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Abstract. In recent years, the Lattice Isomorphism Problem (LIP) has
served as an underlying assumption to construct quantum-resistant cryp-
tographic primitives, e.g. the zero-knowledge proof and digital signature
scheme by Ducas and van Woerden (Eurocrypt 2022), and the HAWK
digital signature scheme (Asiacrypt 2022).
While prior lines of work in group action cryptography, e.g. the works
of Brassard and Yung (Crypto 1990), and more recently Alamati, De
Feo, Montgomery and Patranabis (Asiacrypt 2020), focused on study-
ing the discrete logarithm problem and isogeny-based problems in the
group action framework, in recent years this framing has been used for
studying the cryptographic properties of computational problems based
on the difficulty of determining equivalence between algebraic objects.
Examples include Permutation and Linear Code Equivalence Problems
used in LESS (Africacrypt 2020), and the Tensor Isomorphism Problem
(TCC 2019). This study delves into the quadratic form version of LIP,
examining it through the lens of group actions.
In this work we (1) give formal definitions and study the cryptographic
properties of this group action (LIGA), (2) demonstrate that LIGA lacks
both weak unpredictability and weak pseudorandomness, and (3) un-
der certain assumptions, establish a theoretical trade-off between time
complexity and the required number of samples for breaking weak unpre-
dictability, for large dimensions. We also conduct experiments supporting
our analysis. Additionally, we employ our findings to formulate new hard
problems on quadratic forms.

Keywords: Gröbner Bases · Group Actions · Lattice-based Cryptography ·
Lattice Isomorphism Problem · Quadratic Forms

1 Introduction

Post-Quantum Cryptography is an active research area which aims to design
public-key cryptographic primitives that can resist the threats posed by large
scale quantum computers. Since most of the widely used public-key crypto-
graphic algorithms will be affected by the attacks harnessing the computational



power of quantum computing, the National Institute of Standards and Technol-
ogy (NIST), has already selected a few candidates for standardization [40], and
more candidates are under consideration [39].

Equivalence problems in cryptography and group actions. The computa-
tional hardness of the equivalence problems for algebraic or geometric structures
has emerged as an attractive underlying assumption for designing post-quantum
cryptographic schemes. Informally, these are search problems which aim to find a
map between two equivalent algebraic or geometric objects. Perhaps the most no-
table example of this approach is isogeny-based cryptography which relies on the
hardness of finding isogenies between supersingular elliptic curves [20,19,11,1,23].
Cryptographic schemes have also been designed based on problems related to
lattice isomorphisms [25,8], code equivalence [12], trilinear forms [44], and ten-
sor isomorphism [32]. These have shown potential in constructing remarkable
primitives, especially in the domains of proofs-of-knowledge and digital signa-
tures [12,24,14,33]. Each of these problems is interesting in its own regard and
provides different trade-offs as well as flexibility while designing cryptographic
schemes, however these can also be seen as instances of a more general framework
based on group actions introduced by [17] and later studied in [20,32,1]. These
works show that this class of problems can be modelled as problems related to
the computational hardness of inverting a group action.

Lattice isomorphisms as a group action. In this work, we show how to
characterize and analyze the quadratic form representation of lattice isomor-
phisms as a group action (LIGA). We believe that such a characterization helps
in unifying the similar computational assumptions under a common framework,
which can then be used to study the similarities between these hard problems.

Informally, the Lattice Isomorphism Problem (LIP) in its search version aims
to find an isomorphism between two given isomorphic lattices. The decision
version of the problem asks whether two given lattices are isomorphic or not.
Lattice isomorphisms were studied and used initially in the cryptanalysis of early
lattice-based schemes such as NTRU [30]. Later, Haviv and Regev studied the
complexity of search-LIP [31]. More recently, two independent works by Bennett
et al. [8] and by Ducas and van Woerden [25] proposed to use LIP for building
cryptographic primitives. Subsequently, a digital signature scheme HAWK based
on a module version of LIP has been proposed with impressive results in terms
of efficiency and object sizes [24]. In [25,24] the authors focus on the quadratic
form representation of the lattice isomorphism problem, which is also the focus of
this paper. We find that LIGA is not a weakly unpredictable and therefore also
not a weakly pseudorandom group action. These properties are stronger than
one-wayness and have been studied in [1] for the isogeny-based group action.
Our finding poses a significant barrier to using LIGA as a building block in the
constructions of a variety of cryptographic primitives such as the Naor-Reingold-
style PRF [38], along with the ones considered in [1, Section 4].

Shortly after the publication of the preprint version of this manuscript [18],
another preprint analyzing code equivalence and other problems using a similar
approach to our work was published [22].
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1.1 Overview of our results

In this paper, we study the Lattice Isomorphism Problem (in the quadratic
form setting) as defined in [25], in the framework of group actions with aim to
understand its utility in building quantum-secure cryptographic primitives. Our
main contributions are summarized below:

Formalizing lattice isomorphisms as a group action. In this work, we
formalize LIGA as a group action and prove that it is faithful as well as transitive.
We also show that LIGA is free if and only if the automorphism group of the
quadratic form Q, defining the underlying equivalence class [Q], is trivial.

Breaking the weak pseudorandomness of LIGA. We generalize the defini-
tions of cryptographic properties of group actions presented in [1] to the setting
where the underlying group and set are both infinite.3 Assuming the conjec-
tured hardness of LIP immediately implies that LIGA is a one-way group action.
We then show that LIGA is not a weakly unpredictable (and therefore also not
a weakly pseudorandom) group action, under some mild assumptions on the
distribution D[Q] used for sampling challenge instances.

Theorem 1 (Informal). Given O(n2) instances of LIP obtained from a fixed
secret isomorphism represented by n × n unimodular matrix U , it is possible to
recover the secret isomorphism U in polynomial time with overwhelming proba-
bility.

We also provide an alternate approach to recover the secret isomorphism U
using Gröbner bases. At the cost of an extra multiplicative factor of O(n2+(i−2)ω)
to the time complexity of the recovery, for a small constant i ≥ 2 and some ω ∈
[2, 3], one can retrieve the secret by requiring a factor of i2 fewer samples, while
assuming similar mild assumptions on the distribution D[Q] used for sampling
challenge instances.

Introducing two new computationally hard problems. We introduce two
new hard problems on quadratic forms: the Transpose Quadratic Form Problem
(TQFP) and the Inverse Quadratic Form Problem (IQFP). We use the afore-
mentioned result to demonstrate the equivalence of these problems to search-
LIP through dimension-preserving polynomial-time reductions, specifically for
quadratic forms with a trivial automorphism group.

It is worth highlighting that such an inverse problem was previously intro-
duced in the context of isogeny-based group actions, namely as Inv-HHS in [27].
In contrast to isogenies, we show that IQFP is as hard as LIP, while in isogenies
Inv–HHS is not hard. Due to the non-linear nature of the isogeny-based group ac-
tion, it appears that solving Inv–HHS does not translate to recovering the secret
isogeny in polynomial time.

3 This is in contrast to most of the prior works which consider group actions related to
finite groups and/or sets. In [32] the authors mentioned that their definitions can be
used in the setting of infinite groups and sets, specifically aiming at LIP. However,
they do not present LIP in the quadratic form setting and only consider the finite
groups and sets for their analysis.
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Experiments. We verify our results by running experiments for lattice dimen-
sions up to 40. Specifically, we verify that one can indeed recover the secret using
estimated number of samples efficiently. We also compare the two approaches and
verify that using Gröbner bases allows recovery of the secret from fewer samples.
Additionally, we also conduct experiments validating the reductions from search
version of LIP to the new problems introduced in this work (TQFP, and to IQFP).
All these experiments are performed via a SageMath [45] implementation that
is available at [9].

1.2 Organization of the paper

In Section 2 we give the preliminaries on lattices, group actions, and Gröbner
basis computation. In Section 3 we formalize lattice isomorphism as a group
action and provide the related results. In Section 4 we discuss the Gröbner basis
approach along with some experimental results. In Section 5 we introduce two
new hard problems together with their reductions from LIP. Finally, in Section 6
we discuss some interesting open problems.

2 Preliminaries

2.1 Notation

Let N, Z, Q and R denote the sets of natural, integer, rational, and real numbers,
respectively. We denote vectors in boldface (e.g. v) and treat them as columns
unless otherwise specified. We denote matrices by uppercase letters (e.g. M),
and vectors of matrices by bold uppercase letters (e.g. M). Sets are denoted
with calligraphic uppercase letters (e.g. S). For a vector x in Rn, the Euclidean
norm is denoted as ∥x∥.

The set of all n × n invertible matrices over Z is denoted by GLn(Z) :=
{M ∈ Zn×n : det(M) = ±1}. For an invertible matrix X ∈ GLn(Z), we denote
the inverse of the transpose matrix XT as X−T. Also, by In we denote the
n × n identity matrix. For a matrix M = [Mi,j ] ∈ Zn×n, denote with M̄ (i,j) ∈
Z(n−1)×(n−1) the minor of M with respect to Mi,j , i.e. the matrix obtained by
removing the i-th row and the j-th column from M . We denote by M∗ the
Gram–Schmidt orthogonalization of M .

