
Random Oracle Combiners:

Breaking the Concatenation Barrier for Collision-Resistance

Yevgeniy Dodis1, Niels Ferguson2, Eli Goldin1, Peter Hall1, and Krzysztof Pietrzak3

1New York University (dodis@cs.nyu.edu,eg3293@nyu.edu,pf2184@nyu.edu)
2Microsoft (niels@microsoft.com)

3IST Austria (krzysztof.pietrzak@ist.ac.at)

Abstract

Suppose two parties have hash functions h1 and h2 respectively, but each only trusts the
security of their own. We wish to build a hash combiner Ch1,h2 which is secure so long as either
one of the underlying hash functions is. This question has been well-studied in the regime of
collision resistance. In this case, concatenating the two hash outputs clearly works. Unfortu-
nately, a long series of works (Boneh and Boyen, CRYPTO’06; Pietrzak, Eurocrypt’07; Pietrzak,
CRYPTO’08) showed no (noticeably) shorter combiner for collision resistance is possible.

We revisit this pessimistic state of affairs, motivated by the observation that collision-
resistance is insufficient for many applications of cryptographic hash functions anyway. We argue
the right formulation of the “hash combiner” is what we call random oracle (RO) combiners.

Indeed, we circumvent the previous lower bounds for collision resistance by constructing
a simple length-preserving RO combiner

C̃h1,h2

Z1,Z2
(M) = h1(M,Z1)⊕ h2(M,Z2),

where Z1,Z2 are random salts of appropriate length. We show that this extra randomness is
necessary for RO combiners, and indeed our construction is somewhat tight with this lower
bound.

On the negative side, we show that one cannot generically apply the composition theorem
to further replace “monolithic” hashes h1 and h2 by some simpler indifferentiable construction
(such as the Merkle-Damg̊ard transformation) from smaller components, such as fixed-length
compression functions. Despite this issue, we directly prove collision resistance of the Merkle-
Damg̊ard variant of our combiner, where h1 and h2 are replaced by iterative Merkle-Damg̊ard
hashes applied to fixed-length compression functions. Thus, we can still subvert the concatena-
tion barrier for collision-resistance combiners using practically small components.

Keywords: hash functions, combiners, random oracle model, indifferentiability framework, colli-
sion resistance

1 Introduction

Imagine you are a major software company and wrote some important cryptographic code utilizing a
“cryptographic hash function”. You believe that your favorite function h1 is the best such function
to use. One of your clients would like to buy your software. However, the regulations of their

1

country mandates they use a different cryptographic hash function h2, and they are not allowed
to use a different hash function. Your company does not believe h2 is as secure as h1, and you do
not wish to substitute h1 by h2. For example, in the case where h2 gets broken, you do not want
any bad publicity that your software application could suddenly become insecure, even though you
wanted to use the “secure” hash function h1. But you also want to make a sale, as the customer is
a big client.

Hash combiners provide a practical solution to this dilemma. Imagine your software will utilize
some combined hash function C = Ch1,h2 , which depends in a black-box way on both h1 and h2,
and which is secure as long as either h1 or h2 is secure. In this case you can convince the customer
to still buy your software, as the security of the hash function C is at least as good as that of h2.
But you are not worried of a future attack, since C is also as secure as your trusted hash function
h1.

How can we build such a combiner C = Ch1,h2? That depends on the notion of security that we
want. So far, most of the literature of hash combiners focused on the notion of collision-resistance
as a target. In this case, the following simple concatenation combiner works:

Ch1,h2(M) = h1(M)∥h2(M)

Indeed, a collision for C clearly implies a collision for both h1 and h2. Unfortunately, this con-
struction also doubles the output size of the hash function (assuming, for simplicity, that both hash
outputs are the same length). As such, this restriction severely limits the applicability of combiner
in practice. For example, in hash-then-sign signatures (such as FDH [3] or BLS [5]), this forces one
to use much heavier public-key cryptography, and similar considerations apply for virtually any
real-world application we can think off.

Perhaps we can do better? Unfortunately, a series of works [4, 21, 22] showed that this is
not the case, even if the combiner is allowed to be randomized (i.e., keyed, with the key chosen
independently of h1 and h2).

Is There a Way Out? At first, it seems like we are stuck, since collision-resistance is one of
the most basic security properties of hash function that we will need to preserve. Fortunately, as
was first observed by Mittelbach [19] (see also [18]) and continued in this work, this conclusion is
perhaps overly pessimistic. Namely, most applications of “cryptographic hash functions” already
require more than collision-resistance. For example, hash-then-sign signatures [3, 5] are typically
proven in the random oracle model (ROM), and it is in fact unlikely that a standard-model property
of hash functions will be enough to instantiate these widely-used schemes (see, e.g., [9, 20, 8]).

One potential solution, then, is to design a multi-property preserving combiner [11], which
simultaneously preserves multiple (or possibly all?) required security properties of hash functions.
In this setting, the concatenation combiner would fail even more miserably — for example, if
one of the input hash functions is not pseudorandom, the concatenation combiner will not be
pseudorandom regardless of whether the other is. Hence, it does not solve our original problem.

A better approach, studied by [19, 18], is to try to prove collision-resistance (and other indi-
vidual properties) of the combiner in the random oracle model, where one of the hash functions
is modeled as a random oracle (RO), and the other may adversarially query the random oracle.
While very useful (see Section 1.2 for more discussion), this still does not address the issue that
most applications of hash functions might need stronger properties than collision resistance. It is
also a bit underwhelming to start with a random oracle but only achieve weaker security properties.

2

Thus, in this work, we take this approach one step beyond, and introduce the following, even better
solution to the problem:

Random Oracle Combiners!

Ignoring for a second that this notion was never defined prior to this work — something we will fix
shortly — this solution seems to be a much better fit for our application. Indeed, it addresses the
fact that most application of cryptographic hash function anyway require something stronger than
collision-resistance; in most settings, a random oracle usually suffices. Even more, perhaps when
one of the hash functions h1 or h2 is a true random oracle, the lower bound for collision-resistance
combiners mentioned above would no longer hold. Intuitively, a stronger assumption (RO rather
than collision-resistance) on the hash function might yield a similarly stronger conclusion on the
combiner, while being much more efficient. Indeed, this is precisely what we will show in this work:
There does exist simple length-preserving random oracle combiners.

1.1 Our Results

We now describe our results in more detail.

Defining RO-combiners. Our first contribution is a formal definition of an RO-combiner. We
follow the indifferentiability framework of Maurer, Renner, and Holenstein [16] similarly to Coron
et al. [7] to say that the combiner C should be indifferentiable from a random oracle provided h1
or h2 is an RO.

In our case, we must be careful as to how h1 and h2 may depend on each other so as to accurately
model real use-cases. For concreteness, suppose h1 is a random oracle. We would like our combiner
Ch1,h2 to be indifferentiable from a random oracle even if h2 arbitrarily depends on h1. If h2 was
limited to not depend on h1 at all, trivial constructions such as Ch1,h2(M) = h1(M) ⊕ h2(M)
would suffice. No reasonable practitioner would be happy with such a combiner, though, as even
the reasonable choice of h2 = h1 results in Ch1,h2 = 0 on all inputs. On the other hand, if h2
can depend on h1 in some “exponentially-complex” way, this seems to give the adversarial hash
function too much power in a way that does not model the real world.

Thus, we settle on the following compromise, which we feel adequately balances real-world
threats of the attacker. We allow h2 to implement an arbitrary (even unbounded-size) circuit g,
but on every input, g is allowed to make only a large but bounded number of black-box calls to h1.
This rules out, for example, h2 being able to access the entire truth table of the random oracle on a
single function call. We refer to Definition 2.4 (and further discussion of our notion in Section 2.2)
to formally model this adversarial implementation.

To see that this notion is non-trivial, we show that no deterministic RO-combiners exist. The
formal proof of this result is rather involved (see Theorem 4.4), but the intuition is as follows: For
any deterministic combiner C (which outputs just one bit) we will bias one of the hash functions in
a way that C(0) will be biased. This is accomplished if either C(0) does not “meaningfully depend”
on (say) h2, in which case our task is easily accomplished by controlling h1, or if both h1 and h2
have an effect on the output of the combiner, in which case we will program h2 to bias the output.
Here “meaningfully depend” roughly corresponds to choosing h1 at random, and seeing if further
choosing h2 at random affect the value of C(0). Otherwise, we will do “rejection sampling” inside
the adversarial function h2 that we design. The adversarial hash h2 will attempt to evaluate C(0)
using its oracle gates to h1, and will keep randomly changing its answers to h2 until the result of
the C(0) evaluation is 0.

3

A Length-Preserving RO-combiner. Having developed some intuition why building RO-
combiners is non-trivial, and requires some randomness, we proceed with our main positive result.
Namely, we show that the following length-preserving (and, necessarily, randomized) RO-combiner
is secure:

C̃h1,h2

Z1,Z2
(M) = h1(M,Z1)⊕ h2(M,Z2),

where Z1,Z2 are sufficiently long random salts. We refer to Theorem 4.1.
Specifically, the lengths of Z1 and Z2 are slightly longer (roughly, by security parameter) than

the length of the hash message M . As a high-level intuition, the key to the security of this
RO-combiner comes from the fact that no evaluation of C̃(M) can completely call h1(∗,Z1) inside
h2(M,Z2), and vice versa. This is because the messageM (which can be chosen by the attacker after
it learns Z1,Z2) is not long enough to encode the entirety of Z1 or Z2. Thus, our indifferentiability
simulator (run in the ideal world, where C is now a true random oracle) does not get stuck when
adapting one of the hash functions h1 or h2 to be consistent with RO C.

We also show that the lower bound on |Z1|, |Z2| required by our security analysis is tight, by

presenting a simple attack on any C̃h1,h2

Z1,Z2
when using significantly shorter salts. For more details,

see Theorem 4.3.

