
Post Quantum Fuzzy Stealth Signatures and Applications

Sihang Pu1, Sri AravindaKrishnan Thyagarajan2, Nico Döttling1, and Lucjan
Hanzlik1

1CISPA Helmholtz Center for Information Security
2NTT Research

July 25, 2023

Abstract

Private payments in blockchain-based cryptocurrencies have been a topic of research, both
academic and industrial, ever since the advent of Bitcoin. Stealth address payments were
proposed as a solution to improve payment privacy for users and are, in fact, deployed in several
major cryptocurrencies today. The mechanism lets users receive payments so that none of
these payments are linkable to each other or the recipient. Currently known stealth address
mechanisms either (1) are insecure in certain reasonable adversarial models, (2) are inefficient in
practice or (3) are incompatible with many existing currencies.

In this work, we formalize the underlying cryptographic abstraction of this mechanism, namely,
stealth signatures with formal game-based definitions. We show a surprising application of our
notions to passwordless authentication defined in the Fast IDentity Online (FIDO) standard.
We then present Spirit, the first efficient post-quantum secure stealth signature construction
based on the NIST standardized signature and key-encapsulation schemes, Dilithium and Kyber.
The basic form of Spirit is only secure in a weak security model, but we provide an efficiency-
preserving and generic transform, which boosts the security of Spirit to guarantee the strongest
security notion defined in this work. Compared to state-of-the-art, there is an approximately
800x improvement on the signature size while keeping signing and verification as efficient as 0.2
ms.

We extend Spirit with a fuzzy tracking functionality where recipients can outsource the
tracking of incoming transactions to a tracking server, satisfying an anonymity notion similar
to that of fuzzy message detection (FMD) recently introduced in [CCS 2021]. We also extend
Spirit with a new fuzzy tracking framework called scalable fuzzy tracking that we introduce
in this work. This new framework can be considered as a dual of FMD, in that it reduces the
tracking server’s computational workload to sublinear in the number of users, as opposed to
linear in FMD. Experimental results show that, for millions of users, the server only needs 3.4
ms to filter each incoming message which is a significant improvement upon the state-of-the-art.

Contents

1 Introduction 2
1.1 Our Contributions . 5

1

2 Technical Overview 6
2.1 Spirit: Lattice-based Stealth Signature . 7
2.2 Generic Transformation: Security with Key-exposure 8
2.3 Fuzzy Tracking . 9
2.4 Scalable Fuzzy Tracking . 9
2.5 From Stealth Addresses to FIDO . 10

3 Preliminaries 11

4 Definitions of (Fuzzy) Stealth Signatures 12
4.1 Security of SS Without Key Exposure . 13
4.2 Security of SS With Key Exposure . 14
4.3 Fuzzy Stealth Signatures . 15
4.4 Scalable Fuzzy Tracking . 16

5 Generic Transformation To Get Security With Key Exposure 18

6 Spirit: Lattice based (Fuzzy) Stealth Signature 19
6.1 Lattice-based Stealth Signature . 20
6.2 Lattice-based Fuzzy Stealth Signature . 21
6.3 Scalable Lattice-based Fuzzy Tracking . 22

7 Conclusion 24

A Discussions about Quantum Random Oracles 29

B Performance Analysis 29

C Additional Preliminaries 31
C.1 Assumptions . 31
C.2 Cryptographic Tools . 32

C.2.1 Statistical Tools . 32

D Group-based Construction against Bounded Leakage 33

E Security Analysis of Generic Transform 34

F Security Analysis of Stealth Signature Without Fuzzy Tracking 35

G Analysis of Post-quantum FMD 39

H Analysis of Scalable Fuzzy Tracking 40

1 Introduction

Cryptocurrencies provide support for trustless and publicly verifiable payments. The sender of
a payment posts a transaction onto a public ledger called blockchain. In the most basic form,
the transaction specifies the sender and receiver’s respective public keys (or addresses), and the
transaction is authorized by the sender via a digital signature wrt. their public key. E-commerce [eco],

2

donation platforms [donc, dona, donb], gaming platforms [ega], etc., are just some of the popular
use cases that are enabled by cryptocurrencies and their trustless payments. For example, donation
platforms accept donations in the form of cryptocurrency payments, and to do this, a donation
platform announces its addresses and users can make transactions paying to these addresses without
requiring permission from any authority.

A critical weakness of the above paradigm is that it lacks reliable anonymity guarantees in its
basic form. Several de-anonymisation techniques [OKH13, SO13, RH13, RS13, MSH+17] for law
enforcement purposes have been demonstrated that link addresses on the blockchain to the real-world
entities that own them. However, it has also led to questionable forms of censorship [fre] of users and
their payments.

A mechanism known as stealth addresses [ste, vS, Tod, CM17] was developed to address these
anonymity issues. For instance, the donation platform publishes a single master address, a so-called
stealth address, and any user can send donations to the platform, by using a locally re-randomized
version of the stealth address called one-time address. Such a one-time address is unlinkable to the
stealth address for any outside observer, consequently, transactions to such a stealth address look as
if they are going to random recipients (and not necessarily the donation platform). Also, with access
to its master secret, the donation platform can link such a one-time address to its stealth address
and further generate the corresponding one-time secret locally, on the fly. Using this one-time secret,
the coins associated with the one-time address can be spent. In this case, the recipient only needs to
publish its master address, and does not need to give out fresh unlinkable addresses for each potential
sender. As the number of senders could well be in the hundreds or thousands (as is the case with
e-commerce, donations, etc.), this mechanism leads to a scalable solution.

The stealth address scheme proposed in [vS] has in fact been deployed in many of the major
currencies like Bitcoin [ste], Ethereum [umb], and Monero [vS]. The mechanism has further found
direct application in privacy enhancement of payment protocols like Blitz [AMKM21]. As Monero
implements stealth addresses via signature schemes, we will refer to the cryptographic abstraction of
the mechanism from [vS] as stealth signatures. Thus we will henceforth use the terms addresses and
public keys interchangeably.

Recent academic works [LYW+19, LLN+20] initiated the formal treatment of stealth signatures
and observed that the construction of [vS] does not satisfy security under so-called key-exposures.
Roughly, this means that if an adversary learns the corresponding one-time secret key for the one-time
public keys that he generated, then he can learn all one-time secret keys of all one-time public keys
that he generates for this particular master address.

More recent proposals of stealth signature schemes [LYW+19, LLN+20] were designed to be
secure against such key-exposure attacks, with the downside that their schemes use heavy tools
such as pairings [BF01] or lattice-basis-delegation [ABB10]. These are currently not compatible
with any of the major cryptocurrencies that exist today. Furthermore, with the threat of quantum
computers looming large, cryptocurrency payments including the pre-quantum stealth signature
mechanisms of [vS, LYW+19] remain vulnerable. While a lattice-based (and thus plausibly post-
quantum) construction of stealth signatures was proposed in [LLN+20], this construction relies on the
aforementioned lattice basis delegation. Consequently, their scheme is most likely too inefficient for
practical use1. We compare our constructions and related works in Table 1. Please refer to Appendix B
for more discussion.

This work is motivated by the following two questions:

• Can we have an efficient stealth signature scheme with security against unbounded key-exposures,

1As the authors of [LLN+20] point out in Section 1.1, their “public key and signature sizes are too large for practical
use”.

3

Table 1: Comparison with Prior Works about Stealth Signatures

Works w/KE1 Security Post-quantum opk Size Signature Size

Monero’s SS [vS] ◦ sEUFCMA ◦ 64 B 64 B

Paring-based SS [LYW+19] • EUFCMA ◦ 231 B 115 B

ABB10-based SS [LLN+20] • EUFCMA • 3.35 GB 3.26 MB

[LLN+20] + NTRU (potential optimization) • EUFCMA • 13.82 KB 13.82 KB

Appendix D •◦2 sEUFCMA ◦ 96 B 64 B

Section 6.1 ◦ EUFCMA • 2.08 KB 2.54 KB

Section 6.1+Dilithium (compiler from Section 5) • sEUFCMA • 2.08 KB 6.40 KB

Section 6.1+Falcon (compiler from Section 5) • sEUFCMA • 2.08 KB 4.09 KB

1 Secure against key-exposures. Our construction presented in Section 6.1 can be upgraded to w/KE according to Section 5.
2 Secure against bounded key-exposures.

Table 2: Comparison with Prior Works about Fuzzy/Private Tracking

Works Privacy Assumptions Post-quantum Server’s Work Latency/msg2 Receiver’s Time

FMD2 [BLMG21] ρN -anonymity1 Random Oracle ◦ O(N) 933 sec 37.5 ms

ΠTEE [MSS+21] Full Privacy Trusted Execute Environment ◦ O(N) 228 sec 12 ms

ΠGC [MSS+21] Full Privacy Two Non-colluding Servers •◦ O(N) 81.1 hour 1 ms

OMRp2 [LT21] Full Privacy Fully Homomorphic Encryption • O(N) 43.1 hour 63 ms

Section 6.2 ρN -anonymity Standard Model • O(N) 11.70 sec 37.5 ms

Section 6.3 ρN -anonymity Random Oracle • O(ρN) 3.42 ms 37.5 ms

1 ρ denotes the false-positive rate and N the number of clients.
2 Calculated in a setting with N = 220 users and M = 500, 000 messages based on the numbers from their papers.
Latency per message induced by the server. See more discussion in Appendix B.

that is compatible with Schnorr, ECDSA and other group based signature schemes predominantly
used in currencies today?

• Can we have an efficient stealth signature scheme secure with unbounded key exposure that is
post-quantum secure?

A caveat of the stealth address mechanism is that a recipient (online or offline) has to parse
through a large number (hundreds of thousands per day) of transactions to identify those that
send coins to one-time addresses corresponding to his master address. A workaround was proposed
in [vS], where a recipient can delegate identification of incoming payments to a semi-trusted third
party server called the tracking server. To do so, the recipient can generate a so-called tracking
key from his secret key and provide it to the tracking server. The tracking key allows the tracking
server to identify or track all incoming payments to the recipient using the tracking key, and later
notify the recipient of these exact payments. On the other hand, such a tracking key should not
enable the tracking server to generate one-time secrets for the concerned one-time addresses. Prior
works [ADE+20, LYW+19, LLN+20] omit this important tracking functionality in their formalization
of stealth signatures.

A downside of the above tracking method is that we fully give up anonymity/unlinkability with
regards to the tracking server who learns exactly which payments are addressed to the recipient. While
there is a natural and obvious tension between the anonymity goal of unlinkability and functional
goal of trackability, a recent work of Beck et al. [BLMG21] attempts to strike a balance between
these notions. They introduce the concept of fuzzy message detection (FMD), where a tracking server
can approximately detect messages meant for a recipient with adjustable degree of uncertainty. More

4

specifically, their notion of detection is fuzzy in the sense that messages meant for the recipient are
always correctly identified, but there is recipient-controlled false positive rate (baked into the fuzzy
tracking key) which causes messages meant for other users to be misclassified as being meant for the
recipient. Thus, the tracking server cannot decide with certainty if a detected message is actually
intended for the recipient or not. This mechanism makes it necessary for the sender of the message
to include additional fuzzy tracking information and the tracking server possesses a fuzzy tracking
key. In principal, applying their technique to enable fuzzy tracking of one-time addresses in stealth
signatures is straightforward. However, relying on their schemes comes with considerable drawbacks.
While their first scheme (FMD2) is efficient, it relies on the pre-quantum DDH assumption. Their
second scheme (FMDfrac) relies on heavy tools like garbled circuits that lead to an unacceptable
size-blowup of the sender’s message. On the other hand, there are signalling detection or retrieval
schemes [MSS+21, LT21] for fully private tracking instead of fuzzy tracking, but all of them require
linear work at the server side which doesn’t scale to thousands or millions of users. We discuss their
schemes and ours in Appendix B and present a comparison in Table 2. This leads us to ask:

• Can we have a stealth signature scheme with efficient fuzzy tracking in the post-quantum setting
and scalable to hundreds of thousands (or even millions) of users?

1.1 Our Contributions

We summarize our contributions below.

Modular Framework. We introduce Spirit (in Section 6.1), the first practically efficient post-
quantum stealth signature scheme secure without key-exposure2. Towards this goal, we consider the
lattice-based Dilithium [LDK+20] signature scheme, which is the winner of the NIST standardization
competition and most likely candidate to be adopted into cryptocurrencies. Without changing the
signature scheme in any way, we augment Dilithium with additional algorithms to obtain Spirit so
that it now supports one-time key derivations and tracking.

Next, we show how one can generically transform (in Section 5) a stealth signature scheme that
is secure without key-exposure into a scheme that is secure with unbounded key-exposure. Thus we
can upgrade Spirit into one that is practically efficient and secure with unbounded key-exposure.
Both Spirit and its upgrade are compatible with cryptocurrencies that would support Dilithium
signature verification and no additional scripting is required.

Furthermore, we construct a stealth signature scheme (in Appendix D) that is compatible with
group-based schemes like Schnorr, and ECDSA which are used in most of the currencies today.
However, it only guarantees security with bounded key-exposure: It tolerates an a-priori number of
one-time secret key leakage.

Fuzzy Constructions. We then present two fuzzy stealth signature schemes (using Spirit), both
of which are the first efficient and post-quantum candidates.

In the first construction (in Section 6.2), we take a similar approach as FMD from [BLMG21]. But
we reduce its overhead from O(λ) to 1 bit per signal by making novel use of ciphertext compression
techniques [BDGM19]. Additionally, we show how to allow finer false-positive rates without requiring
heavy tools like garbled circuits as in [BLMG21].

We then present a new scalable framework for fuzzy tracking (in Section 4.4) followed by an
efficient construction (in Section 6.3) in the random oracle model. This framework can be viewed as
a ‘dual’ version of FMD mechanism from [BLMG21]. Intuitively, it is a trade-off between efficiency

2A recent work by [ADE+20] presents the construction of a re-randomized signature, which bears resemblance to
the concept of stealth addresses. However, it is important to note that their proposed functionality does not offer
public tracking support and is not secure against key-exposure attacks.

5

and usability: By limiting the users’ ability to choose false-positive rates, we are able to reduce the
tracking server’s computational work to an amount which is sublinear in the total number of users.
This compares very favourably with prior works, where the server needs to take a linear scan of each
user’s tracking key [BLMG21, MSS+21, LT21].

Implementation. We implemented Spirit, post-quantum FMD, and scalable fuzzy tracking based
on Dilithium, Kyber, and Falcon with anonymized open-source code [imp]. We test them with
different parameter sets on an ordinary laptop as presented in Table 3 and Table 4 (in Appendix B).
Experiment results show that our stealth signature with strongest security only yields a 4.09 KB
signature, while the verification time is less than 0.2 ms. Similarly, our scalable fuzzy tracking
mechanism only takes 3.42 ms to filter each incoming message in the setting with millions of users.

Application to FIDO. As our final contribution, we surprisingly apply our stealth address notion
to FIDO2 standard passwordless authentication schemes (formally defined in [BBCW21]). We show
how manufacturers can implement device authenticators that not only provide post-quantum security
but require limited secure memory (one master secret key), support global revocation (as defined in
[HLW22]), multi-device credentials [All22], and can be used to implement asynchronous remote key
generation ([FGK+20]).

