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Abstract—Decentralized apps (DApps) often hold significant
cryptocurrency assets. In order to manage these assets and co-
ordinate joint investments, shareholders leverage the underlying
smart contract functionality to realize a transparent, verifiable,
and secure decision-making process. That is, DApps implement
proposal-based voting. Permissionless blockchains, however, lead
to a conflict between transparency and anonymity; potentially
preventing free decision-making if individual votes and inter-
mediate results become public. In this paper, we therefore
present Tornado Vote, a voting DApp for anonymous, fair, and
practical voting on the Ethereum blockchain. We propose to
use a cryptocurrency mixer such as Tornado Cash to reconcile
transparency and anonymity. To this end, we adapt Tornado
Cash and develop a voting protocol that implements a fair voting
process. While Tornado Vote can technically process 10 k votes on
Ethereum in approximately two hours, this is not feasible under
realistic conditions: Third-party transactions on the Ethereum
Mainnet reduce the possible throughput, and transaction fees
make it infeasible to use all available block capacities. We
therefore present various Gas cost models that yield lower bounds
and economic estimations with respect to the required number
of blocks and voting costs to assess and adjust Tornado Vote’s
feasibility trade-off.

Index Terms—anonymous voting, decentralized applications,
smart contracts

I. INTRODUCTION

Decentralized applications (DApps) use smart contracts
to execute trusted and verifiable logic. The Ethereum [1]
blockchain in particular paved the way for novel DApps, such
as decentralized autonomous organizations (DAO) [2]. Many
DApps hold considerable financial assets and are collectively
managed by their stakeholders without delegating decision-
making power to centralized bodies [3]. Instead, a blockchain-
based voting process is used to coordinate, where the smart
contract logic collects votes and ensures that decisions are
executed accordingly. That is, anyone can make a public
proposal, which can then be accepted or rejected by others.
Blockchain-based voting has therefore become an integral part
for the governance of DApps.

The inherent transparency of blockchains, however, threat-
ens voters’ privacy as it can be considered pseudonymous at
best [4]. Anonymous voting is often necessary for democratic
decision-making processes, though. While the issue is known
for some time and inherent to many blockchains, including
Ethereum [5], existing solutions struggle with scalability [6],
require a central, trusted off-chain party [7], or cannot directly
be used for DApps as they require their own blockchain [8].

In this paper, we propose Tornado Vote, a new blockchain-
based voting protocol for Ethereum that yields anonymous,
fair, and practical on-chain voting. To this end, we build upon

the mixer protocol Tornado Cash [9], which enables an anony-
mous coin transfer service. While Tornado Cash alone can be
used for anonymous voting (as we will argue), we adapt the
protocol to realize fair voting [10] by keeping individual votes
secret until all voters have submitted their votes. Additionally,
Tornado Vote features (optional) properties such as delegation
of voting rights and plural voting. In order to maintain security
and anonymity despite our adaption, we use security analysis
tools for the smart contract implementations [11], [12] and
perform formal code verification, namely VeriSol [13].

In our evaluation, we assess the feasibility of Tornado Vote.
To this end, we develop different Gas cost models to quantify
theoretical limits and real-world performance bottlenecks. We
find that Tornado Vote is technically capable of processing
10k votes in 491 blocks (= 2h) on the Ethereum blockchain
under perfect conditions. While this yields a lower bound,
it is not realistic in practice. We therefore develop residual
capacity models that use historic block sizes to determine the
residual capacity of blocks as a more realistic size, which we
use to quantify the space for additional transactions, i.e., votes.
Since the introduction of EIP-1559 [14], block capacities
are variable and transaction fees depend on past transaction
loads. This mechanism can lead to unaffordable costs when
populating blocks to the maximum. We therefore model the
fee calculation of EIP-1559 and develop Gas cost models
optimized for a constant fee level. Our evaluation reveals a
feasibility trade-off between the number of blocks (or time) for
a number of votes and the transaction costs. The cost models
can help to find reasonable parameters for this trade-off.

We summarize our main contributions as follows:

+ We develop Tornado Vote, a fair, anonymous, and prac-
tical on-chain voting protocol

e To this end, we utilize Tornado Cash, an established
and effective mixer, and show how it can be used to
anonymize votes

o We leverage formal verification and unit tests to secure
our implementation

« We develop different capacity models to quantify the fea-
sibility trade-off, including residual capacity models that
incorporate historic block capacities and fee adjustments

We introduce blockchain concepts and Tornado Cash in
Section II. In Section III, we develop Tornado Vote, present
its implementation, and analyze its security. In Section IV, we
evaluate different cost models. In Section V, we provide an
overview of related work. Section VI concludes the paper.



