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Abstract— A few small-state stream ciphers (SSCs) were 

proposed for constrained environments. All of the SSCs before the 

LILLE stream cipher suffered from distinguishing attacks and 

fast correlation attacks. The designers of LILLE claimed that it is 

based on the well-studied two-key Even-Mansour scheme and so is 

resistant to various types of attacks. This paper proposes a 

distinguishing attack on LILLE, the first attack since 2018. The 

data and time complexities to attack LILLE-40 are 𝟐𝟓𝟎.𝟕 and 𝟐𝟒𝟏.𝟐, 

respectively. We verified practically our attack on a halved version 

of LILLE-40. A countermeasure is suggested to strengthen LILLE 

against the proposed attack. We hope our attack opens the door to 

more cryptanalyses of LILLE. 

 
Index Terms— LILLE, stream cipher, lightweight encryption, 

distinguishing attack, time-memory-data trade-off attack, 

cryptography. 

 

I. INTRODUCTION 

tream ciphers, one of the main parts of symmetric 

encryption, play an important role in the information 

security industry. Thus, the security of stream ciphers 

should be carefully considered. The LILLE stream cipher was 

introduced as a robust lightweight cipher with the small-state 

stream cipher (SSC) concept in 2018 [1]. A few SSCs, such as 

Sprout [2], Fruit [3, 4], and Plantlet [5], were introduced before 

LILLE, but the designers of LILLE promised 80-bit security 

against distinguishing or key recovery attacks for LILLE. Time-

memory-data trade-off (TMDTO) attacks and fast correlation 

attacks (FCA) were successfully applied to all SSCs published 

before LILLE [6-10]. Fruit-F was recently published, and the 

designers of Fruit-F claimed that it is resistant to FCA and 

TMDTO attacks [11]. 

The designers of LILLE claimed that the security of 

key/state recovery attacks on LILLE reduce to a two-key 6-

round iterated Even-Mansour scheme, which is well-studied 

[12]. No attack has been presented to this cipher up until now. 

A distinguishing attack is introduced against LILLE in the 

current paper; that is the first attack. 

A distinguishing attack is proposed based on the fact that the 

frequency of a special pattern in the keystreams of a cipher is 

different from that of truly random sequences, and this enables 

an attacker to distinguish between truly random sequences and 

keystreams of a stream cipher [13]. Distinguishing attacks are 
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important and practical because identifying which sequences 

belong to a cipher (in massive data) is the first step for practical 

cryptanalysis. Furthermore, attacks (of any type) show 

weaknesses in the cipher and open the door to more attacks. 

In the proposed distinguishing attack, an attacker should 

search for the same 40-bit. We will show that if the attacker has 

two tables of truly random 40-bit sequences and compares for 

collisions, she can find 2.34 collisions on average when she 

compares 600 × 232 times. If the attacker does the same 

comparison on the specially selected keystreams of LILLE, she 

cannot find any collision. Thus, the attacker can win on the 

distinguishing attack and correctly recognize whether 40-bit 

sequences are from LILLE keystream or truly random 

sequences. The proposed attack is applicable on all versions of 

LILLE (i.e., LILLE-40, LILLE-60, and LILLE-80) with 247.5 

bits of the keystream, 241.2 times comparing 40-bit sequences, 

and 20 gigabytes of memory. 

We verified practically our attack on a halved version of 

LILLE-40, called Shrunk LILLE (see Appendix A for details). 

We will suggest our countermeasure to strengthen LILLE 

against the proposed attack.  

The paper is organized as follows. Section 2 gives a brief 

description of the LILLE cipher. An observation on the internal 

state transition function of LILLE and a distinguishing attack 

on LILLE is presented in Section 3. Then, Section 4 presents a 

countermeasure to strengthen LILLE. Finally, Section 5 

concludes the paper. 

