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Abstract. Our research focuses on designing efficient commitment schemes
by drawing inspiration from (perfect) information-theoretical secure prim-
itives, e.g., the one-time pad and secret sharing. We use a random input
as a mask for the committed value, outputting a function on the random
input. Then, couple the output with the committed value xored with the
random input folded (half of the input xored with the other half of the)
random input.
First, we explore the potential of leveraging the unique properties of the
one-time pad to design effective one-way functions. Our methodology
applies the exclusive-or (xor) operation to two randomly chosen strings.
To address concerns related to preimage mappings, we incorporate error
detection codes. Additionally, we utilize permutations to overcome lin-
earity issues in the computation process. Feistel networks are employed
to ensure super pseudo-random permutation using the (random string)
input (that serves as the commitment mask) and also as the encryption
key.
We propose integrating a secret-sharing scheme based on a linear poly-
nomial to mitigate possible collisions. Lastly, we explore the possibility
of nesting one-way functions as a countermeasure against potential back-
doors.
The resulting commitment schemes are efficient, in particular, have fewer
layers than the standard cryptographic hash functions, such as SHA, and
may fit the NIST effort for lightweight IoT cryptography (e.g., ASCON
[DEMS21]).

1 Introduction and Related Work

We propose exploring computationally efficient one-way functions on randomly
chosen inputs that can be an alternative to Secure Hash Algorithms (SHA)
[Han11]. These functions should resist preimage and collision attacks, providing
improved security for commitments and signatures, such as Lamport’s signa-
ture [Lam79]. Relying solely on block-cipher-based functions like SHA may lead
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cryptanalysts to focus their efforts on breaking these functions, as demonstrated
by the vulnerabilities found in MD4 [Leu08] and MD5 [SA09], not to mention
the potential existence of backdoors [FJM18]. To enhance security and mitigate
risks, we propose a new approach where information theoretically secure primi-
tives such as one-time pads, secret sharing, and permutations are composed in
different ways, including nesting, as heuristics for hardening inversions.

Our aim is to explore a range of computationally efficient one-way functions
that (may utilize the multi-core architecture) can expand the choices available
to implementers. Our schemes do not rely on number theory, which is vulner-
able to quantum algorithms like Shor’s algorithm [Sho97] that can compromise
the security of DH and RSA [Sho94], surpassing the quadratic speedup pro-
vided by Grover’s algorithm [Gro96]. Commitments based on one-way functions1
find applications in various scenarios, including Zero Knowledge Proofs (ZKP)
[BM89, GMR89], where one-way functions are used as commitment primitives.
While cryptographic hash functions like the SHA family are designed to handle
long inputs (e.g., files) and are expected to have collisions due to the pigeonhole
principle, our main focus in this paper is on inputs of the same length or smaller
than the output. We suggest using Merkle trees to handle longer inputs, handling
the left and right child of a tree differently prior to applying our OWF candidate
on their xor, namely, reversing the bits of the left child output before xoring the
outputs of the left and right children. Where reversing a binary string of length
l involves permuting the string such that the i-th bit becomes the (l− i+ 1)-th
bit. [GLN11].

We explore techniques to improve the one-way properties of existing one-way
function candidates by utilizing xor operations in the style of a one-time pad.
Recently, xor operations among essential portions of instances of the original
one-way functions were proposed [DD20, CDM22, CCD23]. The objective is to
mimic xor with a one-time pad to ensure the masking of the success criteria of
an instance (e.g., the sum in a subset-sum instance) while limiting the possible
number of preimages. In commitment schemes, it is undesirable to have multiple
fitting preimages or collisions, as the committer could select a preimage from the
colliding set when revealing the commitment. Additionally, if there are numerous
colliding preimages, the task of reversing the output of the one-way function
candidate may become relatively easy. Univalent of the one-way function is a
desired property. In contrast to [DD20, CDM22, CCD23], the focus is on the
perfect information-theoretically secure primitives rather than enhancing already
existing one-way functions (e.g., subset-sum) with such primitives.

2 Overview

To simplify the structure and arguments related to the one-way functions, we
suggest starting with a totally random and uniformly chosen input string, input,
to the function to obtain the output. Thus, avoiding the possible guess of the

1 Note that provable one-way function implies that P ̸= NP .
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commitment value and checking the guess by applying the one-way function, as
the structured functions are publicly known.

The actual commitment value, commit-value, is XORed with a folded version
of the random input input. Namely, outputting both output and the first half of
the input, fh-input, XORed with the second half of the input, sh-input, and the
commit-value (assuming the input random string is assumed to be double the
length of the commit-value).

In summary, the commitment is a pair output and fh-input ⊕ sh-input ⊕
commit-value, where ⊕ denotes bitwise xor.

Obviously, folding more than twice enlarges the possible number of inputs to
be checked, even when the commit value is guessed. On the other hand, more
foldings may yield more possible collisions.
• Xors. We aim to utilize the one-time pad’s provable information-theoretically
secure principle. In this study, we explore the potential of leveraging the inher-
ent properties of the one-time pad to design one-way functions. We randomly
select two strings, s1 and s2, each consisting of n bits. It is important to note
that the result of performing a bitwise xor operation on s1 and s2, denoted as
r12, encompasses all possible combinations of s1 and compatible counterparts of
s2 that yield r12. As a result, reversing the process and obtaining r12 is rela-
tively easy and leads to a multitude of possible answers (collisions), which grows
exponentially with the lengths of si (n = |si|).

