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Abstract—With the development of sequencing technologies,
viral strain classification – which is critical for many applications,
including disease monitoring and control – has become widely
deployed. Typically, a lab (client) holds a viral sequence, and
requests classification services from a centralized repository of
labeled viral sequences (server). However, such “classification as
a service” raises privacy concerns. In this paper we propose a
privacy-preserving viral strain classification protocol that allows
the client to obtain classification services from the server, while
maintaining complete privacy of the client’s viral strains. The
privacy guarantee is against active servers, and the correct-
ness guarantee is against passive ones. We implemented our
protocol and performed extensive benchmarks, showing that it
obtains almost perfect accuracy (99.8%–100%) and microAUC
(0.999), and high efficiency (amortized per-sequence client and
server runtimes of 4.95ms and 0.53ms, respectively, and 0.21MB
communication). In addition, we present an extension of our
protocol that guarantees server privacy against passive clients,
and provide an empirical evaluation showing that this extension
provides the same high accuracy and microAUC, with amortized
per sequences overhead of only a few milliseconds in client and
server runtime, and 0.3MB in communication complexity. Along
the way, we develop an enhanced packing technique in which two
reals are packed in a single complex number, with support for
homomorphic inner products of vectors of ciphertexts. We note
that while similar packing techniques were used before, they only
supported additions and multiplication by constants.

Index Terms—privacy preserving, viral strain classification,
fully homomorphic encryption

I. INTRODUCTION

Comparing newly-sequenced viral strains to repositories of
known variants serves important endeavors of discovering new
variants, tracking variant distribution, etc. A notable example
is the COVID-19 pandemic, where genomic sequencing is
used to track new variants and guide the COVID-19 response.
In a typical use case, a medical or biological lab uses se-
quencing technology [DIB97], [BMC+00] to extract a new
viral sequence from a biological sample. The lab wishes
to classify its newly-sequenced viral strain by comparing it
against a repository containing a collection of observed strains
of viridae sequences, which is held by an entity maintaining
a centralized repository (e.g., ViPR [PSZ+12], [vpr]). Such
centralized repositories then offer a service to the scientific
community, allowing their data to be browsed for sequences
similar to those the lab had sequenced, or offering machine
learning services leveraging their repository.
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However, this naturally raises privacy and intellectual prop-
erty (IP) protection concerns. Indeed, the centralized entity
(the server) provides classification services to various labs (the
clients) in a “machine-learning-as-a-service” business model.
This business model prohibits the server from sending its clas-
sification model to the clients, because the server’s commercial
advantage relies on its unique proprietary knowledge (i.e., the
data or model it holds, which is needed to obtain accurate
classification). The clients likewise cannot send sequences in
cleartext due to privacy and IP concerns. Indeed, sequence
incidence in a lab may constitute sensitive information which,
when coupled with auxiliary information from other sources
(see e.g. [tra]), may be linked to individuals or regions;
moreover, from an IP perspective, specific variants studied in
labs, in certain clinical contexts, should remain secret until the
study is published.

This naturally gives rise to the following question:
Can the server provide a privacy-preserving viral
strain classification service with (1) a single inter-
action round, which (2) retains privacy of the client’s
sequence, and (3) maintains good performance?

To achieve (1)-(2), the client can send the server its
sequence encrypted using Fully Homomorphic Encryption
(FHE) [RAD78], [Gen09], and the server can homomorphi-
cally classify the encrypted sequence. The focus of this work
lies on achieving also the third goal: attaining lightweight
computation and communication without harming accuracy.

A. Our Contribution

In this paper we propose the first privacy-preserving solution
tailored for viral strain classification. Our solution achieves
almost perfect accuracy (99.8%–100%) and microAUC (0.999)
as well as fast runtime (milliseconds). Moreover, it is a
single-round protocol, requiring no further interaction beyond
the insecure baseline solution, and has low communication
complexity (210KB per sequence).

Our work is the first to employ k-mer signatures, which
are commonly used in non-private settings, in the context of
private string classification. These k-mer signatures provide
a concise sequence representation, compressing typical viral
sequences by a factor of 15×–30×.1 Such a compression is

1Concretely, we compress viral sequences of typical length (10,000-120,000
nucleotide in Σ = {A,C,G, T}) to 6-mer or 7-mer signatures, reducing size
from up to 120,000log(|Σ|) = 240,000 bits to at most 47 =8,192 bits.



particularly important in FHE-based protocols, since it trans-
lates to major gains in runtime and communication complexity.

Our solution aligns with clinical usage requirements, both in
achieving excellent accuracy and microAUC – the main selec-
tion criteria when choosing a viral classification method – and
in achieving fast runtime which is well within the clinically-
acceptable regime, adding negligible overhead (milliseconds)
over sample acquisition and sequencing time (hours).
Our privacy-preserving strain classification protocol is exe-
cuted between a client (the lab in the use case described above)
holding sequences (test data), and a server (the centralized
repository) holding a dataset of viral sequences labeled accord-
ing to type. The protocol employs FHE to allow the server to
perform classification without learning anything about the test
data. Specifically, upon termination of the protocol, the client
learns estimates of the likelihood that each of its sequences
belongs to each of the different types, whereas the server
learns no information on these sequences (where privacy holds
against active servers, and correctness against passive ones;
See Section III). Our protocol attains high accuracy, compa-
rable to classification on cleartext data, fast performance, and
provides a rigorous security guarantee.

Theorem I.1 (Informal2). Our privacy-preserving viral strain
classification protocol (Figure 3) satisfies the following:
High accuracy. The client’s output is ϵ-close to the output
of the (non-private) baseline algorithm executed on cleartext
data (see Algorithm 2), where ϵ can be made arbitrarily small
via proper parameters settings.3

Fast client and server. The client only encrypts the test
data (in k-mer representation, see Notation II.1) and decrypts
the output. The server homomorphically evaluates a circuit
of multiplicative depth r1 + r2 + 2 with (r1 + 2)s + r2
multiplications, where r1, r2 are parameters controlling the
approximation error, and s is the number of viral types.
Concretely, in our empirical evaluation, r1 = r2 = 1, so that
the circuit has multiplicative depth 4 and 3s+1 multiplications.
The communication consists of the encrypted sequences, and
the encrypted likelihood vectors.
Security. Privacy of client’s input is guaranteed against
any computationally-bounded malicious server. Correctness is
guaranteed in the semi-honest model.

Extension: privacy of server’s data. Our protocol easily
extends to additionally guarantee privacy of the server’s
data against passive clients. This is achieved by proper re-
randomizing (so called, “sanitizing”) the result ciphertext sent
to the client to guarantee circuit privacy. See Section VI.

2For the formal statement and additional details, see Theorems IV.1
and IV.5, Corollary IV.7, Lemmas IV.1 and IV.3, and the experimental results
(Section V).

3Elaborating on the above, the error ϵ = ϵFHE + ϵinv is the sum of two
error terms: ϵFHE is the error caused by the FHE scheme, and only occurs
when employing an approximate FHE scheme such as [CKKS17]; and ϵinv is
caused by the use of a low-degree polynomial approximation of the inverse
which is used in the homomorphic computation. Both of these error terms
can be made arbitrarily small by an appropriate choice of the input precision
of [CKKS17] and approximation degree, respectively.

Empirical evaluation. We implemented our protocol and
performed extensive benchmarks, showing that it achieves
excellent accuracy and fast performance. We present the key
findings here; See details in Section V- VI.

High accuracy. Our protocol attains very high accuracy
(99.8%–100%) and microAUC (0.999) on the Covid-19
dataset from the iDash competition 2021 [iDa]; See Section V,
Table I. To further establish that our solution obtains high mi-
croAUC (and consequently, high accuracy) for other datasets
as well, we tested our viral strain classification algorithm (Fig-
ure 2) on three additional viral datasets representing typical
viruses (Hepatitis-C, Dengue and Herpesvirus), showing it has
extremely high microAUC on all; See Section V, Figure 4a.

Fast performance. Our system exhibits fast performance.
In batched classification over 2048 encrypted sequences,
the amortized per-sequence performance is: Client’s runtime
4.95ms and RAM 134KB; Communication 0.21MB;4 Server’s
runtime 0.53ms and RAM 194KB; See Section V, Table I.

Furthermore, we report results on exploring the protocol’s
parameters (see Section V, Figures 4a-4b). We show that the
proper setting of the parameter k is dataset dependent, with
appropriate values in the range k ∈ {6, 7, 8} for the explored
datasets representing typical viral sequences. See details in
Section V.

In addition we report results of our protocol achieving
privacy against both client and server by adding a ciphertext
sanitization step; see Section VI and Table II. The extended
protocol achieves the same accuracy and microAUC as our
protocol with no sanitization. The server runtime is larger by
roughly c1 +25(c2− 1) seconds, where c1 ≈ 35 is a constant
overhead incurred by increasing the scheme’s parameter to
support a deeper homomorphic computation, and c2 is a
tuneable parameter controlling the number of randomization-
then-bootstrapping cycles executed as part of the sanitization
algorithm. The analysis in [DS16] shows that c2 = 1, 2 suffices
for [BV14]; a similar analysis for CKKS [CKKS17] is beyond
the scope of our paper.

B. Our Approach

Secure similarity measuring on encrypted k-mer signatures.
We use FHE to privately classify a given NA (i.e., DNA or
RNA) sequence, namely, to measure its similarity to the differ-
ent types included in the dataset of the centralized repository.
Similarity is measured by comparing k-mer signatures (see
Notation II.1).

