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Abstract. Threshold secret sharing allows a dealer to split a secret s into n shares, such that any t
shares allow for reconstructing s, but no t− 1 shares reveal any information about s. Leakage-resilient
secret sharing requires that the secret remains hidden, even when an adversary additionally obtains a
limited amount of leakage from every share. Benhamouda et al. (CRYPTO’18) proved that Shamir’s
secret sharing scheme is one bit leakage-resilient for reconstruction threshold t ≥ 0.85n and conjectured
that the same holds for t = c · n for any constant 0 ≤ c ≤ 1. Nielsen and Simkin (EUROCRYPT’20)
showed that this is the best one can hope for by proving that Shamir’s scheme is not secure against
one-bit leakage when t = c · n/ log(n).
In this work, we strengthen the lower bound of Nielsen and Simkin. We consider noisy leakage-resilience,
where a random subset of leakages is replaced by uniformly random noise. We prove a lower bound
for Shamir’s secret sharing, similar to that of Nielsen and Simkin, which holds even when a constant
fraction of leakages is replaced by random noise. To this end, we first prove a lower bound on the share
size of any noisy-leakage-resilient sharing scheme. We then use this lower bound to show that there exist
universal constants c1, c2, such that for sufficiently large n it holds that Shamir’s secret sharing scheme
is not noisy-leakage-resilient for t ≤ c1 · n/ log(n), even when a c2 fraction of leakages are replaced by
random noise.

Keywords: Threshold secret sharing · Noisy leakage-resilience · Lower bounds · Shamir’s secret sharing
scheme.

1 Introduction

Threshold secret sharing was introduced by Shamir [Sha79] and Blakley [Bla79] and allows a dealer to split
a secret s into shares sh1, . . . , shn, such that any t shares allow for reconstructing s, but no t − 1 shares
reveal anything about s at all in the information-theoretic sense. Since its introduction, this primitive in
general, and Shamir’s secret sharing scheme in particular, has found countless applications in various fields
of cryptography. Naturally, it is important to understand the precise security it provides.

The security definitions for regular threshold secret sharing schemes and variants like robust [RB89]
or verifiable secret sharing [CGMA85] all assume that some shares are fully known and some shares are
fully hidden from the adversary. As it turns out, these all-or-nothing type of security models do not always
precisely reflect the security we want in practice. Real-world implementations of cryptographic primitives are
susceptible to different types of side-channel attacks, which may give the adversary limited access to secrets
that should ideally be fully hidden from her. Cryptographic primitives have, for example, been successfully
attacked through leakages obtained via timing [Koc96] and power consumption [KJJ99] side-channels.

Motivated by the emergence of such side-channel attacks, the security definitions of secret sharing have
been strengthened to account for additional leakages from the shares that were previously assumed to be
fully hidden. Such schemes require that the secret that is shared remains hidden, when the adversary not only
receives t−1 shares, but additionally obtains some limited amount of leakage from all other shares. Leakage-
resilient secret sharing schemes have received significant interest and many constructions have been proposed
over the past few years [DP07, BGK14, GK18b, GK18a, ADN+19, KMS19, SV19, CKOS21, CKOS22].
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Realistically, however, it seems unlikely that Shamir’s secret sharing scheme will be replaced by a leakage-
resilient alternative any time soon. Shamir’s scheme is a cornerstone of many cryptographic constructions
and has been implemented and deployed as part of many different projects. Replacing a scheme that is so
deeply embedded into so many different projects, seems like a insurmountable challenge. For this reason, it
is crucially important to understand the leakage-resilience of Shamir’s secret sharing scheme itself.

Benhamouda et al. [BDIR18] studied this question in a setting, where the adversary submits arbitrary
leakage functions Leak1, . . . ,Leakn and obtains leakages Leaki(shi) for i ∈ [n]. The only restriction imposed
on the leakage functions is that they are having a bounded output length. The authors show that Shamir’s
scheme provides some leakage-resilience, when t ≥ 0.85n and they conjecture that Shamir’s scheme is leakage-
resilient against one bit leakages for any t = c · n, where 0 ≤ c ≤ 1 is a constant. Subsequently, Nielsen and
Simkin [NS20] showed that Shamir’s scheme is not secure against one bit leakages when t = c · n/ log(n),
thereby showing that their conjecture is the best one can hope for.