• Error Detection Codes. To address the issue of excessive collisions and
improve the difficulty of reversing the function, we propose using error detection
codes such as Cyclic Redundancy Check (CRC), Hamming codes, Reed-Solomon
codes, and binary Goppa codes. For each si, we introduce an error detection code
edci. The computation of r12 is then performed as follows: (s1◦edc1)⊕(edc2◦s2),
where ◦ denotes concatenation. To facilitate discussion, we set the length of the
error detection codes equal to that of the original strings they represent, i.e.,
|edci| = |si|.

• Permutations. The design naively attempts to utilize s1 (and s2) as a one-
time pad for edc2 (and edc1, respectively). However, we demonstrate that in cases
where the error detection code is linear, there exist polynomial time algorithms
that can invert r12 and recover s1 and s2 with relative ease. To cope with the (re-
versible) linearity of error detection codes, we suggest using permutations, per-
muting edci by the values of sj . For ease of discussion, we suggest using 2 lg(n)+1

pairs si1, si2, namely, s11, s12, s21, s22, s31, s32, · · · , s
2 lg(n)+1
1 , s2 lg(n)+1

2 compute for each
of si1, si2 the value ri = (si1◦si2)⊕π

s11,s
1
2,···s

i−1
1 ,si−1

2 ,si+1
1 ,si+1

2 ,···s2 lg(n)+1
1 ,s

2 lg(n)+1
2

(edci1◦
edci2). Where π

s11,s
1
2,···s

i−1
1 ,si−1

2 ,si+1
1 ,si+1

2 ,···s2 lg(n)+1
1 ,s

2 lg(n)+1
2

is a permutation chosen
in lexicographic order among all the (2n)! possible permutations (note that the
number of bits used should be lg((2n)!) < lg((2n)2n) < 2n lg(2n) which is smaller
than the suggested 2n(2 lg(n) + 1) bits). The mapping of a binary number to a
permutation can be based on, e.g., [DLH13], using mod (2n)! as fits.
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• Permutation-Holographic2 via Feistel Network. We choose four or (even
seven) rounds of Feistel networks as [LR88] ([Knu02a]) shows that they imply
(super) pseudorandom permutation. Using the input to the hash also to serve as
the key allows a better probability of collision-free results, as encryption must
support decryption and cannot allow collisions. Thus, Feistel (x, x), just like
AES(x, x), has the potential to yield pairwise independence, as our experiments
testify. Still, computing Feistel (x, x) can be more efficient in relation to AES
(or SHA), which uses more than four/six rounds.

Apparently, we cannot use the left portion as the key for the next round in
all rounds of the Feisel network, as if we do so, one can decrypt the preimage
(using the decryption procedure of the Feistel network) as the key used in each
round appears on the left side. Thus, we suggest using the right portion in the
last round, avoiding collisions until then and, at last, avoiding the exposure of
the decryption key. We also suggest to use k independent hash function H(x) =
a0+a1x+ . . . ak−1x

k−1, such that a0, a1, . . . , ak−1 are k portions of the input x.
H(x) is used as a part of the definition of the F function used in the rounds of
the Feistel network circuit. In particular, H(x) can be applied to the left portions
of all but the last round and applied to the right portion of the last round to
define the permutation on the other portion. If the number of bits of H(x) does
not suffice, the result of H(x) can be concatenated to form the required number
of bits.
• Polynomials. We recommend implementing secret-sharing schemes to avoid
the scenario where multiple preimages, known as collisions, lead to the same
function output. Secret sharing is another (beyond one-time-pad) very useful,
proven perfect information theoretical secure primitive. A secret is represented
through distributed secret shares among participants, wherein reconstructing
the original secret requires possessing more than a specified threshold number of
shares. In this scheme, the value ri may have multiple pre-images, but we still
manage to restrict collisions. The commitment value is determined by the inter-
section of a line (or polynomial) with the y-axis, denoted as x. An interactive
commitment approach is proposed to improve security, where the committing
party receives random x-values. The Fiat Shamir technique is suggested to re-
place interaction. This process ensures that even if only two values on the line
do not collide, the commitment is still unique and can be attributed to a single
possible value.
• Interaction and Nesting. We further suggest a nesting of one-way func-
tions in which the committing party is instructed first to use a certain one-way
function to eliminate planned collisions; then, the committing party uses the
output of the given one-way function as an input for her choice of a one-way
function to eliminate possible backdoors in the first determined one-way func-
tion. Both parties should agree (and possibly verify by probabilistic sampling)

2 A function is considered holographic if every bit in the output is a (different, and
even orthogonal) function of all the input bits. Moreover, the output bits encode all
the input bits. The term is inspired by holography, where each part of a hologram
contains information about the whole image.
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that the suggested functions imply a small number of collisions. For a more com-
prehensive background on one-way functions and related applications, see, e.g.,
[IN96, HILL99, DD20, CDM22, CCD23].

Paper roadmap. Section 3 develops the reasoning for the need for permutation
beyond xors (in the style of mutual one-time pads). The extension of that section
also describes a holographic approach to bit permutation within commitment.
In Section 4, we investigate the application of Feistel networks combined with
our idea. Section 5 introduces using (linear) polynomials to cope with possible
collisions. Section 5 develops a formal analysis of the described idea. Section 6
uses the interaction between the committer and the verifier to cope with potential
planned collision (by the committer) and planned backdoors (by the verifier).
Finally, concluding remarks appear in Section 7.

Throughout the paper, we illustrate the proposed concepts using toy exam-
ples. For the convenience of readers, the implementations required to replicate
these examples can be found in [CDM23]. The software was implemented using
the SageMath computational software environment [The23].