A matrix S ∈ Rn×n is called symmetric positive definite if S = ST and
xTSx > 0 for all x ∈ Rn \ {0}. The set of all n × n symmetric positive definite

matrices over R is denoted by S>0
n . For Q = [Qi,j ] ∈ S>0

n and d := n(n+1)
2 , define

unroll : S>0
n → Rd as

unroll(Q) :=
[
Q1,1 2Q1,2 . . . 2Q1,n Q2,2 2Q2,3 . . . 2Q2,n . . . Qn,n

]
.

For simplicity, in the remainder of the paper, we assume both matrix mul-
tiplication and inversion take O(nω) integer operations for some ω ∈ [2, 3].4

4 The Strassen’s algorithm is considered to be the best algorithm for large dimensional

matrix multiplications with a running time of O
(
nlog2(7)

)
operations.
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Consequently, we assume that solving a linear system Ax = B, for some non-
singular matrix A ∈ Zn×n and B ∈ Zn×δ with δ ≤ n, takes time O(nω) since it
is equivalent to computing x = A−1B.

2.2 Lattice Isomorphisms and Quadratic Forms

We refer the reader to [25] for a detailed introduction on the Lattice Isomorphism
Problem. A full-rank n-dimensional lattice L = L(B) := B · Zn is generated
by taking all of the possible integer combinations of the columns of a basis
B ∈ Rn×n. Two bases B and B′ generate the same lattice if and only if there
exists a unimodular matrix U ∈ GLn(Z) such that B′ = BU .

Let On(F) be the set of all orthonormal matrices with entries in a field F.
Two lattices L, L′ are isomorphic if there exists an orthonormal transformation
O ∈ On(R) such that L′ = O · L.

Definition 1 (Search Lattice Isomorphism Problem (sLIP)). Given two
isomorphic lattices L, L′ ⊂ Rn find an orthonormal transformation O ∈ On(R)
such that L′ = O · L.

The problem in Definition 1 can be rephrased as follows. Given the bases B, B′ ∈
Rn×n for L and L′ respectively, find O ∈ On(R) along with U ∈ GLn(Z) such
that B′ = OBU . In practice, the real-valued entries of the bases and orthonormal
matrices can be inconvenient to represent and result in inefficient computations.
However, this can be eased by considering an equivalent problem to LIP by
taking the quadratic form associated to B, i.e. the Gram matrix Q := BTB.
Note that the quadratic form Q is symmetric by definition. Moreover, since B
is a basis (and thus full-rank), Q is actually symmetric positive definite. For
isomorphic lattices L,L′ with respective basis B,B′, we have that B′ = OBU
where O ∈ On(R) is orthonormal and U ∈ GLn(Z) is unimodular. Then we have

Q′ := B′TB′ = UTBTOTOBU = UTBTBU = UTQU,

where Q := BTB is the quadratic form of B. We call Q,Q′ equivalent if such
U ∈ GLn(Z) exists. We also denote by [Q] the equivalence class of all quadratic
forms Q′ equivalent to Q.

Definition 2 (sLIPQ - Quadratic Form Version). For a quadratic form
Q ∈ S>0

n , the problem sLIPQ is, given any quadratic form Q′ ∈ [Q], to find a
unimodular U ∈ GLn(Z) such that Q′ = UTQU .

The squared norm of a vector x with respect to a quadratic form Q is defined
as ∥x∥2Q := xTQx and the inner product as ⟨x, y⟩Q := xTQy. The i-th minimal
distance λi(Q) is defined as the smallest r > 0 such that {x ∈ Zn : ∥x∥Q ≤ r}
spans a space of dimension at least i. We denote by BQ the Cholesky decompo-

sition of Q, that is, an upper triangular matrix such that Q = BQ
TBQ.
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Definition 3 (Automorphisms). Let Q ∈ S>0
n be a quadratic form of dimen-

sion n. The automorphism group of Q is defined as

Aut (Q) = {V ∈ GLn(Z) : Q = V TQV }.

We say that Q is automorphism-free if it has a trivial automorphism group
Aut (Q) = {±In}.

Remark 1. Let Q′ ∈ [Q], and let U ∈ GLn(Z) be such that Q′ = UTQU . Recall
that for any such quadratic form Q, the group Aut (Q) is always finite [42,
Section 2.3]. The set of isomorphisms between Q and Q′ can be written as
{V U : V ∈ Aut(Q)}. The automorphism group of Q determines the number of
isomorphisms from Q to Q′ and vice versa. Therefore equivalent quadratic forms
Q and Q′ have the same number of automorphisms. Hence, automorphism-free
quadratic forms are isomorphic only to automorphism-free quadratic forms. We
provide some more details and formal justifications in Section 3 (Corollary 1)
when we discuss orbits and stabilizers of lattice isomorphisms when viewed as a
group action.

2.3 Sampling Quadratic Forms and Unimodular Matrices

Definition 4 (Discrete Gaussian Distribution w.r.t. Quadratic Forms
[25, Sec. 2.3]). For a quadratic form Q ∈ S>0

n , the Gaussian function on Rn

with a parameter s > 0 and center c is defined by

∀x ∈ Rn, ρQ,s,c(x) := exp (−π∥x− c∥2Q/s
2).

The discrete Gaussian distribution DQ,s,c is defined as

Pr
X∼DQ,s,c

[X = x] :=

{
ρQ,s,c(x)
ρQ,s,c(Zn) if x ∈ Zn,

0 otherwise
.

Brakerski et al. [16, Lemma 2.3] showed how to sample from a discrete Gaus-
sian distribution efficiently. Ducas and van Woerden provide a polynomial time
algorithm Extract that, taking as input a set of n linearly independent vectors
Y and a quadratic form Q, returns a pair (Q′, U) such that Q′ = UTQU [25,
Lemma 3.1].

Definition 5 (Gaussian Form Distribution [25, Def. 3.3]). Given a qua-
dratic form equivalence class [Q] ⊂ S>0

n , the Gaussian form distribution Ds ([Q])
over [Q] with a parameter s > 0 is defined algorithmically as follows:

1. Fix a representative Q ∈ [Q].
2. Sample n vectors (y1,y2, . . .yn) := Y from DQ,s. Repeat until linearly inde-

pendent.
3. (R,U)←− Extract(Q,Y ).
4. Return R.
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Ducas and van Woerden also provide a polynomial time algorithm to sample
from Ds ([Q]) for s ≥ max{λn(Q),

∥∥B∗
Q

∥∥ ·√ln(2n+ 4)/π}, which returns, to-

gether with a quadratic form Q′, a unimodular matrix U such that Q′ = UTQU ,
and show that Q′ ←− Ds ([Q]) is independent from the input equivalence class
representative Q [25, Lemma 3.2].

Sampling unimodular matrices. The algorithm Extract includes a method
to derive a unimodular matrix from a set of independent vectors employing the
Hermite Normal Form reduction that is folklore in the literature [13,36].

Algorithm 1 is a modified version of [13, Algorithm 4] for sampling uni-
modular matrices in polynomial time having the entries of the first n − 1 rows
uniform over the integer interval [−T, T ] ⊂ Z, for T > 0. For the context of
this manuscript, it is not relevant for us whether it produces “cryptographically-
strong” random unimodular matrices or not.

2.4 Cryptographic Group Actions

In this section, we present the definitions of cryptographic properties of group
actions. Our definitions are inspired by those introduced in [20,32,1]. More specif-
ically, we generalize the prior definitions to hold for infinite groups and sets, and
we include the precise number of oracle calls that an adversary is allowed to
make for a certain experiment, that is Definition 7 and Definition 8 give more
fine-grained notions of weak unpredictability and weak pseudorandomness in
comparison to their counterparts in [1, Section 2.1].5

Definition 6 (One-Way Functions). Let P , X and Y be sets drawn from
families of sets indexed by the parameter λ, and let DP and DX be distributions
on P and X respectively. A (DP ,DX)-OWF family is a family of efficiently
computable functions {fpp(·) : X → Y }pp∈P such that for all PPT adversaries A
we have

Pr[fpp(A(pp, fpp(x))) = fpp(x)] ≤ negl(λ),

where pp←− DP and x←− DX .

Definition 7 (Weak Unpredictable Permutations). Let K and X be sets
drawn from families of sets indexed by the parameter λ, DK and DX be distribu-
tions on K and X respectively, and t := t(λ) ∈ N+ be a parameter. Let F $

k be a
randomized oracle that when queried samples x←− DX and outputs (x, F (k, x)).
A (DK ,DX , t)-weak UP (wUP) is a family of efficiently computable permuta-
tions {F (k, ·) : X → X}k∈K such that for all PPT adversaries A able to query
F $
k at most t times, we have

Pr[AF $
k (x∗) = F (k, x∗)] ≤ negl(λ),

where k ←− DK and x∗ ←− DX .
5 This fine-grained notion of limiting the number of times the adversary calls the
oracle makes our results stronger since any attacker breaking the fine-grained security
property also breaks the same property in the sense of [1, Section 2.1] (or other prior
definitions of cryptographic properties of group actions.)
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Algorithm 1 Sample a unimodular matrix with all rows except the last one
having entries uniformly distributed in an integer interval [−T, T ] ⊂ Z.
Input: A positive integer parameter T > 0.
Output: An n× n unimodular matrix with all rows except the last one having

entries uniformly distributed in the integer interval [−T, T ] ⊂ Z.
1: Set a matrix M = {Mi,j} ∈ Zn×n to zero.
2: repeat
3: Sample Mi,j ← [−T, T ] uniformly at random for each i ≤ n − 1 and

j ≤ n.
4: Use the Extended Euclidean Algorithm for computing

d← gcd
(
(−1)n+1

det
(
M̄ (n,1)

)
, . . . , (−1)2n det

(
M̄ (n,n)

))
,

along with the corresponding Bézout coefficients M1,j ’s such that

d =

n∑
j=1

Mn,j · (−1)n+j
det

(
M̄ (n,j)

)
= det(M).