Can We Use Short Compression Functions? While our main positive result is length-
preserving and already illustrates the usefulness of our approach of modeling “hash function com-
biners” as RO-combiners, our particular construction C̃h1,h2

Z1,Z2
is not yet applicable to practical cases

in the following sense: Even for reasonably-sized inputs M , the underlying hash calls h1(M,Z1)
and h2(M,Z2) are over inputs which do not fit into a typical block of existing cryptographic hash
functions, such as SHA-2 or SHA-3 (in part, because the salts Z1 and Z2 are relatively long).

Instead, practical hash functions typically iterate a given compression function using some mode
of operation, such as the Merkle-Damg̊ard transformation. At first, it is tempting to attempt simply
apply the composition theorem in the indifferentiability framework [16] — Instead of assuming h1
and h2 are monolithic hash functions on “long inputs” (M,Z), imagine they are modeled as fixed-
length compression functions on “short-inputs”, and we appropriately redefine our RO-combiner
to be

SufCh1,h2

Z1,Z2
(M) = h∗1(M,Z1)⊕ h∗2(M,Z2),

where the notation f∗(m1, . . .mt) = f(mt, f(mt−1, . . . , f(m1, 0) . . .)) corresponds to the Merkle-
Damg̊ard (MD) evaluation of the compression function f .

Now, we could use the earlier indifferentiability result of [7] that applying the MD evaluation
a fixed number of times on a compression function modeled as a fixed-length random oracle is by
itself indifferentiable from a (longer-input) monolithic random oracle. Combined with our previous
result, this would imply that SufC is still a good RO-combiner, but now with much more practical
parameters for h1 and h2.

Unfortunately, this reasoning turns out to be false for a rather subtle reason. Our indifferen-
tiability notion for RO-combiners is technically a two stage game [23], as explained in detail in
Section 3.1. As such, standard composition theorem cannot be applied to argue security of such
game. Indeed, to see this explicitly, we show that a similar-looking combiner

PreCh1,h2

Z1,Z2
(M) = h∗1(Z1,M)⊕ h∗2(Z2,M).

is completely insecure as an RO-combiner on fixed-length compression functions. Namely, the
difference between SufC and PreC is whether the salts Z1,Z2 are appended or prepended to the

4

actual messageM . For the “monolithic” combiner C̃h1,h2

Z1,Z2
(M) = h1(M,Z1)⊕h2(M,Z2), this clearly

does not matter. Yet, the prepended construction is insecure when instantiated with the Merkle-
Damg̊ard based variant. Intuitively, all the useful information about the salts Z1,Z2 is hashed into
compact descriptions h∗1(Z1) and h∗2(Z2), respectively, which may then be, e.g., included within M .
See Theorem 5.4 for more details.

Direct Collision-Resistance. While the composition theorem does not immediately imply se-
curity of SufC(M) = h∗1(M,Z1) ⊕ h∗2(M,Z2), one could still attempt a direct security proof that
this is a secure RO-combiner. We leave this as a great open question. However, as an initial step
in this direction, we show that SufC(M) is at least collision-resistant in our model (Theorem 6.3).
This gives another meaningful (and provably secure) way to circumvent the concatenation barrier
for collision-resistant combiners [4, 21, 22], albeit leveraging stronger assumptions.

We note that our construction is basically a “cryptophia short combiner” as considered in [19,
18]. However, we achieve better efficiency and our result is more general in several senses. We
discuss this comparison further below.

1.2 Related Work

Combiners for cryptographic primitives were first considered by [15] and [14], followed by numerous
works including [2, 13, 14, 15, 17]. Combiners for collision-resistance have been of particular interest.
In this space, the concatenation combiner belongs to folklore, and proving its optimality (in terms of
output length) was established by a series of works [4, 6, 21, 22]. So-called multi-property preserving
combiners have been defined and constructed by [11, 12]. As these combiners are require preserving
collision-resistance, they necessarily have long output length, in line with the lower bounds above.
We mention that they also preserve indifferentiability from a random oracle, but in a much weaker
model than our model, where the “adversarial random oracle” cannot depend on the good one.
In particular, in this model even the XOR function is a good combiner. Thus, even ignoring the
output length, the combiners of [11, 12] would not be secure random oracle combiners according
to our definition.

Mittelbach [19] considered a similar notion to RO-combiners called “cryptophia short combin-
ers” (additionally, a follow up work [18] identifies and fixes a flaw in the original paper). Mittel-
bach [19] was the first to show that the lower bounds on the output length of collision-resistance
combiners (that is, nearly double the length of the outputs of the input hash functions [4, 21, 22])
can be overcome by assuming one of the two functions is ideal, even under the strong assumption
that the other hash function can arbitrarily depend on the ideal one. Our work follows in this
direction, making the following improvements:

Security: While [19] shows that the combined function achieves particular security properties
(collision-resistance, pseudorandomness, one-wayness), we show indifferentiability from a ran-
dom oracle, which is strictly stronger.

Efficiency: Our combiner is conceptually simpler and more efficient: To hash a message of length
ℓ = k ·n, we need to hash 2ℓ+n = (2k+1)n bits with each of the hash functions. In [18] it’s
5k · n bits.

Completeness of Assumptions: The Cryptophia combiner is defined for arbitrarily compressing
hash functions. This is justified (in the Remark of Section 3.3 of [19]) by stating their definition
is one-stage, allowing them to replace the large-input hash by something indifferentiable

5

from a random oracle, such as the Merkle-Damgard composition of a compression function.
However, their model (similarly to ours) allows the adversarial hash function to make oracle
queries to the honest one, and so their security game is two stage. Thus, just as with our
results from Section 3, their security proof does not hold when their combiner is instantiated
with ”real-world” hash functions. We get around this issue by providing a direct proof of
collision-resistance when our combiner is instantiated with Merkle-Damgard hash functions
(Theorem 6.3).

2 Preliminaries

Definition 2.1. A random oracle H : {0, 1}m → {0, 1}n is an oracle giving access to a function
{0, 1}m → {0, 1}n chosen uniformly at random during initialization.

We will make frequent use of the following theorem, which we will call a “compression argu-
ment.” The proof of this theorem is folklore, but is easy to show using the pigeonhole principle.

Theorem 2.2. Let Enc : S → T and Dec : T → S be two algorithms such that

Pr
s

$←−S
[Dec(Enc(s)) = s] ≥ ϵ.

Then ϵ · |S| ≤ |T | .

2.1 Hash Combiners

We will use the term hash combiner to refer to the following syntax:

Definition 2.3. A hash combiner Ch1,h2

Z : {0, 1}ℓ → {0, 1}s is an algorithm, keyed by randomness
Z with |Z| = k, with oracle access to two functions h1, h2 : {0, 1}m → {0, 1}n.

We also will refer to adversarial implementations of hash functions. When defining security of
combiners, we will want security to hold against all adversarial implementations.

Definition 2.4. An adversarial implementation of a hash function is an oracle circuit gO :
{0, 1}m → {0, 1}n. We typically bound the number of queries made by g to its oracle by Tg.

In particular, for a hash combiner Ch1,h2

Z : {0, 1}ℓ → {0, 1}s to be secure, we will want Ch,gh

Z
and Cgh,h

Z to be secure for any adversarial implementation g when h is implemented as an honest
hash function. In this work, we will consider the honest hash function to always be implemented
as a random oracle.

2.2 Alternative Models

We could consider the model where the adversarial hash function gO : {0, 1}m → {0, 1}n is given
access to a common reference string of length r. However, if we bound the number of queries
made to O to q, these models are equivalent up to a r

n
q
2m additive factor. This is because a

deterministic gh can simulate the common reference string by non-uniformly fixing some prefix c
of length m− log(r/n) and using h(c, 0), . . . , h(c, r/n) as its internal randomness.

6

We may wish to consider the model where the circuit g is chosen efficiently by the distinguisher
instead of being fixed as a separate nonuniform adversary. Note, however, that this model is strictly
weaker than the one described in the previous paragraph. Thus, as our positive results hold in a
stronger model, they will hold in this model as well. For our negative results, our constructions
will indeed be able to be efficiently generated.

Finally, we may wish to consider a one-stage model, where the adversarial hash function is
not given oracle access to the honest random oracle. This model is described in more detail in
Section 7.2, but we do not analyze this model in detail in this work.

2.3 Notation

Throughout this work, we will use certain conventions to make comparisons between constructions
and attacks simpler. In general, for a (randomized) hash function h, m will refer to the input
length, n will refer to the output length, and k will refer to the length of the randomness. For
combiners, we will use ℓ to refer to the input length. Any other notation will be detailed in the
section in which it is relevant.

3 Indifferentiability and Hash Combiners

We first introduce the notion of indifferentiability. Indifferentiability was first defined by Maurer,
Renner, and Holenstein [16] as a way of arguing (among other things) a notion that some idealized
object could be ”replaced” by some system or protocol without sacrificing any of the properties of
the idealized object. More specifically, in this work, we desire indifferentiability of a hash function
combiner with the random oracle. Note that this notion is strictly stronger than collision-resistance.
We present the definitions necessary for this notion below, starting with that of indifferentiability
itself.

Definition 3.1 (Maurer, Renner, Holenstein 2003). Let F ,G be two ideal primitives, and let SFZ
be a family of constructions of G from F . We say that S is (statistically) (TSim, ϵ)-indifferentiable
from G if there exists a simulator SimO making at most TSim queries to its oracle such that the
following holds:
For all (unbounded) oracle algorithms D,∣∣∣∣∣ Pr

Z
$←−U

[D(Z,F ,SFZ)→ 1]− Pr
Z

$←−U
[D(Z, SimG(Z),G)→ 1]

∣∣∣∣∣ ≤ ϵ

where U is the uniform distribution.

