
Conjunctive Searchable Symmetric Encryption from

Hard Lattices

Debadrita Talapatra
IIT Kharagpur, India

Sikhar Patranabis
IBM Research, India

Debdeep Mukhopadhyay
IIT Kharagpur, India

March 2, 2025

Abstract

Searchable Symmetric Encryption (SSE) supports efficient keyword searches over
encrypted outsourced document collections while minimizing information leakage. All
practically efficient SSE schemes supporting conjunctive queries rely crucially on quantum-
broken cryptographic assumptions (such as discrete-log hard groups) to achieve com-
pact storage and fast query processing. On the other hand, quantum-safe SSE schemes
based on purely symmetric-key cryptoprimitives either do not support conjunctive
searches, or are practically inefficient. In particular, there exists no quantum-safe yet
practically efficient conjunctive SSE scheme from lattice-based hardness assumptions.

We solve this open question by proposing Oblivious Post-Quantum Secure Cross
Tags (OQXT) – the first lattice-based practically efficient and highly scalable conjunc-
tive SSE scheme. The technical centerpiece of OQXT is a novel oblivious cross-tag
generation protocol with provable security guarantees derived from lattice-based hard-
ness assumptions. We prove the post-quantum simulation security of OQXT with re-
spect to a rigorously defined and thoroughly analyzed leakage profile. We then present
a prototype implementation of OQXT and experimentally validate its practical effi-
ciency and scalability over extremely large real-world databases. Our experiments show
that OQXT has competitive end-to-end search latency when compared with the best
(quantum-broken) conjunctive SSE schemes.

1

Contents

1 Introduction 3

1.1 Our Contributions . 4

1.2 Lattice-based Oblivious Cross Tags . 4

1.3 Technical Challenges and Solution Overview . 6

1.4 Performance and Security of OQXT . 9

1.5 Related Work . 10

2 Preliminaries and Background 11

2.1 Notations . 11

2.2 SSE: Syntax and Security Model . 12

2.3 TSets . 14

2.4 Basic Cryptographic Primitives . 15

2.5 Lattice Preliminaries . 16

3 Oblivious Post-Quantum Secure Cross-tags (OQXT) 17

3.1 Description of OQXT . 18

3.2 Proof Of Correctness of OQXT . 21

3.3 Complexity Analysis . 24

4 Security Analysis of OQXT 25

4.1 Leakage Profile Analysis . 25

4.2 Proof Of Theorem 1 . 28

4.3 Discussion on the Leakage Profile of OQXT . 36

5 Experimental Results 37

5.1 Experimental Setup . 37

5.2 Experimental Evaluation . 39

5.3 Discussion on Our Experimental Results . 42

6 Conclusion and Future Directions 43

2

1 Introduction

Searchable Symmetric Encryption (SSE). Searchable Symmetric Encryption (SSE) [SWP00,
CGKO06,CPPJ18,CK10,CJJ+13,CJJ+14] allows a (potentially untrusted) server to exe-
cute keyword search queries directly on a collection of a client’s encrypted documents in
an efficient manner, while ensuring client privacy by minimizing the amount of informa-
tion “leakage” to the server in the process. The most general notion of SSE with opti-
mal security guarantees (wherein little or no information is leaked to the server) can be
achieved using techniques like fully homomorphic encryption (FHE) [Gen09] and Oblivi-
ous RAM (ORAM) [GO96]. However, such an ideal notion of privacy comes at the cost
of significant computational and/or communication overhead today. Hence, existing SSE
schemes [CK10, CJJ+13, CJJ+14, Bos16, BMO17, CPPJ18] prefer to trade-off security for
practical efficiency by leaking “some” information during query execution.

Conjunctive SSE. Consider a client that offloads an encrypted database of (potentially
sensitive) emails to an untrusted server and later issues a conjunctive query of the form
“retrieve all emails received from xyz@foobar.org with the keyword “research” in the subject
field” (which is a conjunction of the queries “retrieve all emails received from xyz@foobar.org
or “retrieve all emails with the keyword “research” in the subject field”). For any SSE scheme
to be truly practical, it should at least support such conjunctive keyword queries, i.e., given
a set of keywords (w1, . . . ,wn), it should be able to find and return the set of documents
that contain all of these keywords. There exist today efficient SSE schemes that support
conjunctive (and more general Boolean) queries [CJJ+13,CJJ+14,LPS+18,PM21].

Public-Key Techniques in SSE. An often overlooked aspect of the above mentioned SSE
constructions is the following: while SSE is an ostensibly symmetric-key primitive, almost
all of these SSE constructions supporting conjunctive (and general Boolean) queries resort to
public-key cryptographic techniques to achieve compact storage of the encrypted database
and/or fast encrypted query processing. For example, the Oblivious Cross-Tags (OXT)
protocol by Cash et al. [CJJ+13] achieves two highly desirable features from the point of
view of practical efficiency: (i) a storage overhead for the encrypted database that grows
linearly with the size of the plaintext database, and (ii) a conjunctive query complexity that
grows with the frequency of the least frequent keyword.1 However, OXT crucially relies
on discrete-log hard groups (typically implemented in practice using elliptic-curve based
cryptography). Similar dependencies on discrete-log hard groups are inherent to essentially
all advanced SSE schemes supporting rich Boolean queries [CJJ+14,LPS+18,PM21], many
of which build upon OXT. Consequently, all of these constructions are quantum-broken.

Quantum-Safety vs Practical Efficiency. Unfortunately, all quantum-safe SSE schemes
today rely on purely symmetric-key primitives, and are impractical for real-world databases
because they all suffer from one of the following drawbacks: (i) either they are severely lim-
ited in terms of the expressiveness of queries they support, or (ii) they are highly inefficient.
The first category includes SSE schemes supporting only single-keyword search [CGKO06,
CK10, Bos16, BMO17, CPPJ18].2 The second category includes SSE schemes that sup-

1Concretely, given a conjunctive query of the form (w1∧ . . .∧wn) where w1 is the least frequent keyword,
OXT incurs a computational and communication complexity of O(n · f(w1)), where f(w1) denotes the
frequency of w1.

2In real-life applications, such as querying large remotely stored email databases, a single keyword query

3

port highly expressive Boolean queries, but are practically inefficient [KM17,JP22,PPSY21]
since they incur a storage complexity that grows quadratically with the size of the plaintext
database in the worst case. Ideally, we want practically efficient conjunctive SSE schemes
with linear storage overhead.

Our Motivation. In this paper, we investigate the possibility of constructing practically
efficient conjunctive SSE scheme based on plausibly quantum-safe assumptions. To the
best of our knowledge, prior to our work, there existed no SSE scheme from quantum-safe
assumptions, such as lattice-based assumptions. Motivated by this, we ask the following
question:

Can we design a quantum-safe yet efficient conjunctive SSE scheme from lattice-based
hardness assumptions?

1.1 Our Contributions

We design, analyze and prototype implement the first lattice-based SSE scheme that effi-
ciently supports conjunctive queries over large encrypted databases. Our proposed scheme
is called Oblivious Post-quantum Secure Cross-tags Protocol (OQXT). OQXT achieves
the similar storage and conjunctive query complexities as OXT [CJJ+13], i.e., it achieves:
(i) a storage overhead for the encrypted database that grows linearly with the size of the
plaintext database (unlike IEX [KM17] and ConjFilter [PPSY21]), and (ii) a conjunctive
query complexity that grows with the frequency of the least frequent keyword.

The main difference between OXT and our proposed OQXT scheme is that, while OXT de-
rives its efficiency and (classical) security guarantees from computational assumptions over
discrete-log hard groups, our proposed OQXT scheme derives its post-quantum security
guarantees from computational assumptions over hard lattices, such as the Learning With
Rounding (LWR) assumption [BPR12]. We rigorously prove the post-quantum security of
OQXT with respect to a well defined leakage profile in the simulation-based real world/ideal
world paradigm against a semi-honest server. Finally, we describe a prototype implemen-
tation of OQXT and present experimental validation of its storage and conjunctive query
complexities over large real-world databases.

1.2 Lattice-based Oblivious Cross Tags

The technical centerpiece of OQXT is a lattice-based non-interactive search protocol exe-
cuted between the client and the server, where server takes as input the encrypted database,
while the client takes as input a conjunction of keywords and some secret state information.
The outcome of this protocol is a filtered, significantly smaller set of encrypted records,
which the client can then locally decrypt to compute the identifiers for documents contain-
ing all of the queried keywords. We provide an informal overview of our core techniques
below.

would potentially return a large number of matching records/documents that the client would need to
download and filter locally, which is clearly impractical.

4

Classical Oblivious Cross Tags in OXT. We begin by noting that OXT achieved a
classically secure realization of the above protocol using discrete-log hard groups. In its
simplest embodiment, OXT pre-computes an encrypted version of the plaintext database
(using a secret symmetric key) and stores it at a server that is presumed to be honest-
but-curious. A client with access to this symmetric key, breaks a (two-) conjunctive query
q = w1 ∧ w2 into two search tokens for the server. The first search token (stag) yields all
entries for the first conjunct w1 and the second search token (xtoken) is used to search for
exactly the conjunct w2 using a “cross-tag (xtag) helper token” stored as part of the entries
for w1. The xtag helper token is independent of the second attribute and hence only one
xtag helper token per (keyword-document) pair is stored (this at most doubles the total
space requirement).

We explain the technique at a high level using the example of the two-conjunctive query
from the discussion above: “retrieve all emails received from xyz@foobar.org with the keyword
“research” in the subject field”. In the OXT protocol, the client computes two search
tokens (using its secret key): one for (sender; xyz@foobar.org), say p1, and another for
(keyword; research), say p2. It sends to the server a symmetric-encryption key k1 derived
from p1, and an xtoken of the form hp2/p1 (in a discrete-log hard group G with generator
h). The server uses k1 to look-up and retrieve an encrypted set (stored in a lookup-table
called the XSet that is pre-computed and stored with the server as part of the encrypted
database) corresponding to (sender; xyz@foobar.org), and uses k1 to decrypt it. Next,
for each record, in this decrypted set D, the server is allowed to look-up an “xtag helper
token” z = p1 ∗ rind (where, rind stands for randomized-document-identifier). Observe that
the xtoken hp2/p1 raised to the power z yields an xtag, hp2∗rind, which is then checked in
a lookup-table called XSet (also pre-computed and stored with the server as part of the
encrypted database). This lookup-table XSet stored with the server has every valid member
of the form hp2∗rind, and hence this check allows the server to confirm whether or not a
record in the initial decrypted set D satisfies the second conjunct. Note that the size of
this set XSet is exactly the number of keyword-document pairs in the database, which is
nothing but the size of the database (hence the linear storage overhead of OXT). That this
lookup-table reveals no information, a priori, is proved in [CJJ+13] under the classically
secure decisional Diffie-Hellman (DDH) assumption over the group G.

OXT is Quantum-Broken. We note here that OXT is devastatingly broken in the pres-
ence of a quantum (honest-but-curious) adversary that is capable of solving the discrete log
problem (and hence break the DDH assumption) in the group G. As mentioned earlier,
the OXT protocol relies crucially on the DDH assumption in the group G to argue that
the XSet data structure reveals no information, a priori, about the plaintext database and
the plaintext inverted index. A quantum adversary can, however, compute the discrete-logs
corresponding to all xtag elements in the XSet data-structure, thereby reconstructing com-
pletely the frequency-distribution of keywords across documents in the plaintext inverted
index. This constitutes a serious loss of data privacy for the client. Additionally, equipped
with this leakage about the database, the adversary can launch leakage-abuse attacks to re-
cover all of the client’s queries with high accuracy, as discussed in many prior works (notably
in [IKK12,CGPR15,BKM20,GPP23]), thus also violating the query privacy guarantees of
OXT. This motivates designing a post-quantum secure version of OXT, which was an open
question prior to our work.

5

Switching to Lattice-based Cross Tags. The main technical novelty of OQXT is that,
when generating the xtag entries in the XSet as above, we switch from the usage of a
DDH-hard group (which is only classically secure) to a hard lattice over which the Learning
with Rounding (LWR) assumption holds. Along the way, we encounter several technical
challenges, which we solve by introducing novel techniques, the most notable being: (a) a
new construction of xtags in the XSet look-up table with security guarantees derived from
the LWR assumption, and (b) a novel usage of trapdoors for hard lattices to design the
xtag helper tokens and xtokens such that all computationally intensive trapdoor-based
operations are performed at setup, thus allowing for fast online search performance. We
expand more on these challenges and solution techniques in the next subsection.

1.3 Technical Challenges and Solution Overview

For simplicity of exposition, we first explain the technical challenges and our core solution
ideas using the more popularly studied Learning with Errors (LWE) assumption (the LWR as-
sumption can be viewed as a deterministic variant of the LWE assumption, and is, in fact,
implied by the LWE assumption [Reg09]). We subsequently elucidate the need to switch
from using the (randomized) LWE assumption to the (deterministic) LWR assumption. We
begin by (informally) recalling the LWE assumption. Let n,m, q ∈ N be positive integers
and let χ be a noise distribution over Zq. In the LWE(n,m, q, χ) problem, the adversary’s
goal is to distinguish between the two distributions:

(A,As+ e) and (A,u)

where A ← Zm×n
q , s ← Zn

q , e ← χm, and u ← Zm
q . The corresponding LWE(n,m, q, χ)

assumption (informally) states that the LWE(n,m, q, χ) problem is computationally in-
tractable.

Challenge-1: LWE-based Cross-Tags. The first challenge in our realization of LWE-
based oblivious xtags is to devise a technique that maps each entry in the look-up table
XSet to an LWE sample (looking ahead, such a mapping would allow us to invoke the
LWE assumption to argue that the XSet entries reveal no information, a priori, about the
underlying plaintext database).

Concretely, as in the example above, let the search token (xtoken) corresponding to the
second conjunct (keyword; research) be p2, and let the randomized-document-identifier
be rind. Instead of generating the xtag as hp2∗rind as in the original OXT protocol, we now
generate the xtag as

u = A(p2)s(rind) + e

where A(·) and s(·) are functions mapping p2 and rind to a matrix and a vector of the
appropriate dimension respectively, and e is an appropriately sampled error vector. Note
that each xtag is essentially an LWE sample, and we can rely on the LWE assumption to
prove that the lookup-table XSet reveals no information, a priori, about the underlying
keyword-document identifier pairs in the plaintext database. This is conceptually similar
to the usage of DDH in OXT, but presents additional challenges for query processing, as
outlined next.

6

Challenge-2: LWE-based Helper Tokens. The next challenge is to allow the server
to obliviously compute the above xtag, which in turn requires the client to pre-compute
a (quantum-safe) xtag helper token, that the server can subsequently look up during the
query execution. Concretely, in the example above, let the search token corresponding to
the first conjunct (sender; xyz@foobar.org) be p1. A straightforward adaptation of the
approach in OXT would be to set the xtag helper token (pre-computed and stored as part
of TSet look-up table) as another LWE sample of the form

z = A(p1)s(rind) + e′

and the corresponding xtoken to be something akin to W = A(p2) (A(p1))−1
, such that

the server can compute and search for the xtag u as Wz = u. Unfortunately, such a
straightforward adaptation of the approach in OXT presents several technical challenges:

• A(p1) is not a square matrix (this follows from the definition of the LWE assumption
as used in our construction), and is therefore unlikely to have an efficiently computable
“inverse” matrix.