II. THE LILLE FAMILY OF STREAM CIPHERS 

LILLE is a stream cipher that accepts an 80-bit key and an 

IV to generate 40-bit keystream words. Key is divided into two 

parts, most significant (𝐾1) and least significant (𝐾2). The 

internal state of LILLE consists of 40-bit NFSR and 𝐿-bit 

LFSR. 𝐿 introduces three versions of LILLE, i.e., LILLE-40, 

LILLE-60, and LILLE-80 for 𝐿 equal to 40, 60, and 80 bits, 

respectively. For the initialization, all bits of NFSR (𝑆𝑡) are 

equal to zeros, and all bits of LFSR are equal to zeros except 

the least significant bit, which is equal to one. Every 720 clocks, 

𝐸𝑁𝐶𝐾1,𝐾2,𝐼𝑉,𝐿𝑟(. ) function accepts an 40-bit input and produces 

an 40-bit of keystream words as follows (initial value of 𝑋 is 

0𝑥0000000000). We refer to [1] for a full description. 
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𝐸𝑁𝐶𝐾1,𝐾2,𝐼𝑉,𝐿𝑟(𝑋): 

1- 𝑋 =  𝑋 ⊕ 𝐾1 

2- For 𝑖 = 0 to 5 : 

If 𝑖 is even 𝑅𝐾 = 𝐾2  else  𝑅𝐾 = 𝐾1 

X = P(X; IV; 𝐿𝑟+120𝑖) ⊕ RK 

3- Output 𝑋 

P(𝑆0; IV; 𝐿𝑟): 

1- For 𝑡 = 0 to 119 : 

     𝑦𝑡 = 𝑆𝑡  [0]⊕ 𝑆𝑡  [5]⊕ 𝑆𝑡[8]⊕ 𝑆𝑡[12]⊕ 𝑆𝑡[16]⊕ 𝑆𝑡[19]

⊕ 𝑆𝑡[22]⊕ 𝑆𝑡[26]⊕ 𝑆𝑡[29]⊕ 𝑆𝑡[31]

⊕ 𝑆𝑡[32]⊕ 𝑆𝑡[32] ·  𝑆𝑡[35]⊕ 𝑆𝑡[19] ·  𝑆𝑡[22]

⊕ 𝑆𝑡 [5]  ·  𝑆𝑡[9]⊕ 𝑆𝑡[26] ·  𝑆𝑡[31] ·  𝑆𝑡[32]

⊕ 𝑆𝑡[12] ·  𝑆𝑡[16] ·  𝑆𝑡[19] ⊕ 𝑆𝑡[5]  ·  𝑆𝑡[16] 

·  𝑆𝑡[26] ·  𝑆𝑡[35]⊕ 𝑆𝑡[19] ·  𝑆𝑡[22] ·  𝑆𝑡[31] 

·  𝑆𝑡[32]⊕ 𝑆𝑡[9]  ·  𝑆𝑡[12] ·  𝑆𝑡[32] · 𝑆𝑡[35]

⊕ 𝑆𝑡[22] ·  𝑆𝑡[26] ·  𝑆𝑡[31] ·  𝑆𝑡[32] ·  𝑆𝑡[35]

⊕ 𝑆𝑡[5]  ·  𝑆𝑡[9]  ·  𝑆𝑡[12] ·  𝑆𝑡[16] ·  𝑆𝑡[19] 

⊕ 𝑆𝑡[12] ·  𝑆𝑡[16] ·  𝑆𝑡[19] ·  𝑆𝑡[22] ·  𝑆𝑡[26] 

·  𝑆𝑡[31]⊕ 𝐼𝑉[𝑡]  ⊕ 𝐿𝑟+𝑡[0]  

     𝑆𝑡+1  =  𝑆𝑡  [1] || 𝑆𝑡  [2] ||  · · · || 𝑆𝑡  [39] || 𝑦𝑡 

     𝑧𝑡 =

{
  
 

  
 

 

𝐿𝑟+𝑡 [0]⊕ 𝐿𝑟+𝑡[5]⊕ 𝐿𝑟+𝑡[15]⊕ 𝐿𝑟+𝑡 [20]

          ⊕ 𝐿𝑟+𝑡 [25]⊕ 𝐿𝑟+𝑡[34]           𝑓𝑜𝑟 𝐿𝐼𝐿𝐿𝐸 − 40

𝐿𝑟+𝑡 [0]⊕ 𝐿𝑟+𝑡 [8]⊕ 𝐿𝑟+𝑡 [17]⊕ 𝐿𝑟+𝑡 [28]

          ⊕ 𝐿𝑟+𝑡[35]⊕ 𝐿𝑟+𝑡 [41]           𝑓𝑜𝑟 𝐿𝐼𝐿𝐿𝐸 − 60

𝐿𝑟+𝑡  [0]⊕ 𝐿𝑟+𝑡  [13]⊕ 𝐿𝑟+𝑡  [23]⊕ 𝐿𝑟+𝑡  [38]

