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ABSTRACT

Privacy-preserving machine learning (PPML) promises to train
machine learning (ML) models by combining data spread across
multiple data silos. Theoretically, secure multiparty computation
(MPC) allows multiple data owners to train models on their joint
data without revealing the data to each other. However, the prior
implementations of this secure training using MPC have three limi-
tations: they have only been evaluated on CNNs, and LSTMs have
been ignored; fixed point approximations have affected training
accuracies compared to training in floating point; and due to signif-
icant latency overheads of secure training via MPC, its relevance
for practical tasks with streaming data remains unclear.

The motivation of this work is to report our experience of ad-
dressing the practical problem of secure training and inference
of models for urban sensing problems, e.g., traffic congestion es-
timation, or air pollution monitoring in large cities, where data
can be contributed by rival fleet companies while balancing the
privacy-accuracy trade-offs using MPC-based techniques.

Our first contribution is to design a custom ML model for this
task that can be efficiently trained with MPC within a desirable
latency. In particular, we design a GCN-LSTM and securely train
it on time-series sensor data for accurate forecasting, within 7
minutes per epoch. As our second contribution, we build an end-to-
end system of private training and inference that provably matches
the training accuracy of cleartext ML training. This work is the first
to securely train a model with LSTM cells. Third, this trained model
is kept secret-shared between the fleet companies and allows clients
to make sensitive queries to this model while carefully handling
potentially invalid queries. Our custom protocols allow clients to
query predictions from privately trained models in milliseconds,
all the while maintaining accuracy and cryptographic security.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1-16

© YYYY Copyright held by the owner/author(s).

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Urban sensing applications like air pollution sensing and forecast-
ing [3, 24, 39], road surface quality monitoring [17, 44, 57], traffic
congestion and travel time information collection [30, 68], have
been shown to scale using vehicles instrumented with sensing plat-
forms. Higher coverage and more data from diverse sources can play
avital role in improving machine learning (ML) accuracy [18, 34, 64].
However, fleet companies have a real privacy concern before taking
part in vehicle-mounted sensing projects, that of sharing location
trajectories and fleet size information among rivals. For example,
cab-sharing companies like Uber and Lyft can instrument their ve-
hicles with pollution sensors. But training a joint model to forecast
air pollution combining their datasets, is privacy-invasive. Knowing
where Uber cabs are, Lyft can optimize cab routes for higher profits,
affecting Uber’s business. Their sensed data will remain in silos
unless privacy-preserving ML training and inference methods are
devised to process the datasets.

Problem Setting. We focus on the same important use-case
of air pollution monitoring as in [1]. Spatio-temporal particulate
matter (PM) data sensed by each vehicle has to be aggregated across
city locations and times of the day, and then fed into ML models for
different applications. One useful application is pollution forecasting
i.e. answering queries about PM values at some future time point,
based on historical and current values. Prior work [1] limitedly
focussed on one fleet company, which processed its own vehicles’
sensor data with ML models in its own server. Privacy played a role
in only answering statistical queries from clients using that pro-
cessed data. In this work, we focus on securely combining data from
multiple (rival) fleet companies to train more accurate ML models,
while hiding the location of individual sensors or preserving the
local privacy of individual data points.

As pollution is a dynamically evolving phenomenon, a pre-
trained model is not sufficient to effectively infer the pollution
values after a long duration. Hence we need to periodically fine-tune
the model with fresh incoming data. This model fine-tuning should
also preserve privacy at low latency, to handle continuous stream-
ing data. Finally, (potentially invalid) queries from clients need to
be answered using the most recent fine-tuned ML model, with-
out revealing model details to the client and client location to any
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server or data owner. The two problems have been well-studied sep-
arately in Privacy Preserving Machine Learning (PPML) literature,
as secure training [33, 37, 45, 63] and secure inference [31, 45, 55].
Shortcomings of prior works in PPML. SecureML [45] enabled
mutually distrusting parties to jointly train DNN models on their
combined sensitive data without revealing the data to any of the
parties. Since its introduction, there have been designs of special-
ized MPC protocols for this problem [33, 37, 59, 60, 63] as well as
better programming support [33, 37]. However, the current state-
of-the-art in secure training suffers from three main limitations
that hinder its direct application to the problem of secure training
of models for air pollution forecasting. First, it only focuses on sim-
ple convolutional neural networks (CNNs). Our setting deals with
time-series data and recurrent neural networks (RNNs), e.g., LSTMs,
which are standard model architectures used in this domain. None
of the secure training protocols or frameworks support RNNs [54].

Second, all of the existing works use ad-hoc fixed-point approxi-
mations for ML training algorithms that can potentially lose accu-
racy. For instance, Piranha [63], the latest work on secure training,
reports that secure training of AlexNet on CIFAR suffers from 19%
accuracy loss compared to cleartext training.

Third, secure training via MPC has significant latency overheads,

making it challenging to process streaming data like that of air
pollution.
Our approach and its generalizability. To handle the shortcom-
ings in prior PPML papers, we adopt a co-design approach between
ML modeling and secure multi-party computation (MPC). At ev-
ery step of our end-to-end system design, we carefully balance
trade-offs between ML accuracy vs. MPC computation and com-
munication overheads. Using real vehicle-mounted 3-month PM
datasets [13] from one of the most polluted cities in the world,
we show Graph Convolutional Network (GCN) architectures cap-
ture well the spatial relations of particulate matter (PM) and Long
Short Term Memory (LSTM) cells capture temporal information for
forecasting. To address the shortcomings of existing frameworks
for secure training, especially to provably guarantee the absence
of accuracy loss between secure training and cleartext training,
we use the state-of-the-art implementations of MPC protocols for
floating-point arithmetic, SECFLOAT [53], that implements floating-
point operations like addition, multiplication, exponentiation, etc.,
with formal correctness guarantees. In particular, SECFLOAT is up
to two orders of magnitude more efficient than works in secure
floating-point that predate it. Implementation of ML training in
SECFLOAT defines our cost model, that is MPC computation and
communication overheads.

Our carefully co-designed GCN-LSTM architecture-based ML
model and SECFLoOAT based MPC protocol allow model training in
floating point, maintaining the accuracy of plain-text training while
achieving cryptographic guarantees for the privacy of training data.
We also achieve practical runtime to support model fine-tuning
with streaming data (7 minutes per training epoch). Clients get
query responses in negligible time (less than 5 milliseconds). Our
paper uses air pollution forecasting as a use-case, so that the end-to-
end system design, implementation, and evaluation of accuracy and
runtimes can be demonstrated using real datasets. However, the
neural network architectures we use for pollution forecasting are
highly generic and useful for many applications. For example, GCN
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has been used for text classification [66], image classification [11],
recommendation systems [41, 61]; LSTM for keyword spotting [8,
10] and gesture detection and human activity recognition [21, 69];
and GCN-LSTM for travel time estimation [32, 70]. If in any such
application, data is collected by more than one party which cannot
share the data for training or inference in plain text, our ML-crypto
co-design principles and MPC protocols will be useful.

1.1 Main contributions

Our first contribution is to design an ML model for air pollu-
tion forecasting that can be trained using protocols provided by
SeEcFLoAT with an acceptable end-to-end latency. PM depends on
green cover, industrial activities, traffic volumes, and other spatial
phenomena, as well as temperature variations, wind speed, traffic
densities, and other temporal phenomena. How should the city be
split into location grids, to capture the spatial dependencies be-
tween locations and PM? How many buckets should the time of the
day be split into, to capture temporal factors affecting PM? What
parameters of the NN models (e.g. number of convolution layers if
used, number of memory cells if used, filter sizes, etc.) will balance
ML accuracy with MPC-based training/fine-tuning overheads? We
answer these questions empirically in Section 4, using one of the
richest spatio-temporal datasets for PM 2.5 and PM 10 collected
using sensor-instrumented public buses in Delhi [13].

Next, as a second contribution, we build an end-to-end pipeline
to securely train our models using SECFLOAT. SECFLOAT provides
support for basic floating-point operations. One can write SECFLOAT
code for LSTMs that works on one scalar value at a time, but that
would be extremely inefficient. We show how to use SECFLoAT APIs
to build ML training APIs with forward pass and backpropagation,
for convolution, memory cells and other neural network opera-
tions, efficiently. We in-fact have observed while training a GCN
model with SECFLOAT, and another fixed-point based industrial
MPC framework, Crypten [37], that floating-point MPC training
converges the same way as plaintext model training in Keras, while
Crypten never converges. Recall that Crypten, like all prior secure
training implementations, doesn’t support LSTM. Our ML training
secure APIs can be more directly used for applications that use
either convolution or LSTM or both. Our solution works with 2
rival data providers and can be generalized to n-data providers in
the client-server model using standard techniques [45, 48, 49].