• Crucially, even if we designed A(p1) to be a square matrix with an efficiently com-

putable inverse (A(p1))−1
, the product matrix (A(p1))−1

A(p2) is not guaranteed to
have short entries, and hence, with high probability, Wz ̸= u due to a blow-up in
the error of the resulting product in the left-hand side. This is a major technical
challenge that we need to overcome in order to ensure correctness of search without
compromising on practical search efficiency.

Our Solution: Trapdoors for Hard Lattices. We address these technical challenges
by a novel usage of trapdoors for hard lattices [Ajt96,MP12] to re-design the xtag helper
token as follows. We pre-compute and store as part of the TSet look-up index a “short”
vector (i.e., a vector with short entries) y such that

(A(p1))t y = s(rind)

where (A(p1))t denotes the transpose of the matrix A(p1). We generate this vector y using
well-known techniques to generate a short basis (equivalently, a trapdoor) for the lattice
generated by the matrix A(p1), and then using this short basis to solve a short integers
solution (SIS) instance with respect to A(p1) and the target vector s(rind) to generate
the corresponding SIS solution vector y. We defer the details of the trapdoor generation
procedure to Section 3. We note here that the xtag helper token is plausibly quantum-
safe assuming that the SIS problem is quantum-hard (which is indeed the case, since SIS is
implied by LWE [Reg09]).

Challenge-3: Retaining Search Efficiency. An astute reader might observe that, since
the process of generating lattice trapdoors is generally computationally expensive, our ap-
proach might hinder practically efficient searches. However, we already account for this
concern in our generation and usage of LWE-based xtags and helper tokens using lattice
trapdoors. In particular, we pre-compute and securely store at the server all trapdoors
at setup; this represents a one-time offline computational effort for the client that does

7

not impact online search latency. In the online search phase, the client-server protocol al-
lows efficiently retrieving these pre-computed trapdoors to efficiently compute and look up
the corresponding LWE-based xtags, thus retaining practical search efficiency. This claim is
practically validated via experiments where we showcase that our prototype implementation
of OQXT achieves fast conjunctive searches over large real-world databases (see Section 5
for details).

Putting Everything Together. We now exemplify the end-to-end query processing steps
in OQXT. As in OXT, the client computes two search tokens (using its secret key): one
for (sender; xyz@foobar.org), say p1, and another for (keyword; research), say p2. It
sends to the server a symmetric-encryption key k1 derived from p1, and an xtoken of the
form

W = A(p2) (A(p1))t +E

where E is an appropriately sampled error matrix. The server uses k1 to look-up and
retrieve an encrypted set (pre-computed and stored in the look-up table XSet as part of the
encrypted database) corresponding to (sender; xyz@foobar.org), and uses k1 to decrypt
it. Next, for each record, in this decrypted set D, the server is allowed to look-up the
new quantum-safe xtag helper token y as described above. Finally, the server uses the
xtoken W and the xtag helper token y to compute the xtag

u′ = Wy =
(
A(p2) (A(p1))t +E

)
y

= A(p2) (A(p1))t y +Ey

≈ A(p2)s(rind) + e = u

where the approximate equality follows from the fact that the vector y and the error matrix
E consist of short entries. The approximately reconstructed xtag is then looked up in the
XSet (again, pre-computed and stored with the server as part of the encrypted database).

Challenge-4: Approximate Look-ups and Potential Attacks. While the above so-
lution seems to provide search correctness and quantum-safety from the LWE assumption,
there remain two issues. The first (and minor) issue is how to implement the “approximate”
xtag lookup in the XSet data structure in an efficient way. The original OXT protocol has
an exact xtag lookup, and hence implements the XSet using some probabilistic membership-
check data structure (such as a Bloom filter). This is not immediately achievable in the case
of OQXT.

The second (and major) issue is that the computation of an approximate xtag implies that,
each time a query results in an approximate version of this xtag, the server essentially gains
access to two LWE samples of the form u and u′, where

u = A(p2)s(rind) + e, u′ = A(p2)s(rind) + e′

and, upon receipt of polynomially many such samples, the server could potentially use noise-
averaging techniques to gain access to the noise-free sample A(p2)s(rind). This is a violation
of LWE security (in other words, we cannot simulate the corresponding query transcripts
observed by the adversary in our security proof based on LWE).

Our Solution: LWR-based Cross-Tags. To avoid both the above issues, we switch from
relying on the LWE assumption to its deterministic counterpart – the LWR assumption.

8

More concretely, we now generate the xtag and the xtoken deterministically as

u = ⌊A(p2)s(rind)⌉p, W = ⌊(A(p1))t A(p2)⌉p

where p < q is an appropriately chosen rounding modulus. The xtag helper re-construction
procedure remains unchanged. Note that we still have correctness, since

u′ = yW = y ·
(
⌊(A(p1))t A(p2)⌉p

)
= u

where the equality follows from the fact that the vector y consists of short entries.

Note that instead of adding a random error term, we now introduce the error via rounding in
a deterministic manner, and the rounding modulus p is chosen relative to q such that the re-
constructed xtag matches the original xtag exactly with overwhelmingly large probability.
This solves both of the above-mentioned issues, since we can now implement the XSet to
support exact look-ups using a Bloom filter, while also avoiding the security vulnerabilities
associated with approximate xtag reconstruction as discussed above. See Section 3 for a
more complete technical description.

1.4 Performance and Security of OQXT

In this section, we present a brief summary of the practical performance and security guar-
antees of OQXT.

Storage and Search Overheads. In OQXT, the server-side storage requirement grows
linearly with the number of keyword-document pairs in the database, which is asymptotically
optimal. This is similar to OXT and asymptotically better than both IEX [KM17] and
ConjFilter [PPSY21], where the server-side storage grows quadratically in the worst-case.

The search protocol of OQXT entails a single round of communication between the client
and the server. For a conjunctive search query, the search complexity is independent of
the total number of documents in the database and scales with the frequency of the least
frequent conjunct. Thus OQXT retains the sub-linear search complexity of OXT, and
supports fast conjunctive keyword searches in practice.

Leakage Profile and Security Proof. We present a detailed enumeration and analysis of
the leakage profile forOQXT, and then provide a formal proof that this is indeed the leakage
incurred by OQXT against a semi-honest server with quantum-computation capabilities.
Our proof is in the standard simulation-based real world/ideal world paradigm against
a semi-honest server capable of adaptively issuing search queries of its choice, and only
assumes the (plausibly post-quantum) hardness of the LWR problem. The proof consists of
establishing formally that a probabilistic polynomial-time simulation algorithm can simulate
the view of the adversarial server (in a computationally indistinguishable manner) given
access to only the leakage profile for our scheme. The detailed leakage enumeration and
security proof are presented in Section 4.

Experimental Evaluation. We present a C++ implementation of OQXT along with

9

performance figures in Section 5. We experimented over the Enron email corpus3 for com-
patibility with previous SSE literature. The data set contains around 6K keywords, 10K
documents and 80 thousand unique keyword-document pairs. Our experiments validate
that OQXT supports extremely fast conjunctive queries, and asymptotically scales with
OXT. Storage requirements for the encrypted database of OQXT is higher than OXT due
to the use of quantum-safe lattice-based instantiations. This however is considered as a
trade-off for the post-quantum security provided by OQXT while supporting efficient con-
junctive search. The search execution time of OQXT maintains the sublinear search time
of OXT and is hence very efficient. 4

1.5 Related Work

SSE for Single-Keyword Search. The seminal works of Song et al. [SWP00] and Goh et
al. [Goh03] introduced SSE schemes for single-keyword search with linear search complex-
ity. Subsequent works by Curtmola et al. [CGKO06] and Chase et al. [CK10] introduced
practically efficient SSE schemes for single-keyword search with sub-linear search complex-
ity. Unfortunately, these schemes are restricted to static databases and do not support
secure updates. An alternative line of works [CM05, KPR12, KP13] initially investigated
SSE for dynamic databases, and were subsequently improved upon (both in terms of secu-
rity and practical efficiency) in a more recent line of works [SPS14,Bos16,GMP16,KKL+17,
BMO17,EKPE18, SDY+18, SYL+18,CPPJ18,DCPP20, SSL+21,CPKD22]. An alternative
line of works has investigated SSE schemes for single-keyword search incurring minimal
leakage [KM19a, PPYY19a, GPPW20, GKM21] with the goal of countering leakage-abuse
attacks [IKK12,CGPR15,BKM20,KKM+22,GPP23]. All of above schemes rely on purely
symmetric-key primitives and are inherently quantum-safe; however, they are extremely
limited in terms of query expressiveness. In this paper, our focus is on SSE for conjunctive
and richer Boolean queries.

SSE for Boolean Queries. The first SSE scheme to support conjunctive (and a restricted
class of general Boolean) queries over static encrypted document collections was OXT by
Cash et al. [CJJ+13]. As already mentioned, OXT crucially relies on discrete log hard
groups and is quantum-broken. A sequence of works have introduced several refinements
and extensions of OXT, including highly optimized practical implementations [CJJ+14],
extensions to range and substring queries [FJK+15], leakage suppression [LPS+18], and
extension to dynamic databases [PM21]. As mentioned earlier, all of these schemes also rely
on discrete log hard groups, and are hence also quantum-broken.

There exist inherently quantum-safe SSE schemes from purely symmetric-key primitives
that support highly expressive Boolean queries, but are practically inefficient [KM17,JP22,
PPSY21, APP+23a] since they incur a storage complexity that grows quadratically with
the size of the plaintext database in the worst case, and hence do not scale to real-world
databases, where the number of keywords typically range from tens of thousands to even
millions. As already mentioned, we want practically efficient conjunctive SSE schemes with

3https://www.cs.cmu.edu/˜enron/,
https://www.kaggle.com/wcukierski/enron-email-dataset

4We plan to make our prototype implementation open-source when the paper is accepted.

10

https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/wcukierski/enron-email-dataset

linear storage overhead. In this paper, we investigate the possibility of designing such a
scheme from quantum-safe lattice-based hardness assumptions.

Encrypted Search for Additional Query Classes. An alternative line of works in-
vestigates SSE schemes supporting point, range and substring queries [FJK+15, DPP+,
DPP+18,DPPS20], as well as SSE schemes supporting join and group-by queries [KM18,
DPPS20,JP22]. We note here that SSE schemes supporting range queries have been crypt-
analyzed extensively, notably in [KKNO16,LMP18,GLMP18,GLMP19,GJW19]. Similarly,
there exists a large body of work on order-preserving and property-preserving encryp-
tion [AKSX04,PRZB11,BCO11,Ker15,LW16,TK20] supporting a rich class of SQL queries
over encrypted relational databases, many of which have also been broken by leakage-abuse
and inference attacks [NKW15]. Our goal in this paper is to design SSE schemes for Boolean
queries (specifically, conjunctive queries) from lattice-based assumptions, and we do not con-
sider range (or other classes of) queries in the present version.

Comparison with FHE. Since OQXT relies on lattice-based assumptions, it is natural to
compare it with FHE [Gen09,BV11,BGV14,CGGI16,CGGI20], which also relies on lattice-
based assumptions. At a high level, OQXT avoids several inherent inefficiencies incurred
by using full-fledged FHE for searching over encrypted document collections: (a) the high
storage requirements typically incurred by encrypting the entire document collection using
FHE (in OQXT, only the inverted index is encrypted using lattice techniques, while the
actual documents are simply encrypted using AES-256; as mentioned earlier, in our im-
plementation and experiments, the plaintext size is only 0.05% of the size of the overall
plaintext database), and (b) the computational costs of FHE-bootstrapping, which is a ma-
jor bottleneck when scaling FHE to extremely large databases (in particular, keyword-search
operations, when modeled as Boolean/arithmetic circuits, could have high depth and thus
high bootstrapping costs, leading to high query latency). As a result, we expect OQXT to
offer significantly faster searches and higher scalability in practice as compared to traditional
FHE-based solutions for encrypted keyword search.

2 Preliminaries and Background

In this section, we present some preliminary background material used in our construction.
We begin by describing the notations used throughout the paper followed by a generic SSE
syntax, a brief discussion on the TSet data structure, some basic crypto-primitves and a
brief overview of hard lattice problems that guarantees the security of OQXT.

2.1 Notations

We write x
$←− χ to represent that an element x is sampled uniformly at random from a

set/distribution X . The output x of a deterministic algorithm A is denoted by x = A and
the output x′ of a randomized algorithm A′ is denoted by x′ ← A′. We refer to λ ∈ N
as the security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified)

11

polynomial function and negligible function in λ, respectively5. We denote integers by Z
and multiplicative group modulo some prime (q) over integers as Zq. Vectors are denoted
by lower-case bold letters (e.g., x) and are always in column form (xt is a row vector).
Matrices are denoted by upper-case bold letters X. F and Fq are pseudorandom functions
with output range in {0, 1}λ and Zq respectively.

Databases. Let W = {w1, . . . ,wN} be a dictionary of keywords where N is the total
number of keywords in the database. The total number of documents in the database
is denoted by d, each document is associated with a unique identifier denoted as id and
contains keywords from W. We denote by DB a database of identifier-keyword pairs, such
that (id,w) ∈ DB if and only if the document with identifier id contains the keyword w. We
denote by DB(w) the set of all identifiers corresponding to documents containing w. We
denote by |W| the number of distinct keywords in DB, by |DB| the number of distinct id-w
pairs in DB, and by |DB(w)| the number of documents containing w. Maximum number of
keywords in a query in denoted by n and the result set returned by the server to the client
is denoted by Rq.

Lattice-based Instantiations. For lattice based instantiations we use rounding parame-
ters and statistical errors as mentioned in the respective implementations that we incorpo-
rate in this paper [BPR12,MP12]. Concretely, we take r ≃ ln(2/ϵ)/π where ϵ is a desired
bound on the statistical error introduced by each randomized-rounding operation for Z.

The discrete Gaussian probability distribution over Z with parameter r > 0, denoted DZ,r,
assigns probability proportional to exp(πx2/r2) to each x ∈ Z. It is possible to efficiently
sample from the discrete Gaussian distribution over a desired coset Λ⊥(A) using a trapdoor
for A via an efficient SampleD function [MP12].

We define a ‘rounding’ function as done in [AKPW13] ⌊·⌉p: Zq → Zp , where q ≥ p ≥ 2
and,

⌊x⌉p = ⌊(p/q) · x̄⌉ mod p

where x̄ ∈ Z is any integer congruent to x mod q. We naturally identify elements of Zk

with integers in the interval {0, . . . , k − 1}. Intuitively, ⌊·⌉p partitions Zq into intervals of
length ≃ q

p which it maps to the same image. We naturally extend the rounding function
to vectors over Zq by applying it component-wise.

Conjunctive Queries. We represent a conjunctive query over n distinct keywords (w1, . . . ,wn)
as q = (w1 ∧ . . . ∧ wn). We consider w1 as the least frequent keyword in the query without
loss of generality. Throughout the paper we denote w1 as sterm and rest of the keywords in
the query w2, . . . ,wn as the xterm.

2.2 SSE: Syntax and Security Model

In this section, we formally define Searchable Symmetric Encryption (SSE) for static databases.

5Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) ≤
1/p(λ) when λ is sufficiently large

12

Static SSE. A Searchable Symmetric Encryption (SSE) scheme Π for static databases
consists of an algorithm EDBSetup and a protocol Search between the client and server,
mentioned as follows:

• EDBSetup takes as input a database DB, and outputs a secret key K along with an
encrypted database EDB.

• The Search protocol is between a client and server, where the client takes as input the
secret key K and a query q and the server takes as input EDB. At the end, the client
outputs a set of identifiers, and the server has no output.