1.1 Our Contribution

The works of Benhamouda et al. [BDIR18] and Nielsen and Simkin [NS20] assume that the adversary is able
to obtain the precise outputs of its leakage functions. In practice, however, side-channel attacks are inherently
noisy and there are practical techniques that can amplify this noise [CCD00, CK09, MOP07, CJRR99] to
counter potential side-channel attacks. One might hope that it is possible to circumvent the lower bound of
Nielsen and Simkin by considering a weaker, but more realistic noisy leakage model, where some random
subset of the leakages is replaced by uniformly random noise.

In this work we show that this is not the case. We prove a lower bound similar to that of Nielsen and
Simkin for Shamir’s secret sharing scheme, which holds even when a constant fraction of leakages is replaced
by random noise. To this end, we first prove a lower bound on the share size of any noisy-leakage-resilient
secret sharing scheme. We then use this lower bound to obtain the following theorem:

Theorem 1 (Informal). There exist universal constantsc1, c2, such that for sufficiently large n, it holds
that (c1 ·n/ log(n))-out-of-n Shamir secret sharing is not leakage-resilient against one bit leakage, even when
a c2 fraction of the leakage function outputs are replaced by random noise.

To prove this lower bound, we construct a generic adversary A that can use the noisy leakage to recover
the secret shared value, whenever the shares are too small in size. The main idea of this attack is similar to
the one in the proof of [NS20, Theorem 2]. We apply a separate uniformly random leakage function to each
share. Given the noisy leakage vector, our adversary A iterates over all possible secret values and all possible
secret sharings thereof.3 Whenever there is a vector of shares that would produce a leakage vector that is
consistent enough with the obtained noisy leakage vector, the adversary remembers the corresponding secret
value in an initially empty set S. Finally, the adversary hopes that S contains exactly one element in which
case she returns that element as her guess for what was the actual secret shared value.

In contrast to the previous lower bound of Nielsen and Simkin, our adversary needs to account for the
noise in the leakage vector and thus it needs to add values s to S, even if there was no secret sharing of s
that produced a fully consistent vector of leakages. Relaxing the conditions under which values s are added
to S needs to be done carefully, since we would like to ensure that we do not add too many elements to the
S. In a nutshell, our lower bound shows that the noisy leakage vector and any other noiseless leakage vector
belonging to the incorrect secret, will differ in many positions. Making this intuition formal and arguing that
our adversary is successful with a sufficiently high probability requires a careful analysis, which is the main
contribution of this work.

1.2 Other Related Works

The work by Guruswami and Wootters [GW16] demonstrated that some linear secret sharing schemes, such
as Shamir’s scheme over certain fields, allow for very communication efficient reconstruction of the secret.

3 We are only concerned with information-theoretic security in which case the adversary is computationally un-
bounded.
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More precisely, they show that Shamir’s scheme over fields of characteristic two, allows for recovering a
multi-bit secret from only one bit of leakage from each share.

Inspired by these results, Benhamouda et al. [BDIR18] investigate to what extend natural secret sharing
schemes offer leakage-resilience. They prove that Shamir’s secret sharing scheme is leakage-resilient against
one bit leakages, when the reconstruction thresholds is at least 0.92 times the number of parties. This constant
was then improved to 0.8675 [MPSW21], then to 0.85 [BDIR21] and later to 0.78 [MNPCW22].