3 XORS, Error Detection Codes, and Permutations

We illustrate that without the use of permutation, the application of xor, which
aims to emulate Shannon’s “one-time pad” concept (as described in [Sha49]), by
mutually masking the error detections of s1 and s2, can be easily inverted in
polynomial time.

To demonstrate the potential ease of inversion, we consider the following
specific example: s1 and s2 are randomly chosen four-bit strings. We utilize a
standard CRC-4-ITU algorithm (with the polynomial representation x4 + x+ 1
as defined in [RS91]) to compute crc1 for s1 and crc2 for s2, where each crc value
consists of four bits. Subsequently, we compute f(s1, s2) = (s1◦crc1)⊕(crc2◦s2).

Due to the linearity of the process, we observe that f(s1, s2) = (s1 ◦ s2) · A,
where A is a square matrix that implements the function f .

Note that there exists a one-to-one linear mapping between the values of s1
and s2 and f(s1 ◦ s2), and it is feasible to construct a matrix that computes f .

Furthermore, f may be invertible, as f−1 can retrieve s1 ◦s2 from the output
of f(s1 ◦ s2). The inverse function f−1 can be computed in polynomial time by
utilizing the inverse matrix A−1, such that s1 ◦ s2 = f(s1, s2) ·A−1.

Appendix A presents a specific numerical example illustrating the straight-
forward nature of such inversion.
Incorporating permutations.

To improve the reconstruction of critical parts, such as s1 and s2, we can
extend the self-masking technique, presented in [CDM22] with CRC codes by
incorporating permutation using permutation indices. This approach allows us
to define an actual permutation.

In our example, we have presented a construction where a binary array is
generated based on a string s = s1 ◦ s2, with a binary length of |s| = 8 (suitable
for representing a single character in ASCII encoding). The first three bits of
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the binary array are utilized to determine the parameter p, while the next three
bits determine the parameter q. These parameters, p and q, are then used to
define a permutation denoted as π. The permutation function π is employed to
map the elements of the binary string to a new instance of the binary string
with permuted elements. Specifically, the elements (bit values) of the computed
crc1◦crc2 are swapped based on the indexes defined by p and q using this permu-
tation mapping. Namely, given two strings s1 = a1, a2, a3, a4, s2 = b1, b2, b3, b4,
compute crc1 = c1, c2, c3, c4 for s1, and compute crc2 = d1, d2, d3, d4 for s2.
Then, consider the sequence crc = crc2 ◦ crc1 = d1, d2, d3, d4, c1, c2, c3, c4 =
e1, e2, e3, e4, e5, e6, e7, e8, permute elements in a way that swapes ep+1 with eq+1.
The Blackbox then xors s = a1, a2, a3, a4, b1, b2, b3, b4 with the permuted crc.
Permutations example. Let us consider the following (toy) example that il-
lustrates the ineffectiveness of polynomial-time inversion when permutation is
applied in the BlackBox.

For instance, let us define s1 = 1001 and s2 = 1010. The resulting BlackBox
output for s1 and s2 is denoted as r:

s1 ◦ s2 = [1 0 0 1 1 0 1 0], r = [0 0 1 0 1 1 1 0]

B =


(s11 ◦ s12)⊕ πs1 [crc

1
2 ◦ crc11]

(s21 ◦ s22)⊕ πs2 [crc
2
2 ◦ crc21]

...
(s81 ◦ s82)⊕ πs8 [crc

8
2 ◦ crc81]

 B =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


We construct the matrix B to align with the new Blackbox, which incor-

porates a limited permutation and enables the computation of any row of the
identity matrix I. This capability directly stems from the construction of matri-
ces B (and A).

However, attempting to employ the same linear technique used in Appendix
A by substituting matrix A with B proves unsuccessful due to the nonlinearity
of the permutation.

In particular, the result of the Blackbox for the input s1◦s2 = [1 0 0 1 1 0 1 0]
is r = [0 0 1 0 1 1 1 0] while the multiplication of s1 ◦ s2 = [1 0 0 1 1 0 1 0] by B
yields a different vector of bits. When we perform xor operation over the rows
0, 3, 4 and 6 of B we get the vector: [0 1 0 0 0 1 1 1] ̸= r = [0 0 1 0 1 1 1 0].

Based on the example above, it becomes evident that constructing matrix
B according to the permuted Blackbox does not enable the utilization of B (as
with A) to compute all the results of the new permuting Blackbox.

Although the limited permutation may reduce the number of combinations
to be examined when attempting to reverse the function, we now aim to improve
the permutation operation to achieve a complete random permutation based on
bits from other instances.
Extension to Merkle Tree. Combining holographic permutations with a Merkle
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tree, we efficiently handle large commitments. Each leaf processes a random se-
quence segment, using xoring and bit reversals (of the left child as described
earlier) to create a holographic Merkle root, offering a novel hash function al-
ternative. The commitment combines the value with a packed sequence version,
linked to the Merkle root, and publishes both. We refine permutation efficiency,
reducing lookup table overhead through bit manipulation and possible precom-
puted tables.

4 Using Feistel Networks for XORs and Permutations

Feistel networks are fundamental in cryptography due to their invertible struc-
ture, ensuring collision-free outputs when using a fixed symmetric key. In the
context of one-way functions (OWFs), no secret key exists. Therefore, we pro-
pose using portions of the randomly chosen input string as both the input and
the key.