Theorem 3.2. (Informal) If SF is ϵ-indifferentiable from G, then for any single-stage cryptographic
application using G, replacing G with SF will have at most ϵ security loss.

That is, if something is indifferentiable from a random oracle, then it can be used as a random
oracle in almost all applications. Note there are some restrictions on the applications of indifferen-
tiability. In particular, for cryptographic systems designed against multiple adversaries who cannot
communicate, replacing an ideal model with something indifferentiable may not preserve security
[23].

7

As a random oracle is in some sense the best possible hash function, an ideal hash combiner would
be indifferentiable from a random oracle if one of the underlying hash functions is a random oracle.
More formally, we give the following definition.

Definition 3.3. Let Ch1,h2

Z be a combiner. Let H,G be two random oracles. We say that C is
(Tg, TSim, ϵ)-random-oracle-secure if, for all oracle circuits gO making at most Tg oracle queries,

both CH,gH

Z and CgH,H
Z are (TSim, ϵ)-indifferentiable from G. An equivalent formulation is illustrated

in Figure 1.

Note in particular that we allow our combiner to be keyed. That is, the combiner has access
to some public randomness chosen after the adversarial hash function is determined. In the next
section, we will show that this is indeed necessary in order for our definition to be achievable.

3.1 On Composability of Random-Oracle-Security

One weakness of our definition of random-oracle-security is that this definition is itself a two-stage
game. That is, an adversary against random-oracle-security is composed of both the adversarial
implementation gO as well as the distinguisher D, and neither party is allowed to communicate.
Therefore, if one were to instantiate the honest oracle for a random-oracle-combiner with a hash
function which is indifferentiable to a random oracle but is not a random oracle itself, the combiner
may not preserve security. That is, a random-oracle-secure combiner should be instantiated with
candidate hash functions and not transformations of candidate hash functions. We go into more
detail on this issue in Section 5.

One could consider a stronger definition of hash combiner, which requires indifferentiability
from a random oracle when instantiated with a function indifferentiable from a random oracle. We
leave it an open question as to whether such a combiner can be achieved, but we suspect that the
parameters required for such a transformation are likely to be worse for practitioners.

However, note that this is only an issue when precomposing our definition with indifferentiability.
Postcomposing will present no issues aside from those standard for indifferentiability. That is, since
our definition requires that the combiner (when instaniated properly) be indifferentiable from a
random oracle, Theorem 3.2 still applies. Any one-stage security property secure when instantiated
with a random oracle will also be secure when instantiated with a random-oracle-secure combiner
as long as one of the underlying hash functions used by the combiner is itself a random oracle.

As most reasonable security properties one would expect from a hash function are indeed de-
signed for one-stage adversaries, a random-oracle-secure combiner can be used as a random oracle
for the vast majority of applications. In particular, when instantiated properly, a random-oracle-
secure combiner will be collision resistant, one-way, pseudorandom, and second preimage resistant.

4 Random-Oracle-Secure Hash Combiner Construction

With this definition in mind, we present a construction of a hash function combiner which is
indifferentiable from a random oracle. Let h1, h2 : {0, 1}m → {0, 1}n be two hash functions, and

let Z1,Z2
$← {0, 1}k for some k < m. Then, our construction is simply the xor of the two hashes

evaluated on the input concatenated with Z1, Z2 respectively. That is, we define our combiner
Ch1,h2

Z1,Z2
: {0, 1}ℓ → {0, 1}n as

Ch1,h2

Z1,Z2
(M) = h1(M,Z1)⊕ h2(M,Z2). (1)

8

REAL− b:

Sample Z $←− {0, 1}k
Sample h : {0, 1}m → {0, 1}n u.a.r.
Run DO1,O2(Z)→ b′

Output b′.

O1(x):
Output h(x)

O2(M):

If b = 0, output CO1,gO1

Z (M).

If b = 1, output CgO1 ,O1

Z (M).

IDEAL:

Sample Z $←− {0, 1}k
Sample H : {0, 1}ℓ → {0, 1}s u.a.r.
Run DO1,O2(Z)→ b′

Output b′.

O1(x):
Output SimO2(x,Z)

O2(M):
Output H(M).

Figure 1: We say that the combiner is secure if for all b, DO1,O2 not necessarily efficient, gO a query-
bounded circuit, there exists a simulator Sim such that |Pr[D(REAL− b)→ 1]− Pr[D(IDEAL)→ 1]| ≤ ϵ.

This construction relies on k being at least m+log T+λ
2 , where m is the input length of the hash

functions and T is the number of honest hash function h1 queries the adversarial hash function h2
may make.

Note that, as m is the length of our hash function input space, this only supports message
length at most ℓ = m−k. In Section 5, we will discuss the difficulties of extending this fixed length
to arbitrary length.

Theorem 4.1. Let |Z1| = |Z2| = k, h1, h2 : {0, 1}m → {0, 1}n. We define a hash combiner

C̃h1,h2

Z1,Z2
: {0, 1}ℓ → {0, 1}n by

C̃h1,h2

Z1,Z2
(M) = h1(M,Z1)⊕ h2(M,Z2).

Then, for all T , C̃h1,h2

Z1,Z2
is
(
T, 1, T

2k−ℓ

)
-random-oracle-secure.

To prove Theorem 4.1, We will rely on the following key lemma.

Lemma 4.2. Let gO : {0, 1}m → {0, 1}n a circuit making at most T oracle calls. Let Z1,Z2
$←−

{0, 1}k and h
$←− {f : {0, 1}m → {0, 1}n} be random variables. Define BAD to be the event that

there exists x, x′ ∈ {0, 1}ℓ:=m−k such that gh(x,Z2) queries h(x′,Z1). Let ϵ = PrZ1,Z2,h[BAD].
Then,

ϵ ≤ T

2k−ℓ

Proof. We write

ϵZ′
2,h

′ := Pr
Z1,Z2,h

[BAD|Z2 = Z ′
2, h = h′] = Pr

Z1

[∃ x, x′ : gh(x,Z ′
2) queries h

′(x′,Z1)].

By an averaging argument, there must exist some Z∗
2 , h

∗ such that ϵZ∗
2 ,h

∗ ≥ ϵ. We will build a
compressor (Enc,Dec) for Z1 as follows:

We define Enc(Z1):

9

SimG
Z1,Z2

(x):

If x = (M,Z1) for some M :
-Run y ← glazy(M,Z2).
-Output G(M)⊕ y.
Else:
-Output lazy(x).

Subroutine lazy(x):

-If D[x] = ⊥, set D[x]
$←− {0, 1}n.

-Output D[x].

Figure 2: The simulator.

1. Find the first lexicographic x such that gh
∗
(x,Z∗

2) queries h
∗(x′,Z1) for some x′. If no such

x exists, output ⊥. Otherwise, let t be the index that this query occurs at.

2. Output (x, t).

We also define Dec(x, t):

1. Let (x′,Z) be the t-th query made by gh
∗
(x′,Z1).

2. Output Z.

Note that as long as Enc doesn’t output ⊥, it is clear that Dec(Enc(Z1)) = Z1. But the
probability that Enc fails is ϵZ∗

2 ,h
∗ ≥ ϵ. Thus, Enc compresses a set of size ϵZ∗

2 ,h
∗2k into a set of size

2ℓ · T . Theorem 2.2 then gives us

ϵ ≤ ϵZ∗
2 ,h

∗ ≤ T

2k−ℓ
,

which completes the proof.

We now move to the proof of Theorem 4.1. Note that, since our scheme is symmetric, it suffices

to prove C̃gH,H
Z is ϵ-indifferentiable from G for ϵ = T

2k−ℓ .

Proof. We first define our simulator Sim as in Figure 2. LetREAL and IDEAL be the games in Fig-
ure 3. We simply need to show that for any (unbounded) D, |Pr[REAL→ 1]− Pr[IDEAL→ 1]| ≤
ϵ.

To achieve this, we rely on a series of hybrid games, REAL,G1, G2, G3, G4, IDEAL defined in
Figures 3, 4, and 5.

Claim 1: Pr[REAL→ 1] = Pr[G1→ 1].
In G1, since f and h are sampled uniformly at random, h̃ is a uniformly random function. Thus,
since the only difference between these two games is that h (a uniformly random function) is re-
placed with h̃, REAL and G1 are identically distributed.

10

Claim 2: |Pr[G1→ 1]− Pr[G2→ 1]| ≤ ϵ.
Conditioned on the event that there does not exist any x such that gh(x,Z2) queries h on (M,Z2),
G2 is identically distributed to G1. But by Lemma 4.2, this occurs with probability at most ϵ, and
so the claim follows.

Claim 3: Pr[G2→ 1] = Pr[G3→ 1].
Note that the function gh(x,Z2) is independent of f , and so as f is uniformly random, F (x) =
f(x) ⊕ gh(x,Z2) is also uniformly random. Thus, since the only difference between G3 and G2 is
that f is replaced by F , the two games are identically distributed.

Claim 4: Pr[G3→ 1] = Pr[G4→ 1].
Note that G4 is just G3 with algebraic terms reorganized. All values returned by all oracles are
identically distributed in both games. The claim trivially follows.

Claim 5: Pr[IDEAL→ 1] = Pr[G4→ 1].
The only difference between IDEAL and G4 is that h is replaced by lazy sampling. The claim
trivially follows.

Putting the above claims together, we get that Pr[REAL → 1] = Pr[G1 → 1] and Pr[G2 → 1] =
Pr[IDEAL→ 1], and so

|Pr[REAL→ 1]− Pr[IDEAL→ 1]| ≤ ϵ

4.1 Remarks on Parameters

Given two {0, 1}m → {0, 1}n hash functions, our construction gives a {0, 1}ℓ → {0, 1}n hash
function with security loss T

2k−ℓ . Note that here, ℓ + k = m, and so this security loss can be

rewritten as T
22k−m . In practice, hash functions are expected to have so called “birthday bound”

security for various security properties (such as collision resistance). That is, any attack making q
queries to the hash function should have probability of success q

2λ
, where λ is the security parameter.

