number of fully nested
gadgets in blocks {B1, . . . , Bj∗−1} (i.e., excluding the fully nested left gadgets in block Bj∗). (The last “≥”
in Inequality (65) follows from Claim 20.)

Since the random procedure described in Algo. B.2 picks the session index i uniformly at random in
Step 2 (where |Tj | ≤ Q), it holds that

∀i ∈ σ′, E
[∑

j∈[j∗−1]X
′
i,j

]
≥

∑
j∈[j∗−1]bi,j ·

1
Q
, (66)

where the expectation is taken over the sub-random-procedure SubPick(S) for a fixed S.
It then follows from Inequalities (65) and (66) that

∀i ∈ σ′, E
[∑

j∈[j∗−1]X
′
i,j

]
≥ 6Q4λ− Γwi

Q
− 12Q, (67)

where the expectation is taken over the sub-random-procedure SubPick(S) for a fixed S. (Recall that Γwi is
a constant.)

To prove Claim 21, first notice that the values X ′i,j1 and X ′i,j2 are independently distributed for any
ji, j2 ∈ [j∗− 1]. This is because the probability is taken over the procedure SubPick(S) for a fixed S. Once S
is fixed, how left gadgets are nested in blocks is also a fixed fact. The result of SubPick(S) does not correlate
between different bocks. Therefore, we can apply Chernoff inequality to Inequality (67), which implies

∀i ∈ σ′, Pr

[ ∑
j∈[j∗−1]

X ′i,j < 3Q4λ

]
≤ negl(λ), (68)

where the expectation is taken over the sub-random-procedure SubPick(S) for a fixed S.
Then, notice that |σ′| (which is ≤ Q) is a polynomial of the security parameter λ. Thus, an application

of the union bound to Inequality (68) yields that

Pr

[
∃i ∈ σ′ s.t.

∑
j∈[j∗−1]

X ′i,j < 3Q4λ

]
≤ negl(λ). (69)

72



where the probability is taken over the sub-random-procedure SubPick(S) for a fixed S (thus a fixed σ′).
Since Inequality (69) holds for any schedule S that could possibly come from REAL, Inequality (69)

implies Claim 21 where the randomness of sampling S contributes to the probability space.
This finishes the proof of Claim 21.

B.3 Lower Bound for Luck′i

Claim 22 (Matching by Luck). Let Z ′i,k and Θ′i be as defined in Algo. B.2. It holds that

Pr
[
∃i ∈ Σ′ s.t.

∑
k∈[ℓgad]\Θ′

i
Z ′i,k < 60Q7λ− 2Q4λ

]
≤ negl(λ),

where the probability is taken over the whole random procedure Pick as defined by Algo. B.2.

Proof. Similar as in the proof of Claim 21, we first show the argument for a fix S, using the sub-random-
procedure SubPick(S) as the probability space. This also fix Σ to some σ′.

First, recall (from the proof of Claim 18) that Z ′i,k’s are independent Bernoulli random variables with

p = 1
2
. Thus, for any i ∈ σ′, it holds that

E[
∑

k∈[ℓgad]\Θ′
i
Z ′i,k] =

1

2

∣∣[ℓgad] \Θ′i∣∣
=

1

2

(
ℓgad − |Θ′i|

)
=

1

2

(
120Q7λ− |Θ′i|

)
(70)

≥ 1

2

(
120Q7λ− 3Q4λ

)
(71)

= 60Q7λ− 3

2
Q4λ, (72)

where Eq. (70) follows from our parameter setting that ℓgad = 120Q7λ, and Eq. (71) follows by definition
that |Θ′i| ≤ 3Q4λ.

Then, an application of Chernoff bound to Eq. (72) followed by an application of the union bound yields:

Pr
[
∃i ∈ σ′ s.t.

∑
k∈[ℓgad]\Θ′

i
Z ′i,k < 60Q7λ− 2Q4λ

]
≤ negl(λ), (73)

where the probability is taken over the sub-random-procedure SubPick(S) for a fixed S (thus a fixed σ′).
Since Inequality (73) holds for any schedule S that could possibly come from REAL, Inequality (73)

implies Claim 22 where the randomness of sampling S contributes to the probability space.
This finishes the proof of Claim 22.

B.4 Finishing the Proof

In the following, all the probabilities are taken over the whole random procedure Pick shown in Algo. B.2.
Claim 21 together with the definition of Rig′i in Eq. (53) imply that

Pr
[
∃i ∈ Σ′ s.t. Rig′i < 3Q4λ

]
≤ negl(λ). (74)

Claim 22 together with the definition of Lick′i in Eq. (54) imply that

Pr
[
∃i ∈ Σ′ s.t. Luck′i < 60Q7λ− 2Q4λ

]
≤ negl(λ). (75)

Then, it holds that

Pr
[
∀i ∈ Σ′, Rig′i + Luck′i ≥ 60Q7λ+Q4λ

]
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≥ Pr
[
∀i ∈ Σ′, (Rig′i ≥ 60Q7λ− 2Q4

)
∧
(
Luck′i ≥ 3Q4λ

)]
= 1− Pr

[
∃i ∈ Σ′ s.t.