After completion of secure training, the two servers hold secret
shares of the trained/fine-tuned model. Our third contribution
is efficient querying of this secret shared model. The main focus
of prior work [1] was to support such queries in the setting of a
single server; the client and the server engage in secure 2-party
computation that requires the client to communicate MBs of data
and results in one-second latency per query. We make two obser-
vations. First, even though we perform training using a secure
floating-point, the query processing can work over integer/fixed-
point arithmetic. This is particularly true for our setting because
the PM values are integers between 1-1000 and we only need to
compute some simple statistics over these. To enable private query
processing over integers, we provide a novel 2-party protocol to
convert from secret shared floating-point values to secret shared in-
tegers. These protocols act as glue between floating-point training
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using SECFLOAT and integer query processing using EMP’s garbled
circuits [62]; enabling such private queries over integer values can
reduce overheads by an order of magnitude. Second, we leverage
the two servers to do the heavy lifting and allow a client to be
lightweight. In particular, the client gets a response in milliseconds,
i.e., more than two orders of magnitude improvement over [1].

In summary, this is a novel experience paper on end-to-end
PPML solution for practical real-time training and inference of
air pollution forecasting models. Our main technical contributions
are interdisciplinary, at the intersection of ML and MPC. The re-
search challenges arise from balancing ML accuracy vs. MPC la-
tencies, which we resolve through co-design of neural network
architecture and MPC protocols. This successful demonstration of
privacy-preserving ML model training on streaming data and query
responses in milliseconds, shows great promise for all urban sens-
ing problems. Any application using convolution or LSTM models,
that need secure training among non-trusting data-owners, can
benefit from our ML-MPC co-design approach and SECFLoAT based
secure APIs for ML.

1.2 Other Related Works

Secure MPC for location privacy: Secure Multi-Party Compu-
tation (MPC) has been extensively used to preserve location pri-
vacy, viz. detecting proximate users without revealing individual
locations [14, 56], detecting users with overlapping trajectories
without revealing individual trajectories in ride sharing [22, 28, 51].
These works have only location sensor values and do not have
utility concerns, unlike our use case with pollution sensor values,
where the accuracies of forecasting results are important. Works
like [4, 9, 12, 29, 46] specifically explore MPC for mobile applications
with different optimizations like an extra server for outsourcing
garbled operations or using a dedicated compiler.

Alternate Approaches for Privacy. The use of approaches such
as differential privacy [15] and federated learning [43] results in
loss of either accuracy of the task, aka, utility, and/or end-to-end
formal security guarantees, and hence, are unattractive for this
task. Systems researchers are trying hard to build accurate low
cost PM and GPS sensing devices. ML practitioners are designing
DNN models to use the sensed information for the most accurate
forecasting possible. As privacy researchers, we cannot negate their
efforts by adding noise to the PM or GPS sensor data values or the
ML model weights, as done in DP or FL. More details are below.
Differential Privacy: A potential alternate approach towards en-
abling the training of joint models in a privacy-preserving manner
is that of Differential Privacy (DP) [15]. Several works have ex-
plored adding noise to the location coordinates [2, 5, 23, 27, 40], or
adding dummy trajectories to actual trajectories [35, 47], or using
chaff vehicles for variable traffic density [58] in order to not reveal
raw sensor data. One could potentially do something similar - 1)
add DP noise to the raw sensor data before the ML training process
2) train an ML model to obtain a pollution level grid map of the
city; and finally 3) Add DP noise to the entries before releasing it
publicly thus enabling client’s to perform queries without revealing
their location to the servers. However, an MPC-based approach to
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the problem has several important advantages: 1) As already empir-
ically demonstrated in [1], the amount of DP noise to be added for
privacy preservation undermines the utility of the pollution sensing
system. 2) Even this would only provide privacy for the individual
data points in the data set and not about the entire data set provided
by each data provider. In contrast, an MPC-based solution allows us
to train over the raw trajectory data with associated PM values as if
all the data were present in the clear in one place. Hence, no change
is needed in the ML training algorithm, and hence no accuracy is
lost in the training process. Further, our end-to-end MPC provides
a much stronger privacy guarantee. The data contributors learn no
information through the process — in particular, the final trained
model is also kept hidden (or secret shared amongst the servers).
Finally, the clients learn the query results alone and nothing else
about sensor data, and not even noisy grids.

Federated Learning: Federated learning (FL) [43] is another alter-
native approach to training joint models from multiple data sources.
While being attractive from a data movement point of view, it suf-
fers from serious limitations on the privacy front [16], especially
when the number of data providers is small (FL by itself does not
provide any privacy guarantees and can be combined with DP tech-
niques and/or secure aggregation to provide some level of privacy).
Further, it is significantly inferior to centralized training on the
accuracy front, when the data present with the different sources is
heterogeneous [71].

2 CRYPTOGRAPHY BACKGROUND
2.1 Secret Sharing Schemes

At a high level, 2-out-of-2 secret sharing schemes allow a secret x
to be split into two values x¢ and x; with the property that each x;,
(b € {0, 1}) contains no information about x, while x¢ and x; can be
combined through a reconstruction procedure (typically addition
over an appropriate ring) to recover x. We will make use of 2 types
of 2-out-of-2 secret sharing schemes to share integer values (over
different rings) and to share floating-point values. To share a secret
£-bit integer (x)¢, viewed as an element € Z,, sample 2 random
ring elements (x}é, (x)f from Z,¢ such that (x)g+(x)f = (x)!, where
+ denotes addition over the ring Z,¢ (ie. mod 2°). The share of
party Sp, (b € {0,1}) is denoted by (x)g. When ¢ = 1, we sometimes
use the superscript B, instead of ¢. Following SECFLOAT [53], a
floating-point number x is represented as a 4-tuple (z, s, e, m) has
has value (1-2z) - (-1)° - 252—};”, Here, s is the sign bit, e is the p-bit
exponent, z is the zero indicator bit equivalent to e = -2~ + 1, m
is the fixed-point mantissa in ¢ + 1 bits and scale g, and the division
is over reals. A secret shared floating-point number x is then a tuple
)P = ((2)B, (s)B, (e)P*2, (m)T*1) of 4 secret-shared values. For
standard 32-bit floating-point, p = 8 and ¢ = 23.

2.2 Secure 2PC

Secure 2-party computation (2PC) allows two parties S and Sy,
each holding private inputs xy and x respectively, to compute any
arbitrary function y = f(xo,x1) on these inputs while revealing
only the function output y to either party. This is done through a
protocol execution 7. We consider a static probabilistic polynomial
time semi-honest adversary that corrupts one of the parties. That is,
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Figure 1: System architecture with stake-holders and threat model. Solid lines denote clear-text computation and communication between servers

and their respective fleets. Dotted lines indicate

at the beginning of the protocol, an adversary A can corrupt either
So or S1. While A will try to learn information about the other
party’s input, it will follow the protocol specification faithfully.
Proof of security of 7 is shown via the ideal/real paradigm [42]
that considers two interactions: a real interaction in which Sy and
S1 interact with each other in the presence of an adversary A
(corrupting Sp) and the environment Z; and an ideal interaction,
in which parties send their inputs to a trusted functionality that
computes the function faithfully. Security is proved by showing
the existence of an ideal adversary S (which does not know S;_p’s
input), known as the simulator, such that no Z can distinguish
between the two interactions.

Various 2PC protocols follow the blueprint of both participants
starting with secret shares of inputs of a function/computation and
running a 2PC protocol to end with secret shares of outputs. The
work of SECFLoAT [53] provides such secure protocols for various
floating-point functions such as addition, multiplication, division
and exponentiation. These protocols compose while preserving
security and we use them to implement the operations occurring
in our ML workloads.

3 SYSTEM OVERVIEW
3.1 Stakeholders, Threat Model, Problem Setting

Using vehicles instrumented with low-cost Particulate Matter (PM)
sensors, fleet companies collect air pollution data in the format (PM,
Lat, Lon, T), where PM denotes the Particulate Matter value sensed
by an instrumented vehicle at some location given by latitude Lat
and longitude Lon at a particular time T. These raw traces coming
from individual instrumented vehicles are aggregated by their cor-
responding fleet companies at their respective servers as a grid with
desired granularity as explained below. The servers want to train
ML models for interesting tasks such as air pollution forecasting.
Instead of using only the data streamed at their own server, com-
bining data across multiple servers makes the dataset richer, with
better spatiotemporal coverage and granularity, and subsequently
having higher accuracy in answering the ML questions. However,
the servers cannot share their collected data in the clear as that
would reveal business-sensitive information, e.g., spatiotemporal

MPC among servers and between servers and clients.

fleet densities. Thus, we use MPC as a privacy-preserving technique
to enable joint training of ML models

As the servers periodically compute ML models using streaming
sensor data, we also allow clients to query the model with various
aggregate queries discussed below. Fine-tuned models are kept
secret-shared between the servers and not revealed to either of
the servers. Similar to [1] our system forbids querying pollution
data at a single location as that can reveal sensitive information.
Our protocols for secure querying perform the checks necessary to
ensure that the query is valid. Queries are also processed via MPC
between the 2 servers and the client.