In more detail, the client FHE-encrypts the k-mer signa-
ture of its NA sequence and sends the resulting ciphertext
to the server. The server first computes from its dataset a
representative k-mer signature for each viral strain. Next, the
server homomorphically compares each representative against
the client’s (encrypted) k-mer signature. Similarity is measured
using Jaccard similarity (i.e., the number of k-mers appearing

4The public-key (95Mb) is reused in repeated queries between a client and
a server with an ongoing commercial relationship, and hence not accounted
for when measuring the per-sequence communication.



in both the representative and the sequence k-mers signatures,
normalized by the total number of k-mers appearing in either,
see Definition II.2). Then, the server homomorphically normal-
izes the similarity scores (i.e., the estimates of the likelihood
that the sequence belongs to each of the types) by dividing
each score by the sum of scores. Lastly, the server sends the
vector of encrypted normalized scores to the client. We note
that measuring similarity through k-mer signatures has been
studied in several contexts related to molecular biology and
genomics, as described in Section VII below.

Next, we highlight further key techniques we introduced to
improve the accuracy and runtime of our protocol.

Fast inversion under FHE. Our protocol homomorphically
computes the inverse of an encrypted value in two occurrences:
(1) when computing the Jaccard similarity; and (2) when
normalizing the scores. Computing the inverse of an encrypted
value is typically an expensive operation when performed
under FHE. A natural solution is to employ the low-degree
polynomial approximation of the inverse function for values in
[0.5, 1.5] from [CKKS17]. However, using the approximation
of [CKKS17] introduces two challenges. First, the values
which our protocol needs to invert do not lie in the range
[0.5, 1.5]. Second, the approximation error in [CKKS17] grows
proportionally to the distance from 1 of the value to be
inverted. To resolve both of these issues, before inversion we
first apply a monotone linear transformation to the values,
bringing them sufficiently close to 1, and in particular into
the allowed range [0.5, 1.5]. Crucially, our transformation does
not harm the accuracy and microAUC scores (because it is
monotone). See Section IV-C for details.

Doubling the packing capacity. Packing multiple plaintext
values in a single ciphertext, and employing SIMD (single
instruction multiple data) computing, is a well-known tech-
nique for optimizing amortized complexity in homomorphic
computations. In this work, we show how to effectively double
the number of plaintext slots, packing twice the number of
plaintext values in each ciphertext compared to the number
of allocated plaintext slots. Our technique can be used with
any FHE scheme that supports encryption of complex numbers
(e.g., the scheme of [CKKS17]), and leverages the fact that
each slot can hold a complex value, whereas our data values
are real numbers. Specifically, we pack two real values in each
complex number slot, one in the real part of the complex
number, and the other in its imaginary part. We support
homomorphic evaluation of the inner-product of two vectors
of ciphertexts which are packed using our enhanced packing.

We note that an independent work proposed similar pack-
ing [HPC+22]. A prior work [BCCW19] proposed another
approach for packing two reals in each complex number slot;
however their technique supports only linear operations over
encrypted data (i.e. multiplication by a scalar and homomor-
phic addition), whereas our packing supports also ciphertext-
to-ciphertext operations, as needed for our protocol.

II. PRELIMINARIES

Notation. We use negl (κ) to denote a function that is neg-
ligible in κ. We use the standard notion of computational
indistinguishability (e.g., from [Gol04]) against non-uniform
distinguishers, denoted by ≈; namely if R,R′ are random
variables then R ≈ R′ denotes that they are computationally
indistinguishable. We use PPT as shorthand for Probabilistic
Polynomial Time. For a complex number x, we use x̄ to denote
its complex conjugate, i.e., if x = a+ ib then x̄ = a− ib. The
characteristic vector of a set S over an (ordered) universe
U = {u1, . . . , un} is the length-|U | vector whose ith enrty is
1 if ui ∈ S, and 0 otherwise. Throughout this paper we abuse
notation in identifying sets with their characteristic vectors
and using sets vs. vector notations interchangeably. For an
arithmetic circuit C, we denote by depth(C) its multiplicative
depth, i.e., the maximal number of multiplication gates on a
path from inputs to output.

k-mer signatures. In bioinformatics, k-mers are length-k
substrings contained within a genome sequence. The (binary)
k-mer signature of a genomic (or nucleic acid - NA) se-
quence is the set of all length k-strings over the alphabet of
nucleotides, Σ = {A,C,G, T}, that actually appear in the
sequence. For example, the 2-mers signature of the sequence
GCAT is {GC,CA,AT}. We represent k-mer signatures by
their characteristic vectors, that is, by the length 4k vector
whose entries correspond to all length-k sequences over Σ in
lexicographic order, and where an entry has value 1 if and
only if its corresponding k-mer occurs in the sequence. For
a sequence s ∈ Σ∗ we denote the k-mer signature of s by
ρ(k)(s). Formally:

Notation II.1. For all j ∈ {1, . . . , 4k}, let σj be the jth
length-k sequence over Σ (in lexicographic order).
The k-mer signature of s is

ρ(k)(s)j =

{
1, if σj appears in s

0, otherwise
(1)

We will omit k when it is clear from the context.

Definition II.2 (Jaccard Similarity). The Jaccard similarity of
two binary vectors u, v of dimension 4k is defined as:

Jaccard(u, v) =
|u ∩ v|
|u ∪ v|

where union and intersection are computed as entry-wise OR
and AND respectively.5

microAUC. We evaluated our protocol using microAUC as
implemented in sklearn [auc]. MicroAUC computes the area
under the ROC curve over all the labels using microAverage.
In more detail, ROC is the curve created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at

5We note that this quantity can be calculated efficiently using inner
products, as described in Section IV-B.



various threshold settings, where TPR and FPR are defined as
follows (for c classes):

TPR =

∑
c
TPc∑

c
TPc +

∑
c
FNc

FPR =

∑
c
FPc∑

c
FPc +

∑
c
TNc

where TPc, FPc, TNc, FNc stand for true positive, false
positive, true negative and false negative, respectively.

Fully-Homomorphic Encryption (FHE) is a public-key en-
cryption scheme E = (Gen,Enc,Dec,Eval) that allows one
to compute “under the hood” of the encryption (without the
secret decryption key). In this paper we use a generalized
approximate notion of FHE, which allows for the decryption
of a ciphertext to differ from the underlying plaintext, as long
as these values are sufficiently close. This captures standard
(exact) FHE schemes as a special case, but allows us to
also employ approximate schemes such as [CKKS17]. For
concreteness, we take the message space to be the complex
numbers (C), as supported by [CKKS17].

Intuitively, an FHE scheme has the following three proper-
ties: (1) Approximate decryption correctness (allowing for a
small decryption error as explained above). (2) Approximate
FHE correctness, in the sense that the ciphertext obtained by
evaluating a circuit C (using Eval) on a set of ciphertexts
decrypts to (a value which is close to) the value that would
have been obtained by evaluating C directly on the underlying
messages. (3) Computational indistinguishability, namely for
every msg ∈ C, the joint distribution of the public key pk
(randomly generated by Gen) and ct ← Enc (pk,msg) is
computationally indistinguishable from the joint distribution
of pk and ct0 ← Enc (pk, 0). This is formalized in the full
version [Ano22] as an ϵ-approximate FHE scheme (where a
0-approximate FHE scheme is simply standard exact FHE). In
particular, in this work we use the approximate FHE scheme
of [CKKS17].

Sub-circuits for homomorphic computations used in our
privacy-preserving protocol.

• Multiplication: We denote by Mul the circuit that on
input a pair of messages msg1,msg2 outputs their product
msg1 ·msg2.

• Addition: For k ∈ N, we denote by Addk the circuit that
on input k messages msg1, . . . ,msgk outputs their sum
msg1 + . . .+msgk.

• Inverse: We denote by inverse the circuit that on input a
message msg outputs its inverse 1/msg. (See a note below
on how this function is homomorphically implemented
in [CKKS17].)

A note on computing the inverse over CKKS [CKKS17]: To
compute inverses, we use a corollary derived from [CKK+19,
Lemma 1]:

Corollary II.3. For every positive integer r and reals α ∈
[0, 1) and x ∈ [1− α, 1 + α]: 1

x (1− α2r ) ≤ xinv ≤ 1
x .

III. PROBLEM STATEMENT

Overview. We consider a setting in which a client Cl interacts
with a server S. S holds a private dataset D consisting of
m labeled examples for a viral strain-classification algorithm
with s possible types,6 and Cl holds an input x consisting of
n sequences that Cl wishes to classify.

Our goal is to allow Cl to accurately classify its input
sequences by interacting with S, while guaranteeing privacy in
the sense that S learns nothing about the input sequences of Cl.
We additionally consider an enhanced model which guarantees
that Cl learns nothing on the dataset of S (except what can be
inferred from her input and output, and the public parameters).
The threat model we address is standard 2-party computational
security in the passive setting, with the stronger guarantee of
privacy against an active server.

In terms of efficiency, we aim to reduce the computational
and communication complexity of the parties. Specifically, we
aim for single-round protocols, and strive to reduce the number
of communicated bits, as well as the complexity of the local
computations performed by the parties. Looking ahead, our
protocols will rely on Fully Homomorphic Encryption (FHE)
which allows the server to run the classification algorithm on
an encryption of x as if it were not encrypted.

The formal details follow.

Viral strain classification functionality. The viral strain clas-
sification functionality involves a client Cl whose input x
consists of n viral sequences, and a server S whose input
is a private dataset D consisting of m labeled examples for
a viral strain-classification algorithm. The public parameters,
denoted params, consist of the number s of strain classes
(types), the number n of sequences, the number of precision
digits ℓ so that real numbers are normalized to [-1,1] with
ℓ digits of precision, as well as any public hyper-parameters
of the learning algorithm.7 The client Cl obtains the classi-
fication result as output, whereas the server has no output.
Concretely, the classification result consists of a list of scores
(sci1, . . . , scis), for each sequence i ∈ [n], s.t.

∑s
σ=1 sciσ = 1.

The latter allows interpreting each score sciσ as the likelihood
that the ith sequence is in class σ. The predicted class can
then be determined to be the one with the highest score, i.e.,
argmaxσ sciσ . We denote this functionality by Cparams (where
C stands for classification), and depict it in Figure 1.