Correctness of SSE. An SSE scheme is correct if for all inputs DB and queries q, if

(K,EDB)
$←− EDBSetup(DB), after running Search with client input (K, q) and server

input EDB, the client outputs the set of indices DB(q).

Adaptive Security of SSE. We recall the semantic security definitions of SSE from [CK10,
CGKO06]. The definition is parameterized by a leakage function L, which describes what
an adversary (the server) is allowed to learn about the database and queries. Formally,
security says that the server’s view during an adaptive attack (where the server selects the
database and queries) can be simulated given only the output of L.

Definition 1. Let Π = (EDBSetup,Search) be an SSE scheme and let L be a stateful
algorithm. For algorithms A (denoting the adversary) and S (denoting a simulator), we
define the experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses DB. The experiment then runs (K,EDB) ← EDBSetup(DB),
and gives EDB to A. Then A repeatedly chooses a query q. To respond, the game
runs the Search protocol with client input (K, q) and server input EDB and gives the
transcript and client output to A. Eventually A returns a bit that the game uses as
its own output.

IdealΠA,S(λ) : The game initializes a counter cnt = 0 and an empty list q. A(1λ) chooses
DB. The experiment runs EDB ← S(L(DB)) and gives EDB to A. Then A re-
peatedly chooses a query q. To respond, the game records this as q[i], increments i,
and gives to A the output of S(L(DB,q)). (Note that here, q consists of all previous
queries in addition to the latest query issued by A.) Eventually A returns a bit that
the game uses as its own output.

We say that Π is L-semantically-secure against adaptive attacks if for all adversaries A
there exists an algorithm S such that

| Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] |≤ negl(λ)

Selective Security of SSE. We also consider a weaker version of selective security for SSE that
is identical to the adaptive security definition except that: (a) in the real world experiment,

13

the adversary A does not get to choose its queries adaptively, but is required to specify
all such queries non-adaptively at the beginning of the protocol along with the plaintext
database DB, and receives EDB and the transcript and client output corresponding to each
of its queries together at the end of the experiment. Also, (b) in the ideal world experiment,
the adversary A directly receives as output the final response of a non-adaptive simulator
S, computed as S(L(DB, {q[i]}i∈[Q])), where Q is the total number of queries issued by the
adversary A non-adaptively.

Remark. In this paper, we choose to define SSE for encrypted document collections,
with queries structured as membership-finding of (one or more) keywords in the docu-
ments. This model is naturally applicable when the underlying database is a collection
of free-text documents, and is most commonly used in the vast majority of the SSE lit-
erature [CGKO06,CJJ+13,CJJ+14,KM17,Bos16,BMO17,LPS+18,PPSY21,SSL+21]. We
note here that certain prior works (e.g. [CJJ+13, KM18, JP22]) have used an alternative
formulation of SSE for encrypted relational databases, with queries structured as (one or
more) attribute-value pairs. We note that the document collection-oriented formulation of
SSE can, in fact, also be used to model the relational-database oriented formulation of SSE
as follows: each (attribute, value) pair is modeled as a (unique) keyword, and each record
containing this attribute-value pair is modeled as a document. For this reason, and also
because it is more widely adopted in the SSE literature [CGKO06,CJJ+13], we opt for the
document collection-oriented formulation of SSE in this paper.

2.3 TSets

We briefly explain the syntax of the special data structure introduced in [CJJ+13,CJJ+14],
namely, the tuple set or TSet. Intuitively, a TSet associates a list of fixed-sized data tuples
(list for each keyword is made of every document identifier that contains the particular
keyword) with each keyword in the database. The original OXT scheme uses it as an
“expanded inverted index”. For conjunctive keyword search, the TSet is used to store the
encrypted indices of document along with some additional information, that is later used by
the server to obliviously compute tokens for xtag generation. Formally TSet instantiation
consists of three algorithms Σ = (TSet.SetUp,TSet.GetTag,TSet.Retrieve), each of these
algorithm is briefly explained below.

TSet Syntax. Formally, a TSet implementation Σ = (TSet.SetUp,TSet.GetTag,TSet.Retrieve)
will consist of three algorithms with the following syntax:

• TSet.SetUp takes as input T = (T1, . . . , TN), where each Ti for i ∈ [N] is an array of
lists of equal-length bit strings indexed by the elements ofWi, and outputs (TSet,KT).

• TSet.GetTag takes as input the key KT and a tuple (i,w) and outputs stagi.

• TSet.Retrieve takes as input TSet and stagi, and returns a list of strings.

TSet Correctness. We say that Σ is correct if for all {Wi}i∈[N], all T = (T1, . . . , TN), and
any w ∈ Wi, we have

TSet.Retrieve(TSet, stag) = Ti[w]

14

when we have (TSet,KT) ← TSet.SetUp(T) and stag ← TSet.GetTag(KT , (i,w)). Intu-
itively, T holds lists of tuples associated with keywords and correctness guarantees that the
TSet.Retrieve algorithm returns the data associated with the given keyword.

TSet Security. The security goal of a TSet implementation is to hide as much as possible
about the tuples in T = (T1, . . . , TN) and the attribute-value pairs these tuples are associated
to, except for the vectors Ti[w1], Ti[w2], . . . of tuples revealed by the client’s queried attribute-
value pairs w1,w2, (For the purpose of TSet implementation we equate client’s query
with a single attribute-value pair.)

The formal definition of security for TSet is similar to that of keyword-search based SSE
for single-keyword queries. We refer the reader to prior works [CJJ+13,CJJ+14, JP22] for
the formal definition and concrete instantiations of TSet; in our paper, we adopt the same
definition of security and the same concrete instantiation as used in these works.

2.4 Basic Cryptographic Primitives

This section defines basic cryptographic primitives used throughout the paper.

Pseudorandom Function (PRF). A pseudorandom function (PRF) is a polynomial-time
computable function

F : {0, 1}λ × {0, 1}ℓ −→ {0, 1}ℓ
′

such that for any security parameter λ and any PPT algorithm A, we have∣∣∣Pr [AF (K,·) = 1
]
− Pr

[
AG(·) = 1

]∣∣∣ ≤ negl(λ)

where K ← {0, 1}λ and G is uniformly sampled from the set of all functions that map {0, 1}ℓ
to {0, 1}ℓ′ .

Symmetric-Key Encryption (SKE). A symmetric-key encryption scheme SKE consists
of the following polynomial-time algorithms:

• Gen(λ): Takes the security parameter λ as input and outputs a secret-key sk.

• Enc(sk,x): Takes as input a key sk and a plaintext x. Outputs a ciphertext ct.

• Dec(sk,ct): Takes as input a key sk and a ciphertext ct. Outputs the decrypted
plaintext x.

Correctness. A symmetric-key encryption scheme is said to be correct if for any security
parameter λ and any plaintext x, we have Dec(sk, Enc(sk, x)) = x, where sk← Gen(λ).

IND-CPA Security. A symmetric-key encryption scheme is said to be IND-CPA secure
if for any security parameter λ, for any two arbitrary plaintext messages x0 and x1, for
any sk ← Gen(λ), letting γb = Pr

[
AEnc(sk,·) (Enc(sk, xb)) = 1

]
for each b ∈ {0, 1}, we have

|γ0 − γ1| ≤ negl(λ).

15

2.5 Lattice Preliminaries

Short Integer Solution Problem. For β > 0, the short integer solution problem
SISn,m,q,β [Ajt96] is an average-case version of the approximate shortest vector problem
on lattice Λ⊥(A). The problem states that: given uniformly random matrix A ∈ Zn×m

q for

any m = poly(n), find a short non-zero z ∈ Λ⊥(A) or a non-zero z ∈ Zm, such that Az = 0
mod q and ∥z∥≤ β. When q ≥ βn · ω(logn), solving this problem (with any non-negligible
probability over the random choice of A) is at least as hard as (probabilistically) approx-
imating the Shortest Independent Vectors Problem (SIVP), a classic hard problem in the
computational study of lattices [MG02].

Learning With Rounding Problem. Let n ≥ 1 be the main security parameter and
moduli q ≥ p ≥ 2 be integers. For a vector s ∈ Zn

q , the LWR distribution L is defined as the
distribution over Zn

q × Zp obtained by choosing a vector a← Zn
q uniformly at random, and

outputting (a, b = ⌊⟨a, s⟩⌉p) [BPR12]. For a given distribution over s ∈ Zn
q the decision-

LWRn,q,p problem is to distinguish (with advantage non-negligible in n) between any desired
number of independent samples (ai, bi) ← L , and the same number of samples drawn
uniformly and independently from Zn

q × Zp.

Lattice Trapdoors. Advanced lattice cryptographic primitives require generating a ran-
dom matrix A ∈ Zn×m

q along with some trapdoor T ∈ Zm×m
q such that AT = 0 mod q. It is

evident from the above relation that the trapdoor is a matrix of short integer vectors and is
often interpreted as the basis of the lattice defined by using the parity check matrix A. The
efficiency of a cryptographic algorithm incorporating such lattice trapdoors is determined
by the “quality” of the trapdoor. Quality (s) of a trapdoor T is equivalent to the Euclidean
length (norm) of its vectors. We consider here n as the main security parameter that de-
termines the robustness of the functions and m is the dimension of a lattice associated with
A, generated by the basis T. Typically it is considered that m = θ(n log q), which is
optimal up to constant factors. The trapdoor generation algorithm devised by Micciancio
and Peikert [MP12] shows to generate a matrix A ∈ Zn×m

q within negligible statistical dis-
tance from uniform, the dimension of lattice should be m ≃ 2n log q. They propose an
efficient algorithm for trapdoor generation with the quality of the trapdoor s ≃ 1.6 n log q.
Also using this trapdoor they devised an optimised SIS preimage sampling algorithm with
a bound on the length of the preimage as β ≃ s

√
m.

Discrete Gaussian Distribution The discrete Gaussian distribution D(Λ+c),
√
Σ, is a Gaus-

sian distribution D√
Σ that is restricted to support the coset (Λ + c), where Λ ∈ Rn is a

lattice, c ∈ Rn and Σ is a positive semi-definite matrix such that (Λ + c)∩ span (Σ) is
non-empty. That is, for all a ∈ (Λ + c),

DΛ+c,
√
Σ(a) =

ρ√Σ(a)

ρ√Σ(Λ + c)
∝ ρ√Σ(a)

where ρ is a Gaussian function ρ : Rn → (0, 1] defined as -

ρ(x) ≜ exp(−π · ∥x∥2) = exp(−π · ⟨x, x⟩)

16

3 Oblivious Post-Quantum Secure Cross-tags (OQXT)

In this section we elucidate the techniques devised in OQXT more formally. We address
the limitation of OXT in a quantum setting and provide a plausibly quantum-safe solution.
OQXT is broadly bifurcated into two phases - Setup and Search phase. We formally describe
them in algorithmic form in Algorithm 1 and Algorithm 2 respectively.

In order to explicate the motivation behind developing a post-quantum secure construction
of OXT, we first try to answer the question - Why is OXT not quantum-safe?

Oblivious Cross-Tag Protocol (OXT). To answer the above mentioned question we first
provide a brief understanding of the the technical details of theOXT protocol. OXT [CJJ+13] re-
lies on specially structured pseudo-random functions that can be incorporated using discrete-
log hard groups. The idea is that the client encrypts the data (using symmetric-key encryp-
tion) and offloads it to the server (honest-but-curious). The client queries the server with
a conjunction of keywords to which it returns a set of encrypted pointers that point to
documents containing all the client’s queried keywords. The client decrypts these point-
ers locally to obtain the required documents matching the conjunctive query. The server
does not have the ability to perform decryption nor can it learn any information about the
queried keywords. The entire protocol constitutes one-round of interaction/communication
between the client and the server. This is delegated by an oblivious shared computation of
cross-tags between client and server. In order to achieve minimum communication complex-
ity while ensuring privacy of the client’s queried keywords and corresponding documents,
OXT incorporates an oblivious cross-tag generation process. The cross-tag is computed us-
ing blinded exponentiation in prime order cyclic groups, analogous to Diffie-Hellman based
oblivious PRF. It pre-computes the blinding part of the oblivious computation and stores
them in encrypted form at the server. During search, the client sends tokens to the server
using which it unlocks these pre-computed values and computes the cross-tag obliviously
using which it matches the documents corresponding to the queried keywords.

The core technical idea of OXT is the process of oblivious cross-tag generation, that relies
on public-key computations in a discrete-log hard group. The hardness assumption is based
on the fact that DDH assumption is conjectured to hold in a prime order subgroup of Z∗

p (p
is a large prime). The inherent reliance of OXT on discrete-log hard groups renders it vul-
nerable to quantum attacks and can be effectively broken by a scalable quantum computer.
Therefore, although OXT provides security against efficient adaptive adversaries in classical
setting, it is not secure in the post-quantum setting. The motivation of our work is hence,
to develop a post-quantum secure construction of OXT that preserves its asymptotic search
and communication complexity while ensuring its scalability with arbitrary large datasets.
In order to understand the core technical novelty devised in OQXT let us analyze the most
crucial component of OXT– the cross-tags (xtag).

The Cross-Tag. The most fundamental component of OXT which is incorporated to check
for the presence of a keyword in a particular document without leaking any extra information
to the server, is the cross-tag (denoted as xtag in the paper). The fundamental building
block that makes OXT one of the most efficient, highly scalable and secure conjunctive
SSE scheme is an oblivious computation of the xtag at the server, which is incorporated

17

using a DH-based oblivious PRF type computation. The idea is, for every keyword and
every document in which it is present, the client pre-computes a xtag (an element in the
prime-order subgroup of Z∗

p) and stores it in a data-structure called XSet which is offloaded
to the server.

xtag← gFp(KX ,w)·Fp(KI ,id)

where, g is the generator of the subgroup of Z∗
p and Fp is a PRF that takes as input a

keyword or a document identifier and outputs an element in Z∗
p .

Along with the queried keywords, the server receives some tokens (xtoken) from the client
(also an element in the prime-order subgroup of Z∗

p) during any conjunctive search. The
beauty of OXT lies in the fact that the whole process of xtag computation by the server
takes place obliviously without revealing the keyword-document pair for which the xtag is
being computed. This is done by raising the xtoken to a blinded value y (an element in
Z∗
p) which is pre-computed by the client and stored at the server.

3.1 Description of OQXT

Core Idea. We propose a potential solution to the above limitation by replacing compu-
tations in discrete-log hard groups with post-quantum secure lattice instantiations. More
specifically, we transform the cross-tags and in order to preserve the oblivious computations
as done in OXT the xtoken and blinding factor computation is also transformed in accor-
dance with post-quantum secure instantiations over lattices. The cross-tags generated in
OXT as (gFp(KX ,w)·xid) i.e. elements in a discrete-log hard group (where g is the gen-
erator of the prime order subgroup of Z∗

p) is modified and generated as LWR samples in
Zn
q × Zp. By hardness of LWR assumption xtag is indistinguishable from any random ele-

ment in Zn
q ×Zp even to adversaries with unbounded computational powers. The main crux

of OXT constitutes the oblivious computation of the cross-tags by the server, using some
form of blinded exponentiation, like in DH-based oblivious PRFs. We preserve the innate
oblivious computation of cross tags in a post-quantum secure framework by incorporating
special lattice trapdoor techniques and hard SIS instances.