(
Rig′i < 60Q7λ− 2Q4

)
∨
(
Luck′i < 3Q4λ

)]
= 1− Pr

[(
∃i ∈ Σ′ s.t. Rig′i < 60Q7λ− 2Q4

)
∨
(
∃i ∈ Σ′ s.t. Luck′i < 3Q4λ

)]
≥ 1− Pr

[
∃i ∈ Σ′ s.t. Rig′i < 60Q7λ− 2Q4

]
− Pr

[
∃i ∈ Σ′ s.t. Luck′i < 3Q4λ

]
(76)

≥ 1− Pr
[
∃i ∈ Σ′ s.t. Rig′i < 60Q7λ− 2Q4

]
− negl(λ) (77)

≥ 1− negl(λ) (78)

where Inequality (76) follows from the union bound, Inequality (77) follows from Inequality (75), and In-
equality (78) follows from Inequality (74).

Inequality (78) implies the following

Pr
[
∃i ∈ Σ′ s.t. Rig′i + Luck′i < 60Q7λ+Q4λ

]
≤ negl(λ), (79)

where the probability is taken over the whole random procedure Pick as defined by Algo. B.2.
Inequality (79) and Claim 18 together imply

Pr
[
∃i ∈ Σ s.t. Rigi + Lucki < 60Q7λ+Q4λ

]
≤ negl(λ), (80)

where the probability is taken over the execution of H ′j∗,1 as defined in Algo. B.1.
Finally, recall from Inequality (52) that for any i ∈ Σ (i.e., the i-th left session whose WI starts in block

Bj∗), the value Rigi + Lucki lower bounds the total number of matching gadgets of the i-th left session.
Therefore, Inequality (80) says exactly what we want—If the WI of some i-th left session starts in block Bj∗ ,
then the trapdoor witness for that session must be available, except for negligible probability.

This eventually finishes the proof of Claim 5.

C Proving Indistinguishability of Lem. 11

We first define two intermediate hybrids, which are identical to Hj,1 and Hj,2 but truncated at the end of
block Bj :

– Hybrid H∗j,1: Proceed identically as Hj,1 until the end of block Bj . Then, measure every registers except
for the Adv register, and output the contents in registers Adv and Tran.

– Hybrid H∗j,2: Proceed identically as Hj,2 until the end of block Bj . Then, measure every registers except
for the Adv register, and output the contents in registers Adv and Tran.

The proof of OUT(Hj,1)
c
≈ OUT(Hj,2) goes in two steps: (i) We first reduce it to proving OUT(H∗j,1)

c
≈

OUT(H∗j,2); (ii) We then prove OUT(H∗j,1)
c
≈ OUT(H∗j,2).

For Step (i). Notice that after block Bj , hybridsHj,1 andHj,2 use identical strategies to finish the remaining
blocks {Bj+1, . . . , BL}. Thus, their output should be computationally indistinguishable if their states at the

end of Bj are computationally indistinguishable. There is a caveat: The statement OUT(H∗j,1)
c
≈ OUT(H∗j,2)

is only about the output of these two hybrids. That is, at the end of block Bj , the contents in Adv and Tran

are indistinguishable, while the contents in other registers could contain information that distinguish these
two hybrids. But it is straightforward to see that the contents in other registers do not contribute to the
execution after block Bj , except for the ⊗Q

i=1RTi register, which determines if the remaining blocks should
use the real witness or the trapdoor witness for the left sessions.

Therefore, given OUT(H∗j,1)
c
≈ OUT(H∗j,2), the only reason that OUT(Hj,1) and OUT(Hj,2) are distin-

guishable is because the trapdoor witness for some i-th left session is unavailable in Hj,1 (i.e., |0⟩RTi) but
becomes available in Hk,2 (i.e., |1⟩RTi) and is used by Hk,2 to perform the corresponding WI. Indeed, this is
possible: Compared with Hj,1, Hj,2 could potentially make one more left gadget match—the one fully nested
in Bj—because it performs Watrous rewinding for block Bj . It is possible that this one more match suddenly
makes the trapdoor witness available for some i-th left session in Hj,2.

However, it is easy to see that such a switch of witness will not affect the indistinguishability between
OUT(Hj,1) and OUT(Hj,2), because otherwise, one can construct an adversary that breaks the witness
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indistinguishability of the Stage 3 WI of the i-th left session. Since this argument is standard, we omit the
details.

For Step (ii). In the following, we show that OUT(H∗j,1)
c
≈ OUT(H∗j,2).