Threat model. Our goal is to guarantee correctness of the
output in the presence of a passive (so-called “semi-honest”)
computationally-bounded server S, as well as privacy of Cl’s
input against an active (so-called “malicious”) server who may
arbitrarily deviate from the protocol to mount any PPT attack.
Namely, for correctness we assume that even a corrupted
S follows the protocol and is restricted to performing PPT
computations (but S tries to infer as much information as

6More generally, we note that it suffices for S to hold the classification
model derived from its dataset, which can significantly improve the server’s
storage complexity.

7In our k-mer based protocol, the hyper-parameters are the k-mer length
k, and a threshold τ ∈ (0, 1).



Parties: A client Cl and a server S.
Public Parameters: the number s of strain classes (types) and n of test sequences to be classified; the precision ℓ so that all values in R
are normalized to [−1, 1] with a precision of ℓ digits; and any public hyper-parameters of the learning algorithm.
Inputs: for S, a dataset D of m labelled viral strains; for Cl, a list x of n sequences to be classified into one of s types.
Output: the client obtains, for every i ∈ [n], a score sci = (sci

1, . . . , sci
s) s.t.

∑s
j=1 sci

j = 1; the server has no output.

Fig. 1: Viral Strain Classification Functionality.

possible from its view of the interaction), whereas for privacy
the only restriction on the server is that it is PPT. We will also
consider extensions that guarantee privacy of S’s input against
a passive Cl.

Terminology. Let Π be a 2-party protocol executed between
the PPT client Cl with input x (a list of n viral strains
to be classified into s classes) and the PPT server S with
input D (a dataset of m labeled viral strains). For public
parameters params (as specified in Figures 1 and 3), we use
Π(x,D, params) to denote the random variable describing the
output of a random execution of Π with public parameters
params when Cl,S have inputs x,D respectively (where the
probability is over the randomness of both parties). The view of
a party – which consists of the public parameters, its input and
randomness, and the messages it received during the protocol
execution on inputs x,D with public parameters params – is
denoted by ViewΠ

Cl (x,D, params) and ViewΠ
S (x,D, params)

for Cl and S, respectively. In an execution of the protocol with
an active server S∗ (who, in particular, may deviate from the
protocol), its view is denoted by ViewΠ

S∗ (x,D, params).

Security notion. We consider standard 2-party computational
security in the passive setting when strengthened to guarantee
privacy against an active server. Formally, we adapt (and
simplify) [HL10, Def. 4.6.1] to the problem of viral strain
classification, as follows.

Definition III.1 (ϵ-Private Viral Strain Classification). We
say that a 2-party protocol Π is an ϵ-private viral strain
classification protocol if the following holds:

1) (1 − ϵ)-Correctness. For every x, D and params (as
specified above),

max
1≤σ≤s,1≤i≤n

∣∣∣(Π (x,D, params))iσ − (Cparams (x,D))
i
σ

∣∣∣ ≤ ϵ

where Π(x,D, params)iσ and (Cparams (x,D))
i
σ denote

the σth score assigned to the ith strain in x by Π and
Cparams respectively, and where the probability is over
the randomness of Cl and S.

2) Privacy (against an active server). For every non-
uniform deterministic polynomial time server S∗, there
exists a (non-uniform) polynomial-time simulator SimS∗

such that for every x, D and params,

ViewΠ
S∗ (x,D, params) ≈ SimS∗ (D, params) .

We extend Definition III.1 to also guarantee privacy against
the client.

Definition III.2 (ϵ-Strongly Private Viral Strain Classifica-
tion). We say that a 2-party protocol Π is an ϵ-strongly
private viral strain classification protocol if it is an ϵ-private
viral strain classification protocol (as in Definition III.1), and
additionally satisfies the following privacy property against a
passive client:

• Privacy (against a passive client). There exists a PPT
simulator SimCl such that for every x,D and params,

ViewΠ
Cl (x,D, params) ≈ SimCl (x, params) .

Discussion. A few remarks are in order. First, as in [HL10],
privacy against the server is defined with respect to determin-
istic servers S∗. This does not limit the generality because S∗

is allowed to be non-uniform (so it can have the “best” choice
of random coins hard-wired into it).

Second, we note that although the privacy against the server
in [HL10] is indistinguishability-based, it is equivalent to
our simulation-based definition (Definition III.1). Indeed, our
definition implies that of [HL10] through a simple union
bound, whereas the indistinguishability-based definition im-
plies simulation in this case because it guarantees that the
simulator can emulate the client’s operations honestly using
the all-0 string as the client’s input.

Finally, we note that the passive versus active distinction
in defining correctness versus privacy (respectively) arises
from the underlying business model: violating correctness puts
the server at a greater risk of reputation damage and loss
of clientele, because inaccurate predictions are more easily
detectable by the client than a breach of privacy. So the server
has a higher business incentive to follow the protocol and
preserve correctness than to protect privacy.

IV. ALGORITHMS AND PROTOCOLS

A. Viral Strain Classification Algorithm

In this section we describe our cleartext strain classification
algorithm (Figure 2). We stress that this algorithm does not
provide any privacy guarantees (see Section IV-B for our
privacy-preserving protocol).

The algorithm includes two phases: First, a pre-processing
phase that, given a training set D of labeled sequences with
labels in {1, . . . , s} representing classes, outputs s class-
representatives denoted ρ1, . . . , ρσ (the trained model). Sec-
ond, a classification phase that, given an unlabeled query
sequence v to be classified as belonging to one of the s
classes, outputs a vector of s scores sc = (J1(v), . . . , Js(v))
where each score Jσ(v) is interpreted as the likelihood that
the sequence v belong to the σth class. The hyper-parameters



Plaintext Classification Algorithm
Parameters: number of classes s and of k-mers K = 4k,
and a threshold τ ∈ (0, 1).
Input: A training set D of m labeled sequences for training
a model during pre-processing, and an unlabeled query
sequence v for classification.
Output: A score vector sc ∈ [0, 1]s assigning a likelihood
score for each viral class.
Pre-processing.

1) For each u ∈ D, compute the k-mer signature ρ(u)
of u (as defined in Section II)

2) For each σ ∈ [s], set its class representative to be
the k-mer signature ρσ defined to be ρσj = 1 (for
j = 1, . . . , 4k) if and only if

|{u ∈ Dσ : ρ(u)j = 1}| ≥ τ |Dσ|

where Dσ ⊆ D is the set of sequences labeled by σ.
Classification.

1) Compute the k-mer signature ρ(v) of v (as defined
in Section II)

2) Compute J ′
σ(v) = Jaccard(ρ(v), ρσ) for all σ ∈ [s]

3) Compute Jσ(v) =
J′
σ(v)∑

σ′ J′
σ′ (v)

for all σ ∈ [s]

4) Output sc = (J1(v), . . . , Js(v))

Fig. 2: Viral strain classification – the cleartext version

are k (or equivalently, the number of k-mers K = 4k) and a
threshold τ ∈ (0, 1).

The pre-processing proceeds as follows. First, transform
each sequence in D to its k-mer signature (Pre-processing,
Step 1). Second, for every label σ = 1, . . . , s, compute a
representative k-mer signature ρσ for the sequences with label
σ in D, by setting ρσj to 1 if the jth k-mer appears in at least
a τ -fraction of the sequences with label σ, and otherwise set
ρσj = 0 (Pre-processing, Step 2).

The classification phase proceeds as follows. First, trans-
form v into its k-mer signature, denoted ρ(v) (Classification,
Step 1). For every label σ = 1, . . . , s, compute the Jaccard
similarity of the k-mer signatures ρ(v) and ρσ (Classifica-
tion, Step 2). Finally, normalize the scores and output these
normalized scores (see Steps 3-4). The predicted label is the
one with the highest score. We remark that the normalization
in Step 3 is only needed if we want to support a unified
classification threshold which, in particular, is the case when
using microAUC to evaluate the correctness of the algorithm.

B. Privacy Preserving Protocol for Viral Strain Classification

Our privacy-preserving viral strain classification protocol
(Figure 3) securely realizes the viral strain classification al-
gorithm specified in Figure 2.

In the following we first give the high-level overview of
our protocol, and then elaborate on: how we compute set op-
erations (intersection, size, and union) via inner-products; our
novel data packing that speedup the inner-product computing;
and the concrete specification of the sub-circuits we use for
computing the set operations while employing our packing.

1) Protocol Overview: Our protocol securely realizes the
cleartext classification algorithm of Figure 2. In the protocol,

the client encrypts the k-mer signatures of its test sequences
and sends them to the server, and the server homomorphi-
cally computes over encrypted data the Jaccard similarity
scores (Figure 2, Classification, Steps 2) and the normalization
(Figure 2, Classification, Steps 3). The server then sends the
resulting ciphertexts to the client. Extending the protocol to
ensure privacy against the client is performed by simply having
the server sanitize these ciphertexts prior to sending them to
the client; see details in Section VI.

Elaborating on the above, the Jaccard similarity score with
each strain representative ρσ is homomorphically computed
in a SIMD manner by first homomorphically computing a
vector Iσ (respectively, Uσ) that contains, in its γth slot,
the intersection (respectively, union) of ρσ with the γth test
virus (see Figure 3, Step 4a). Next, the server uses the
FHE’s homomorphic inversion algorithm inverse (see “Sub-
circuits for homomorphic computations” in Section II) to
compute U−1

σ , and then homomorphically multiples Iσ with
U−1
σ in a SIMD manner. The resultant vector J ′

σ contains,
in its γth slot, the Jaccard similarity of ρσ and the γth test
sequence. Then, the Jaccard similarity scores are normalized
by first homomorphically summing all Jaccard scores J ′

σ ,
then homomorphically computing the inverse of the sum, and
finally homomorphically multiplying each Jaccard score with
the inverse of the sum (see Figure 3, Step 4b).