The currently best known constant is 0.69, which was recently proven by Klein and Komargodski [KK23].
The authors additionally show that whenever the leakage functions are guaranteed to be balanced, i.e. ap-
proximately half of the domain gives output 1 and the other half gives output −1, then the constant can be
reduced to 0.58. Similarly, whenever the leakage functions are guaranteed to be sufficiently unbalanced, then
Shamir’s scheme is leakage resilient as long as the reconstruction threshold is at least 0.01 times the number
of parties. This result is the first one that breaks the barrier of 0.5, which was known to be inherent in the
proof techniques used in the previous works.

Maji et al. [MNP+21] consider much weaker physical-bit leakages, which only allows for a fixed number
of bits to be leaked from the binary representation of each secret share. They prove that Shamir’s secret
sharing scheme with random evaluation points is physical-bit leakage resilient if the order of the field is
sufficiently large. Adams et al. [AMN+21] consider noisy physical-bit leakage, where each physical-bit leakage
is replaced by noise with some fixed probability. They prove a lower bound for the reconstruction threshold
of log(λ)/ log log(λ) for Shamir’s secret sharing scheme, when the size of the field is 2λ and the evaluation
points can be chosen adversarially. In [MNPC+22] Maji et al. improve their lower bound to log(λ). This
bound is interesting in the setting where the size of the field is much larger than the number of parties. In
the setting we consider, we have λ ≈ log(n), in which case their lower says that the reconstruction threshold
needs to be larger than log log(n).

In another work, Maji et al. [MNP+22] consider global leakage functions with bounded output length
that can compute arbitrary functions over all shares simultaneously. Generally, this would allow the leakage
functions to just reconstruct the secret, which is an attack that cannot be prevented. For this reason, the
authors artificially restrict their leakage functions to not depend on some of the random choices made by
the secret sharing scheme. For the case of Shamir secret sharing with random evaluation points, the authors
show that one obtains some leakage-resilience properties, if the leakage functions are not allowed to depend
on the evaluation points.

2 Preliminaries

Notation. We write [n] to denote the set {1, . . . , n}. For a set X, we write x ← X to denote the process
of sampling a uniformly random element x from the set X. For a vector v = (v1, . . . , vn) and a vector
w = (w1, . . . , wt) ∈ [n]t, we define vw := (vw1

, . . . , vwt
). We will sometimes abuse notation and write vw,

where w is a set, rather than a vector. In this case the elements can be ordered arbitrarily in the vector. We
denote by Noise(v, ℓ, p) the algorithm that takes vector v = (v1, . . . , vn) ∈

(
{0, 1}ℓ

)n
, ℓ ∈ N, and 0 ≤ p ≤ 1

as input and returns a new vector (ṽ1, . . . , ṽn), where for i ∈ [n] each ṽi = vi with probability 1 − p and
ṽi ← {0, 1}ℓ with probability p. That means that Noise(v, ℓ, 1) returns a uniformly random vector and
Noise(v, ℓ, 0) returns v.

2.1 Leakage-Resilient Secret Sharing

We define threshold secret sharing schemes similarly to how it was done by Nielsen and Simkin [NS20]. The
full reconstruction parameter t̂ defines how many shares are needed to reconstruct all shares of a particular
secret sharing. Intuitively, t̂ corresponds to a crude measure of how much entropy the vector of shares
contains.

Definition 1 (Threshold Secret Sharing Scheme). A t-out-of-n threshold secret sharing scheme is a
pair (Share,Rec) of efficient algorithms. The randomized sharing algorithm Share : {0, 1}k → ({0, 1}p)n
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takes a k-bit secret as input and returns a vector of n secret shares, each p-bits long. The deterministic
reconstruction algorithm Rec : ({0, 1}p)t → {0, 1}k takes t of the shares as input and returns a k-bit string.
We require a secret sharing scheme to satisfy the following properties:

Perfect Correctness: For t, n ∈ N with t ≤ n, any T ⊆ [n] with |T | = t and any x ∈ {0, 1}k, it holds that

Pr[Rec(Share(x)T ) = x] = 1,

where the probability is taken over the random coins of Share.
Full Reconstruction: (Share,Rec) has t̂-full-reconstruction, if for any x, the vector Share(x) can be

computed from any subvector Share(x)T with |T | ≥ t̂.