Modified Cross-Tags in XSet. The first step towards a post-quantum secure transfor-
mation of OXT is to modify the cross-tags - elements in discrete-log hard groups which
are indistinguishable from random elements in Z∗

p by the hardness of DDH assumption.
The technical centerpiece of OQXT is a novel oblivious cross-tag generation protocol with
provable security guarantees derived from post-quantum secure hardness assumptions of
Learning With Rounding problem. The cross-tags (xtag) are LWR samples generated from
a public matrix xw ∈ Zn×n

q and a secret xid ∈ Zn×n
q , which are outputs of PRF Fq. In

particular, for some p < q, we divide up the elements of Zq into p contiguous intervals of
roughly q/p elements each and define the rounding function ⌊·⌋p : Zq → Zp that maps each
element in Zq into the index of the interval that it belongs to. For example here, we consider
both q and p as powers of 2, therefore, this results xtag to be the log2p most significant bits
of [xid · xw]. According to [BPR12] as long as q/p ≥

√
n is an integer, the LWR problem

appears to be exponentially hard (in n) for any p = poly(n), and super-polynomially hard
for p ≤ 2n

ϵ

for any ϵ < 1.
xtag = ⌊xid · xw⌉p

18

The xtag constitutes of two components - the public matrix xw, an element in Zn×n
q

which is calculated for every keyword w. The LWR secret xid, which corresponds to all the
documents in which w occurs. Hence, for each w there can be multiple LWR secrets, which
makes xid an element in ∈ Zn×n

q .

Lattice Trapdoor Generation. In order to delegate the oblivious computation of cross-
tags to the server during any conjunctive search in a post-quantum secure framework the
client performs some pre-computations during Setup phase. We incorporate the trapdoor
generation algorithm devised in [MP12] with a slight tweak to generate a random matrix
in Zn×m

q along with a trapdoor T. The idea is to generate for every keyword w, a matrix
zw ∈ Zn×m

q and a trapdoor T for zw using special lattice trapdoor function (Gen Trapdoor).
The significance of generating this trapdoor is to use it for efficient pre-image sampling from
desired coset (xid) of the lattice Λ⊥(zw).

Pre-image Sampling from Discrete Gaussian. In [MP12] the authors propose an
efficient and simple methodology to sample SIS pre-images from a specific coset of a discrete
Gaussian distribution. We use the SampleD function from [MP12] to sample a (short)
pre-image from a given coset of a discrete Gaussian distribution (we sample from a similar
distribution as discussed in Section 2) with a relatively small parameter s ≃ s1(T)·s1(

√∑
G)

(as in [MP12]). With the help of the trapdoor, it is possible to to generate a short yid

appropriately from a (nearly spherical) discrete Gaussian distribution DΛ⊥
xid(zw),s so as to

ensure that the output syndrome (xid) is uniformly random i.e., for any random yid, the
product yt

id · ztw should be uniformly random. The hardness assumption here is given zw
and the coset xid ∈ Zn×n

q , it is hard to sample a short yid ∈ Zn×m
q from Λ⊥

xid(zw) by the
hardness of Short Integer Solutions (SIS) problem.

yid · ztw = xid

Thus if a trapdoor T is not known and a random xid is provided, it is hard to find a short
pre-image yid, this is equivalent to solving the SIS problem, which is conjectured to be a
hard lattice problem.

OQXT Setup Phase. The Setup phase is entirely executed by the client, where it generates
the encrypted database EDB and offloads it to the server. In OXT construction EDB
comprises of two structures, the XSet and the TSet. We use similar structure of EDB for
our scheme and formally elaborate the construction of XSet and TSet in Algorithm 1. The
client generates cross-tags (LWR samples) and stores in the XSet. Also it samples a random
parity-check matrix zw from Zn×m

q with a trapdoor T for every keyword w ∈ W. The novelty
of OQXT as a post-quantum secure construction of OXT lies in the subtle observation that
the trapdoor matrix generated from every keyword can be used to sample a short vector
from a specific coset (defined by xid) of a discrete Gaussian distribution. This ensures that
it is difficult to sample a short yid for every keyword-id pair without the knowledge of the
trapdoor T, thereby making yid quantum safe. The client encrypts the document identifiers
(ec) and for every document containing a particular keyword w (i.e. every id ∈ DB(w)) it
generates yid. Thereafter it stores the (ec,yid) pairs for every keyword-id pair in TSet using
TSet.SetUp routine (Section 2.3).

Oblivious Conjunctive Search. During a conjunctive search client generates xtoken
as LWR samples for every queried keyword other than the stag (computed by calling the

19

Algorithm 1 OQXT.Setup

Input: 1λ,DB
Output: mk,EDB
1: function OQXT.Setup(1λ,DB)
2: Initialise T ← ϕ indexed by keywords W
3: Select key KS for PRF F
4: Select keys KI ,KX for PRF Fq

5: Initialise EDB← {}
6: Initialise XSet← {}
7: Sample a random matrix Ā ∈ Zn×m̄

q and a tag H = I ∈ Zn×n
q

8: for w ∈ W do
9: Initialise tset← {}

10: Compute ke ← F (KS ,w)
11: Compute xw (∈ Zn×n

q)← Fq(KX ,w)
12: Set counter c← 1
13: zw(∈ Zn×m

q),T← Gen Trapdoor(Ā,H)
14: for id ∈ DB(w) do
15: Compute xid (∈ Zn×n

q)← Fq(KI , id)
16: yid ← SampleD(T, zw,xid)
17: Compute ec ← Sym.Enc(ke, id)
18: Set xtag← ⌊xid · xw⌉p
19: Add xtag to XSet
20: Append (yid, ec) to tset and set c← c+ 1
21: Set T [w]← tset
22: Compute {TSet,KT } ← TSet.SetUp(T)
23: return mk = {KS ,KI ,KZ ,KX ,KT }, EDB = (TSet,XSet)

TSet.GetTag routine (Section 2.3) with the least frequent keyword as input) and sends it to
the server, for all ids corresponding to the documents containing the least frequent keyword
in the query.

xtoken[id,w] = ⌊ztw · xw⌉p1

The computation of xtoken interestingly combines the matrix zw(∈ Zn×m
q) and xw(∈

Zn×n
q) and rounding the value by a factor p1 (where q > p1 > p) which is greater than that

used to round the xtag at Setup. This is done to ensure correctness during the oblivious
computation of the cross-tags at the server. The yid values stored in the TSet are retrieved
by the server and multiplied with xtoken. Due to this xtoken is designed as a combination
of zw and xw. A unique zw is sampled for every keyword in the query. It is important
to note that this sampling process is deterministic because while generating the xtoken
during search phase we need to ensure that the same zw with a trapdoor is generated as
during the setup phase for the keyword w. This is necessary to fetch the correct record yid

from the TSet, which is calculated using the trapdoor for the particular keyword w and the
corresponding ids in DB(w).

Oblivious Cross-Tag Computation. The server retrieves from TSet all (e,yid) pairs
corresponding to stag (by invoking TSet.Retrieve routine (Section 2.3) and computes the
matrix zw1 with a trapdoor T for the stag using the Gen Trapdoor function. The oblivious
computation of xtag is crafted carefully by multiplying yid with rounded xtoken values
(rounded to p1) for each (w-id) pair. The product obtained is again rounded to obtain

20

Algorithm 2 OQXT.Search

Input: mk, q = (w1 ∧ . . . ∧ wn),EDB
Output: Result Rq

1: function OQXT.Search(mk, q,EDB)
2: Client’s inputs are (mk, q) and server’s inputs are (EDB)
3: Client
4: Rq ← {}
5: stag← TSet.GetTag(KT ,w1)
6: Sends stag to the server
7: Sample a random matrix Ā ∈ Zn×m̄

q and a tag H = I ∈ Zn×n
q

8: zw1(∈ Zn×m
q),T1 ← Gen Trapdoor(Ā,H)

9: Computes xtoken as follows:
10: for c = 1 : until server sends stop do
11: for l = 2 : n do
12: xwl ← Fq(KX , l)
13: xtoken[c, l]← ⌊ztw1

· xwl⌉p1
14: xtoken[c]← (xtoken[c, 2], . . . ,xtoken[c, n])
15: Client send xtoken[c] to server
16: Server
17: Recovers EDB = TSet
18: Computes tset← TSet.Retrieve(TSet, stag) for TSet routines)
19: for c = 1 : |tset| do
20: Server recovers (yid, ec) from c-th component of tset.
21: for l = 2 : n do
22: Server computes xtag = ⌊yid · xtoken⌉p
23: If ∀l ∈ [2, n], xtag ∈ XSet, then send ec to the client.
24: When last tuple in t is reached, send stop to client and halt.
25: Client
26: Ke ← F (KS ,w1).
27: idc ← Sym.Dec(Ke, ec), and adds idc to Rq for all ec received.
28: return Rq

rounded ⌊yid · xtoken⌉p (p1 > p) and eventually compute the xtag that are actually LWR
samples rounded mod p. The entire computation of xtag is done without leaking any extra
information to the server as follows.

xtag = ⌊yid · xtoken⌉p

3.2 Proof Of Correctness of OQXT

The proof of correctness of OQXT follows from the correctness of Gen Trapdoor and SampleD
function from [MP12] along with the correctness of TSet instantiations from OXT [CJJ+13]
which ensures OQXT to be a correct conjunctive SSE scheme. Correctness of a conjunctive
SSE scheme implies that given a conjunctive query q = w1 ∧ · · · ∧ wn over an encrypted
database it should satisfy the following relations.

EDB = Setup(DB)

DB(w1) ∩ · · · ∩DB(wn) = Search(q,EDB)

21

SSE Scheme Post-Quantum Secure Hardness Assumption Search Complexity Storage Overhead

OXT [CJJ+13] No DDH O(n|DB(w1)|) O(|DB|)
ConjFilter [PPSY21] Yes Random Oracle O(n|DB(w1 ∧ w2)|) O(

∑
w1,w2∈W |DB(w1 ∧ w2)|+ |DB(δ)|)

IEX-2Lev [KM17] Yes Symmetric-key Encryption O(n2|DB(w1)|) O(|W||DB|)
OQXT (This Work) Yes Learning with Rounding O(n|DB(w1)|) O(|DB|)

Table 1: Comparison of OQXT with OXT [CJJ+13], IEX-2Lev [KM17] and ConjFil-
ter [PPSY21]. The storage overhead of OQXT scales linearly with the number of keyword-id
pairs in the database (|DB|) as in OXT. It is important to note that OQXT significantly re-
duces the quadratic storage overhead incurred by both IEX-2Lev and ConjFilter. The search
complexity of OQXT scales linearly with the least frequent keyword in the conjunctive query and
is asymptotically comparable to all the other schemes. (Note: The above comparison of search
complexity is done for conjunctive queries of the form q = w1 ∧w2 ∧ . . .∧wn, where w1 is the least
frequent keyword.)

We state the proof of correctness for OQXT below.

Proof. For the proof of correctness of OQXT we consider the functions Gen Trapdoor
and SampleD give correct output. Considering Gen Trapdoor produces a random matrix
zw ∈ Zn×m

q with a trapdoor T correctly according to [MP12], such that we can invert zw
using this trapdoor. Also, we sample a pre-image using T from a desired coset of a discrete
Gaussian using the SampleD function, and we assume the correctness of the function follows
from [MP12]. Under these assumptions we verify the correctness of OQXT. Consider a
conjunctive query q as stated below.

q = w1 ∧ · · · ∧ wn

According to OQXT.Setup the client generates for each (w − id) pair a random matrix
zw ∈ Zn×m

q with a trapdoor T and a pre-image (yid) from the coset Λ(xid). It stores yid

in the TSet and offloads it to the server. It also generates xtag as LWR samples for every
(w − id) pair, xtag = ⌊xid · xw⌉p and stores these values in XSet. The xtag values are
rounded upto least significant log2p bits. When a query of the form q is received at the
server, the server first finds the DB(w1) corresponding to the least frequent keyword in
the query. This follows from the correctness of the TSet. For id in DB(w1) and the rest
of the keywords in q, the client generates xtoken as xtoken[id,w] = ⌊zw1

· xw⌉p1
, where

zw1
is generated by Gen Trapdoor for w1 along with a trapdoor T1, and q > p1 > p. The

server on receiving the rounded xtoken values (rounded to p1) calculates an xtag value
rounded to p by multiplying the xtoken with yid which it retrieves from TSet for w1 i.e.,
xtag = ⌊yid ·xtoken⌉p. The correctness of this is ensured by the correctness of the SampleD
function, which inturn ensures that a short pre-image yid is sampled from the specific coset
of the discrete Gaussian distribution. Since yid is short, we claim that multiplying noisy
rounded xtoken (rounded by mod p1, where p1 > p) with short yid and again rounding the
product by mod p will give rounded xtag to mod p with overwhelming probability. The
noise will not propagate if xtoken is correct towards the most significant bits (since we
drop the least significant bits during rounding).

Asymptotic Analysis of Parameter Choice: To prove the correctness of OQXT math-

22

ematically, the following must hold with an overwhelming probability -

⌊yid · xtoken⌉p = xtag

⌊yid · ⌊ztw · xw⌉p1
⌉p = ⌊xid · xw⌉p

The inner product on the LHS, ⟨yid · xtoken⟩ can be considered as an addition of scalar
products between each component of the vector yid with components of vector xtoken.
The number of additions of such scalar products is bounded by the dimension m of the
lattice (since each yid and xtoken is stored as a matrix of dimension (n×m) and (m× n)
respectively). Now, since the L2-norm β of yid is small (as guaranteed by [MP12]), we can

upper-bound ∥ yid ∥∞ by β2

δ2 : δ is a threshold that filters out values that have a negligible
contribution to the addition6. Thus, each scalar product in ⟨yid · xtoken⟩ can be viewed as
β2

δ2 additions, implying the total number of effective additions is asymptotically bounded by

O(m · β
2

δ2)
7.

The product on the RHS is first computed and then rounded from q to p (where q > p
and q/p ≥

√
n for LWR assumption to hold in Zn

q). While on the LHS, we first round

xtoken from q to p1, multiply with yid (equivalent to O(m · β2

δ2) additions as discussed
above), and finally round the product to p (where q > p1 > p and q/p1 ≥

√
n for LWR

assumption to hold in Zn
q). Notice that on the LHS, while computing ⟨yid · xtoken⟩ the

least significant log2q − log2p1 − log2p bits of xtoken do not participate in the additions
(while on the RHS, the log2q − log2p1 − log2p bits of xw or xid do participate). As a
result, if one addition on the RHS (adding one component) introduces a carry in the least
significant log2q− log2p1− log2p bits, it is propagated to the most significant log2p+ log2p1
bits. In the worst case for O(m · β

2

δ2) additions, O(m · β
2

δ2) errors can be propagated from
the least significant bits to the most significant bits on the RHS. This propagation will not
be reflected in ⟨yid · xtoken⟩ on the LHS, thereby resulting in a mismatch with the RHS.
Therefore, for correctness to hold, where only the most significant log2p bits of LHS are
compared with the most significant log2p bits of RHS, we add a final rounding step to the
product ⟨yid · xtoken⟩ on the LHS from p1 to p. We also ensure that the propagation of

O(m · β
2

δ2) errors must be subsumed by log2p1 − log2p bits, and not overflow to the most
significant log2p bits of the RHS. We analyze the following -

1. The total number of values possible in the range log2p1 − log2p is 2(log2p1−log2p).

2. The maximum error that can propagate from least significant log2q − log2p1 − log2p

bits to most significant log2p+ log2p1 bits on the RHS is O(m · β
2

δ2).

3. The number of possible values in the range log2p1 − log2p such that the error is not

propagated to most significant log2p bits is 2(log2p1−log2p) −O(m · β
2

δ2).

6The above bound is obtained by Chebyshev’s inequality that states, the number of components that
significantly contribute to the dot product can be roughly bounded by how concentrated β is. Informally
stating, a short l2 norm implies short l∞ norm.