Figure 1 shows our system architecture with different stake-
holders for the setting of 2 rival fleet companies. Our MPC-based
solution easily generalizes to more fleets [45, 48, 49] as follows:
The rival fleet companies or the data owners can begin by secret
sharing their data between the two non-colluding servers, and the
rest of the workflow remains the same as above. The complexity of
this extension is identical to the case of 2 fleets. For simplicity of
exposition, our formal description is based on 2 fleet companies.

Threat Model. Since the servers would be owned by renowned
fleet companies, we assume that the servers are semi-honest and
non-colluding during secure training as well as secure inference.
However, it is unreasonable to assume that all of thousands of
clients would only send well-formed valid queries. There is a clear
incentive for clients to be malicious and send smartly crafted queries
to learn sensitive information about fleet companies. Hence, we
consider corrupt clients that can deviate arbitrarily from the system
specifications, i.e., clients that can send arbitrary queries. Then, the
query processing needs to first ensure that the query is valid before
sending back the result.

Formally, we consider the setting of 2 servers and an arbitrary
number of clients. We consider an adversary A that statically cor-
rupts either one of the servers or an arbitrary collection of the
clients. We formally show that our protocols for model training and
query processing realize the ideal functionality defined in Figure 2.
Note that here we define the end-to-end ideal functionality of train-
ing and query processing, and we also define the ideal functionality
of query processing in more detail in Figure 6.
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As is clear from the description of the ideal functionality that
we realize, the servers learn no information about the model being
trained. In contrast, in the federated learning-based model training,
the servers would learn aggregate gradients or model updates after
each iteration and hence, it does not satisfy this strong security
that we achieve with MPC. In the setting of two data contributors,
these gradient leakages have been used to launch explicit attacks
to recover the underlying secret data of the other party [19, 67].

Consider the setting of 2 servers Sy and S; and clients {C;}.
Model Training: The input of Sy, is a part of the dataset,
denoted by Dy,
1: For b € {0, 1}, Sj, sends Dy, to the ideal functionality F.
2: F computes the joint data D = (Dg, D1). (We discuss
exact data formatting/pre-processing for our setting in
Section 5.1.)
3: ¥ runs the machine learning training algorithm M on
dataset D to obtain a model Mp. (Note that the trained
model Mp is not sent to anyone.)

Query Processing: An algorithm V' checks whether a query is
valid or not. In particular, for a query q, V(q) = 1if q is valid
and 0 otherwise. We define this algorithm V'(-) in Figure 6.

1: A client C; sends a (potentially invalid) query
q = (qType, ¢') to F. Here, qType denotes the type of
the query, e.g., average, max, etc.

2. F sends qType to So, S1. Then, F checks if g is a valid
query by computing V(gq). If not, it sends reject to C;.
Else, it computes y = Mp(q) and sends y to C;. (Note
that only the client gets the result, and the servers only
learn the type of the query made.)

Figure 2: Ideal Functionality ¥ for training ML models and
query processing.

3.2 Detailed Problem Formulation

First, we view the urban area of interest as a rectangular grid of side
lengths [ and b with origin at Lat, Lon values (x, y). Next, we divide
the area into small square grids of side z meters as shown in Figure
3 that defines the granularity of measurement agreed upon by all
parties involved. When the servers collect the sensor information
from their respective fleets (in cleartext), they locally aggregate the
information into locally maintained grids by mapping to the nearest
grid point. A day is bucketed into desired time slots as well. Re-
formatted and aggregated data held by each server thus takes the
form (Laty,;q, Long,iq, t, PM) tuples, where Laty,;q, Long,;q corre-
spond to cell index in the grid.

To begin with, the servers may have an incomplete grid or values
at a grid location with very low confidence due to fewer sensors at
that location. Via the ML models for forecasting, we learn complete
grids for future times that would be kept secret shared between the
servers.

Once the grids are learned, clients can perform several kinds
of queries. Examples of these include current or future average,
minimum, or maximum PM values over a set of grid locations. They
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can also ask count queries, where they specify a threshold 6 value
of PM and ask how many grid locations in the set exceed 6, or
range queries with two thresholds 67 and 6, to ask how many grid
locations fall within those thresholds. Note that all the queries have
to specify a set of locations (grids) and we need to ensure that the
set has some minimum cardinality.

(x,y+b)=(0,1L]) (x+Ly+b) = (L] 1L)

(x,y) = (0,0 G+Ly) = (LLL0)

Figure 3: Urban area divided into grid squares.

4 PM FORECASTING

State-of-the-art Machine Learning methods can solve useful prob-
lems processing PM data in intelligent ways. Predicting PM values
for the future, or forecasting, is a significant problem. When making
decisions like whether to use an indoor air purifier, wear a face
mask outside, or decide to exercise indoors rather than outside,
which alternate route to take from work to home in the next one
hour, citizens in various urban regions should be able to access
their local PM values in near future. In this paper, we study PM
forecasting as target ML tasks to be solved, using state-of-the-art
neural network-based ML models, while maintaining the privacy
of training data across rival fleet companies.

4.1 Spatio-temporal patterns in PM data

In order to forecast PM data, there must be some underlying pat-
terns in the PM data for ML models to capture. Figure 4(a) shows
the average PM 2.5 values over the month of January 2020, as col-
lected using instrumented public buses in a major metropolitan
city. Darker colors indicate higher values of PM. Spatial patterns
are evident from this plot, and nearby locations are similar in color.
As pollution depends on spatial features like green cover vs. built
environment in an area or the presence of local pollutant sources
like industries or traffic hotspots, similarity in PM for nearby lo-
cations is intuitive. ML models for forecasting should be able to
capture this spatial relation.

Figure 4(b) shows the hour of the day along the x-axis and av-
erage PM 2.5 values on the y-axis, each curve representing one
day, where the averaging is done on all mobile sensors deployed in
buses. Figure 4(c) plots the same graph for the same days, but with
averaging done on reference grade static sensors within a 1 Km
radius of the trajectories of the mobile bus sensors. The correspon-
dence between pairwise curves in the two plots shows that mobile
sensing data is as reliable as static sensor data while having much
higher spatial coverage. The plots also show three interesting tem-
poral characteristics. First, most curves (other than the red curve
for day 4) have higher PM values at night, and the lowest is around
3 pm every day. This validates the known meteorological effect that
temperature is negatively correlated with PM as heat expands the
air, reducing PM concentration. Second, while the diurnal trends
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Figure 4: Spatio-temporal patterns in PM data collected using instrumented buses and static sensors in a metropolitan city.

(other than day 4) hold, the absolute PM values are not ordered in
increasing or decreasing order for subsequent days. The ordering
of the colors in the legend for successive days, and the ordering
of the colors within the plot, do not match. Thus forecasting PM
values later in the future, even for the next day, seems non-trivial,
using PM data itself. Our third observation: PM for a given day has
a slow rise and fall pattern without abrupt spikes, showing promise
for short-term forecasting. The ML model should capture these
short-term temporal trends.

4.2 ML Model for forecasting

GCN-LSTM: The GCN-LSTM model integrates the graph convolu-
tional network and Long Short Term Memory (LSTM) units. The
model consists of multiple graph convolution layers stacked over
multiple LSTM to predict pollution values. The dropout layers and a
dense layer at the end improve the model performance and manage
over-fitting. Using historical time series data as input, GCN models
the spatial features. Next, dynamic change over time is obtained by
information transmission between the LSTM units.