2) Computing Set Operations and Inner Products:
Similarity scores through set operations. Recall that com-
puting Jaccard similarity scores – which lies at the heart of
our protocol – involves computing intersections and unions of
subsets (in our case, the subsets are of k-mers that appear in
genomic sequences). These operations are expressed in our
protocol as inner products of binary vectors (the indicator
vectors of the sets), as we now describe.
Reducing set operations to inner-products. Let d be a positive
integer and S ⊆ {1, . . . , 2d}. The indicator vector of S is
a vector IndVec(S) ∈ {0, 1}2d such that IndVec(i) = 1 iff
i ∈ S. In addition, for an indicator vector χ, its indicated set,
IndSet(χ) is a set such that χ = IndVec(IndSet(χ)). Then for
any two sets A,B ⊆ {1, . . . , 2d}:

• |A| = ⟨IndVec(A), (1, . . . , 1)⟩.
• |A ∩B| = ⟨IndVec(A), IndVec(B)⟩.
• |A ∪B| = |A|+ |B| − |A ∩B|.

Efficiently computing inner products using complex num-
bers. Recall that our protocols operate over reals, whereas the
underlying FHE scheme [CKKS17] supports messages that are
complex numbers. The naive way to compute inner products in
such a scheme is to interpret each real-valued message entry
as a complex number with imaginary part 0. However, this
“wastes” half of the positions in the complex-number message,
leading to increased storage and running time. To prevent
this increase, we propose a novel encoding that utilizes the
imaginary part.

3) Our Novel Encoding.: We show how to efficiently re-
duce inner products of vectors in R2d to operations on vectors
in Cd, allowing us to exploit the imaginary part of messages



Privacy-Preserving Classification Protocol
Parameters: Both server and client known the number of strain classes s, k-mers K = 4k and test sequences n, and an FHE scheme
(Gen,Enc,Dec,Eval) and its public parameters params. The server also know a threshold τ ∈ (0, 1).
Input: The server holds a training dataset D of m labeled sequences; the client holds n sequences to classify.
Steps:

1) Training (Server). The server S performs the following one-time pre-processing phase, over the cleartext D. (This step is
performed only once for each dataset D, and can be done offline before the test sequences are known.)
– Computes representative k-mers signatures ρ1, . . . , ρs of the strain classes, as specified in Step 2 of Figure 2.
– Encodes and packs each representative ρσ according to the server-encoding and server-packing described in Sections IV-B3

and IV-B4. Specifically, if bl,σ is a Binary indicator such that bl,σ = 1 iff the lth k-mer appears in the representative of the
σth strain, then ρσ is encoded as K/2-many vectors msgρ

σ

1 , . . . ,msgρ
σ

K/2, where msgρ
σ

l = ((b2l−1,σ − i · b2l,σ), (b2l−1,σ −
i · b2l,σ), . . .) ∈ Cj .

2) Generating keys (Client). The client generates encryption keys (this step is performed once per client) as follows:
a) Generates a public key and secret key pair (pk, sk)← Gen(1κ, params).
b) Send pk to the server.

3) Preprocessing, encoding and encrypting (Client). The client:
a) Computes the k-mers signature for each of its test sequences, as described in Step 1 of Figure 2. We denote by bl,j the Binary

indicator such that bl,j = 1 iff the lth k-mer appears in the jth test sequence.
b) Encodes and packs the n length-K k-mer signatures using the client-encoding and client-packing (as described in

Sections IV-B3 and IV-B4) to get messages m1, . . .mK/2, where ml = (b2l−1,1 + i · b2l,1, b2l−1,2 + i · b2l,2, . . .). (That
is, for example, m1 contains the indicators of the first and second k-mers over all test sequences.)

c) Encrypts the messages cl ← Enc(pk,ml), for l = 1, . . . ,K/2.
d) Sends c1, . . . , cK/2 to the server.

4) Classification (Server). The server classifies each of the client’s test sequences as follows:
a) Computes the Jaccard similarity scores (see Step 2 of Figure 2, and Definition II.2) between the test sequences and the strain

representatives, where the Jaccard similarity Jσ for σ = 1, . . . , s is computed as follows:
i) Iσ ← Eval(pk, setIntersectρσ , c1, . . . , cK/2).

ii) Uσ ← Eval(pk, unionρσ , c1, . . . , cK/2).
iii) U inv

σ ← Eval(pk, inverse, Uσ).
iv) J ′

σ ← Eval(pk,Mul, Iσ, U
inv
σ ).

b) Normalizes the scores as follows:
i) sum← Eval(pk,Adds, J ′

1, . . . , J
′
s ).

ii) suminv ← Eval(pk, inverse, sum).
iii) Jσ ← Eval(pk,Mul, J ′

σ, sum
inv), for each σ = 1, . . . , s.

c) Sends J1, . . . , Js to the client.

Fig. 3: Privacy-preserving classification protocol

in FHE schemes such as [CKKS17] that operate over complex
number messages. This effectively reduces the message length
by a factor of 2, reducing storage and runtimes.

The Encoding. Our novel encoding M : R2d 7→ Cd, given a
real-valued vector v = (v1, . . . , v2d) ∈ R2d, outputs:

M(v) = (v1 + iv2, . . . , v2d−1 + iv2d) ∈ Cd.

(Here, i =
√
−1.) It is easy to see that for all v, u ∈ R2d,

⟨v, u⟩ = (t+ t)/2, where t = ⟨M(v),M(u)⟩.

Particularly, when performing homomorphic operations us-
ing [CKKS17], this encoding allows us to reduce the number
of ciphertexts by half, at the cost of performing 2 additional
conjugate operations and one additional division by a con-
stant. For sufficiently large values of d, this is more efficient
than performing the inner product using the naive encoding
described in the previous section. Looking ahead, by appro-
priately encoding the server’s input, we can further reduce
the overhead in our implementation to a single conjugate
operation.

Client’s Encoding. The encoding M described above is used
to encode the client’s data in our protocol.

Server’s Encoding. For the server’s data we use a slightly
modified encoding, which allows us to compute the inner prod-
ucts (between the client’s test viruses and the server’s strain
representatives) more accurately and efficiently. Roughly, the
server’s input is first encoded using the encoding M described
above, then each entry is conjugated and divided by 2.
Specifically, a vector ρ = (ρ1, ρ2, . . . , ρK−1, ρK) ∈ {0, 1}K
is encoded into (msgρ1, . . . ,msgρK/2) ∈ CK/2 where msgρℓ =

(ρ2ℓ−1

2 − iρ2ℓ

2 ).

Advantages. There are several advantages to using this modi-
fied encoding. First, it reduces the overhead needed to compute
the inner product, specifically, saving one conjugate operation
and the division by 2. Additionally, performing the division
on the server’s data (which is used in the computation as
plaintexts) instead of on the client’s encrypted data has the
added benefit of increasing accuracy. Indeed, in [CKKS17]
there is an asymmetry between plaintexts and ciphertexts
because an error is added to ciphertexts. In our protocol, the



ciphertext (and consequently also the error) is multiplied by
the plaintext, so decreasing the value of the plaintext improves
the accuracy of the resultant product.

4) Data Packing: In this section we discuss our input
packing, which allows us to utilize ciphertext slots to classify
multiple viruses in parallel. In addition to using different
encodings of the client and server data, we also use different
packing methods. This asymmetry arises from the different
roles of the parties’ inputs, specifically, each of the client’s
test viruses should be compared with all of the server’s strain
representatives. We stress that the data encoding described
above is orthogonal to how data is packed in slots.

Client’s Packing. Suppose the number s of plaintext slots
available in each ciphertext equals the number n of viruses
in the test set. To encrypt n length-K/2 vectors, the client
generates K/2 ciphertexts (each containing s slots), where the
jth slot in the ith ciphertext contains the ith entry of the jth
vector. (If s < n, the client partition the viruses into subsets of
size at most s, and apply the above on each subset. Conversely,
if s > n, the client packs ⌊s/n⌋ k-mers for every virus in each
ciphertext.)

Server’s Packing. When s = n, for each encoded strain
representative (which is of length K/2), the server computes
K/2 ciphertexts, where the ith ciphertext holds n copies of the
ith entry of the representative. (If s < n, the server computes,
for each of the K/2 entries in his encoded representative, n/s
ciphertexts with s copies of that entry. Conversely, if s > n,
then since the client packs ⌊s/n⌋ encoded k-mers for each
virus in each ciphertext, the server packs in each ciphertext n
copies of each of the corresponding s/n encoded k-mers.)

Further optimization. We note that when each ciphertext on
the client includes a single entry (i.e., a single k-mer) from
each test vector, then the ciphertext obtained through server-
packing encrypts a constant vector (with the same value in all
entries). In this case, our protocols are optimized to multiply
with a constant (instead of with a constant vector). However,
allowing this more general packing on the server allows us
to handle a wider range of parameter settings, in which – as
described below – ciphertexts may pack several k-mers from
each plaintext.

The combination of these client- and server-packing is more
amenable to computing inner products than the more direct
packing in which all entries of a single vector of plaintext
values are packed into a single ciphertext. Indeed, computing
inner products over vectors packed in this direct method
requires a large number of rotations to sum over the different
slots, whereas no rotations are needed when using our packing
methods. We remark that when s > n so that several k-mers
are packed in each ciphertext then computing the inner product
does involve some rotations, albeit still less than when using
the direct packing.

5) Sub-Circuits for Set Operations: The protocol uses the
sub-circuits specified below for computing set intersection,
size and union operations. In the following, server-encoding

and server-packing (respective, client-) refer to the aforemen-
tioned Server’s Encoding and Packing (respectively, Client’s).