7This gives a tight asymptotic bound on the total number of additions and assumes δ is chosen appro-
priately such that elements with magnitude less than δ are ignored, and β is sufficiently small.

23

Let ΠOQXT be a correct SSE scheme (i.e. the propagated O(m · β
2

δ2) errors are subsumed
in log2p1 − log2p most significant bits, and are not propagated to upper log2p bits of the
RHS), we show that -

Pr[(ΠOQXT = 1)] ≥

(
1−

m ·O(β
2

δ2)

2log2p1−log2p

)n2

where,

(
O(m· β

2

δ2
)

2(log2p1−log2p)

)
is negligible since p1 > p, β, δ < 2(log2p1−log2p) and m is the dimen-

sion of the lattice and n is the security parameter.8,9

3.3 Complexity Analysis

Search Overhead. Originally OXT was designed as a sublinear conjunctive SSE scheme
which implies the search complexity scales linearly to the frequency of the least frequent
keyword in the query (sterm). In OQXT we preserve the innate sublinear property of
OXT and ensure during a conjunctive search the complexity at the server scales with the
least frequent keyword in the query (sterm). The novel cross-tag generation of OQXT using
secure lattice instantiations add up to some delay during the pre-computation phase, but
since it is a one-time process, we consider it as a trade-off for post-quantum security that
OQXT provides. The conjunctive search process is similar to that of OXT and our lattice
implementations scale asymptotically with the sublinear search complexity of OXT.

Storage Overhead. The server stores the dictionaries TSet and XSet that is computed by
the client during Setup. The client locally stores only the metadata using which it keeps
a track of the frequency of the keywords in the database. The storage overhead at server
follows a similar trend as OXT i.e.TSet and XSet are offloaded to the server with encrypted
entries for each keyword-document pair in the database. Incorporation of the lattice-based
instantiations, does not incur excessive storage blowup and the asymptotic storage overhead
of OXT is retained.

Comparison with Other Schemes. Table 1 presents a comparison of the asymptotic
performance overheads of OQXT with that of OXT [CJJ+13], IEX-2Lev [KM17] and
ConjFilter [PPSY21] (the latter two are chosen for comparison since they represent the
only other state-of-the-art SSE schemes capable of supporting conjunctive queries while
also providing post-quantum security). We highlight that OQXT does not incur quadratic
storage overhead as in IEX-2Lev and ConjFilter while achieving competitive search
overheads for conjunctive queries. We refer the reader to Section 5 for a concrete comparison
of the performance overheads of these schemes over real-world databases.

8Since O(m · β2

δ2
) gives a loose upper bound on the number of errors that can propagate towards the

most significant log2p bits of the RHS, we say that the equation above gives a loose lower bound on the
probability of correctness.

9The (·)n2
holds since the computation of each xtag is an independent event, so the above bound

considers simultaneous correctness of all components of xtag.

24

4 Security Analysis of OQXT

The security of OQXT fundamentally relies on the hardness of LWR and SIS problems.
The short preimages yid sampled from specific cosets of a discrete Gaussian distribution
are stored in TSet and used by the server to calculate xtag values and check for their
membership in the XSet. Using lattice-based trapdoors [MP12] we sample short pre-images
(yid) from specific cosets defined by xid of a discrete Gaussian distribution. This ensures
yid · ztw = xid, where zw is a matrix (with elements sampled from Zn×m

q) with a trapdoor
T generated by the Gen Trapdoor function. This in turn forms a SIS instance given yid is
short. The xtag values stored in XSet are LWR samples (∈ Zn

q × Zp). By the hardness of
LWR these values are indistinguishable from random values in Zn

q ×Zp, thus the server learns
no information about the underlying keyword or the corresponding document in which it
belongs from the xtag. Similarly the xtoken values sent by the client to the server are
LWR samples in Zn

q ×Zp1
and are hence indistinguishable from random values in Zm

q ×Zp1
,

thus the server learns no information about the keywords present in the query. It is to be
noted that our choice of paramters suffices the condition stated in [BPR12], i.e. as long
as q/p ≥

√
n is an integer, the LWR problem appears to be exponentially hard (in n) for

any p = poly(n), and super-polynomially hard for p ≤ 2n
ϵ

for any ϵ < 1. In our case
boht q/p, q/p1 ≥

√
n and are integers. Our construction is hence secure by LWR hardness

assumption.

In the rest of this section, we formally enumerate the leakage profile of OQXT and analyze
its post-quantum security.

4.1 Leakage Profile Analysis

The leakage profile of OQXT is similar to original OXT scheme. Our scheme ensures no
extra information leakage occurs in addition to the information leaked in OXT while en-
suring security in the presence of an efficient and scalable quantum computer. We formalise
the leakage profile and provide a detailed simulation-based proof of security in Section 4.2.

We describe the function LOQXT that captures the leakage profile of OQXT under the
scenario where all queries are non-adaptive. We eventually show that our claim for non-
adaptive queries also holds for adaptive queries. In addition to the leakage from TSet imple-
mentation LT (described in [CJJ+13]), LOQXT captures all of the information leaked by our
quantum-safe SSE construction. We proceed in a similar manner as in OXT by representing
a sequence of n non-adaptive queries of two-conjunction as q = (s, x) where each query q[i]
is a conjunction of two keywords, we represent as, q[i] = s[i] ∧ x[i]. The leakage function
LOQXT(DB, q) gets as input the database DB = (idi,Wi)

d
i=1 and a set of queries q = (s, x)

and outputs N, s̄,SP, RP, IP as defined below.

Defining and apprehending the components of LOQXT. The significance of each
component of the leakage function in OQXT is equivalent to that in OXT. We define each
leakage component as follows -

• N =
∑d

i=1 |Wi| - the total number of appearances of keywords in documents. The

25

parameter N signifies an upper bound which is equivalent to the total size of EDB.
Leaking such a bound is unavoidable and is considered as a trivial leakage in literature
of SSE.

• s̄ ∈ [m]n - equality pattern of s ∈ Wn that indicates which queries have the equal
sterms. Repetition of sterms of different queries is leaked by s̄. This occurs due to the
optimization technique devised in OXT in order to ensure sublinear search complexity
by filtering out the least frequent term during search.

• SP - size pattern of the queries i.e., the number of documents matching the sterm in
each query. Formally, SP ∈ [d]n and SP[i] = |DB(s[i])|. It leaks the number of
documents satisfying the sterm in a query.

• RP - result pattern of the queries or the indices of documents matching the entire
conjunction. Formally, RP is vector of size n with RP[i] = DB(s[i]) ∩ DB(x[i]) for
each i. It is the final output of the search query and is not considered as a real leakage
in the context of SSE.

• IP - conditional intersection pattern, a n× n table defined as -

IP[i, j] =

 DB(s[i]) ∩DB(s[j]),
if i ̸= j and x[i] = x[j]

ϕ, otherwise

IP captures a subtle leakage which occurs due to the specialised computation of xtags
and storing a unique xtag value in the XSet for each (w-id) pair. Fundamentally IP
captures the leakage which occurs when two distinct queries have a common xterm but
different sterms and there exists a document that satisfies both the sterms. In such a
scenario the set of document indices matching both sterms is leaked (if no document
matching both sterms exist then nothing is leaked).

Theorem 1. Let LOQXT be as defined above, and we assume that the TSet implementation∑
from [CJJ+13] is secure . Then SSE scheme OQXT is LOQXT-post-quantum-secure

against adaptive attacks, assuming that the LWRn,p,q and LWRn,p1,q problem is hard in Zn
q ×

Zp and Zm
q × Zp1

, that solving SISn,m,q is hard i.e. sampling a short pre-image from a
specific coset of a discrete Gaussian distribution without using a trapdoor T is hard, that
F and Fq are secure PRFs, and (Enc,Dec) is an IND-CPA secure symmetric encryption
scheme.

Proof Overview. We begin by proving that OQXT is post-quantum secure against non-
adaptive adversaries. For simplicity we begin by describing our proof for non-adaptive
security, while our ultimate goal is to prove security against adaptive adversaries. We
assume that all conjunctive queries are given non-adaptively at a time to the simulator.
Eventually we show this can be extended to similar conjunctive queries in an adaptive
setting.

Non-adaptive Simulator Description. The security proof of OQXT (proof of theorem 1)
can be elucidated in a similar tone as done is OXT. The first step towards this would be
to justify that the leakage captured by LOQXT is atleast necessary for correct simulation.

26

Algorithm 3 Simulator for the Selective Security Proof of OQXT

1: function Initialize(N, s̄, SP, RP, IP, LT (DB, s), T [s])
2: for w ∈ x̂ and id ∈

⋃
i=1 RP[i] do

3: H[id,w]
$←− Zn×n

q

4: for w ∈ s̄ do

5: WPerms[w]
$←− Perm([SP[i]])

6: Sample a random matrix Ā ∈ Zn×m̄
q and a tag H = I ∈ Zn×n

q

7: for w ∈ x̂ do

8: Ke
$←− {0, 1}λ

9: tset← ⊥
10: zw,T← Gen Trapdoor(Ā,H)
11: for For c = 1, . . . , Tw do
12: ec ← Sym.Enc(Ke, 0

λ)
13: xid← Zn×n

q

14: yc ← SampleD(T, zw,xid)
15: tset[c]← (yc, e)
16: (TSet, STags)← S(LT (DB, s), T [s])
17: XSet← XSet.SetUp(N,RP,LT (DB, s), H)
18: EDB← (TSet,XSet)
19: for i = 1, . . . , Q do
20: tset[i]← GenTrans(RP, IP,SP, s̄[i], H,LT (DB, s),
21: STags[i])

return Return (EDB, tset)

22: function XSet.SetUp(N,RP,LT (DB, s), H)
23: XSet← ϕ ; j ← 0
24: for w ∈ x̂ and id ∈

⋃
i:x̂[i]=w RP[i] do

25: XSet← XSet ∪ {H[id, x̂[i]]}
26: j ← j + 1
27: for i = j + 1, . . . , N do

28: h
$←− Zn×n

q

29: XSet← XSet ∪ {h}
return XSet

30: function GenTrans(RP, IP, SP, s̄[i], H,LT (DB, s), stag)
31: R = RP[i] ∪

⋃n
j=1 IP[i, j]

32: (id1, . . . , idT ′)← R
33: for k = T ′ + 1, . . . , SP[i] do
34: ⊥ ← idk
35: R← idk
36: tset← TSetRetrieve(TSet, stag[i])
37: σ ←WPerms[̄s[i]]
38: Sample a random matrix Ā ∈ Zn×m̄

q and a tag H = I ∈ Zn×n
q

39: zs,Ts ← Gen Trapdoor(Ā,H)
40: xw← fX(w)w∈x̂

41: for For c = 1, . . . , SP[i] do
42: (y, e)← tset[c]
43: if īdσ(c) ̸= ⊥ then
44: xtoken← ⌊zs · xw⌉p1 such that, ⌊yc · xtoken⌉p = H[īdσ(c), x̂[i]]
45: else
46: xtoken[c]

$←− Zm×n
q × Zm×n

p1

47: for c = SP[i] + 1, . . . , T do

48: xtoken[c]
$←− Zm×n

q × Zm×n
p1

49: Res← ServerSearch(EDB, (stag, xtoken))
50: return ((stag,xtoken),Res,RP[i])

27

We briefly describe why each of the individual leakage components are necessary for a
simulator to produce correct results. In order to simulate OQXT correctly each of the
leakage components are critically analysed and their significance is justified. N or the total
number of appearances of keywords in the database gives the size of the XSet, i.e. number of
xtag entries for each keyword-id pair in the database. The equality pattern s̄ is important as
it indicates the queries with same stags. This is required since the stags are deterministic the
server can observe repetition in stags of different queries. In order to know DB(w1) or the
number of documents matching the sterm, the size pattern leakage component is important.
This is equal to the number of tuples returned by the TSet. To enable the simulator to
produce the final result of the query consistent with the conditional intersection pattern, the
result pattern leakage is important. From the conditional intersection pattern the server can
observe the queries in which the xterms repeat and that have a document identifier common
in their stag. We give a simulator description in Algorithm 3. The proof of Theorem 1 is
shown via hybrids in Section 4.2. The simulator S takes as input the leakage components as
defined by LOQXT and LT and produces the result pattern which is similar to the document
identifiers returned by the original scheme on input of a non-adaptive conjunctive query.
The routines Initialize, XSet.SetUp, GenTrans are elaborately explained in the detailed proof
in Section 4.2.

Extension to Adaptive Security. Our adaptive security proof for OQXT is also in the stan-
dard model, and is conceptually very similar to the selective security proof, hence we only
provide a brief overview here. For the adaptive proof of security, we assume an adap-
tively secure instantiation of TSet in the standard model. While the original construction
of TSet [CJJ+13] requires random oracles for adaptive security, the authors of [CJJ+13]
also discuss an alternative instantiation of adaptively secure TSets in the standard model
without incurring additional rounds of communication. In the context of our OQXT proto-
col, using the standard model instantiation of TSet increases the communication overhead
for the TSet component, but not the (asymptotic) communication overhead for the overall
search protocol.

The main crux of our adaptive security proof is that the simulator for OQXT initializes the
XSet to consist entirely of uniformly random elements initially (while relying on the LWR
assumption for indistinguishability of the real and simulated XSet entries). Additionally,
the simulator for OQXT can directly invoke the simulator for the adaptively secure TSet
to simulate the TSet entries at setup and the corresponding TSet tokens during searches.
The simulator also uses the (adaptive) result pattern leakage and the (adaptive) condi-
tional intersection pattern leakage to program the xtoken entries to be consistent with the
adversarially issued queries.

4.2 Proof Of Theorem 1

For formal security proof, we rely on the following definition for non-adaptive security -

Definition 2. Let Π = (Setup,Search) be an SSE scheme and let L be an algorithm. For
efficient algorithms A and S, we define experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ)
as follows:

28

• RealΠA(λ): A(1λ) chooses DB and a list of queries q. The experiment then runs
(mk,EDB) ← Setup(DB). For each i ∈ |q|, it runs the Search protocol with client
input (mk, q[i]) and server input EDB and stores the transcript and the client’s output
in tset[i]. Finally the game gives EDB and tset to A, which returns a bit that the
game uses as its own output.

• IdealΠA,S(λ) : A(1λ) chooses DB and a list of queries q. The experiment then runs
S(L(DB, q)) and gives its output to A, which returns a bit that the game uses as its
own output.

Informally, an SSE scheme Π is secure with respect to a leakage function L if the adversarial
server provably learns no more information about DB other than that encapsulated by L.
Formally Π is L-semantically-secure against non-adaptive attacks if for all stateful PPT
adversaries A there exists a stateful probabilistic polynomial time simulator (algorithm)
S = (S.Setup,S.Search) such that the following holds -

Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ negl(λ)

InOQXT the leakage function is defined by the LOQXT along with the TSet leakage function
LT (as described in [CJJ+13]). The vector T is computed as follows given the input DB
and (s,x) -

For w ∈ ∆ do

K
$←− 0, 1λ; tset← ⊥

For c = 1, . . . , Tw do

yc
$←− Zn×m

q ; ec ← Sym.Enc(K, 0λ);
tset[c]← (yid, ec)

T [w]← tset

It outputs (LOQXT(DB, s,x),LT (T, s), T [s]), where T [s] = (T [s[1]], . . . , T [s[Q]]).

