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Abstract. MAYO is a topical modification of the established multivari-
ate signature scheme UOV. Signer and Verifier locally enlarge the public
key map, such that the dimension of the oil space and therefore, the pa-
rameter sizes in general, can be reduced. This significantly reduces the
public key size while maintaining the appealing properties of UOV, like
short signatures and fast verification. Therefore, MAYO is considered
as an attractive candidate in the NIST call for additional digital signa-
tures and might be an adequate solution for real-world deployment in
resource-constrained devices.
When emerging to hardware implementation of multivariate schemes
and specifically MAYO, different challenges are faced, namely resource
utilization, which scales up with higher parameter sets. To accommo-
date this, we introduce a configurable hardware implementation designed
for integration across various FPGA architectures. Our approach fea-
tures adaptable configurations aligned with NIST-defined security levels
and incorporates resources optimization modules. Our implementation is
specifically tested on the Zynq ZedBoard with the Zynq-7020 SoC, with
performance evaluations and comparisons made against previous hard-
ware implementations of multivariate schemes.
Furthermore, we conducted a security analysis of the MAYO im-
plementation highlighting potential physical attacks and implemented
lightweight countermeasures.

Keywords: MAYO · Multivariate Cryptography · Post-Quantum Cryp-
tography · Digital Signature · Hardware Implementation · Physical Se-
curity

1 Introduction

As quantum computing continues to advance, it is anticipated that quantum at-
tacks can break many of the computational problems that classical cryptography
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relies on, such as factorization and discrete logarithms used in RSA and ECDSA,
respectively. To address this, researchers have proposed new mathematical as-
sumptions and computational problems that are difficult to solve with quantum
computers, resulting in the field of post-quantum cryptography. These new as-
sumptions are grouped into different families, such as lattice-based, code-based,
hash-based, and multivariate cryptography.

Multivariate schemes mainly rely on the difficulty of solving large systems
of multivariate quadratic equations, known as the MQ Problem. As such, the
signature scheme Rainbow [DS05] was a finalist in the third round of the NIST
post-quantum cryptography (PQC) Standardization Process. Rainbow is a two-
layered version of the UOV signature scheme [KPG99]. Hence, multivariate sig-
nature schemes based on the oil and vinegar principle received a lot of attention.
They offer very short signatures and efficient verification, since the signature is
mainly the solution to a system of multivariate quadratic equations, and verifying
boils down to evaluating the polynomials at the presumed solution. Still, during
the third round, Beullens developed an algebraic attack on Rainbow [Beu22a],
targeting the layer structure that differentiates Rainbow from UOV. This led to
the elimination of Rainbow from the ongoing process since it lost all its alleged
advantages over the base scheme UOV.

Since mainly lattice-based signatures remained in the competition, NIST
called for the submission of additional post-quantum digital signature schemes
to enhance the given variety of signatures by prioritizing those that are not
reliant on structured lattices, have short signatures and fast verification. The
majority of the multivariate schemes submitted to this process are based on the
oil and vinegar principle.

MAYO, introduced in [Beu22b], is one of them. It uses the same trapdoor - a
secret oil space that is annihilated by the public key map - but is developed such
that the signer and the verifier locally enlarge the public key matrices. Therefore,
the dimension of the oil space can be reduced. That also allows to reduce other
parameters like the number of variables in the quadratic equations since certain
algebraic attacks get harder with a smaller oil space [KS06]. In total, this leads
to significantly smaller public keys in MAYO, while keeping good performance
numbers and signature sizes. For instance, with parameters targeting the first
security level of the NIST process, the public key size of MAYO is 1,168 bytes,
the secret key is 24 bytes, and the signature size is 321 bytes [BCC+23]. These
results make the MAYO signature scheme even more compact than state-of-the-
art lattice-based signature schemes such as Falcon and Dilithium [PQD23].

Contribution In this paper, we present an open source pure hardware implemen-
tation of the multivariate signature scheme MAYO. Our main target was a trade-
off between SRAM/BRAM Consumption and FPGA Slides. In a second part,
we investigated the physical security of MAYO implementation against side-
channel analysis and fault-injection attacks. We, moreover, suggest lightweight
countermeasures and implement them.
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The contribution is summarized as follows:

• We manually settle a pure hardware implementation of MAYO. Our im-
plementation is reconfigurable and can be easily integrated with different
FPGA architectures and for different security levels.

• Certain functionalities used within key generation and signing are optimized,
with a focus on low memory consumption.

• We present a new approach for the Gaussian solver and compare it to the
well-known GSMITH approach of Rupp et al. in [REBG11].

• We considered threats emerging from possible fault injection and side channel
analysis attacks, and cover them by employing low cost countermeasures.

The source code is available upon request.

Deployed Parameter Set When we started with the hardware implemen-
tation, there was only one proof of concept implementation available on
https://github.com/WardBeullens/MAYO and it used the parameter set (n =
62,m = 60, o = 6, k = 10, q = 31) (see also [Beu22b, Section 8]). Thus, we
also deployed these parameters in our work. In the meantime, the parameters
were updated and as a main difference, MAYO also works over a field with even
characteristic now, i.e., q = 16. This allows for higher efficiency and further im-
plementation tricks, since now one field element occupies 4 bits instead of 5, and
consequently, 2 field elements can be stored in one byte. The other parameters
were also updated, but with minor impact. Thus, our work is one of the very few
implementations of a multivariate schemes that utilizes a finite field with odd
characteristic.