5: until d = 1.
6: Choose the sign of det(M) as follows: sample b ∈ {0, 1} uniformly at random,

swap the first two rows if b = 1.
7: Use least-squares to find the linear combination

∑n−1
j=1 cj [Mj,1 . . .Mj,n] clos-

est to [Mn,1 . . .Mn,n], and let c̃i denote the nearest integer to ci.
8: Update [Mn,1 . . .Mn,n] as

[Mn,1 . . .Mn,n]−
n−1∑
j=1

c̃j [Mj,1 . . .Mj,n].

9: Return M .

Definition 8 (Weak Pseudorandom Permutations). Let K and X be sets
drawn from families of sets indexed by the parameter λ, DK and DX be distri-
butions on K and X respectively, and t := t(λ) ∈ N+ be a parameter. Let π$ be
a randomized oracle that samples x ←− DX and outputs (x, π(x)), where π is a
random permutation on X constructed adaptively by the oracle, i.e. when a new
x is queried the oracle π$ samples y ←− DX until y ̸= π(x′) for any previously
queried x′ ∈ X, and sets π(x) := y. A (DK ,DX , t)-weak PRP (wPRP) is a fam-
ily of efficiently computable permutations {F (k, ·) : X → X}k∈K such that for
all PPT adversaries A able to query the oracles F $

k and π$ at most t times, we
have ∣∣∣Pr[AF $

k (1λ) = 1]− Pr[Aπ$

(1λ) = 1]
∣∣∣ ≤ negl(λ),
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where k ←− DK .6

Definition 9 (Group Action). A group (G, ◦) is said to act on a non-empty
set X if there is a map ⋆ : G×X → X that satisfies the following two properties

1. Identity: if e is the identity element of G, then for any x ∈ X, we have
e ⋆ x = x.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (g◦h)⋆x = g⋆(h⋆x).

We use the notation (G,X, ⋆) to denote a group action.

If (G,X, ⋆) is a group action, for any g ∈ G the map πg : x 7→ g ⋆ x defines a
permutation of X.

Definition 10 (Properties of Group Actions). A group action (G,X, ⋆) is
said to be:

1. transitive, if for every x1, x2 ∈ X, there exists a group element g ∈ G such
that x2 = g ⋆ x1 (for such a transitive group action, the set X is called a
homogeneous space for G);

2. faithful, if for each group element g ∈ G, either g is the identity element
or there exists a set element x ∈ X such that x ̸= g ⋆ x;

3. free, if for every group element g ∈ G, g is the identity element if and only
if there exists some set element x ∈ X such that x = g ⋆ x.

Definition 11 (One-Way Group Action). A group action (G,X, ⋆), where
G is a group and X is a set indexed by a parameter λ, is (DG,DX)-one-way if the
family of efficiently computable functions {fx : G → X}x∈X is (DG,DX)-one-
way, where fx : g 7→ g ⋆ x, and DG,DX are distributions on G,X respectively.

Definition 12 (Weakly Unpredictable Group Action). A group action
(G,X, ⋆) is (DG,DX , t)-weakly unpredictable if the family of efficiently com-
putable permutations {πg : X → X}x∈X is a (DG,DX , t)-weak UP, where πg

is defined as πg : x 7→ g ⋆ x and DX ,DG are distributions on X,G respectively.

Definition 13 (Weakly Pseudorandom Group Action). A group action
(G,X, ⋆) is (DG,DX , t)-weakly pseudorandom if the family of efficiently com-
putable permutations {πg : X → X}x∈X is a (DG,DX , t)-weak PRP where πg is
defined as πg : x 7→ g ⋆ x and DX ,DG are distributions on X,G respectively.

Orbits and stabilizers of group actions.

Definition 14. Let (G,X, ⋆) be a group action. The orbit of x ∈ X is a subset
of X defined as

G ⋆ x = {g ⋆ x : g ∈ G},

and the stabilizer of x ∈ X is the subgroup of G defined as

Gx = {g ∈ G : g ⋆ x = x}.
6 As the players are PPT, we may model the “random” permutation as a random
oracle that uses DX to sample new images adaptively.
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Remark 2. The orbits of a group action (G,X, ⋆) partition the setX into disjoint
subsets. Moreover, the choice of the orbit representative does not matter, i.e. if
y ∈ G ⋆ x then G ⋆ x = G ⋆ y. Note that a group action is transitive if and only
if it admits a single orbit.

Remark 3. A well-known fact from group theory is that the stabilizers of set
elements from the same orbit are conjugate subgroups of G, i.e. if x1 ∈ G ⋆ x0

for x0, x1 ∈ X, then there exists h ∈ G such that Gx1
= hGx0

h−1. In particular,
stabilizers of elements from the same orbit have the same cardinality. Note that
a group action is free if and only if all of its stabilizers are trivial. Moreover, the
Orbit-Stabilizer Theorem states that for any x ∈ X the map fx : G/Gx → G⋆ x
that maps cosets as hGx 7→ h ⋆ x is a bijection [35, Theorem 3.2].

2.5 Gröbner Bases and Semi-Regular Sequences

Let F be a field and P = F[x1, . . . , xn] a polynomial ring in n variables over F.
Let M be the set of monomials of P. When n = 1 the natural way to order
monomials is simply by comparing them by their degree. For n > 1, we define
orderings that are admissible.

Definition 15. A monomial order < on M (or P) is a well-ordering that is
compatible with the product on M, i.e. for every u, v, w ∈ M where w ≥ 1 we
have that u < v implies uw < vw.

We identify the set of monomials M with the set of their coefficients Zn
≥0,

that is all n-tuples of non-negative integers, where α = (α1, . . . , αn) is identified
with the monomial xα = xα1

1 · · ·xαn
n . We call αi the degree of the monomial x

at the variable xi, and we call |α| =
∑n

i=1 αi the total degree of x. A monomial
order that prioritizes ordering by total degree is called graded.

Definition 16. The degree reverse lexicographical (DRL) order > is defined by
α > β if and only if |α| > |β|, or |α| = |β| and the last non-zero entry of α− β
is negative.

Let P be equipped with the DRL monomial order. For a polynomial f ∈ P,
denote by LM(f) the leading monomial of f , that is the monomial that is the
largest of all monomials of f w.r.t. the monomial order >. An ideal I of P is
called a monomial ideal if there exists a basis for I consisting of monomials. By
Hilbert’s Basis Theorem, or more specifically Dickson’s Lemma [21, Section 2.4,
Theorem 5], such a basis can always be assumed to be finite. For a set A ⊆ P,
we define LM(A) to be the set of all leading monomials of elements of A.

Definition 17. Let I be an ideal of P. A finite subset G ⊂ I is called a Gröbner
basis of I if the set LM(G) generates the monomial ideal generated by LM(I),
i.e. ⟨LM(G)⟩ = ⟨LM(I)⟩.

A Gröbner basis of an ideal I is a useful computational tool for studying the
ideal I, in particular dividing a polynomial with a Gröbner basis always gives
a unique remainder, allowing one to determine membership in I. We now revise
the complexity of computing Gröbner bases.
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Definition 18. A sequence of homogeneous polynomials (f1, . . . , fm) in P where
m ≤ n is said to be regular if for all i = 1, . . . ,m and g ∈ P such that gfi ∈
⟨f1, . . . , fi−1⟩ we have that g ∈ ⟨f1, . . . , fi−1⟩.

Most importantly for us, a sequence (f1, . . . , fm) of polynomials over Q is
regular if and only if the Hilbert series of the ideal I = (f1, . . . , fm) is equal to

Sm,n(z) =

∏m
i=1(1− zdi)

(1− z)n
,

where di is the total degree of fi for i = 1, . . . ,m. The first non-positive coefficient
of the above series is called the index of regularity ireg of I. For the rest of this
section, we consider polynomials over Q.

The above construction works well for underdetermined and exactly deter-
mined systems, but we are mainly interested in the case of overdetermined poly-
nomial systems. Note the ideals we are interested in are zero-dimensional, i.e.
the set of roots of the system of equations generating the ideal is finite. The
main idea is to only considered regularity up to the index of regularity [3,5,6],
which is defined as follows.

Definition 19 ([6]). Let I = ⟨f1, . . . , fm⟩ be an ideal of P. The index of regu-
larity is defined as

ireg = min

{
d ; dimF({f ∈ I ; deg(f) = d}) =

(
n+ d− 1

d

)}
.

The above definition is equivalent to our previous one if m ≤ n, thus sub-
suming it. This notion for m > n will be called semi-regularity.

Definition 20 ([6, Def. 4]). A sequence (f1, . . . , fm) of homogeneous poly-
nomials in P is semi-regular if for all i = 1, . . . ,m and g ∈ P such that
gfi ∈ ⟨f1, . . . , fi−1⟩ and deg(gfi) < ireg, we have that g ∈ ⟨f1, . . . , fi−1⟩.