Note that the authors of [Knu02b] showed that the probability a randomly
chosen function from Fn (the set of all functions mapping {0, 1}n to itself) is a
permutation is 2n!

2n2n , which, using Stirling’s approximation, is roughly
√
2π2n/e2

n

for large n. This probability decreases rapidly with n. For example, for n = 6,
the probability is about 2−88. If a randomly chosen function from Fn is not a
permutation, it is not bijective and may have collisions. Using permutations is
crucial as they ensure the encryption process is reversible.

We investigate the behaviour of collision percentages in Feistel networks us-
ing part of the input as a key. Experiments under different bit lengths provide
theoretical insights and empirical results, aiming to understand collision condi-
tions and frequencies, relating these findings to the Coupon Collector Problem
[FGT92].

A Feistel network can be described in the following way: Let P be the plain-
text block divided into two halves: L0 (left half) and R0 (right half). For i = 1
to n (where n is the number of rounds), the round transformations are:

Li = Ri−1, Ri = Li−1 ⊕ F (Ri−1,Ki)

where:F is the round function and Ki is the subkey for the i-th round. The
ciphertext C after n rounds is given by (Ln, Rn).
Decryption Process The decryption process uses the same structure but ap-
plies the subkeys in reverse order.

Our implementation uses a specific strategy for the round function and key
selection.

– First Three (or Six) Rounds We alternate using the left and right halves
of the input as the key for generating permutations in the round function
F . The half used as the key is repeated if necessary to match the required
length.

– Last Round We use the right half of the input as the key for the round
function F . Avoiding exposure of the left half, which we use as a key (for
encryption and decryption).
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Using only the left half initially does not introduce collisions as it acts as a
decryption key, leaving collision introduction to the last layer.

Experiments processed data through Feistel networks with varying bit lengths
(8 to 26 bits), using different strategies for F and key selection. Initially, no colli-
sions occurred when F used a key from the left half (L), confirming invertibility.
In our configuration, we derived a key from L for the first three rounds (or six)
and from the right half (R) in the last round. F uses a “Unique Permutation”, de-
scribed in [DLH13], defining a permutation based on a binary string. If there are
not enough bits, we copy and concatenated R to meet the bit requirement. This
keeps the key unique and important for the first three rounds to avoid collisions.
Collisions were observed, with the percentage increasing with bit length:

Bit Length (n) Collision Probability C(n) (%)
8 25.00
10 34.38
12 31.25
14 40.62
16 35.55
18 36.72
20 36.72
22 37.60
24 36.94
26 38.06

Table 1. Collision probabilities for different bit lengths
Unique Permutation and Extended Key. Further experiments extended
the key with pseudo-random values and ensured unique permutations per round.
Collision Rates Stabilized around 36.79% (approximating 1− 1

e ), as predicted
by probabilistic models.
Performance Comparison with AES We compared our Feistel network with
AES in CBC mode using 128-bit inputs on a machine equipped with an Apple
M1 Pro processor (ARM-based). The code was executed on a single thread using
Python 3.12.4:

Algorithm Processing Time (seconds)
Feistel Network 0.000268

AES-CBC 0.041304

Table 2. Processing Times for Different Algorithms

The Feistel network was significantly faster. However, this comparison is
limited due to optimized AES libraries and hardware acceleration.

The observed collision percentages align with the Coupon Collector Problem
(See, e.g., [MU05]). In large sets, the probability that a new trial does not yield
a new item converges to 1− 1

e ≈ 36.79%. Our empirical data supports this.
Our scheme offers IND-CCA (Indistinguishability under Chosen-Ciphertext

Attack) security due to the random selection of x. The commitment for plaintext
pt is generated by uniformly choosing x independently of pt, computing F (x, x),
where F represents our construction based on Feistel network, and then XOR-
ing the folded x with pt, defined as fold, where the fold operation is defined as
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fold(x) = prefix( |x|2 , x) ⊕ suffix( |x|2 , x). This process ensures that the choice
of plaintext pt does not reveal any information about the commitment. As long
as F (x, x) is IND-CCA secure, the final output F (x, x), fold(x)

⊕
pt also main-

tains IND-CCA security. Note that our scheme benefits from using real random
x in every invocation, basing the random property abstracted by a random or-
acle. However, different from the random oracle abstraction the outputs of our
scheme can differ across invocations over the same input x. We believe these new
characteristics maybe useful as a building block in future schemes constructions.

5 Polynomials for Collision Prevention

In this section, we propose a novel approach to address collisions that can be
applied to other cryptographic hash functions, such as MD5. We utilize the
concept of secret sharing, where the actual committed value is encoded using a
polynomial, specifically a line.

Our new hash function employs a primitive cryptographic hash function to
hash f(0). The x values can range from 1 to m, where m is a chosen parameter.
Alternatively, the verifying party can define the x values, creating a somewhat
interactive commitment process. Knowing that the queries are planned to be in
certain x’s, the committer may choose polynomial parameters that yield mean-
ingful collisions for the known set of x’s.

Thus, we prefer to reveal the future x’s beyond the first two that restrict
the set of possible lines (assuming there are collisions for at least one of the
first two x’s) by choosing x’s for which the committer cannot further choose
upfront parameters for the commitment to yield colinearity of collisions. We
hypothesize that the committing party will be unable to coordinate two lines
from the collisions of these m hashed values in a way that encodes a different
line and a distinct secret. In cases where the number of collisions for each value
is limited, as in our suggested one-way function, we can demonstrate that the
number of possible collisions diminishes towards zero. More details can be found
in the Appendix C.