Related work At the time of writing this paper, there is a scarcity of complete
hardware designs for post-quantum cryptographic schemes [ZZW+21, XL21,
FG18,HZ18]. However, given that the NIST PQC reached the fourth round and
started the call for additional digital signature schemes, it is expected that more
dedicated hardware designs will emerge. These designs would be instrumental in
showcasing the strength and inherent properties of specific protocols [NIS23a].

Multivariate schemes necessitate the development of comprehensive and ex-
tensive implementation designs to address the challenging gaps due to the
schemes’ large key sizes [DS05,KPG99]. These key sizes often pose challenges for
devices with limited resources, as they may struggle to accommodate the stor-
age requirements of these schemes. Moreover, multivariate schemes commonly
involve memory and time-consuming blocks, with the Gaussian solver being
a well-known performance bottleneck [REBG11]. Despite the above-mentioned
challenges, there have been a few published hardware implementations that have
reported results for multivariate schemes [TYD+11,HZ18,FG18].

In [FG18], Ferozpuri and Gaj present a high-speed FPGA implementation
of Rainbow. Their hardware implementation uses a parameterized system solver
where the execution time is proportional to the system dimension, i.e., it can
solve an n-by-n system in n clock cycles. Moreover, their work reduces the num-
ber of required multipliers by almost half, speeds up execution as compared to
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the previous state-of-the-art work, and implements Rainbow for higher security
levels.

In [TYD+11], Tang et al. present another high-speed hardware implementa-
tion of Rainbow. The authors targeted similar functionalities for optimization
as in [FG18], i.e., the Gaussian solver and the multipliers. They developed a
new parallel hardware design for the Gaussian elimination and designed a novel
multiplier to speed up the multiplication of three elements over a finite field.
With Rainbow being broken [Beu22a], all its previously published software and
hardware implementations needs to be revised and transferred to secure schemes
for practical use. To address this issue, MAYO is seen as a viable alternative,
showcasing improved performance results.

Simultaneous work During the preparation of this paper, hardware implemen-
tations of UOV [BCH+23] and MAYO [HSMR23] were published in 2023. The
latter already features the updated parameter set of MAYO (n = 66,m = 64, o =
8, k = 9, q = 16), where m is chosen to be a multiple of 32 and q is a power of 2
to facilitate further implementation optimizations.

2 Preliminaries

The MAYO signature scheme [Beu22b] is a special modification of the UOV
signature scheme [KPG99] and belongs to the field of multivariate cryptography.
Herein, the main object is the multivariate quadratic map P : Fn

q → Fm
q with

m components and n variables. In more detail, it is a sequence p1(x), . . . , pm(x)
of m quadratic polynomials in n variables x = (x1, . . . , xn), with coefficients in
a finite field Fq. Very abbreviated, multivariate cryptography is based on the
hardness of finding a preimage s ∈ Fn

q of a target vector t ∈ Fm
q under a given

multivariate quadratic map P, i.e., solving a multivariate system of quadratic
equations. This task is often referred to as the MQ problem. One way that allows
the signer to compute a signature s is to install a secret trapdoor into the public
map P.

2.1 The Trapdoor in UOV

In UOV, the trapdoor information is a basis of a secret linear subspace O ⊂ Fn
q

of dimension dim(O) = m, the so-called oil space [Beu21]. The multivariate
quadratic map P : Fn

q → Fm
q is then chosen in a way that it vanishes on this oil

space, i.e., P(o) = 0m for all o ∈ O. For the multivariate quadratic polynomials
pi(x), which constitute the map P via P(x) = p1(x), . . . , pm(x), one can define
their polar form or differential as

p′i(x,y) := pi(x+ y)− pi(x)− pi(y) + pi(0).

Since we commonly work with homogeneous polynomials, the term pi(0) will be
omitted in the following. Similarly, we can define the polar form of P as

P ′(x,y) = p′1(x,y), . . . , p
′
m(x,y).
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As shown in [Beu21, Theorem 1], the map P ′ : Fn
q × Fn

q → Fm
q is a symmetric

and bilinear map. Furthermore, if one has knowledge of the secret oil space, it
can be used to efficiently find preimages x ∈ Fn

q of a given target t ∈ Fm
q such

that P(x) = t. To do so, one can randomly pick a vinegar vector v ∈ Fn
q and

solve the system P (v + o) = t for o ∈ O. This is possible since in

t = P(v + o) = P(v) + P(o) + P ′(v,o) (1)

the term P(v) is constant and P(o) vanishes, so whenever the linear map P ′(v, ·)
is non-singular, the system has a unique solution o ∈ O, which can be computed
efficiently. This happens with probability roughly q−1

q . If this is not the case,
one can simply pick a new value for v and try again. Without a description of
the oil space O, the term P(o) implies that Equation 1 constitutes a system of
quadratic equations, which remains hard to solve.

Building a signature scheme directly from this setting has one big disadvan-
tage. The oil space needs to be as large as the image space of the multivariate
quadratic map P, i.e., dim O = m. To counter the Kipnis-Shamir attack [KS06],
the parameter n needs to be sufficiently larger than m, with n ≈ 2, 5m be-
ing used in all currently considered implementations. The parameter m itself
needs to be of a certain size as well, to provide security against direct attacks or
the intersection attack [Beu21]. This leads to key pairs of enormous size, which
is considered the main drawback of multivariate signatures. Recently, Beullens
developed the signature scheme MAYO to tackle this problem.