2 Technical Overview

Let us first recall the group-based stealth signature scheme of [vS]: Given a cryptographic group
G = ⟨g⟩ of prime order p, the master public key is mpk := (g, h0 := ga, h1 := gb) ∈ G3, where
msk := (a←$Zp, b←$Zp) is the master secret key, and mtk := a is the tracking key. To re-randomize
mpk to a one-time address (i.e., one-time public key), the sender samples a uniformly random r←$Zp

and computes opk := gH(h
r
0) · h1 ∈ G where H : G 7→ Zp is a hash function modelled as a random

oracle. Additionally, the sender attaches tracking information tki := gr ∈ G to the opk. To derive the
corresponding one-time secret key osk from msk, the receiver computes osk := H(tkia) + b ∈ Zp with
the help of tki. Now, opk and osk satisfy the discrete-log relation opk = gosk, hence the receiver can
sign (for e.g., Schnorr or ECDSA) any message with osk to output a signature which can be verified
with corresponding opk. An additional mechanism is that mtk := a can be given to a tracking server

for tracking: By comparing whether opk
?
= gH(tkimtk) · h1, the tracking server can determine whether

opk links to the issuer of mtk.
Taking a closer look, this approach to build stealth signature apparently can be generically

decomposed to a linearly homomorphic one-way function f : D 7→M where f(x+ y) = f(x) + f(y),
and a key-exchange protocol (KE1,KE2,KE3), where KEi denotes the i-th message function:

ct1 ∈ C1 ←KE1(r1),

(ct2 ∈ C2,K ∈ K)←KE2(r2, ct1),

K ∈ K ←KE3(r1, ct2),

where r1, r2 are two user’s secrets, and K is the agreed-upon key. Here, C1, C2, and K represent the
first message space, second message space, and the key space, respectively. Now, let mpk :=

(
ct1 :=

KE1(r1), B := f(b)
)
and msk := (r1, b),mtk := r1. To publish a one-time address, the sender can just

compute (ct2,K)← KE2(r2, ct1) and publish

opk := B + f
(
H(K)

)
, tki := ct2

where H : K 7→ D. Correspondingly,

osk := b+ H
(
KE3(r1, tki)

)
.

6

Since they obey the relation f(osk) = opk, we can leverage this to sign and verify. The tracking
mechanism still works by checking if

opk
?
= f

(
H
(
KE3(mtk, tki)

))
+B.

We will now adapt this blueprint to construct a stealth signature in lattice setting.

2.1 Spirit: Lattice-based Stealth Signature

To make our protocol both efficient and practical, we would like to use optimized NIST winners as
our building blocks. In this work, we choose Dilithium as the underlying digital signature considering
that it is one of most popular signature schemes in NIST [LDK+20]. We call the resulting stealth
signature scheme Spirit. Basically, it follows the above approach: In Dilithium, the public key is a
Module Learning With Errors (MLWE) [BGV12] sample t := As1 + s2 where its secret-error pair
(s1, s2) (both chosen from a suitable short distribution) acts as the secret key. Since MLWE involves
only linear operations, we have that

t+ t′ = A(s1 + s′1) + s2 + s′2.

Yet, even though adding samples is approximately linearly homomorphic, this addition will increase
error rates or lengths for both s1 and s2. Typically, the s1 and s2 are generated by sampling their
coefficients uniformly with absolute value at most η (for some small parameter η). The increased
norm of the new secrets (s1 + s′1, s2 + s′2) will incur additional running time during signing due to
the so-called “Fiat-Shamir with Abort” mechanism of Dilithium. To alleviate this issue, we only
prove Spirit to be existential unforgeable. This will give us better parameters to balance between
security and efficiency. Looking ahead, we point out that Spirit can be transformed to a strongly
existentially unforgeable scheme using a generic compiler which we will introduce later.

Apart from a linearly homomorphic one-way functions, we still need a key-exchange protocol.
However, this key-exchange needs some additional properties. Specifically, we need a non-interactive
key-exchange (NIKE) protocol which is substantially stronger than KE we depicted above. The
starting point is that it needs to be anonymous under chosen plaintext attacks (CPA), which means
given the message ct2, the adversary cannot link it to the ct1 used to generate ct2. This is for stealth
signatures as we don’t want our one-time address to be linkable to the original master public address.
This security notion is formalized as unlinkability.

But anonymity under chosen plaintext attacks will not even suffice yet for our applications.
We will require a stronger notion of anonymity under plaintext checking attacks (PCA). Here, the
adversary is given an additional oracle which allows him to check whether a ciphertext-plaintext
pair is valid or not. To see why this is necessary, consider an adversary who is trying to link some
(opk, tki) to mpk. Such an adversary will be able to sample ct2←$ C2,K ←$K to generate (opk′, tki′),
which can then be published to see if the tracking check passes. It turns out that anonymity under
plaintext checking attacks is sufficient for this setting. However, we currently don’t have a simple
construction satisfying anonymity under plaintext checking attacks. As a consequence, we use an
even stronger key-exchange protocol which is anonymous under chosen ciphertext attacks (CCA),
namely, it is ANOCCA-secure (formalized in Definition C.7). Fortunately, the recent standardized
KEM by NIST, Kyber [SAB+20], can be slightly modified to be ANOCCA-secure [GMP22] and we
use Kyber in the concrete instantiation. There are multiple technical details not covered in this
outline, for instance, besides tki, the one-time address opk itself also needs to be anonymous. We
refer to Section 6.1 for detailed construction and analysis.

7

So far, we briefly mentioned two important security notions for stealth signatures, namely
unforgeability and unlinkability (Section 4 for formalization). However, we note that we only
formalize these two notions as unforgeability without key-exposure and unlinkability without key-
exposure, respectively. It turns out the above approach to build stealth signatures (as well as in
Spirit) is no longer secure if a one-time secret key osk leaks: Suppose the sender learns osk somehow,
he can instantly recover msk as

b := osk− H
(
KE3(r1, tki)

)
,

if he knows r1 which is used to generate corresponding opk.

2.2 Generic Transformation: Security with Key-exposure

As mentioned above and noticed in prior works [LYW+19, NMRL16], leaking one-time secret keys is
almost as bad as leaking the master secret key. This is a potential issue in current practical stealth
signature schemes [vS] and it is costly to avoid. For instance, if we are willing to use techniques
implying hierarchical identity based encryption (HIBE), we could have a stealth signature scheme
secure with key-exposure attacks by using pairing [BF01, LYW+19], lattice basis delegation [ABB10,
LLN+20], or non-black box tools [DG17]. All of above techniques are several orders of magnitude
slower in computational time, or orders of magnitude larger in signature or one-time public key size.

The reason we don’t have a simple solution to this issue is that one-time secret keys are usually
a linear function of the msk as mentioned in [LRR+19]. Apparently we can achieve security
with bounded key-exposure by adding more secrets in msk where bounded key-exposure means msk
remains secure if the number of leaked osk is smaller than some ‘a priori bound’ and we show a
candidate construction in Appendix D. However, any generic-group based techniques to prevent
unbounded key-exposure should imply IBE which is known to be impossible using only black-box
techniques [PRV12, SGS21].

In this work, we provide a conceptually simple, generic, and powerful black-box compiler to
tackle this problem in the context of stealth signatures (in Section 5): We use a short chain of
signatures [Mer90] to compile any stealth signature SSw/o secure without key-exposure into a strong
stealth signature SSw secure with unbounded key-exposure. The high level idea is to break this
‘linear’ relation between osk and msk. Specifically, instead of generating osk directly, with the help of
an additional digital signature DS, we generate

osk := (σ1, sk, vk),

where σ1 ← SSw/o.Sign(osk
′, vk) and (vk, sk)← DS.Gen(λ). Note that osk′ is the one-time secret key

in the scheme SSw/o. Intuitively, since osk has a non-linear relation with msk, the adversary cannot
recover msk from osk as SSw/o is unforgeable. To sign a message m, it runs σ2 ← DS.Sign(sk,m) and
outputs the final signature σ := (σ1, σ2, vk). Similarly, to verify σ just use opk to verify the signature
σ1 on vk and use vk to verify the signature σ2 on m. Compared to original stealth signature SSw/o,
our compiled one SSw incurs slightly larger signature size and longer verification time, but in turn is
far more efficient than above HIBE-related techniques.

Additionally, we show this compiler can also leverage SSw/o with existential unforgeability to
SSw with strong unforgeability via a small tweak: Instead of signing on m, we sign as σ2 ←
DS.Sign(sk,m||σ1). This prevents strong unforgeability attacks of SSw because: Assuming vk in σ is
not altered, a different σ′1 ̸= σ1 will lead to a forgery (m||σ′1, σ2) of DS in SSw. Therefore, Spirit
can also be leveraged in this way to be strongly unforgeable with key-exposure. This gives us the
first practical post-quantum SSw secure with key-exposure.

8

2.3 Fuzzy Tracking

We will now turn to the issue that in the above constructions, the tracking mechanism will leak the
users’ metadata to the tracking servers, i.e., the tracking server will know exactly which mtk belongs
to which specific (opk, tki). As discussed above, to address this problem, Beck et al. [BLMG21]
proposed a mechanism named fuzzy message detection (FMD): The server is given a fuzzy tracking
key ftk instead of mtk to filter incoming fuzzy tracking information ftki for its users. Here, ftki is
attached with (opk, tki). Specifically, for unmatched ftki and ftk, they will be linked with probability
roughly ρ.

Transforming their scheme to post-quantum world is non-trivial as there are still two potential
obstacles in the lattice setting: First, it is not practically efficient since its ftki is as large as O(n · |ct|)-
bit where |ct| = poly(λ). This is highly undesirable in practise as our expectation is something like
O(λ) + n. The other problem is the uniformly-ambiguous (recalled in Appendix C) encryption, as
it is unclear how to extend the random oracle based approach in [BLMG21], to the lattice setting
due to the presence of noise. We show that these two obstacles are related and can be resolved
simultaneously. For simplicity, assume n = 1 for the moment. Recall that in Regev encryption with
modulus q, the ciphertext is composed of two parts, a vector c1 ∈ Zℓ

q and a scalar c2 ∈ Zq. The

secret key is s ∈ Zℓ
q and decryption consists of rounding after a linear operation:

⌈sT c1 − c2⌋2 = ⌈q
2
·m+ e⌋2,

where e < B < q
4 is a bounded error. This is not just bad for efficiency (as we need additional

n log q bits to encrypt n more bits), but also for security: With the correct secret key s, sT c1 − c2 is
distributed as a Gaussian around q

2 or 0; With a wrong key s∗, s
T
∗ c1 − c2 is distributed uniformly

random over the entire domain Zq. These two cases are clearly distinguishable by an adversary.
Our solution will be to compress c2 into a single bit, which doesn’t convey enough information

about the distribution. Hence this idea will solve both of the above problems simultaneously.
Brakerski et al. [BDGM19] introduced rate-1 packed Regev encryption which can compress each c2
to just one bit but require an additional offset scalar z ∈ Zq in the header. Thus to to encrypt n
bits, the ciphertext after compression is (c1, z, w1, . . . , wn) where wi ∈ {0, 1}. To make the offset
z statistically close to uniformly random (in our setting pseudorandom doesn’t suffice because the
adversary gets the secret key), we require super-polynomial noise-modulus ratio of Learning With
Errors (LWE) [Reg05] which makes the scheme slightly less efficient. This gives us a lattice-based
fuzzy tracking scheme (and ambiguous encryption), and surprisingly, it doesn’t rely on heuristic
assumptions like random oracles which are necessary in [BLMG21].

2.4 Scalable Fuzzy Tracking

We observe that in the above FMD style tracking, the server’s computational work is O(N) with N
users and is not scalable when thousands (or millions) of users are using the service of the server. We
provide a framework for scalable fuzzy tracking which we view as a dual version of FMD [BLMG21],
where the server’s work is sublinear. In this framework, we weaken the requirement that the false-
positive rate can be adaptively changed by users. Instead, it is fixed in advance in this setting. This
weakening is reasonable as it was shown in [SPB21] that an adversary can mount statistical attacks
if users have varying false positive rates. To circumvent such attacks it was suggested that all users
have high enough false positivity rates as even a small subset of low rate users can affect unlinkability
for the entire pool of users. Therefore we can fix the false positivity rate to be a high enough value
for everyone. For example, as calculated in [SPB21], the false-positive rate ρ is better to be as large

9

as 1√
N

3. In this case, we can make the server’s overhead O(ρN) for each incoming message which

was at least O(N) in prior works [BLMG21, MSS+21, LT21].
We let the tracking server run FTKGen in the beginning to publish fuzzy public key fpk and

secretly hold the fuzzy tracking key ftk. For each ftki received from senders, the tracking server
will expand ftki to a list of size t composed of potential users’ master public keys to which ftki may
belong to. The tracking server can then store (opk, tki) to the mailbox of each candidate in this list.
Crucially, the master public keys of other potential candidates should remain uncontrollable to either
the sender or the server. Otherwise the sender might manipulate the chance of each key appearing in
the list. This additional property is named unbiasedness. This rules out the trivial solution, where
for instance the sender just sends directly a range of master public keys including the targeted mpk.

Since mpk of each user can be large, in our construction we hash mpk ∈ K to some small hint ∈ T
(while making |T | ≥ N) and use the hint to locate each user’s mailbox. Our scheme is based on
the underlying INDCPA encryption of Kyber, except that we use non-prime modulus. For instance,
assuming the hint contains n = ⌈logN⌉ bits, i.e., b := hint ∈ {0, 1}n, to generate ftki, the sender
modifies the Kyber512’s ciphertext ct := (c1, c2) to ct′ := (c′1, c

′
2) as follows:

c′1 := c1 +
q

2

[
xi

0

]
c′2 := c2 +

q

2
yi,

where ct (and ct′) encrypts hinti as the plaintext, xi ← encodeRq (xi) is a polynomial mapped from
the vector xi, and xi,yi ∈ {0, 1}m ← H(δ, i) are outputs of a hash function H with the seed δ. Here
i ∈ [t] denotes the i-th target mpk as the intended recipient.

For ftki := ct′, the tracking server decrypts ct′ using the key sk = s as follows: for ∀j ∈ [t],

hintj ← decodeRq
(⌈sT (c′1 −

q

2

[
xj

0

]
)− c′2)⌋2 ⊕ yj),

to get t potential hints. To argue privacy, intuitively, since s remains random to the sender, the
decrypted hint for j ̸= i would also be random to the sender as

hintj = hinti ⊕ (yj ⊕ yi)⊕ decodeRq
(⌈q
2
sT

[
xj

0

]
⌋2).

However, to prove unbiasedness we mentioned above, we need to be careful because standard regularity
lemma seems hard to apply with such small noise parameter and modulus in ideal lattices. Our
solution is to rely on the specific structure of the corresponding cyclotomic polynomial and show

that even sT
[
xj

0

]
is not close to a uniformly random polynomial but there’s enough entropy to make

hintj uniformly random over {0, 1}n as long as n is much smaller than the degree of the polynomial.

2.5 From Stealth Addresses to FIDO

We will now describe how stealth addresses fit into FIDO-based passwordless authentication. The
FIDO standard specifies ways of using device-based tokens (authenticators) for online authentication.

3According to [SPB21], “concerning recipient unlinkability and temporal detection ambiguity, the false-positive
rate needs to be high and there must be a large number of users in the system.” This can be achieved in current
blockchain systems with millions of users by setting the false-positive rate to be 1/

√
N . Although the same work points

out that relationship anonymity only holds when senders are hidden from the server, this is typically addressed using
other techniques such as ring signatures. Furthermore, as shown in [SPB21], “...users do not employ any cover traffic
due to their selfishness...”, which has inspired us to propose scalable fuzzy tracking as a solution to overcome this issue.