II. BACKGROUND

In this section, we first introduce the basic concepts of
Ethereum and DApps. Next, we introduce the Tornado Cash
protocol, which we later utilize to develop Tornado Vote.
Finally, we discuss our ethical considerations regarding the
recent U.S. ban on Tornado Cash.

A. Ethereum and DApps

Ethereum [1] and other blockchains with smart contract sup-
port enable novel use cases such as decentralized autonomous
organizations [2] and decentralized finance lending pools [15].
These use cases can all be summarized under the notion of
so-called DApps. They are custom programs implemented as
smart contracts, which are stored on a blockchain and use it to
maintain their own state and coordinate state transitions [1].
DApps therefore profit from blockchain-inherent properties,
e.g., decentralization, integrity, and verifiability.

In this paper, we specifically focus on the Ethereum
blockchain due to its popularity and its usage of the Ethereum
Virtual Machine (EVM), which is also compatible with many
other blockchains, though. Since each transaction requires
computational resources and storage, transaction fees are re-
quired. The computational complexity to execute a transaction
and the involved storage consumption is measured in the
pseudo-unit Gas [1]. In the past, transaction fees used an
auction to determine Gas prices, which led to competition
for available block capacity and therefore high fees. Recently,
Ethereum introduced a new pricing mechanism to calculate
Gas prices dynamically, namely EIP-1559 [14]. It uses a con-
gestion control mechanism that regulates a base fee based on
available block capacities, which will be burned. Specifically,
transaction fees for future blocks increase if the latest block
contains “too many” transactions and decrease, respectively,
if there is “enough” space up. As a reference for “too many”
and “enough”, EIP-1559 uses a target value of 15M Gas (as
before), but now also supports temporary breaches up to 30 M
Gas to detect congestion.

Similar to other permissionless blockchains, Ethereum
stores all transactions transparently and available to enable full
verifiability for everyone. This, consequently, poses a severe
privacy issue if one does not want to make all account activities
public, i.e., income and expenses. There are several techniques
for monitoring and clustering transaction activities, even spe-
cific for the account-based model used in Ethereum [16]. In
order to protect transaction privacy, so-called mixing services
emerged that obfuscate the traceability of account activities by
unlinking the origin of assets and their current owner.

B. Tornado Cash

Tornado Cash [9] is a smart contract-based, non-custodial
mixer for Ethereum’s native cryptocurrency Ether, standard-
ized tokens (e.g., ERC-20 compatible), and other blockchain
assets. For the sake of simplicity, we will refer to all of
these assets as coins in the following. In a nutshell, multiple
accounts deposit coins of the same amount into a shared wallet
and withdraw them with a new account in a way that cannot

be linked. Anonymity is therefore achieved by hiding in a
set of transactions that are indistinguishable, i.e., the so-called
anonymity set. Tornado Cash provides such a wallet, i.e., a
smart contract, and ensures by using a cryptographic proof
that the connection between accounts is not disclosed. At the
same time, the proof also ensures that users can only withdraw
as many coins as deposited. In order to use Tornado Cash,
users do not need to register beforehand and can immediately
deposit coins with the first transaction. Users also determine
the point in time when to withdraw the coins and therefore
can wait for an individually preferred anonymity set size by
monitoring the number of deposits.

From a technical perspective, Tornado Cash provides a
public smart contract instance, the so-called vault and external
relayers. First, a user deposits a coin from her account to
the Tornado Cash vault together with the hash of a personal
secret  and a nullifier k. Additionally, the user deposits a
fee coverage for future transactions to redeem a relayer in
the following steps. Second, the user withdraws the deposited
coin to a new account. However, since a completely new
account for the withdrawal does not have any balance yet,
it cannot cover the transaction fees to request the deposit.
The user therefore contacts a Tornado Cash relayer via an
anonymized communication channel (e.g., with Tor [17]) and
requests the deposit. For that, the user provides a zZkSNARK
zero-knowledge proof (ZKP) [18] to prove the knowledge and
the hash value of k, without revealing r or k in clear-text.
The relayer then submits a new blockchain transaction with
the ZKP and the hash to the vault to transfer the deposit to
the new account. The vault remembers the nullifier and rejects
any future request with the same. The vault also rewards the
relayer with the pre-paid fee from the first step. Eventually,
one cannot reliably trace the depositor back to the withdrawer.

C. Ethical Considerations

The U.S. Department of the Treasury’s Office of Foreign
Assets Control (OFAC) released a press statement on Au-
gust 8, 2022, imposing sanctions on Tornado Cash. OFAC’s
motivation is to prevent money laundering and illegal fi-
nancing. The sanctions had far-reaching implications, such
as banning the use of Tornado Cash, banning trades with
specific Ethereum wallets, and the temporary removal of all
source code repositories from GitHub. Since Tornado Cash,
however, is already deployed on the Ethereum Mainnet, it
cannot easily be removed anymore. Operations will therefore
continue, particularly since the deployed smart contracts have
no assigned owner anymore and do not implement an emer-
gency stop or similar. While our work is technically based
on the same technology, the use is intended for anonymous
voting—and not for any illegal purposes, which we distance
ourselves from. In fact, we consider Tornado Cash to be a
neutral technology on whose usage or exploitation we have
neither influence nor take a position; rather, we consider its
protocol only as building block for blockchain-based voting.
However, another suitable mixer or blockchain can be used if
necessary, e.g., CoinShuffle [19] or MicroMix [20].