2.2 Description of MAYO

The essential modification is the downsizing of the dimension of the oil space to
dim O = o < m. Actually, this oil space is now too small to sample signatures,
since the system P(v + o) = t given in Equation 1 consists consequently of
m linear equations in o variables and is unlikely to have any solutions. Thus,
the approach taken in [Beu22b] is to stretch the public key map into a larger
whipped map P∗ : Fkn

q → Fm
q , such that it accepts k input vectors x ∈ Fn

q .
This is realized by defining

P∗(x1, ...,xk) :=

k∑
i=1

EiiP(xi) +
∑

1≤i<j≤k

Eij(P ′(xi,xj)), (2)

where the matrices Eij ∈ Fm×m
q are fixed system parameters with the property

that all their non-trivial linear combinations have rank m.
It is easy to see that P∗ vanishes on the subspace Ok =

{(o1, . . . ,ok)| with oi ∈ O for all i ∈ [k]} of dimension ko. By choosing the
parameters such that ko ≥ m, the k copies of the oil space are large enough to
construct preimages of a target vector t ∈ Fm

q under the whipped map P∗. In

more detail, the signer randomly samples (v1, . . . ,vk) ∈ Fkn
q , and then solves

P∗(v1 + o1, ...,vk + ok) = t (3)
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for (o1, ...ok) ∈ Ok. Observe from Equation 2 that this system remains linear
in the presence of the linear emulsifier maps Eij ∈ Fm×m

q . Thus, the signer can
efficiently compute a preimage {si = vi + oi}i∈[k] of t. Similar to UOV, the
verifier just needs to check if the given {si}i∈[k] satisfy Equation 3.

Remark 1. Please note that both, the signer and the verifier, only locally whip up
the public key map P to P∗, so this modification comes with no additional cost
in terms of key sizes. However, it entails additional computations during signing
and verification. Furthermore, it increases signature size, since now a k-tuple of
vectors in Fn

q constitute the signature. These negative effects are cushioned by
the ability to reduce parameter sizes while maintaining the security level.

2.3 The implemented MAYO functionalities

The above descriptions remain rather high-level and abstract. Here we show
more details about the main functionalities that need to be implemented, e.g.,
evaluations of (parts of) the public key map P via vector-matrix multiplica-
tions and finding solutions to the generated linear system via Gaussian elimi-
nation. Due to the page limit we do not present all the algorithms we imple-
mented here, but refer to the MAYO specification [BCC+23, Section 2], specif-
ically to the algorithms MAYO.CompactKeyGen(), MAYO.ExpandSK(csk) and
MAYO.Sign(esk,M). The latter will also play a major role in our security discus-
sion in Section 4, so it is presented in Algorithm 1 below. The first few lines are
used to sort the bit string of the expanded secret key to the respective matrices
(line 1-5) and to derive a target vector t ∈ Fm

q and salt (line 7-11). The main
part of the signing process can be described by generating random variables (line
15-19), inserting the vinegar variables vi into P to set up a linear system (line
21-35), solving the system (line 37-40) and adding the solution to the vinegar
variables (line 42-45).

3 Hardware Design

In this section, we present the hardware design of our implementation. Our
primary goal is to provide a reconfigurable hardware code that can be easily
integrated with different FPGA architectures and for different security levels.

Although MAYO has keys of reduced size compared to other multivariate
alternatives, it still necessities a large amount of internal memory to execute
the key-generation and signing phase [Beu22b] in the order of several dozen KB.
This is partially attributed to the fact that the keys are stored as seeds. During
the signing the seed is expanded into large matrices, e.g., for the parameter set
(n,m, o, k, q) = (66, 64, 8, 9, 16), the public key of 1168B is expanded into 70KB.

For implementation and testing of our hardware design, we opted for the
target board Zynq ZedBoard with the Zynq-7020 SoC [Xil23], which has 85K
Logic Cells and 4.9MB Block RAM serving as an upper bound for the memory
consumption.
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Algorithm 1 MAYO.Sign(esk,M) [BCC+23]

Input: Expanded secret key esk ∈ Besk bytes, Message M ∈ B∗

Output: Signature sig ∈ Bsig bytes

1: // Decode esk
2: seedsk ← esk[0 : sk seed bytes]
3: O← DecodeO(esk[sk seed bytes : sk seed bytes+O bytes])

4: {P(1)
i }i∈[m] ← DecodeP (1)(esk[sk seed bytes + O bytes] : sk seed bytes +

O bytes] + P1 bytes])
5: {Li}i∈[m] ← DecodeL(esk[sk seed bytes+O bytes] + P1 bytes : esk bytes])
6:
7: // Hash message and derive salt and t
8: Mdigest ← SHAKE256(M, digest bytes)
9: R ← 0Rbytes

10: salt ← SHAKE256(Mdigest ∥R ∥ seedsk, salt bytes)
11: t← Decodevec(m, SHAKE256(Mdigest ∥ salt, ⌈(m log(q))/8⌉))
12:
13: // Attempt to find a preimage for t
14: for ctr from 0 to 255 do
15: # Derive vi and r
16: V ← SHAKE256(Mdigest ∥ salt ∥ seedsk ∥ ctr, k · vbytes + ⌈ko log(q)/8⌉)
17: for i from 0 to k − 1 do
18: vi ← Decodevec(n− o, V [i · vbytes : (i+ 1) · vbytes])
19: r← Decodevec(ko, V [k · vbytes : k · vbytes + ⌈ko log(q)/8⌉])
20:
21: // Build linear system Ax = y.
22: A← 0m×ko ∈ Fm×ko

q

23: y← t, ℓ← 0
24: for i from 0 to k − 1 do
25: Mi ← 0m×o ∈ Fm×o

q

26: for j from 0 to m− 1 do
27: Mi[j, :]← v⊺

iLj

28: for j from k − 1 to i do
29: u← {v⊺

iP
(1)
a vi}a∈[m] if i = j

30: u← {v⊺
iP

(1)
a vj + v⊺

jPavi}a∈[m] if i ̸= j

31: y← y−Eℓu
32: A[:, i · o : (i+ 1) · o]← A[:, i · o : (i+ 1) · o] +EℓMj

33: if i ̸= j then
34: A[:, j · o : (j + 1) · o]← A[:, j · o : (j + 1) · o] +EℓMi