4.3 GCN-LSTM model specifics for forecasting

The urban grid as described in Section 3.1 is modeled as a graph
G = {V,W}, where V is the set of nodes, V = {v;,i = 1,...,N},
where N is the total number of nodes and W the adjacency matrix.
Nodes on the graph represent grid points and the edges repre-
sent the connection relationships between these grid locations. An
adjacency matrix A is used to represent the connection between
adjacent grid points. A is a 0-1 adjacency matrix where

A(vi, vj) = {

We say v; and v; are connected if v is among the first 8 (exclud-
ing self) closest nodes to v; based on the Euclidean distance. Now,
the problem of spatiotemporal PM forecasting can be considered as
learning the mapping function f on the grid G and feature matrix
X and then predicting the PM values on the next time moment, as
shown in equation:

Xer1 = f(G; (Xp—n, - .- Xe-1,X2))
where X; € RN is used to represent the PM values on each grid
node at time i and n is the length of the historical time series. We

use the GCN model to capture the complex spatial dependencies
in the grid architecture and the PM values. A single GCN layer

1, ifov; and v; are connected

0, otherwise

captures these dependencies between the nodes and its first-order
neighborhood, which can be expressed as:

H*! = o(AHF Ok, + 0F)

where A = A+Iy is the adjacency matrix with added self-connections,
Iy is the identity matrix, H is the output of k" layer, Glfv and 9];
are the weight matrix and bias vector which are the trainable param-
eters of the k" layer, and o(+) is the nonlinear activation function.
Now the GCN model is built by stacking multiple convolution layers.
For example, the 2-layer GCN model can be expressed as:

foc(X, A) = o1(Acy (AX6Y, + 69)63, +0})

Next LSTM is used to obtain temporal dependence from the PM
data. Figure 12 shows a single LSTM cell at time t where X; is the
vector of PM values at all grid locations at time ¢; h;_; denotes the
hidden state at time ¢ — 1; i, is the input gate which tells what new
information is stored in the cell state; f; is the forget gate which
tells the information to throw away from the cell state; o; is the
output gate which provides the activation to the final output of the
LSTM unit at time ¢; c; is the cell state or memory at time ¢ and ¢;
represents the candidate of the cell state at time ¢. The equations
for a single LSTM unit are shown as:

ir = o(Wilfoc (A X¢), he-1] + bi)
Jr = oc(Wrlfoc(A Xe), he-1] + by)
or = o(Wo[foc (A, Xt), he-1] + bo)
¢ = tanh(We[ foe (A Xi), he—1] + bi)
ct =ﬁ*ct_1 + i % Ct
h: = oy * tanh(cy)

where fGc (A, X;) represents the graph convolution process de-
fined above and W and b are the weights and biases in the training
process. The output of the LSTM layer is the output of the final
LSTM unit which is passed through dropout and dense layers to
avoid over-fitting. We give a diagram for the GCN-LSTM architec-
ture in Appendix, in Figure 12.

We show that 1 Km x 1 Km spatial grids and three-hour temporal
buckets capture well the spatiotemporal characteristics of PM in our
dataset. We model this using 2 GCN layers with [4,4] parameters
and 1 LSTM layer with 4 parameters, after careful empirical analysis

(Section 7.3), to get the lowest MPC latency and low average RMSE
for the forecasting task.
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5 PRIVATE TRAINING & QUERYING

Given the sensor data collected by multiple (possibly rival) fleet
companies, we want to jointly train a useful ML model like the GCN-
LSTM-based PM forecasting model discussed in the last section,
in a privacy-preserving manner. We focus on the 2-server setting
where these two servers could be the data owners or multiple data
owners can secretly share their data with the two servers who
participate in secure training via 2PC (Section 2.2). Since the final
trained model might reveal sensitive information regarding the
data used for training, we would keep the final model secret shared
it between the two entities participating in secure training. Later
on, we enable secure query computation over the secret shared
pre-trained model.
Overview. Given a public mapping from (Lat, Lon) to grid location,
as discussed in Section 3.1, the 2 data owners first locally aggregate
the sensed data. Next, the GCN-LSTM model needs to be jointly
and securely trained/fine-tuned for a certain number of epochs
using forward and backward passes on new data. A final forward
pass is needed to get the forecasted PM values for each grid point,
with this output kept secret shared between the two servers. Client
queries about average, and min/max pollution come for a subset
of these points, which are responded to by the two servers jointly,
again through MPC. Our system with 2 data owners can be trivially
extended to multiple data owners and 2 non-colluding servers using
standard techniques [45, 48, 49].

We discuss the important steps of secure training starting with
data pre-processing and privacy-preserving query responses next.

Our secure training builds on SECFLOAT [53] is a generic ML-independent

library for 2PC of floating-point operations It provides 2PC proto-
cols for both primitive operations like multiplying/adding/dividing
floating-point values and for math functions like exponentiation,
square root, etc. Additionally, SECFLOAT provides SIMD (single in-
struction multiple data) counterparts of these operations as well as
protocols for compound operations such as matrix multiplications.

5.1 Pollution data pre-processing

Both servers collect (new) data and pre-process it into a secret
shared common grid to be fed into the secure training.

e For b € {0, 1}, Server S, creates two grids G, By: G}, stores
accumulated pollution level at a point and By, indicates how
many data points does it correspond to (to allow for comput-
ing the correct average value across data collected by both
servers, see below).

e For b € {0,1}, S, secret shares G, By, with the other server.
With this, So and S hold (Go)FP, (Bo)FP, (G1)P, (By)FP.

e Sp and S; invoke SIMD addition protocol on (Go)P, (G1)TP
to compute (G)FP, where G[i][j] = Go[i][j]1+G1[i][;]. Sim-
ilarly, they invoke SIMD addition protocol on (By )P, (B1)FP
to compute (B)", where B[i][j] = Bo[i][j] + B1[i][j].

e Sg and Sy invoke SIMD division protocol on (G)FP and (B)FP
to compute (X)FP such that X[i][j] = G[i][j1/Blil[j] if
B[i][j] # 0 and X [i][j] = 0 otherwise.

Secret shares of X are input to the secure training phase.
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5.2 Secure training of GCN-LSTM

Once servers have secret shares of the grid with PM data, they
input these secret shares in a secure 2-party computation (2PC)
and get the secret shares of the trained model as output. For the
case of fine-tuning, they start training using secret shares of the
pre-trained model. Once the model is trained/fine-tuned, parties
run one forward pass to learn new updated values of the grid used
for forecasting. Secure training is done by invoking the appropriate
APIs that we have built on top of SECFLOAT [53]. Our API decom-
poses the operations required in the training of GCN-LSTM, i.e.,
the operations required in the forward pass and the backward pass,
to the generic operations provided by SECFLOAT.

This decomposition is done using the textbook descriptions of
the ML operators. Convolutions are translated to matrix multiplica-
tions. Sigmoid and hyperbolic tangents are decomposed into expo-
nentiations, additions, multiplications, and reciprocals. SECFLOAT
protocols performance is bottlenecked by communication. The com-
munication requirement of each individual floating-point operation
(flop) is in kilobytes [53]: addition costs 11.1 KiB, multiplication
costs 3.1 KiB, division costs 10.3 KiB, comparison costs 1.1 KiB, and
exponentiation is over 30 KiB. The most expensive operation in the
training of GCN-LSTM is the convolution which requires many mul-
tiplications and additions. We discuss how the GCN-LSTM model
is implemented using SECFLOAT APIs in Section 6 and evaluate the
runtime and communication overhead of the forward and backward
passes for training in Section 7.

5.3 Computing the integer grid for queries

The secure training phase is followed by one forward pass to com-
pute the final forecasting grid. Note that each grid value will be
a secret shared floating-point value. We note that each grid point
corresponds to a PM value taking values from 0 to 2000 and hence,
to support subsequent queries, it is sufficient to quantize these val-
ues to integer values. This can enable much faster querying as now
the secure queries can run on integer/fixed-point values instead
of more expensive floating-point operations. For this, we provide
a new protocol to convert floating-point values to integers. The
protocol can be easily generalized to fixed-point values. Let ¢ be
the length in bits required by the integer. We run the following
protocol for each value in the grid in parallel.

Protocol overview for the float to integer. Recall that the nu-
merical value of a floating-point number x represented as a 4-tuple
(z,s,e,m) is (1 —z) - (-1)% - 262',,’" (Section 2.1). Now, to convert
this to an ¢-bit integer, we simply compute the above expression
and round it to an integer. Note that not all possible floating-point
values can have a meaningful integer representation. For instance,
values smaller than 1 in magnitude (i.e., e < 0) need to be rounded
to 0, and values with magnitude greater than 2/~ (i.e., e > £ — 1)
can have garbage results. Formal protocol description is in Figure 5.

The protocol uses many 2PC building blocks over integer com-
putations that we explain as we use them. To compute 2, in Step 2,
we use a lookup table (LUT) EXP of size ¢ that maps i to 2! for
i € [0,£—1]. We use IT-VT to denote the 2PC protocol for lookup
tables that, given a secret shared index, outputs secret shares of the
value of the lookup table at that index. This protocol is based on
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Protocol Float-to-Int
Input: Sy and S; hold (x)f? = ((2)B, (s)B, (e)P*?, (m)a+!).
Output: S, and S; hold (y)¥, where ¢ is output bit length.

: For b € {0,1}, Sp, sets <e')lg = (e)‘Z+2 mod k for k =log ¢.

—_

2. (') = IHYT(EXP, (e’ )K).

3: (gt;)B =1~ ((e)?*?, —1).

4 (n)t =TIMYX ((gt,)B, (n')*,0).

5: (gty)® =T1I" ((e)P*2, q).

6 (m) =TI2T ((m)T+, g + 1, ¢).