10

The protocol is a simple challenge-response where the authenticator creates a signature under the
server’s challenge. The server verifies the signature against a public key stored during the registration
phase. Thus, the token uses different public keys per server to ensure privacy, which poses a challenge
for memory-constrained devices. The common practice is to use key wrapping or a key derivation
function to generate the signing key ad-hoc during the authentication process, where the server
provides additional information (e.g., the ciphertext wrapping the signing keys or random value for
the derivation function) for the re-computation.

Applying stealth addresses to this setting would use the same idea. The authenticator only needs
to store the master secret key msk and the tracking key mtk. During the registration phase, the
server would receive a one-time public key opk and send it to the token during authentication. The
authenticator can then reconstruct the corresponding one-time secret key osk and respond to the
server’s challenge. Interestingly, due to our strong key-exposure notions, one-time keys can be leaked
without compromising the unforgeability of non-leaked keys. Thus, we can use the same keys on
multiple devices owned by the user, implementing the concept of FIDO multi-device credentials
[All22].

Contrary to existing solutions, the public keys do not have to be generated on-token. The user
platform (e.g., browser, second token) can generate the one-time public key opk without msk by
just using the master public key mpk. What we just described is also called asynchronous remote
key generation [FGK+20], a solution that cleverly uses two devices to solve the token loss problem.
After an initialization phase, one of the authenticators is put into cold storage while registration (in
the name of both) is done using the primary token. In case of loss, the authenticator in storage can
create a valid response to the server’s challenge. Using stealth addresses provides the same feature
without a complicated initialization step.

One problem with lost devices is that the public keys on the server side are still bound to the
user’s account. A simple but bothersome solution is for the user to contact all servers it used in
the past and revoke the keys. A more flexible solution was proposed by Hanzlik, Loss, and Wagner
[HLW22]. With the help of a revocation key published by the user, servers can identify public keys
corresponding to lost tokens. Stealth addresses provide the same feature and even improve it a bit.
One can identify one-time public keys generated using the same master public key mpk with the help
of the tracking key mtk. In the FIDO scenario, a published mtk can be used to globally revoke a
lost/stolen token while at the same time not allowing to create forger signature as required by the
notions in [HLW22].

Releasing the tracking key mtk will allow everyone to link the one-time public keys, which is
a privacy concern. Fuzzy tracking allows for more fine-tuned protection in the case of lost/stolen
tokens. Instead of revoking public keys, servers could employ an additional policy-based mechanism
to challenge authentications against public keys identified by fuzzy tracking. In other words, the user
can hide the actual public key in a set of potential keys, and the server requires some additional
authentication factors for those keys. Authenticating using the lost/stolen token will be impossible
in such a scenario while at the same time providing extra privacy for the user that lost the device.

3 Preliminaries

We denote by λ ∈ N the security parameter and by x← A(in; r) the output of the algorithm A on
input in using r ← {0, 1}∗ as its randomness. We often omit this randomness and only mention it
explicitly when required. The notation [n] denotes a set {1, . . . , n} and x[: n] denotes the sub-vector
of x with first n elements. We consider probabilistic polynomial time (PPT) machines as efficient
algorithms. Also, we use ≈c and ≈s to denote computational closeness and statistical closeness,

11

respectively. We defer the reader to Appendix C for assumptions and analysis tools we use in this
work. Apart from this, we make use of the following cryptographic primitives.

Digital Signatures. A digital signature scheme DS, formally, has a key generation algorithm
KGen(λ) that takes the security parameter λ and outputs the verification/signing key pair (vk, sk), a
signing algorithm Sign(sk,m) inputs a signing key and a message m ∈ {0, 1}∗ and outputs a signature
σ, and a verification algorithm Vf(vk,m, σ) outputs 1 if σ is a valid signature on m under the
verification key vk, and outputs 0 otherwise. We require unforgeability, which guarantees that a PPT
adversary cannot forge a fresh signature on a fresh message of its choice under a given verification
key while having access to a signing oracle (that returns a valid signatures on the queried messages).
Formally the notion can be captured in an experiment denoted by EUFCMA. Strong unforgeability
refers to the case where the adversary is required to forge a fresh signature on not necessarily a fresh
message. Formally the notion can be captured in an experiment denoted by sEUFCMA.

Key Encapsulation Mechanism. A key encapsulation mechanism KEM, formally, has a key
generation algorithm KGen(λ) that takes the security parameter λ and outputs a encaps key ek and a
decaps key dk. An encapsulation algorithm Encaps(ek) inputs an encaps key and outputs a ciphertext
C and agreed key K. Finally, we have a decapsulation algorithm Decaps(dk) inputs a decaps key and
a ciphertext and outputs an agreed key K. Apart from INDCCA security, we additionally require
its anonymous property which can be formally captured in Definition C.7 denoted by ANOCCA
and it means the adversary cannot link any ciphertext C to its encaps key ek even being able to
access a decaps oracle. Concretely, we use Kyber [SAB+20] with the modification shown in Figure 6
of [GMP22].

4 Definitions of (Fuzzy) Stealth Signatures

In this section we first present our formal definitions for a stealth signature scheme, followed by
how we can add-on fuzziness to the scheme. Note that stealth signatures were formalized in prior
works [LYW+19, LLN+20], however our formalization of security is strictly stronger than theirs, and
moreover we are the first to formalize tracking and fuzzy tracking for a stealth signature scheme. We
will point out the exact differences4 in the formalism as we introduce the security notions formally.

Below we present the definition of stealth signatures, that formalizes the tracking of keys which
was absent in prior works. This formalization allows for tracking to be outsourced to third-party
servers.

Definition 4.1. A stealth signature (SS) scheme consists of the PPT algorithms (MKGen, OPKGen,
OSKGen, Track, Sign, Vf) that are defined as follows.

(mpk,msk,mtk)← MKGen(λ): the master key generation algorithm takes as input the security
parameter λ and outputs the master public key mpk, the master secret key msk, and the master
tracking key mtk.

(opk, tki)← OPKGen(mpk): the one-time public key generation algorithm takes as input the master
public key mpk, and outputs the one-time public key opk and a tracking information tki.

osk/ ⊥← OSKGen(msk, opk, tki): the one-time secret key generation algorithm takes as input the
master secret key msk, the one-time public key opk, and the tracking information tki, and outputs a
one-time secret key osk or a special symbol ⊥.
true/false← Track(mtk, opk, tki): the tracking algorithm takes as input the master tracking key mtk,
the one-time public key opk, and the tracking information tki, and outputs true or false.

4Please refer to Definition 4.6 for details.

12

σ/ ⊥← Sign(osk,m): the signing algorithm takes as input the one-time secret key osk, and a message
m, and outputs a signature σ or a special symbol ⊥.
true/false← Vf(opk,m, σ): the verification algorithm takes as input the one-time public key opk, a
message m, and a signature σ, and outputs true or false.

The notion of correctness is formalized below.

Definition 4.2 (Correctness). A SS scheme (MKGen, OPKGen, OSKGen, Track, Sign, Vf) is said
to be correct if for all λ ∈ N, all (mpk,msk,mtk) ← MKGen(λ), all (opk, tki) ← OPKGen(mpk), all
osk← OSKGen(msk, opk, tki), we have the following that hold simultaneously:

• we have Pr[Track(mtk, opk, tki) = true] = 1

• we have Pr[Vf(opk,m,Sign(osk,m)) = true] = 1,

note that sometimes we don’t require perfect correctness and having correctness probability 1−negl(λ)
instead would suffice.

4.1 Security of SS Without Key Exposure

In terms of security, we first want unforgeability, which guarantees that it is infeasible for an adversary
to forge a signature on a (fresh) message wrt. some one-time public key opk∗ for a master public
key mpk. The adversary is given access to a one-time secret key generation oracle OSKGenO using
which the adversary can generate a fresh one-time secret key. However, the adversary does not get to
learn the generated one-time secret keys, therefore the notion is said to be without key exposure. The
adversary also has access to a signing oracle, to which it can query a signature on any message of its
choice wrt. any one-time secret key that has been generated with a query to OSKGenO. The formal
definition is presented below.

Definition 4.3 (Unforgeability without key-exposure). A SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, Vf) is said to be unforgeable without key exposure if there exists a negligible function
negl for all λ ∈ N, and for all PPT adversaries A the following holds:

Pr
[
sEUFCMAAw/o−ke(λ) = 1

]
≤ negl(λ)

where sEUFCMAw/o−ke is defined in Figure 1.

We then want unlinkability, which guarantees that it is infeasible for an adversary to associate a
one-time public key to the master public key wrt. which it was generated. The adversary is given
two master public keys mpk0 and mpk1, while also given a challenge one-time public key opkb and
the corresponding tracking information tkib (for b ∈ {0, 1}) generated wrt. mpkb. The adversary is
given access to the OSKGenO as before, and a signing oracle. The adversary is not given access to
any of the one-time secret keys and therefore the notion is said to be without key exposure. The
formal definition is presented below.

Definition 4.4 (Unlinkability without key-exposure). A SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, Vf) is said to be unlinkability without key exposure if there exists a negligible function
negl for all λ ∈ N, and for all PPT adversaries A the following holds:

Pr
[
UNLNKAw/o−ke(λ) = 1

]
≤ 1

2
+ negl(λ)

where UNLNKw/o−ke is defined in Figure 2.

13

EUFCMAAw/o−ke(λ)

(mpk,msk,mtk)← MKGen(λ)

OK := [], Q := ∅

(m
∗
, σ

∗
, i

∗
)

← AOSKGenO,SignO
(mpk,mtk)

(opk∗, osk∗) := OK[i∗]

b0 := (m
∗
, ·, i∗) /∈ Q

// (m
∗
, σ

∗
, i

∗
) /∈ Q for sEUFCMAw/o−ke

b1 := Vf(opk∗,m∗
, σ

∗
)

?
= true

return b0 ∧ b1

OSKGenO(opk, tki)
osk← OSKGen(msk, opk, tki)

OK := OK||(opk, osk)
return 1

SignO(i,m)

(opk, osk)← OK[i]

σ ← Sign(osk,m)

Q := Q ∪ (m,σ, i)

return σ

Figure 1: Experiment for unforgeability without key exposure.

UNLNKAw/o−ke(λ)

(mpk0,msk0,mtk0)← MKGen(λ)

(mpk1,msk1,mtk1)← MKGen(λ)

OK0 := OK1 := []

b← {0, 1}
(opkb, tkib)← OPKGen(mpkb)

oskb ← OSKGen(mskb, opkb, tkib)

b
′ ← AOSKGenO,SignO

(X, opkb, tkib)

// where X := (mpk0,mpk1)

b0 := (b = b
′
)

return b0

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return 1

SignO(b∗, i,m)

if i = −1 then

σ ← Sign(oskb,m)

else

(opk, osk)← OKb∗ [i]

σ ← Sign(osk,m)

return σ

Figure 2: Experiment for unlinkability without key exposure.

4.2 Security of SS With Key Exposure

Prior works [LYW+19, LLN+20] formalized security with additionally giving adversary the one-time
secret keys, i.e., the OSKGenO returns the generated osk to the adversary.

The unforgeability notion with key exposure is formalized below. Notice that our formalization
exposes the one-time secret keys osk to the adversary except the key wrt. which the adversary forges
the signature.

Definition 4.5 (Unforgeability with key-exposure). A SS scheme (MKGen, OPKGen, OSKGen, Track,
Sign, Vf) is said to be unforgeable with key exposure if there exists a negligible function negl for all
λ ∈ N, and for all PPT adversaries A the following holds:

Pr
[
sEUFCMAAw−ke(λ) = 1

]
≤ negl(λ)

where sEUFCMAw/o−ke is defined in Figure 3.

The notion of unlinkability with key exposure is formalized below. Similar to the case above, the
OSKGenO returns the generated osk.

Definition 4.6 (Unlinkability with key-exposure). A SS scheme (MKGen, OPKGen, OSKGen, Track,
Sign, Vf) is said to be unlinkability with key exposure if there exists a negligible function negl for all

14

sEUFCMAAw−ke(λ)

(mpk,msk,mtk)← MKGen(λ)

OK := [], Q := ∅

(m
∗
, σ

∗
, i

∗
)

← AOSKGenO,SignO
(mpk,mtk)

(opk∗, osk∗, ·) := OK[i∗]

b0 := (m
∗
, σ

∗
, i

∗
) /∈ Q

b1 := Vf(opk∗,m∗
, σ

∗
) = 1

b2 := (OK[i∗] ̸= (·, ·, true))
return b0 ∧ b1 ∧ b2

OSKGenO(i, opk, tki, flag)
if OK[i] = (opk, ·, ·) ∧ flag = true

return OK[i].osk

osk← OSKGen(msk, opk, tki)

OK := OK||(opk, osk, flag)
if flag = true then return osk

else return 1

SignO(i,m)

(opk, osk, flag)← OK[i]

σ ← Sign(osk,m)

Q := Q ∪ (m,σ, i)

return σ

Figure 3: Experiment for unforgeability with key exposure.

UNLNKAw−ke(λ)

(mpk0,msk0,mtk0)← MKGen(λ)

(mpk1,msk1,mtk1)← MKGen(λ)

OK0 := OK1 := []

b← {0, 1}
(opkb, tkib)← OPKGen(mpkb)

oskb ← OSKGen(mskb, opkb, tkib)

b
′ ← AOSKGenO

(X, opkb, tkib, oskb)

// where X := (mpk0,mpk1)

b0 := (b = b
′
)

return b0

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return osk

Figure 4: Experiment for unlinkability with key exposure.

λ ∈ N, and for all PPT adversaries A the following holds:

Pr
[
UNLNKAw−ke(λ) = 1

]
≤ 1

2
+ negl(λ)

where UNLNKw/o−ke is defined in Figure 4.

Remark. It is worth noting that our formalization apart from the tracking functionality, is stronger
than prior works in that the adversary is even given the challenge one-time secret key oskb.

4.3 Fuzzy Stealth Signatures

We now formally incorporate the fuzzy tracking functionality into the definition of stealth signing.

Definition 4.7 (Fuzzy Stealth Signatures). A fuzzy stealth signatures (F-SS) scheme is a SS scheme
(MKGen, OPKGen, OSKGen, Track, Sign, Vf) with additional interfaces (FTKGen, FTrack) defined
below.

(opk, tki, ftki)← OPKGen(mpk): overloading the interface OPKGen to output the fuzzy tracking
information ftki.

15

ftk← FTKGen(mtk, ρ): the fuzzy tracking key generation algorithm takes as input the master tracking
key mtk, and a false positivity rate ρ, and outputs a fuzzy tracking key ftk.

true/false← FTrack(ftk, ftki): the fuzzy tracking algorithm takes as input the fuzzy tracking key ftk,
the fuzzy tracking information ftki, and outputs true or false.

We define the notion of correctness below. We borrow the notion of fuzziness from [BLMG21]
and adapt the same for the stealth signature setting. Intuitively, the correctness of fuzzy tracking
says that with a probability ρ, the fuzzy tracking algorithm returns true for a mismatched fuzzy
tracking key and a one-time public key. For a correctly matched fuzzy tracking key and a one-time
public key, the tracking algorithm always returns true.