35: ℓ← ℓ+ 1

36:
37: // Try to solve the system
38: x← SampleSolution(A,y, r)
39: if x ̸= ⊥ then
40: break
41:
42: // Finish and output the signature
43: s← 0kn

44: for i from 0 to k − 1 do
45: s[i · n : (i+ 1) · n]← (vi +Ox[i · o : (i+ 1) · o] ∥ x[i · o : (i+ 1) · o])

return sig = Decodevec(s) ∥ salt
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The majority of the system architecture of our hardware design is described
in VHDL, while a few modules are implemented using Verilog.

It is essential for the architecture to be encapsulated as an Intellectual Prop-
erty (IP), to ensure design reuse. We developed Keygen and Sign IPs intended
for use on an end-user device in diverse applications such as the authentica-
tion of bank transactions. It remains paramount that these two IPs guarantee
compliance with the device’s memory constraints, especially regarding time and
memory utilization. In contrast, we expect that the verification process takes
place within an environment boasting ample resources such as a dedicated server,
where security measures are not as critical as those required for IPs operating
directly on confidential data, i.e., Keygen and Sign.

It is possible to utilize one of the IPs on the target chip. Both cores are
independent and capable of coexisting on the Programmable Logic operating at
respectable frequencies.

The CPU-Peripheral communications between the built IPs are handled
through AXI4-FULL, AXI-Lite, and interrupts. The provided firmware takes
care of the AXI transactions, thanks to the Zynq hybrid architecture. Inciden-
tally, the design focuses on maintaining high transfer bit-rates by extensively
leveraging the CPU’s 32-bit architecture. Frequencies and reset signals are also
controlled by the hardcore and are propagated throughout the design.

Based on the proposed MAYO pseudo-code in [BCC+23], the scheme in-
corporates multiple helper functions that are implemented as sub-modules and
arithmetic units within the hardware IPs. This approach fulfills another sig-
nificant design requirement by minimizing unused module and minimizing the
utilization of Flip-Flops (FFs) and Lookup Tables (LUTs). By avoiding code
duplication in hardware and organizing the design into smaller, specialized mod-
ules, each capable of performing a single functionality, the overall efficiency and
modularity of the design are improved.

Considering the scheme’s parameter set, the memory is divided into three
True Dual Port BRAMs, statically partitioned into 2× 256KB BRAMs to store
big matrices and large vectors like the P system and Ok subspaces, and 1×4KB
BRAM designated for small scratch buffers and sensitive information such as
the seed, signature, and secret key. Among these BRAMs, only one of the big
BRAMs is exposed to CPU through the AXI bus. Detailed memory management
and utilization is deliberated later in Section 3.4. As shown in Figure 1, most
modules are connected to the BRAMs accordingly.

3.1 Hash Function

Our design employs the Keccak core [BDH+22] to generate seeds and expand
the message as a first step of the signing process. For the first security level,
SHAKE128 was used as an extendable-output function (XOF) based on the FIPS
202 standard [NIS23c]. We note that for higher security levels, it is necessary
to adjust the parameters within the Keccak core accordingly. Nonetheless, the
fundamental design of the hash sub-module remains applicable and does not
require significant changes.
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Figure 1: Block Diagram of the MAYO Core

The Keccak implementation in [BDH+22] streams data utilizing a different
format compared to the proposed MAYO hardware 32-bit format. To address
this discrepancy, we developed a wrapper around the core. The reasoning behind
this is that MAYO algorithm requires a hash of approximately 120KB for the key
generation. The hash is eventually stored in the inner 32-bit-wide block memory.

The proposed architecture stores the input seed and output message in sep-
arate descriptor-like registers. These intermediate registers are simultaneously
accessed by the hash core and BRAM. The core itself takes care of BRAM
communication and indexing, simplifying the architecture’s state change and its
modularity.

3.2 Random Number Generator

The random number generator leverages AES-128 in CTR Cipher mode, with
the flexibility to seamlessly switch to AES-256 if necessary. Tinkering with key
parameters like seed and counter interval (PRNG-Based) is effortlessly accom-
plished within the core. To optimize FPGA Slice utilization, the core’s decryp-
tion functionalities have been deprecated, given the inherent independence of
CTR-mode from such operations.

3.3 Vector-Matrix Multiplication

Referring to Section 2.2, it is evident that matrix-vector multiplication proceeded
by a Fq space reduction, is a frequently utilized operation throughout the algo-
rithm. Hence, its optimization will improve the performance of our design.