Set intersection: Let ρ ∈ {0, 1}K be an indicator vector which
is server-encoded and server-packed into msgρ1, . . . ,msgρK/2,
namely, msgρl = (ρ2l−1 − i · ρ2l, ρ2l−1 − i · ρ2l, . . .). Let
v1, . . . , vn ∈ {0, 1}K be indicator vectors which are client-
encoded and client-packed into msgv1, . . . ,msgvK/2, where
entries 2l − 1, 2l of vγ are packed in the γth slot of msgvl
as vγ2l−1 + i · vγ2l. We define the circuit setIntersectρ that on
input msgv1, . . . ,msgvK/2 outputs a ciphertext such that the γ-
th slot holds |IndSet(ρ) ∩ IndSet(vγ)|. This is computed as
(z + z)/2, where

z =
∑
ℓ

msgρℓ ·msgvℓ =
∑

ℓ∈ℓ1∪ℓ1−i

msgvℓ−i·
∑

ℓ∈ℓ−i∪ℓ1−i

msgvℓ ,

where ℓp = {ℓ | msgρℓ = p} for p ∈ {1,−i, 1−i}. We note that
the sub-circuit computing z requires a single multiplication (by
the imaginary unit i).

Set size: Let v1, . . . , vn ∈ {0, 1}K be set indicator
vectors which are client-encoded and client-packed into
msgv1, . . . ,msgvK/2. We define the circuit setSize which on
input msgv1, . . . ,msgvK/2 outputs a length-n vector whose
γth slot holds |IndSet(vγ)|. More specifically, the output is
(t+ t)/2, where

t =
∑
ℓ

msgvℓ − i ·
∑
ℓ

msgvℓ .

(This is because set size can be computed as the intersection
with the set of all k-mers, represented by the vector (1−i)K/2.)
We note that the sub-circuit computing t requires a single
multiplication (by the imaginary unit i).

Set union: Let ρ ∈ {0, 1}K be an indicator vector
which is server-encoded and server-packed into
msgρ1, . . . ,msgρK/2. Also, let v1, . . . , vn ∈ {0, 1}K be
indicator vectors client-encoded and client-packed into
msgv1, . . . ,msgvK/2. We define the circuit unionρ that on
input msgv1, . . . ,msgvK/2 outputs a ciphertext such that
the γ-th slot holds |IndSet(R) ∪ IndSet(vγ)|. This is
computed by first computing setSize(msgv1, . . . ,msgvK/2) −
setIntersectρ(msgv1, . . . ,msgvK/2), and then adding
|IndSet(ρ)| to each slot, where |IndSet(ρ)| is computed
in plaintext.

C. Analysis of Our Protocol

We now prove that our protocol is secure.

Theorem IV.1. Let E = (Gen,Enc,Dec,Eval) be an ϵ-
approximate FHE scheme. Then the protocol of Figure 3, when
instantiated with E as the underlying FHE scheme, is a private
viral strand classification protocol (as in Definition III.1).

The full correctness analysis – including a precise bound on
the approximation error of our protocol – is discussed below.
Extensions obtaining privacy against the client are described
in Section VI.



Proof of Theorem IV.1. Correctness is analyzed in Sec-
tion IV-C1.

Privacy (against the server). Intuitively, privacy against
the server follows from the secrecy of the FHE scheme. This
holds against an active server because the protocol consists of
a single message from Cl to S, followed by a single message
from S to Cl. Therefore, the (possibly malicious) operations
the server performs in the protocol do not affect its view. We
proceed to describe the formal proof.

Let S∗ be a (possibly actively corrupted, possibly non-
uniform) server in the protocol of Figure 3. We describe a
PPT simulator SimS∗ which simulates the view ViewΠ

S∗ of
S∗. SimS∗ is given the input D of S∗, as well as N and
the public parameters params (which include m, ℓ, κ, and the
length n of the client’s input), and operates as follows:

• Generates encryption keys (pk, sk) ←
Gen(1κ, N, params), and samples random coins R
for the server.

• Let v1, . . . , vK/2 denote n length-K/2 vectors where
vl = (0 + i · 0)n for every 1 ≤ l ≤ K/2. Then
SimS∗ randomly encrypts v1, . . . , vK/2 by computing
cl ← Enc(pk, vl) for l = 1, . . . ,K/2.

• Outputs D,N, params,pk, R and c1, . . . , cK/2 (that is,
c1, . . . , cK/2 simulate the encrypted test viruses which
the client sent the server).

We claim that the simulated and real views are computation-
ally close. Indeed, the inputs and public parameters are identi-
cal in both views, and the random coins R and the public key
pk are distributed identically in the real and simulated views.
Therefore, it remains to prove that conditioned on these values,
the simulated test sequences cl, . . . , cK/N are computationally
indistinguishable from the real-world ciphertexts which the
client sent the server. As we now explain, this follows from the
computational security of E using a standard hybrid argument
in which we move from the output of SimS∗ to ViewΠ

S∗ by
replacing each of the K/2 = poly (κ) ciphertexts from real to
simulated.

Specifically, let v1,R, . . . , vK/2,R denote the vectors which
the client generates in the real protocol execution. We define
hybrids H0,H1, . . . ,HK/2, where in Hl, 0 ≤ l ≤ K/2 the
first l ciphertexts c1, . . . , cl are sampled as fresh encodings
of v1,R, . . . , vl,R, and the rest of the ciphertexts are sampled
as fresh encodings of the all-zero vector. Then H0 is the
output distribution of the simulator, whereas HK/2 is dis-
tributed identically to ViewΠ

S∗ . Since the are K/2 = poly (κ)
pairs of hybrids, it suffices to show that Hl−1 ≈ Hl for
every 1 ≤ l ≤ K/N . Indeed, assume towards negation
that Hl−1,Hl are not computationally close, and let D be a
distinguisher between Hl−1,Hl. We describe a (non-uniform)
distinguisher D′ between encryptions of vl,R and vl. D′

has v1,R, . . . , vK/2,R, D,N and params hard-wired into it.
Given a public key pk and a ciphertext c (encrypting either
vR,l or vl) it generates c′z ← Enc

(
pk, vz,R

)
for every

1 ≤ z < l, and c′′z ← Enc (pk, vz) for every l < z ≤ K/2.
Then, it samples random coins R for the server, runs D on

input D,N,pk, params, R, c′1, . . . , c
′
l−1, c, c

′′
l+1, . . . , c

′′
K/2 and

outputs whatever D outputs. Notice that if c encrypts vl then
D is run with a sample from Hl−1, otherwise it is run with
a sample from Hl. Therefore, D′ obtains the same (non-
negligible) distinguishing advantage as D, which contradicts
the security of the FHE scheme.

1) Correctness and Approximation Error Analysis: Our
protocol approximates the algorithm from Figure 2, in the
sense of “(1 − ϵ)-correctness” of Definition III.1 (for an
appropriate parameter ϵ as specified below). The approxi-
mation error emanates from two sources. First, when we
instantiate our protocol with an approximate FHE scheme for
the underlying encryption scheme (as indeed we do in our
empirical evaluation), then the scheme itself introduces an
approximation error in decryption. Second, in our protocol
we use a polynomial approximation to compute the inverse,
which introduces an additional approximation error. In this
section, we analyze the effect each of these has on the total
error incurred by our protocol, and bound the approximation
error. We first establish some notations.

Notation IV.2 (Non-private protocol π̃.). We denote by π̃ the
protocol implementation of the non-private classification algo-
rithm of Figure 2 in Section IV-A. More accurately, π̃ denotes:
(1) a parallel-repetition version of this algorithm, in which
several unlabeled sequences are classified simultaneously; and
(2) all computations are performed by the server, except for
computing the k-mer signatures ρ(v) of each of the client’s
sequences v (used in Step 2) which are computed by the client
and sent to the server.

Notation IV.3. Let π denote the protocol of Figure 3. We
denote by πCKKS the protocol obtained when π is instantiated
with [CKKS17] as the underlying FHE scheme.

Definition IV.4. Let π be a 1-round protocol between a client
and server, in which the client sends encrypted data to the
server, the server homomorphically computes on it, and sends
the encrypted outcome back to the client. The multiplicative
depth depth(π) of π is the multiplicative depth of the circuit
computed by the server on the client’s encrypted data, i.e., the
largest number of multiplication gates on a path from input
to output.

With these notations in place, we can now bound the error
introduced by our protocol (See Corollary IV.7 below for a
detailed analysis of the error.)

Theorem IV.5 (Correctness). Let πCKKS denote the protocol of
Figure 3 when instantiated with [CKKS17] as the underlying
FHE scheme, and let π̃ denote its non-private counterpart
specified in Notation IV.2. Let ϵinv denote the accumulated
error induced by approximating the inverse in Steps 4(a)iii
and 4(b)ii in Figure 3, and let ϵCKKS > 0 denote the error
induced by the encryption operation of [CKKS17]. Then there
exists a constant ϵ′ such that

max
x
|πCKKS(x)− π̃(x)| < ϵinv+ ϵCKKS ·2depth(π)+ ϵ′ · (2d−1)



where depth(π) denotes the multiplicative depth of the proto-
col π of Figure 3 (see Definition IV.4). Moreover, ϵ′ depends
only on the parameters used to instantiate the encryption
scheme of [CKKS17], and can be made arbitrarily small by
appropriately setting these parameters.

Roadmap towards proving Theorem IV.5. We briefly highlight
the main points in the proof; see the full version [Ano22] for
the full proof. Recall that our protocol has two sources of
error: (1) error resulting from encryption error in the under-
lying FHE scheme (which is accumulated over homomorphic
computations); and (2) the error caused by the approximate
computation of the inverse function in Steps 4(a)iii and 4(b)ii
in Figure 3. In the full version [Ano22], we first bound (1)
using the analysis of [CKKS17] which roughly shows that
for an appropriate choice of the scheme’s parameters, each
multiplication doubles the error induced by encryption. Conse-
quently, the overall error caused by performing homomorphic
computations with an approximate FHE scheme is roughly
ϵCKKS · 2depth(π), where ϵCKKS is the error introduced during
encryption, and depth(π) is the multiplicative depth of the
protocol. Then, we bound (2) by analyzing the accumulation of
error over the different steps of our protocol. More specifically,
the analysis isolates the error caused by the approximate
computation of the inverse, by assuming the FHE scheme is
exact. (see the full version [Ano22] for the full analysis.) We
approximate the inverse of a value x using a polynomial ap-
proximation, where the quality of the approximation depends
on the tail. In particular, the approximation error depends both
on the distance of x from 1, namely on the bound α one can
give on |1− x|, and on the number r of summands which we
keep (i.e., the tail begins with summand number r+ 1).8 The
following notation will be useful.