We assume for simplicity that all shares are of the same size p but the proof of our lower bound can
easily be adapted to schemes with shares of different sizes.

Definition 2 (Leakage Functions). Let (Share,Rec) with Share : {0, 1}k →×n

i=1
{0, 1}p be a secret

sharing scheme and for i ∈ [n], let Leaki : {0, 1}p → {0, 1}ℓ. We call Leak = (Leak1, . . . ,Leakn) an
ℓ-leakage function for (Share,Rec). We define Leak(sh1, . . . , shn) := (Leak1(sh1), . . . ,Leakn(shn)).

We now define the privacy notion, which is a direct extension of the (noiseless) weak one-way local leakage
resilience notion of Nielsen and Simkin [NS20, Definition 5], for which we will prove our lower bounds. The
adversary A obtains a noisy leakage vector and it knows the probability η with which each leakage is replaced
by noise. She does, however, not know which leakage outputs are replaced by random noise. Our privacy
notion requires that A is not able to learn the secret with probability greater than 1/2.

Definition 3 (Weak One-Way Noisy Local Leakage-Resilience). We say a secret sharing scheme
(Share,Rec) is (ℓ, η)-weakly one-way noisy local leakage-resilient ((ℓ, η)-WOW-NLLR), if for any ℓ-leakage
function Leak and any adversary A, it holds that

Pr



x← {0, 1}k

(sh1, . . . , shn)← Share(x)

(Leak1, . . . ,Leakn)← A(n)
(b̃1, . . . , b̃n)← Leak(sh1, . . . , shn)

(b1, . . . , bn)← Noise((b̃1, . . . , b̃n), ℓ, η)

x′ ← A(b1, . . . , bn)

: x′ = x


≤ 1

2
,

where the probability is taken over the random coins of Share, Noise and A.

We note that this is a very weak privacy notion. We only require a form of one-wayness that prevents the
adversary from fully recovering the secret shared value and we only require the adversary to be successful
with a probability less than 1/2. Notably, this notion is even weaker than a standard indistinguishability
type of notion. Since we are proving a lower bound, working with a weaker privacy notion only strengthens
our lower bounds.

3 Lower Bound

In this section we prove our lower bound on the share size of any threshold secret sharing scheme that
satisfies (ℓ, η)-WOW-NLLR.

Theorem 2. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with t̂-full-reconstruction and
shares consisting of p bits each. Let ℓ ≥ 1 and let 0 < η ≤ (n− t)/4n. If S is (ℓ, η)-WOW-NLLR, then

p ≥ ℓ(n− t)

t̂
− 4nη(ℓ+ log(1/η)) + 1

t̂
.
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Remark 1. We note that the theorem requires η ≤ (n − t)/4n. In principle, our lower bound could be
tightened to only require, for instance, η ≤ (n− t)/1.1n by replacing a single Markov inequality in the proofs
with a stronger tail bound. We opted for clarity instead of optimizing the constants in our exposition. Next,
we note that η ≤ (n− t)/n is a sensible restriction. If η > (n− t)/n would hold, then with high probability
n− t+ 1 leakages would be replaced by random noise. In this case, our adversary could not hope to recover
the secret, even if the leakage functions would leak the full shares.

Remark 2. It can be interesting to compare our lower bound to the one of Nielsen and Simkin [NS20]. Their
work shows that any secret sharing scheme that satisfies (ℓ, 0)-WOW-NLLR, needs to satisfy

p ≥ ℓ(n− t)

t̂
.

As η approaches 0, our work effectively proves the same lower bound.