7: (#1)¢ =TIMULT ((m), IS ((n)!, q)).
8 ()" =IIARS@MULT((m)?, (n)!), q).
9: ()¢ =TIMUX((gt,)B, (11)?, (2)0).

10: (res)? = TIMUX((s)B (=1)?, (£)?).

Figure 5: Protocol for floating-point to integer conversion

¢-choose-1 oblivious transfers [38, 54]. We perform this step using
only the lower log ¢ bits of the exponent (as the final integer value
is only ¢ bits) to learn n’. Next, we note that above calculation is
meaningless if e < 0. Hence, we check for this in Step 3 using a pro-
tocol for comparison I1” that returns boolean shares of the result
gt; [55]. Then, we use a multiplexer protocol MMUX with choice
bit gt, to choose between the value looked up n’ and 0 and denote
the result by n (Step 4) [55]. Note that n = 2 when0 <e < -1,
n = 0 when e < 0, and can be arbitrary for other values of e.
Multiplication of n and m needs to be done carefully to avoid
unnecessary overflows, that lead to the multiplexer in Step 9. In
particular, the mantissa is a fixed-point value with scale q and
hence, after multiplying with 2¢ we need to right shift the result
by q. Now if e is large enough (that is, e > q), we right shift 2¢
before multiplying by m (Step 7). Else, we first multiply and then
right shift the result (Step 8). Here, ITARS denotes the protocol for
arithmetic right shift and IMYLT denotes the protocol for integer
multiplication [55]. Furthermore, before multiplication, we extend
the mantissa from g + 1 bits to € bits using a protocol ITZXT for
zero extension (Step 6) [54]. We also assume that g < £/2 so that
the multiplication does not overflow. Finally, we set the sign of the
result using the sign bit of the floating point value in Step 10.

THEOREM 1. For a floating-point value (x)™" = ((z)B, (s)B,
(e)P*2, (m)3*1) representing real value r, if c; and cz are two con-
secutive £ > 2q bit integers such that ¢y < r < c then the above
protocol returns {c1)¢ if r > 0 and (c3)’ otherwise. Note that for our
case we use standard floats with p = 8, q = 23, and ¢ = 64-bit integers,
and ¢ > 2q holds.

Proor. There are three different cases here. First, when r = 0,
we have e < —1 and line 3 ensures that the output is zero. Second,
when e > q then the protocol exactly evaluates the integer r =
(=1)* - 279 - m. Third, when e < q then the protocol truncates
the least significant bits of m, which causes positive numbers to be
rounded down and negative numbers to be rounded up. O

Once we obtain secret shares of the grid as shares of 64-bit
integers, the servers can convert them to lower bitwidth, e.g., £ = 16,
by discarding the top 48 bits of their respective shares locally. This
step is sound because the PM value is between 0 and 2000 and
standard properties of arithmetic secret sharing.

Gauri Gupta et al.

5.4 Privacy preserving query response

For a grid with d cells, the client wants to query aggregate statistics
over some cells in the grid. For example, the client wishes to know
the average/min/max PM value along the intended path to travel
without revealing the path to the servers. In this secure computation,
the client’s input is the path and the servers input their secret shares
of the PM values of the grid. The output is the aggregate PM result
over the path which is only revealed to the client. The query result
is provided only if the number of cells the client is interested in is
greater than some threshold, say T. We need this step to ensure
that the client is computing aggregate statistics over a threshold
T number of cells and not simply querying a single grid point. [1]
discussed smartly crafted consecutive client queries that overlap at
one grid, to get PM values of individual grids, and how to handle it
for average queries adding DP noise to the output. Similar DP noise
can be added in our setting. The queries supported in this paper are
listed in Table 1. The ideal 3-party functionality for secure queries
is described in Figure 6.

Query Inputs Output
ZX-:TrueG[i]

A X S X, = Trae]
verage [G].[X] > 1[X; = True]

Minimum [G]. [X] nglrrrlueG[l]

Maxi Gl [X Gli
aximum | [G1IX] 2 S

Count [G].[x].6 Z tetil = o1

Xi=True
Range | [GLIX1.0,0; | D 1101 = Glil < 6]
Xi=True

Table 1: Types of queries supported

Parameters. Public area grid with d cells and pollution values are
over £ = 16 bits. Threshold T.

Input: Servers Sy and S; respectively hold secret shares ([G] )g and
([G] )f of d pollution values [ G]. Client holds a list of d boolean
values [X] and a type of query Q.

Output: The functionality sends the type of the query Q to the
servers Sy and S;. Next, it checks whether at least T indices in
[X] are true. If the check passes, the functionality reconstructs
the pollution grid [G] and returns the result of the query Q on
[G] and [ X] to the client.

Figure 6: Ideal Functionality for Grid Queries.

Queries are computed using MPC in the following three phases.

Phase 1: The client creates an array [X] of d Booleans where X;
is true iff the i*? cell lies on the path. This array is then secretly
shared between the two servers, i.e., the client gives boolean share
([X])P to S, b € {0,1}.
Phase 2: The two servers realize the following ideal functional-
ity via secure 2-party computation (2PC) where the input of S,
is (([G])i, ([X])f). It reconstructs the pollution grid [G] and the
client grid of interest [X]. Then, it checks whether [X] has at least
T true indices. Next, if the check passes, it computes the required
statistic corresponding to the query result. This step involves com-
puting the average/min/max etc of PM values of the cells with
indices i such that X; = true. Finally, it secret shares the query
result between the two servers.
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Phase 3: The servers send the secret shares of the result to the
client who can then reconstruct the result.

Note that only the client learns the result and 2PC ensures that
the servers learn nothing about the client’s input. Also, the client
learns nothing about the PM values in the grid beyond what is
revealed by the aggregate result. As is clear, the client is quite
lightweight and is only involved in phases 1 and 3 and the total
communication incurred is 2d + 2¢ bits, which is less than a KB in
our evaluation. Unlike prior work [1], where the client participates
in 2PC and suffered from high communication overheads, here the
2PC in phase 2 is between the servers and does not involve the
client. Thus, the servers communicate an MB of data (Section 7.5)
but the communication overheads of the client are negligible.

5.5 Security

We need to show that putting together our protocols in Sections 5.1,
5.2,5.3, 5.4, we realize the ideal functionality defined in Figure 2. We
show security using the standard hybrid model [42] that replaces
the calls to sub-protocols with respective ideal functionalities with
the same input and output behavior. Moreover, we note that after
each of these phases of our overall protocol, i.e., data pre-processing,
model training, quantization, and query processing, the outputs are
kept 2-out-of-2 secret shared between the servers (and not revealed
to any server).

First, we show that composing the protocols for data pre-processing
in Section 5.1 and secure training in Section 5.2 provides a secure
protocol for the model training phase, i.e., if one were to reconstruct
the secret shares of the output held by the servers, it would result
in the same model (or, the pollution grid) as learned by ¥ and we
can simulate the view of the corrupt server. This trivially follows
from the semi-honest security of protocols in SECFLoAT [53].

Next, by Theorem 1, at the end of the protocol in Figure 5, servers
learn the shares of the correct quantized grid and nothing else.
Finally, composing this with our 3-party query processing protocol
from Section 5.4, we get a secure protocol for query processing that
is secure against a semi-honest server or client. More formally, since
the client only secret shares its input and only receives the output
of 2PC between the servers, the protocol is trivially secure against
a client (while this client may choose its input in any arbitrary
manner; since the servers run the query validity check using a
secure 2PC, it is guaranteed that the client’s query must have been
valid). Also, since the servers compute the check for query validity
and the query itself using a secure 2PC, the protocol is also secure
against a semi-honest server (i.e., the client’s privacy is protected
against a semi-honest server).

Finally, by composing protocols for training and query process-
ing using the hybrid model, we get that the overall protocol securely
realizes ideal functionality in Figure 2.

6 IMPLEMENTATION

With the GCN-LSTM model shown in Figure 12, we implement
the forward and backward passes using SECFLOAT APIs (code snip-
pet in Appendix). In the backward pass, first, the error gradient
is computed from the outputs and labels, then the gradient of the
sigmoid function is computed as element-wise multiplication of
the activation values (z - (1 — z)). Subsequently, the gradients are
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backpropagated through the final linear layer of the network and
also backpropagated-through-time [65] in the LSTM layer and so
on. For training over multiple epochs, we implement the Adam
optimizer on top of SECFLOAT with the default i, f parameter
values as specified in [36]. Moreover, since most of the computa-
tions involved in the forward/backward passes are embarrassingly
parallel i.e., they involve multiple independent computations such
as (SIMD) additions, (SIMD) multiplications, and point-wise acti-
vations, we parallelize them over 16 threads. During query time,
there is no floating-point arithmetic and the query computations
are over integer arithmetic. For queries, we use EMP [62] as the
2-party cryptographic backend. We have observed that, among the
available 2PC implementations, EMP provides the best concrete
performance for our queries. This is because almost all queries do
boolean computations such as comparisons, and none of the queries
require integer multiplications.