Compared to the initial MAYO Software C implementation5, the vector-
matrix multiplication iterates through a matrix stored in a row-wise manner, as
seen in the left side of Figure 2, multiplying (using MULT operation) the content
with a given series of coefficients and accumulating the results. Once this nested
row/column loop concludes, another loop starts reducing the accumulated result

5 Note here that we refer to the first implementation of MAYO scheme by Ward
Beullens in [Beu22b]
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through MOD operation. For instance, on an ARM Cortex-M3 with ARMv7-M
instruction set, a single MULT operation with 8-bit operands takes around 2 to
3 clock cycles [ARM]. The reduction is done using the MOD operation that is
usually translated to MULT and UDIV as Cortex-M3 lacks native modulo calcu-
lation. Consequently, the vector-matrix multiplication function could consume
up to 6500 clock cycles, excluding the memory load and store operations.

i

j

i8bit

j

Software Implentation

Hardware Implentation

Buffer1

32

Buffer2

DSPs
(MAC)

DSPs
(MAC)

mod q

32
32

row 0

row 1

row 2

row 3

BRAM FETCH 8bit 8bit 8bit

Result
buf1

buf2

en

en

FSM

8 8 88

32

8 8

Figure 2: Matrix-Vector multiplication architecture; on the left side the vector-
matrix multiplication iterates through a matrix stored in a row-wise manner as
in the software implementation. In hardware design, we reversed the indexing
order, and input four bytes to each DSP which executes 4 multiplications simul-
taneously.

In this paper, we process the multiplications differently. Firstly, our design
offers four values on each memory read operation thanks to its 32-bit wide bus
and executes 4 MULT operations from one row simultaneously. Secondly, we
reversed the indexing of the input matrix, as shown in Figure 2.

As matrices are stored row-wise, each memory access returns four sequential
cells from one row. Note that the matrix is stored in BRAMs and not in an FF-
layered structure.

Furthermore, the input of both Digital Signal Processors (DSPs) is com-
posed of 4 bytes. This architecture helps increase the throughput and enables
the parallelization of both MULT and MOD operations.

Once the accumulated data of a block of four columns begins the final MOD
operation, the subsequent block is fetched and starts with MULT operation.
The first row of the Matrix M and the first coefficient of the Vector V are
fetched from the BRAMs. The read port then keeps feeding the system with
blocks from each consequent row noted as M[rowIndex, columnBlock], until
the accumulated result is ready to be stored through a different write-only port
(WriteRES).
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3.4 Memory Organization

The hardware implementation of MAYO mainly relies on BRAMs to store its
vectors and matrices. To ensure that both cores, namely the KeyGen and Sign,
have sufficient stack-like memory, 82% (4.03 Mb) of the available on-chip BRAM
is allocated for the implementation. Thereby we provide enough headroom for
potential parameter modification of MAYO that might increase memory usage,
e.g., when changing the security level from 1 to 5, the expanded secret key size
increases from 70KB to 557KB [BCC+23].

The design aligns itself with the 32-bit ARM multi-core processor architec-
ture and uses a 32-bit data bus width. This approach simplifies data processing
within each sub-module. In the case of MAYO, the values are usually stored in
a 5 bits-wide reduced space. For the NIST security level 1, the scheme operates
on values that are eventually reduced to Fq, meaning that the results must be
less or equal to q = 31. To store such numbers in the BRAM, 5 = ⌈log2(31)⌉ bits
are mandatory. As a result, the design allocates 8 bits of memory (i.e., unsigned
char) for each numerical unit. We, then, exploit the 32-bit architecture in various
pipeline techniques by processing simultaneously four 8-bit values.

It is important to note that our implementation adapts the parameter set
(n = 62,m = 60, o = 6, k = 10, q = 31) and resulted in a public key and sig-
natures have a size of 803B and 420B respectively. However for the NIST first
level the parameters are (66, 64, 8, 9, 16) and result in public key and signature
size of 926B and 387B.
There exist different variants of the MAYO first security level where the public
key size is increased at the expense of smaller signature. Precisely, these variants
increase the n which is the number of variables in the multivariate quadratic
polynomials in the public key at the expense of decreasing k which is the whip-
ping parameter. This results in bigger public key size and smaller signature size
as the whipping parameters are directly connected to the calculation of the sig-
nature.
In addition, the q does not have significant impact on the sizes of the public
key and the signature itself but more on the stack-like memory during the key
generation and the singing processes. On the other hand, if q = 16, one byte can
be used to pack two elements as all elements are in F16. However, this is not the
case for our implementation.

It is important to note, that not all the allocated memory is utilized for
the first security level. In fact, only roughly 70% (2.8 Mb) of the allocated
BRAM of the Zynq device is filled with data. The rest is left empty, but deemed
necessary due to ARM’s 32-bit memory alignment rules. The content of the
BRAM cells is pre-allocated and statically organized since the sizes of most
elements are pre-defined. In other words, all vectors and matrices’ addresses are
provided in a VHDL file to create a mapping. This file is then included in all
sub-modules for better consistency. To eliminate dependency on vendor-specific
SDKs, a set of Python scripts takes charge of memory template generation.
These scripts meticulously analyze the VHDL file, dynamically determining the
required depth of BRAMs. This approach not only fosters platform independence
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but also enhances adaptability by allowing seamless adjustments to memory
configurations based on the specifics of the VHDL code. The result is a more
agile and versatile solution for memory management within the FPGA design,
especially for various parameter sets.

The memory is partitioned into three dual port BRAMs, offering enhanced
performance and flexibility. This configuration allows, for instance, efficient read-
ing from one port while dedicating the other port for writing. Some sub-modules,
such as vector-matrix multiplication, or vector addition, tend to utilize three
ports for dual read and final write operations, therefore allowing better oppor-
tunities for parallelism within the sub-module.

Small buffers and vectors that are not meant to be accessed exclusively by
programmable hardware are found in the smaller BRAM. The big BRAMs are
indeed also shared with the CPU through AXI bus to stream input information
such as the message and secret key to the MAYO core itself. Furthermore, since
the key generation and the signing are not designed to operate synchronously
but rather consecutively, multiple arrays and vector spaces overlap if one of their
lifetimes expires. This approach helps the system avoid unnecessary increases in
memory fingerprints.