Definition 4.8 (Correctness for fuzzy tracking). A F-SS scheme (MKGen, OPKGen, OSKGen, Track,
Sign, Vf, FTKGen, FTrack) is said to be correct if the original SS scheme is correct and if for all
λ ∈ N, all ρ ∈ (0, 1] such that log2 ρ ∈ Z, all (mpk,msk,mtk) ← MKGen(λ), all (opk, tki, ftki) ←
OPKGen(mpk), all osk ← OSKGen(msk, opk, tki), all ftk ← FTKGen(mtk, ρ), we have the following
that holds simultaneously:

• Pr[FTrack(ftk, ftki) = true] = 1

• and for any ftki′ /∈ SUPP(OPKGen(mpk)), we have

Pr
[
FTrack(ftk, ftki′) = true

]
= ρ.

The unforgeability notion remains the same as in Figure 3, as the adversary in this notion already
has access to the master tracking key.

Unlinkability with fuzzy tracking ensures that it is computationally infeasible for an adversary,
given two fuzzy tracking keys that both return either true or false when tracking a challenge one-time
public key (opkb, ftkib) simultaneously, to associate (opkb, ftkib) with the correct tracking key (either
ftk0 or ftk1). The adversary is said to violate the notion if it can guess correctly the association
non-negligibly more than 1/2.

Definition 4.9 (Unlinkability with key-exposure and fuzzy tracking). A F-SS scheme (MKGen,
OPKGen, OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be unlinkable with key-exposure and
fuzzy tracking if there exists a negligible function negl for all λ ∈ N, all ρ ∈ (0, 1] such that log2 ρ ∈ Z,
and for all PPT adversaries A the following holds:

Pr
[
UNLNKAfw−ke(λ, ρ) = 1

]
≤ 1

2
+ negl(λ)

where UNLNKfw−ke is defined in Figure 5.

4.4 Scalable Fuzzy Tracking

We now formalize the functionality, correctness, and security of fuzzy scalable stealth signatures as
follows.

Definition 4.10 (Fuzzy Scalable Stealth Signatures). A fuzzy scalable stealth signature (F-SSS) is a
SS scheme (MKGen, OPKGen, OSKGen, Track, Sign, Vf) with additional interfaces (FTKGen,FTrack)
and a modified OPKGen defined below.

(fpk, ftk)← FTKGen(ρ,N): the fuzzy tracking key generation algorithm takes as input a false
positivity rate ρ, and the number of total users N , and outputs a fuzzy tracking key ftk and fuzzy
public key fpk. The algorithm is run by the tracking server ahead of time.

16

UNLNKfw−ke(λ)

OK0 := OK1 := []

(mpk0,msk0,mtk0)← MKGen(λ)

(mpk1,msk1,mtk1)← MKGen(λ)

b← {0, 1}
(opkb, tkib, ftkib)← OPKGen(mpkb)

oskb ← OSKGen(mskb, opkb, tkib)

(stA, ρ)← A1(mpk0,mpk1, opkb,

tkib, ftkib, oskb)

ftk0 ← FTKGen(mtk0, ρ)

ftk1 ← FTKGen(mtk1, ρ)

b1 ← FTrack(ftk0, ftkib)

b2 ← FTrack(ftk1, ftkib)

if b1 = b2

b
′ ← AOSKGenO

2 (stA, ftk0, ftk1)

else

b
′ ←$ {0, 1}

return (b = b
′
)

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return osk

Figure 5: Experiment for unlinkability of F-SS with key-exposure.

(opk, tki, ftki)← OPKGen(mpk, fpk): overloading the interface OPKGen to additionally take input fpk
and output fuzzy tracking information ftki.

list← FTrack(ftk, ftki): the fuzzy tracking algorithm takes as input the fuzzy tracking key ftk, the
fuzzy tracking information ftki, and outputs a list consisting of master public keys.

Definition 4.11 (Correctness for fuzzy scalable stealth signatures). A F-SSS scheme (MKGen,
OPKGen, OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be correct if the original SS scheme is
correct and if for all λ ∈ N, any integer N , all ρ ∈ (0, 1] such that 1

2⌈log2 N⌉ | ρ, all (mpk,msk,mtk)←
MKGen(λ), all (opk, tki, ftki)← OPKGen(mpk, fpk), all osk← OSKGen(msk, opk, tki), all (fpk, ftk)←
FTKGen(ρ,N), we have the following that holds simultaneously:

• Pr[mpk ∈ FTrack(ftk, ftki)] = 1

• and for any mpk′ ̸= mpk, we have

Pr
[
mpk′ ∈ FTrack(ftk, ftki)

]
= ρ.

Crucially, we omit opk in FTrack as ftki is already associated with opk and we still have the
regular Track algorithm that works with tk, opk and tki for tracking. The correctness definition
above ‘ties’ together the keys ftk, mpk and mtk, and (opk, tki, ftki) ← OPKGen(mpk) by requiring
that FTrack(ftk, ftki) always returns 1.

Definition 4.12 (Unlinkability with key-exposure and fuzzy scalable tracking). A F-SSS scheme
(MKGen, OPKGen, OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be unlinkable with key-
exposure and fuzzy scalable tracking if there exists a negligible function negl for all λ ∈ N, any integer
N , all ρ ∈ (0, 1] such that 1

2⌈log2 N⌉ | ρ, and for all PPT adversaries A the following holds:

Pr
[
UNLNKAfsw−ke(λ, ρ,N) = 1

]
≤ 1

2
+ negl(λ)

17

UNLNKfsw−ke(λ, ρ,N)

OK0 := OK1 := []

(mpk0,msk0,mtk0)← MKGen(λ)

(mpk1,msk1,mtk1)← MKGen(λ)

(fpk, ftk)← FTKGen(ρ,N)

b← {0, 1}
(opkb, tkib, ftkib)← OPKGen(mpkb,

fpk)

oskb ← OSKGen(mskb, opkb, tkib)

list← FTrack(ftk, ftkib)

if mpk0 ∈ list ∧ mpk1 ∈ list

b
′ ← AOSKGenO

2 (ftk,mpk0,mpk1,

opkb, tkib, ftkib, oskb)

else

b
′ ←$ {0, 1}

b0 := (b = b
′
)

return b0

UNIUBSfs(λ, ρ,N)

(fpk, ftk)← FTKGen(ρ,N)

(stA, ftki, i, j,mpk)← A1(fpk)

list← FTrack(ftk, ftki)

b←$ {0, 1}
if list[i] ̸= mpk ∨ i = j ∨ mpk /∈ K

b
′ ←$ {0, 1}

else

v
0
:= list[j],v1 ←$K

b
′ ← A2(stA,v

b
)

return b
?
= b

′

OSKGenO(b∗, opk, tki)
osk← OSKGen(mskb∗ , opk, tki)

OKb∗ := OKb∗ ||(opk, osk)
return osk

Figure 6: Experiments for unlinkability and uniformly unbiasedness of F-SSS with Key-Exposure.

where UNLNKfsw−ke is defined in Figure 6. Note that, similar to prior works, we only consider the
semi-honest server in the definition.

Definition 4.13 (Unbiasedness for fuzzy scalable tracking). A F-SSS scheme (MKGen, OPKGen,
OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be unbiased by senders if there exists a negligible
function negl, for all λ ∈ N, and for all PPT adversaries A the following holds:

Pr
[
UNIUBSAfs (λ, ρ,N) = 1

]
≤ 1

2
+ negl(λ),

where the experiment UNIUBSfs is defined in Figure 6 where list[i] denotes the i-th item of the list
and K denotes the master public key space.

5 Generic Transformation To Get Security With Key Expo-
sure

We provide our black-box compiler below to upgrade an SSw/o without key-exposure to an SSw with
key-exposure.

Suppose we have a digital signature scheme DS which is strongly unforgeable sEUFCMA. Then
we have a black-box compiler leveraging SS to stronger version as shown in Figure 7. Basically,
the compiler transforms any SSw/o with EUFCMAw/o−ke and UNLNKw/o−ke security (without key-
exposure) into an SSw with sEUFCMAw−ke and UNLNKw−ke security (with key-exposure).

It is easy to see that correctness always holds as long as SSw/o and DS are correct. The security
of unforgeability and unlinkability for SSw are captured informally in the following theorem. The
formal theorem and security proofs are deferred to Appendix E.

Theorem 5.1 (informal). The stealth signature SSw constructed in Section 5 is secure in sEUFCMAw−ke
and UNLNKw−ke experiments if SSw/o is EUFCMAw/o−ke secure, UNLNKw/o−ke secure, and DS is
sEUFCMA secure.

18

MKGen(λ)

return SSw/o.MKGen(λ)

OSKGen(msk, opk, tki)

(vk, sk)← DS.Gen(λ)

epk← SSw/o.OSKGen(msk, opk, tki)

return ⊥ if epk =⊥
σ1 ← SSw/o.Sign(epk, vk)

return osk := (σ1, sk, vk)

Track(mtk, opk, tki)

return SSw/o.Track(mtk, opk, tki)

OPKGen(mpk)

return SSw/o.OPKGen(mpk)

Sign(osk,m)

return ⊥ if osk =⊥
(σ1, sk, vk)← osk

σ2 ← DS.Sign(sk,m||σ1)

return σ := (σ1, σ2, vk)

Vf(opk, σ,m)

(σ1, σ2, vk) := σ

if SSw/o.Vf(opk, σ1, vk)∧

DS.Vf(vk, σ2,m||σ1)

return 1

else return 0

Figure 7: A generic transformation to lift SSw/o to SSw.

MKGen(λ)

A ∈ R
k×ℓ
q ← Dil.ExpandA(crs)

(s1, s2)←$S
ℓ
η × S

k
η

t := As1 + s2

(ek, dk)← KEM.Gen(λ)

mpk := (t, ek),

msk := (s1, s2, dk, t)

mtk := (dk, t)

return (mpk,msk,mtk)

OSKGen(msk, opk, tki)

(s1, s2, dk, t) := msk

if false← Track((dk, t), opk, tki)

return ⊥
K ← KEM.Decaps(dk, tki)

(s
′
1, s

′
2)← Dil.ExpandS(K)

return osk := (s1 + s
′
1, s2 + s

′
2)

Vf(opk, σ,m)

return Dil.Vf(opk, σ,m)

OPKGen(mpk)

(t, ek) := mpk

A← Dil.ExpandA(crs)

(C,K)← KEM.Encaps(ek)

(s
′
1, s

′
2) ∈ S

ℓ
η × S

k
η ← Dil.ExpandS(K)

t
′
:= t + As

′
1 + s

′
2

(t
′
1, ·)← Dil.power2Round(t′, d)

return (opk := t
′
1, tki := C)

Sign(osk,m)

return ⊥ if osk =⊥
return σ := Dil.Sign(osk,m)

Track(mtk, opk, tki)

(dk, t) := mtk

A← Dil.ExpandA(crs)

K ← KEM.Decaps(dk, tki)

(s
′
1, s

′
2)← Dil.ExpandS(K)

t̃ := t + As
′
1 + s

′
2

(t̃1, ·)← Dil.power2Round(t̃, d)

return opk
?
= t̃1

Figure 8: Construction of Spirit with EUFCMAw/o−ke and UNLNKw/o−ke security

6 Spirit: Lattice based (Fuzzy) Stealth Signature

We first describe Spirit and later show we can make it fuzzy.

19

6.1 Lattice-based Stealth Signature

We use an ANOCCA-secure key exchange KEM (Kyber) [SAB+20] and an EUFCMA-secure signature
(Dilithium) to construct an SS scheme with existential unforgeability without key-exposure and
unlinkability without key-exposure in random oracle model. We require a common reference string
crs←$ {0, 1}256, but for conciseness, we omit the explicit mention of crs in interfaces. We provide the
detailed construction in Figure 8.

Intuitively, we use KEM to re-randomize the underlying master secret key msk to obtain osk
each time and it needs to be actively anonymous which can be instantiated by Kyber with slight
modification as shown in [GMP22]. Also, we only require Dilithium to be EUFCMA secure which
gives us larger space to choose parameters. We recall Dilithium as follows.

Definition 6.1 (Dilithium [LDK+20]). Dilithium denoted by Dil is a post-quantum digital signature
DS scheme based on the “Fiat-Shamir with Aborts” approach [Lyu09, Lyu12]. It is based on
MLWE,MSIS and SelfTargetMSIS assumptions with ring Rq := Zq[X]/(Xm + 1). Moreover, for
secrets s←$Sℓ

η, its each coefficient of the vector is an element of Rq with small coefficients of size
at most η. In its optimized construction, there are some useful supporting algorithms which we
described as follows:

• ExpandA(crs) : The function maps a uniform seed crs to a matrix A ∈ Rk×ℓ
q .

• ExpandS(K) : The function used for generating the secret vectors in key generation, maps a seed
K to (s1, s2) ∈ Sℓ

η × Sk
η .

• power2Round(r, d) : The function is the straightforward bit-wise way to break up an element
r := r1 · 2d + r0 where r0 = r mod 2d and r1 = (r − r0)/2

d.

• HighBitsq(r, α) : The function select an α that is a divisor of q − 1 and write r = r1 · α+ r0 in the
same way as before then returns r1.

• MakeHintq(z, r, α) : The function runs r1 ← HighBits(r, α) and v1 ← HighBits(r + z, α), then
returns r1 ̸= v1.

Correctness. Since
t′ = t+As′1 + s′2 = A(s′1 + s1) + (s2 + s′2),

it is easy to see we have 1− negl(λ) correctness as long as underlying KEM and Dil have 1− negl(λ)
correctness.

Notably, s′1 + s1 and s2 + s′2 have approximately doubled norms, which results in doubled β in
signatures. This will require additional iterations in the Sign algorithm, as the number of repetitions

is roughly 2−256·β(
ℓ
γ1

+ k
γ2

), where γ1 ≈ 2γ2 [LDK+20]. However, besides having doubled β, we can also
increase γ1 and γ2 to 2γ1 and 2γ2, respectively. This adjustment slightly lowers the SelfTargetMSIS
hardness but won’t harm the running time. To see this, in Dil’s proof, the reduction’s advantage
is mainly dominated by MSISk,ℓ,4γ2

for sEUFCMA security, but SelfTargetMSISk,ℓ+1,2γ2
for EUFCMA

security. Without using the forking lemma (since it is not tight and not applicable in the quantum
setting), the hardness of SelfTargetMSIS mainly comes from finding short vectors (∥·∥∞ ≤ 2γ2) z,u

′

such that Az+ u′ = t′ and amounts to the MSIS problem (refer to Section 6.2.1 and Appendix C.3
in [LDK+20] for details). Therefore, doubling γ2 in our Spirit construction provides the reduction
of EUFCMAw/o−ke with roughly the same advantage as that of sEUFCMA in Dil. We present the
concrete security levels in Table 3.

20

MKGen(λ, n)

mpk′,mtk′,msk′ ← SS.MKGen(λ)

(pk, sk)← pRgv.Gen(λ, n)

mpk := (mpk′, pk),msk := msk′

mtk := (mtk′, sk)

return (mpk,mtk,msk)

FTKGen(mtk, ρ)

parse (mtk′, sk) := mtk

parse (s1, . . . , sn) := sk

t← log2(
1

ρ
)

return ftk := (s1, . . . , st)

Sign(osk,m)

return SS.Sign(osk,m)

Vf(opk, σ,m)

return SS.Vf(opk, σ,m)

OPKGen(mpk)

parse (mpk′, pk) := mpk

ftki← pRgv.Enc(pk, 1)

return (SS.OPKGen(mpk′), ftki)

FTrack(ftk, ftki)

[m1, . . . ,m|ftk|]← pRgv.Dec(ftk, ftki)

b :=

|ftk|∧
i=1

mi

return b
?
= 1

Track(mtk, opk, tki)

parse (mtk′, sk) := mtk

return SS.Track(mtk′, opk, tki)

OSKGen(msk, opk, tki)

return SS.OSKGen(msk, opk, tki)

Figure 9: Post-quantum FMD fuzzy tracking

Security Analysis. We prove the construction of Spirit in Figure 8 is existential unforgeable
and unlinkable without key exposure, and is secure in EUFCMAw/o−ke and UNLNKw/o−ke experiment,
respectively. For security of EUFCMAw/o−ke, we prove this in two steps. First, we show it is
unforgeable without key exposure under no-message attacks (NMA), i.e., the adversary cannot query
SignO(·), and we refer the corresponding experiment to UFNMAw/o−ke; Next, we show a reduction
from UFNMAw/o−ke to EUFCMAw/o−ke. Since Dil does not rely on the lower parts of public key t0
to be secret, so for simplicity, we assume the one-time public key opk is t′ instead of t′1. Also, we
assume crs := A directly and is publicly known.