Our approach addresses MD5’s vulnerabilities [SLDW07] by employing poly-
nomials over finite fields, ensuring unique and secure commitment mapping and
reducing collision risks.

To address this issue, we introduce a novel approach that leverages the math-
ematical properties of polynomials defined over finite fields to ensure the unique-
ness of each commitment.
Commitment Representation. We represent the secret commitment as a
point on the y-axis of a two-dimensional graph. This point lies on a straight
line defined by the polynomial equation y = ax + b, where b is the value to be
committed upon.
Hash Function Application. Rather than hashing the secret directly, we se-
lect multiple points along this line and hash their y-values. Note that this has an
extra benefit, as at least two preimages should be revealed to reveal the actual
committed value. The x-values for these points can be fixed in advance or cho-
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sen interactively during the verification process to improve security. One more
option to determine the x values and eliminate the need for interaction is to
use a technique inspired by the Fiat-Shamir scheme [FS87a], where the previous
results (related to previous points) on applying the one-way-function are xored
(other functions can be applied instead) to yield the next x value(s).
Ensuring Uniqueness. The uniqueness of the commitment can be improved
through strategic selection of x-values for hashing. After the initial points are
disclosed, subsequent points are chosen such that any attempt to adjust the
line to pass through these new points would fail unless the initial secret was
accurate. This strategy leverages the geometric principle that two distinct lines
cannot share more than one point unless they are identical. Moreover, by hash-
ing the y-values of selected points on the line, we further utilize the polynomial’s
properties to guarantee that the hashed outputs are unique to the original se-
cret value. This approach effectively minimizes the risk of collisions, offering a
significant advantage over traditional hash functions like MD5.
Formal Analysis. Next, we elaborate on our cryptographic commitment scheme
using a mathematical framework. We formally define essential constructs, in-
cluding finite fields, polynomials, commitment schemes, and cryptographic hash
functions, and analyze their interactions to establish the security properties of
our protocol.
Finite Field (Fq) A set of q elements with addition and multiplication opera-
tions defined, where every non-zero element has a multiplicative inverse.
Polynomial (P (x)): An expression of the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where coefficients ai are in Fq. We consider only linear polynomials: a1x+ a0.
Commitment A hiding commitment scheme for a secret value s ∈ Fq is realized
by computing a polynomial P (x) = ax+ s, where a is a randomly chosen slope
from Fq. The commitment is the y-intercept P (0) = s.
Hash Function (H) A cryptographic hash function mapping arbitrary-length
input data to a fixed-size output in Fq. We assume that H is collision-resistant
and its outputs are (close to) uniformly distributed in Fq.
In the Fiat-Shamir heuristic, random oracles replace interaction in cryptographic
protocols. For our polynomial commitments, we can use the hash function output
(H) as a source of “randomness” to choose the (x)-coordinates of the points to
be hashed. This eliminates the need for back-and-forth communication between
the committer and the verifier.

Definition 1. Let fh be a hash function used in the commitment scheme. It
takes an input value yi and produces a hashed output. This output is used to
determine the next input value in the sequence xi+1 = fh(yi) and also serves as
the commitment value b = fh(y0).

The next Theorem assumes a hash function fh that has a maximum of d
collisions (i.e., possible distinct preimages) for any given fh(yi) output value,
where d is significantly smaller than q, and the colliding value are assumed to
be uniformly distributed in the field.
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Theorem 1. A committer in our scheme that generates a set of n points (for
n ≥ 3), where each point is of the form (xi, p(xi)), p(x) = ax+ b is a line with a
random slope a and a y-intercept b representing the commitment value, exposing
(xi, fh(p(xi)), has a negligible probability to output hashes that have preimages
that lie on c > 1 lines in Fq.

Proof. Consider X = {x1, x2, . . . , xn} to be a set of n distinct inputs. The input
x1 is a default value, and the subsequent inputs are determined (following the
Fiat-Shamir technique) as follows:

xi+1 = fh(yi) for 1 ≤ i < n, in case xi+1 = xj , j ≤ i, then xi+1 is the
smallest value in the field that is different from every xj , j ≤ i.

Let F(X ) = {(x1, p(x1)), (x2, p(x2)), . . . , (xn, p(xn))} be the corresponding
set of points, where p(xi) = axi + b.

For each input xi, the committer reveals a value yi that they claim to have
hashed to obtain fh(yi).

Our hash function fh has a maximum of d collisions (i.e., possible distinct
preimages) for any given fh(yi) output value, where d is significantly smaller
than q, and typically are assumed to be uniformly distributed in the field.

The first two points, (x1, p(x1)) and (x2, p(x2)), define at most d2 lines.
For each subsequent point (xi) (where 3 ≤ i ≤ n), the probability that the

hash value associated with xi has a preimage that lies on more than one line of
the at most d2 lines that are defined by x1 and the exposed value of hash related
to x1, and by x2 and the exposed hash function related to x2, is bounded by:(

d
q (d

2 − 1)
)n

This probability becomes negligible as q (the field size) is typically much
larger than d in the original hash function. ⊓⊔

6 Nesting

In a scenario where a commitment scheme is used, allowing one side to choose
the one-way function can lead to adversarial behaviour. Consider a situation
where a gambler wants to commit to a specific colour (red or black) for a bet in
a casino’s roulette game before the ball stops rotating.