          ⊕ 𝐿𝑟+𝑡 [51]⊕ 𝐿𝑟+𝑡 [62]           𝑓𝑜𝑟 𝐿𝐼𝐿𝐿𝐸 − 80

 

     𝐿𝑟+𝑡+1  = {

𝐿𝑟+𝑡  [1] ||  · · · || 𝐿𝑟+𝑡  [39] || 𝑧𝑡        𝑓𝑜𝑟 𝐿𝐼𝐿𝐿𝐸 − 40
𝐿𝑟+𝑡  [1] ||  · · · || 𝐿𝑟+𝑡  [59] || 𝑧𝑡        𝑓𝑜𝑟 𝐿𝐼𝐿𝐿𝐸 − 60
𝐿𝑟+𝑡  [1] ||  · · · || 𝐿𝑟+𝑡  [79] || 𝑧𝑡        𝑓𝑜𝑟 𝐿𝐼𝐿𝐿𝐸 − 80

 

2- Output 𝑆120 

III. A DISTINGUISHING ATTACK ON LILLE 

In this section, we explain how to apply a distinguishing attack 

on the LILLE. First, an observation on the internal state transition 

function of LILLE is presented. Second, the distinguishing attack 

is described based on the observation. 

 

A. An Observation on the Internal State Transition Function of 

LILLE 

As the designers of LILLE stated that the key-IV mixing 

algorithm is an injective function (one-to-one function) [1]. 

 

 
1 Because the NFSR function form is 𝑆𝑡+1[39] = 𝑆𝑡[0]⊕

𝑓(𝑆𝑡[1], 𝑆𝑡[2],… , 𝑆𝑡[39]). 
2 We do not want to show that the internal state transition of LILLE-40 is 

necessarily a full period. Probably, the internal state transition contains more 

than one period. 

Also, the LFSR and NFSR functions of LILLE are injective1, 

the internal state transition function of LILLE is injective. This 

means that two distinct internal states cannot produce the same 

internal state (Fig. 1). As keystream words (𝑍𝑖) are the values 

of NFSR after 120 clocks, the keystream generation algorithm 

is also injective. It means that if 𝑍1 and 𝑍𝑐 are equal, 𝑍2 and 

𝑍𝑐+1 should be equal (𝑐 ≠ 1). For the same reason, if 𝑍1 and 𝑍𝑐 
are not equal, 𝑍2 and 𝑍𝑐+1 cannot be equal.  

Ui-3 Ui-2

Ui

Ui-1

Ui+1

Ui+2Ui+3

Ui+4

Ui+5
Ui+6

Ui+7

 
Fig. 1. Internal state transition of LILLE-40, Uj are internal 

states2. 

 

We verified the injectivity of the internal state transition 

function on Shrunk LILLE3. We produced keystream bits of 

Shrunk LILLE and saved 213 36-bit of them on a table. Then, 

213 36-bit keystreams of Shrunk LILLE were produced (under 

the same key/IV) and searched for collisions4. As the internal 

state size of Shrunk LILLE is 32 bits, if the internal state 

transition of Shrunk LILLE was not an injective function, the 

collisions should be based on the 32 bits of internal state 

collision (not based on the collision of the 36-bit random in 

226 searches). Our implementations showed that the probability 

of the collision is 0.00097, which is equal to the probability of 

finding two equal 36-bit random in 226 searches. The 

probability of finding at least one collision in 226 searches of 

36-bit random is: 

 1 − (1 −
1

236
)
226

= 0.00097. (1) 

 

If the internal state transition was not injective, two different 

32-bit internal states could arrive at the same internal state 

during forward clocking. Consequently, two different 32-bit 

internal states could produce the same keystreams if the internal 

state transition was not injective. In that situation, the 

probability of finding at least one collision in 226 searches is5: 

 1 − (1 −
1

232
)
226

= 0.015. (2) 

 

Our implementation based on different internal state 

transition functions showed that the probability is 0.00097, and 

the function is injective.  