For m ≤ n the definitions of regularity and semi-regularity coincide. Most
importantly for us, a sequence (f1, . . . , fm) is semi-regular if and only if the
Hilbert series of the ideal I = ⟨f1, . . . , fm⟩ is equal to Sm,n(z) truncated after the
first non-positive coefficient, whose index is precisely ireg. The index of regularity
bounds the complexity of Gröbner basis computation in the following way.

Lemma 1 ([6, Prop. 5]). The total number of field operations in F performed
by the matrix version of the F5 algorithm is bounded by

O

(
mireg

(
n+ ireg − 1

ireg

)ω)
.

As suggested in [6], the same complexity bound holds for non-homogeneous
systems if we consider their homogeneous parts of the highest total degree [43,
Thms. 1.72 and 1.73]. Moreover, we call a sequence of polynomials semi-regular
if the sequence formed by their homogeneous parts of the highest total degree is
semi-regular.
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3 Lattice Isomorphism as a Group Action

In this section we introduce lattice isomorphism in the quadratic form setting as
a group action, and provide some results related to the group action. Consider
the equivalence relation ≃± defined as

A ≃± B ⇐⇒ A = ±B,

and define the quotient set GL±
n (Z) := GLn(Z)/ ≃±. The elements of GL±

n (Z)
are equivalence classes, each containing two elements. Namely, for A ∈ GLn(Z),
one has a corresponding class [A]± ∈ GL±

n (Z), and A,−A belong to the same
class. Define the product between two classes [A]±, [B]± ∈ GL±

n (Z) as

[A]± · [B]± := [BA]±, (1)

where BA is the result of the matrix multiplication between two representatives
B and A of the classes [B]± and [A]± respectively.

The set GL±
n (Z) together with the product defined in Equation (1) forms

a group whose identity element is [In]±, the inverse of every element [A]± ∈
GL±

n (Z) is [A−1]± ∈ GL±
n (Z), and with the associativity property induced by

the associativity of matrix multiplication

([A]± ·[B]±)·[C]± = [BA]± ·[C]± = [CBA]± = [A]± ·[CB]± = [A]± ·([B]± ·[C]±).

In what follows, we drop the notation of equivalence classes. Namely, we
write A ∈ GL±

n (Z) to indicate the class [A]± ∈ GL±
n (Z). Within the context of

LIP, when we write UTQU , we mean the quadratic form obtained by applying
any of the two representatives of [U ]± ∈ GL±

n (Z) (U and −U) to Q ∈ S>0
n .

The following proposition defines lattice isomorphisms in the quadratic form
representation as a group action over a non-abelian group.

Proposition 1. Consider a quadratic form Q ∈ S>0
n and let [Q] be its equiva-

lence class of isomorphic quadratic forms. Then the map

⋆ : (GL±
n (Z)× [Q])→ [Q], ⋆(V,Q0) 7→ V ⋆ Q0 := V TQ0V,

defines a group action of GL±
n (Z) on [Q].

Proof. Given Q0 ∈ [Q] and V ∈ GLn(Z), then Q1 = V TQ0V is a quadratic form
equivalent to Q0, and therefore Q1 ∈ [Q]. The identity element of GL±

n (Z) fixes,
through ⋆, any element of [Q]. Finally, for U, V ∈ GL±

n (Z) we have that

(U · V ) ⋆ Q0 = (V U)
T
Q0V U = UT(V TQ0V )U = U ⋆ (V TQ0V ) = U ⋆ (V ⋆ Q0),

which proves compatibility. ⊓⊔
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We denote the group action based on lattice isomorphism in the quadratic
form representation introduced in Proposition 1 as LIGA. Note that the map ⋆
is defined identically for any class of equivalent quadratic forms [Q]. Differently
from most other cryptographic group actions used in the literature [1,33,15], in
our case we have that both the base set and the group are infinite.7

We obtain the following corollary which characterizes the orbits and stabi-
lizers of LIGA.

Corollary 1. (a) The orbits of LIGA are quadratic form equivalence classes.
(b) The stabilizer of a quadratic form Q ∈ S>0

n w.r.t. LIGA is Aut (Q).

The above corollary combined with Remark 3 implies that the automor-
phism groups of equivalent quadratic forms have the same size, since conju-
gation is a bijective map. Likewise, the above proposition combined with the
Orbit-Stabilizer Theorem show that the set of isomorphisms between Q and Q′

with Q′ = UTQU = U ⋆ Q is {UV : V ∈ Aut (Q)}, as this set is precisely the
coset UGQ that gets mapped to Q′ by fQ in Remark 3.

We now focus on the properties of LIGA.

Proposition 2. Let Q ∈ S>0
n be the quadratic form for a basis of a lattice L.

Then the group action (GL±
n (Z), [Q], ⋆) is transitive and faithful.

Proof. We first prove transitivity by observing that by Corollary 1, the group
action (GL±

n (Z), [Q], ⋆) admits a single orbit, implying transitivity by Remark 2.
We now prove the group action is faithful by contradiction. Observe that a

group action (G,X, ⋆) is faithful if and only if for every g ∈ G \ {e} there exists
x ∈ X such that x ̸= g ⋆ x, i.e. there is no group element that fixes every set
element. Equivalently, the group action is faithful precisely when the subgroup
N =

⋂
x∈X Gx of G, known as the kernel of the group action, is trivial. Since

the group action (GL±
n (Z), [Q], ⋆) acts on a single orbit by Corollary 1, we have

N =
⋂

Q′∈[Q]

Aut (Q′) =
⋂

U∈GL±
n (Z)

UAut (Q)U−1,

where the last equality follows from the fact that if U maps Q to Q′, then
Aut (Q′) = {UV U−1 : V ∈ Aut (Q)} = UAut (Q)U−1. It follows that N is finite
as a subset of Aut (Q), and normal as the intersection of the conjugacy class of
Aut (Q). Notice that clearly the normal subgroup N± = {±In} of GLn(Z) is also
contained in N . We thus want to prove that N/N± is trivial, i.e. N = N±.

Now, let us take a non-trivial U ∈ N , i.e. U fixes every element in [Q], let
Q0 ∈ [Q], and let Q1 = V ⋆Q0 ̸= Q0 for V ̸= ±In ∈ GL±

n (Z). Then, (UV )⋆Q0 =
(V U) ⋆ Q0 for every Q0 ∈ [Q], which implies [U, V ] = UV U−1V −1 ∈ N for all
V ∈ GL±

n (Z). Multiplying by U−1 from the left yields that V UV −1 ∈ N for

7 Notice that LIGA, equipped with Ds([Q]) and an efficient sampler over GLn(Z) (Al-
gorithm 1 or Extract in [25]), follows the definition of an Effective Group Action
from [1], with the relaxation that the base set and group are infinite.
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every V ∈ GLn(Z). Therefore, the finite group N contains the entire conjugacy
class of U (when viewed in GLn(Z)), which contradicts the finiteness of N .

Indeed, if the matrix U has a non-zero entry outside of the diagonal, say in
the i-th row, then conjugating by V equal to the identity matrix except with
k ∈ Z in the i-th entry in the first row leads to an infinite subset of the conjugacy
class parametrized by k ∈ Z. In the remaining case of U being a diagonal matrix
with ±1 on the diagonal and not equal to ±I, we see that if U has −1 in the
i-th column, then conjugating with V that has a non-trivial i-th row leads to an
infinite conjugacy class. ⊓⊔

The following proposition characterizes when the free property is satisfied.

Proposition 3. Let Q ∈ S>0
n be a quadratic form. Then, the group action

(GL±
n (Z), [Q], ⋆) is free if and only if Q is automorphism-free.

Proof. By Corollary 1, orbits are precisely equivalence classes, and because we
focus on a single equivalence class [Q], this implies there is a single orbit. By Re-
mark 3, this group action is free if and only if its stabilizers are trivial, which is
equivalent by Corollary 1 to the quadratic form Q (or any other orbit represen-
tative) being automorphism-free. ⊓⊔

3.1 Cryptographic Properties of LIGA

We introduce in Theorem 1 a new result on the sufficient number of oracle
queries to break the weak unpredictability of LIGA. More specifically, we give
the necessary number of oracle calls for an adversary to invert the group action
in polynomial time and space. Given the generality of the result, we do not limit
it to any specific distribution on the group GL±

n (Z) for the secret unimodular
matrix. In contrast, we need the distribution on the equivalence class [Q] to
satisfy the following property.

Definition 21. Let D[Q] be a distribution over [Q], for Q ∈ S>0
n , and let d =

n(n+1)
2 and p ≥ d be positive integers. We say that D[Q] induces p-linear inde-

pendence if, given Q1, . . . , Qp ←− D[Q], the p × d matrix MQ whose rows are
unroll(Qi) (see definition in Section 2) is such that

Pr[rank(MQ) < d] ≤ negl(n).

For simplicity, we write that a distribution D[Q] is p-linear when it induces p-
linear independence.

The following proposition follows from Definition 21 since adding a row to a
matrix does not decrease its rank.

Proposition 4. If a distribution D[Q] over [Q] is p-linear, then it is also (p+1)-
linear.
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Theorem 1. Let Q ∈ S>0
n and DGL±

n (Z) be a distribution over GL±
n (Z). For

d = n(n+1)
2 , let D[Q] be a d-linear distribution over [Q]. Then the group action

(GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), t)-weakly unpredictable group action for
any t ≥ d.