III. TORNADO VOTE

In this section, we present Tornado Vote, an Ethereum
DApp that realizes anonymous, fair, and feasible voting. It
is designed specifically with autonomous organizations and
the governance of DApps, e.g., DAO [2], in mind. While we
leverage blockchain transparency to ensure a secure voting
process, we also require on-chain privacy to break the link
between a voter and her vote. We therefore utilize the mixing
protocol Tornado Cash, which has been shown effective in the
past [21]-[23].

In a naive approach, Tornado Cash (or another suitable
mixer for that matter) can be used to realize a very simple
voting. For instance, voters can use unowned accounts each
representing a proposal’s option and whose balances represent
the votes. Accordingly, voters transfer coins anonymously
to these addresses by using Tornado Cash (as explained in
the previous section) and eventually compare the balances to
come to a decision, e.g., the account/option with the higher
balance wins. As illustrated in Figure 1, this approach has
the great advantage that other (regular) Tornado Cash users
enlarge the anonymity set. This naive approach, however, has
some serious, inherent implications: it clearly allows plural
voting, where one entity can vote multiple times. While this
can be considered as weighted voting, there is no mechanism
to easily limit the number of votes per entity. Moreover, the
unowned accounts reveal the progress of the voting process
and intermediate voting results, which violates the concept of
fair voting [10]. Lastly, the approach increases voting costs as
it not only requires transaction fees but also transfers coins to
a voting account.

In order to make these implications optional and not in-
herent to the voting process, we developed Tornado Vote.
In particular, we extend the voting process with a commit-
and-reveal mechanism, which we use to collect votes without
revealing the result until the end of the voting, i.e., realizing
fair voting. Since we additionally issue our own voting token
without inherent monetary value, we can control the number of
votes. Yet, plural or weighted voting can still be realized with
a voting token by issuing the token according to the respective
weights. In the following, we define design requirements,
properties, and assumptions of our approach. Next, we present
the protocol of Tornado Vote and its different voting phases.
Finally, we present the technical infrastructure and security
considerations.

A. Design Requirements and Properties

Tornado Vote inherits properties such as correct proto-
col execution and public verifiability from the underlying
blockchain. Nevertheless, there are additional design require-
ments and properties of Tornado Vote, which we define and
elaborate as follows.

Eligibility. Tornado Vote requires a voting token to prove
eligibility. More specifically, Tornado Vote requires its own
custom ERC-20 token per voting and an initial voting ad-
ministrator to create and transfer all tokens to eligible voters.
Hence, the number of the number of votes is limited by tokens
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Fig. 1. Utilizing Tornado Cash directly for anonymous voting yields an
enlarged anonymity set comprising voters and other users: a voter deposits
a coin and anonymously transfers it to one of multiple unowned accounts,
whose balances eventually represent the voters’ decision.

and managed as standard blockchain tokens. The administrator
is responsible for the correct handling at the beginning. After
the distribution, the administrator should not own any tokens
anymore and should be unable to mint new tokens, which both
can be verified on-chain. A voter uses her token to initiate the
voting process by depositing it to Tornado Vote. Please note
that the voting token does not have any inherent monetary
value and therefore does not unnecessarily drive the voting
costs as in the naive approach.

Transferability. In some cases, depending on the voting
type, it makes sense to allow the delegation of voting rights,
e.g., for representative or liquid democracy. Using an ERC-20
compatible token as voting token clearly allows and, to some
extent, can even be used to encourage the transfer of vot-
ing rights. In fact, preventing transferability is a technical
challenge because even if a token cannot be transferred to
another account, the whole account could be transferred to
someone else by sharing its private key. To this end, if a
voting must reliably prevent transferability, the right to vote
could be tied to the identity of a voter. For example, by using
anonymous credentials to prove that a voter is personally
eligible to vote regardless of the blockchain account, while
keeping all personal information secret [24]. We therefore
consider transferability an optional feature that Tornado Vote
can enable or restrict.

Plural Voting. While democratic voting typically strives
for equal voting weights, shareholders of capital stock, e.g.,
as in the DAO, gain voting weights according to their stake.
We can realize weighted voting by issuing voting tokens to
voters according to their stake, for example. This eventually
leads to plural voting, an instance of weighted voting. As with
transferability, we consider plural voting an optional feature
for Tornado Vote.