The gambler may have doubts about the casino potentially manipulating the
outcome in favour of the unchosen colour, even if they commit to their chosen
colour using a one-way function (where the colour is encoded using enough bits
combined with a random nonce). The gambler can choose a one-way function
that exhibits collisions, meaning both red and black can be preimages of the
function’s output. This poses a risk since the casino needs to know the committed
colour before the roulette outcome is visible. To mitigate this risk, the casino may
enforce the selection of a specific one-way function. However, the gambler may
suspect that the suggested function has a backdoor known to the casino, allowing
them to know the committed colour in advance and potentially influencing the
outcome of the bet.
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In other words, if the party committing to the value determines the func-
tion, they can intentionally choose a function with collisions for the committed
value. On the other hand, if the verifier (once the committed value is revealed)
selects the one-way function, it may have a backdoor that prematurely reveals
the committed value.

Allowing both parties to select a one-way function to address these concerns
can be advantageous. The approach could involve using the one-way function
chosen by the party to whom the secret will be revealed first, thereby eliminating
planned collisions by the committing party. After that, another one-way function
chosen by the committing party can be applied to the result, thus avoiding the
existence of a backdoor in the first one-way function.

Care should be taken when nesting hash functions to ensure low implied
collisions. Maintaining a small number of collisions in each nesting stage is crucial
overall. Sampling techniques similar to those employed in self-testing scenarios
discussed in references, such as [BLR90] and [DF09] can be utilized to estimate
the probability of collisions.

Additionally, nesting can be combined with using polynomials to eliminate
potential collisions further, as presented in the previous section.

7 Concluding Remarks

Pursuing one-way functions that can be proven secure is closely interconnected
with investigating a fundamental milestone in computer science known as the
P ̸= NP problem. Employing information-theoretically secure primitives as
building blocks, such as one-time pads, (pseudo) random permutations, and
secret sharing, shows great potential to strengthen efficient cryptographic com-
mitments. This paper presents several efficient commitment schemes that are
not based on number theory (that may be attacked by quantum computers as
DH and RSA are attacked) and are lightweight and, thus, can fit the Internet of
Things scenarios. By incorporating error detection techniques and permutations,
we have effectively reduced the incidence of collisions and eliminated linearity.

Finally, we introduce a novel and efficient candidate for a one-way function
based on a Feistel network combined with the usage of polynomials to avoid
collisions.
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A The Insufficiency of Linear Error Detection Codes,
Toy Example

We present a simple example of numerical values to the reader to show the risk of
using linear error detection. The example is later used to introduce permutations
to eliminate linearity.

Let us consider the following example. Define the binary vector r = [10011010].
Compute f(s1, s2) = (s1 ◦crc1)⊕ (crc2 ◦s2) = [11010111]. To reverse the process
of this operation, define an identity matrix I with eight rows and eight columns.
Let si1 and si2 be defined as the first four bits and the next four bits in the i′th row
of the matrix I. Define matrix A as follows: the i’th row of the matrix consists
of (si1 ◦ crci1)⊕ (crci2 ◦ si2), where si1 (si2) are the four first (last, respectively) bits
in the ith row of the identity matrix I and crcij is the CRC result over sij . Below
is an example of numeric values to help the reader understand the process. We
use r to denote the result of f (also called the Blackbox) over s1, s2, which are,
in our toy example, four bits each.

s1 ◦ s2 =
[
1 0 0 1 1 0 1 0

]
r =

[
1 1 0 1 0 1 1 1

]

A =


(s11 ◦ crc11)⊕ (crc12 ◦ s12)
(s21 ◦ crc21)⊕ (crc22 ◦ s22)

...
(s81 ◦ crc81)⊕ (crc82 ◦ s82)



A =



1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1
1 0 1 0 1 0 0 0
0 1 1 0 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1


A−1 =



0 1 1 1 1 1 0 0
1 1 1 1 0 1 1 0
1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1
0 1 1 0 1 1 1 1
0 0 1 1 1 0 1 1
1 1 0 1 1 0 0 1



f(s1, s2) ·A−1 =
[
1 1 0 1 0 1 1 1

]


0 1 1 1 1 1 0 0
1 1 1 1 0 1 1 0
1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1
0 1 1 0 1 1 1 1
0 0 1 1 1 0 1 1
1 1 0 1 1 0 0 1


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Which results in:

[
1 0 0 1 1 0 1 0

]
= s1 ◦ s2

We recovered the original values from the output of the Blackbox. All-time
complexity (matrix multiplication and matrix inversion) is polynomial. The pre-
viously described operations are described in the following pseudocode:

The CRC-4 toy example.

Algorithm 1: Polynomial time inversion with CRC-4-ITU
1 Function BlackBox(s1, s2):
2 z1 = s1 ◦ calculate_crc(s1)
3 z2 = calculate_crc(s2) ◦ s2
4 return z1 ⊕ z2

5 Function GenerateMatrix():
6 A_matrix = Empty 0× 8 matrix
7 foreach row in (all 8 unit vectors) do
8 x = BlackBox(row[0:3], row[4:8])
9 A_matrix.add_to_matrix(row.index(), x)

10 return A_matrix

11 Function Inverse():
12 r12 = BlackBox(s1, s2)
13 A_matrix = Generate_Matrix()
14 return recorvered_s1s2 = r12 ×A_matrix.inverse()