Proof. We show that (GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), d)-weakly unpre-
dictable group action by providing a polynomial-time algorithm Recover to in-

vert the group action. Let A be an adversary able to make d = n(n+1)
2 queries to

a randomized oracle F $
V that, when queried, samples a Q′ ←− D[Q] and out-

puts (Q′, V TQ′V ). Then the adversary A is able to collect a list of d pairs
Q := {(Qi, V

TQiV )}i=1,...,d such that the d × d matrix MQ whose rows are
composed by unroll(Qi) is full-rank with overwhelming probability.

We describe first a procedure Linearize, a sub-routine of the main algorithm
Recover to compute the secret unimodular V . The underlying idea takes inspi-
ration from the work of Rasslan and Youssef [41].

Linearize. Consider one pair (Q,Q′ = V TQV ) from the set Q. Denote with Qi,j

(resp. Q′
i,j) the (i, j)-th entry of Q (resp. Q′). Given that Q is symmetric, we

have that Qi,j = Qj,i (resp. Q
′
i,j = Q′

j,i). Then, we can write the equation

Q′
i,j =

n∑
k=1

n∑
l=1

Qk,l ·X(i,k),(j,l) (2)

where X(i,k),(j,l) = Vi,k ·Vj,l for each i, j, k, l ∈ {1, . . . , n}, and Vi,j is the (i, j)-th
entry of V . Let us consider as baseline Equation (2) with i = j:

Q′
i,i =

n∑
k=1

n∑
l=k+1

2Qk,l ·X(i,k),(i,l) +

n∑
k=1

Qk,k ·X(i,k),(i,k).

Writing the above equation as a d-dimensional vector-matrix multiplication,
we get Q′

i,i = Q · xi where

Q =
[
Q1,1 2Q1,2 . . . 2Q1,n Q2,2 2Q2,3 . . . 2Q2,n . . . Qn,n

]
, and

xi =
[
X(i,1),(i,1) . . . X(i,1),(i,n) X(i,2),(i,2) . . . X(i,2),(i,n) . . . X(i,n),(i,n)

]T
.

Denote by diag(Q′) =
[
Q′

1,1 Q′
2,2 . . . Q′

n,n

]
the diagonal of the matrix Q′

represented as a vector. Then we have

Q

←

d-dimensional vector

·

d-by-n matrix︷ ︸︸ ︷[
x1 x2 . . . xn

]
= diag(Q′). (3)
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Recover. The procedure Linearize generates a linear system with d2 variables
and d equations. Given that we have d pairs (Qi, Q

′
i) in Q, we repeat the above

technique d times to derive d2 linearly independent equations, and proceed by
finding the unique solution (up to a sign) of the associated system. We describe
the algorithm to recover ±V below and refer to it as Recover:

1. For each pair (Qi, Q
′
i) in Q, apply Linearize(Qi,Q

′
i) and get the following

equation

Qi ·
[
x1 x2 . . . . . . xn

]
= diag(Q′

i).

2. Solve the linear systemQ1

...
Qd

 · [x1 x2 . . . . . . xn

]
=

diag(Q
′
1)

...
diag(Q′

d)

 (4)

using Gaussian Elimination to retrieve x1,x2, . . . ,xn.
3. Derive the entries (up to a sign) of the solution matrix U by computing first

U1,i =
√
x1,i, then Uj,i =

xj,i

U1,i
for 0 ≤ i, j ≤ n. We have the following two

scenarios:
(a) If U1,i ̸= 0 for i = 1, . . . , n then we get (up to a sign) the i-th column

Vi of V . That gives 2n possible combinations, out of which only 2 are
correct. From the perspective of the columns of V , each pair (Q,Q′) in
Q satisfies

VjQVi = Q′
i,j i ≤ j, (5)

for each j := 1, . . . , n. In other words, Equation (5) describes the inner
products ⟨Vj , Vi⟩Q in the geometry given by Q.
Thus, to get around this exponential step, we interpret them as column
solution parity equations. We guess a solution for U1, which is the first
column of either V or −V . Then for each i := 2, . . . , n, we pick the
solution for Ui such that UiQU1 = Q′

1,i, since the inner product given
by Q is linear in both components. We thus obtain either V or −V ,
depending on our guess of the solution for U1, after which the algorithm
terminates.

(b) If U1,i = 0 for some 1 ≤ i ≤ n, then the algorithm cannot recover the
full matrix U as it would have to divide by zero. In this case, the algo-
rithm samples a unimodular matrix R using Algorithm 1 for a parameter
T = O(n), and computes the set Q′ := {(Q,RTQ′R) : (Q,Q′) ∈ Q},
then repeats Recover with Q′ as input. Note that MQ′ = MQ, and
so rank(MQ′) = d. If the algorithm succeeds in recovering the matrix
U = V R (i.e., U has only non-zero entries in its first row), then it also
recovers ±V as V = UR−1, after which the algorithm terminates. Oth-
erwise, the algorithm tries again with a different unimodular matrix R
until it succeeds.
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Memory and time complexities. Recall that d = n(n+1)
2 . Step 2 from Recover

requires to solve the linear system determined by Equation (4), which has a cost
of O(dω) = O(n2ω) operations. The derivation of the entries of U in Step 3 takes
O(n2) integer operations. The calculations of the correct sign of the i-th column
of U require 2n inner product calculations, which gives a total cost of O(2n3)
operations. Then, the time complexity of deriving ±V becomes

O

(
nω(n+ 1)

ω

2ω
+ 2n3 + n2

)
= O(n2ω)

operations. In terms of memory, the algorithm Recover stores one d× d matrix,
two d× n matrices, and the n× n matrix U . Therefore, Recover has a memory
complexity of storing

d2 + 2dn+ n2 =
n2(n+ 1)

2

4
+

n2(n+ 1)

2
+ n2 = O(n4)

matrix entries.

We are left to show that the number of tries in Step 3b in Recover is negligible
and does not grow with n. Let R1,1, . . . , R1,n denote the entries of the first row
of R which are uniformly distributed in [−T, T ] ⊂ Z (because of Algorithm 1).
We then have that V R has one or more zeros in its first row if and only if
(R1,1, . . . , R1,n) is a solution to the Diophantine equation

V1,jx1 + V2,jx2 + · · ·+ Vn,jxn = 0 (6)

for some 1 ≤ j ≤ n. Since V is non-singular, at least one entry per row is
non-zero. Without lost of generality assume Vn,j ̸= 0. Then

xn = −V1,j

Vn,j
x1 −

V2,j

Vn,j
x2 − · · · −

Vn−1,j

Vn,j
xn−1,

i.e. xn is uniquely determined by x1, . . . , xn−1, and whether or not (x1, . . . , xn−1)
leads to a solution or not is determined by a congruence condition modulo Vn,j .
Thus, for every j there exists a rational constant 0 ≤ γj ≤ 1 such that the
number of solutions is asymptotic to γj(2T + 1)n−1. Therefore, the proportion
of solutions on all the possible vectors is asymptotic to γj/(2T + 1). Hence, the
probability that [R1,1 . . . R1,n] is not a solution of any of Equation (6) is at least

(
1− 1

2T + 1

)n

=

(
1− 1

O(n)

)n

=

(
1− 1

cn

)n
n→∞−−−−→ e−1/c

for some constant c ≥ 1. ⊓⊔

Weak pseudorandomness of a permutation is a stronger property than weak
unpredictability, therefore we obtain the following corollary.
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Corollary 2. Let Q ∈ S>0
n and DGL±

n (Z) be a distribution over GL±
n (Z). For

d = n(n+1)
2 , let D[Q] be a d-linear distribution over [Q]. Then, the group action

(GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), t)-weakly pseudorandom group action,
for any t ≥ d.

Theorem 1 and Corollary 2 also extend to the case of D[Q] being p-linear for
p > d, due to Proposition 4.

On d-linear distributions and experimental verification. We believe that
the hypothesis on the distribution D[Q] to be d-linear is realistic. Essentially,
we require D[Q] to output quadratic forms that are linearly independent from
each other via the function unroll(). On the other hand, a distribution that
outputs samples that are somewhat more likely to be linearly dependent would
make them more predictable. Hence, it would likely come with serious security
implications when used to build cryptographic primitives.

We were not able to prove that Ds ([Q]) (described in Definition 5, introduced
and used in [25]) is d-linear theoretically. However, we experimentally observed
that Ds ([Q]) behaves as a d-linear distribution. Therefore, we make the following
assumption.

Assumption 1 For a quadratic form Q ∈ S>0
n , the Gaussian Form Distribution

Ds([Q]) with s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ ·√ln(2n+ 4)/π} is n(n+1)
2 -linear.

Using Ds ([Q]) as distribution for the base set [Q], we verified the correctness
of Recover presented in the proof of Theorem 1 via a SageMath implementation
available at [9].

On commutative subgroups of GL(Z). If the secret unimodular matrix be-
longs to a commutative subgroup of GL(Z) (e.g. circulant matrices, powers of a
matrix, ...), then it can be recovered in polynomial time from one single sample.
More precisely, let Gc ⊂ GL(Z) be a commutative group, and let V ∈ Gc. Given a
LIP instance (Q,Q′ = V TQV ), one is able to construct more LIP instances shar-
ing the same secret unimodular matrix V (and simulate the calls to the oracle
in Theorem 1) as follows. Sample unimodular matrices U ∈ Gc and compute

(Q̄ := UTQU, Q̄′ := UTQ′U = UTV TQV U = V TUTQUV = V TQ̄V ).