Fairness. In the context of voting, fairness implies that
preliminary counts do not influence voters while voting is in
progress [10]. Therefore, the voting system must be built in
such a way that votes are not published before the final tally-
ing. That obviously presents a technical challenge for public,
permissionless blockchains. Tornado Vote therefore requires a
commit-and-reveal mechanism. With this mechanism, voters
first commit to their vote and only when all voters have cast
their vote, the result will be disclosed as clear-text vote.
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Fig. 2. The administrator mints a limited amount
of voting tokens V and transfers them to eligible
voters. Depending on the type of voting, dele-
gation of voting rights and/or plural voting are
possible by transferring tokens accordingly.

Anonymity. Voter privacy is achieved by the unlinkability
of voters’ accounts and their votes. To this end, Tornado Vote
is based on the Tornado Cash protocol. While the public token
balances might reveal the eligible voter accounts, the mixing
protocol ensures that voters can anonymize their voting choice.
In order to achieve a high level of anonymity, a high number
of other participating voters is necessary. As we will describe
later in detail, a relayer service is also necessary to cast a
vote. The interactions with relayers must be carefully timed to
prevent de-anonymization attacks by time correlations, which
we assume are the voters’ responsibility. We also emphasize
that, as with any other public voting process, voter privacy
is only guaranteed if the final result is not unanimous. Ad-
ditionally, network communications between the voters and
the relayers must not reveal any metadata that could be
correlated. Therefore, voters should use an anonymous channel
to communicate with relayers, e.g., with Tor [17].

Trust. Following the principles of a permissionless
blockchain, trusted third parties and centralized components
must be avoided. While Tornado Cash, and therefore Tornado
Vote, require a separate relayer infrastructure, the relayers do
not gain any further permissions or trust on the protocol side.
Their only task is to forward transactions and cover fees, which
will eventually unlink the sender and receiver accounts on
chain. Additionally, a relayer cannot manipulate transactions
due to their cryptographic signatures and ZKP verification, so
that a violation would be noticed and rejected. We assume that
sufficient relayers are available to choose from.

Feasibility. Blockchain-based voting systems are limited
primarily by the blockchain transaction throughput and smart
contract capacities. This limits the number of deposits and
thus theoretically affects anonymity. According to an empirical
study of blockchain-based voting in [3], we consider n = 10k
votes as a reasonable number for use cases such as a DAO.
Therefore, Tornado Cash must be built to handle that many
votes with respect to external blockchain constraints.

B. Protocol

Tornado Vote distinguishes between three roles: an admin-
istrator, voters, and relayers. Each voting is split into three
phases: a setup, a commitment, and a voting phase.

Fig. 3. Voters deposit their voting token, the fees for
the relayers, and a hash. Next, voters send ZKPs for
proving ownership of the token and a commitment
including their vote v to the relayer. The relayer
forwards everything and receives a service fee.

Fig. 4. The voters reveal their commitment and
vote to the relayer, who transfers the voting token
to the corresponding vote address. The relayer
receives a second service fee.

Setup phase. First, the smart contracts are deployed to
the blockchain by the administrator, which comprises the
Tornado Vote anonymity provider, ERC-20 compatible voting
token, and the voting smart contract. Second, the administrator
publishes the voting proposals and sets voting parameters, e.g.,
the voting period and decision quotas. Additionally, the admin-
istrator mints a limited amount of voting tokens exclusively for
this voting. Each token allows the submission of exactly one
vote and represents a single vote in the final phase. After this
setup, the administrator owns all voting tokens V, as shown
in Figure 2, Step 1. The administrator transfers these voting
tokens irrevocably to the accounts of eligible voters (Step 2).
Once the administrator has transferred all voting tokens, the
voting process continues with the commitment phase.

Commitment phase. At the beginning of the commitment
phase, voters generate their own individual random token
secret sec; and a random nullifier k£ locally. As shown in
Figure 3 (Step 3), each voter then transfers the voting token to
the Tornado Vote vault, similar to a deposit in Tornado Cash.
This includes two times the transaction fee (required for the
relayer) and the Pederson hash value Hpeq(sect||k) [25]. We
use the Pedersen hash, as in the Tornado Cash protocol, for
efficient ZKP computations. Otherwise, we use SHA-3 where
possible to save Gas. After an appropriate waiting time, the
voters generate another commitment secret sec. to commit to
their vote v before revealing it. The voters therefore send the
first 20 bytes of the hash value Hspa (sec.||v), the hash of the
nullifier Hpeq(k), and a ZKP for sec; to a relayer (Step 4).
The relayer then forwards everything on-chain (Step 5) to
Tornado Vote. Tornado Vote accepts the commitment if the
ZKP contains a valid sec; (without revealing it) and verifies
if k was not used before. Therefore, Tornado Vote does not yet
experience the voting choice but remembers the corresponding
computed hash value and the hash of k& in IN. Lastly, Tornado
Vote rewards the relayer with Ether to compensate for the
transaction costs. Once all voters have committed to their vote,
we transition from the commitment to the voting phase.