3.5 Gaussian Elimination

Solving a System of Linear Equations (SLE) is evidently one of the primordial
computations for the MAYO algorithm to generate a valid message signature
as explained in Section 2.2. Several publications deal with hardware implemen-
tation of Gaussian elimination for various cryptographic applications, primarily
focusing on F2. Among them, GSMITH [REBG11] has been widely recognized
for efficiently handling F2k equations. Unfortunately, GSMITH’s architecture
only conforms with small and medium-sized matrices, whereas MAYO’s SLE
m×m shaped matrix is larger. This quadratic shape depends on the NIST se-
curity level. Not only would the proposed GSMITH architecture utilize costly
resources, but also hinder the overall architecture’s performance and increase
the needed Look-up Tables (LUTs) when targeting F31. GSMITH describes, in
fact, a systolic network composed of various types of tiny processors capable of
specific Gaussian steps and propagating its values. Yet, since the source code was
not open-sourced, we had to redesign GSMITH. The final architecture, however,
fails to meet our resource requirements, depleting the Zynq’s FFs and LUTs, due
to the internal registers required in each GSMITH processor and its interconnec-
tion with the proposed BRAM. When considering the other needed arithmetic
cores, we concluded it was unfeasible to fit GSMITH for the first security level.

To overcome this issue, we developed a state machine that fetches values
directly from BRAM as the matrix is stored externally rather than within the
core’s FFs. Additionally, it was mandatory to allocate sufficient memory to ac-
cumulate every cell in the matrix. In other words, during the first step of the
Gaussian elimination, multiplying rows with scalars may surpass the existing 8-
bit limit. Hence, the targeted matrix is initially unpacked into 16-bit wide values
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with added padding, meaning that every row in the BRAM now contains two
instead of four values.

Moreover, to speed up the mod-inverse, which calculates the needed value
to transform the pivot element into 1 throughout the first scale step, prefilled
Read-Only Memory (ROM) with end results of this operation is utilized in-
stead of performing the actual calculations on run-time. These optimizations
contribute to the overall effectiveness of the MAYO core in solving an SLE.
Although GSMITH might offer superior performance, this core certainly con-
sumes less memory resources. Our architecture is theoretically compatible with
other configuration sets, with a marginal difference in resource utilization. For
instance, n,m, o control the SLE size which should affect BRAM consumption,
while q modifies the LUT consumption, cell width, and the unpacking operation.
The solver should support up to F28 and for smaller q values, unpacking the ma-
trix might become unnecessary, as the result could still fit inside the original
8-bit vector.

3.6 Optimizations and Firmware

Besides resource utilization, the goal of our design is to achieve a reasonable
time area trade-off. Therefore, we designed the sub-modules in a way that they
share the same access to one of the BRAM ports. Nevertheless, the usage of each
port, whether for reading, writing, or both differs. The core responsible for the
vectors addition, for example, features multiple modes depending on the location
of the input vectors in different BRAMs. It efficiently utilizes all available ports
to leverage data throughput and synchronize the addition process accordingly.

Another notable design optimization lies in the polynomial reduction sub-
module where multiple arrays of scratch buffers are used to minimize memory
interactions. Hence, the core is provided only with new values which are stored
as final results.

Various functionalities of MAYO are divided into separate modules, each de-
scribed individually. That said, each module still has access to header-like files
that declare the security level parameters, the memory space allocations, utility
functions required to fetch offsets or even ROM secret keys specifically intended
for non-debugging purposes. Numerous bit vectors are built upon these con-
stants. The code’s style guide itself heavily discourages simple number inclusion,
but instead, it is expected to utilize these pre-defined macro-like lines to im-
prove code readability and ensure that the overall architecture can fit different
configuration sets, i.e., different security levels.

In addition to the hardware implementation, the utilization of the MAYO
core necessitates the development of accompanying firmware. This firmware
serves as the interface between the hardware core and the software MAYO appli-
cation, setting AXI/AXI-Lite transactions up. The existing C Bit-fields feature
Control and Status Registers that can enable debug mode, interrupts, and sup-
ply the ARM CPU with the end of executions information besides the interrupt
signal.
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4 Mitigation of Physical Attack Vectors in MAYO

In Section 2.2, we stated that the secret key is solely given by the secret linear oil
space O. Thus, an attacker is able to forge signatures, as soon as she recovered O.
Even more, the description of the reconciliation attack in [Beu22b, Section 4.1]
shows that it is enough to know a single vector o1 ∈ O, to recover the remaining
space O in polynomial time, since the first vector o1 implies m linear equations
via P ′(o1, o2) on the entries of o2. Consequently, we need to solve m quadratic
equations in n−m−o variables. Since in MAYO n < m+o holds, the remaining
basis vectors of O can be obtained just by solving linear equations.

Moreover, the randomly generated vinegar variables can also be used to
recover the secret key. Recall, that a given MAYO signature has the form
s = (s1, . . . , sk) = (v1 + o1, . . . , vk + ok), so the knowledge of one of the vi’s
together with the corresponding si leads the attacker to a vector of the oil space
and thus, to the full secret key.

In the following, we show different scenarios where the attacker uses fault
injection or side-channel attacks to reveal either a vinegar or an oil vector.

4.1 Fault Injection

The attacks suggested in the following are first-order fault injection attacks and
assume an attacker to be able to skip one specific instruction during the signing
process. The resulting faulted signature is used to recover the secret key.