Hence, from one single call to the oracle, one can efficiently generate a long
enough list of LIP instances sharing the same secret unimodular V and use
Recover described in the proof of Theorem 1 to retrieve it.

4 Time/Samples Trade-off Using Gröbner Basis

In this section we propose another approach for computing the secret unimodular
matrix V from a list of m pairs Q = {(Qi, Q

′
i = V TQiV )}i=1,...,m given by

the randomized oracle F $
V using Gröbner bases. This approach allows one to

use fewer samples, i.e. take m ≤ d, at the price of an increased computational
complexity, and later allows us to target weak pseudorandomness specifically.
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4.1 Algebraic Analysis

Naively, one may define n2 variables {xi,j}i,j=1,...,n representing the individual
entries of V , and think of each sample of the form

Q′ =

x1,1 · · · xn,1

...
. . .

...
x1,n · · · xn,n

 ·Q ·
x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n


as giving d = n(n+1)

2 quadratic equations. However, notice the equations given
are structured, as each only contains either n or 2n variables. Indeed, as noted
already in the proof of Theorem 1 what we are given by the oracle F $

V are
inner product equations for the columns of V as in Equation (5). In particular,
looking at i = j each sample yields one norm equation ||Vi||2Q = Q′

i,i per column,
containing merely n variables.

Remark 4. Using the same observations in both the linearization approach and
the algebraic approach using Gröbner basis computation is no coincidence. Al-
gebraically, linearization is no more than the interreduction of a system of equa-
tions, i.e. reducing each polynomial of the system w.r.t. all others, whereas a
Gröbner basis algorithm would also compute S-polynomials.

The main idea is the following. Instead of using all the equations given by
the oracle F $

V , we focus on collecting norm equations to obtain m quadratic
equations in n variables, one system per column of the secret unimodular matrix
V . If these systems are sufficiently random, which we qualify in Assumption 2,
each system will have two unique solutions ±Vi with overwhelming probability.
We then use the inner product equations (from a single oracle query) to assemble
these solutions into ±V , which act equivalently on quadratic forms. Note also
that the systems for different columns are disjoint in terms of variables, meaning
the solutions for each column can be computed independently.

We require the following of our quadratic systems of equations.

Assumption 2 For a quadratic form Q ∈ S>0
n , a unimodular matrix V , and

{Qi}i=1,...,m with m > n sampled from the Gaussian Form Distribution Ds([Q])

with s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ · √ln(2n+ 4)/π}, the system of norm equations

obtained from Q = {(Qi, V
TQiV )}i=1,...,m forms a semi-regular sequence for

each column of V .

As the authors of [6] point out in their conclusion, this assumption (when the
polynomials are viewed over Q) is another form of Fröberg’s conjecture [28], and
it seems to hold experimentally.

Since computing each column is independent from all other column, we focus
our analysis on the quadratic system of norm equations for one column. We have
n as the number of variables, denote by m > n the number of equations, and for
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each equation the total degree is di = 2. Under Assumption 2, the Hilbert series
of the system is given by the following expression

Sm,n(z) =

∏m
i=1(1− z2)

(1− z)n
=

(1− z)m(1 + z)m

(1− z)n
= (1− z)m−n(1 + z)m

The computational complexity is by Lemma 1 exponential in ireg, but is of course
polynomial in m and n for any fixed ireg. We note that the analysis in e.g. [6]
is concerned with the behaviour of ireg when the relationship between m and
n is determined. We instead treat ireg as fixed by the adversary depending on
their computational power, and analyse how many equations are needed. The
index of regularity ireg is essentially determined by how many equations we have,
descending towards 2 as m approaches n2, and each sample gives precisely one
norm equation for this column. We now analyse how many equations we need
to reach the smallest possible ireg = 2, where the Gröbner basis computation
amounts only to producing S-polynomials of degree at most 2 and then using
linear algebra on the resulting Macaulay matrix [34].

In order to achieve this, we need the coefficient c2 in front of z2 to be non-
positive in Sm,n(z). We therefore want

c2 =

(
m

2

)
−

(
m

1

)(
m− n

1

)
+

(
m− n

2

)
≤ 0

which simplifies to
n(n+ 1)

2
≤ m,

meaning we need m = d equations to reach ireg = 2, the same amount of
samples we need for the linearization approach. The complexity of the Gröbner
basis computation for a single column is then bounded by

O

(
2d

(
n+ 1

2

)ω)
= O

(
d1+ω

)
= O

(
n2+2ω

)
.

By allowing the index of regularity ireg to grow, we can reduce the number
of equations (and thus samples) needed. A similar analysis for allowing ireg = 3
requires that

c3 =

(
m

3

)
−
(
m

2

)(
m− n

1

)
+

(
m

1

)(
m− n

2

)
−

(
m− n

3

)
≤ 0

which simplifies to
n2 + 3n+ 2

6
≤ m,

while the complexity of Gröbner basis computation for a single column will be
bounded by

O

(
3m

(
n+ 2

3

)ω)
= O

(
n2+3ω

)
.

The following statement captures the approximate relation between the number
of samples needed and the growth in complexity.
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Proposition 5. For any index of regularity i ≥ 2, at least m = O
(

n2

i2

)
oracle

queries of F $
V are required to compute the secret unimodular matrix V using

Gröbner bases, with computational complexity bounded by O(n2+iω).

Proof. The number of samples for a fixed index of regularity is determined by

ci =

i∑
k=1

(−1)k
(
m− n

k

)(
m

i− k

)
= 0,

as given by the Binomial Theorem. Notice the highest degree term in n is ni

i! , and
that all degree-i terms that contain m cancel. The highest degree term in n that
contains m is then −ℓmni−2 for a small positive rational constant ℓ depending
only on i.

We rearrange the above equation by keeping all terms that contain only the
variable n on the left hand side, and moving all other terms to the right hand
side. We get an equation of the form

ni

i!
+O

(
ni−1

)
≈ ℓmni−2 ·O(1)

once we replace all the variables m inside the parentheses on the right hand side

with their approximation n2. Dividing both sides by ℓni−2 we get n2

ℓi! ≈ m.
Let us consider the factor ℓ in its relation to i. The only terms of ci that

contribute to the coefficient in front of mnn−2 are terms with k ∈ {i, i−1, i−2}.
The contribution of k = i is

(−1)i(−1)i−2 (−1− 2− · · · − (i− 1))(i− 1)

i!
= − i(i− 1)2

2i!
,

the contribution of k = i− 1 is

(−1)i−1(−1)i−2−1− 2− · · · − (i− 2)

(i− 1)!
=

i(i− 1)(i− 2)

2i!
,

and the contribution of k = i− 2 is −(−1)i−2 i(i−1)
2i! . Observe the terms with i3

in the numerator cancel, hence ℓ ≈ i2

i! , and we get that m ≈ n2

i2 .
The complexity bound for a fixed i then follows from the bound given

by Lemma 1

O

(
im

(
n+ i− 1

i

)ω)
= O

(
n2+iω

)
,

noting that
(
n+i−1

i

)
is a polynomial of degree i in n. ⊓⊔

Remark 5. We provide a table of approximate numbers of required samples for
small values of ireg, which shows the proposition holds even for small ireg, not
just asymptotically.
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ireg 2 3 4 5 6

m
n2 ≈ 1

2
1
6

1
12

1
20

1
30

Table 1: Approximate relationship between the number of queries of F $
V needed

to reach a desired index of regularity ireg and n2.

Finally, we describe our algorithm in the following theorem.

Theorem 2. Let Q ∈ S>0
n , i0 ∈ N, and DGL±

n (Z) be a distribution over GL±
n (Z).

Let m ≤ d be the number of oracle queries of F $
V such that the systems of column

norm equations have ireg ≤ i0. Then the group action (GL±
n (Z), [Q], ⋆) is not

(Ds([Q]),DGL±
n (Z), t)-weakly unpredictable for any t ≥ m.

Proof. We again show that (GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), d)-weakly
unpredictable group action by providing a polynomial-time algorithm RecoverGB
to invert the group action. Let A be an adversary able to make m queries to a
randomized oracle F $

V that, when queried, samples a Q′ ←− Ds([Q]) and outputs
(Q′, V TQV ). The strategy of the adversary is the following.

By querying the oracle FV $, the adversary A is able to collect a list of m
pairs Q := {(Qi, V

TQiV )}i=1,...,m, and extracts the column norm equations as
follows. The adversary keeps n lists, one for each column. When receiving a pair
(Q,Q′) from the oracle F $

V , they save the quadratic equation

[
x1 · · · xn

]
·Q ·

x1

...
xn

−Q′
i,i = 0

to their i-th list. They only need to keep the inner product equations of the last
sample to extract the complete solution.

The adversary A then runs RecoverGB that computes the reduced Gröbner
basis w.r.t. the DRL monomial order of the ideal generated by each system of
equations and obtains two solutions for each, which are exactly the i-th columns
of V and −V , which we denote by ±Vi.