7 EVALUATION

We explore the trade-offs between good forecasting accuracy and
MPC overheads (Figure 8, Section 7.3) to generate a GCN-LSTM
model that a) provides better accuracy than baseline models (Table 2,
Section 7.4), b) the queries can be processed in real-time with MPC
(Table 6, Section 7.5), and c) the MPC-based training is efficient
enough that the model can be fine-tuned within 3 hours. Ideally, one
would like to train from scratch instead of fine-tuning (Figure 11),
but then the models won’t be ready on time. We show a schedule
that combines secure training from scratch and secure fine-tuning
to ensure the availability of accurate models (Table 8, Section 7.7).

7.1 Experimental setup

PM Dataset The Particulate Matter (PM) dataset used in this paper
to evaluate forecasting accuracy, has been recorded over three
months from November 2020 to January 2021 for a total of 91 days.
The dataset contains more than 12.5 million sensor data points and
spans an area of 559 square km. We use PM 2.5 values along with the
GPS location and time of the collected data, to evaluate forecasting
accuracy. To evaluate MPC performance, we split the dataset into
parts, to emulate different fleet companies holding different parts
of the dataset in their respective servers (Figure 1).

Train test split As in any time-series data, we need to respect
chronological order. We thus combine data from 7 consecutive
days, the first 6 days form the train set and the model is tested
on the 7t" day. This choice of using 6 days in historical data in
forecasting will be further analyzed in Section 7.3. Our test days
are 15 Nov, 20 Nov, 28 Nov, 7 Dec, 15 Dec, 7 Jan, 10 Jan, and 24 Jan.
We have a common DNN architecture for predictions on weekday
vs. weekend, but our model weights are constantly updated using
streaming data of the last 6 days.

Evaluation metrics To evaluate MPC overheads, we measure
end-to-end latency/runtimes and communication incurred between
participants. To quantify forecasting accuracy, we use the standard

P 2
Root Mean Squared Error (RMSE) metric defined as 4 ,2?:1 (%)

where 7 is the forecasted value, y is the observed value, and n is
the number of observations. Lower RMSE indicates more accurate
forecasting. Figure 7 shows the time of the day along the x-axis
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with actual or sensed PM values along the y-axis for some days. The
forecasting RMSE values are shown in the legend, corresponding
to each day. Some days show a lot of variation in PM values (e.g.
Jan 15 and Nov 24). For these days, the forecasting RMSE is higher,
as the high variation of PM values is difficult to model and predict
for the ML algorithm. As RMSE is data dependent, our evaluations
present the average RMSE values with standard deviations, over
the eight test days spread over the three months dataset.

Pollution distribution on a day
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Figure 7: RMSE for forecasting task depends on PM value fluctuations.
Higher fluctuations result in higher RMSE.

Hardware specifications MPC latency and communication de-
pend on the hardware specifications of the experimental platforms.
We use two 32-core 2.4GHz machines, with 128 GB RAM each,
connected with a 16 Gbps LAN connection.

7.2 Data representation for forecasting

We need to construct a time series from the raw PM dataset de-
scribed above, to input to the ML model for training the model and
forecasting future values. Since this data representation affects the
input to the ML model, and the input dimensions to the ML model
in turn affect the model training overhead in MPC, clarifying the
representation is necessary.

Spatial grids We divide the 559 square Kms of our dataset into a
square of size (25*25) so that each small grid represents a region
with an area of approximately 0.9Km?. Our forecasting and query-
ing granularity is at the level of this approximately 1Km? square
grid. Any sensor reading whose latitude and longitude fall within
the boundaries of a grid is binned as an event of that grid. Since
the local buses that collect these PM values move along certain
defined trajectories, certain grid locations that do not lie on these
trajectories have no corresponding PM readings. 270 out of 625
grids are actually populated across 3 months. We use these 270
spatial grids as input to our forecasting model.

Temporal buckets Similar to how to discretize lat-long location
space into spatial grids, we also discretize the time-space into buck-
ets of 3-hr duration. As PM readings are collected at a high fre-
quency of 0.2 Hz, for a given grid location, all PM 2.5 readings in
a 3-hr window lying within the boundaries of the grid location
are averaged for forecasting. We have only 20% and 4% values on
average, collected in the first two temporal buckets respectively, as
most buses are not operational from 12 AM-6 AM. We, therefore,
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drop the first two temporal buckets from our time-series construc-
tion and consider the remaining 6 buckets totaling 18 hours each
day. The time series for a single day is thus constructed such that,
each grid location is a vector of size 6, filled with aggregated PM2.5
values collected over an interval of 3-hr from 6 AM-12 midnight
and 0 wherever missing. We show the sample time series for one
day (Dec 7, 2020) for some grid locations in Appendix, which forms
the input to our ML model to train and evaluate forecasting.

If we have bigger temporal and spatial grids, number of grids
will be smaller. This will reduce both model training and query
latencies through MPC, as computation time depends on number
of grids. However, with bigger temporal and spatial grids, PM fore-
casting will be at a coarser granularity. Fig. 4(a) shows that PM
2.5 has significant variations across nearby locations, and Fig. 4(b)
shows PM 2.5 has significant variations within nearby times. Thus
there will be an accuracy trade-off in PM forecasting, if we choose
bigger grids to reduce MPC latencies. We therefore choose 3 hours
forecasting time buckets, and about 1 sqgKm. spatial grid size, and
empirically show that both training and query times with MPC are
practical for this grid granularity.

7.3 Balancing RMSE and latency

As discussed in Section 4, spatiotemporal patterns in PM data can
be modeled with GCN-LSTM for the forecasting problem, the GCN
capturing the spatial characteristics in the data, and the LSTM
capturing the temporal characteristics. How many GCN and LSTM
layers to use in the model, what should be the dimensions of those
layers, how much historical data to use for model training, and
how the chosen model compares in forecasting RMSE to other ML
models as a baseline, are empirically analyzed in this section. The
goal is to examine trade-offs between forecasting RMSE and MPC
latency, and understand how to balance such trade-offs if any.
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Figure 8: Forecasting RMSE vs. MPC latency to train 1 epoch, for
different GCN-LSTM architectures. RMSE across different architectures
are comparable, but latency varies.

Forecasting model architecture and parameters: Figure 8 shows
some sample GCN-LSTM models along the x-axis, with 2 GCN lay-
ers with [i, i] parameters and 1 LSTM layer [j] parameters. The left
y-axis shows the average forecasting RMSE with standard deviation
over all test days, and the right y-axis shows the MPC runtime for
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training the model for 1 epoch. The x-axis is ordered in increasing
order of MPC runtime from left to right.

Forecasting RMSE is similar across the different GCN-LSTM
model parameter choices, with the mean RMSE near 50 and s.d. of
+20 for all models. These mean and s.d. of RMSE across the test
days can be explained from the trends we saw in Figure 7, where
each day had a different forecasting RMSE based on the fluctuation
of PM within that day.

While the mean and s.d. of RMSE are similar across ML models,
their MPC latencies vary depending on how many private compu-
tations each ML model parameter choice entails. Smaller models
with e.g. only one GCN layer suffer from higher RMSE and bigger
models with more GCN-LSTM layers have even higher MPC la-
tency. We, therefore, use 2 GCN layers with [4,4] parameters and 1
LSTM layer with 4 parameters, which has the lowest MPC latency
and low average RMSE in subsequent experiments.
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Figure 9: PM data shows maximum auto-correlation at sequence
length of 6. Given we use 6-time buckets for 24 hours, this sequence
length indicates the same time on the previous day. Also, there is no
correlation beyond 40-time buckets, which is approximately 7 days.
We, therefore, use 6 days of historical data to forecast for the 7" day.
How much temporal history to use in the LSTM cell? Parame-
ter seq_len determines the size of the past window of information
to be used for LSTM modeling. The auto-correlation function helps
to identify what time lags have significant correlations, indicating
that past values influence the current value. Figure 9 shows that lag
6 has large positive correlations and correlations taper off slowly
as the lags increase. That means, the observations y; and y;_¢ are
highly correlated. This can also be explained semantically as the
observations y; and y;_¢ correspond to the same time-buckets 1
day apart, as a single day has 6 time-buckets. Thus, we choose
seq_len = 6 for our LSTM cell in subsequent experiments.
How much temporal history to use in terms of past days?
While we described the train test data split in Section 7.1, we men-
tioned using the past 6 days of training data for each test day.
Why we choose this value of 6 days in training, is also explained
in Figure 9. As can be seen towards the right of the figure, auto-
correlation drops down to almost 0 after 40-time buckets. With
each day having 6-time buckets, 42-time buckets amount to almost
7 days. i.e. a week. Longer temporal history means larger inputs to
the GCN-LSTM model training, increasing MPC latency. As beyond
a week PM values are hardly correlated, 6 days of historical data for
forecasting PM values on the 7th day seems optimal. We thus take
our three months’ data in 7 days chunks, use 6 days for training
the forecasting model, and the 7" day for testing.
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7.4 Forecasting RMSE baseline comparison