3 Shrunk LILLE has 16 bits LFSR and 16 bits NFSR, producing 16 

keystream bits every 720 clocks. 
4 The total number of the search is 213 × 213 = 226. 
5 Note that the probability of equality of two random 32-bits is 2−32.  
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B. A Distinguishing Attack on LILLE 

This section proposes a distinguishing attack on LILLE-40, 

and then it is explained how to apply the distinguishing attack 

on LILLE-60 and LILLE-80. The designers of LILLE-40 have 

guaranteed that the period of the keystream sequences is at least 

40 × 48 × (240 − 1) = 250.9 bits, and they recommend 

LILLE-40 can be used to encrypt 250 bits using any pairs of key 

and IV [1]. As the period of LFSR is (240 − 1), and the ENC 

function needs 720 clocks to compute, the ENC function takes 

the same initial state of LFSR as its input after LCM6(240 −
1, 720) clocks (which is equal to 48 × (240 − 1) clocks7). As 

LILLE-40 produces every 720 clocks 40-bit of the keystream, 

we call (48 × (240 − 1) ÷ 720) + 1th word of keystream 𝑍𝑑. 

Thus, the state of LFSR in 𝑍1 is equal to the state of LFSR8 in 

𝑍𝑑. Moreover, the state of LFSR in 𝑍1+𝑖 is equal to the state of 

LFSR in 𝑍𝑑+𝑖 for 𝑖 > 0.  

If we consider the keystream words of LILLE-40 on clocks 

𝑍1 and 𝑍𝑑 under the same key and IV, the keystream  words 

are equal together with probability 2−40 (This is because key, 

IV, and the internal states are the same on clocks 𝑍1 and 𝑍𝑑 

except for 40 bits of NFSR). Thus, we have: 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑍1+𝑖 = 𝑍𝑑+𝑖 ) = 2
−40    𝑓𝑜𝑟 𝑖 ≥ 0. (3) 

 

As the internal state transition function of LILLE-40 is an 

injective function9, If we compare 232 keystream words of 

LILLE-40 at the 𝑑 − 1 clock intervals (i.e., 𝑍1 with 𝑍𝑑, 𝑍2 with 

𝑍𝑑+1, ..., 𝑍232 with 𝑍𝑑−1+232), the probability that we can find 

at least one equal keystream word of LILLE-40 is 2−40. This is 

because if 𝑍1 is not equal to 𝑍𝑑, 𝑍1+𝑗 will not be equal to 𝑍𝑑+𝑗, 

or in other words, the equality of two keystream words of 

LILLE-40 at the 𝑑 − 1 clock interval is equivalent to the 

equality of all keystream words at the 𝑑 − 1 clock intervals. 

Therefore, the probability of finding at least one collision 

during 232 comparisons is 2−40. 

On another side if we compare 232 random words that the 

size of each word is 40 bits, the probability of finding at least 

one collision during 232 comparisons is: 

 1 − (1 −
1

240
)
232

= 0.0039 = 2−8. (4) 

 

Note that the probability of failure to find a collision in the 

first comparison  is 1 − 1 240⁄ , and the probability of failure to 

find at least one collision in the 232 comparisons  is (1 −
1

240
)
232

. 

Therefore, our distinguishing attack works as follows: 

 

 
6 Least Common Multiple. 
7 In other words, the remainder of (240 − 1) divided by 720 is 15. It means 

that after 48 periods of LFSR, the ENC function will have the same initial state 

of LFSR as its input because of 48 × 15 = 720. 
8 It means that after 48 periods of LFSR, the LFSR which produce 𝑍𝑑 

keystream word is equal to the LFSR of the first keystream word. 
9 In the previous section, we discussed that the internal state transition of 

LILLE-40 is an injective function. 

1- We obtain two tables of 40-bit sequences from oracle 

(tables A and B); every table contains 232 sequences10. 

2- We compare the first sequence of A with the first 

sequence of B to find collisions. Then we compare the 

second sequence of A with the second sequence of B to 

find collisions and continue to compare 232 40-bit 

sequences. 

3- If we find one 40-bit from table A equal to a 40-bit of 

table B, we consider it a WIN. 

4- We repeat this procedure 600 times11. 

5- If we have at least one WIN, 232 40-bit sequences are 

from a random sequence with high probability. 

6- If we cannot find any WIN, 232 40-bit sequences are 

from the keystream of LILLE-40 with high probability.  