Voting phase. In the last phase, all voters reveal their
individual voting choices via a relayer, as shown in Figure 4
(Step 6). To this end, the voters reveal their vote in clear-
text and the commitment secret sec.. This way, Tornado
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Fig. 5. Tornado Vote’s architecture and interactions between its components.

Vote can cross-check that the vote is eligible (Step 7). If
so, Tornado Vote transfers one of the ERC-20-tokens to an
unowned account, which represents the corresponding voting
choice (Step 8). The final balances of these addresses even-
tually represent the final voting results. After each eligible
vote is processed, Tornado Vote again rewards the relayer to
compensate for the transaction costs (Step 9).

C. Implementation

Tornado Vote’s smart contracts are implemented in Solidity
for Ethereum and EVM-compatible blockchains. While Tor-
nado Vote’s source code is primarily based on Tornado Cash,
it runs independently of it and is deployed entirely on its own.
By default, Tornado Vote consists of four components: smart
contracts, front-end, relayers, and anonymous communication
channel (Tor). As shown in Figure 5, all interactions are
managed by a central Tornado Vote instance. For the commit-
ment and vote submission, voters use a Tornado Vote relayer
to prevent third parties from linking the two interactions.
Furthermore, to protect connection metadata from the relayers,
the voter communicates via Tor with the relayers. Internally,
Tornado Vote is divided into several smart contracts: the vault
(also called anonymity provider), Merkle Tree management,
ERC-20 token, ZKP verifier, and an additional voting contract.
The latter takes care of following the voting phases and
counting the votes.

The voters’ front-end cannot be used without further ado,
as voters require software libraries to generate ZKPs and may
download a web-based graphical user interface to interact
with Tornado Vote. These software components must first be
downloaded, although access to central infrastructures is not
a problem here, because file signatures and on-chain proof
verification can ensure correctness. Please note that we did
not develop a graphical user interface but provide automated
test cases which simulate user interactions. The tests cover
a sample voting process and edge cases. To this end, they
can be executed in a Truffle project environment on the local
machine or an existing EVM network. Furthermore, since
the Tornado Cash relayer infrastructure is not compatible
with Tornado Vote, we provide a proof-of-concept relayer
implementation for test purposes. All implementations are
available on GitHub.'

Uhttps://github.com/robmuth/tornado-vote

D. Security

The security of Tornado Vote relies on various components.
First of all, the Tornado Vote smart contracts are based on
the original Tornado Cash smart contracts. Commissioned
audits confirm the security of Tornado Cash’s smart contracts,
cryptography, and circuit system [21]-[23]. For the security
of Tornado Vote, we refer to these audits and therefore focus
on our customizations for the voting process. To this end,
we use security analysis tools and well-established security
libraries. Additionally, we verify our voting process with a
formal verification proof framework. In the following, we
analyze and improve Tornado Vote’s security and explain the
technical measures in more detail.

1) Vulnerability Analysis Tools: To ensure that our smart
contract customizations do not introduce security vulnera-
bilities, we use tools for automated code security analysis.
Durieux et al. [26] analyzed different tools and concluded
that Mythril [11] and Slither [12] offer the best vulnerability
detection abilities. We use both tools to detect known vul-
nerabilities; however, we point out that there may still be yet
unknown and undetectable vulnerabilities. Additionally, smart
contracts are often so highly complex that the analysis of con-
ditional branches and potentially many possible states cannot
be performed in sufficient time. We therefore consider these
tools as very useful and to some extent essential for secure
smart contract programming. As a result, both tools confirm
that our changes do not introduce new security vulnerabilities.

2) Formal Verification: Formal verification is a technique
to prove that given rules and conditions are true for a given
program, i.e., a smart contract in our case. For example,
a condition that proves that a token smart contract cannot
issue more tokens than specified at initialization. Thus, if
the condition can be fulfilled, it is formally proven that no
vulnerability exists to add new tokens arbitrarily. To do so,
a formal verification tool must inspect every possible branch
in the program logic and verify its states. However, such an
excessive state inspection and verification can take a very long
time, but if so, it eventually guarantees the condition.