We use a GCN-LSTM model comprising 2 GCN and 1 LSTM layer
with ([4,4], [4]) parameters, with a sequence length of 6 for LSTM
cell, and using 6 days of history as training data. Many statistical
and ML models have the ability to forecast values in a time series,
and therefore we need to compare the forecasting RMSE of our
model against other baseline models. We use two baseline models
for comparison - ARIMA, and N-Beats by Darts. (a) Auto-Regressive
Integrated Moving Average (ARIMA) [26] uses a linear regression
model. The data is prepared by a degree of differencing in order
to make it stationary, i.e. to remove trend and seasonal structures.
The parameters of the ARIMA model are: p or the number of lag
observations included in the model, also called the lag order, d is
the number of times that the raw observations are differenced, also
called the degree of difference and q is the size of the moving average
window, also called the order of moving average. We use ARIMA
with parameters (5, 1, 1) after careful empirical analysis. (b) N-
BEATS by Darts Darts [25] is a Python library for easy manipulation
and forecasting of time series. We use the state-of-the-art deep
learning model N-BEATS from Darts as a baseline. N-BEATS DNN
architecture comprises backward and forward residual links and
a very deep stack of fully-connected layers. More details on the
N-Beats model architecture and forecasting accuracies on a variety
of use cases can be found in [50]. We use ARIMA as a baseline, as
it is the state-of-the-art method for pollution forecasting [6, 20].
We additionally use N-BEATSs as a baseline, though it has not been
used for pollution but for other spatiotemporal data like travel
time estimation, and is the state-of-the-art method for graph neural
network-based forecasting tasks.

Test Day | GCN-LSTM | N-BEATS | ARIMA
7-Jan 31.816 34.563 51.714
10-Jan 38.646 51.002 48.720
15-Dec 44.014 59.245 68.044
7-Dec 49.160 44.510 119.986
24-Jan 52.639 70.700 73.510
15-Nov 55.204 157.184 114.708

28-Nov 59.229 64.645 78.415
20-Nov 62.014 62.117 101.589
Average 49.090 67.996 82.086

Table 2: RMSE for different forecasting models

Table 2 shows that the GCN-LSTM forecasting RMSE is lower
on the different test days, compared to the two baselines ARIMA
and N-BEATS. The reasons for outperforming the two baseline
models are different. ARIMA does not capture spatial relations
of similarity in PM for nearby regions. It models the PM dataset
solely as time series and thus can capture only the LSTM part
of our model, not the GCN. N-BEATS models both spatial and
temporal relations. But being a very complex model with millions
of parameters, it needs significantly large training datasets to ensure
generalization on test data. PM datasets are typically small, as sensor
data collection with hardware instruments is costly. Thus instead of
using a complex DNN model like N-BEATS, a smaller architecture
like our 3-layer GCN-LSTM with carefully chosen layer dimensions,
sequence length, training data size, and other hyper-parameters,
gives promising forecasting accuracies.
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Step GCN-LSTM | Arima | NBeats
Data pre-processing | 23.35 24.49 22.08
Training 5.04 15.34 44.37
Inference 0.68 0.34 0.89

Table 3: Data pre-processing, training (one epoch), and infer-
ence times in seconds, for different forecasting models.

Table 3 shows that our carefully designed GCN-LSTM model has
much lower training time per epoch than ARIMA or NBeats. There
is a marginal increase in data pre-processing time compared to
NBeats and inference time compared to ARIMA, such that inference
is still sub-second. These runtime trends of plaintext computation
for these ML models will hold in secure computation. As PM data
will be collected by sensors in a streaming fashion, continuous
pre-processing of the fresh incoming data, and training with newly
added data will be important. Low inference times are also impor-
tant for scaling query handling on the trained model. Thus both in
terms of RMSE and model training times, the GCN-LSTM model
performs better than the baselines. Our cryptographic protocols
will maintain the RMSE advantage of the GCN-LSTM model but
will increase the runtimes. We therefore carefully evaluate next the
MPC cost of training our GCN-LSTM model and inference latencies
for handling client queries, on streaming PM data.

7.5 MPC cost for ML model training and queries

Forecasting RMSE for our carefully designed GCN-LSTM model
is better than state-of-the-art baselines [25, 26]. However, the cost
overhead of MPC in training this model on streaming PM data, as
well as answering a variety of client queries, needs to be evaluated
to understand the practicality of the proposed system.

Secure training for an epoch. Table 4 and Table 5 show the
runtime and communication overhead for each layer of the GCN-
LSTM network, for forward-pass and backward-pass respectively,
when computed using 2PC for floating-point [53]. A combination
of one forward and one backward pass constitutes one training
epoch. Typically any ML model is trained over several epochs. Thus
the total runtime and communication will be the sum of the total
values in these two tables (7 minutes, 241 GiB) multiplied by the
number of epochs for which training happens. Given the cost of
securely running training for an epoch, we discuss the number of
epochs required for various scenarios in Sections 7.6 and 7.7.

NN layer Latency (s) | Percent | Comm. (GiB) | Percent
GCN Layer 1 176.00 54.8% 112.31 57.44%
GCN Layer 2 114.02 35.5% 76.78 39.27%

LSTM 29.46 9.17% 5.88 3.01%
Dense Layer 1.62 0.50% 0.56 0.29%
Total 321.11 100% 195.53 100%

Table 4: 2PC cost for GCN-LSTM forward-pass for each layer.
Secure queries. Table 6 shows the runtime and communication
overhead of servers for answering client queries through MPC. As
seen from the table, the query response times are negligible (in
milliseconds). Communication cost between servers is also small.
Recall that for each of the queries, the servers need to first check
that the client query is an aggregate over more than a threshold
number of cells. This check takes roughly 0.73 ms and 0.68 MB of
communication. The numbers in the table for each of the queries
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NN layer Latency (s) | Percent | Comm. (GiB) | Percent
GCN Layer 1 13.61 14.63% 9.16 20.17%
GCN Layer 2 5.63 6.05% 3.36 7.39%

LSTM 31.66 34.04% 9.92 21.83%
Dense Layer 3.18 3.42% 0.81 1.79%
Weight Update 38.91 41.84% 22.17 48.82%
Total 93.00 100% 45.42 100%
Table 5: 2PC cost for GCN-LSTM backward-pass for each layer.
Function | Latency (ms) | Comm(MB)
Average 3.57 1.08
Maximum 3.62 1.09
Minimum 3.72 1.09
Count 4.34 1.22
Range 4.78 1.37

Table 6: MPC cost on the servers for answering client queries. The
client communicates < 1 KB for each of these queries.

are inclusive of this check. For instance for average 0.68 MB is taken
by the check and rest of 0.4 MB is taken by average computation.
In contrast, if we had not quantized to an integer grid, and ran the
query with secure floating-point, the check would take 0.68 MB
and 625 additions would take about 7 MB of communication, which
is an order of magnitude higher. Recall that the communication
between the client and servers is already negligible; the client only
communicates <1KB of data with the servers (Section 5.4). Hence,
the overheads of MPC are bearable for real-time query processing.

7.6 Model updation with streaming data

Consider the problem of building the ML model for forecasting of
air pollution using data from the past 6 days, i.e., the model trained
on data of days T—6 to T — 1 needs to forecast for the day T. Assume
that there exists such a model. Next, we get streaming data on day
T and need to build a model to forecast for the day T + 1. We shift
the training window to days T — 5 to T. We consider two ways of
training. 1. Training from scratch: Each time that we move the
window (per day), we train the model from scratch using randomly
initialized weights. 2. Fine-tuning: Here, we start training with
previously learned weights for the last window.

Figure 10 shows training plots for both methods on a sample day
of Dec 8, 2020. Training from scratch is done with a higher learning
rate of 0.01 and fine-tuning with a lower learning rate of 0.004,
which are the best hyper-parameters found in grid-search. As seen
from the figure, fine-tuning converges faster and more smoothly
than training from scratch. We see this pattern on all test days, that
20 epochs of fine-tuning at a learning rate of 0.004 seem sufficient
to converge the training losses.