Proof (of Theorem 2). Towards proving the theorem statement, we provide a generic attacker that suc-
cessfully wins the (ℓ, η)-WOW-NLLR game against any secret sharing scheme that does not satisfy the
constraints on the share size p that are stated in the theorem statement. This adversary works as fol-
lows. It picks Leak = (Leak1, . . . ,Leakn) by picking each Leaki : {0, 1}p → {0, 1}ℓ for i ∈ [n] uni-
formly and independently at random. The challenger picks a uniformly random secret s and computes
(sh1, . . . , shn) ← Share(s). Adversary A submits the ℓ-leakage function Leak to the challenger, who re-
sponds with (b1, . . . , bn), where each bi is either Leaki(shi) with probability 1 − η or a uniformly random
value from {0, 1}ℓ with probability η. Let N be the number of components that were replaced by uniformly
random noise values by the challenger and let S = ∅. The adversary now iterates over all possible secrets s′

and random coins r′ to compute

(sh′1, . . . , sh
′
n)← Share(s′; r′)

and

(b′1, . . . , b
′
n)← Leak(sh′1, . . . , sh

′
n).

If |{i ∈ [n] | b′i = bi}| ≥ n(1 − 4η) for some r′, then add s′ to S. Finally, once A iterated over all possible
secret sharings, if |S| = 1, then it outputs that one element in S and in any other case it returns ⊥.

Let us now analyze the success probability of A. We observe that if the challenger replaced at most 4nη
coordinates by uniformly random noise, i.e. if N ≤ 4nη, then s ∈ S. Since in expectation N is equal to nη,
it holds by Markov’s inequality that

Pr[s ∈ S] =Pr[s ∈ S | N ≤ 4nη] · Pr[N ≤ 4nη]

+Pr[s ∈ S | N > 4nη] · Pr[N > 4nη]

=Pr[N ≤ 4nη] + Pr[s ∈ S | N > 4nη] · Pr[N > 4nη]

≥Pr[N ≤ 4nη] ≥ 3/4.

Our adversary is successful, if and only if s is the only element in S. Let Es′ be the event that s′ ∈ S. Then

Pr [S = {s}] = Pr

 ∧
s′ ̸=s

¬Es′

 ∧ Es

 ≥Pr

 ∧
s′ ̸=s

¬Es′

 ∧N ≤ 4nη


≥Pr

 ∧
s′ ̸=s

¬Es′

 | N ≤ 4nη

 · 3/4
=

1− Pr

 ∨
s′ ̸=s

Es′ | N ≤ 4nη

 · 3/4.
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To prove the theorem statement, we need to show that the adversary’s attack is successful with a sufficiently
high probability, i.e. we need to show that Pr [S = {s}] ≥ 1/2 and thus by the above it suffices to show that

Pr

 ∨
s′ ̸=s

Es′ | N ≤ 4nη

 ≤ 1/3.

By the union bound4 we have that

Pr

 ∨
s′ ̸=s

Es′ | N ≤ 4nη

 ≤ ∑
s′ ̸=s

Pr [Es′ | N ≤ 4nη] .

Let us now fix an arbitrary s′ ̸= s, fix random coins r′, and let (sh′1, . . . , sh
′
n)← Share(s′; r′). Let Es′,r′

be the event that the adversary includes s′ into S based on the leakage from (sh′1, . . . , sh
′
n), i.e. the event that

|{i ∈ [n] | b′i = bi}| ≥ n(1 − 4η), where b′i ← Leaki(sh
′
i). Let us bound the probability of Es′,r′ conditioned

on N ≤ 4nη. From the perfect correctness of the secret sharing scheme and since s ̸= s′, we know that there
exists a set of indices I ⊆ [n] with |I| ≥ n − t + 1, such that for all i ∈ I, it holds that shi ̸= sh′i. For each
i ∈ I, there are two cases. Either the leakage bi is the real leakage or it is a uniformly random element from
{0, 1}ℓ. In either case, it holds that bi = b′i with probability 2−ℓ, since the corresponding shares are different
and the leakage function Leaki is chosen uniformly random and independently of its inputs.