Description of the pseudocode. The pseudocode commences by defining a
function named “BlackBox.” This function takes two binary strings, denoted as
s1 and s2, as input. Subsequently, the CRC-4 value is computed for each of these
strings. The result of the function is a binary string obtained from performing
the bitwise xor operation, represented as z1 ⊕ z2. Following that, another func-
tion called “GenerateMatrix” is introduced. This function constructs a diagonal
matrix with a size equivalent to the length of the binary string obtained from
the previous xor operation. Within a loop, the “BlackBox” function is invoked
to calculate the values for the first four elements (designated in the [n : m] list
notation, where n is the index of the first element and m is the index of the last
element) of each row. Subsequently, the function calculates the values for the
remaining four elements. These computed values are then used to create each
matrix row, denoted as Amatrix. Finally, the function returns the resulting ma-
trix. The last function, referred to as “Inverse,” is the program’s main function.
It begins by calling the “BlackBox” function with the selected inputs s1 and
s2, which produces a vector named r12. Subsequently, this vector is utilized to
restore the original values of s1 and s2 by performing multiplication with the
inverted Amatrix.
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B Polynomials for collision prevention

Assume a sufficiently large finite field F and k+2 distinct numbers in F , denoted
as x1, . . . , xk+2 (with the possibility of xi being equal to i). The pseudocode for
preventing polynomial collisions is presented in Algorithm 2. As input to the
algorithm, we generate the commitment (line 1) and employ it as part of secret
sharing, where the constant term a0 of the polynomial P (x) = a1x+ a0 defined
over the finite field F represents the committed value (in our example, the result
of f using s1 and s2). These values are declared as inputs to Algorithm 2. Next,
we generate a random value from F to encode the polynomial coefficient a1 (line
3). Finally, we employ a popular algorithm - Lagrange Interpolation to construct
the polynomial f(x) (line 4) given points.

Algorithm 2: Polynomial generation
Input: n = k + 2 distinct numbers, F = GaloisF ield(2ℓ), commitment
Result: f(x) polynomial

1 Function Generate_Input():
2 a0 = commitment
3 a1 = Generate_Random_Point(n, F )
4 f(x) = Lagrange_Interpolation(a0, a1)

Continuing from the previous section, consider a Finite Field with an order
of 2ℓ, where each element in the field consists of precisely ℓ bits. As mentioned
above, let t be the input for Algorithm 3. The subsequent step involves evaluating
the polynomial P (x) for input values x = x1, x2, . . . , xk+2 to generate a vector
t1, t2, . . . , tk+2 (refer to lines 2 to 4 in Algorithm 3).

Subsequently, we can utilize the binary representation of ti (line 5) to encode
two strings si1 and si2 (line 6). Specifically, we take the first half of ℓ/2 bits from
ti to form si1, and in the subsequent line, we take the other half of ℓ/2 bits to
form si2. Following this, we can calculate the permuted hash for each string (line
8) in a way described in Section 3.

It’s important to note that the resulting value of f(si1, si2) may not be unique,
as there may exist s′1 and s′2 for which f(s′1, s

′
2) = f(si1, s

i
2), indicating the

presence of collisions.
To improve the resistance against inversion attacks, we can empower the

verifying party in the commitment process by allowing them to choose multiple
values of x. They can request the corresponding committed values (y) before
revealing the next challenge value of x.

The following figures demonstrate the situation where the committer can
expose one of several lines (and corresponding commitments) when only the
values for x = 1 and x = 2 are requested (indicated by the green colour). Define
P (x) = a1x + a0, where a0 represents the committed value (preimage of the
one-way function), and a1 is a randomly chosen value from the field. In Figure
1, the value f(s1, s2) (or f(s3, s4)) is depicted as a blue horizontal line, where
s1 ◦ s2 corresponds to a0 + a1, and s3 ◦ s4 corresponds to a0 + 2a1.
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Algorithm 3: Calculation of permuted hash
Input: f(x) = polynomial, F = GaloisF ield(2ℓ)
Result: h = permuted hash

1 Function Generate_Values():
2 t1 = f(x1)

3
...

4 t2 = f(xk+2)
5 tibinary = binary_cast(txi)

6 s1 = tibinary [0:ℓ/2]
7 s2 = tibinary [ℓ/2:ℓ]
8 h = Calculate_Permuted_Hash(s1, s2)

Figure 2 illustrates the green line representing P (x), which shows the y co-
ordinate for x = 1 (or x = 2) based on s1 ◦ s2 (or s3 ◦ s4) values. Interestingly,
the blue horizontal lines in Figure 1 reveal a collision for s3 ◦ s4, indicating the
existence of s′3 ◦ s′4 for which f(s3, s4) = f(s′3, s

′
4). This collision implies that

the committer can expose an additional committed value, which differs from the
value represented by the green line.

When the committer needs to reveal f(s5, s6), where (s5 ◦ s6) corresponds
to the value of P (3), the collisions indicated by the new blue line in Figure 3
do not align with the red line represented by s1 ◦ s2 and s′3, s

′
4 (see Figure 4).

Consequently, the committer is compelled to reveal the points on the green line,
effectively exposing the original committed value.

Fig. 1. Black-box values distribution for all possible s1 and s2 along with collision lines
for r1,2 and r3,4
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Fig. 2. Collision line for P (2) points

Fig. 3. Black-box values distribution for all possible s1 and s2 along with collision lines
for r1,2 and r3,4

Note that such an approach can be relevant to other cryptographic hash
functions where the input is padded by a random nonce chosen by the other
party. The nonce can also encode a (partial) permutation index given to the
committer.

Possibly, the verifier and the committer may agree that the committer will
permute the message and concatenate it with the nonce. Interaction can be
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Fig. 4. Collision lines for P (3) points

eliminated by the use of the Fiat-Shamir random oracle [FS87b], where the next
x coordinate is a function (say, xor based) of (several or all) the y values obtained
so far.