Lemma 6.1 (informal). Spirit in Figure 8 is unforgeable without key exposure under no-message
attacks if SelfTargetMSIS and MLWE assumptions hold.

Then we have the following theorems to show the construction is unforgeable and unlinkable.
The formal statement and analysis of the above lemma and the following theorem is deferred
to Appendix F.

Theorem 6.2 (informal). Spirit in Figure 8 is existential unforgeable and unlinkable without key
exposures if it is UFNMAw/o−ke and the KEM used is ANOCCA secure.

6.2 Lattice-based Fuzzy Stealth Signature

We provide a lattice-based construction for fuzzy tracking in standard model. Basically, it is packed
Regev encryption (denoted as pRgv) with ciphertext compression [BDGM19]. And this gives us the
first post-quantumly ambiguous encryption without relying on random oracles.

Packed Regev (compressed). For a more detailed description and analysis, please refer to Ap-
pendix G. In short terms, the packed Regev scheme pRgv is a lattice-based linearly homomorphic
encryption that has an additional property that allows for ciphertext compression. This unique
feature enables the representation of a ciphertext encrypting n bits with a size of only n+O(λ) bits.
This reduced ciphertext size contributes to the both asymptotic and concrete efficiency of the scheme.

21

Since INDCPA and IKCPA security (recalled in Appendix C) of pRgv are discussed in prior works
already, we focus on its ambiguous security and we show it is actually Uniformly-Ambiguous (recalled
in Appendix C) with super-poly noise-modulus ratio. The formal statement and proof of the lemma
below is deferred to Appendix G.

Lemma 6.3. Packed Regev encryption pRgv with ciphertext compression shown in Figure 16 satis-
fies Definition C.8 and is uniformly-ambiguous UNIAMB-secure when 4Bn

q is negl(λ).

The modulus. To argue uniformly-ambiguous security, we need super-polynomial noise-to-modulus
ratio (e.g., 60-bit modulus in our case) which is usually assumed in homomorphic encryption related
works. This is a somewhat stronger assumption since it assumes the lattice problem BDD or GapSVP
is hard even with super-polynomial approximation factor [Reg05].

Construction. We then provide a lattice-based fuzzy stealth signature in Figure 9, which is
composed of a standard stealth signature SS and a compressed packed Regev encryption pRgv shown
above. Basically, it use the same framework as FMD1 presented in [BLMG21].

Correctness. We provide the correctness analysis in Appendix G.
Now we consider the false-positive rate ρ when using different fuzzy tracking key. Since c1 looks

uniformly random due to LWE assumption, sTi c1 is uniformly random over Zq by Leftover Hash
Lemma as inner product is a strong randomness extractor5. This implies ⌈sTi c1 + z⌋ is uniformly
random over {0, 1} and FTrack returns true with probability 2−t = ρ.

Security Analysis. Formal statement and corresponding proof of the following theorem are deferred
to Appendix G.

Theorem 6.4 (informal). The fuzzy stealth signature constructed in Figure 9 is unlinkable with key-
exposure and fuzzy tracking if the underlying stealth signature is UNLNKw−ke and pRgv is UNIAMB
and IKCPA secure.

We also provide an approach to extend it to finer false-positive rate as shown in Appendix G.

6.3 Scalable Lattice-based Fuzzy Tracking

As discussed in Section 2.4, we limit the user’s ability to choose false-positive rate and provide a
new framework of fuzzy tracking which is substantially more scalable than prior works[BLMG21,
MSS+21, LT21]. Please refer to Section 4.4 for functionality and security definitions.

Construction. We describe the detailed construction in Figure 10, where {0, 1}2m ← H(k ∈
{0, 1}λ, i ∈ [t]) is a hash function with the seed k and Hn : {0, 1}|mpk| 7→ {0, 1}n is another hash
function mapping mpk to a hint which is used to locate mpk’s mailbox in server’s storage. Since it is
based on Module-LWE assumption, Rq denotes the ring Zq[X]/(Xm + 1), and encodeRq

: {0, 1}m 7→
Zq[X]/(Xm + 1) is a function mapping binary strings to the ring elements with binary coefficients;
Similarly, decodeRq is the reverse operation to map back to binary string. Basically, it is a variant
of the underlying INDCPA encryption of Kyber with non-prime modulus because we need Z2 to
be a subgroup of Zq in correctness and security analysis. Though we lose the advantage of NTT
multiplications, we can still mitigate this by using Karatsuba and Toom-Cook algorithms.

Correctness. It is clear to see that the targeted mpk must have hint := hinti = Hn(mpk) appears in
list with probability 1: For the targeted index i ∈ [t], we have ci1 = AT r+ e1 which is the same as
standard ciphertext header. The decryption will output hint directly as long as q > 4B. Now we
focus on the other case where mpk′ ̸= mpk. Firstly, considering hintj ∈ list, it is decrypted as

⌈sT cj1 − c2⌋2 ⊕ yj = ⌈e′ + q

2
(w + s1(x

i − xj) + yi)⌋2 ⊕ yj ,

5We only use it for correctness (or fuzziness), not for security.

22

MKGen(λ)

return SS.MKGen(λ)

FTKGen(ρ,N)

n := ⌈log2 N⌉

t := ρ · 2n

A ∈ R
ℓ×ℓ
q ←$ crs

(s, e)←$ (B
ℓ
η)

2

b := As + e

return ftk := (s, t), fpk := (b,Hn, t)

FTrack(ftk, ftki)

parse (s, t) := ftk, (c1, c2, δ) := ftki

∀i ∈ [t] :

(x
i
,y

i
)← H(δ, i)

x
i
, y

i ∈ Rq ← encodeRq (x
i
,y

i
)

c
i
1 := c1 −

q

2
· (

[
xi

0

]
)

w
i
:= ⌈sT c

i
1 − c2⌋2 ⊕ y

i

hinti := decodeRq (w
i
)[: n]

return list := {hint1, . . . , hintt}

Sign(osk,m)

return SS.Sign(osk,m)

OPKGen(mpk, fpk)

parse (b ∈ R
ℓ
q,Hn, t) := fpk

hint ∈ {0, 1}n ← Hn(mpk)

z←$ {0, 1}m−n

w
T

:= [hintT ∥zT
]

i←$ [t]

δ ←$ {0, 1}λ

(r, e1)←$ (B
ℓ
η)

2
, e2 ←$Bη

(x,y ∈ {0, 1}m)← H(δ, i)

x, y, w ∈ Rq ← encodeRq (x,y,w)

c1 := A
T
r + e1 +

q

2
·
[
x
0

]
c2 := b

T
r + e2 +

q

2
· (w + y)

ftki := (c1, c2, δ)

return SS.OPKGen(mpk), ftki

OSKGen(msk, opk, tki)

return SS.OSKGen(msk, opk, tki)

Track(mtk, opk, tki)

return SS.Track(mtk, opk, tki)

Vf(opk, σ,m)

return SS.Vf(opk, σ,m)

Figure 10: Scalable lattice-based fuzzy tracking

where s1 is the first ring element of s. hintj is uniformly random over {0, 1}n after rounding ⌈·⌋2 as
yj ⊕ yi are outputs of the random oracle H. Then, for any mpk′ ̸= mpk, Pr

[
Hn(mpk′) = hintj

]
= 1

2n

since Hn is a random oracle, and

Pr
[
Hn(mpk′) ∈ list

]
=

t∑
j=1

Pr
[
Hn(mpk′) = hintj

]
=

t

2n
= ρ.

Security Analysis. The formal theorem statements and proof of the following theorems are deferred
to Appendix H.

Theorem 6.5 (informal). The fuzzy scalable stealth signature constructed in Figure 10 is unlinkable
with key-exposure and fuzzy tracking if the underlying stealth signature is UNLNKw−ke and MLWE
holds. It is also unbiased and satisfying UNIUBSfs defined in Definition 4.13 if n ≤ m

2 where m is a
power of 2 and Bη is a centered binomial distribution.

23

7 Conclusion

In this work, we have presented a novel and practical approach to address post-quantum secure
stealth addresses. Along the way, we demonstrate its potential applications, such as privacy-
preserving payments and passwordless authentication schemes like FIDO. We have also introduced
a generic method to transform standard security without key-exposure resistance into a robust
security solution capable of withstanding key-exposure attacks. Additionally, we have explored
post-quantum fuzzy message detection (fuzzy tracking) and proposed two potential constructions.
Future work and open problems include exploring the integration of our approach into RingCT-like
frameworks [EZS+19, ESZ22] and investigating methods to reduce the signature size based on our
current results.

Acknowledgement

Nico Döttling is funded by the European Union (ERC, LACONIC, 101041207). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 553–572, French Riviera, May 30 –
June 3, 2010. Springer, Heidelberg, Germany.

[ADE+20] Nabil Alkeilani Alkadri, Poulami Das, Andreas Erwig, Sebastian Faust, Juliane Krämer,
Siavash Riahi, and Patrick Struck. Deterministic wallets in a quantum world. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020:
27th Conference on Computer and Communications Security, pages 1017–1031, Virtual
Event, USA, November 9–13, 2020. ACM Press.

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-
secure signatures from lossy identification schemes. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 572–590, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In 30th Annual ACM Symposium on Theory of Computing, pages
10–19, Dallas, TX, USA, May 23–26, 1998. ACM Press.

[All22] FIDO Alliance. White Paper: Multi-Device FIDO credentials, Mar 2022.

[AMKM21] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz: Se-
cure multi-hop payments without two-phase commits. In Michael Bailey and Rachel
Greenstadt, editors, USENIX Security 2021: 30th USENIX Security Symposium, pages
4043–4060. USENIX Association, August 11–13, 2021.

24

[BBCW21] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. Provable
security analysis of FIDO2. In Tal Malkin and Chris Peikert, editors, Advances in Cryp-
tology – CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Science,
pages 125–156, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor, Advances in Cryptology –
ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 566–582,
Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference,
Part II, volume 11892 of Lecture Notes in Computer Science, pages 407–437, Nuremberg,
Germany, December 1–5, 2019. Springer, Heidelberg, Germany.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd
Innovations in Theoretical Computer Science, pages 309–325, Cambridge, MA, USA,
January 8–10, 2012. Association for Computing Machinery.

[BLMG21] Gabrielle Beck, Julia Len, Ian Miers, and Matthew Green. Fuzzy message detection. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer
and Communications Security, pages 1507–1528, Virtual Event, Republic of Korea,
November 15–19, 2021. ACM Press.

[CM17] Nicolas T Courtois and Rebekah Mercer. Stealth address and key management techniques
in blockchain systems. ICISSP, 2017:559–566, 2017.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages
537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[dona] Cryptocurrency solutions for institutional philanthropy.

[donb] How to donate crypto.

[donc] Why donate bitcoin, ethereum, nfts and other cryptocurrencies to charity.

[eco] Cryptocurrency and e-commerce.

[ega] Cryptocurrency and online gaming.

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+: More efficient
post-quantum private blockchain payments. In 2022 IEEE Symposium on Security and
Privacy, pages 1281–1298, San Francisco, CA, USA, May 22–26, 2022. IEEE Computer
Society Press.

25

[EZS+19] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi
Liu. MatRiCT: Efficient, scalable and post-quantum blockchain confidential transactions
protocol. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications Security,
pages 567–584, London, UK, November 11–15, 2019. ACM Press.

[FGK+20] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and
Dain Nilsson. Asynchronous remote key generation: An analysis of yubico’s proposal
for W3C WebAuthn. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020: 27th Conference on Computer and Communications Security,
pages 939–954, Virtual Event, USA, November 9–13, 2020. ACM Press.

[fre] Digital currency donations for freedom convoy evading seizure by authorities.

[GMP22] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-
quantum public key encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology – EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in
Computer Science, pages 402–432, Trondheim, Norway, May 30 – June 3, 2022. Springer,
Heidelberg, Germany.

[HLW22] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets wallet: Formalizing
privacy and revocation for FIDO2. Cryptology ePrint Archive, Report 2022/084, 2022.
https://eprint.iacr.org/2022/084.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st Annual ACM Symposium on
Theory of Computing, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[imp] https://github.com/sihangpu/SPIRIT.

[Ing56] A. W. Ingleton. The rank of circulant matrices. Journal of the London Mathematical
Society, s1-31(4):445–460, 1956.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of
Fiat-Shamir signatures in the quantum random-oracle model. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 552–586, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

[LLN+20] Wenling Liu, Zhen Liu, Khoa Nguyen, Guomin Yang, and Yu Yu. A lattice-based key-
insulated and privacy-preserving signature scheme with publicly derived public key. In
Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020:
25th European Symposium on Research in Computer Security, Part II, volume 12309 of
Lecture Notes in Computer Science, pages 357–377, Guildford, UK, September 14–18,
2020. Springer, Heidelberg, Germany.

26

https://eprint.iacr.org/2022/084
https://github.com/sihangpu/SPIRIT
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

[LRR+19] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Kr-
ishnan Thyagarajan, and Jiafan Wang. Omniring: Scaling private payments without
trusted setup. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications
Security, pages 31–48, London, UK, November 11–15, 2019. ACM Press.

[LT21] Zeyu Liu and Eran Tromer. Oblivious message retrieval. Cryptology ePrint Archive,
Report 2021/1256, 2021. https://eprint.iacr.org/2021/1256.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 598–616, Tokyo, Japan,
December 6–10, 2009. Springer, Heidelberg, Germany.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 738–755, Cambridge, UK, April 15–19,
2012. Springer, Heidelberg, Germany.

[LYW+19] Zhen Liu, Guomin Yang, Duncan S. Wong, Khoa Nguyen, and Huaxiong Wang. Key-
Insulated and Privacy-Preserving signature scheme with publicly derived public key. In
2019 IEEE European Symposium on Security and Privacy (EuroS P), pages 215–230,
2019.

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
218–238, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[MSH+17] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,
Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, et al. An empirical
analysis of traceability in the monero blockchain. arXiv preprint arXiv:1704.04299, 2017.

[MSS+21] Varun Madathil, Alessandra Scafuro, István András Seres, Omer Shlomovits, and
Denis Varlakov. Private signaling. Cryptology ePrint Archive, Report 2021/853, 2021.
https://eprint.iacr.org/2021/853.

[NMRL16] Shen Noether, Adam Mackenzie, and the Monero Research Lab. Ring confidential
transactions. Ledger, 1:1–18, Dec. 2016.

[OKH13] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. Structure and anonymity of the
bitcoin transaction graph. Future internet, 5(2):237–250, 2013.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. FALCON. Technical report, National Institute of Standards and Technology,
2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[PRV12] Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis. How powerful
are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653, 2012. https:
//eprint.iacr.org/2012/653.