Notation IV.6 (Parameters of the approximation). Recall that
the protocol π of Figure 3 computes two approximate inverses:
(1) the inverse U inv

σ of Uσ in Step 4(a)iii, and (2) the inverse
suminv of sum in Step 4(b)ii, where the quality of these
approximations depend on the distance of the inputs from
1, and the number of summands used in the polynomial
approximation (equivalently, the multiplicative depth of the
circuit computing the approximation). We denote these bounds
by α1, α2, namely |1 − Uσ| ≤ α1, and |1 − sum| ≤ α2.
Moreover, we denote by r1, r2 the multiplicative depths of
the circuits used to approximate the inverses of Uσ and sum
(respectively).

With these notations in place, we are now ready to give a
more accurate bound on the error of our protocol:

Corollary IV.7. Let π denote the protocol of Figure 3, and let
π̃, πCKKS, α1, α2, r1, r2 be as in Notation IV.2, Notation IV.3
and Notation IV.6 (respectively). Assume that α2 ≥ 1 −
min{sum} + s

1−α2r1
1

1−α1
. Then for any ϵ′ > 0 a key can be

initialized such that, maxx |πCKKS(x) − π̃(x)| is at most

8We note that r corresponds to the depth of the circuit approximating the
inverse, because the polynomial approximation is computed iteratively.

2α2

1−α2
2
+ ϵCKKS · 2r1+r2+2 + ϵ′ · (2r1+r2+2 − 1) where s is the

number of strains in the server’s dataset, and ϵCKKS bounds
the error introduced during the encryption of the inputs x to
πCKKS.

D. Complexity Analysis

We analyze the server complexity in the protocol of Fig-
ure 3, specifically its depth, RAM requirement, and the number
of multiplications it makes. The client complexity analysis is
straightforward; details omitted due to space constraints.

Depth. Steps 4(a)i and 4(a)ii in Figure 3 both involve only
a multiplication by the imaginary unit i (see Section IV-B5)
which in some implementations of CKKS does not require a
multiplication level.

In Step 4(a)iii we apply the inverse sub-circuit (see “Sub-
circuits for homomorphic computations” in Section II) whose
depth is r1. We then multiply Iσ and U inv

σ , which adds one
additional layer to the multiplicative depth. In Step 4(b)ii
we again apply the inverse sub-circuit, this time with depth
r2, and in Step 4(b)iii we normalize the Jaccard scores (by
multiplying them with the outcome of Step 4(b)ii) which adds
one additional layer to the multiplicative depth. In summary,
the depth of the protocol of Figure 3 is r1 + r2 + 2:

Lemma IV.1. The multiplicative depth of the protocol of
Figure 3 is r1 + r2 + 2.

RAM requirements. Using our packing the server can work
in a pipeline manner, i.e., (1) receive a ciphertext from the
client, (2) add its contribution to the computation, and (3)
discard it. Specifically, only Steps 4(a)i and 4(a)ii involve
computations on ciphertexts directly received from the client.
In these steps 2s subsets of ciphertexts are added to compute
the inner product with s representatives. Also, the ciphertexts
are summed to compute setSize for the client’s test virus. In
the following steps the protocol uses O(1) ciphertexts for each
strand. We therefore get:

Lemma IV.2. The server in the protocol of Figure 3 needs to
keep O(s⌈ nm⌉) ciphertexts to execute the protocol, where m is
the number of slots in a ciphertext.

Number of Multiplications Steps 4(a)i-4(a)ii involve only
multiplications by a scalar. Steps 4(a)iv and 4(b)iii involve 2s
multiplications. Applying the inverse in Steps 4(a)iii and 4(b)ii
require r1 and r2 multiplications, respectively. Therefore:

Lemma IV.3. The server in the protocol of Figure 3 needs to
perform (r1 +2)s+ r2 multiplications of pairs of ciphertexts.

V. EXPERIMENTAL RESULTS

We implemented our protocol of Figure 3 into a system
and ran extensive experiments to measure its performance.
We describe our system in Section V-A, the experiments in
Section V-B and the experimental results in Section V-C.



A. The Implemented System

Our system comprised of a client application and a server
application. Both applications were written in C++. We
used the FHE implementation of the Microsoft SEAL li-
brary [sea21], as well as IBM’s HElayer library [hel] that
provides a convenient development environment with wrapper
access to leading FHE libraries, implementation of common
basic functionalities such as computing inverse over encrypted
data, and support for fast testing of versatile packing op-
tions [AAB+20].

Batched computing. We submitted our system to the iDASH
competition 2021 [iDa], in which we classified a batch of 2000
viruses. The parameters of the key however dictated that each
ciphertext has 4096 plaintext slots. To utilize this, we modified
our packing (using the HElayers library) to allot two slots to
each virus, which required a minor change in the protocol of
Figure 3 (specifically, using a single rotation in Step 4(a)ii and
another in Step 4(a)i to sum the two slots together). Similarly
supporting smaller batches of viruses can be done efficiently
by allotting more slots to each virus.

B. Experiments and Measuremeants

We first describe the experimental setup.

Hardware. We ran the client and the server on a system with
a single Intel Xeon core running in 2.4GHz.

Systems’ parameters. In our experiments, the threshold when
computing the representatives was τ = 0.2, and we tested
performance on k = 6, 7, 8, 9, r1 = 1, 2, 3, 4 and r2 = 1.
Parameters were chosen using standard ML methods (cross-
validation), showing that k ≤ 7 suffices for our datasets
(representing typical viral sequence lengths).

The SEAL parameters were set as follows. All experiments
are with a key with 128 bits of security. The scale and precision
are set to 234 and 239, respectively. To improve performance,
the degree of the cyclotomic polynomial is the lowest that
supports the depth of our protocol, which is 8192 in the
experiments with r1 = 1, and 16384 otherwise. The number
of available plaintext slots in each ciphertext is 4096 and 8192
respectively.

The data. We ran extensive tests on the dataset provided by
the iDASH competition [iDa], which included labeled DNA
sequences of 4 strains of COVID-19 viruses (2000 viruses
from each strain, for a total of 8000 viruses). Each virus was
given as a sequence of about 29,000 DNA letters. We split
the data into disjoint training and test sets. The training (test)
set included 1500 (500) viruses from each strain for a total
of 6,000 (2,000) viruses. Moreover, to demonstrate that our
solution consistently obtains high microAUC, we tested our
algorithm (Figure 2) on 3 additional viral datasets: Hepatitis-
C [hcv], Dengue [dng] and Herpes [hrp], demonstrating high
microAUC on all these datasets.

The experiments. To test our protocol we used the aforemen-
tioned sets of labeled viral DNA sequences. We split each set
into disjoint training and test sets. The former is the server’s

input in our protocol, and the latter – when stripped from
the labels – is the client’s input. That is, the server trains
(i.e., finds a representative for each strain) using the training
set. The client converts the (striped from labels) test set to k-
mer signatures, encrypts and sends the ciphertext to the server
for classification. The server sends the encrypted outcome of
the homomorphic classification to the client for decryption.
Accuracy and microAUC are measured by comparing the
results of the homomorphic classification in our protocol to
the true labels of the test set.

Our experiments measure performance in batched classifi-
cation, where (1) the client’s input (i.e., the test set) consists
of multiple sequences to be labelled; and (2) multiple entries
of the k-mer signatures of the test set sequences are packed in
each ciphertext, and processed in SIMD fashion. The threshold
τ (cf. Figure 2) was set to 0.2, using cross-validation.

We repeated the experiment for different values of k (the
k-mer size) and r1 (the depth of the sub-circuit computing
inverse(Uσ) in Step 4(a)iii of Figure 3) to explore how our
measurements change for different values.
The measurements. We measure the following key perfor-
mance metrics in our experiments:

• Encryption time. The client’s runtime for encrypting the
k-mer signatures of all sequences in its test set.

• RAM requirement. The amount of RAM the client used
in the encryption process.

• Communication size. The size of the data transferred
from the client to the server, i.e., the size of the encrypted
test set.

• Classification time. The server runtime for homomorphi-
cally classifying the viruses in the encrypted test set.

• Server RAM. The amount of RAM the server needed to
homomorphically evalute the classification task.

• Accuracy. The percentage of successful classifications.
• microAUC. See definition in Section II.
In addition we measure: (1) the total client runtime which

includes on top of encryption time also the time it took the
client to convert all viruses in the test set to their k-mer
signatures, and to decrypt the encrypted result it receives from
the server; and (2) total communication size which includes
on top for the client-to-server communication also the server-
to-client response.

To account for the fact that we pack multiple k-mer entries
in each ciphertext, we additionally report the amortized per-
formance per virus in the test set. Concretely, we report the
amortized encryption time, amortized communication size and
amortized classification time, defined to be the corresponding
non-amortized measures as specified above, when divided by
the number of viruses in the test set.

C. Results
We now discuss our key finding, which are summarized in

Figure 4a and Table I.
microAUC. Our experiments show (Figure 4a) that for an
appropriate choice of k our classification algorithm (Figure 2)
yields almost perfect microAUC on all tested datasets.



(a) our algorithm on four viral datasets

(b) our protocol on r1 ∈ [1..4] vs. our algorithm

Fig. 4: MicroAUC in our secure protocol on encrypted data
(Figure 3) vs. our algorithm on cleartext data (Figure 2).
(Curves are slightly jittered, for better visualization.)