As our notion of indifferentiability applies to unbounded attackers, the security loss from our
construction does not at all depend on the number of queries made by the distinguisher. Thus, to
achieve birthday security using our construction, it is sufficient to set

k =
m+ log T + λ

2
.

Of course, this means our input space is limited to length ℓ = (m− log T − λ)/2.

11

REAL:

Sample Z1, Z2
$←− {0, 1}k

Sample h : {0, 1}m → {0, 1}n u.a.r.
Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(x):
Output h(x)

O2(M):
Output O1(M,Z1)⊕ gO1(M,Z2).

(a) Real Game, where O1 refers to the random oracle
and O2 refers to our combiner construction.

IDEAL:

Sample Z1, Z2
$←− {0, 1}k

Sample H : {0, 1}ℓ → {0, 1}n u.a.r.
Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(x):
If x = (M,Z1):
- Compute y = glazy(M,Z2). If g ever queries
(M ′,Z1) for any M ′, fail.
- Output O2(M) + y
Else: output lazy(x)

O2(M):
Output F (M).

Subroutine lazy(M):

If D[x] = ⊥: D[x]
$←− {0, 1}n.

Output D[x].

(b) Ideal Game, where O1 refers to our h1 simulator and
O2 refers to our idealized combiner.

Figure 3: The real and ideal games for Theorem 4.1.

12

G1:

Sample Z1, Z2
$←− {0, 1}k

Sample h : {0, 1}m → {0, 1}n u.a.r.
Sample f : {0, 1}ℓ → {0, 1}n u.a.r.
Define h̃(x) ={
f(M) x = (M,Z1) for some M

h(x) o.w.

Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(x):
Output h̃(x)

O2(M):

Output h̃(M,Z1)⊕ gh̃(M,Z2).

The same as the real game, but with the honest hash
function divided into two parts.

G2:

Sample Z1, Z2
$←− {0, 1}k

Sample h : {0, 1}m → {0, 1}n u.a.r.
Sample f : {0, 1}ℓ → {0, 1}n u.a.r.
Define h̃(x) ={
f(M) x = (M,Z1) for some M

h(x) o.w.

Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(x):
Output h̃(x)

O2(M):
Output f(M)⊕ gh(M,Z2).

The same as G1, but with gh̃ replaced with gh. That is,
the compromised hash function’s queries to (M,Z1) are
replaced with random values.

Figure 4: The first two hybrids used for Theorem 4.1.

G3:

Sample Z1, Z2
$←− {0, 1}k

Sample h : {0, 1}m → {0, 1}n u.a.r.
Sample f : {0, 1}ℓ → {0, 1}n u.a.r.
Define F (x) := f(x)⊕ gh(x,Z2).
Define h̃(x) ={
F (M) x = (M,Z1) for some M

h(x) o.w.

Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(x):
Output h̃(x)

O2(M):
Output F (M)⊕ gh(M,Z2).

The same as G2, but with f(x) replaced by f(x) ⊕
gh(x,Z2). That is, the honest hash functions outputs
are shifted by gh(x,Z2).

G4:

Sample Z1, Z2
$←− {0, 1}k

Sample h : {0, 1}m → {0, 1}n u.a.r.
Sample f : {0, 1}ℓ → {0, 1}n u.a.r.
Run DO1,O2(Z1,Z2)→ b′

Output b′.

O1(x):
If x = (M,Z1), output O2(M)⊕ gh(M,Z2).
Else: output h(x).

O2(M):
Output f(M).

The same as G3, but with values reorganized so as to be
similar to the simulator.

Figure 5: The last two hybrids used for Theorem 4.1.

13

4.2 Our Security Proof is Tight

Note that although our proof achieves birthday security for k = m+log T+λ
2 , one may wonder whether

Theorem 4.1 holds even for smaller values of k. That is, are the parameters required by our security
proof optimal for our construction? In this section, we show that the parameters are optimal up
to a constant factor.

Theorem 4.3. Let k = ℓ and let C̃h1,h2

Z1,Z2
: {0, 1}ℓ → {0, 1}n be as in Equation (1). Then C̃ is not(

1, 1− 1
2n

)
-random oracle secure.

Proof. Define gH(x, y) := h(x, x). Then observe that

C̃h,gh

Z1,Z2
(Z1) = h(Z1,Z1) + gh(Z1,Z2) = 0.

Thus, we can distinguish C̃ from a random oracle simply by evaluating on Z1. This will succeed
with probability ∣∣∣Pr[C̃(Z1) = 0]− Pr[H(Z1) = 0]

∣∣∣ = 1− 1

2n

In particular, this means that our proof of security for our construction is close to tight. That
is, our construction admits an attack when k ≤ ℓ. Since our proof requires that k ≥ ℓ+ log T + λ,
this means that our randomness requirement is tight up to a log T + λ additive factor. If ℓ = cλ
and T ≤ 2λ, our proof of security will be tight for our construction up to a (c + 2) multiplicative
factor.

4.3 Random-Oracle-Secure Combiners Need Randomness

Our construction requires randomness linear in m and the security parameter λ. We now show the
dependence on λ is necessary.

In particular, we first prove that no deterministic random-oracle-secure hash combiners can
exist — randomness is always needed. This contrasts with the notion of combiners for collision
resistance, in which setting concatenation functions as an effective deterministic combiner. We
further demonstrate a lower bound on the amount of randomness required for any hash combiner
to be random-oracle-secure, and we argue that in order to achieve “brute-force security”, λ bits of
randomness are required.

First, we present our main theorem, showing that random-oracle-secure combiners require some
randomness.

Theorem 4.4. Let Ch1,h2 be a deterministic hash combiner making at most TC queries to its
underlying hash function. Then, for any value of TSim, C is not (7TC , TSim, 0.25)-random oracle
secure.

Theorem 4.5. Let Ch1,h2

Z be a hash combiner making TC oracle queries and utilizing k bits of
randomness (i.e. |Z| = k). Then, for any value of TSim, C is not

(
7TC , TSim,

0.25
2k

)
-secure, even

when only considering attacks which can be generated in time O(2k).

14

Theorem 4.5 means that any combiner must use superlogarithmic randomness in order to achieve
negligible security loss. In practice, this means that if one hopes to achieve “brute-force” security,
(i.e. no attacker should be able to succeed with probability ≥ 1

2λ
), then it is necessary that

k ≥ λ− 2. That is, there should be at least as much randomness used by the combiner as desired
bits of security.

In particular, we note that the adversarial hash functions used in the proofs of these theorems
can be produced in time O(1) and O((2k)2) respectively. The distinguisher in both theorems runs
in time O(1).

The proofs of both theorems are a direct result of the following lemma:

Lemma 4.6. Let Ch1,h2

Z : {0, 1}ℓ → {0, 1}s be a hash combiner with |Z| = k making at most TC

queries to its oracles. Let ϵ > 0, ρ ∈ (0, 1), d ∈ N such that

ρ

(
1−

(
1

2
+ ϵ

)d
)
−
(
1

2
+ ϵ

)
> 0

Then, C is not (dTC ,∞, ϵ
2k
)-random oracle secure.

In particular, Theorem 4.5 results from setting ρ = 0.9, ϵ = 0.25, and d = 7. Theorem 4.4
results from setting k = 1 in Theorem 4.5.

4.4 Proof of Lemma 4.6

Claim 1. let Ch1,h2 : {0, 1}ℓ → {0, 1}s be any deterministic oracle function making at most TC

queries to its oracles. Let F = {f : {0, 1}m → {0, 1}n}. Suppose that

Pr
h1

$←−F
[Pr
h2

$←−F
[Ch1,h2(0) = 0] ≥ 1

2
− ϵ] ≥ ρ.

Then, for all d, there exists an h̃h1
r making at most d · TC queries to h1 such that

Pr
r
[Pr
h1

[Ch1,h̃
h1
r (0) = 0] ≥ 1

2
+ ϵ] ≥ ρ

(
1−

(
1

2
+ ϵ

)d
)
−
(
1

2
+ ϵ

)
Proof. We will first define a stateful algorithm lazyr(x):
On initialization, lazyr sets D = {}, ctr = 1, and parses r = w1, . . . , wTC

.
On input x, lazyr(x) does the following:
- If x /∈ D, set D[x] = wctr and increase ctr by 1.
- Output D[x].

We will define h̃h1
r (x) as follows:

-Parse r = r1, . . . , rd.
-For each i = 1, . . . , d: run Ch1,lazyri (0)→ ci, keeping track of Di the database computed by lazyri .
-If ci = 0 for any i, set i∗ to be the smallest such i.
-Output Di∗ [x] if x ∈ Di∗ . Otherwise output 0.

15

We make two key observations. First note that if h̃r finds i∗ for any (and thus all) of its inputs,

then Ch1,lazyri∗ (0) = C h̃r,h2(0) = 0. Second, note that for uniform w, Ch1,lazyw(0) is identically
distributed to Ch1,h2(0).
Let h1 be such that Prh2 [C

h1,h2(0) = 0] ≥
(
1
2 − ϵ

)
. Then

Pr
w
[Ch1,lazyw(0) = 0] ≥

(
1

2
− ϵ

)
Pr

w1,...,wd

[Ch1,lazyw(0) = 0 for some i] ≥ 1−
(
1

2
+ ϵ

)d

Pr
r
[Ch1,h̃

h1
r (0) = 0] ≥ 1−

(
1

2
+ ϵ

)d

Putting this together with the assumption in the lemma, we get

Pr
h1

[Pr
r
[Ch1,h̃r(0) = 0] ≥ 1−

(
1

2
+ ϵ

)d

] ≥ ρ

and so

Pr
r,h1

[Ch1,h̃r(0) = 0] ≥ ρ

(
1−

(
1

2
+ ϵ

)d
)

Using basic probability, we get our lemma.