27

https://eprint.iacr.org/2021/1256
https://eprint.iacr.org/2021/853
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2012/653
https://eprint.iacr.org/2012/653

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory
of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[RH13] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In
Security and privacy in social networks, pages 197–223. Springer, 2013.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph.
In International Conference on Financial Cryptography and Data Security, pages 6–24.
Springer, 2013.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Le-
point, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology,
2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology,
2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[SGS21] Gili Schul-Ganz and Gil Segev. Generic-group identity-based encryption: A tight
impossibility result. Cryptology ePrint Archive, Report 2021/745, 2021. https://

eprint.iacr.org/2021/745.

[SO13] Marc Santamaria Ortega. The bitcoin transaction graph anonymity. 2013.

[SPB21] István András Seres, Balázs Pejó, and Péter Burcsi. The effect of false positives: Why
fuzzy message detection leads to fuzzy privacy guarantees? Cryptology ePrint Archive,
Report 2021/1180, 2021. https://eprint.iacr.org/2021/1180.

[ste] Untraceable transactions which can contain a secure message are inevitable. 2011.

[Tod] Peter Todd. Stealth addresses, 2014.

[umb] Umbra: Privacy preserving stealth payments.

[use] How many people own and use bitcoin?

[vS] Nicolas van Saberhagen. Cryponote v 2.0. 2013.

[YZ21] Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EURO-
CRYPT 2021, Part II, volume 12697 of Lecture Notes in Computer Science, pages
568–597, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

[ZMS+21] Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire O’Neill.
Quantum-safe HIBE: does it cost a latte? Cryptology ePrint Archive, Report 2021/222,
2021. https://eprint.iacr.org/2021/222.

28

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/745
https://eprint.iacr.org/2021/745
https://eprint.iacr.org/2021/1180
https://eprint.iacr.org/2021/222

A Discussions about Quantum Random Oracles

Since our goal is a practically efficient construction, we mainly focus on post-quantum security in
the classical random oracle setting which is in the same spirit as in related works such as [LLN+20,
EZS+19, ESZ22], etc. However, our protocols are highly likely to be secure even in the QROM
setting. In more detail, for unforgeability, we can either follow the same strategy in Section 4.5
of [KLS18] to argue the EUF-CMA security in the QROM setting or apply the lifting theorem 1.1
and 1.2 from [YZ21] to establish the reduction from EUF-NMA in classical random oracle model
to EUF-CMA in the QROM setting; for unlinkability, according to [GMP22], our adapted Kyber
is already ANO-CCA secure in the QROM setting, and we only program the random oracle in
a non-adaptive way as in the unforgeability game, thus the security in QROM is supposed to be
preserved. We will add this discussion to the paper.

B Performance Analysis

We present the performance result in Table 3 and Table 4.

Implementation. We implement the Spirit, post-quantum FMD, and scalable fuzzy tracking
schemes in C, and the open-source code of our proof-of-concept implementation can be found at [imp].
Specifically, we choose the anonymized variant of Kyber [SAB+22] to instantiate the KEM for
building Spirit: We replace the original FO transform of Kyber with the one suggested in [GMP22],
which makes Kyber ANOCCA-secure.

To instantiate the generic transformation in Section 5 to make Spirit secure against key-
exposure attacks, we consider using Dilithium or Falcon [PFH+22] as the additional digital signature.
Combining Spirit with Dilithium results in better efficiency but a slightly larger signature size; on
the other hand, combining Spirit with Falcon leads to the most compact signatures but significantly
longer key generation time.

For Spirit in Section 6.1, similar to Dilithium, we denote the scheme with three security levels
as Spirit2, Spirit3, and Spirit5. Parameters are the same as Dilithium’s, except that our β, γ1, γ2
are doubled.

For post-quantum FMD in Section 6.2, to achieve 104-bit computational security and 40-bit
statistical security, we choose q = 260, ℓ = 2304, and χ = Bη is a binomial distribution with parameter
η = 3.

For Scalable Fuzzy Tracking in Section 6.3, to attain 115-bit security and negligible failure
probability, we choose q = 4096; other parameters are the same as Kyber512, specifically, we have
m = 256, η = 3, ℓ = 2.

Environment. We run the implementation on a standard laptop: Macbook Air (M1 2020) with
8GB RAM and a 2.1 GHz CPU (Turbo 3.2 GHz). It is important to note that our implementation
is based on the reference implementation of Dilithium, Kyber, and Falcon, without using AES or
AVX optimization. We perform each test 10,000 times to calculate the average running time. For
post-quantum FMD, we run tests 100 times to obtain the average running time.

Experimental results demonstrate that Falcon512+Spirit2 provides the smallest signature size
(4.09 KB) for security against key-exposures with a decent hardness level (114-bit security). Addi-
tionally, Scalable Fuzzy Tracking offers the smallest communication cost (800 Bytes) and server’s
computational overhead (3.4 ms) for millions of clients.

Prior Works. We provide comparison tables with prior works in Table 1 and Table 2.
In Table 1, we compare our group-based stealth signature (Appendix D), Spirit2 (Section 6.1),

Spirit2 +Dilithium2, and Spirit2 +Falcon512 with previous works. It is important to note

29

Table 3: Performance Result of Constructions in Section 5 and Section 6.1

Scheme1 w/KE sec secq2 opk Signature MKGen OPKGen Track OSKGen Sign Vf

Spirit2 ◦ 114 104 2.08 KB 2.54 KB 0.068 ms 0.074 ms 0.076 ms 0.078 ms 0.208 ms 0.053 ms

Spirit3 ◦ 171 155 3.04 KB 3.45 KB 0.131 ms 0.137 ms 0.136 ms 0.138 ms 0.377 ms 0.089 ms

Spirit5 ◦ 245 223 4.16 KB 4.81 KB 0.191 ms 0.198 ms 0.202 ms 0.215 ms 0.443 ms 0.145 ms

Dilithium2+Spirit2 • 114 104 2.08 KB 6.40 KB 0.070 ms 0.076 ms 0.078 ms 0.358 ms 0.222 ms 0.114 ms

Dilithium3+Spirit3 • 171 155 3.04 KB 8.85 KB 0.129 ms 0.136 ms 0.132 ms 0.597 ms 0.369 ms 0.182 ms

Dilithium5+Spirit5 • 245 223 4.16 KB 12.2 KB 0.186 ms 0.193 ms 0.197 ms 0.762 ms 0.428 ms 0.291 ms

Falcon512+Spirit2 • 114 104 2.08 KB 4.09 KB 0.069 ms 0.074 ms 0.075 ms 5.458 ms 0.226 ms 0.074 ms

Falcon1024+Spirit3 • 171 155 3.04 KB 6.51 KB 0.133 ms 0.133 ms 0.133 ms 17.7 ms 0.444 ms 0.130 ms

Falcon1024+Spirit5 • 245 223 4.16 KB 7.88 KB 0.194 ms 0.198 ms 0.201 ms 17.5 ms 0.441 ms 0.185 ms

1 Spirit2 is based on Dilithium2 and anonymized Kyber512, Spirit3 on Dilithium3 and Kyber768, and Spirit5 on Dilithium5
and Kyber1024. Falcon+Spirit indicates the use of an additional Falcon as DS in the generic transformation, while
Dilithium+Spirit signifies the use of an additional Dilithium as DS in the generic transformation.

2 secq represents the hardness of Quantum Core-SVP, while sec denotes the hardness of Classical Core-SVP.

Table 4: Performance Result of Constructions in Section 6.2 and Section 6.3

Scheme sec secq N Clients ρ Public Key Fuzzy Tracking Info Setup Time OPKGen1 FTrack2

Post-quantum FMD 104 94 220 2−10 345.6 KB 17.2 KB 108.8 ms 75.13 ms 11.74 sec

Post-quantum FMD 104 94 230 2−15 518.4 KB 17.2 KB 124.3 ms 74.64 ms 4.772 hour

Scalable Fuzzy Tracking 115 104 220 2−10 800 B 800 B 0.011 ms 0.0148 ms 3.424 ms

Scalable Fuzzy Tracking 115 104 230 2−15 800 B 800 B 0.011 ms 0.0149 ms 108.77 ms

1 Only consider the fuzzy part, i.e., the time to generate the fuzzy tracking information, ftki.
2 The server’s running time for each incoming ftki. For Post-quantum FMD, we calculate the time to run FTrack for all of
clients (recipients).

that[LLN+20] is a theoretical work without concrete parameters. We estimate the parameters based
on the information provided in the paper. For a more in-depth analysis of the estimated parameters,
please refer to the original text.

If we aim to improve their work with the recent advancements in NTRU, it is worth mentioning
that the techniques used in [LLN+20] are derived from [ABB10], which implies HIBE. Combining it
with NTRU could potentially enhance its efficiency. However, it is likely to have parameters similar
to the state-of-the-art NTRU-based HIBE [ZMS+21]. Thus, we estimate the parameters here based
on [ZMS+21] for 80-bit security, as they only provide two levels of security (80-bit or 160-bit).

In Table 2, we compare our Post-quantum FMD (Section 6.2) and Scalable Fuzzy Tracking
(Section 6.3) with previous works on message detection or retrieval. All these works assume a
semi-honest server, except for ΠTEE, which also considers a malicious server. Note that for security,
ρ needs to be as large as 1√

N
as calculated in [SPB21]. Additionally, some prior works consider

fuzzy schemes ([BLMG21] and ours) as ρM -anonymity, where M is the total number of messages.
However, this is not accurate due to statistical attacks as shown in [SPB21]: even with only one
message (M = 1), some extent of anonymity is maintained if N is large.

Regarding the server’s workload, we compare the results for a single server with a single thread,
as all works (except for ΠGC) support distributed servers or parallelized threads. [BLMG21] requires
running their test functionality for each recipient’s detection key for each incoming message. Other
schemes with full privacy inherently demand O(N) work from the server; otherwise, information
leakage will occur.

Latency per message is dominated by the server’s computational time. Assuming there are
N = 220 clients (a reasonable assumption for cryptocurrencies [use]) and setting the false-positive

30

rate ρ = 2−10 for [BLMG21] and ours. The numbers of other works are taken directly from their
papers. With an assumption of 10− 20 messages per second (e.g., Bitcoin or Ethereum), only our
scheme is practical with many users.

To compute each recipient’s computational time, we assume a total of M = 500, 000 messages

C Additional Preliminaries

C.1 Assumptions

Definition C.1 (Cyclotomic Polynomial). We denote by R the ring Z[X]/(Xn + 1) and by Rq the

ring Zq[X]/(Xm + 1), where m = 2m
′−1 such that Xm + 1 is the 2m′-th cyclotomic polynomial

Φ2m′(X). Moreover, we have ∏
d|m

Φd(X) = Xm − 1.

Definition C.2 (Learning with Errors (LWE)[Reg05]). For a vector s ∈ Zn
q called the secret, the

LWE distribution As,χ over Zn
q × Zq is sampled by choosing a ∈ Zn

q uniformly at random, choosing
e←$χ, and outputting (a, b = ⟨a, s⟩+ e mod q). Moreover, decisional-LWEn,m,q,χ is

Advlwen,m,q,χ(A) =
∣∣Pr[b = 1|A←$Zm×n

q , t←$Zm
q ;

b← A(A, t)]

−Pr[b = 1|A← Zm×n
q ,s←$Zn

q , e←$χm;

b← A(A,As+ e)]
∣∣.

Definition C.3 (Module Learning With Errors MLWE [BGV12]). For integers m, k, and a probability
distribution D : Rq → [0, 1], we say that the advantage of algorithm A in solving the decisional
MLWEm,k,D problem over the ring Rq is

Advmlwe
m,k,D(A) =

∣∣Pr[b = 1|A← Rm×k
q , t← Rm

q ;

b← A(A, t)]

−Pr[b = 1|A← Rm×k
q ,s1 ← Dk, s2 ← Dm;

b← A(A,As1 + s2)]
∣∣

Definition C.4 (Module Short Integer Solution MSIS[Ajt98]).

Advmsis
m,k,γ(A) =Pr

[
0 < ∥y∥∞ < γ ∧ [I |A] · y = 0

∣∣
A← Rm×k

q ;y← A(A)
]

Definition C.5 (The SelfTargetMSIS Problem in [LDK+20]). Suppose that H : {0, 1}∗ → Bτ is a
cryptographic hash function. To an algorithm A we associate the advantage function

Advselftargetmsis
H,m,k,γ (A) =

Pr

0 < ∥y∥∞ < γ

∧H(µ ∥ [I|A] · y) = c

∣∣∣∣∣∣∣
A← Rm×k

q ;

(y :=

[
r
c

]
, µ)← A|H(·)⟩(A)


31

ANOCCAAKEM(λ)

(ek0, dk0)← KEM.Gen(λ)

(ek1, dk1)← KEM.Gen(λ)

b←$ {0, 1}

(C
∗
, K

∗
)← KEM.Encaps(ekb)

b
′ ← ADecapsO(·,·)

(ek0, ek1, C
∗
, K

∗
)

b0 := (b = b
′
)

return b0

DecapsO(b′, C ′)

K
′
:= KEM.Decaps(dkb′ , C

′
)

return K
′

Figure 11: Experiment for ANOCCAAKEM(λ)

C.2 Cryptographic Tools

Definition C.6 (Binomial Distribution[SAB+20]). We define the binomial distribution Bη as follows:

(a1, . . . , aη, b1, . . . , bη)←$ {0, 1}2η,

and then output
∑η

i ai − bi. If we write some polynomial f ←$Bη, then each coefficient of f is
sampled from Bη.

Definition C.7 (Anonymous KEM[GMP22]). A KEM is said to be anonymous under chosen-
ciphertext attacks if there exists a negligible function negl(λ) for all λ ∈ N, and for all adversaries A
the following holds:

Pr
[
ANOCCAA(λ) = 1

]
≤ 1

2
+ negl(λ)

where ANOCCA is defined in Figure 11. Similarly, we also define IKCPA experiment for PKE
in Figure 12, which just removes access to the decryption oracle[BBDP01].

Definition C.8 (Uniformly-Ambiguous Encryption[BLMG21]). Let PKE := (Gen,Enc,Dec) be a
public-key encryption scheme for the message space {0, 1}n. For any λ ∈ N, uniformly sampled
message m←$ {0, 1}n, we say PKE is UNIAMB-secure if

Advuniamb
λ (A) :=

∣∣∣Pr[UNIAMBAPKE(λ)⇒ 0]−

Pr[UNIAMBAPKE(λ)⇒ 1]
∣∣∣ ≤ negl(λ),

where the experiment UNIAMBAPKE(λ) is defined in Figure 12.

C.2.1 Statistical Tools

Definition C.9 (Statistical Distance). The statistical distance between two probability distributions
A and B is

SD(A,B) =
1

2

∑
v

∣∣Pr[A = v]− Pr[B = v]
∣∣.

Recall min-entropy of a random variable A is

H∞(A) := − log(max
a

Pr[A = a]),

then we have the following lemma.