We note that the parameter k should be set in accordance
with the length of the sequences in the dataset: for sequences
of length roughly 10,000-30,000 DNA letters (Covid-19 [iDa],
Hepatitis-C [hcv], Dengue [dng]), k = 6 suffices; whereas for
datasets of sequences of length 150,000 (Herpes [hrp]), k = 7
is needed. We note that for sequences of length >150,000,
larger k may be required, but this is usually not the case in
viral sequences.

Our privacy-preserving protocol (Figure 3) obtains almost
identical microAUC to the cleartext algorithm (Figure 2) for
k = 6, 7; See Figure 4b. However, as k grows there is a gradual
deterioration in the microAUC obtained over encrypted data
compared to over cleartext. This is because the error of the
low-degree polynomial approximation of the inverse grows
(see ϵinv in Corollary IV.7), due to the combination of the two
following facts. First, this approximation error grows propor-
tionally to the distance from 1 of the number to be inverted.
Second, the number to be inverted (i.e., the denominator in
our Jaccard similarity) is the fraction of k-mers appearing in
the k-mer signatures of both the test sequence and the type
representative; and this fraction decreases when k increases, so
increasing k also increases the distance from 1. To remedy the
situation, we can increase the degree r1 of the polynomial used

to approximate the inverse over encrypted data, in accordance
to the increase in k. Indeed, when increasing r1 from 1 to 4,
we get high microAUC even for k = 9; See Figure 4b.

Accuracy. In addition to measuring microAUC we also mea-
sure accuracy, showing (Table I) that our protocol obtains high
accuracy (in the range of 99.8%− 100%).

Runtime, communication and RAM performance over en-
crypted data. The performance of our privacy-preserving
protocol are summarized in Table I.

The results demonstrate the good performance of our pro-
tocol. For example, for k = 6 and r1 = 1, performance is as
follows. The server’s runtime for homomorphic classification
of a batch of 2,048 viruses is only 1,083 milliseconds (0.53 ms
amortized time), using 398 MByte RAM and obtaining 99.8%
accuracy and microAUC 0.999. The client’s total amortized
runtime – which is dominated by the 4.46 ms it takes to
encrypt the test set (amortized) – is 4.95 ms, using 276 MB of
RAM. The communication is likewise dominated by sending
the encrypted test set to the server, communicating 435 MB,
with 1MB communicated back from server to client.

Dependency of time and memory on k. Table I demonstrates
that when k increases by 1 the encryption and classification
time, as well as communication (amortized and non-amortized)
increase fourfold. This is supported by our theoretical analysis
since there are 4k k-mers so all indicator vectors used by our
algorithm grow fourfold. The client and server RAM require-
ments also grow, but by smaller rates, because only parts of
the memory grow fourfold. Specifically, on the client (server)
only the plaintext k-mer signatures of the test sequences (the
plaintext representatives of the types) grow.

Dependency of accuracy and microAUC on k, r1. Table I
shows that increasing k improves accuracy, which is also sup-
ported by our plaintext experiments. Interestingly, increasing
k causes the microAUC to decrease. This is because when k
grows, |1 − Uσ

4k
| also grows (recall that we scale Uσ) which

(as noted above) makes the inverse approximation inverse(Uσ

4k
)

less accurate. The approximation can be made more accurate
by increasing r1, as indeed demonstrated by our experiments.
For example, for k = 9 the microAUC improved from 0.86
(r1 = 1) to 0.979 (r1 = 4). Another interesting point is
that accuracy does not decrease. This is because increasing
k perturbs the values in the s-tuple of Jaccard scores that
we compute for each test sequences, but does not change the
ordering of scores within the tuple. Since accuracy depends
only on the largest score, this perturbation keeps the accuracy
unchanged. However, the relative ordering of values with
respect to other s-tuples does change, which decreases the
microAUC.

VI. EXTENSION TO STRONG PRIVACY

Privacy against the client is not necessarily guaranteed
by our protocol of Figure 3. This is because the ciphertexts
which Cl receives in Step 4c might reveal information about
the homomorphic computation which S performed on the
ciphertexts it received from Cl, and consequently on S’s input



k r1 Batch Encryption Encryption Client Comm. Comm. Classify Classify Server Accuracy microAUC
size (ms) amortized RAM (MB) amortized (ms) amortized RAM

(ms) (MB) (MB) (ms) (MB)
6

1 2,048

9,152 4.5 276 435 0.2 1,083 0.5 398 99.8% 0.999
7 36,153 18.0 464 1,700 0.8 3,238 1.6 960 100.0% 0.991
8 148,595 73.0 1,213 6,800 3.3 9,506 4.6 3,211 100.0% 0.905
9 581,989 284.0 4,213 41,000 20.0 31,111 15.2 12,212 100.0% 0.860
6

2 4,096

22,359 5.4 686 1,536 0.4 2,591 0.6 804 99.8% 0.999
7 86,827 21.0 874 6,144 1.5 8,819 2.1 1,366 100.0% 0.999
8 340,452 83.0 1,624 24,577 6.0 22,946 5.6 3,617 100.0% 0.964
9 1,416,951 345.0 4,624 98,311 24.0 85,173 20.8 12,618 100.0% 0.880
6

3 4,096

25,033 6.1 885 1,792 0.4 3,234 0.8 1,003 99.8% 0.999
7 97,699 23.8 1,072 7,168 1.7 9,498 2.3 1,565 100.0% 0.999
8 386,287 94.3 1,822 28,673 7.0 32,343 7.9 3,815 100.0% 0.996
9 1,529,859 374.0 4,822 114,695 28.0 82,411 20.1 12,816 100.0% 0.922
6

4 4,096

27,746 6.8 1,117 2,048 0.5 4,076 1.0 1,230 99.8% 0.999
7 118,878 29.0 1,303 8,192 2.0 13,699 3.3 1,792 100.0% 0.999
8 442,453 108.0 2,053 32,769 8.0 31,175 7.6 4,043 100.0% 0.999
9 1,721,851 420.0 5,054 131,079 32.0 97,681 23.8 13,044 100.0% 0.979

TABLE I: Performance of our protocol over encrypted data (Figure 3) for different values of the k-mer size k (1st column);
and depth r1 of the inverse sub-circuit of Step 4(a)iii (2nd column). Other columns show: batch size, i.e., number of viruses we
classify in the protocol (3rd column); client runtime to encrypt the entire batch (4th column), and amortized for a single test
virus (5th column); the amount of RAM consumed by the client during the protocol (6th column); the size of client-to-server
communication for the entire batch (7th column), and amortized for a single test virus (8th column); server runtime to classify
a batch (9th column), and amortized for a single virus (10th column); the amount of RAM consumed by the server during
classification (11th column); the classification accuracy (12th column) and microAUC (13th column).

D (since the computation which S performs depends on D).
We next discuss how to extend the protocol to achieve privacy
against the client by employing sanitization.
Sanitization and Circuit Privacy. A ciphertext sanitization
scheme re-randomizes ciphertexts such that any two sanitized
ciphertexts decrypting to the same plaintext are statistically
close even given the secret decryption key. Sanitization implies
circuit privacy (in the semi-honest model) in the sense that
a sanitized ciphertext reveals no information on the circuit
used to compute it via homomorphic evaluation, even if the
adversary knows the secret decryption key.

Definition VI.1 (Sanitization Scheme [DS16]). A PPT algo-
rithm San for an FHE scheme E = (Gen,Enc,Dec,Eval)
is a Sanitization Scheme if it takes a public key pk and a
ciphertext c and returns a ciphertext, so that with probability
≥ 1 − negl (κ) over the choice of (pk, sk) ← Gen(1κ) the
following holds:

• (Message-preservation) for every ciphertext c:
Dec(sk,San(pk, c)) = Dec(sk, c).

• (Sanitization) for every pair c, c′ of ciphertexts s.t.
Dec(sk, c) = Dec(sk, c′) the statistical distance

∆((San(pk, c)|(pk, sk)) , (San(pk, c′)|(pk, sk)))

is at most negl (κ).

Extending the protocol. We enhance the protocol of Figure 3
to guarantee privacy against both server and client, simply by
instructing the server to sanitize the result ciphertexts prior to
sending them to the client.

Protocol VI.2 (Strongly Private Viral Strain Classification).
The protocol employs a sanitization scheme San. It is identical

to the protocol of Figure 3, except for the following change in
Step 4c: instead of sending J1, . . . , Js to the client, the server
first performs J ′

σ ← San (pk, Jσ) for every σ = 1, . . . , s, and
sends J ′

1, . . . , J
′
s to the client.

Security Analysis. The enhanced protocol (Protocol VI.2)
guarantees privacy against the client (as well as the server),
because the sanitization ensures that the client cannot learn
anything from these ciphertexts beyond their underlying mes-
sage (see Definition VI.1). In particular, the client learns
nothing (beyond what can be inferred from her input and
output) on the the server’s data or model although they had
influenced the homomorphic operations performed by the
server. More formally, the sanitized ciphertexts are statistically
close to any other sanitized ciphertext encrypting the same
message, and therefore they can be efficiently simulated from
Cl’s output. This is summarized in the following theorem:

Theorem VI.3. Let E = (Gen,Enc,Dec,Eval) be an ϵ-
approximate FHE scheme, and let San be a sanitization
scheme. Then Protocol VI.2, when instantiated with E as the
underlying FHE scheme and San as the underlying sanitiza-
tion scheme, is a strongly private viral strain classification
protocol (as in Definition III.2).

We provide here a proof sketch, see the full version [Ano22]
for the complete proof.

Proof of Theorem VI.3 (sketch). Correctness is analogous
to the analysis of Section IV-C1 while accounting also for the
error incurred by executing sanitation.

Privacy (against the server) follows identically to the proof
of Theorem IV.1.

Privacy (against the client). We describe a PPT simulator



SimCl which simulates the view ViewΠ
Cl of the honest Cl in Π.