Claim 2. Let Ch1,h2 be such that

Pr
h1

$←−F
[Pr
h2

$←−F
[Ch1,h2(0) = 0] ≥ 1

2
− ϵ] < ρ

Then there exists an efficient h̃h2
r making at most TC queries to h2 such that

Pr
r
[Pr
h2

[Chr,h2(0) = 1] ≥ 1

2
+ ϵ] ≥ 1− ρ

Proof. We simply define hr to lazily sample the random oracle. In particular, hr(x) is defined by:
-Run C lazyr,h2(0) to get database D.
-If x ∈ D, output D[x], otherwise output 0.

It is clear that C lazyr,h2(0) is identically distributed to Ch1,h2(0), so we conclude

Pr
r
[Pr
h2

[Chr,h2(0) = 0] ≥ 1

2
− ϵ] < ρ.

The proof of Lemma 4.6 comes from the two claims as follows:

Proof. Let ϵ, ρ, and d be as in the theorem statement. We will first consider the case where Z = 0.
By the claims, when ρ and d are set appropriately, either

Pr
r
[Pr
h1

[Ch1,h̃r
0 (0) = 0] ≥ 1

2
+ ϵ] > 0

16

or

Pr
r
[Pr
h2

[Ch1r,h2
0 (0) = 1] ≥ 1

2
+ ϵ] > 0

We will define an attack for the first case, and the attack in the second case will be symmetric.

Observe that in the first case, there must exist some r∗ such that Prh1 [C
h1,h̃r∗
0 (0) = 0] ≥ 1

2 + ϵ.

Thus, we define g = h̃r∗ . For H,G random oracles, We will develop an attacker D for the indiffer-

entiability game between CH,gH

Z from G.

D(Z,O1,O2):

-If Z ̸= 0: flip a coin b
$←− {0, 1} and output b.

-If Z = 0: output 1 if and only if O2(0).

We can then compute the advantage of D as follows:

Pr[D(H, CH,gH

Z) = 1]

= Pr[Z = 0]Pr[D(CH,gH

Z = 0|Z = 0] + Pr[Z ̸= 0]Pr[D(CH,gH

Z = 0|Z ̸= 0]

=
1

2k
Pr
h1

[C
h1,h̃

h1
r∗

0 (0) = 0] +

(
1− 1

2k

)
1

2

≥ 1

2
+

1

2k

((
1

2
+ ϵ

)
− 1

2

)
=

1

2
+

ϵ

2k

But for any simulator Sim,

Pr[D(SimG ,G) = 1] =
1

2

and so CH,gH

Z is not 1
2k
(1−

(
1
2 − ϵ

)
)-indifferentiable from G. Thus, since in either case g will make

at most dTC queries to its oracle, we get that Ch1,h2 is not
(
dTC ,

ϵ
2k

)
-random oracle secure.

A few remarks on efficiency: We remark that the probability of a random r being sufficient
for our purposes is

α := min

(
1− ρ, ρ

(
1−

(
1

2
+ ϵ

)d
)
−
(
1

2
+ ϵ

))
and we can test whether some r is sufficient by estimating

Pr
h1

[Ch1,h̃r
0 (0) = 0] = Pr

r′
[C

lazyr′ ,h̃r

0 (0) = 0]

or
Pr
h2

[Chr,h2
0 (0) = 0] = Pr

r′
[C

hr,lazyr′
0 (0) = 0]

and seeing if it is larger than 1
2 −

1
2

ϵ
2k
. This test can be performed in time O

((
2k

ϵ

)2)
, and a good

r can be found in O
(
1
α

)
trials. Thus, we can produce a g which biases C in time O

(
1
α

(
2k

ϵ

)2)
.

17

5 Extensions to Arbitrary Length

In Sections 3 and 4, we considered a regime where the two input hash functions go from m-bit long
strings to n-bit long strings.

Note that there are a number of constructions [7], mostly designed around the Merkle-Damg̊ard
transform (Section 5.1), which when instantiated on a compressing random oracle, are indifferen-
tiable from a random oracle. In Section 5.2, we show how to compose such a construction with a
combiner to produce a combiner for arbitrary length input. However, in Section 5.3, we see that
the parameters of our construction imply that it is not advisable to employ this approach for hash
functions used in practice.

One would hope to instead perform a transformation from [7] on the original compression
function, and then applying our combiner to the results. However, as we remarked in Section 3.1,
this construction may not be secure. In fact, in Section 5.4, we demonstrate an attack against this
approach.

To remedy this issue, in Section 6, we explicitly consider the security of precomposing with
a Merkle-Damg̊ard transformation instead of relying on the modular approach. In particular, we
show that this approach produces a combiner satisfying collision-resistance. We conjecture that
indifferentiability will hold for this construction as well.

5.1 The Merkle-Damg̊ard Transformation

First, we define some of the terms necessary to understand the Merkle-Damg̊ard transformation on
hash functions. For the remainder of this work, for any hash function h, we will denote by h∗ the
Merkle-Damg̊ard transformation applied to that hash function.

Definition 5.1. (Merkle-Damg̊ard transformation): Let f : {0, 1}n+∆ → {0, 1}n be a function.
We define f∗ : {0, 1}∗ → {0, 1}n as follows:
On input x, write x = (x1, . . . , xℓ) where |xi| = ∆ (if |x| is not a multiple of ∆, pad with 0s). Then,

f∗(x) = f(xℓ, . . . , f(x2, f(x1, 0)) . . .)

Intuitively, the Merkle-Damg̊ard transform separates the message into ∆-bit blocks and then
iteratively evaluates a fixed-length hash function h : {0, 1}n+∆ → {0, 1}n on each block in order to
extend the length of input arbitrarily.

At times, we will want to consider partial evaluations of the Merkle-Damg̊ard evaluation. In
these events, for any hash function h : {0, 1}n+∆ → {0, 1}n, any message x = (x1, . . . , xℓ) ∈ {0, 1}ℓ∆,
and any 1 ≤ i ≤ ℓ, we denote

h(i)(x) := h∗(x1, . . . , xi).

5.2 Arbitrary Length Construction

For any hash function transformation from fixed length to arbitrary length which preserves in-
differentiability, we can apply this to our fixed-length random-oracle-secure combiner (Equation
(1)) to produce an arbitrary length random-oracle-secure combiner. In fact, this holds for any
random-oracle-secure combiner, as seen in the following theorem. Note that the parameters for in-
differentiability will depend heavily on the particular construction used, and so we will only provide
an informal theorem. The proof is a straightforward application of Theorem 3.2.

18

Theorem 5.2. (Informal) Let F : {0, 1}m → {0, 1}n and G : {0, 1}∗ → {0, 1}n′
be random oracles,

and let TF be indifferentiable from G. Let Ch1,h2

Z be a random-oracle-secure combiner. Then C
h1,h2

Z
defined by

C
h1,h2

Z (M) = TC
h1,h2
Z (M)

is a random-oracle-secure combiner.

Plugging in the NMAC transformation construction from [7] gives us the following corollary.

Corollary 5.3. Let C̃ be as in Theorem 4.1. Then

ArbCh1,h2

Z (M) := C̃(1, C̃(0,Mℓ, C̃(0,Mℓ−1, C̃(. . . , C̃(0,M1, 0) . . .))))

is a random-oracle-secure combiner.

5.3 A Note on Parameters

Note that in order for our random-oracle-secure combiner construction to be a compression function
for use in Theorem 5.2, it is necessary that ℓ > n. But as ℓ ≤ m/2, this means that the underlying
hash functions must satisfy n ≤ m/2.

In practice, the compression function used for SHA2 maps 768 bits (representing the internal
state and the input block) to 256 bits (representing just the internal state) [1]. Thus, for SHA2,
m/2 = 768−256

2 = 256 = n, and so the resulting combiner is not compressing. The compression
function used for SHA3 maps 2688 bits to 1600 bits [10]. Thus, our combiner cannot be instantiated
with either of these hash functions without first truncating the output. However, truncation will
reduce security guarantees significantly, and so is not recommended.

5.4 A Prefix Attack on Merkle-Damg̊ard Hash Functions

In order to produce a random oracle with sufficient compression, we could imagine applying Merkle-
Damg̊ard to a concrete hash function. Thus, the resulting hash function would be indifferentiable
from a random oracle, and will be sufficiently compressing. Unfortunately, we show that if we use
the random-oracle-combiner as a black-box, the resulting construction may not be secure.

In particular, applying a combiner on a hash function indifferentiable from a random oracle will
not necessarily preserve security.

Define
PreCh1,h2

Z1,Z2
(M) := h1(Z1,M)⊕ h2(Z2,M)

Note that the same proof as Theorem 4.1 shows that PreC is
(
T, 1, T

2k−ℓ +
1
2k

)
-random-oracle-

secure.
Furthermore, [7] shows that if H : {0, 1}m → {0, 1}n is a random oracle, then for any fixed m′,

H∗ : {0, 1}m′ → {0, 1}n is a random oracle.
However, we will show that composing these two constructions does not lead to a random-

oracle-secure combiner. In particular, the resulting hash combiner will not even be a one-way
function.

Theorem 5.4. Let h1, h2 : {0, 1}2n → {0, 1}n.
Define

PreCMDh1,h2

Z1,Z2
(M) := h∗1(Z1,M)⊕ h∗2(Z2,M).