Recall that the state at the end of block Bj−1 is identical in both H∗j,1 and H∗j,2, which is |ψj−1⟩ =
Wj−1 · · ·W0 |ψ0⟩. Then, H∗j,1 will apply the U ′j defined in Step 2 of Hj,1, while H

∗
j,2 will apply the Wj defined

in Step 2 of Hj,2 to |ψj−1⟩.
Without loss of generality, U ′j |ψj−1⟩ can be written in the following way for some q ∈ [0, 1]:

U ′j |ψj−1⟩ =
√
q · |ψnogad

j ⟩+
√
1− q · |ψgad

j ⟩, (81)

where

– |ψnogad
j ⟩ is a superposition corresponding to all the executions where there is no fully nested left gadget in

block Bj . This is defined on all the registers. This state can be further decomposed as

|ψnogad
j ⟩ = 1√

2
· |ψnogad,0

j ⟩ |0⟩Wj +
1√
2
· |ψnogad,1

j ⟩ |1⟩Wj , (82)

Notice that the amplitudes for both branch is 1/
√
2 because, conditioned on there is no fully nested left

gadget in Bj , the value in register Wj is defined to be a bit cj sampled uniformly at random (recall it from
Step 2c).

– |ψgad
j ⟩ is a superposition corresponding to all the executions where there is at least one fully nested left

gadget in block Bj . This state can be further decomposed as

|ψgad
j ⟩ =

1√
2
· |ψgad,0

j ⟩ |0⟩Wj +
1√
2
· |ψgad,1

j ⟩ |1⟩Wj . (83)

Notice that the amplitudes for both branch is 1/
√
2 because, conditioned on there exits at least one fully

nested left gadget, a randomly selected one from them matches (aka Wj being set to 0) with probability
exactly 1/2 (because the ak in Step 2b of our protocol is sampled uniformly).

Eq. (81) together with Eq. (82) and (83) imply that

U ′j |ψj−1⟩ =
1√
2
· |ψ0

j ⟩|0⟩Wj +
1√
2
· |ψ1

j ⟩|1⟩Wj , (84)

where we used the following notations:

– |ψ0
j ⟩ :=

√
q · |ψnogad,0

j ⟩ +
√
1− q · |ψgad,0

j ⟩. This state corresponds to the superposition over all registers
(excluding Wj) such that either one of the following two conditions are satisfied: (i) there is no fully nested
left gadget in block Bj and the random coin cj tosses to 0 (recall it from Step 2c), or (ii) the chosen left
gadget (fully nested in Bj) matches.

– |ψ1
j ⟩ :=

√
q · |ψnogad,1

j ⟩ +
√
1− q · |ψgad,1

j ⟩. This state corresponds to the superposition over all registers
(excluding Wj) such that either one of the following two conditions are satisfied: (i) there is no fully nested
left gadget in block Bj but the random coin cj tosses to 1 (recall it from Step 2c), or (ii) the chosen left
gadget (fully nested in Bj) does not match.

Applying Watrous Lemma. Now, recall that the U ′j |ψj−1⟩ shown in Eq. (84) is the state at the end
of Bj in hybrid H∗j,1. In contrast, the counterpart state in hybrid H∗j,2 is Wj |ψj−1⟩, where by definition
Wj = Amplifier(U ′j) with Wj playing the role of the Watrous control register (recall it from Step 2). It then
follows from an application of Lem. 6 (setting p1 = 0.5 and p0 = 0.49) that

Wj |ψj−1⟩
s
≈ |ψ0

j ⟩|0⟩Wj , (85)

which means that in hybrid H∗j,2, the state obtained after the execution of block Bj is exponentially close in
trace distance to the state |ψ0

j ⟩|0⟩Wj .
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Indistinguishability Between OUT(H∗j,1) and OUT(H∗j,2). Recall that our eventual goal is to show

OUT(H∗j,1)
c
≈ OUT(H∗j,2), which will hold as long as the following holds

TrWj
(
Wj |ψj−1⟩⟨ψj−1|W †j

) c
≈ TrWj

(
U ′j |ψj−1⟩⟨ψj−1|U ′†j

)
(86)

To show Eq. (86), due to Eq. (84) and (85), it suffices to show the following:

|ψ0
j ⟩⟨ψ0

j |
c
≈ 1

2
· |ψ0

j ⟩⟨ψ0
j |+

1

2
· |ψ1

j ⟩⟨ψ1
j |, (87)

To see why Eq. (87) holds, first recall that for any two quantum states ρ0
c
≈ ρ1 and any constant p ∈ [0, 1],38

it holds that
ρ0 = p · ρ0 + (1− p) · ρ0

c
≈ p · ρ0 + (1− p) · ρ1.

Thus, to show Eq. (87), it suffices to show that

|ψ0
j ⟩⟨ψ0

j |
c
≈ |ψ1

j ⟩⟨ψ1
j |. (88)

Eq. (88) simply follows from the computationally hiding property of ENMC. Since this is a simple and
standard reduction, we omit the details (see [ACL21, Claim 29] for an example).

38 Actually, it suffices as long as p is a noticeable function on the security parameter λ.
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