SimΠ is given the input x of Cl, its output
(
J i
1, . . . J

i
s

)
1≤i≤n

,
as well as N and the public parameters params (which include
m, ℓ, κ, and the length n of the client’s input), and operates
as follows:

• Samples random coins R for Cl and uses it to determine
the encryption keys (pk, sk).

• Randomly encrypts J
i

σ ← Enc(pk, J i
σ) for i = 1, . . . , n

and σ = 1, . . . , s.
• Randomly sanitizes Ĵ i

σ ← San(pk, J
i

σ) for i = 1, . . . , n
and σ = 1, . . . , s.

• Outputs x,N, params, R and Ĵ1
1 , . . . , Ĵ

n
s (that is,

Ĵ1
1 , . . . , Ĵ

n
s simulate the encrypted scores which the

server sent to the client).

We claim that the simulated and real views are computa-
tionally close. Roughly, we need to prove that the simulated
encrypted scores Ĵ1

1 , . . . , Ĵ
n
s are computationally indistin-

guishable from the real-world ciphertexts which the client
received from the server. This follows from the security of
the sanitization scheme San using a standard hybrid argument
in which we move from the output of SimCl to ViewΠ

Cl by
replacing each of the n · s = poly (κ) ciphertexts from real
to simulated. See the full version [Ano22] for the complete
proof. .

Complexity overhead. Protocol VI.2 is generic in the sense
that it can be instantiated with any sanitization scheme for the
FHE scheme used in the protocol. The complexity overhead
over the protocol of Figure 3 is the complexity of the employed
sanitization. We leave choosing the appropriate algorithm –
based on the specific requirements of the application – to
future work.

Empirical evaluation. We empirically evaluate Protocol VI.2
while following the sanitization approach of Ducas and
Stehlé [DS16]. The sanitization algorithm of [DS16] operates
by repeatedly randomizing the ciphertext and then boot-
strapping. Randomization is by homomorphically adding an
encryption of zero with appropriate (small) amount of noise.
This is reminiscent to the noise flooding technique [Gen09],
albeit with a much smaller amount of noise, which is sufficient
due to the use of repeated cycles of randomization-then-
bootstrapping [DS16]. The encryptions of zero can be pre-
computed in an offline phase preparing sufficiently many
encryptions to provide a fresh encryption for each classifi-
cation query; so the exact parameters have little influence
on the online complexity. The online complexity the time
to compute the required number of cycles, each computing
one homomorphic addition followed by bootstrapping. The
required number of cycles is proved to be 1-2 for [BV14]
(when parameters are as in [HS15]); see [DS16, Sec. 4].
Analyzing the number of cycles that suffices for CKKS is
beyond the scope of our work. Instead, we set the number
of cycles as a tuneable parameter to be set by the user, and
provide an empirical evaluation on 1-5 cycles that can be
extrapolated to an arbitrary number of cycles.

Our experimental setup is analogous to the one specified
in Section V, using the same hardware, the same encryption
scheme (CKKS) with key initialized with the same security
parameter, scale and precision (128, 234, and 239, respec-
tively), using the same parameters τ = 0.2, k = 6, r1 = 1
and r2 = 1, running experiments on the same data, and
taking the same measurements. However, we use a different
library implementing CKKS: HEAAN [Cry22] rather than
Microsoft SEAL [sea21]. This is because the Microsoft SEAL
library used in Section V does not support bootstrapping,
which is required for the sanitization approach of [DS16].
Moreover, incorporating sanitization into the homomorphic
computations at the server side increases the multiplicative
depth by 4, which in turn requires initializing larger keys to
support the computation. Consequently, we set the degree of
the cyclotomic polynomial to be 65,536 (cf. 8K-16K in our
experiments without sanitization). The number of available
plaintext slots in each ciphertext is half the degree of the
cyclotomic polynomial, i.e., 32,768, and the batch size in our
experiments is 16,384 (because we use 2 slots for each virus).

The results are given in Table II. The first row shows a
baseline of running with no sanitization (BS = 0) using the
HEAAN library. The results are comparable to the results
when running with SEAL. When adding sanitization (BS ̸= 0
in the next rows) we generated a deeper key. Indeed we see
that the encryption time and the communication increased
from 53 seconds and 6,100MB to 79 seconds and 11,000MB,
respectively (the client generates the same key regardless
to the number of bootstrapping the server performs). The
classification time increased from 12 seconds when BS = 0 to
47 seconds when BS = 1 and then with another ≈ 25 seconds
with each additional bootstrapping iteration. The accuracy and
microAUC did not change when applying bootstrapping.9

VII. RELATED WORKS

Privacy-preserving genome analysis. Prior work on privacy-
preserving genome analysis focused on Genome Wide As-
sociation (GWAS), where statistical genotype to phenotype
(genomic sequence to physical properties) correlations are se-
curely inferred from large datasets, see e.g. [LYS15], [SB16],
[BMA+18], [BGPG20]. In contrast, we focus on viral se-
quence (strain) classification.
Comparison through k-mer signatures. The use of k-mer
signatures has been studies in several contexts related to
molecular biology and genomics. Drmanac et al. [DDS+93]
and Shamir et al. [ST01] introduced k-mer signatures in the
context of sequencing by hybridization, and several works
(e.g., [BP97], [ST01]) then formalized algorithmic approaches
to inference based on k-mer signatures. Following these ini-
tial works, k-mers were used in other sequenceing-related

9Notice that the accuracy and microAUC are unaffected by using boot-
strapping, despite the increase in decryption noise due to the approximate
nature of CKKS. Intuitively, accuracy is determined by the relative class
scores for the tested instance. The difference between the scores is larger
by orders of magnitude compared to the added noise. Therefore, the relative
ranking between the classes is unaffected by sanitization. The explanation for
microAUC is similar.



BS Batch Encryption Encryption Client Comm. Comm. Classify Classify Server Accuracy microAUC
size (ms) amortized RAM (MB) amortized (ms) amortized RAM

(ms) (MB) (MB) (ms) (MB)
0 16,384 53,000 3.23 10,800 6,100 0.37 12,000 0.73 11,337 99.8% 0.999
1

16,384 79,000 4.82 10,820 11,000 0.67

47,000 2.86 14,125

99.8% 0.999
2 68,000 4.15 14,200
3 92,000 5.61 14,268
4 118,000 7.20 14,282
5 148,000 9.03 14,300

TABLE II: Performance of our extended protocol over encrypted data (Protocol VI.2, Section VI) for number of sanitization
randomize-then-bootstrap cycles ranging from 0 (no sanitization) to 5 cycles (first column). In all experiments k = 6 and
r1 = 1 (the depth of the inverse sub-circuit of Step 4(a)iii), the other columns are as in Table I.

tasks such as resequencing [PAS02], motif finding [ELYY07],
[LY12] and system design [BDKSY00]. More recently, meth-
ods were developed for using k-mer signatures of short reads
sequence reconstruction [LCRP16], [CPT11].
Fully Homomorphic Encryption (FHE) [RAD78], [Gen09]
allows one to compute over encrypted data – without know-
ing the secret decryption key – as if it weren’t encrypted.
There has been much interest recently in obtaining fast
privacy-preserving machine learning solutions utilizing HE,
e.g., in [GBDL+16], [SKGK18], [HTGW18], [JKLS18],
[KSW+18], [CKKS18], [KSK+18], [BLCW19], [ASWY19],
[ALR+20], [RLPD20]. In particular, the challenge of the
iDASH secure genome analysis competition 2021 [iDa] was
to perform viral strain classification over HE encrypted se-
quences.10

Packing two reals in each complex number slot in CKKS.
Another approach for packing two reals in each complex num-
ber slot was previously explored in [BCCW19]. However their
technique supports only linear operations over encrypted data
(i.e. multiplication by a scalar and homomorphic addition). In
contrast, our technique supports, on top of linear operations,
also computing the ciphertext-to-ciphertext operations needed
for our protocol; specifically, we support homomorphic evalu-
tion of the inner-product of two vectors of encrypted values.
The independent work [HPC+22] proposed a packing similar
to ours that likewise supports computing inner-product over
packed encrypted vectors.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a practically-efficient privacy-
preserving viral strain classification protocol. Specifically, we
developed a protocol that allows a client (a lab) to obtain
from the server (a centralized repository) information about
the client’s private virus sequences without disclosing the
sequences themselves, or any pertinent information about
them. Privacy holds against active servers, and correctness
against passive ones. This is motivated by scenarios in which
client’s privacy, business or legal concerns disallow exposing
the sequence to the server, whereas the server’s classification-
as-a-service business model disincentivizes sending its dataset
(or the classification model extracted from it) to the client.
Our solution achieves excellent accuracy (99.8% − 100%)

10Our solution won 3rd place in iDASH competition [iDa].

and microAUC (0.999); low complexity (homomorphically
evaluating circuits of multiplicative depth 4 and 3s + 1 mul-
tiplications, for s the number of viral types); fast concrete
performance (amortized client and server runtime of 4.95ms
and 0.53ms respectively); and a rigorous security guarantee.
Furthermore, we presented an extension of our protocol that
guarantee also the server’s privacy against passive clients.
The extended protocol provides the same high accuracy and
microAUC, with amortized per-sequence overhead of 1.6ms
in client runtime, under 10ms in server runtime, and 0.3MB
in communication.

Our protocol extends further to settings where both the
sequences and model are encrypted. This is motivated, e.g.,
by settings in which the centralized repository wishes to
outsource the computation to a cloud service without exposing
information on its model or training data.

Strengthening our protocol to guarantee privacy of the
server’s data against active clients is an interesting problem. A
possible approach to enhance the server privacy is to develop
business-oriented strategies targeting rational clients (in the
game theoretic sense) rather than active ones. For example, this
may entail developing per-query pricing strategies that increase
with the number of queries, to financially protect the server
against the growing privacy risk. We leave the development of
such modeling and analysis to future work.
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