 

According to Equation (4), we expect 600 × 0.0039 = 2.34 

WINs on average during our distinguishing attack on random 

sequences, while we expect 600 × 2−40 = 2−30.7 WINs on 

average for the keystream of LILLE-40. Thus, it is possible to 

distinguish between random sequences and keystreams of 

LILLE-40. The data complexity of the attack is 600 × 40 ×

(𝑑 − 1 + 232) = 24000 × 236.1 = 250.7 bits (while only 

600 × 232 × 40 × 2 = 247.5 bits of the keystream is used 

during the attack). The time complexity is 600 × 232 = 241.2 

times comparing 40-bit sequences, and the memory complexity 

is 232 × 40 bits or 20 gigabytes for distinguishing attack on 

LILLE-40. Note that 𝑍𝑑 is equal to 𝑍236, and the maximum 

required number of keystream bits (𝑍𝑑−1+232) is 236.1 per 

key/IV of LILLE-40 (which is according to the legal usage of 

LILLE-40 as the designers of LILLE-40 stated that LILLE-40 

can produce up to 250 keystream bits per key/IV [1]). 

The difference between the three variants of LILLE is back 

to their LFSRs. For LILLE-60, the LFSR length is 60 bits, and 

it is possible to apply a similar distinguishing attack on it. The 

period of LFSR is (260 − 1), and the LCM of (260 − 1, 720) 
equals 16 × (260 − 1). As LILLE-60 produces every 720 

clocks 40-bit of the keystream, we call (16 × (260 − 1) ÷
720) + 1th word of keystream 𝑍𝑑′. If we compare 232 

keystream words of LILLE-60 at the 𝑑′ − 1 clock intervals (i.e., 

𝑍1 with 𝑍𝑑′, 𝑍2 with 𝑍𝑑′+1, ..., 𝑍232 with 𝑍𝑑′−1+232), the 

probability that we can find at least one equal keystream word 

of LILLE-60 is 2−40. Thus, we can apply a similar 

distinguishing attack on LILLE-60. The data complexity of the 

attack is 600 × (𝑑′ − 1 + 232) × 40 = 269.1 bits (while only 

600 × 232 × 40 × 2 = 247.5 bits of the keystream is used 

during the attack). The time complexity is 600 × 232 = 241.2 

times comparing 40-bit sequences, and the memory complexity 

10 Tables A and B for LILLE-40 keystream should be prepared as follows: 

the first sequence of A and the first sequence of B are 𝑍1 and 𝑍𝑑, the second 

sequence of A and the second sequence of B are 𝑍2 and 𝑍𝑑+1, …, the last 

sequence of A and the last sequence of B are 𝑍232 and 𝑍𝑑−1+232, respectively. 
11 It is clear that the probability of finding at least one collision during 232 

comparisons of LILLE-40 keystream words (i.e., 2−40) is enough different from 

the probability of random words (i.e., 2−8) for suggested distinguishing attack. 

However, 600 repeats are our suggestion based on our attack on Shrunk LILLE 

to achieve tangible results. 



4 

  

 

is 232 × 40 bits or 20 gigabytes for distinguishing attack on 

LILLE-60. It is possible to apply a similar distinguishing attack 

on LILLE-80. The attack requires 600 × 232 × 40 × 2 = 247.5 

bits of the keystream and 600 × 232 = 241.2 times comparing 

40-bit sequences. 

IV. A COUNTERMEASURE TO STRENGTHEN LILLE 

The weakness of LILLE is to produce several keystream 

words from the same LFSR states under the same key and IV. 

For example, the state of LFSR while producing the first 

keystream word is the same as that of LFSR while producing 

the (48 × (240 − 1) ÷ 720) + 1th keystream word in LILLE-

40. Thus, to prevent producing keystream words from the same 

LFSR states, the maximum number of keystream words should 

be 48 × (240 − 1) ÷ 720 = 236 words. As every word of the 

keystream is 40 bits, LILLE-40 can produce 241.3 bits safely. If 

the LILLE-40 produces more than 236 keystream words under 

the same key and IV, it will be threatened by the proposed 

distinguishing attack. It seems that 236 keystream words are too 

short for some applications. We suggest using 7 × 98 = 686 

rounds instead of 6 × 120 = 720 rounds during the production 

of keystream words in LILLE-40. As the period of the LFSR is 

(240 − 1), and the ENC function needs 720 clocks to compute, 

LILLE-40 produces keystreams from the same state of LFSR 

after LCM(240 − 1, 720) = 48 × (240 − 1) clocks. If LILLE-

40 is modified to use 7 × 98 = 686 rounds (instead of 

6 × 120 = 720 rounds), it can clock LCM(240 − 1, 686) =
686 × (240 − 1) times before arriving at the same LFSR state 

to produce keystream words. It means that LILLE-40 can 

produce 686 × (240 − 1) ÷ 686 ≈ 240 keystream words or 

245.3 keystream bits safely under the same key and IV. In fact, 

the number of rounds should be chosen for LILLE so that they 

are coprime with the periods of LFSRs. For LILLE-40, 686 is 

coprime with 240 − 1. As 260 − 1 and 280 − 1 are coprime 

with 2, our suggestion for LILLE-60 and LILLE-80 is 

8 × 64 = 512 rounds instead of 6 × 120 = 720 rounds. This 

modification not only does not impose overhead on 

cryptosystems but also increases keystream production speed. 