32

UNIAMBAPKE(λ)

(pk0, sk0)← PKE.Gen(λ)

(pk1, sk1)← PKE.Gen(λ)

b←$ {0, 1}

m←$ {0, 1}n

c
∗ ← PKE.Enc(pkb,m)

b
′ ← A(pk0, pk1, sk0, sk1, c

∗
)

return b
?
= b

′

IKCPAAPKE(λ)

(pk0, sk0)← PKE.Gen(λ)

(pk1, sk1)← PKE.Gen(λ)

(stA,m)← A1(pk0, pk1)

b←$ {0, 1}

c
∗ ← PKE.Enc(pkb,m)

b
′ ← A2(stA, pk0, pk1, c

∗
)

return b
?
= b

′

Figure 12: Experiment for UNIAMBAPKE(λ) and IKCPAAPKE(λ)

Lemma C.1 (Leftover Hash Lemma[ILL89]). Assume a family of functions {Hx : {0, 1}n 7→ {0, 1}m}x∈X
is universal: ∀ a ̸= b ∈ {0, 1}n, Prx∈X [Hx(a) = Hx(b)] = 2−m. Then, for any random variable W ,

SD((HX(W), X), (Um, X)) ≤ ϵ,

whenever m ≤ k − 2 log(1ϵ) + 2 and k = H∞(W).

Lemma C.2 (Rank of the Circulant Matrix[Ing56]). The rank of a circulant matrix C of order m is
m−d, where d is the degree of the greatest common divisors of Xm−1 and the associated polynomial
of C.

D Group-based Construction against Bounded Leakage

We provide an SS which is unforgeable and unlinkable with bounded key-exposure. The construction
is shown in Figure 13, where G is a group of primer order p, g is a generator, and H is a random
oracle mapping from G to Zp. Additionally, DS is an efficient group-based signature scheme such as
ECDSA, Schnorr and others whose verification key and signing key has discrete logarithm relation,
i.e., vk = gsk.

Correctness. It is clear that opk = gosk as

opk =

n∏
i=1

h
H(hr

i)
i = g

∑n
i=1 xi·H(gr·xi) = gosk.

Tracking mechanism also works since

R0 = opkH(h
r
0) = opkH(g

r·x0).

Security Analysis. Now we analyze the security of above construction.

Theorem D.1. The construction in Figure 13 is (strongly) unforgeable and unlinkable with (n− 1)-
bounded key exposures.

Proof. (sketch) For unlinkability, without knowing xi or r, by DDH assumption, the triple gr, gxi , gr·xi

remains uniformly random over G. With random oracle H, H(gr·xi) is also uniformly random over
Zp. Therefore, it is clear that opk, R,R0 are uniformly random.

For unforgeability, as long as DS is (strongly) unforgeable, then SS is also (strongly) unforgeable.

33

MKGen(λ)

Sample G = ⟨g⟩
(x0, x1, . . . , xn)←$Zp

mpk := (g, h0 := g
x0 , . . . , hn := g

xn)

msk := (x0, . . . , xn)

mtk := x0

return mpk,msk,mtk

OSKGen(msk, opk, tki)

parse (x0, . . . , xn) := msk

parse (R,R0) := tki

return ⊥ if

false← Track(x0, , opk, tki)

osk :=
n∑

i=1

xi · H(R
xi)

return osk

Vf(opk, σ,m)

return DS.Vf(opk, σ,m)

OPKGen(mpk)

parse (g, h0, . . . , hn) := mpk

r ←$Zp

opk :=
n∏

i=1

h
H(hr

i)

i

tki := (R := g
r
, R0 := opkH(hr

0)

return opk, tki

Sign(osk,m)

return σ := DS.Sign(osk,m)

Track(mtk, opk, tki)

parse (R,R0) := tki

parse x0 := mtk

return opkH(Rx0) ?
= R0

Figure 13: Construction of group-based SS secure with (n− 1)-bounded key-exposure

Now we consider key-exposures. Since

osk =

n∑
i=1

xi · H(hr
i),

this is an equation with n variables (xi) for adversaries. If the adversary learns at most n − 1
equations, then this linear system is undetermined and has at least p solutions which is exponentially
large. Thus msk is hiding when there are at most (n− 1) key-exposures.

E Security Analysis of Generic Transform

Proof of Theorem 5.1 We restate the theorem here more formally for the case of unforgeability.

Theorem E.1. The stealth signature SSw constructed in Section 5 is secure in sEUFCMAw−ke experiment
if SSw/o is EUFCMAw/o−ke secure and DS is sEUFCMA secure. Specifically, for any λ ∈ N, and for any
PPT adversary A, if it succeeds in the experiment sEUFCMAw−ke, then there are other adversaries
B1,B2 running in roughly same time such that

Adv
seufcmaw−ke

λ (A) ≤ Adv
eufcmaw/o−ke

λ (B1) + Advseufcma
λ (B2).

Proof. We prove the theorem by reduction. Suppose there’s an adversary A has non-negligible
advantage in sEUFCMAw−ke, then we can construct another adversary B to win the experiment
EUFCMAw/o−ke of SSw/o or the experiment sEUFCMA (strong unforgeability) of DS as follows. B
forwards mpk,mtk from the challenger in EUFCMAw/o−ke to A.

34

To simulate OSKGenO(i, opki, tkii, flagi), if flagi = true, B runs (vki, ski)← DS.Gen, then queries
σi
1 ← SignO(vki) in EUFCMAw/o−ke and returns oski := (σi

1, vk
i, ski) to A; If flagi = false, B asks a

challenger Ci in sEUFCMA of DS to send a challenge verification key vki, then queries σi
1 ← SignO(vki)

in sEUFCMAw/o−ke of SSw/o and stores σi
1; If OK[i] = (opki, ·, ·)∧flagi = true, B signals Ci to terminal

the experiment and asks for its oski then forwards that to A. To simulate SignO(i,mj), B queries
σj
2 ← SignO(mj ||σi

1) and returns σj := (σi
1, σ

j
2, vk

i) to A.
Once A submits some valid forgery σ′ := (σ′1, σ

′
2, vk

′),m′, i′ as shown in Figure 3, B behaves in
following cases:

• If m′ is not appeared in Q (recall that Q is the set to record signing queries), B forwards
σ′2,m

′||σ′1 to i′-th challenger in sEUFCMA of DS;

• If vk′ is not appeared in Q, B forwards σ′1, vk
′ to the challenger in EUFCMAw/o−ke of SSw/o;

• If both m′, vk′ are in Q, then the only case that σ′ is a valid forgery is either σ′1 or σ′2 not
appeared in Q. In either case, B just forwards σ′2,m

′||σ′1 to the challenger in sEUFCMA of DS.

This completes the proof.

We restate the theorem here for unlinkability.

Theorem E.2. The stealth signature SSw constructed in Section 5 is secure in UNLNKw−ke experiment
if SSw/o is UNLNKw/o−ke secure. Specifically, for any λ ∈ N, and for any PPT adversary A, if it
succeeds in the experiment UNLNKw−ke, then there are other adversaries B running in roughly same
time such that

Adv
unlnkw−ke

λ (A) ≤ Adv
unlnkw/o−ke

λ (B).

Proof. Similarly, we can also prove this theorem easily by reduction. Suppose there’s an adversary A
has non-negligible advantage in UNLNKw−ke, then we can construct another adversary B to win the
experiment UNLNKw/o−ke of SSw/o as follows. B forwards mpk0,mpk1, opkb, tkib from the challenger
in UNLNKw/o−ke to A. To simulate oskb, B runs DS.Gen to get (vk, sk), then queries the signing oracle
via SignO(·,−1, vk) from UNLNKw/o−ke to learn a signature σ1 of vk, then returns oskb := (σ1, vk, sk)
to A. To simulate OSKGenO, B queries SignO and runs DS.Gen as above to generate osk. Once A
submits b′, B simply forwards b′ as its final guess. This completes the proof.

F Security Analysis of Stealth Signature Without Fuzzy
Tracking

Proof of Lemma 6.1 We restate the lemma formally here.

Lemma F.1. Spirit in Figure 8 is unforgeable without key exposure under no-message attacks.
Specifically, in random oracle model, for any λ ∈ N, for any adversary A, if Dil has parameters
β, γ1, γ2, and we denote H′ as a random oracle can be accessed by A and B2, then the advantage to
win the game UFNMAAw/o−ke(λ) is

Adv
ufnmaw/o−ke

λ,H′,γ1,γ2,β
(A) ≤ Advmlwe

k,ℓ,D(B1) +Advselftargetmsis
H′,k,ℓ+1,ζ (B2).

Proof. Consider the experiment EUFCMAw/o−ke in Figure 1 where the SignO is forbidden to access.
Suppose A forges σ∗, then we have the following claim.

35

Claim 1. If an adversaryA can forge σ∗ without accessing SignO and assumingMLWEk,ℓ,D assumption
holds, then there is another adversary B2 who solves SelfTargetMSISH′,k,ℓ+1,ζ in roughly same time
with non-negligible probability.

Proof. After receiving uniformly random samples (A, t) ∈ Rk×ℓ ×Rk and random oracle access H′(·)
from the challenger in
SelfTargetMSISH′,k,ℓ+1,ζ′+β , B2 computes mpk := (A, t, ek), mtk := (dk, t) and forwards mpk,mtk,H′

to A. As long as the MLWEk,ℓ,D assumption holds, mpk looks indistinguishable from real public
key for A. For i-th query in OSKGenO, B2 computes and stores si1, s

i
2. Once A submits some valid

forgery σ∗ with i∗, meaning it finds some (x, z, c) for opk∗ := t∗ such that

H′

µ ∥ [Ik|A|t∗] ·

xz
c

 = c,

where ∥x∥∞ ≤ 2γ2 +1+2d−1τ, ∥z∥∞ ≤ γ1− 2β and ∥c∥∞ = 1[LDK+20]. Then B2 can retrieve s∗1, s
∗
2

from its storage and instantly return y :=

x′z′
c

 , µ to the SelfTargetMSISH′,k,ℓ+1,ζ challenger, where

x′ := x+ cs∗2 and z′ := z+ cs∗1. Note that ∥cs∗1∥, ∥cs∗2∥ ≤ β. Since we can write t∗ := t+As∗1 + s∗2, it
is easy to check that this is a valid solution

H′

µ ∥ [Ik|A|t] ·

x+ cs∗2
z+ cs∗1

c

 = c

where ∥y∥∞ ≤ ζ and ζ := max{γ1 − β, 2γ2 + 1 + 2d−1τ + β}.

This completes the proof to show it is secure in UFNMAw/o−ke experiment.

Proof of Theorem 6.2 We restate the theorem for unforgeable without key exposures formally
here.

Theorem F.2. Spirit in Figure 8 is existential unforgeable without key exposures. Specifically, for
any adversary A, if it succeeds in the experiment EUFCMAw/o−ke, then there is another adversary B
running in roughly same time such that

Adv
eufcmaw/o−ke

λ,H,γ1,γ2,β
(A) ≤ Adv

ufnmaw/o−ke

λ,H′,γ1,γ2,β
(B) + negl(λ),

where we denote H′,H as random oracles can be accessed by B1 and A, respectively.

Proof. Intuitively, reduction from CMA to NMA usually needs “patching” random oracles [KLS18,
AFLT12]. We prove this theorem in a sequence of hybrid games as follows.
Hybrid0: This is exactly the standard EUFCMAw/o−ke experiment. Thus we have

Pr[Hybrid0 ⇒ 1] = Adv
eufcmaw/o−ke

λ,H,γ1,γ2,β
(A).

Hybrid1: We modify Hybrid0 as follows. In OSKGenO(opki, tkii), for i-th query, if true ←
Track(mtk, opki, tkii) it only stores si1, s

i
2, t

i := Asi1 + si2 + t, sets oski := ⊤ and returns 1. In
SignO(i,mj), for j-th query, it generates and sets oski by msk if oski := ⊤, then return a signature

36

H(w1||µ)
// in Hyb2 and Hyb3

Retrieve ⟨µ : (c
µ
,w

µ
1 ⟩ for µ

if w1 = w
µ
1

then return c := c
µ

else return c := H′
(w1||µ)

EUFCMAAw/o−ke(λ)

(mpk,msk,mtk)← MKGen(λ)

OK := [], Q := ∅

(m
∗
, σ

∗
, i

∗
)← AOSKGenO,SignO

(mpk,mtk)

(opk∗ := t
∗
, osk∗, ·) := OK[i∗]

// Hyb3 block begins

(z
∗
, c

∗
,h

∗
) := σ

∗

µ
∗ ← G(m∗||t∗)

w
∗
1 ← HighBitsq(Az

∗ − c
∗
t
∗
, 2γ2)

if H′
(w

∗
1 ||µ

∗
) ̸= c

∗

then return 0

// Hyb3 block ends

b0 := (m
∗
, i

∗
) /∈ Q

b1 := Vf(opk∗,m∗
, σ

∗
) = 1

b2 := (OK[i∗] ̸= (·, ·,⊥))
return b0 ∧ b1 ∧ b2

Figure 14: Simulated H and EUFCMAAw/o−ke(λ) in Hybrid2 and Hybrid3

σj by using oski. This game only changes the time to generate oski, thus advantage remains the
same:

|Pr[Hybrid1 ⇒ 1]− Pr[Hybrid0 ⇒ 1]| = 0.

Hybrid2: We update Hybrid1 by modifying SignO(i,mj) in j-th query: Instead of generating σj

with oski when needed, it just simulates σj by choosing uniformly random (zj , cj) ∈ Sℓ
γ1−2β−1 ×Bτ

and stores a key-value pair ⟨µj : (cj ,wj
1)⟩ where µj ← G(mj ||ti), wµj

1 ← HighBitsq(Azj − cjti, 2γ2),
and G is a perfect random function. We also use a new random oracle H(w1||µ) to simulate random
oracle H′(w1||µ) in above game as shown in left part of Figure 14. Now we analyze the advantage.
In our construction, Dil.Sign remains unaltered, thus the resulting signature σ is still perfectly
zero-knowledge (where the exact simulation is shown in Sign of Figure 15). Therefore the distribution
of each σ is exactly the same as the one in Hybrid1, then we have

|Pr[Hybrid2 ⇒ 1]− Pr[Hybrid1 ⇒ 1]| = 0.

Hybrid3: We modify the above game by adding an additional block in EUFCMAw/o−ke as shown in

right part of Figure 14. This game only differs from the Hybrid2 if w∗1 = wµ∗

1 and ((m∗, ·, i∗) /∈ Q)∧
b1∧b2 (Hybrid3 return 0 andHybrid2 return 1). However, A didn’t query SignO(i∗,m∗) before, thus
wµ∗

1 should remain hidden. And from [KLS18], it shows that Dil signature has enough min-entropy,

thus the probability Pr[w∗1 = wµ∗

1] is negligible, i.e.,

|Pr[Hybrid3 ⇒ 1]− Pr[Hybrid2 ⇒ 1]| ≤ negl(λ).

This game can be fully simulated by B against UFNMAw/o−ke as follows. B1 simulates OSKGenO,SignO
oracles without knowing msk, and it patches H′ from UFNMAw/o−ke to H for generating σi. Once A
submits a valid signature σ∗ and if H′ works well in σ∗, B directly forwards σ∗ to the challenger of
UFNMAw/o−ke. Therefore

Pr[Hybrid3 ⇒ 1] = Adv
ufnmaw/o−ke

λ,H′,γ1,γ2,β
(B1)

and we completes the proof.

37

Sign(opki,mj)

// in Hyb1 and Hyb2

parse ti := opki

(zi, ci)←$Sℓ
γ1−2β1

×Bτ

µi ← G(mj ||ti)
wi

1 ← HighBitsq(Azi − citi, 2γ2)

Program H s.t. H(wi
1||µi

1) := ci

hi ← MakeHintq(−citi0,Azi − citi + citi0, 2γ2)

// t
i
0 are lower bits of t

i

return σi := (zi, ci,hi)

Figure 15: Simulation of Sign from Hybrid1 to Hybrid2

We state the theorem for unlinkable without key exposures formally here.