For Tornado Vote, for example, we define conditions that
there must be the correct number of votes after each sub-
mission. That is, by requiring that a voting counter always
increases by one after submitting a vote, we prevent a vote
from being ignored, counted twice, or leading to an integer

// #Votes == #Tokens
VeriSol.ContractInvariant (VeriSol.SumMapping (_balances) ==
_totalSupply) ;

// Optional: Voters can only deposit tokens to Tornado Vote
// in function _beforeTokenTransfer (_from, _to, _id)
if (currentBlock >= commitPhaseBlock && currentBlock <=
votingPhaseBlock) {
assert (balanceOf (admin) == 0);
assert (_to == tornadoVoteAddress) ;

}

Listing 1. Formal verification rule for VeriSol to verify that the number of
submitted votes equals the total number of tokens, and an optional check to
prevent token transfers to other accounts.



overflow that would reset the counter to zero. To this end,
we use formal verification similar to our unit-test cases but
universal and without requiring implementation details.

Several formal verification tools and frameworks for smart
contracts exist. We use Microsoft Research’s VeriSol [13]
since it is open-source, compatible with Solidity, and can be
executed locally. VeriSol provides a library with additional
assertion functions, and verifies all possible outcomes. In
Listing 1, the first formal verification rule ensures that the
number of possible votes always equals the number of minted
voting tokens. To this end, this rule sums up all token balances
and compares the sum with the total voting token supply.
Additionally, we developed several other assertions for all
voting phases directly into Tornado Vote’s smart contracts.
While most rules can be successfully verified right away,
others require constraining parameters or minor smart contract
modifications due to code complexity. In summary, we devel-
oped and tested 13 conditions with 45 assumptions to verify,
from which 11 conditions can be fully verified and 2 require
minor smart contract changes. All rules and their verification
results are available in our GitHub repository.

IV. EVALUATION

Performance and costs are essential factors for voting sys-
tems, which in the case of blockchain-based voting lead to
a feasibility trade-off. Therefore, we analyze the feasibility
of Tornado Vote for ideal best-case scenarios with our Gas
costs model and compare it with real-world conditions using
our residual capacities model. We therefore assume that all
available block capacities are available for voting transactions
and use Ethereum Mainnet data to evaluate realistic capacities.
Since our residual capacities model disregards transaction
costs, we develop an economic model to find a feasible
trade-off between maximum performance and minimum costs,
which does not cause the transaction costs to skyrocket but still
keeps the overall duration reasonable. Importantly, all models
are optimistic and should be considered a lower bound for
performance and costs.

For clarification, we use the term Gas costs to refer to
the technical transaction costs in Gas, i.e., the fixed costs
due to the transaction’s computations and storage usage, and
transaction costs to refer to the final costs that the transaction
sender must pay in Ether or U.S. Dollars (USD), respectively.

A. Gas Costs Model

We evaluate the Gas costs of each Tornado Vote transaction
for multiple votes. We, therefore, deploy the smart contracts
locally on Ganache and run exemplary voting test cases with
up to n = 250 votes, as a greater n has no significant
effect on the local Gas costs. As shown in Table I, Gas costs
for the one-time deployment remain constant for different
n, while the transactions for registering eligible voters and
submitting votes fluctuate during the following phases (cf.
minimums, maximums, means, and the corresponding standard
deviation). The Gas costs at the deposit are the most expensive
voting transactions, because Tornado Cash internally updates

TABLE I
GAS COSTS FOR DEPLOYMENTS AND VOTING TRANSACTIONS.

Gas Costs
Transaction Paid by Min Max Mean o
Deployments Admin 8,192k - - -
Token transfer ~ Admin 43k 58k 58k 15k
Approve Voter 44k 44k 44k 0
Deposit Voter 979k 1,000k 979k 21k
Commit Voter 337k 337k 337k 0
Vote Voter 35k 66k 50k 15k
Setup Commitment Voting
//\
Token Transfers ~ Approvements & Deposits ~ Commitments  Votes

Fig. 6. For n = 180 votes, Tornado Vote requires under idealistic conditions
(Gas costs model) 20 blocks in Ethereum for all phases.

a Merkle tree data structure, and, therefore, causes complex
calculations and storage operations. Storage operations are also
the main reason for fluctuating Gas costs because, for example,
initial write operations to storage variables require more Gas
than subsequent operations [1].

Using the measured Gas costs, we can estimate the min-
imum number of blocks for submitting n votes with a
static block size limit 5 (measured in Gas) as follows:
minBlocks(n, ) =

[n-58k—‘ N {n~1.02Mw N [n-337k—‘ N [n-50k—‘ "
8 B B B

Function 1 basically adds the number of blocks in the
various phases, or more precisely, the individual steps. To this
end, we multiply the number of votes with the Gas costs from
Table I and divide them by a static block size limit. We do
this for each step in a voting process, i.e., transfer, approve,
deposit, commitment, and vote. The approve and deposit steps
can be combined and do not require to be finished in separate
blocks. Since all other steps must be completed in separate
blocks, we yield a total of four terms, which we have to round
up to the next integer. For example, a voting with n = 180
votes and a typical block size limit of 5 = 15 M Gas requires
at least 20 blocks. In Figure 6, we also enumerate the number
of required blocks for each of the phases and steps.