Skip sampling of vinegar values (re-using) The main idea here is to insert
an instruction skip during the sampling of the vinegar variables. In Algorithm
1, this corresponds to a jump over line 18, for one (or more) of the i ∈ 1, . . . , k.
This fault injection attack forces the same vinegar variable vi ∈ Fn

q to be used
for two consecutive signatures of different messages m and m′. We subtract the
obtained correct (not faulted) signature s and the faulted signature s′ and receive
s− s′ = (s1 − s′1, . . . , sk − s′k). Observe that for the entry i, where vi = v′i holds,
we have

si − s′i = vi + oi − v′i − o′i = oi − o′i.

Since O forms a subspace, we know oi − o′i ∈ O and thus, we found a vector in
the secret subspace.

It has already been shown that UOV [KPG99] and Rainbow [DS05] are vul-
nerable to this kind of attack [AKKM22], so this can be seen as an extension of
the approach to MAYO, which also works with vinegar and oil variables. Note,
that the attack leads to valid signatures, and therefore, cannot be mitigated by
a signature check.

Implemented countermeasure To mitigate this attack we shuffle the vinegar vari-
ables vi ∈ Fn

q at the end of the signing algorithm. This is more secure than zeroing
the respective variables since vi = 0 could also lead to the leakage of oil variables
in the next signing procedure. Thus, it is advisable to permute the entries of the
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used variables instead, rendering them unknown to an attacker and ensuring
vi ̸= v′i.

Skip addition of oil values An attack vector that follows a similar reasoning,
is to skip the addition of the oil variable oi at the end of the signing process
(see line 45 in Algorithm 1) for one (or more) i ∈ 1, . . . , k. If the fault is injected
correctly, this modifies the resulting signature to s′ = (v1+o1, . . . , vi, . . . , vk+ok).
First, we see that s′ is not a valid signature anymore, since P(s′) ̸= t with very
high probability. Let s be the valid signature corresponding to the same message,
then we can compute

si − s′i = vi + oi − v′i = oi ∈ O.

Note that the signing is deterministic and the randomness that is used to
generate the vinegar variable depends solely on the given message, which we
have chosen to be identical. Therefore, vi = v′i. Again, we found a vector of the
secret oilspace oi ∈ O and recover the remaining space with the reconciliation
attack in negligible time.

Implemented countermeasure To avoid this attack we need to guarantee, that
the vinegar and oil variables are really added, and neither of them are part of
the signature by skipping their addition or the assignment of their values. Since
the faulted signature is not valid anymore, one option is to verify the gener-
ated signature. However, this comes with a considerable performance overhead.
Therefore, we rather chose to implement a check, that monitors if the entries
of the computed signature si are different from the earlier generated vinegar
variables vi.

4.2 Side Channel Analysis

In this section, we focus on the leakage of the vector-matrix multiplication func-
tion. This function is called multiple times during key generation, secret key ex-
pansion and signing. It multiplies a secret vector by a known matrix (part of the
public key), as shown in line 29 and 30 of Algorithm 1, as well as in line 16 of the
algorithm MAYO.CompactKeyGen() and in line 17 of MAYO:ExpandSK(csk),
for which we refer to [BCC+23, Section 2.1.5]. In MAYO, or more general, in
UOV-based signature schemes, this is repeated for a considerable amount of

public key matrices P
(1)
i .

An attacker is able to measure the power traces of the multiplication

(vi)j · (P (1)
a )j,· for several a ∈ [m], perform a profiling or a correlation attack,

and predict the value (vi)j which is supposed to remain unknown. This attack
strategy was demonstrated in [ACK+23] ,where the authors attack an imple-
mentation of UOV, that incorporates similar operations as the one mentioned
above. Again, the recovered values of vi lead to efficient key recovery.



16 Sayari et al.

Implemented countermeasure In order to execute the SCA successfully, the at-

tacker needs to know both, the value of the cofactor in P
(1)
a and at which point

in time the target (vi)j is multiplied with this value. Thus, our approach to
mitigate this attack, is to rearrange the order in which the multiplications are
executed. In previous implementations optimized for efficiency a vinegar vari-
able (vi)j is picked and multiplied consecutively to the corresponding entry in all

P
(1)
a for a ∈ {1, . . . ,m}. This way, there is a certain interval in the power trace,

that contains m multiplications of the sensitive value (vi)j with public values.

We treat the P
(1)
a individually, and thus, the entry (vi)j is only multiplied with

(P
(1)
a )j· before we move on to the next multiplication (vi)j+1 · (P (1)

a )j+1,·. Con-
sequently, on a 32-bit architecture, where at least 4 field elements are treated
at once (even 8 if we move to the updated parameters q = 16), this massively
increases the failure probability of a correlation attack, since the power trace
is now related to 4 different secret field elements ((vi)j , (vi)j+1, (vi)j+2, (vi)j+3)
at once, and not only to the same secret element (vi)j as previously. However,
more advanced analysis methods that employ machine learning for the selection
of point of interest might still pose a threat to this approach. This could require
a vast amount of profiling traces and we leave a concrete analysis thereof as
future work.

5 Results, Comparison, and Discussion

In Table 1, we show the resource consumption of the whole design and sub-
modules for the first security level defined by the NIST PQC standardization
process [NIS23b]. The parameters defining MAYO are q (the size of the finite
field), n (the number of variables in the multivariate quadratic polynomials in
the public key), m (the number of multivariate quadratic polynomials in the
public key), o (the dimension of the oil space), and k (the whipping parameter,
satisfying ko ≥ m). For our results, these parameters are set to q = 31, n = 62,
m = 60, o = 6, and k = 10.