19

There exists an adversarial implementation gO such that, if y = PreCMDh,gh

Z1,Z2
(x), there exists an

efficient A such that

Pr
h

$←−{f :{0,1}m→{0,1}n}

Z1,Z2
$←−{0,1}k,x

$←−{0,1}ℓ

[PreCMDh,gh

Z1,Z2
(A(y)) = y] ≥ 1− 3

2n
.

We immediately get the following corollary.

Corollary 5.5. PreCMD is not
(
1, TSim, 1− 4

2n

)
-random-oracle-secure for any value of TSim.

Proof. (of Theorem 5.4) Define the compromised hash function gh as follows

gh(x, IV) :=


1 x = 0

h(x, x) IV = 1

h(x, IV)⊕ x else

Let y ̸= 0. Define My = 0|h∗(Z1, 0)|y. We will show that with high probability over h, that if
g∗(Z2,My) = h∗(Z1, y).
We call h good if h∗(Z1, 0) ̸= 0 and h∗(Z1, 0, h

∗(Z1, 0)) ̸= 1. In this case,

g∗(Z2,My) = g(y, g(h∗(Z1, 0), g(0, g
∗(Z2))))

= g(y, g(h∗(Z1, 0), 1))

= g(y, h(h∗(Z1, 0), h
∗(Z1, 0)))

= g(y, h∗(Z1, 0, h
∗(Z1, 0)))

= h(y, h∗(Z1, 0, h
∗(Z1, 0)))⊕ y

= h∗(Z1, 0, h
∗(Z1, 0), y)⊕ y

= h∗(Z1,My)⊕ y

and so
PreCMDh,gh

Z1,Z2
(My) = h∗(Z1,My)⊕ h∗(Z1,My)⊕ y = y

Define A(y) = My. For simplicity, we will write y = PreCMDh,gh

Z1,Z2
(x). Then,

Pr
h,Z1,Z2,x

[PreCMDh,gh

Z1,Z2
(A(y)) = y]

= Pr[y ̸= 0, h∗(Z1, 0) ̸= 0, h∗(Z1, 0, h
∗(Z1, 0)) ̸= 1] ≥ 1− 3

2n

6 A Short Collision Resistant Hash Function Combiner

Despite the fact that indifferentiability does not precompose with random-oracle-security, we may
hope that our construction is secure when instantiated specifically with Merkle-Damg̊ard style hash
functions. In particular, define

CMDh1,h2

Z1,Z2
(M) = h∗1(M,Z1)⊕ h∗2(M,Z2).

20

We would like to claim that CMDh1,h2

Z1,Z2
is random-oracle-secure.

As evidence towards this result, we show that CMDh1,h2

Z1,Z2
is collision-resistant. We leave the

claim that CMDh1,h2

Z1,Z2
is random-oracle-secure as an open question.

6.1 Collision Resistance Definitions

We present the definitions of collision resistance as well as a collision-resistant hash function com-
biner in the random oracle model.

Definition 6.1. We say that a family of hash functions {HO
Z }Z is (TA, ϵ)-collision-resistant in the

random oracle model if for all AO making at most TA queries to O

Pr
Z
[AO(Z)→M0,M1 : H

O
Z (M0) = HO

Z (M1)] ≤ ϵ

Definition 6.2. Let Ch1,h2

Z be a combiner. Let H,G be two random oracles. We say that C is
(Tg, TA, ϵ)-collision-resistant secure if, for all oracle circuits gO making at most Tg oracle queries,

both CH,gH

Z and CgH,H
Z are (TA, ϵ)-collision-resistant in the random oracle model.

6.2 Merkle-Damg̊ard Yields Collision Resistance

We present the main theorem for the section, and the rest will be dedicated to proving this result.

Theorem 6.3. Let h1 : {0, 1}n+∆ → {0, 1}n be a random oracle, and let

h2 : {0, 1}n+∆ → {0, 1}n be an oracle circuit with at most Th2 gates to h1. Let Z1,Z2
$← {0, 1}k∆.

Define CMDh1,h2

Z1,Z2
: {0, 1}ℓ∆ → {0, 1}n as

CMDh1,h2

Z1,Z2
(M) = h∗1(M,Z1)⊕ h∗2(M,Z2).

Then, CMDh1,h2

Z1,Z2
is (Th2 , TA, ϵ)-collision-resistant secure for

ϵ ≤ T
k/∆
g

2k−ℓ−1
+

2TA + 4(ℓ+ k) + 5

2n
+

3

(TA + 2(ℓ+ k)) · 2n

Note that, in particular, the output length of CMD significantly bypasses the impossibility results
of [4, 21, 22].

6.3 Proof of Theorem 6.3

We now prove Theorem 6.3. The proof is rather technical, but the high-level intuition is as follows:
If the combiner were not collision-resistant, then with noticeable probability we can find M0 ̸= M1

such that h∗2(M0,Z2) ⊕ h∗2(M1,Z2) = h∗1(M0,Z1) ⊕ h∗1(M1,Z1). Then, we see that either one or
both of the h∗2 evaluations must query the final round of an h∗1 evaluation, or neither will.

1. If one does, then with high probability it must query every intermediate value for computing
h∗1 (Lemma 6.4), and we may use these intermediate values with these queries to compress
the random oracle.

21

reconstruct(htarget, q⃗):
Let i1, . . . , iℓ be an increasing sequence of indices of q⃗ corresponding to queries qi1 =
(s1, IV1), . . . , qiℓ = (sℓ, IVℓ) satisyfing:
- IV1 = 0n,
- ∀i < ℓ, IVi+1 = h1(si, IVi).
- htarget = h1(sℓ, IVℓ). If this sequence is unique in q⃗, output c1 ◦ c2 ◦ . . . ◦ cℓ.
Else, output ⊥.

Figure 6: The algorithm reconstruct.

2. If neither does, then a similar process may be used to create an algorithm which outputs
a random oracle output without querying it, which obviously succeeds only with negligible
probability.

So, in either case, we see that a noticeable probability of success at breaking collision resistance
corresponds to a noticeable probability of either (1) compressing the random oracle, or (2) learning
the random oracle without querying it. Since both of these things cannot succeed with noticeable
probability, we are done.

As a note, all notions of h2 in the theorem statement and proof are h1 oracle circuits. We
denote h2 = hh1

2 for simplicity.

Proof. Suppose toward contradiction that there exists some h2,A which break collision resistance.
In particular, A(Z1,Z2) outputs some M0 ̸= M1 such that CMDh1,h2

Z1,Z2
(M0) = CMDh1,h2

Z1,Z2
(M1) with

probability ϵ ≥ 1/p(λ) for some polynomial p.
We defineAcomplete as a PPT algorithm which on input (Z1,Z2) computes (M0,M1)← A(Z1,Z2),

queries h∗1(M0) and h∗1(M1), and outputs (M0,M1). In particular, Acomplete also breaks collision

resistance of CMDh1,h2

Z1,Z2
with probability ϵ, but Acomplete is guaranteed to make every h1 query

needed to compute h∗1(M0) and h∗1(M1). Let Tcomplete ≤ TA + 2(ℓ+ k).
Without loss of generality, we denote by M0 the message which Acomplete queries the final round

of first.
With probability ϵ, (M0,M1)← Acomplete(Z1,Z2) satisfies CMDh1,h2

Z1,Z2
(M0) = CMDh1,h2

Z1,Z2
(M1).

If this is true, then one of the following clearly must hold:

1. h∗2(M0,Z2) queries h1 on (Z1,k, h
∗(M1,Z1,1, . . . ,Z1,k−1)).

2. h∗2(M1,Z2) queries h1 on (Z1,k, h
∗(M1,Z1,1, . . . ,Z1,k−1)).

3. Neither h∗2(M0,Z2) nor h
∗
2(M1,Z2) query h1 on (Z1,k, h

∗(M1,Z1,1, . . . ,Z1,k−1)).

We denote by ϵ1 the probability of Case 1 ocurring, and likewise for ϵ2 for Case 2 and ϵ3 for
Case 3. By a union bound, ϵ ≤ ϵ1 + ϵ2 + ϵ3. We will analyze each of these cases individually.

Before we start the case analysis, we will make heavy use of the following process and technical
lemma.

In essence, reconstruct takes a set of queries as well as a target final output, and reconstructs
an ℓ-block input c = c1 ◦ . . . ◦ cℓ satisfying h∗1(c) = htarget, if one exists. This allows us to implicitly
reconstruct messages which the query pattern of an algorithm indicates it evaluated.

We also present the technical Lemma 6.4, whose proof is deferred to Section 6.4.

22

Lemma 6.4. Let h : {0, 1}n+∆ → {0, 1}n be a random oracle, and let skiph be a PPT algorithm
which makes at most Tskip queries to h. Let (x, y) be the output of skip, and let ℓ be such that
|x| = ℓ∆. Denote by xi the i-th block of ∆ bits in x. Then, the probability that (x, y) ← skiph,
y = h∗(x), and there is some i ≤ ℓ such that skiph queries h on (xi, h

(i)(x)) is at most (q + 1)/2n.

As a peek ahead, the proof of Lemma 6.4 involves using skip as a compressor for the random
oracle. As each case reduces to this lemma, then, we are intrinsically hiding a compression argument
inside of each case.

Case 1: We define skip′ as follows:

1. Sample Z1,Z2
$← {0, 1}k∆.

2. Sample a random index t0 ∈ [Tcomplete].

3. Run Acomplete(Z1,Z2) up until before query t0.

4. Let q⃗ = (q1, . . . , qTcomplete
) denote the Tcomplete h1-queries made by Acomplete, where queries

made after t0 are denoted implicitly according to the randomness which Acomplete is using.