To extract the matrix V , the algorithm RecoverGB then proceeds by guessing
the solution Ṽ1 for the first column. For all i = 2, . . . , n it then picks Ṽi ∈ {±Vi}
such that Ṽ1QṼi = Q′

1,i, where (Q,Q′) is the last sample that A kept. Depending

on the guess Ṽ1, the algorithm has computed either V or −V , allowing the
adversary A to reproduce the group action of V . ⊓⊔

4.2 Weak Pseudorandomness

When approaching weak pseudorandomness of LIGA alone, we can optimize the
approach further both for the number of samples needed and the complexity
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estimate. Since the adversary is now not required to find the secret unimodular
matrix V (or at least be able to reproduce its action on quadratic forms), it is
enough for them to show that merely one system of norm equations describing
one column has a solution. Furthermore, since breaking weak pseudorandomness
is a decision problem, the adversary can consider solving the system of equations
not over Q (or Z) but a small finite field, namely F2 where they can use field
equations x2

i − xi = 0 of degree 2 for all i = 1, . . . , n. Observe that the solution
over F2 is unique, implying also there is no need to extract the final solution
from column solutions.

Remark 6. An interesting consequence of this approach is how it positions LIGA
as a cryptographic group action in relation to other hard computational prob-
lems, namely the MQ problem. Indeed, if the Gaussian Form Distribution
Ds([Q]) is wide enough [37, Lemmas 3.2 and 3.3], i.e. exceeds the Smoothing
Bound, then by the Smoothing Lemma [37,29], the coefficients of the system
of equations modulo 2 may be treated as uniformly random, since the two dis-
tributions are statistically close. It follows that if an adversary is able to solve
MQ over F2 with n variables and m equations efficiently then they can also
efficiently break weak pseudorandomness of the group action (GL±

n (Z), [Q], ⋆)
using m samples for any Q ∈ S>0

n . More specifically, in this case the adversary
is solving the BooleanMQ problem studied in detail in [7].

The approach is now twofold. We can compute over Q like in Section 4.1 and
include the field equations into each of our column norm systems of equations
which we reduce modulo 2. Since there are n field equations and all have degree

2, our analysis from above stands and we require d− n = n(n−1)
2 oracle queries

of F $
V to reach ireg = 2, as if we only had n − 1 variables. More generally, if

reaching the index of regularity ireg = i over Q requires m oracle queries, then
solving the same system modulo 2 over in Q with the F2 field equations added
requires m− n oracle queries.

Alternatively, one may exclude the field equations from the m equations and
instead compute over F2 directly. The field equations still need to be implied
so as not to end up in the algebraic closure of F2, i.e. we are computing in the
quotient ring F2[x1, . . . , xn]/⟨x2

1 − x1, . . . , x
2
n − xn⟩. Following the analysis in [4,

Cor. 7] and assuming the systems of equations remain semi-regular sequences in
F2 as implied in Remark 6, the Hilbert series of our system of m equations and
n variables is

Tm,n(z) =
(1 + z)n

(1 + z2)m

truncated after the first non-positive coefficient, which expands (around 0) to

Tm,n(z) = 1+ nz +

(
(n− 1)n

2
−m

)
z2 +

(
(n− 2)(n− 1)n

6
−mn

)
z3 +O(z4),

implying identical bounds for ireg = 2, 3 as in our analysis above, i.e. we need
n fewer equations, courtesy of field equations. The Gröbner basis computation

23



complexity estimate ofO(mireg
(

n
ireg

)
) given by [6, Prop. 9] then implies the bound

of O(n2+2ω) (for one column) when ireg = 2, and O(n2+iregω) more generally.

Corollary 3. Let Q ∈ S>0
n , i0 ∈ N, and DGL±

n (Z) be a distribution over GL±
n (Z),

and let s ≥ max{λn(Q), ||B∗
Q|| ·

√
ln(2n+ 4)/π}. Let m ≤ d − n be the number

of oracle queries of F $
V such that the systems of column norm equations modulo

2 have ireg ≤ i0. Then LIGA is not a (Ds([Q]),DGL±
n (Z), t)-weakly pseudorandom

group action for any t ≥ m.

Proof. Following the reasoning in Remark 6, the parameter s is large enough
by the Smoothing Bound [25, Lemma 2.6] so that the distribution (Ds([Q])
mod 2), which returns the unimodular matrix U and the quadratic form Q′ =
UTQU both with entries modulo 2, is within negligible statistical distance of the
uniform distribution on respective sets modulo 2. The strategy of the adversary
is therefore identical to the one presented in the proof of Theorem 2, except
that they store equations modulo 2, and compute the Gröbner bases of the
ideals generated by the column norm systems of equations in the quotient ring
F2[x1, . . . , xn]/⟨x2

1 − x1, . . . , x
2
n − xn⟩ instead of over Q. ⊓⊔

4.3 Comparisons and Experimental Results

This section conducts a comparative analysis between the linearization (see proof
of Theorem 1) and the Gröbner basis (see proof of Theorem 2) approaches to
illustrate the trade-off between running time and required number of samples
to recover the secret. We provide a proof-of-concept implementation (using the
Sage Mathematics Software System SageMath [45]) available at [9]. Our im-
plementation of the Gröbner basis approach uses the msolve library for solving
polynomial systems [10].

By applying the Gröbner basis technique we can significantly reduce the

number of samples required to break weak unpredictability, from m = n(n+1)
2

to m ≈ n2

i2 for any constant index of regularity i ≥ 2, while still ensuring
a polynomial running time, whereas recovering the secret using linearization

with fewer than d = n(n+1)
2 samples is not possible. However, the required time

complexity of computing Gröbner bases to recover the secret with fewer samples
is notably higher than that of the linearization approach in both a practical and
asymptotic sense. Table 2 presents an asymptotic comparison between Gröbner
basis and linearization techniques regarding the number of samples and runtime.

One could try to reduce the number of equations needed to recover the secret
even lower at the cost of even higher complexity. For example, for m = n log2(n)
the complexity of Gröbner basis computation is known to be sub-exponential [4],
however for smaller examples (e.g. n = 32) it can be done with index of regularity

3. This is because n2

i2 and n log2(n) meet for small n with increasing i. Once n
becomes larger, the index of regularity quickly grows as well (e.g. for n = 64
we require ireg = 4). Therefore, for cryptographically relevant sizes, the Gröbner
basis approach is able to reduce the number of samples only by a small constant
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n 16 32 64 128 256 512 1024

Recover 22.5 28.1 33.7 39.3 44.9 50.5 56.2

RecoverGB with ireg = 2 30.5 38.1 45.7 53.3 60.9 68.5 76.2

RecoverGB with ireg = 3 41.7 52.1 62.5 73.0 83.4 93.8 104.2

RecoverGB with ireg = 4 52.9 66.2 79.4 92.6 105.8 119.1 132.3

RecoverGB with ireg = 5 64.2 80.2 96.2 112.3 128.3 144.3 160.4

Table 2: Asymptotic comparison between Gröbner basis and linearization re-
garding runtime. We consider Strassen’s algorithm for the complexity exponent
ω = log2(7) and present the base two logarithm of the running times. Note that,
as the index of regularity (ireg) increases, fewer samples are required to success-
fully recover the secret unimodular matrix.

as shown in Proposition 5 (since we ideally want the index of regularity to be 2
or 3 as can be seen from Table 2).

We additionally compare the linearization and Gröbner basis approaches
through timed experiments, as outlined in Table 3 and Figure 1. All our ex-
periments were conducted on a 2.3 GHz 8-Core Intel Core i9 machine with
16GB of RAM. We emphasize that our implementation must be viewed as a
proof-of-concept implementation and, therefore, is not optimized.

n 16 20 24 28 32 36 40

Sampling 13.63 34.68 84.84 504.83 1198.48 2321.70 4652.40

Recover 0.34 1.00 1.98 3.36 5.51 10.57 17.31

RecoverGB 2.04 5.64 13.40 31.59 67.72 130.52 252.16

Table 3: The timings correspond with the average time (in seconds) of eight
random LIP instances. In all the experiments, RecoverGB uses m = n(n + 1)/2
(which has ireg = 2), and no parallelization. The row labeled Sampling corre-
sponds with the timings of generating all the m = n(n+ 1)/2 random instances
of LIP with the same fixed secret U .

5 New Hard Problems on Quadratic Forms

In this section, we introduce the following two new hard problems on quadratic
forms. We make use of Theorem 1 to provide polynomial-time reductions from
sLIPQ to both problems, for any automorphism-free Q.
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Fig. 1: In the above plots, we interpolate the first and the last measurements
for Recover and RecoverGB from Table 3 with the corresponding asymptotic
estimations O(n2ω) and O(n2+2ω) for ω = log2(7), and plot all table values. One
can see that the experimental measurements fit the theoretical estimations well.

Definition 22 (Transpose Quadratic Form Problem (TQFP)). Let L(B)
be a full-rank n-dimensional lattice and Q ∈ S>0

n be the quadratic form Q =
BTB. Given Q′ ∈ [Q], the Transpose Quadratic Form Problem is to compute

Q̂ ∈ [Q] such that Q̂ = UQUT, where U ∈ GLn(Z) satisfies Q′ = UTQU .

Definition 23 (Inverse Quadratic Form Problem (IQFP)). Let L(B) be
a full-rank n-dimensional lattice and Q ∈ S>0

n be the quadratic form Q = BTB.