Let T be the set of subsets of I of size n−t+1−4nη. Note that n−t+1−4nη > 0, since η ≤ (n−t)/4n by
assumption. For T ∈ T , let Es′,r′,T be the event that the noisy leakage vector (b1, . . . , bn) and the noiseless
vector (b′1, . . . , b

′
n) agree on all coordinates in T . Note that by the union bound

Pr [Es′,r′ | N ≤ 4nη] ≤
∑
T∈T

Pr [Es′,r′,T | N ≤ 4nη] .

To see this, observe that even if (sh1, . . . , shn) and (sh′1, . . . , sh
′
n) agree on t− 1 coordinates, then there must

still exist at least n− t+1− 4nη distinct indices i ∈ I for which it holds that bi = b′i to satisfy the condition∣∣{j ∈ [n] | b′j = bj}
∣∣ ≥ n(1− 4η). It is easy to see that

Pr [Es′,r′,T | N ≤ 4nη] ≤ 2−(n−t+1−4nη)ℓ

and thus, it holds that

Pr [Es′,r′ | N ≤ 4nη] ≤|T | · 2−(n−t+1−4nη)ℓ

=

(
n− t+ 1

n− t+ 1− 4nη

)
· 2−(n−t+1−4nη)ℓ

=

(
n− t+ 1

4nη

)
· 2−(n−t+1−4nη)ℓ

≤
(
e(n− t+ 1)

4nη

)4nη

· 2−(n−t+1−4nη)ℓ

≤
(
n− t+ 1

nη

)4nη

· 2−(n−t+1−4nη)ℓ

≤
(
1

η

)4nη

· 2−(n−t+1−4nη)ℓ

4 The union bound also holds for conditional probabilities, meaning that Pr[A ∨B | C] = Pr[(A ∨B) ∧ C]/Pr[C] ≤
(Pr[A ∧ C] + Pr[B ∧ C])/Pr[C] = Pr[A | C] + Pr[B | C].
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At this point, recall that each share is p-bits long and that t̂ is the full reconstruction threshold, i.e. that
any t̂ shares are enough to uniquely determine all remaining shares of a specific secret sharing. Thus there
are at most 2pt̂ different secret sharings in total and therefore

∑
s′ ̸=s

Pr [Es′ | N ≤ 4nη] ≤
(
1

η

)4nη

· 2pt̂−(n−t+1−4nη)ℓ.

As discussed before, the adversary we constructed is successful, if(
1

η

)4nη

· 2pt̂−(n−t+1−4nη)ℓ ≤ 1/3

⇐⇒ log(1/η)4nη + pt̂− (n− t+ 1− 4nη)ℓ ≤ − log 3

⇐⇒ pt̂ ≤ (n− t+ 1− 4nη)ℓ− log(1/η)4nη − log 3

⇐⇒ pt̂ ≤ (n− t+ 1)ℓ− log 3− 4nη(ℓ+ log(1/η)).

From here it follows that

p ≥ (n− t)ℓ− 1− 4nη(ℓ+ log(1/η))

t̂

must hold, if the secret sharing scheme wants to prevent the attack described above. ⊓⊔

The bound in Theorem 2 can be a little unwieldy and for this reason we also provide a slightly weaker,
but simpler to state lower bound in the following corollary.

Corollary 3. Let t ≤ n/2. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with t̂-full-
reconstruction and shares consisting of p bits each. Let ℓ ≥ 1 and let 0 < η ≤ 1/64. If S is (ℓ, η)-WOW-NLLR,
then

p ≥ ℓ(n− 2t)

2t̂
− 1.

Proof. For Theorem 2 to be applicable, it must hold that 0 < η ≤ (n− t)/4n, which is always satisfied, when
0 ≤ η ≤ 1/64, since t ≤ n/2. Furthermore, it holds that

4nη(ℓ+ log(1/η)) + 1

t̂
≤ nℓ

16t̂
+

4nη log(1/η)

t̂
+ 1

≤ nℓ

16t̂
+

3n

8t̂
+ 1 ≤ 7nℓ

16t̂
+ 1 ≤ nℓ

2t̂
+ 1

From Theorem 2, we know that it must hold that

p ≥ ℓ(n− t)

t̂
− 4nη(ℓ+ log(1/η)) + 1

t̂
.