5. Set M̃0 = reconstruct(qt0 , q⃗). If reconstruct(qt0 , q⃗) =⊥, output ⊥ instead.

6. Compute y = h2(M̃0,Z2).

7. Output (M̃0 ◦ Z2, y).

Because we are running Acomplete, must some index t0 such that in the above procedure, qt0 =

(M0,ℓ, h
(ℓ−1)
1 (M0)). By Lemma 6.4, then, in this event, with probability at least 1−(Tcomplete+1/2n),

Acomplete will query all of h∗1(M0) in order. Furthermore, if there are no queries among these queries,
then these queries will be unique. In this case, it is clear that the conditions for reconstruct(qt0 , q⃗)

will be fulfilled, and in fact reconstruct(qt0 , q⃗) = M̃0 = M0. By a union bound, then, the probability
that this is the case is at least ρ = (Tcomplete + 1)/2n + T 2

complete/2
n (If t0 is guessed correctly).

So, with probability at least ϵ1 − ρ/Tcomplete, skip
′ chooses the correct t0 runs h∗2(M0,Z2) as

desired, which queries h1(Z1,i, h
∗
1(M0,Z1,1, . . . ,Z1,i−1) for all i by assumption. Note that here,

the probability is over any internal randomness of Acomplete, the choice of h1, and the sampling of
Z1,Z2.

In particular, there must be some choice of Acomplete, h1,Z2 such that skip′ generates M̃0 such

that h∗2(M̃0,Z2) queries all h1(Z1,i, h
∗
1(M0,Z1,1, . . . ,Z1,i−1)) with probability at least ϵ1−ρ/Tcomplete

(where now the probability is only over the random sampling of Z1). Call these A
opt
complete, h

opt
1 ,Zopt

2 ,
respectively. We will at last use these to compress any Z1.

We define (Enc,Dec) as so: First, Enc(Z1) is defined as so:

1. Compute (M0,M1)← Aopt
complete(Z1,Zopt

2).

2. If h∗2(M0,Zopt
2) does not query hopt1 (Z1,i, (h

opt
1)∗(M0,Z1,1, . . . ,Z1,i−1) for all i, output ⊥.

3. Else, if h∗2(M0,Zopt
2) does query every hopt1 (Z1,i, (h

opt
1)∗(M0,Z1,1, . . . ,Z1,i−1) during its com-

putation, let q̃1, . . . , q̃k be these indices of these queries.

23

4. Output M0, q̃1, . . . , q̃k.

We define Dec(M0, q̃1, . . . , q̃k) as so:

1. Initialize s as the empty string.

2. Run h∗2(M0,Zopt
2). Whenever this process makes query q̃i, let (sqi , IVqi) be the query itself

and set s = s ◦ si.

3. Output s.

Intuitively, if every h1 query is made in step (2) of Enc, then Enc outputs the indices of those exact
queries. Then, because Z1,i is the state of each of those queries, Dec can use those queries to recover
Z1. Correctness of the encoding in fact follows directly from the fact that sqi = Z1,i for all i ∈ [k],
giving us Dec(Enc(Z1) = Z1.

Because we chose our other inputs optimally, we see that this encoding is correct on at least an

(ϵ1 − ρ/Tcomplete)-fraction of the space of all Z1. The output space of Enc, meanwhile, is 2ℓ · T k/∆
h2

,

as each M0 is ℓ bits long and we must choose the queries from among the k/∆ hopt1 -calls of h2, each
of which makes up to Th2 queries.

Theorem 2.2 then gives us (ϵ1−ρ/Tcomplete)2
k ≤ 2ℓ ·T k/∆

h2
. Substituting ρ = (Tcomplete+1)/2n+

T 2
complete/2

n and solving for ϵ1, we see this is satisfied by

ϵ1 ≤
T
k/∆
g

2k−ℓ
+

T 2
complete + Tcomplete + 1

2nTcomplete
=

T
k/∆
g

2k−ℓ
+

Tcomplete + 1

2n
+

1

Tcomplete2n
. (2)

Case 2: We observe that Case 2 follows the exact same reasoning as in Case 1 when replacing
(M0, M̃0, t0) with (M1, M̃1, t1) respectively. Therefore, we get a similar bound

ϵ2 ≤
T
k/∆
g

2k−ℓ
+

Tcomplete + 1

2n
+

1

Tcomplete2n
. (3)

Case 3: We define skip′ as similarly as in the first case with some important adjustments:

1. Sample Z1,Z2
$← {0, 1}k∆.

2. Sample two random indices t0 < t1 ∈ [Tcomplete].

3. Run Acomplete(Z1,Z2) up until before query t1.

4. Let q⃗ = (q1, . . . , qTcomplete
) denote the Tcomplete h1-queries made by Acomplete, where queries

made after t0 are denoted implicitly according to the randomness which Acomplete is using.

5. Set M̃0 = reconstruct(qt0 , q⃗) and M̃1 = reconstruct(qt1 , q⃗). If either call to reconstruct returns
with ⊥, instead immediately output ⊥.

6. Compute y = h∗1(M̃0,Z1)⊕ h∗2(M̃1,Z2)⊕ h∗2(M̃0,Z2).

7. Output (M̃1 ◦ Z2, y).

24

Similar to Cases 1 and 2, we see that with probability that, if both t0 and t1 are chosen

correctly — i.e., such that qt0 = (M0,ℓ, h
(ℓ−1)
1 (M0)) and qt1 = (M1,ℓ, h

(ℓ−1)
1 (M1)) — then the

probability that reconstruct(qt0 , q⃗) = M̃0 = M0 and reconstruct(qt1 , q⃗) = M̃1 = M1 is at least
ρ = (Tcomlete + 1)/2n + T 2

complete/2
n. Note that this is the exact same as in the previous cases as,

assuming both t0 and t1 are chosen correctly, either both reconstruct will output a value or both
will output ⊥. So, we only have to account for collisions or errors in reconstruct once.

Because we must choose two indices correctly this time in order to reconstruct M0 and M1, we
see that with probability at least 1−ρ/T 2

complete, we have chosen both t0, t1 such that M̃0 = M0 and

M̃1 = M1. In particular, then, with probability at least ϵ3 − ρ/T 2
complete, we see y = h∗1(M̃0,Z1)⊕

h∗2(M̃1,Z2)⊕h∗2(M̃0,Z2) = h∗1(M0,Z1)⊕h∗2(M1,Z2)⊕h∗2(M0,Z2) = h∗1(M1,Z1). By the assumption
of this case, neither h∗2(M1,Z2) nor h

∗
2(M0,Z2) will query h1 on input (Z1,k, h

∗(M1,Z1,1, . . . ,Z1,k−1)).

Because M0 ̸= M1, h
∗
1(M̃0,Z1) also does not make this query. However, we see y = h∗1(M1,Z1) =

h∗1(M̃1 ◦ Z2). So, we see that skip′ has output a pair (x, h∗1(x)) without querying the final h1 query
of h∗1(x). Because h1 is chosen uniformly at random, the probability that any algorithm can achieve
this is at most 1/2n. In particular, this yields

ϵ3 − ρ/T 2
complete ≤

1

2n
.

Substituting in ρ = (Tcomlete + 1)/2n + T 2
complete/2

n and solving for ϵ3, we have

ϵ3 ≤
T 2
complete + Tcomplete + 1

T 2
complete · 2n

+
1

2n
=

1

2n
+

1

2n−1
+

1

T 2
complete · 2n

. (4)

Putting it all together: As stated, we know ϵ ≤ ϵ1 + ϵ2 + ϵ3. Substituting in the upper bounds
from Equations 2,3, and 4, we get

ϵ ≤ T
k/∆
g

2k−ℓ−1
+

2Tcomplete + 5

2n
+

3

Tcomplete · 2n
(5)

Substituting back in Tcomplete ≤ TA + 2(ℓ+ k), this gives us the bound

ϵ ≤ T
k/∆
g

2k−ℓ−1
+

2TA + 4(ℓ+ k) + 5

2n
+

3

(TA + 2(ℓ+ k)) · 2n
(6)

6.4 Proof of Lemma 6.4

Proof. Let ϵ be the probability over all h, skip that (x, y) ← skiph, y = h∗(x), and there is some
i ≤ ℓ such that skiph queries h on (xi, h

(i)(x)). (That is, ϵ is the value we must bound above by
(q + 1)/2n.)

In addition, let ϵskip be the probability that (x, y) ← skiph, y = h∗(x), and there is some i ≤ ℓ
such that skiph queries h on (xi, h

(i)(x)), where the probability is over the internal randomness over
h. We see by an averaging argument that there must be some skipopt such that ϵskipopt ≥ ϵ. We will
use this optimal skip to compress the random oracle h.

We define (Enc,Dec) as so: First, Enc(h) is defined as so:

25

1. Find (x, y)← skipopt with |x| = ℓ∆.

2. Let t be the last index such that h(xt+1, h
(t)(x)) is queried before h(xt, h

(t−1)(x)). If no such
index exists, output ⊥.

3. Let qt = (xt, h
(t−1)(x)).

4. Define i as the query index of skipopt where h(xt+1, h
(t)(x)) is queried. In the case where t = ℓ

(and therefore the final round of h∗(x) is simply not queried), set i = −1.

5. Let h \ qt be the truth table of h except the entry h(qt) removed. Output (i, h \ qt).

We define Dec(i, h \ qt) as so:

1. If i = −1, run skipopt by referring to h\ qt to receive (x, y). Define h(qt) = y and output h\ qt
with this entry added.

2. Else, run skipopt b referring to h \ qt, stopping just before query i would be made. Let (s, IV)
be the intended input at this query, and define h(qt) = IV . Output h \ qt with this entry
added.