B. Residual Capacities Model

Tornado Vote’s practical feasibility is not only bound to the
blockchain’s maximum capacities but also to the blockchain’s
current workload. That is, third-party transactions lead to a
fluctuating load, which changes from block to block. Ac-
cordingly, the amount of Gas available for the number of
votes fluctuates as well. In order to capture this effect, we
use a residual capacities model for the Ethereum Mainnet as
in [3] to estimate the minimum number of blocks for n votes.
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Residual capacities are block capacities in Gas that remain
unused after a block has been mined. That is, the transactions
included in a block did not consume as much Gas as the
actual block size limit allowed. We use residual capacities to
quantify the number of voting transactions that we could add
to blocks without exceeding Ethereum’s capacities. Our model
therefore sums up all residual capacities from a given point in
time towards the past, and calculates how many transactions
from Tornado Vote could have been processed despite existing
background load.

C. Economic Model

With the London Fork on the Ethereum Mainnet on the Sth
of August, 2021, the EIP-1559 specification doubled the block
size limit from ~ 15M up to 30 M Gas. The EIP-1559 protocol
also introduced the so-called base fee per Gas to calculate
how much Ether per Gas a transaction sender must pay as
a minimum for each block. Basically, this base fee increases
if the last block’s size exceeded 15M Gas or decreases if
it was less. However, EIP-1559 specifies that the base fee
can only change by a maximum of +12.5%, even if the last
block size has doubled or halved. This cap provides some
confidence to transaction senders that their transactions will
not be dropped from the mempool for the next few blocks
as long as they provide sufficient Gas. If we, however, would
fill up the residual Gas to the max (8 = 30M Gas) with

voting transactions as in our previous models, the base fee
would increase by 12.5% each block. As a result, the base
fee quickly reaches financially unfeasible amounts. Moreover,
even if we utilize the residual Gas only up to 8 = 15M,
the fees would never go down, but would increase every time
third-party transactions exceed the threshold. This also leads
to financially infeasible transaction fees, as a matter of course.

We therefore propose an economic model that only considers
a block’s residual capacities for voting transactions if the
resulting base fee of the next block does not exceed a given
threshold. To this end, we extend our analysis of the Ethereum
Mainnet and analyze the past base fees since the introduction
of EIP-1559. We show the base fee’s development and median
value in Figure 7. In the economic model, we consider residual
capacities of a block only if its successor block’s base fee
does not exceed 35 %“z,.:l Otherwise, the block is omitted. By
following our economic model, the base fee will not increase
exponentially, but rather settles at the median.

D. Discussion

The presented models allow us to estimate the number
of blocks that Tornado Vote requires for n votes under dif-
ferent assumptions. To this end, we analyze Tornado Vote’s
performance with n = 1 to 10k votes, which we consider
a reasonable number of votes for a voting DApp [3]. Since
the block Gas limit was doubled to 30 M with EIP-1559, we
evaluate our models with 5 = 15M and 30 M Gas separately.

Figure 8 shows the expected trend that an increasing number
of votes n (on the x-axis) leads to an increasing number
of required blocks (on the y-axis). The Gas costs model
constitutes a fundamental lower bound for Tornado Vote since
it assumes that all capacities are exclusively available. It
quantifies the limit of Tornado Vote in Ethereum, which is
limited by Ethereum’s transaction throughput. For instance, for
n = 10k votes, an optimal coordinated voting with multiple
votes per block requires at least 491 blocks with a block size
limit of 30 M Gas. Multiplied by an average block generation
time A = 15s per block, such a voting would require at least
~ 2 hours. Accordingly, half the block size limit of 15M
doubles the number of minimum blocks.

Since our Gas costs model ignores the blockchain’s current
workload, i.e., third-party transactions, we estimate the corre-
sponding number of blocks with our residual capacities model,
as well. For that, we measured the residual capacities of the
Mainnet from 2022-11-16 until enough residual capacities for
10k votes accumulated. As shown in Figure 8, utilizing resid-
ual capacities therefore requires more blocks, as the blockchain
capacities of the Ethereum Mainnet are no longer exclusively
available. Interestingly, the residual capacities with 30 M Gas
(cf. bold dots) converge to the Gas costs model with 15M
Gas. The reason for this is that EIP-1559 theoretically allows
a block size limit of up to 30M Gas, but the protocol always
aims for a block size of 15 M through monetary incentives and
penalties; hence, on average, there are always ~ 15M Gas
residual capacities that were unused. In the end, the residual
capacities model requires at least ~ 6k blocks for n = 10k



votes with 8 = 15M and ~ 1k blocks with 5 = 30M. In
practice, however, these residual capacities cannot be used
entirely because the base fee would skyrocket.