C MD5 collision example

MD5 serves as a cryptographic hash function designed to verify data integrity by
generating a fixed-size hash value from variable-length input data. However, its
susceptibility to collision vulnerabilities undermines its reliability. Specifically,
MD5 can erroneously produce identical hash outputs for distinct inputs, for
example:
First Pair:

– Sequence 1A:
d131dd02c5e6eec4 693d9a0698aff95c 2fcab58712467eab 4004583eb8fb7f89
55ad340609f4b302 83e488832571415a 085125e8f7cdc99f d91dbdf280373c5b
d8823e3156348f5b ae6dacd436c919c6 dd53e2b487da03fd 02396306d248cda0
e99f33420f577ee8 ce54b67080a80d1e c69821bcb6a88393 96f9652b6ff72a70

– Sequence 1B:
d131dd02c5e6eec4 693d9a0698aff95c 2fcab50712467eab 4004583eb8fb7f89
55ad340609f4b302 83e4888325f1415a 085125e8f7cdc99f d91dbd7280373c5b
d8823e3156348f5b ae6dacd436c919c6 dd53e23487da03fd 02396306d248cda0
e99f33420f577ee8 ce54b67080280d1e c69821bcb6a88393 96f965ab6ff72a70

Second Pair:

– Sequence 2A:
4dc968ff0ee35c20 9572d4777b721587 d36fa7b21bdc56b7 4a3dc0783e7b9518
afbfa200a8284bf3 6e8e4b55b35f4275 93d849676da0d155 5d8360fb5f07fea2
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– Sequence 2B:
4dc968ff0ee35c20 9572d4777b721587 d36fa7b21bdc56b7 4a3dc0783e7b9518
afbfa202a8284bf3 6e8e4b55b35f4275 93d849676da0d1d5 5d8360fb5f07fea2

C.1 Collision Sample Pairs

Choose a line out of the four defined by the two first pairs (for two pre-agreed
fixed x values), then use the y on this line that corresponds to the x (on this line)
where, say, the xor of the previous two defines the x hashed y’s (in the spirit of
Fiat Shamir usage of hash results). Given MD5’s vulnerability to chosen prefix
collisions, we identify two pairs of sequences. Despite their differences, each pair
results in the same MD5 hash.

Pair 1: Sequence 1A and Sequence 1B differ slightly but share the same MD5
hash:

79054025255fb1a26e4bc422aef54eb4.

The variation is minimal, typically in a few hexadecimal characters, illustrating
a chosen-prefix collision.

Pair 2: Similarly, Sequence 2A and Sequence 2B have minor differences but
result in the identical MD5 hash:

82aee5d7c2f182c2d34d2e48d0d9089e,

Pair 3: Similar to the previous examples, Sequence 3A and Sequence 3B contain
slight alterations yet produce the same MD5 hash:

cee9a457e790cf20d4bdaa6d69f01e41,

Each sequence within its pair confirms MD5’s collision issue. The commitment is
represented by one of these sequences. However, without further differentiation,
which pair accurately represents the commitment remains unclear, highlighting
MD5’s critical flaw.

D Polynomial MD5 collisions

Figures 5 and 6 demonstrate a new method for securing digital commitments,
aiming to overcome the weaknesses of the MD5 (or any other) hash function,
which is known to be vulnerable to attacks where different inputs (also may occur
when the output of MD5 is of the length of the input, and therefore when the
pigeonhole consideration cannot be applied) produce the same output, known as
collisions. We can apply this idea to any other commitment scheme to deal with
the potential of undesired collisions.
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D.1 Details in the Figures

The figures illustrate the line intersecting the y-axis at the point of commitment.
To commit to b, one randomly chooses a to form P (x) = ax+b. Then, it computes
y = P (x) for each agreed-upon x and calculates and outputs the MD5 hash of
y. Once two such hash function results are public, in the example in the figures,
results of MD5(P (2)) and MD5(P (4)) computations of MD5(P (x)) for more x’s
are required to be outputted, MD5(P (7)) in the case illustrated in Figure 6.
Note that, to avoid the need for interaction, the commitment agreement can be
to output MD5(P (1), MD5(P (2)) and then compute the next x (in the spirit
of Fiat-Shamir technique) by, say, x3=MD5(P (1)) xor MD5(P (2)), outputting
MD5(P (x3)), similarly the next x, x4 can be a function of all previous hash
results. If xi already participated, the first (“clockwise” order) subsequent non-
participating x is used.

The figures show two points for each chosen x-value. These pairs of points
represent MD5 collisions, which are sequences of data that result in the same
MD5 hash, namely, the points labelled M1A and M1B in the figures correspond
to different inputs but lead to the same MD5 hash, depicted by a red dashed
line. This is also true for the points labeled M2A and M2B .

If a person knows that their hash function is prone to collisions, they can
reduce the chance of dishonest behaviour by carefully choosing the next x value.
Upon selecting this x, they evaluate the polynomial at that point and then
use this result to compute the MD5 hash. This process is illustrated in Figure
6. We theorize that as more x values are selected in this manner, it becomes
increasingly difficult for a potential attacker to discover collisions that match
the original polynomial. We depict them as points with an “Unlikely Collision”
label. Consequently, we assert that the likelihood of successfully manipulating
the system exponentially decreases with each additional x chosen.
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Fig. 5. Polynomial Commitment Intersection and MD5 Hash Evaluation

Fig. 6. Extended Polynomial Commitment Intersection and MD5 Hash Evaluation