We show that, if Enc does not output ⊥, then Dec(Enc(h)) = h. First, if i = −1 in Enc, then
in particular skipopt never queries h(xℓ, h

(ℓ−1)(x)). So, we may safely run skipopt. By assumption
with probability at least ϵ, skipopt still outputs y = h∗(x) = h(xℓ, h

(ℓ−1)(x)), and so Dec correctly
inputs this value for h(qt). If i ≥ 0, on the other hand skipopt behaves equivalently with access to
h and h \ qt up to query i. So, (s, IV) = (xt, h

(t−1)(x)) with probability at least ϵ, and so we set
h(qt) = h(xt, h

(t−1)(x)) = h(t)(x) = IV , as desired. Note that with probability at least ϵ, we are
guaranteed that skipopt does query out of order by assumption, and so in these cases we will also
not receive ⊥ from Enc. This satisfies correctness of our encoding.

So, we compress an ϵ-fraction of all possible functions (from m bits to n bits) to a set of query
indices with all functions with one entry removed. This means we compress a set of size at least
ϵ · 2n2m to a set of size (q + 1)2n2

m
/2n, as q is the maximum number of queries which skipopt may

make, but i may also be set to −1. So, we must have

ϵ ≤ q + 1

2n
.

7 Conclusion

7.1 Recommendations for Practice

We give two recommendations for practice.

Situation 1: You have two compression functions h1, h2 : {0, 1}m → {0, 1}n, at least one of
which is believed to be a random oracle. n ≤ m/4.

We recommend using the construction from Corollary 5.3. Note that in this Corollary, T
represents the number of times the compromised hash function can evaluate the uncompromised
one. That is, if hb runs in time Tb, then (if t1 > t0) T ≤ t1

t0
. Since it is unlikely that one would

26

wish to combine two hash functions where one of the hash functions takes a million times as long
to run, we will assume that T ≤ 230.

Recall from Section 4.1 that to achieve birthday bound security one should set

k ≥ m+ log T + λ

2
=

m+ 30 + λ

2
.

Note that in order to apply this construction to an input of length s, we require s
m−k−n−1 calls to

the underlying hash functions. That is, applying this construction requires

2 · m− n

m− k − n− 1

times as many queries to the underlying hash functions than applying Merkle-Damg̊ard directly to
a trusted hash function would.

Suggestion Takeaway: For any hash function property, if n = λ = 256, m = 1024, this con-
struction has birthday bound security loss compared to a random oracle and requires

≤ 2 · 768
227
≤ 7

times as many hash evaluations. Furthermore, the hash size is identical to the hash size of the
underlying compression functions.

Downside: Our security proof does not hold when the honest hash functions is instantiated as
Merkle-Damg̊ard applied to some random oracle. That is, this suggestion should be applied only
to the underlying hash functions for SHA2/SHA3/... directly.

Situation 2: You have two hash functions h1, h2 : {0, 1}∗ → {0, 1}n both instantiated as Merkle-
Damg̊ard applied to some underlying compression functions.

We recommend sampling some Z1,Z2
$←− {0, 1}k, and using the hash function

CZ1,Z2(M) = h1(M,Z1)⊕ h2(M,Z2)

By Theorem 6.3, this hash function will be collision resistant for k sufficiently large.

In order to achieve near birthday bound security, k should be set such that
T

k/∆
g

2k−ℓ−1+
2TA+4(ℓ+k)+5

2n +
3

(TA+2(ℓ+k))·2n = 1/2λ, where ∆ = m − n is the compression of the hash functions underlying h1

and h2. As in the previous situation, we can assume Tg ≤ 230.
That is, for an appropriately set value of n, we will want

T
k/∆
g

2k−ℓ−1
≈ 1

2λ

Note that this construction requires k
∆ additional compression function evaluations compared to

simply concatenating the underlying hash functions. In particular, to achieve near birthday bound
security, we require

k

∆
=

λ+ ℓ

∆− 30

additional hash evaluations.

27

Suggestion Takeaway: To achieve a collision resistant hash function from 1024 bits to 256 bits,
if ∆ = λ = 256, then this construction will require

k

∆
≤ 256 + ℓ

226
≤ 6

additional hash evaluations. Furthermore, the hash size is identical to the hash size of the underlying
hash functions.

Downside: The security proof for this construction only holds for collision-resistance. Further-
more, the amount of extra blocks required depends linearly on the length of the input, although
the linear factor of 1

∆−30 is quite small.

7.2 Alternative One-stage Model

As observed in Section 3.1, our random oracle combiner security definition is two-stage. One may
wonder if there is a reasonable one-stage security definition, so that composability properties may
be used more easily. Observe that the reason the game is two-stage is because both the distinguisher
D and the hash function g have oracle access to the idealized model, and can thus communicate
through their shared state.

We could instead consider a model where g is not allowed oracle access to the idealized model.
For example, g may be a fixed (non-oracle) circuit chosen by an adversary which makes polynomial
queries to h. This can then be considered a one-stage game, and so this weakened combiner security
property composes with indifferentiability.

Note that this model is strictly weaker than the other, since an arbitrary circuit could run the
adversary inside of itself. Thus, our positive results also hold in this model. Upon inspection of
the proof, we observe that our lower bounds from Section 4.3 also apply.

This model represents the scenario where the adversarial hash function g does not ”run” h.
In the real world, if g were to run h, we may hope that this would be detected by comparing
the two hash functions’ code and running times. Nevertheless, this leaves the combiner open to
some attacks, and so we consider this model to be of lesser practical consideration. For the sake of
brevity, we do not analyze it in detail in this work.

7.3 Open Questions

We include a number of open questions on this topic.
Is there a random-oracle-combiner construction which provably composes with indifferentiabil-

ity?
Our random-oracle-secure construction does not perfectly match the randomness requirement in

our lower bound. Is it possible to improve the randomness requirement for the random-oracle-secure
construction.

The random-oracle-secure combiner construction presented takes hash functions from m bits to
n bits and produces a hash function mapping ℓ bits to n bits, where ℓ = m− |Z| /2. Is it possible
to construct a random-oracle-secure combiner with longer input length using the same amount of
randomness?

As a particular approach to both of the previous two questions, is the CMD construction from
Section 6 random-oracle-secure?

28

Is it possible to construct more efficient combiners for weaker security notions than indifferen-
tiability or collision-resistance? For example, is there a more efficient pseudorandom combiner? Is
there a more efficient combiner in the one-stage model from Section 7.2?

References

[1] Specifications for the secure hash standard. Federal Inf. Process. Stds. (NIST FIPS), 2002.

[2] C.A. Asmuth and G.R. Blakley. An efficient algorithm for constructing a cryptosystem which
is harder to break than two other cryptosystems. Computers & Mathematics with Applications,
7(6):447–450, 1981.

[3] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Com-
puter Science, pages 232–249. Springer, Heidelberg, August 1994.

[4] Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining collision resistant
hash functions. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 570–583. Springer, Heidelberg, August 2006.

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. 17:297–
319, 2004.

[6] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan, and Hoeteck
Wee. Amplifying collision resistance: A complexity-theoretic treatment. In Alfred Menezes,
editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 264–283. Springer, Heidelberg, August 2007.

[7] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
damg̊ard revisited: How to construct a hash function. In Victor Shoup, editor, Advances
in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
430–448. Springer, Heidelberg, August 2005.

[8] Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of hash-and-sign rsa
signatures. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference,
volume 7194 of Lecture Notes in Computer Science. Springer, Heidelberg, March 2012.

[9] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of the
full domain hash. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science. Springer, Heidelberg, August 2005.

[10] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable output functions.
Federal Inf. Process. Stds. (NIST FIPS).

[11] Marc Fischlin and Anja Lehmann. Multi-property preserving combiners for hash functions.
In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of
Lecture Notes in Computer Science, pages 375–392. Springer, Heidelberg, March 2008.

[12] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-property combiners for
hash functions. Journal of Cryptology, 27(3):397–428, July 2014.

29

[13] Oded Goldreich, Yoad Lustig, and Moni Naor. On chosen ciphertext security of multiple
encryptions. Cryptology ePrint Archive, Report 2002/089, 2002. https://eprint.iacr.

org/2002/089.

[14] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust combiners
for oblivious transfer and other primitives. In Ronald Cramer, editor, Advances in Cryptology
– EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 96–113.
Springer, Heidelberg, May 2005.

[15] Amir Herzberg. On tolerant cryptographic constructions. In Alfred Menezes, editor, Topics
in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
172–190. Springer, Heidelberg, February 2005.

[16] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In Moni Naor, editor,
TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, Heidelberg, February 2004.

[17] Remo Meier and Bartosz Przydatek. On robust combiners for private information retrieval and
other primitives. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 555–569. Springer, Heidelberg, August 2006.

[18] Bart Mennink and Bart Preneel. Breaking and fixing cryptophia’s short combiner. In Dimitris
Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS 14: 13th International
Conference on Cryptology and Network Security, volume 8813 of Lecture Notes in Computer
Science, pages 50–63. Springer, Heidelberg, October 2014.

[19] Arno Mittelbach. Cryptophia’s short combiner for collision-resistant hash functions. In
Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini,
editors, ACNS 13: 11th International Conference on Applied Cryptography and Network Secu-
rity, volume 7954 of Lecture Notes in Computer Science, pages 136–153. Springer, Heidelberg,
June 2013.

[20] Pascal Paillier. Impossibility proofs for RSA signatures in the standard model. In Masayuki
Abe, editor, Topics in Cryptology – CT-RSA 2007, volume 4377 of Lecture Notes in Computer
Science, pages 31–48. Springer, Heidelberg, February 2007.

[21] Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-functions don’t
exist. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume 4515 of
Lecture Notes in Computer Science, pages 23–33. Springer, Heidelberg, May 2007.

[22] Krzysztof Pietrzak. Compression from collisions, or why CRHF combiners have a long output.
In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 413–432. Springer, Heidelberg, August 2008.

[23] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition:
Limitations of the indifferentiability framework. In Kenneth G. Paterson, editor, Advances
in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science.
Springer, Heidelberg, May 2011.

30