Considering the impact of third-party transactions on the
base fee per Gas of EIP-1559, our economic model aims to
keep the base fee at a financially reasonable threshold. As
shown in Figure 7, we therefore analyzed the base fee for past
transactions on the Ethereum Mainnet. Using the median base
fee as threshold in our economic model, we will approximately
maintain this base fee despite our voting transactions. Due to
third-party transactions, however, the base fee can temporarily
also exceed the median. Following the economic model further
increases the number of minimum blocks, which can be seen
in Figure 8 (cf. solid bold line). For instance, n = 10k
votes require at least 189 k blocks, which equals approximately
33 days with the same block generation rate A as before.

In order to get a sense of the final costs, we estimate
the corresponding transaction costs in USD. Therefore, we
take the median exchange rate since the introduction of EIP-
1559, which was 2,780.72 % at the time of writing (Source:
etherscan.io from 2021-08-05 to 2022-11-16). Calculating the
minimum Gas for a single vote with the Gas costs model,
one vote costs approximately 4.02 USD. Taking the median
base fee of 35%“;? into account as well, the costs for one
vote increases to ~ 141.06 USD. This rather high price is,
of course, only the case if the voting is completed in optimal
time, but in any case, we can see that the costs do not increase
infinitely, as with the Gas costs or residual capacities model.

Finally, we compare Tornado Vote’s costs with the naive
Tornado Cash approach (as explained in Section III). To this
end, we analyzed all past deposit and withdrawal transactions
to Tornado Cash on the Ethereum Mainnet since EIP-1559
for the smallest denomination, i.e., 0.1 ETH. Considering the
median of Gas costs for a deposit plus withdrawal transaction,
a vote using Tornado Cash directly would cost approximately
1.26 M Gas or 123.25 USD with the same Gas price and
exchange rate as before. If we also consider the additional
0.1 ETH, which has to be sent to vote, the price per vote
increases to approximately 401.32 USD. While the coin de-
posit covers the service fee for the relayer, we assume that
for Tornado Vote the relayer service is provided for free, e.g.,
because the voting administrators have an intrinsic motivation.

Concluding, our model analyses revealed best-case capabil-
ities of Tornado Vote. In practice, filling blocks with voting
transactions en masse would have a significant and unpre-
dictable impact on the whole blockchain, though. So, our mod-
els cannot predict accurate durations because unpredictable
third-party transactions influence or would be influenced by
such a large amount of voting transactions. However, we can
use our models to assess lower-bound durations and costs.

V. RELATED WORK

In the following, we introduce related blockchain-based
voting protocols and point out their key features. While
blockchain-based voting is a commonly implemented con-
cept [2], [3], [27]-[29], we focus on anonymous voting.

McCorry et al. [6] implement an anonymous voting pro-
tocol based on the Open Vote Network. It is implemented
for Ethereum and allows up to 40 voters. A self-tallying
mechanism computes the final results, but also constitutes a
computational bottleneck, which prevents practical implemen-
tation in larger-scale voting DApps. While Tornado Vote is
bound to a feasibility trade-off as well, we showed that our
approach can scale reasonably well to 10k votes. In order to
improve scalability, Seifelnasr et al. [7] introduce an off-chain
tallying process for McCorry et al.’s voting implementation.
Therefore, they rely on at least one trusted instance. Killer
et al. [8] implement an anonymous blockchain-based voting
that is receipt-free. Similarly to Tornado Vote, they also use a
mixing protocol. In contrast, however, their proposal requires
its own permissioned blockchain and therefore cannot be
deployed on Ethereum. By relying on a proof-of-authority
consensus, Killer er al. achieve significant better scalability
and performance than with a permissionless blockchain. Other
blockchain-based voting protocols defer to completely private
networks [30]-[32]. With Tornado Vote we avoid trusted
third parties as all voting processes are implemented on-
chain, and relayer infrastructure can and does nothing more
than forward transactions, so no further trust is placed in it.
Additionally, we maintain compatibility with DApps on the
Ethereum blockchain.

For the sake of completeness, we are aware that electronic
voting in general has many other weaknesses without further
ado, primarily due to other security and privacy issues [33],
[34]. We therefore envision Tornado Vote to be used for the
governance of DApps, which seems to be able to tolerate some
of these trade offs—unlike elections.

VI. CONCLUSION

In this paper, we designed Tornado Vote, a new blockchain-
based voting protocol to improve decision-making processes
of DApps. It offers anonymous, fair, and practical voting with
optional properties such as transferability and plural voting.
As a building block, we adapted the well-established mixing
protocol Tornado Cash to decouple voters’ wallets from their
votes. We used smart contract analyzing tools and formal
verification to improve the reliability and security of our
adaptations. To quantify the feasibility trade-off, we developed
different evaluation models that yield Tornado Vote’s limits
and can help to adjust the trade-off for practical usages.
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