Theorem 2. Let L be the leakage function as defined above. The SSE scheme OQXT is
L-post-quantum secure against non-adaptive attacks where all queries are 2-conjunctions,
assuming that the LWRn,p,q and LWRn,p1,q problem is hard in Zn

q × Zp and Zm
q × Zp1 , that

solving SISn,m,q instance in Zn×m
q is hard i.e. sampling a short pre-image from a specific

coset of a discrete Gaussian distribution without using a lattice trapdoor T is hard, that
F and Fq are secure PRFs, that (Enc,Dec) is an IND-CPA secure symmetric encryption
scheme and that Σ is a (non-adaptively) LT -secure and computationally correct TSet in-
stantiation.

Proof. We construct the proof using various games G0, G1, In each game, A starts
by supplying (DB,q), which is then given to an Initialize routine that produces an output,
which is given to A who then outputs a bit that becomes the game output. Game G0 is
designed to generate exactly the same distribution as RealΠA(λ) (assuming no false positives
occur) and the final game is structured so that it is easy to simulate exactly given the leakage
profile instead of the actual (DB,q) input. By relating the games we can argue that the
final simulator satisfies Definition 2 with OQXT, completing the proof.

29

Initialize(DB, s, x) // G0

KS ,KI ,KX
$←− {0, 1}λ

(idi,Wi)
d
i=1 ← DB

Sample a random matrix Ā ∈ Zn×m̄
q and a tag H = I ∈ Zn×n

q

For w ∈ W
(id1, . . . , idTw)← DB(w)
σ ← Perm([Tw]);WPerms[w]← σ

Ke ← F (KS ,w); tset← ⊥
zw,T← Gen Trapdoor(Ā,H)
For c = 1, . . . , Tw do

ec ← Sym.Enc(Ke, idσ(c));xid← Fq(KI , idσ(c))
yc ← SampleD(T, zw,xid)
tset[c]← (yc, ec)

End
T [w]← tset

End
(TSet,KT)← TSet.SetUp(T)
For i = 1, . . . , Q do

STags[i]← TSet.GetTag(KT , s[i])
XSet← XSet.SetUp(KX ,KI ,DB)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

tset[i]← GenTrans(KX ,KZ , s[i], x[i],STags[i])
Return (EDB, tset)

XSet.SetUp(KX ,KI ,DB) // G0

(idi,Wi)
d
i=1 ← DB

For w ∈ W and id ∈ DB(w) do
xw← Fq(KX ,w)
xid← Fq(KI , id)
xtag← ⌊xid · xw⌉p
XSet← XSet ∪ {xtag}

End
Return XSet

GenTrans(EDB,KX ,KZ , s, x, stag) // G0

xw← Fq(KX ,w)
Sample a random matrix Ā ∈ Zn×m̄

q and a
tag H = I ∈ Zn×n

q

zs,T← Gen Trapdoor(Ā,H)
For c = 1, . . . , T do

xtoken[c]← ⌊zs · xw⌉p1

Res← Server.Search(EDB, (stag,xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag,xtoken),Res, ResInds)

Table 2: Game G0

Game G0. The first game G0 is an implementation of the real game. The game starts by
running the Initialize routine, which passes (DB, s,x) from A and simulates OQXT.Setup,
with some minor changes. While building T vector, it records the permutations σ in a
vector WPerms indexed by keywords. The game computes an array Stags of all of the
stag values used. For each i = 1, . . . , Q it lets Stags[i] ← TSetGetTag(KT , s[i]). To
compute the transcript array tset, for i = 1, . . . , Q it sets tset[i] to the output of Gen-
Trans(EDB,KX ,KZ , s[i], x[i], STags[i]), which is defined in game G0. As employed in
OXT we use a subroutine ServerSearch which we take to be the server’s computation as
defined in OQXT in response to the first client message. The GenTrans routine generates
the transcripts as in the real game but it computes the final result set ResInds, in a differ-
ent way i.e., instead of decrypting the ciphertext it computes the DB(s[i]) and finds the
common ids between DB(s[i]) and DB(x[i]). Assuming Fq is a secure PRF it can be stated
-

Pr[G0 = 1] ≤ Pr[RealΠA(λ) = 1] + negl(λ)

GameG1. This game is exactly same asG0 the only difference is we replace every evaluation
of PRF F (KS , ·), F (KX , ·), F (KI , ·) with independent random functions with appropriate
domain and range. The keys are chosen uniformly at random. By the security of PRF and

30

Initialize(DB, s, x) // G1, G2

fI , fX ← Fun({0, 1}λ,Zn×n
q)

(idi,Wi)
d
i=1 ← DB

Sample a random matrix Ā ∈ Zn×m̄
q and a tag H = I ∈ Zn×n

q

For w ∈ W
(id1, . . . , idTw)← DB(w)
σ ← Perm([Tw]);WPerms[w]← σ
Ke ← F (KS ,w); tset← ⊥
zw,T← Gen Trapdoor(Ā,H)
For c = 1, . . . , Tw do

ec ← Sym.Enc(Ke, idσ(c))

ec ← Sym.Enc(Ke, 0
λ)

xid← fI(idσ(c))
yc ← SampleD(T, zw,xid)
tset[c]← (yc, ec)

End
T [w]← tset

End
(TSet,KT)← TSet.SetUp(T)
For i = 1, . . . , Q do

STags[i]← TSet.GetTag(KT , s[i])
XSet← XSet.SetUp(fX , fI ,DB)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

tset[i]← GenTrans(fX , fZ , s[i], x[i],STags[i])
Return (EDB, tset)

XSet.SetUp(fX , fI ,DB) // G1, G2

(idi,Wi)
d
i=1 ← DB

XSet← ϕ
For w ∈ W and id ∈ DB(w) do

xw← fX(w)
xid← fI(id)
xtag← ⌊xid · xw⌉p
XSet← XSet ∪ {xtag}

End
Return XSet

GenTrans(EDB, fX , fZ , s, x, stag) // G1, G2

xw← fX(w)
Sample a random matrix Ā ∈ Zn×m̄

q and a tag
H = I ∈ Zn×n

q

zs,T← Gen Trapdoor(Ā,H)
For c = 1, . . . , T do

xtoken[c]← ⌊zs · xw⌉p1

Res← Server.Search(EDB, (stag,xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag,xtoken),Res, ResInds)

Table 3: Games G1 and G2

31

Initialize(DB, s, x) // G3, G4

fI , fX ← Fun({0, 1}λ,Zn×n
q)

(idi,Wi)
d
i=1 ← DB

For each w and each idi do
xw← fX(w)
xid← fI(id)
H[idi,w]← ⌊xid · xw⌉p

H[idi,w]
$←− Zn×n

q × Zn×n
p

End
Sample a random matrix Ā ∈ Zn×m̄

q and a tag H = I ∈ Zn×n
q

For w ∈ W
(id1, . . . , idTw)← DB(w)
σ ← Perm([Tw]);WPerms[w]← σ
Ke ← F (KS ,w); tset← ⊥
zw,T← Gen Trapdoor(Ā,H)
For c = 1, . . . , Tw do

ec ← Sym.Enc(Ke, 0
λ)

xid← fI(idσ(c))
yc ← SampleD(T, zw,xid)
tset[c]← (yc, ec)

End
T [w]← tset
For u ∈ W \ w do

For c = Tw + 1, . . . , T do
xu← fX(u)
Y [w, u, c]← ⌊zw · xu⌉p1

Y [w, u, c]
$←− Zm×n

q × Zm×n
p1

End
End

End
(TSet,KT)← TSet.SetUp(T)
For i = 1, . . . , Q do

STags[i]← TSet.GetTag(KT , s[i])
XSet← XSet.SetUp(DB, H)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

tset[i]← GenTrans(DB,EDB, H, s[i], x[i],STags[i])
Return (EDB, tset)

XSet.SetUp(DB, H) // G3, G4

(idi,Wi)
d
i=1 ← DB

XSet← ϕ
For w ∈ W and id ∈ DB(w) do

XSet← XSet ∪ {H[id,w]}
Return XSet

GenTrans(EDB, fX , fZ , s, x, stag) // G3, G4

xw← fX(x)
tset← TSet.Retrieve(TSet,stag)
(id1, . . . , idTs)← DB(s); σ ←WPerms[s]
Sample a random matrix Ā ∈ Zn×m̄

q and a tag
H = I ∈ Zn×n

q

zs,Tx ← Gen Trapdoor(Ā,H)
For c = 1, . . . , Ts do

(yc, e)← tset[c];
xtoken← ⌊zs · xw⌉p1

such that, ⌊yc · xtoken⌉p = H[idσ(c), x]
For c = Ts + 1, . . . , T do

xtoken[c]← Y [s, x, c]
Res← Server.Search(EDB, (stag,xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag,xtoken),Res, ResInds)

Table 4: Games G3 and G4

32

using some standard hybrid argument it can be shown that there exists unbounded efficient
adversaries B1,1, B1,2, B1,3 such that -

Pr[G1 = 1]− Pr[G0 = 1] ≤ Advprf
F,B1,1

(λ)+

3 ·Advprf
Fq,B1,2

(λ) +Advprp
P,B1,3

(λ)

Game G2. In this game we modify G1 to include the boxed code. The modification is done
in the Initialize routine, where every ciphertext ec is always generated as an encryption of
0λ (with the same key). Similar to OXT we can claim here that there exists an unbounded
efficient adversary B2 such that -

Pr[G2 = 1]− Pr[G1 = 1] ≤ m ·AdvIND−CPA
Σ,B2

(λ)

Game G3.In G3 the XSet values are pre-computed along with the xtoken values. In
Initialize subroutine, two arrays H,Y are computed and used in XSet.SetUp and GenTrans.
H is indexed by an identifier and a keyword fromW and contains elements from Zn×n

q . The
elements of H are computed as ⌊xid · xw⌉p, where xid and xw are output of a random
function with range in Zn×n

q . Basically elements from H is used as xtag in XSet.SetUp. Y
is indexed by a keyword and each i in |DB(w)|. It is filled with elements from Zn×m

q .

Both H and Y are used in GenTrans. For each c ∈ |T | in G2 the GenTrans routine generates
xtoken values as ⌊zw ·xw⌉p1 (q ≥ p1 ≥ p), where zw is a matrix with trapdoor T generated
by Gen Trapdoor. In G3 the GenTrans function, uses σ ←WPerms[s],DB(s) = (¯id1, . . . , ¯idTs

)
and tset. In GenTrans for c = 1, . . . , Ts,

H[idσ(c), x] = ⌊yc · xtoken⌉p

and for c = Ts+1, . . . , T xtoken is set as -

xtoken[c]← Y [s, x, c]

this is exactly similar to the xtoken value as in G2. Therefore we have,

Pr[G3 = 1] = Pr[G2 = 1]

Game G4. In game G4 all steps are similar to game G3 except the boxed code is included.
We claim that

Pr[G4 = 1] = Pr[G3 = 1]

The value ⌊zw · xu⌉p1
is uniform and independent of the rest of the game, which makes our

above claim valid. In this game the values of H and Y arrays are independently chosen
from {Zn×n

q × Zn×n
p } and {Zm×n

q × Zm×n
p1
} respectively. We claim that by the hardness of

LWRn,p1,q and LWRn,p,q, Game G3 and G4 are indistinguishable.

Game G5. The Initialize code for game G5 is described in Table 4 and the other routines
remain same as in game G4. In G6 soome irrelevant codes like selecting random functions
are removed and TSet is generated using a simulator, which by the security guarantees of
TSet is expected to exist. We replace all the call to TSet.SetUp and loop generating stags

33

Initialize(DB, s, x) // G5, G6, G7

(idi,Wi)
d
i=1 ← DB

Sample a random matrix Ā ∈ Zn×m̄
q and a tag H = I ∈ Zn×n

q

For w ∈ W and i ∈ [d] do H[idi,w]
$←− {Zn×n

q × Zn×n
p }

For w ∈ s do WPerms[w]
$←− Perm([Ts])

For w ∈ W do

Ke
$←− {0, 1}λ; tset← ⊥

zw,T← Gen Trapdoor(Ā,H)
For c = 1, . . . , Tw do

ec ← Sym.Enc(Ke, 0
λ)

xid← Zn×n
q

yc ← SampleD(T, zw,xid)
tset[c]← (yc, ec)

End
T [w]← tset

End
(TSet,STags)← S(LT (DB, s), T [s])
XSet← XSet.SetUp(DB, H)
EDB← (TSet,XSet)
For i = 1, . . . , Q do

tset[i]← GenTrans(DB,EDB, H, s[i], x[i],STags[i])
End
Return (EDB, tset)

XSet.SetUp(DB, H) // G6, G7

XSet← ϕ
For w ∈ W and id ∈ DB(w) do

If ∃i : id ∈ DB(s[i]) ∧ x[i] = w then
XSet← XSet ∪ {H[id,w]}

Else h
$←− Zn×n

q ; XSet← XSet ∪ {h}
End
Return XSet

GenTrans(DB,EDB, H, s, x, stag, i) // G7

tset← TSet.Retrieve(TSet,stag)
(id1, . . . , idTs

)← DB(s); σ ←WPerms[s]
xw← fX(x)
Sample a random matrix Ā ∈ Zn×m̄

q and a tag
H = I ∈ Zn×n

q

zs,Ts ← Gen Trapdoor(Ā,H)
For c = 1, . . . , Ts do

(yc, e)← tset[c];
If idσ(c) ∈ DB(s) ∩DB(x) then

xtoken← ⌊zs · xw⌉p1

such that, ⌊yc · xtoken⌉p = H[idσ(c), x]
ElseIf ∃j ̸= i : idσ(c) ∈ DB(s[j]) ∧ x[j] = x
then

xtoken← ⌊zs · xw⌉p1

such that, ⌊yc · xtoken⌉p = H[idσ(c), x]
Else

xtoken
$←− Zm×n

q × Zm×n
p1

End
For c = Ts + 1, . . . , T do

xtoken[c]
$←− Zm×n

q × Zm×n
p1

Res← Server.Search(EDB, (stag,xtoken))
ResInds← DB(s) ∩DB(x)
Return ((stag,xtoken),Res, ResInds)

Table 5: Games G5, G6 and G7

34

with a call to the simulator S on input (LT (DB, s),T[s]). By the assumed LT -security of
TSet instantiations we can say that -

Pr[G6 = 1]− Pr[G5 = 1] ≤ negl(λ)

Game G6. In this game the way in which array H is accessed in altered so as to aid the final
simulator to work with the given leakages. Whenever the game access the H array at index
(id, x) it checks intuitively whether the game will ever access this location again in future.
If yes, then the value in the corresponding index is used and if not then the value returned
by accessing the corresponding index of H array is replaced by some random value. After
H array is generated it is used in XSet.SetUp and GenTrans. The routine XSet.SetUp will
never repeat an access to H therefore for a particular index (id, x) it needs to check whether
GenTrans will read the same location or not. But if we carefully observe we see GenTrans
will read positions such that id ∈ DB(s[i]) and x = x[i] for some i. This is exactly same as
done in XSet.SetUp routine of game G6. From this observation we can say -

Pr[G6 = 1] = Pr[G5 = 1]

Game G7. In this game we change the way GenTrans accesses array H. To check for a
possible repeated access it should check if either XSet.SetUp reads the particular index or
if GenTrans reads the same index again. The first test is done by checking the XSet.SetUp
access only those index positionsH[id,w] that satisfy the condition id ∈ DB(s[i])∩DB(x[i]).
Next it checks if there exists an index of H that is accessed by GenTrans twice. For an
index (id, x) to be accessed twice , either of the following condition must be satisfied id ∈
DB(s[i]) ∩DB(s[j]) for some i ̸= j or x[i] = x[j] for some i ̸= j. An argument similar to
the one for the previous game transition gives -

Pr[G7 = 1] = Pr[G6 = 1]

Simulator. The simulator S uses its leakage to compute the same distribution as G7.
S takes as input L(DB,s,x), which consists of all the leakages encapsulated by LOQXT.
Therefore, input to the simulator include N, s̄, SP, RP, IP, LT (DB, s),T[s]. The output
of the simulator is a simulated EDB = (TSet, XSet) and the transcript array tset. The
simulator will first compute the restricted equality pattern of x, denoted as x̂. Basically x̂
denotes which xterms are known to be “equal” by the server.