Note that reducing a few rounds of LILLE does not threaten the 

security of LILLE, according to the security analysis of LILLE. 

In addition, the designers of LILLE do not mention any clear 

reason for how to choose 720 rounds for it [1]. 

V. CONCLUSION 

The designers of LILLE claimed that the security of LILLE 

reduces to a two-key 6-round iterated Even-Mansour scheme, 

and is resistant to various types of attacks. This paper presented 

the first attack on LILLE since 2018 when it was introduced as 

a robust small-state stream cipher. We proposed a 

distinguishing attack on LILLE and verified practically our 

attack on a halved version of LILLE-40. The proposed attack is 

applicable on all versions of LILLE with 247.5 bits of the 

keystream, 241.2 times comparing 40-bit sequences, and 20 

gigabytes of memory. We hope this attack opens the door to 

other attacks on LILLE. 

APPENDIX A  

SHRUNK LILLE 

We verified practically our attack on a halved version of 

LILLE-40, called Shrunk LILLE. Shrunk LILLE has 16 bits 

LFSR and 16 bits NFSR, producing 16 keystream bits every 

720 clocks. Its LFSR and NFSR are as follows: 

    𝑦𝑡 = 𝑆𝑡  [0] ⊕ 𝑆𝑡  [5] ⊕ 𝑆𝑡[8]⊕ 𝑆𝑡[9] ⊕ 𝑆𝑡[10]⊕ 𝑆𝑡[12]

⊕ 𝑆𝑡[14]⊕ 𝑆𝑡[10]  ·  𝑆𝑡[7] ⊕ 𝑆𝑡[11] 
·  𝑆𝑡[14]⊕ 𝑆𝑡 [5] ·  𝑆𝑡[9] ⊕ 𝑆𝑡[1] ·  𝑆𝑡[3] 
⊕ 𝑆𝑡[12]  ·  𝑆𝑡[8]  ⊕ 𝑆𝑡[1]  ·  𝑆𝑡[3] 
·  𝑆𝑡[5] ⊕ 𝑆𝑡[6]  ·  𝑆𝑡[7] ·  𝑆𝑡[9] ⊕ 𝑆𝑡[5] 
·  𝑆𝑡[6] ·  𝑆𝑡[7] · 𝑆𝑡[8] ⊕ 𝑆𝑡[1] ·  𝑆𝑡[2] 
·  𝑆𝑡[7] ·  𝑆𝑡[8] ·  𝑆𝑡[9]  ·  𝑆𝑡[13] ⊕ 𝐼𝑉[𝑡]  
⊕ 𝐿𝑟+𝑡[0]  

    𝑆𝑡+1  =  𝑆𝑡 [1] || 𝑆𝑡 [2] ||  · · · || 𝑆𝑡  [39] || 𝑦𝑡 
    𝑧𝑡 = 𝐿𝑟+𝑡  [0]⊕ 𝐿𝑟+𝑡[1] ⊕ 𝐿𝑟+𝑡[3] ⊕ 𝐿𝑟+𝑡 [12] 
    𝐿𝑟+𝑡+1  = 𝐿𝑟+𝑡 [1] ||  · · · || 𝐿𝑟+𝑡  [15] || 𝑧𝑡. 

 

Shrunk LILLE accepts an 32-bit key and an 80-bit IV to 

generate 16-bit keystream words. Key is divided into two parts, 

most significant (𝐾1) and least significant (𝐾2). For the 

initialization, all bits of NFSR (𝑆𝑡) are equal to zeros, and all 

bits of LFSR are equal to zeros except the least significant bit, 

which is equal to one. Every 720 clocks, 𝐸𝑁𝐶𝐾1,𝐾2,𝐼𝑉,𝐿𝑟(. ) 

function accepts an 16-bit and produces an 16-bit of keystream 

words, same as LILLE-40. 
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