Next, we discuss the time required to securely run 20 epochs
between 2 servers on newly streamed data end-to-end. This includes
all 4 phases: pre-processing the data, training for 20 epochs, one
additional forward pass for forecasting the grid based on the trained
model, and final one-time conversion of values across the grid from
float-to-integer (to handle client queries). Table 7 shows the secure
training time of our GCN-LSTM model for 20 epochs for all 4 phases.
We see that training in MPC for 20 epochs takes roughly 2.5 hours
and is practical. In particular, as no new data comes between 12-6
am of the day T + 1, that window can be easily used for fine-tuning
the new model which takes about 2.5 hours.
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Figure 10: Fine-tuning vs. training from scratch on Dec 8

Step Latency (s) | Comm. (GiB)
Data pre-processing 1.476 1.043
Training (20 epochs) 8282.2 4819
Float grid computation 321.11 195.53
Float-to-integer conversion 0.422 0.057
Total 8605.21 5015.63

Table 7: End-to-end GCN-LSTM training latency for 20 epochs using
MPC, including data pre-processing and model post-processing to
obtain final integer grid for client queries.

7.7 Training from scratch plus fine-tuning

Is fine-tuning an old model over and over again through weeks
and months good for forecasting RMSE in the long run? Figure 9
showed PM values have maximum auto-correlation to the same
hour on the past day. This correlation gradually decreases and
becomes negligible after a week. Figure 11 shows forecasting RMSE
from Dec 8 to Dec 16, when the same model is continued to be
fine-tuned to forecast for the day T adding data from day T — 1, for
the day T + 1 adding data from day T and so on. The RMSE starts to
rise after day 5, showing fine-tuning over longer periods reduces
forecasting accuracy.

120
80
40

0

RMSE

1 2 3 4 5 6 7 8 9

consecutive day number

Figure 11: RMSE rise with continued fine-tuning of a model

But training from scratch takes 100-120 epochs to converge
(Figure 10), which will take close to 15 hours in MPC! Data for the
day T — 1 finishes streaming in at 12 am of the day T. If one starts
training the model from scratch at this time, the trained model
will not be ready in 6 hours by 6 am of the day T, when new data
starts streaming in requiring fresh forecasts. How can we regularly
update our GCN-LSTM model with PM data from recent past days,
maintaining privacy through MPC, if training in MPC is unable to
keep up with streaming data?

We devise a practical training procedure combining training from
scratch with fine-tuning so that we can use a regularly updated
model incorporating the latest data while tolerating significant
MPC runtime latency. At 6 am of the day T, we need model M;
ready to use the new incoming data as features, for forecasting
for the next time bucket. Our procedure to train M; is as follows:
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we start training M; with randomly initialized weights i.e. train
from scratch, at 6 am on the day T — 1, using buffered values from
day T — 7 to T — 2 as training data and a faster learning rate of
0.01 which we have found to be good for training from scratch. We
continue this training from scratch till 3 am of the day T, over 21
hours, during which more than 160 epochs of training in MPC can
be executed (20 epochs take 2.5 hours in MPC as per Table 7). As
training from scratch converges in 100-120 epochs, M; will already
have fairly good weights at this point. We further fine-tune M;
with day T — 6 to day T — 1 as training data, as values for the day
T — 1 have finished streaming at 12 am of the day T. We use a faster
learning rate (0.004-0.007) for this fine-tuning, and complete more
than 20 epochs in the 3 hours between 3 am and 6 am. Thus an
up-to-date model M; is ready at 6 AM of the day T, incorporating
data from day T — 7 to day T — 2 using training from scratch, and
day T — 6 to T — 1 using fine-tuning. Figure 16 in the Appendix,
shows a flowchart for this procedure to create a new model every
day, to be used in that day’s forecasts.

Test Day T | Scratch Train | Scratch TrainT —7to T — 2,
T-6toT -1 Fine-tuneT - 6toT — 1

7-Jan 31.816 29.443
10-Jan 38.646 38.331
15-Dec 44.014 53.659
7-Dec 49.160 40.946
24-Jan 52.639 49.626
15-Nov 55.204 47.005
28-Nov 59.229 62.079
20-Nov 62.014 81.523
Average 49.090 50.327

Table 8: Forecasting RMSE with practical training procedure in MPC,
combining train from scratch and fine-tuning

Table 8 shows the forecasting RMSE for our test days T using this
revised training procedure. The second column repeats the RMSE
values for GCN-LSTM from Table 2, where the train from scratch
was used (100 epochs, learning rate 0.01, day T — 6 to T — 1 as train
data). The third column shows RMSE for the revised procedure
combining train from scratch (100 epochs, learning rate 0.01, day
T —7to day T —2 as train data) with fine-tuning (20 epochs, learning
rate 0.007, day T—6 to day T —1 as train data). The revised procedure
can handle streaming data in MPC where the original procedure
lags by many hours, while their forecasting RMSE values show
negligible differences.

8 CONCLUSION AND FUTURE WORK

This paper shows that if ML model architecture, parameters, and
training procedures are carefully co-designed considering MPC
overhead at every step then the benefits of highly accurate ML
predictions can be kept intact while additionally ensuring strong
privacy guarantees with MPC. Faster MPC algorithms for floating-
point arithmetic will further improve the training latency [7, 52].
Our work will be extended in the future to handle larger geograph-
ical areas. Extending the threat model to handle malicious servers
will also be explored, based on whether floating point MPC proto-
cols and tools become available for the malicious setting.
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A APPENDIX

A.1 MPC Implementation details for training

With the GCN-LSTM model shown in Figure 12, we provide a
condensed version of the forward pass of the model expressed in
our APIs (built on SECFLOAT) in Figure 13. Recall that SECFLoAT
only provides generic floating-point operations and we built the
ML-specific APIs on top of SECFLOAT. The corresponding code for
the backward pass is shown in Figure 14. To support a new model,
one only needs to write code similar to what is shown in Figure 13
and Figure 14 by hand.

Time axis

—>» GCN=f —»

Location axis

LSTM unit

Figure 12: GCN-LSTM Architecture

void forward (...)

GCN-Layer1 (adjl1, ...)
GCN-Layer2 (adj2, ...)
LSTM (...)

Linear-Layer (...)
output = Sigmoid (...)
Compute-Loss (output, labels)

Figure 13: Forward pass of GCN-LSTM

A.2 Temporal buckets for forecasting

We show the sample time series for one day (Dec 7, 2020) for some
grid locations in Table 9, which forms the input to our ML model
to train and evaluate forecasting.

We use 6 time windows for each day, each window being of 3
hours. The remaining two windows between 12 am - 6 am have
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void backward (...)
Error-Gradient (output, labels)
ElemWiseMul (...)
Linear-Backprop (...)
Backprop-through-time (...)
GCN-Backprop (adj2, ...)
GCN-Backprop (adj1, ...)

Figure 14: Backward pass of GCN-LSTM

lat-lon grid | tb-1 | tb-2 | tb-3 | tb-4 | tb-5 | tb-6
0,21 0.0 0.0 0.0 0.0 0.0 441.8
0,22 420.1 | 502.7 | 349.3 | 263.3 | 261.7 | 459.3
1,19 377.6 | 502.0 | 394.1 | 240.8 | 0.0 4743
1,20 431.0 | 546.9 | 392.3 | 231.6 | 0.0 456.6

Table 9: Snippet of time-series for a day (Dec 7, 2020), where tb
denotes temporal buckets of 3 hours each, totaling 18 hours
for a day. The remaining 6 hours 12 am - 6 am have too few
sensor readings to be useful.
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Figure 15: Temporal data distribution in a day
very few sensor readings, as the buses are idle during the night.
Figure 15 shows the hour-wise PM data distribution, where these 6
hours of data are scarce. Hence we omit those 2 windows from our
time-series modeling.

A.3 Practical Private Training Procedure

Figure 16 shows our practical private training procedure to create
a new model every day, to be used in that day’s forecasts.

randomly initialised
weights

GCN-LSTM states

Day 0 Day5 training from fine-tuned
T ] e
(day0-day5 data) dayé6 data
predicted
day 7
Days [ [ [[[T]
last6 windows as “
features for prediction | H
Day 7

Figure 16: Practical training procedure in MPC, combining train-
from-scratch and fine-tune

We start training M; with randomly initialized weights at 6 am
on the day T — 1, using buffered values fromday T —7to T — 2 as
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training data and a learning rate of 0.01. We continue this scratch
train till 3 am of the day T, over 21 hours, during which more than
160 epochs of training in MPC can be executed (20 epochs take 2.5
hours in MPC as per Table 7). As training from scratch converges
in 100-120 epochs, M; will already have fairly good weights at this
point. We further fine-tune M; with day T—6 to day T—1 as training
data, as values for the day T — 1 have finished streaming at 12 am of
the day T. We use a learning rate (0.004-0.007) for this fine-tuning,
and complete more than 20 epochs in the 3 hours between 3 am
and 6 am. Thus an up-to-date model M; is ready at 6 AM of the day
T, incorporating data from day T — 7 to day T — 2 using the scratch
train, and day T — 6 to T — 1 using fine-tune.
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