The simulator works as follows - On input N, s̄, SP, RP, IP, LT (DB, s),T[s], it computes
x̂ in a very similar way as shown in OXT [CJJ+13]. Next it follows the following steps to
produce EDB = (TSet, XSet) -

1. For w ∈ x̂ and id ∈
⋃

i=1 RP[i] do H[id,w]
$←− {Zn×n

q × Zn×n
p }

2. For w ∈ s̄ do WPerms[w]
$←− Perm([SP[i]]).

3. (TSet, STags) ← S(LT (DB, s),T[s])

4. XSet← ϕ; j ← 0

35

5. For w ∈ x̂ and id ∈
⋃

i:x̂=w RP[i] do XSet← XSet ∪ {H[id, x̂[i]]}; j ← j + 1

6. For i = j + 1, . . . , N do h
$←− Zn×n

q ; XSet← XSet ∪ {h}

The transcript array tset is computed by S by computing the revealed document-identifiers
for the corresponding query as R = RP[i]∪

⋃Q
j=1 IP[i, j]. The document identifiers are placed

in R in canonical order as (¯id1, . . . , ¯idT ′). The simulator pads |R| upto |SP[i]| by setting īdk =
⊥ for k = T ′ + 1, . . . ,SP[i]. It computes the transcript array as tset← TSet.Retrieve(TSet,
stag[i]); σ ← WPerms[s̄[i]]. Using this it computes ((stag,xtoken),Res,RP[i]) as shown in
Algorithm 3. On the basis of the similar argument as shown in OXT we can claim that the
output of S has the same distribution as the output of the Initialize routine of G7.

4.3 Discussion on the Leakage Profile of OQXT

In this section, we present additional discussion on the leakage of OQXT. We note here
that OQXT is an index-only SSE scheme (following the vast majority of the SSE literature
today [CGKO06, CJJ+13, CJJ+14]), and we leave it as an interesting direction of future
research to extend it into an end-to-end SSE system with system-wide leakage suppres-
sion [GPPW20,GPP23].

Output Leakage. The output leakage or result-pattern leakage (RP) is incurred by a
significant number of existing SSE schemes supporting both single keyword or conjunctive
keyword queries [CGKO06,CJJ+13, LPS+18]. This is considered as an acceptable leakage
in literature. RP essentially reveals the indices of documents matching a particular query.
This evidently reveals the number of documents returned as a result of a query. Since
OQXT inherits the exact leakage profile of OXT [CJJ+13], it also incurs result pattern
leakage and hence reveals the number of documents returned as the result of a conjunc-
tive query. The few known data/query recovery attacks that manage to exploit this leak-
age [CGPR15,BKM20,KM19b,ZKP16] assume extremely strong adversarial models where
the adversary has partial knowledge of the plaintext database/queries.

s-term Leakages. We focus next on the leakages related to the sterm, namely the size
and equality pattern leakages. We begin by noting that these leakages are somewhat in-
herent to the design paradigm of OXT, which we inherit while designing OQXT. Even
in the simpler setting of single keyword search, most existing scheme [Bos16, BMO17,
CJJ+14, CPPJ18, CK10, CGKO06] also incur size and equality pattern leakages; the only
constructions not to incur such leakages seem to rely on the use of ORAM-style data struc-
tures [BMO17, CPPJ18]. Fortifying OQXT with such data structures in an attempt to
prevent this leakage is an interesting open challenge, although this would probably have to
trade-off with some degradation in search performance (mostly in terms of communication
complexity and number of rounds of communication during searches). It is also possible
(and perhaps conceptually simpler) to mask this leakage by using volume-hiding techniques
such as padding and encrypted multi-maps (EMMs) [APP+23b,PPYY19b,KM19b]. This
would incur a degradation in search performance, and it is up to the designer to decide
on a suitable trade-off between performance and leakage. However, we would like to point
out that there are no known data/query recovery attacks on SSE schemes that specially

36

exploit leakages related to the sterm. So we believe that even without the aforementioned
fortifications, OQXT is not vulnerable to any known attacks due to the leakages related to
the sterm, in realistic/practical adversarial settings.

x-term Leakages. Next, we focus on the xterm leakages. These leakages are also inherent
to the design paradigm of OXT, which we inherit while designing OQXT. The only known
attack on conjunctive SSE schemes that exploits a form of xterm leakages is the file injection
attack proposed by Zhang et al. in [ZKP16]. More concretely, the adversarial server must
be able to compute |DB(w1)∩DB(wi)| (where wi is the xterm) when processing the search
query. However for file injection attacks to work efficiently, the adversarial server must
recover, for every xterm, the result size corresponding to each sub-query of the form w1∩wi.
The xterm leakage profile of OQXT is not sufficient to compute this term, since the set of
xtoken values sent to the server is randomly permuted precisely to mask such inference-style
attacks. Finally, fortifying implementations of OQXT by using either ORAM-style data
structures or adopting volume-hiding techniques such as padding or EMMs may be useful
in masking this leakage even further; however, even without such additional fortifications, it
appears that OQXT is not vulnerable to file injection attacks, or any other known attacks
for that matter, due to the leakages related to the xterm, in realistic/practical adversarial
settings.

5 Experimental Results

We describe a prototype implementation of OQXT and evaluate its performance over real-
world databases. We present experimental results comparing the storage requirements and
search performance of OQXT with that of OXT [CJJ+13], IEX-2Lev [KM17] and Con-
jFilter [PPSY21].

5.1 Experimental Setup

In this section, we describe the experimental setup used to evaluate the performance of
OQXT, as well as the parameter choices and other low-level details of our prototype im-
plementation(s) of OQXT.

Data Set and Platform. We used the Enron email dataset10 for our experiments. The
Enron email data set used in our experiments contains around 10K documents (emails) and
80 thousand keyword-document pairs, with a total size of 1.3 GB.11

The complete OQXT implementation was done using C++ (with GCC 9 compiler) and we
used Redis as the database backend. We ran the experiments on a single node with Intel
Xeon E5-2690 v4 2.6 GHz CPU with 128 GB RAM and 512 GB SSD storage.

10https://www.cs.cmu.edu/˜enron/,
https://www.kaggle.com/wcukierski/enron-email-dataset

11The raw Enron dataset consists of folders of emails of individual employees. Since the emails are in
plain English text, we performed a dictionary-based pre-processing to filter the keywords (we removed the
stop-words and punctuation in the process), and created a list of (lexicographically ordered) keywords.

37

https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/wcukierski/enron-email-dataset

Lattice Parameters. We now discuss the lattice parameters used in our experiments.
Concretely, for the LWR samples and associated lattice algorithms, we used two different
OQXT implementations based on two different sets of LWR parameters, as described below.

• The first (smaller) set of LWR parameters are as follows: (n, q, p1, p) =
(
71, 230, 225, 25

)
.

In the rest of this section, we denote by OQXT-I the concreteOQXT realization using
these parameters. We note that these are not realistically secure LWR parameters (and
we do not recommend using these parameters for practical deployments of OQXT),
and are mainly used to depict a toy implementation of OQXT, which we call OQXT-
I. The toy implementation is used because it better depicts the query complexity
and storage overheads of OQXT (and the corresponding comparison with IEX-2Lev
and ConjFilter) for the kinds of database sizes that could be supported given the
(relatively) resource constrained environment that we used for our experiments.

• The second (larger) set of LWR parameters are as follows: (n, q, p1, p) =
(
512, 236, 231, 25

)
.

The concrete OQXT realization using these parameters is denoted by OQXT-II in
the rest of this section. These parameters resist state-of-the-art lattice cryptanalytic
attacks, and we recommend using these parameters for practical deployments of
OQXT. We note, however, that the performance overheads incurred by this set of
parameters is comparatively higher, especially on the (relatively) resource constrained
environment used for the performance evaluation experiments. We envision, how-
ever, that even for these parameters, OQXT would prove to be more scalable as
compared to IEX-2Lev and ConjFilter (especially for extremely large databases
and, in particular, in terms of storage costs) when deployed on powerful servers with
larger resources (which we believe would be used by enterprises and organizations for
real deployment of SSE schemes over extremely large databases). We leave it as an
interesting open question to implement and deploy OQXT on such servers, and com-
pare the corresponding storage and conjunctive search overheads with the other SSE
schemes.

The remaining lattice parameters for OQXT (namely m, m̄ and w, which are basically
related to lattice trapdoors) are chosen based on the recommendations in [MP12] as follows:

m̄ = 2n, w = n log q, m = (m̄+ w).

The concrete figures used for these parameters would depend on the LWR parameters for
OQXT-I or OQXT-II. We present an extended discussion on the performance of OQXT
for these two choices of parameter sets at the end of this section.

Low-level Implementation Details. As already mentioned, we parse the raw Enron
dataset to create a list of keywords, and we associate with each keyword the list of docu-
ments (we map each email to a document associated with a unique document identifier).
This yields our plaintext inverted index DB (this plaintext index has size approximately
650KB, which is 0.05% of the actual plaintext Enron database), which we then encrypt using
the setup algorithm of our OQXT protocol to create the encrypted outsourced database
EDB, comprising of the TSet and XSet data structures. Note that, since we model the En-
ron dataset as a collection of documents and keywords, our formulation of OQXT as an SSE

38

1000 5000 25000 50000
0.005

0.05

1

50

500

Total number of keywords in |DB(W)|

S
to
ra
g
e
(G

B
)

OQXT-I
OQXT-II
OXT

IEX-2Lev
ConjFilter

Figure 1: Server Storage (both axes are in log scale)

scheme for encrypted document collections proves to be the natural choice for prototyping
and experimentation.

Concretely, we build the TSet and XSet data structures for the Enron dataset using Setup rou-
tine [1]. TheOQXT.Setup routine incorporates specialized lattice based operations to gener-
ate the elements that are stored in the TSet and XSet. The Gen Trapdoor function generates
a matrix with trapdoor for every keyword-id pair. The SampleD function samples a short
vector yid from a specific coset of a discrete Gaussian distribution. These two algorithms
are directly incorporated from [MP12]. The heavy computational overhead due to lattice
instantiations are incurred at the setup phase only once and the encrypted data-structures
are then offloaded to the server.

5.2 Experimental Evaluation

In this section, we present the results of our experimental evaluation of OQXT-I and
OQXT-II, and compare the overheads incurred by these implementations with those in-
curred by OXT, IEX-2Lev, and ConjFilter.

Evaluation of Storage Overhead. The difference of OQXT from OXT lies in the
incorporation of lattice-based instantiations replacing the elliptic curve operations. In order
to achieve post-quantum security lattice-based constructions rely upon matrices of large
dimensions due to which the storage overhead of our plausibly quantum-safe construction
is slightly higher than classically secured OXT. The trade-off in storage with security is
however conveniently accepted because storage is considerably cheaper and unconstrained
resource. Figure 1 compares the storage overhead of OQXT and OXT on Enron database.
We vary the number of keywords in the database and observe the change in the storage
pattern. It is observed that although the storage overhead of OQXT surpasses that of
OXT, it increases linearly with the increase in number of keywords in DB.

In Figure 1 we compare the storage overhead of OQXT-I andOQXT-II with IEX-2Lev and

39

250 500 800

1

10

50

150

300

Frequency of the variable term (|v|)

E
n
d
-t
o
-e
n
d
q
u
er
y
ti
m
e
(s
)

(a1 ∧ a2) ∧ v OQXT-I

(a1 ∧ a2) ∧ v OQXT-II

(a1 ∧ a2) ∧ v OXT

(a1 ∧ a2) ∧ v IEX-2Lev

(a1 ∧ a2) ∧ v ConjFilter

Figure 2: End-to-End Search latency with constant frequency of the least frequent term (both
axes are in log scale)

250 500 800

1

10

50

150

300

Frequency of the variable term (|v|)

E
n
d
-t
o
-e
n
d
q
u
er
y
ti
m
e
(s
)

(v1 ∧ v2) ∧ a OQXT-I

(v1 ∧ v2) ∧ a OQXT-II

(v1 ∧ v2) ∧ a OXT

(v1 ∧ v2) ∧ a IEX-2Lev

(v1 ∧ v2) ∧ a ConjFilter

Figure 3: End-to-End Search latency with variable frequency of the least frequent term (both axes
are in log scale)

ConjFilter scheme. Both IEX-2Lev and ConjFilter have a quadratic storage overhead
and exploit the low size of mutual intersections for all pairs of keywords in DB. The storage
overhead scales with the size of the intersection. In a sparse data set, the size of these
intersections for most of the pairs of keywords is very low. However, if the database is not
sparse, this results in large intersections for pairs of keywords and the overhead becomes
truly quadratic. The storage overhead of OQXT increases linearly with the increase in
the number of keywords in the database. OQXT incurs higher storage overhead due to
incorporation of lattice-based constructions.

Evaluation of End-to-End Search Latency. Figure 2 and Figure 3 compares the end-
to-end search latency of OQXT-I and OQXT-II with that of OXT, IEX-2Lev and Con-
jFilter for conjunctive queries. Search performance of OQXT-I and OQXT-II scales

40

asymptotically with the search performance of OXT and ConjFilter and shows 10×
faster performance than IEX-2Lev. To validate this, we consider a three-keyword query of
the form q = (a1 ∧ a2)∧ v, where a1, a2 and v are three keywords from DB. Without loss of
generality, we consider the first term of q (or a1 here) to be the least frequent keyword. We
vary the frequency of v (referred to as the variable term) with different queries where as the
frequency of a is kept constant (constant term). Figure 2 shows a constant time overhead
for conjunctive queries of this form with OQXT-I and OQXT-II, which is identical with
OXT and ConjFilter but considerably faster than IEX-2Lev. This happens because
the conjunctive search time of OXT and ConjFilter depends upon the least frequent
keyword/conjunct. If the least frequent keyword is kept constant the time for searching a
conjunctive query remains constant. In our quantum-safe construction OQXT we preserve
the sub-linear search complexity of the original OXT scheme.

Another set of experiments is carried out on queries of the form q = (v1 ∧ v2)∧ a (Figure 3).
This time we vary the frequency of least frequent keyword a1 with different queries and the
frequency of v is kept constant (since we vary the least frequent keyword, we denote this
variable term as (v1 ∧ v2) and the constant term as a in Figure 3). It is observed from
Figure 3 that the search time of OXT and ConjFilter increases linearly with the increase
in the frequency of the least frequent keyword. OQXT-I and OQXT-II preserves similar
linear dependency of search time with an increase in the frequency of the least frequent
keyword hence is efficiently comparable to both OXT and ConjFilter. The search time
complexity of IEX-2Lev scales following a similar trend but is significantly (10×) more as
compared to OQXT-I and OQXT-II.