Our design stands out as the most optimized among the current implemen-
tations of multivariate schemes concerning resource utilization. The proposed
design effectively utilizes roughly 31% of the total logic resources available on
the Zynq board, specifically accounting for 13K Flip-Flops (FFs) and 21K Look-
Up Tables (LUTs). These resources are distributed among different sub-modules.

The dominance of the Keccak core is evident as it commands the majority of
FPGA slices, enveloping nearly third of the entire design. This dominance arises
from its expansive internal buffer and its’ interwoven XOR network, crucial for
generating the output hash. Additionally, the RNG Core, integrating AES-128,
significantly contributes to resource consumption. Remarkably, the combined
impact of these cores results in approximately 40% (9K LUTs) of the design’s
overall slice usage, underscoring the notion that the MAYO core in isolation
represents a minimalist design.

Our Gaussian elimination proves an improvement in the memory utilization
as compared to the previous work [REBG11]. In [REBG11], the FPGA imple-
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mentation on Xilinx Spartan-3 XC3S1500 (300 MHz) consumes 7,384 and 2,574
LUTs and FFs, respectively, for a number of equations equal to 50. In our im-
plementation on a Zynq Z-7020 (100MHz), for a number of equations equal to
60, the consumption in LUTs and FFs is 1,822 and 413, respectively.

Resource Utilization

Submodules LUTs FFs DSP

Keccak (Hash) 6759 4453 0

RNG 2354 3208 0

Vector-Matrix multiplication 1035 528 8

Oil Space Sampling 176 289 0

Gaussian Elimination 1822 413 3

Vector Addition 485 300 0

Vector Negation 176 93 0

Vinegar Sampling 245/686∗ 277/614∗ 0

BRAMs Port management 448 0 0

FSM Signing 2871 1057 0

Combined Architectures 21000 13005 11
∗

Secure implementation

Table 1: Resource utilization of our
hardware design on Zynq 7020 at a fre-
quency of 100 MHz.

Implementation Platform LUT FF DSP BR
Our Z-7020 @ 100MHz 21,000 13,005 11 129
[HSMR23] KC705 @ 100MHz 91,266 42,113 2 45
[HSMR23] AU280 @ 225MHz 89,014 42,066 2 45
[BCH+23] Artix-7 @ 90.8MHz 32,422 23,262 2 48

Implementation Platform Key Generation Signing
cylcles cycles

Our Z-7020 @ 100MHz 996K 2,867K
[HSMR23] KC705 @ 100MHz 12K 42K
[BCH+23] Artix-7 @ 90.8MHz 11,072K 843K

Table 2: Comparison of our results with
related work

We present in Table 1 the resource utilization of our implementation. While
the implementation by [HSMR23] is highly optimized for efficiency, our imple-
mentation shows better performance in the direction of LUT and FF usage, as
showed in Table 2. We use 4.3x less LUTs and 3.2x less FFs while our BRAM
utilization is 2.8x more, we believe that this is due to the parameter set we fol-
low specifically the choice of q =31. This also has a significant impact on the
execution time, since we could not rely on optimized modules, but had to build
some of them from scratch like the method for solving SLEs (see Section 3.5
for more details). Tuning our implementation to the new parameter set so that
each two elements can be packed in one byte for example will result in reducing
considerably the BRs utilization and execution time.

When compared to the implementation from [BCH+23] corresponding to a
hardware implementation of the variant of ov-Ip with n = 112, m = 44, and
F256, our implementation shows less consumption of LUTs. This is mainly due
to the fact that their implementation LUTs utilization increases with higher
q [BCH+23]. For example, for F256 , the LUT is 8-in-8-out and requires 40 LUTs
in the synthesis, while for F16, it requires 2 LUTs [BCH+23]. Our results show
reduced LUTs and FFs which lead to faster logic operations, potentially resulting
in improved clock speeds and reduced latency, especially for the key generation.
The integration of 8 DSPs for vector-matrix multiplication shows potential for
heightened parallel processing capabilities within the system architecture.

Our primary goal revolved around achieving an efficient usage of memory
utilization and taking a first step towards physical security. Furthermore, our pa-
rameters choice proved the adaptability of the MAYO scheme for deployment in
resource-constrained devices even in case the field is extended to q = 31 instead
of 16. In fact, our implementation offers a commendable trade-off, showcasing an
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adept combination of efficient resource utilization and operational speed. Fur-
thermore, the implementation of the proposed countermeasures had hardly any
impact on resource utilization as shown in Table 1. The increase in clock cycles
that originates from the countermeasures lies in the order of hundreds and can
be disregarded when considering the overall costs.

6 Conclusion

The implementation of multivariate signature schemes has faced challenges due
to their large key sizes, impeding them from deployment on resource-constrained
embedded devices. In response, the MAYO scheme was developed as a new mod-
ification of the mature UOV signature scheme. MAYO has successfully addressed
the issue of large key sizes and can now be seen as one of the prominent candi-
dates of NIST’s call for additional digital signatures in regard of performance,
key, and signature size. In this paper, we introduced a reconfigurable hardware
implementation of MAYO, optimized to reduce the memory consumption dur-
ing the key generation and the signing processes. Our implementation serves
as evidence of MAYO’s practicality for real-world deployment especially when
deployed in resource-constraints devices. In fact, our design highlights the ne-
cessity of time area trade off. Moreover, we discussed a set of new security
challenges brought by the deployment of MAYO in embedded systems, particu-
larly in terms of defending against fault injection and side-channel attacks and
suggest lightweight countermeasures.
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