Given Q′ ∈ [Q], the Inverse Quadratic Form Problem is to compute Q̂ ∈ [Q]

such that Q̂ = U−TQU−1, where U ∈ GLn(Z) satisfies Q′ = UTQU .

TQFP and IQFP accept as many solutions as the number of isomorphisms be-
tween Q and Q′, up to the sign. For example, for the case of TQFP, the solution
set is defined as SQ′ := {Q̃V = (V U)

T
Q(V U) : V ∈ Aut (Q)}. For the specific

case of automorphism-free quadratic forms, the solution is unique (|SQ′ | = 1).
Under Assumption 1, we give in Lemma 2 and Lemma 3 polynomial-time re-
ductions from sLIPQ to TQFP and IQFP, respectively. We implemented and
successfully tested these reductions in a SageMath implementation available
at [9].

Lemma 2 (From sLIPQ to TQFP). Let Q ∈ S>0
n be an automorphism-free

quadratic form. Given an oracle OTQFP that solves TQFP in time T0, there is
an algorithm that solves sLIPQ in expected time O

(
n2(T0 + T1) + n2ω

)
, where

T1 is the time complexity of one call to Ds ([Q]), for s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ ·√
ln(2n+ 4)/π}.

Proof. Fixing the same setup as Definition 22, we have Q and Q′ = V TQV ,
where Q′ ∈ [Q]. For simplicity, we assume that OTQFP always solves TQFP
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for isomorphic input Q,Q′. We give an algorithm which solves sLIPQ with a

polynomial number of calls to OTQFP as follows. Let us set d = n(n+1)
2 .

1. Forward (Q′, Q) to OTQFP and receive the response Q̂ = V QV T.
2. (a) Sample a quadratic form Q̄ = WTQW along with W ∈ GLn(Z) from

Ds ([Q]).
(b) Compute Q′′ = WQ̂WT = WVQV TWT and send (Q′′, Q) to OTQFP.

Record its response as Q̄ = V TWTQWV = V TQ̄V .
3. Repeat Step 2 a necessary number of times, for different unimodular W , to

derive a set Q =
{(

Q
(i)
0 , Q

(i)
1

)
, i = 1, . . . , d

}
such that the d×d matrix MQ

whose rows are unroll
(
Q

(i)
0

)
is full rank.

4. Retrieve V ←− Recover(Q) as described in Theorem 1.

Running time. Let us assume both matrix multiplication and inversion take
O(nω) integer operations. Step 1 costs one call to the oracle OTQFP. Step 2
samples one random unimodular matrix, makes four matrix multiplications, and

two queries to OTQFP. Now, Step 2 must be repeated O
(

n(n+1)
2

)
times to derive

enough linear equations (Step 3). Then Steps 1 to 3 have complexity

O

(
T0 +

n(n+ 1)

2
(2T0 + T1 + 4nω)

)
= O

(
n2(T0 + T1) + n2+ω

)
.

Step 4 requires O
(
n2ω

)
operations to retrieve V , which gives a total asymp-

totic time complexity of O
(
n2(T0 + T1) + n2ω

)
.

⊓⊔
Remark 7. Regarding Lemma 2, in practice one can reduce the number of calls
to OTQFP by a factor of n by exploiting the following. Let Q,Q′, Q̂ ∈ S>0

n be

equivalent quadratic forms with Q′ = V TQV and Q̂ = V QV T, for some unimod-
ular matrix V ∈ GLn(Z). Then, one can compute the quadratic forms

Q1 := Q′QQ′ = V TQV QV TQV, Q0 := QQ̂Q,

and have that (Q0, Q1) is such that Q1 = V TQ0V . Iteratively, one can define

Q
(i)
1 := Q′(QQ′)i, Q

(i)
0 := Q(Q̂Q)i,

with Q
(i)
1 = V TQ

(i)
0 V , for i ≥ 0. The Cayley-Hamilton theorem ensures that, for

any square matrix M with n rows over a commutative ring, we have that
Mn ∈ Span{In,M,M2, . . . ,Mn−1} [2, §7.11]. Therefore, with the above ap-
proach, we can get a set Q =

{
(Qi, Q

′
i = V TQiV )

}p

i=1
of size p ≤ n knowing

Q′ = V TQV and Q̂ = V QV T. Using this trick in Step 2 of the proof of Lemma 2,
and assuming that p reaches n with high probability, one can reduce the number
of calls to OTQFP by a factor of n. In this case, taking also into consideration the
number of matrix multiplications, the total cost of the reduction in Lemma 2
would be Õ(n(T0 + T1) + n2ω).8 In our SageMath implementation, we im-

8 We have Õ(·) instead of O(·) because of the increase of the integer coefficients size
when applying this optimization trick.
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plemented and tested the variant of the reduction in Lemma 2 that uses such
optimization in Step 2.

Lemma 3 (From sLIPQ to IQFP). Let Q ∈ S>0
n be an automorphism-free

quadratic form. Given an oracle OIQFP that solves IQFP in time T0, there exists
an algorithm that solves sLIPQ in expected time O

(
n2(T0 + T1) + n2ω

)
, where

T1 is the time complexity of one call to Ds ([Q]), for s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ ·√
ln(2n+ 4)/π}.

Proof. Fixing the same setup as Definition 23, we have Q and Q′ = V TQV ,
where Q′ ∈ [Q]. For simplicity, we assume that OIQFP always solves IQFP, for a
isomorphic input Q,Q′. We give an algorithm which solves sLIPQ with a poly-

nomial number of calls to OIQFP as follows. Let us set d = n(n+1)
2 .

1. Forward (Q′, Q) to OIQFP and receive the response Q̂ = V−TQV −1.

2. (a) Sample a quadratic form Q̄ = WTQW along with W ∈ GLn(Z) from
Ds ([Q]).

(b) Calculate Z = W−1.

(c) Compute Q′′ = ZTQ̂Z = ZTV QV TZ and send (Q′′, Q) to OIQFP. Record

its response as Q̃ = V TWTQWV = V TQ̄V .

3. Repeat Step 2 a necessary number of times, for different unimodular W , to

derive a set Q =
{(

Q
(i)
0 , Q

(i)
1

)
, i = 1, . . . , d

}
such that the d×d matrix MQ

whose rows are unroll
(
Q

(i)
0

)
is full rank.

4. Retrieve V ←− Recover(Q) as described in Theorem 1.

Running time. The cost analysis is analogous to Lemma 2, with the addition of
a matrix inversion in Step 2. However, this is negligible on the total cost of the
reduction, that is O

(
n2(T0 + T1) + n2ω

)
.

⊓⊔

To illustrate the above reductions from Lemma 2 and Lemma 3, we simulate
the algorithms concerning TQFP and IQFP using a SageMath library; our code
is available at [9].

Remark 8. Lemma 2 and Lemma 3 can be generalized to the case of quadratic
forms with a non-trivial automorphism group. However, in this case, the solutions
to TQFP and IQFP are not unique, but there are as many solutions as the number
of automorphisms divided by 2. Consider the case of a TQFP oracle OTQFP that
returns one of the possible solutions uniformly at random. Then, the algorithm
in Lemma 2 would allow retrieving the correct solution only when, for every
query to the algorithm, it returns exactly the solution that we are looking for.
Therefore, given that we require n correct solutions from OTQFP, one must repeat
on average the whole algorithm (|Aut (Q)|/2)n times.
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6 Open Problems

We believe that studying the Lattice Isomorphism Problem, as well as other
computational problems related to isomorphisms or equivalence classes, in the
group action framework is an important research direction which will help build
a unified theoretical foundation for constructing cryptographic schemes. Below
we list some research directions/open problems that arise from our work.

It would indeed be interesting to know the exact number of LIP samples shar-
ing the same secret V that can be given to an adversary while still maintaining
the weakly unpredictable nature of the group action. For example, one could
to take into account the equation det(V ) = ±1. However, this should not be
very useful since, for an indeterminate V , it is a polynomial in n2 variables of
total degree n (or 2n, if one decides to square the equation to get rid of the sign
ambiguity), and Gröbner basis computation is exponential in the degree of the
system. Theorem 2 seems to imply a limit of m = O(n) LIP samples at which
solving a “random” system of quadratic equations is known to have complexity
exponential in n [6], making it infeasible for the adversary to solve the system
of equations using Gröbner basis computation.

Perhaps more relevant to cryptographers, one can ask: Which cryptographic
constructions can be securely realized assuming one-wayness and the aforemen-
tioned limited version of weak unpredictability (and weak pseudorandomness)
to O(n) oracle calls to F $

V ?
Another possible direction is to investigate whether an analogous result can

be obtained also for group actions stemming from other equivalence problems,
e.g. code equivalence or 3-tensor isomorphism. Recently, the authors of [22] stud-
ied the code equivalence problem using representation theory and linearization
techniques. It will be interesting to study the impact of employing other alge-
braic methods such as Gröbner bases in this setting. More generally, it would
be interesting to investigate whether other group actions also come with a sim-
ilar limitation on the number of oracle queries allowed to an adversary, and
characterize it in concrete terms such as a number of samples.
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Semi-regular Overdetermined sequences over F2 with solutions in F2. Research Re-
port RR-5049, INRIA (2003), available at https://inria.hal.science/inria-00071534

5. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of Gröbner basis computa-
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