The lattice-based instantiations used in OQXT uses matrices of larger dimensions which
is generally compute intensive and increases the execution time. But it is important to
note here that the two lattice-based functions, Gen Trapdoor and SampleD in OQXT are
primarily used during the setup (pre-comptutation) phase. Gen Trapdoor function mainly
incorporates matrix multiplication and only this lattice-based function is the incorporated
during the search phase. The majority of compute intensive operations are carried out during
the setup phase to construct the TSet and XSet elements. Since this is a one-time process
we can safely not include this time in the overall search-query execution time. We report the
data points on the set-up time of OQXT-I and OQXT-II and provide a comparison graph
in Figure 4. The search phase of OQXT incorporates Gen Trapdoor function as the only
lattice based instantiation other than the generation of LWR samples. All the operations
fundamentally reduces to matrix multiplications which can be highly optimized using various
libraries or optimization methods, thereby ensuring efficient query processing.

Pre-Processing Overheads for Setup. Figure 4 compares the setup time required by
OQXT-I and OQXT-II with that of IEX-2Lev, ConjFilter and OXT. It is observed
that OQXT takes considerably more time than the other schemes. This is due to compute
intensive lattice-based operations in- cluding trapdoor generation for every w− id pair which
is carried out during the setup phase in OQXT to construct the TSet and XSet elements.
The time for setup increases linearly with the increase in the number of keywords in the
database. However the setup time for IEX-2Lev and ConjFilter increases exponentially
with the increase in number of keywords. We note here that, for static SSE, setup is es-
sentially a one-time pre-processing step done at the client and does not impact the online
query processing time. As compared to OXT, we view the increased pre- processing time for

41

1000 5000 25000
0.25

0.5

1

10

50

Total number of ws in DB (|∆|)

S
et
u
p
ti
m
e
(m

in
u
te
s)

OQXT-I
OQXT-II
OXT

IEX-2Lev
ConjFilter

Figure 4: Setup time (minutes) (both axes are in log scale)

OQXT-I and OQXT-II as a necessary tradeoff for achieving post-quantum security while
maintaining reasonable storage overheads and competitive online query processing over-
heads. As compared to IEX-2Lev and ConjFilter, we view the increased pre-processing
time for OQXT as a tradeoff for achieving linear storage overheads (as compared to the
worst-case quadratic overheads for IEX-2Lev and ConjFilter) while maintaining fast
practically efficient search overheads.

5.3 Discussion on Our Experimental Results

We conclude the experimental evaluation section with some discussion on the performance
of OQXT.

Storage Overheads. We note that, at first glance, OQXT (especially OQXT-II) incurs
significant storage overheads and setup time as compared to IEX-2Lev and ConjFilter,
both of which are also quantum-safe SSE schemes for conjunctive queries. However, this
is mainly due to the somewhat constrained nature of the experimental setup used for our
experiments. Asymptotically, the storage overheads of OQXT scale linearly with the size of
the database (this is particularly demonstrated by the storage overheads incurred by the toy
implementation OQXT-I in our experiments). On the other hand, the storage overheads
for IEX-2Lev and ConjFilter are quadratic in the number of keywords. For precisely
this reason, we envision that OQXT-II would prove to be more scalable in terms of storage
costs as compared to IEX-2Lev and ConjFilter (especially for extremely large databases
with millions of keywords) when deployed on powerful servers with larger resources (which
would typically be used by enterprises and organizations for real deployment of SSE schemes
over extremely large databases). We leave it as an interesting open question to implement
and deploy OQXT on such servers, and compare the corresponding storage and conjunctive
search overheads with the other SSE schemes.

Conjunctive Query Performance. We note that both OQXT-I and OQXT-II are

42

competitive with OXT and ConjFilter in terms of conjunctive query performance, and
significantly outperforming IEX-2Lev. We leave it as an interesting open question to
further improve the concrete search time of OQXT (perhaps via more optimized implemen-
tation of the underlying mathematical operations related to lattice trapdoor sampling and
the corresponding matrix operations). Regardless, as demonstrated by our experiments,
OQXT achieves reasonably fast and practically efficient conjunctive search overheads while
providing strong lattice-based post-quantum security guarantees (including for the larger
set of parameters that resists state-of-the-art lattice cryptanalysis techniques).

Setup Time. Finally, we note that setup time essentially represents a a one-time preprocessing-
style cost at the client and, for many applications, might not be a significant bottleneck (es-
pecially for static databases). Hence, we do not view the high storage costs of OQXT as
a major issue, and treat it as a tradeoff for the better (asymptotic storage) complexity,
practical query performance and lattice-based quantum-safe security guarantees of OQXT.

6 Conclusion and Future Directions

In this paper, we proposed Oblivious Post-Quantum Secure Cross Tags (OQXT) – the first
lattice-based SSE scheme that supports highly scalable and practically efficient conjunctive
keyword searches over large encrypted document collections. Along the way, we introduced
a novel oblivious cross-tag generation protocol with provable security guarantees derived
from the Learning with Rounding (LWR) assumption. We formally defined the leakage
profile ofOQXT and proved its simulation-based post-quantum security with respect to this
leakage profile against a semi-honest adversarial server. We finally presented a prototype
implementation of OQXT and experimentally validated its performance over real-world
databases. Our work gives rise to many directions of future research. We summarize some
of these below.

Extension to Disjunctive and Richer Boolean Queries. We conjecture that OQXT
can be immediately plugged into extensions of OXT to support disjunctive and richer
Boolean queries, thereby yielding quantum-safe variants of duch extensions. As a con-
crete example, a recent work [BTR+22] proposes a generic framework called TWINSSE
that upgrades any conjunctive SSE scheme into an SSE scheme that supports disjunctive
and richer Boolean queries. Instantiating this framework using OQXT would yield the
first plausibly quantum safe SSE scheme capable of supporting conjunctive, disjunctive and
richer Boolean queries in an efficient and scalable manner. We leave formalizing such an
instantiation as an interesting future direction of research.

Extension to Join Queries. Another recent work [JP22] shows how to extend OXT to
also support join queries over relational databases using a purely symmetric-key framework
called JXT. We believe that OQXT is fully compatible with JXT, and that combining
OQXT with JXT would yield the first plausibly quantum safe SSE scheme capable of
supporting Boolean queries as well as join queries over encrypted relational databases in an
efficient and scalable manner. We again leave formalizing such a combination of OQXT
with JXT as an interesting future direction of research.

43

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages
99–108, 1996.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning
with rounding, revisited - new reduction, properties and applications. In Ad-
vances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, 2013.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
preserving encryption for numeric data. In Proceedings of the 2004 ACM SIG-
MOD international conference on Management of data, pages 563–574, 2004.

[APP+23a] Ghous Amjad, Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung.
Dynamic volume-hiding encrypted multi-maps with applications to searchable
encryption. Proc. Priv. Enhancing Technol., 2023(1):417–436, 2023.

[APP+23b] Ghous Amjad, Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung.
Dynamic volume-hiding encrypted multi-maps with applications to searchable
encryption. Proc. Priv. Enhancing Technol., 2023.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving
encryption revisited: Improved security analysis and alternative solutions. In
Annual Cryptology Conference, pages 578–595. Springer, 2011.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. TOCT, 6(3):13:1–13:36, 2014.

[BKM20] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse
attacks. In NDSS 2020, 2020.

[BMO17] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward
private searchable encryption from constrained cryptographic primitives. In
ACM CCS 2017, pages 1465–1482, 2017.

[Bos16] Raphael Bost.
∑

oφoς: Forward secure searchable encryption. In ACM CCS
2016, pages 1143–1154, 2016.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 719–737. Springer, 2012.

[BTR+22] Arnab Bag, Debadrita Talapatra, Ayushi Rastogi, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Two-in-one-sse: Fast, scalable and storage-efficient
searchable symmetric encryption for conjunctive and disjunctive boolean
queries. IACR Cryptol. ePrint Arch., page 1096, 2022.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In CRYPTO 2011,
pages 505–524, 2011.

44

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In ASIACRYPT 2016, volume 10031, pages 3–33, 2016.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. J. Cryptol., 33(1):34–
91, 2020.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In ACM
CCS 2006, pages 79–88, 2006.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse
attacks against searchable encryption. In ACM CCS 2015, pages 668–679, 2015.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Highly-scalable searchable symmetric en-
cryption with support for boolean queries. In CRYPTO 2013, pages 353–373,
2013.

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable
encryption in very-large databases: Data structures and implementation. In
NDSS 2014, 2014.

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclo-
sure. In ASIACRYPT 2010, pages 577–594, 2010.

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In ACNS 2005, pages 442–455, 2005.

[CPKD22] Javad Ghareh Chamani, Dimitrios Papadopoulos, Mohammadamin Karbas-
forushan, and Ioannis Demertzis. Dynamic searchable encryption with optimal
search in the presence of deletions. In USENIX Security 2022, pages 2425–2442,
2022.

[CPPJ18] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. New constructions for forward and backward private sym-
metric searchable encryption. In ACM CCS 2018, pages 1038–1055, 2018.

[DCPP20] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. Dynamic searchable encryption with small client stor-
age. In NDSS 2020, 2020.

[DPP+] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos N. Garofalakis. Practical private range search revisited.
In Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016.

[DPP+18] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, Minos N. Garofalakis, and Charalampos Papamanthou. Practical
private range search in depth. ACM Trans. Database Syst., 2018.

45

[DPPS20] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. SEAL: attack mitigation for encrypted databases via ad-
justable leakage. In USENIX Security 2020, 2020.

[EKPE18] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David
Evans. Efficient dynamic searchable encryption with forward privacy. PoPETs,
2018(1):5–20, 2018.

[FJK+15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin
Rosu, and Michael Steiner. Rich queries on encrypted data: Beyond exact
matches. In ESORICS 2015, pages 123–145, 2015.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM
STOC’09, pages 169–178, 2009.

[GJW19] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted databases: New
volume attacks against range queries. In ACM CCS 2019, pages 361–378, 2019.

[GKM21] Marilyn George, Seny Kamara, and Tarik Moataz. Structured encryption and
dynamic leakage suppression. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, volume 12698, pages 370–396, 2021.

[GLMP18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
Pump up the volume: Practical database reconstruction from volume leakage
on range queries. In ACM CCS 2018, pages 315–331. ACM, 2018.

[GLMP19] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
Learning to reconstruct: Statistical learning theory and encrypted database
attacks. In IEEE SP 2019, pages 1067–1083, 2019.

[GMP16] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM:
efficient oblivious RAM in two rounds with applications to searchable encryp-
tion. In CRYPTO 2016, pages 563–592, 2016.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM, 43(3):431–473, 1996.

[Goh03] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[GPP23] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. Rethinking search-
able symmetric encryption. In IEEE Symposium on Security and Privacy, SP
2023 (to appear), 2023. Available from https://eprint.iacr.org/2021/879.

[GPPW20] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan Warinschi.
Swissse: System-wide security for searchable symmetric encryption. IACR
Cryptol. ePrint Arch., page 1328, 2020.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pat-
tern disclosure on searchable encryption: Ramification, attack and mitigation.
In NDSS 2012, 2012.

[JP22] Charanjit S. Jutla and Sikhar Patranabis. Efficient searchable symmetric en-
cryption for join queries. In ASIACRYPT 2022, volume 13793, pages 304–333,
2022.

46

https://eprint.iacr.org/2021/879

[Ker15] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 656–667, 2015.

[KKL+17] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan
Kim. Forward secure dynamic searchable symmetric encryption with efficient
updates. In ACM CCS 2017, pages 1449–1463, 2017.

[KKM+22] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos
Treiber, and Michael Yonli. Sok: Cryptanalysis of encrypted search with
LEAKER - A framework for leakage attack evaluation on real-world data. In
EuroS&P 2022, pages 90–108, 2022.

[KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic
attacks on secure outsourced databases. In ACM CCS 2016, pages 1329–1340,
2016.

[KM17] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption
with worst-case sub-linear complexity. In EUROCRYPT 2017, pages 94–124,
2017.

[KM18] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In
Advances in Cryptology - ASIACRYPT 2018 - 24th International, 2018.

[KM19a] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured
encryption. In EUROCRYPT 2019, pages 183–213, 2019.

[KM19b] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured
encryption. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, 2019.

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable
symmetric encryption. In FC 2013, pages 258–274, 2013.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic search-
able symmetric encryption. In ACM CCS 2012, pages 965–976, 2012.

[LMP18] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Improved
reconstruction attacks on encrypted data using range query leakage. In IEEE
SP 2018, pages 297–314. IEEE Computer Society, 2018.

[LPS+18] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep
Mukhopadhyay, Ron Steinfeld, Shifeng Sun, Dongxi Liu, and Cong Zuo. Re-
sult pattern hiding searchable encryption for conjunctive queries. In ACM CCS
2018, pages 745–762, 2018.

[LW16] Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions,
applications, and lower bounds. In ACM CCS 2016, pages 1167–1178, 2016.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a
cryptographic perspective, volume 671. Springer Science & Business Media,
2002.

47

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 700–718. Springer, 2012.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on
property-preserving encrypted databases. In ACM CCS 2015, pages 644–655,
2015.

[PM21] Sikhar Patranabis and Debdeep Mukhopadhyay. Forward and backward private
conjunctive searchable symmetric encryption. In NDSS 2021, 2021.

[PPSY21] Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo. Efficient
boolean search over encrypted data with reduced leakage. In ASIACRYPT
2021, volume 13092, pages 577–607, 2021.

[PPYY19a] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leak-
age in secure cloud-hosted data structures: Volume-hiding for multi-maps via
hashing. In ACM CCS 2019, pages 79–93, 2019.

[PPYY19b] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leak-
age in secure cloud-hosted data structures: Volume-hiding for multi-maps via
hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019,
2019.

[PRZB11] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: protecting confidentiality with encrypted query processing.
In SOSP 2011, pages 85–100, 2011.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM, pages 34:1–34:40, 2009.

[SDY+18] Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu, and Minghao Zhao.
Forward private searchable symmetric encryption with optimized I/O efficiency.
IACR Cryptology ePrint Archive, 2018:497, 2018.

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic
searchable encryption with small leakage. In NDSS 2014, 2014.

[SSL+21] Shifeng Sun, Ron Steinfeld, Shangqi Lai, Xingliang Yuan, Amin Sakzad,
Joseph K. Liu, Surya Nepal, and Dawu Gu. Practical non-interactive searchable
encryption with forward and backward privacy. In NDSS 2021, 2021.

[SWP00] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In IEEE S&P 2000, pages 44–55, 2000.

[SYL+18] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet
Vo, and Surya Nepal. Practical backward-secure searchable encryption from
symmetric puncturable encryption. In ACM CCS 2018, pages 763–780, 2018.

[TK20] Anselme Tueno and Florian Kerschbaum. Efficient secure computation of order-
preserving encryption. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and
Giuseppe Ateniese, editors, ACM ASIA CCS 2020, pages 193–207, 2020.

48

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your
queries are belong to us: The power of file-injection attacks on searchable en-
cryption. In USENIX Security Symposium 2016, pages 707–720, 2016.

49

	Introduction
	Our Contributions
	Lattice-based Oblivious Cross Tags
	Technical Challenges and Solution Overview
	Performance and Security of OQXT
	Related Work

	Preliminaries and Background
	Notations
	SSE: Syntax and Security Model
	TSets
	Basic Cryptographic Primitives
	Lattice Preliminaries

	Oblivious Post-Quantum Secure Cross-tags (OQXT)
	Description of OQXT
	Proof Of Correctness of OQXT
	Complexity Analysis

	Security Analysis of OQXT
	Leakage Profile Analysis
	Proof Of Theorem 1
	Discussion on the Leakage Profile of OQXT

	Experimental Results
	Experimental Setup
	Experimental Evaluation
	Discussion on Our Experimental Results

	Conclusion and Future Directions