Thus it must at least hold that

p ≥ ℓ(n− t)

t̂
− nℓ

2t̂
− 1

⇐⇒ p ≥ ℓ(n− 2t)

2t̂
− 1.

⊓⊔

4 Leakage-Resilience of Shamir’s Secret Sharing

In this section we apply our result to Shamir’s secret sharing scheme.
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4.1 Shamir’s Secret Sharing Scheme

In t-out-of-n Shamir secret sharing [Sha79], the secrets are elements of a field Fq for some prime q, which
is chosen as the smallest prime larger than n. To distribute a secret s, the dealer picks a uniformly random
polynomial f of degree t− 1 from Fq[X] and defines shi = f(i) for i ∈ [n]. Reconstruction of the secret from
a subset of t shares is performed via polynomial interpolation, as any polynomial of degree t− 1 is uniquely
defined by t evaluation points.

4.2 Noisy Leakage-Resilience

Benhamouda et al. [BDIR18] conjecture that Shamir’s scheme is leakage-resilient against one-bit leakage for
any t = c · n, where 0 ≤ c ≤ 1 is a constant. Nielsen and Simkin [NS20] showed that this is the best one can
hope for by proving that the scheme is not secure against one-bit leakage when t = cn/ log(n). In Theorem 4
we show that this lower bound holds even if a constant fraction of leakages is replaced by noise.

Theorem 4. There exist universal constants c1, c2, such that for sufficiently large n, it holds that (c1 ·
n/ log(n))-out-of-n Shamir secret sharing is not (1, c2)-WOW-NLLR.

Proof. Let c1 < 1/3 be arbitrary but fixed and let c2 = 1/64. By Corollary 3, we know that

p ≥ n− 2t

2t̂
− 1

has to hold for the secret sharing scheme to be (1, c2)-WOW-NLLR. We note that the full reconstruction
threshold t̂ = t for Shamir secret sharing, since any t shares allow interpolating any other share. Now
plugging in the concrete parameters, we get that

p ≥ n− 2c1n/ log(n)

2c1n/ log(n)
− 1

⇐⇒ p ≥ log(n)

2c1
− 2

⇐⇒ p ≥ 3 log(n)

2
− 2

has to hold.
Let q be the first prime larger than n and note that p = log(q). By the Bertrand-Chebyshev Theorem,

we know that n < q ≤ 2n and thus it must hold that

log(2n) ≥ 3 log(n)

2
− 2

⇐⇒ 4 ≥ 3 log(n)− 2 log(2n)

⇐⇒ 4 ≥ log

(
n3

4n2

)
,

which is clearly not true once n is large enough. ⊓⊔

Conclusion. In this work, we strengthened the lower bounds on the share size of leakage-resilient secret
sharing schemes of Nielsen and Simkin [NS20] by showing that similar bounds hold, even if we considerably
weaken the security notion we aim for. We show that Shamir secret sharing is not noisy leakage-resilient,
if t ≤ c1 · n/ log(n), where c1 and c2 are constants, where t is the reconstruction threshold and n is the
number of shares. We leave the reader with an interesting open question. Our lower bound crucially relies
on an adversary running in exponential time in n. A natural question to consider is whether one can either
improve the running time of the adversary to make the attacks more practical or whether one can prove
a form of computational leakage-resilience for Shamir secret sharing under an appropriate computational
assumption.
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ence of hardware countermeasures. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
252–263, Worcester, Massachusetts, USA, August 17–18, 2000. Springer, Heidelberg, Germany. 1.1

CGMA85. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In 26th Annual Symposium on
Foundations of Computer Science, pages 383–395, Portland, Oregon, October 21–23, 1985. IEEE Com-
puter Society Press. 1

CJRR99. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 398–412, Santa Barbara, CA, USA, August 15–
19, 1999. Springer, Heidelberg, Germany. 1.1
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