Theorem F.3. Spirit in Figure 8 is unlinkable without key exposures. Specifically, for any adversary
A, if it succeeds in the experiment UNLNKw/o−ke, then there are other adversaries B1,B2 running in
roughly same time such that

Adv
unlnkw/o−ke

λ,H,γ1,γ2,β
(A) ≤ Advanoccaλ (B1) + Advmlwe

k,ℓ,D(B2).

where we denote H as a random oracles can be accessed by A and γ1, γ2, β are parameters of the
underlying Dil scheme.

Proof. We prove the theorem in a sequence of hybrid games.
Hybrid0: This is the original UNLNKw−ke experiment, thus we have

Pr[Hybrid0 ⇒ 1] = Adv
unlnkw/o−ke

λ,H,γ1,γ2,β
(A).

Hybrid1: We modify the above game by changing the function Sign(osk,mj) in UNLNKw/o−ke
experiment to the Sign(opki,mj) without using osk in Figure 15. Specifically, it samples uniformly
random (zj , cj), programs the random oracle such that H(µj ||wj

1) = cj where µj is determined by

mj and wj
1 := HighBits(Azj − cjti, 2γ2). Then set σj := (zj , cj ,hj) where hj can be determined by

cj , ti, zj . Because of the perfectly zero-knowledge of σj , the distribution of signatures in this hybrid
is the same as the one in Hybrid0, i.e.,

|Pr[Hybrid0 ⇒ 1]− Pr[Hybrid1 ⇒ 1]| = 0.

Hybrid2: We modify the above game by follows. Parse mpk0 := (t0, ek1,0) and mpk1 := (t1, ek1,1),
instead of generating t0, t1 frommsk, we sample uniformly random (t0, t1)←$Rk

q×Rk
q . ByMLWEk,ℓ,D

assumption, we know this hybrid only differs from Hybrid1 by:

|Pr[Hybrid2 ⇒ 1]− Pr[Hybrid1 ⇒ 1]| ≤ Advmlwe
k,ℓ,D(B2).

Besides, this hybrid can be fully simulated by an adversary B1 of ANOCCA experiment. B1
simulates the random oracle H for A. Upon receiving ek0, ek1 and (Cb,Kb) from ANOCCA experiment,
B1 sets mpk0 := (t0, ek0) and mpk1 := (t0, ek1) where (t0, t1)←$Rk

q × Rk
q are uniformly sampled.

38

pRgv.Gen(λ, n)

A ∈ Zℓ×ℓ
q ←$ crs

(S,E)←$ (χ
ℓ×n

)
2

B := AS + E

return pk := B, sk := S

pRgv.Dec(sk, ct)

parse (c1, z, w1, . . . , wn) := ct

parse (s1, . . . , st) := sk

∀i ∈ [t],mi := ⌈sTi c1 + z⌋2 ⊕ wi

return m := [m1, . . . ,mt]

pRgv.Enc(pk,m ∈ {0, 1}n)

(r, e1)←$ (χ
ℓ
)
2
, e2 ←$χ

n

c1 := A
T
r + e1

c2 := B
T
r + e2 +

q

2
·m

z ←$Zq such that ∀i ∈ [n] :

z + c2,i /∈ [
q

4
− B,

q

4
+ B]∪

[
3q

4
− B,

3q

4
+ B]

∀i ∈ [n], wi := ⌈z + c2,i⌋2
return ct := (c1, z, w1, . . . , wn)

Figure 16: Packed Regev encryption pRgv with ciphertext compression

B1 sets tkib := Cb, oskb := ⊤, opkb←$Rk
q , and sends (mpk0,mpk1, tkib, opkb) to A of Hybrid2.

For each query of OSKGenO(b∗, opki, tkii), B1 queries Ki ← KEM. DecapsO(b∗, tkii) to check if
Asi1 + si2 + tb∗ = opki where si1, s

i
2 ← Dil.ExpandS(Ki). If the check doesn’t pass, set oskib∗ :=⊥;

Otherwise set oskib∗ := ⊤. For each query of SignO(b∗, i,mj), B1 simulates the signature σj by using
opkib∗ if the corresponding oskib∗ = ⊤, otherwise return ⊥. If i = −1, just simulates a signature using
opkb.

Then Hybrid2 can be simulated without knowing any msk,mtk or b. Once A returns b′, B1
simply forwards b′ to the challenger of ANOCCA. Thus we have

Pr[Hybrid2 ⇒ 1] = Advanoccaλ (B1),

and this completes the proof.

G Analysis of Post-quantum FMD

We first recall the construction of packed Regev with ciphertext compression [BDGM19] in Figure 16,
where χ is the error distribution and B is the error bound between z + c2,i and z + sTi c1.

Note that apart from the header (c1, z), the payload (wi) are just n bits which is almost as
succinct as DLog-based fuzzy message detection scheme FMD2 in [BLMG21]. Specifically, the entire
ciphertext is (ℓ+ 1) log q + n-bit large.

Correctness. We show the scheme in Figure 9 satisfies Definition 4.8 as follows. For each i ∈ [t],
we have ⌈sTi c1 + z⌋2 ⊕ wi = 1. Since c2,i − sTi c1 = q

2 + e′ where e′ ∈ [−B,B] is some short error, we
have c2,i − e′ = sTi c1 +

q
2 . Also, we choose

c2,i + z /∈ [
q

4
−B,

q

4
+B] ∪ [

3q

4
−B,

3q

4
+B],

thus we have ⌈c2,i + z⌋2 = ⌈c2,i + z − e′⌋2, which implies wi = ⌈sTi c1 + z + q
2⌋2 = ⌈sTi c1 + z⌋2 ⊕ 1.

Therefore, with correct ftk, FTrack always returns true. Note that for correctness, we require q > 4Bn.

Security Analysis. We show the scheme in Figure 9 is unlinkable with key-exposure and fuzzy
tracking (Definition 4.9).
Proof of Lemma 6.3 and Theorem 6.4 We restate the formal lemma here.

39

Lemma G.1. Packed Regev encryption pRgv with ciphertext compression shown in Figure 16
satisfies Definition C.8 and is uniformly-ambiguous UNIAMB-secure when 4Bn

q is negl(λ). Specifically,
we have

Advuniamb
λ (A) ≤ Advlweℓ,q(A) +

4Bn

q
,

where B is the bound such that
∥∥ST c1 − c2

∥∥
∞ mod q

2 < B.

Proof. To see it is uniformly-ambiguous, firstly note that c1 looks uniformly random due to LWE
assumption, and wi is uniformly random due to mi is a uniformly random bit in the experiment
in Figure 12. For z, the statistical distance between its distribution and uniformly random distribution
over Zq is 4Bn

q . Thus as long as 4Bn
q ≤ negl(λ), we can simulate the entire ciphertext without knowing

b or sk.

We restate the theorem formally here.

Theorem G.2. The fuzzy stealth signature constructed in Figure 9 is unlinkable with key-exposure
and fuzzy tracking. Specifically, for any λ, n, t where n ≥ t, if there is a PPT adversary A has non-
negligible advantage in experiment defined in Figure 5, then there exist other adversaries B1,B2,B3
running in roughly same time such that:

Adv
unlnkfw−ke

λ,n,t (A) ≤ 2Adv
unlnkw−ke

λ (B1)+

p(λ) ·
(
4tAdvuniamb

λ (B2) + (n− t)Advikcpaλ (B3)
)
,

where p(λ) is some polynomial on security parameter λ.

Proof. Combined with Lemma G.1, recall Theorem 11 and Lemma 2 in [BLMG21] to prove this via
the same approach.

Extends to finer false-positive rates. We introduce an approach to achieve finer false-positive
rates (ρ ̸= 1

2t) in fuzzy tracking (and also FMD) schemes. As mentioned in [BLMG21], to achieve
finer rates like 1

3 ,
1
5 is easy via switching the base. However, to achieve rates like 3

4 is still challenging
without garbled circuits. We show how to achieve rate like α

2k
where 1 ≤ α ≤ 2k − 1 with a small

tweak but α, k needs to be fixed in advance. The sender instead of computing Enc(pki, 1) for each
i ∈ [n], it computes ci ← Enc(pki,msgi) where msgi is uniformly sampled via msgi←$ {0, 1, . . . , α}.
The detector only accepts the ciphertext ci if and only if Dec(ski, ci) ≤ α. It is easy to see that
this satisfies correctness, fuzziness and security simultaneously and is compatible to FMD1,FMD2 in
[BLMG21] and our fuzzy tracking scheme in Figure 9. Essentially, the receiver is able to ‘tune’ the
false-positive rate ρ via a finer step: Originally, ρ can only be decreased half by half (i.e., from ρ to
ρ
2 each time); Now it can be decreased by a factor α

2k
(i.e., from ρ to ρα

2k
). For example, if we choose

k = 2, α = 3, then we have rates set like { 34 ,
32

42 , . . . ,
3n

4n }.

H Analysis of Scalable Fuzzy Tracking

Security Analysis. For adversaries without holding secret keys, arguments for security are the
same as standard encryption. We consider the unlinkability defined in Definition 4.12, then we argue
it also satisfies unbiased fuzziness defined in Definition 4.13. Intuitively, unlinkability is to make
true-positive and false-positive indistinguishable from the tracking server; And unbiased fuzziness is
to make the hint′ of each potential mpk′ uniformly random for the sender.
Proof of Theorem 6.5 We restate the theorem for unlinkability formally here.

40

Theorem H.1. The fuzzy scalable stealth signature constructed in Figure 10 is unlinkable with
key-exposure and fuzzy tracking. Specifically, for any λ,N, ρ, if there is a PPT adversary A has
non-negligible advantage in experiment defined in Figure 6, then there exist other adversaries B
running in roughly same time such that:

Adv
unlnkfsw−ke

λ,N,ρ (A) = Adv
unlnkw−ke

λ (B) + Advmlwe
ℓ,q,η(C).

Proof. First consider the two hybrids as follows:
Hybrid0: This is the standard experiment.
Hybrid1: This only changes ftkib to ftki1−b when hint0 ∈ list ∧ hint1 ∈ list whereas opkb, tkib remain
unchanged.

Claim 2. Hybrid0 and Hybrid1 are computationally indistinguishable to the adversary if the
decisional MLWE holds.

Proof. Since we maps eachmpk to hint, we only need to consider the case where hint0 ∈ list∧hint1 ∈ list
as otherwise b′←$ {0, 1} and A2 will not be invoked. Without loss of generality, we assume ftkib = ftki0
and hint0 = list[i] which implies that, for list generated from ftki0 and ∀j ∈ [|list|], there is

wj
0 = ⌈sT cj1 − c2⌋2 ⊕ yj

= ⌈q
2
(s1(x

i − xj)) + e′ − q

2
(w0 + yi)⌋2 ⊕ yj

= ⌈q
2
(s1(x

i − xj)) + e′ − q

2
(w0)⌋2 ⊕ (yi ⊕ yj)

= ⌈q
2
(w0 + e′ + s1(x

i − xj))⌋2 ⊕ yi ⊕ yj

= w0 ⊕ (yi ⊕ yj)⊕ ⌈q
2
(s1(x

i − xj))⌋2,

where s1 is the first ring element of s and hint0 = decodeRq
(w0)[: n]. On the other hand, if hint1 (i.e.,

w1) appears in the list with index k, i.e., w1 = list[k] = wk
0 , then the list can also be generated from

ftki1 because ∀j ∈ [|list|] :

wj
1 = w1 ⊕ (yk ⊕ yj)⊕ ⌈q

2
(s1(x

k − xj))⌋2

= wk
0 ⊕ (yk ⊕ yj)⊕ ⌈q

2
(s1(x

k − xj))⌋2

= w0 ⊕ (yi ⊕ yk)⊕ ⌈q
2
(s1(x

i − xk))⌋2

⊕ (yk ⊕ yj)⊕ ⌈q
2
(s1(x

k − xj))⌋2

= w0 ⊕ (yi ⊕ yj)⊕ ⌈q
2
(s1(x

i − xj))⌋2

= wj
0,

which means ftki0 and ftki1 will generate exactly the same list. Particularly, there is
q

2
(w0 + yi + s1x

i) =
q

2
(w1 + yj + s1x

j).

Now consider the hybrids. We have ftki0 := (c1, c2) and ftki1 := (c′1, c
′
2), specifically,

c1 = AT r+ e1 +
q

2
·
[
xi

0

]
, c2 = bT r+ e2 +

q

2
· (w0 + yi)

c′1 = AT r+ e1 +
q

2
·
[
xj

0

]
, c′2 = bT r+ e2 +

q

2
· (w1 + yj).

41

Thus, there is

(c1, c2) ≈c (u+
q

2
·
[
xi

0

]
, sTu+

q

2
· (w0 + yi) + e′)

≈s (u
′, sTu′ +

q

2
· (w0 + yi − sT

[
xi

0

]
) + e′)

= (u′, sTu′ +
q

2
· (w0 + yi + s1x

i) + e′)

= (u′, sTu′ +
q

2
· (w1 + yj + s1x

j) + e′)

≈c (c
′
1, c
′
2),

where e′ = e2+eT r−sT e1 is the small noise term and u′ = u− q
2 ·
[
xi

0

]
. Note that q

2 (+s1x
i) = q

2 (−s1x
i)

mod q. Therefore, we have shown that ftki0 and ftki1 are indistinguishable for the adversary.

Since ftkib and ftki1−b are indistinguishable and exchangeable for A in UNLNKfsw−ke. Now we
show that B can fully simulate the UNLNKfsw−ke experiment as follows. Upon receiving mpk0,mpk1,
opkb, tkib, oskb from UNLNKw−ke, B sample ftk, fpk then computes corresponding ftkib′ and list for
b′←$ {0, 1}, such that w0 ∈ list ∧ w1 ∈ list where H(mpk0) = decodeRq(w0)[: n] and H(mpk1) =
decodeRq

(w1)[: n]. Then B forwards all of them to A of UNLNKfsw−ke and A cannot distinguish
between ftki0 or ftki1 due to Claim 2. If A has non-negligible advantage u(λ) in UNLNKfsw−ke, then
B has the same non-negligible advantage u(λ) in UNLNKw−ke.

We restate the theorem for UNIUBSfs formally here.

Theorem H.2. If there is n ≤ m
2 where m is a power of 2, and Bη is a centered binomial distribution,

then the scalable fuzzy tracking constructed in Figure 10 is information theoretically unbiased and
satisfies UNIUBSfs defined in Definition 4.13.

Proof. If A is able to output valid mpki (i.e., valid hinti and wi), then for him, there is

wj = wi ⊕ yi ⊕ yj ⊕ ⌈q
2
(s1(x

i − xj))⌋2.

Note that the coefficients of ⌈ q2s1⌋2 are uniformly random over {0, 1}m because s1←$Bη where Bη

is a centered binomial distribution. Moreover, since polynomial multiplication can be written as
circular convolution, ⌈ q2 (s1(x

i − xj))⌋2 can be written as Xs mod 2 where s ← decodeRq
(⌈ q2s1⌋2)

and X is the circulant matrix represented by the polynomial x← ⌈ q2 (x
i−xj)⌋2. Specifically, the first

column of X is decodeRq (x) and other columns are rotational shift of the previous column. Since m
is a power of 2, it only has divisors from 20 to 2logm. According to Lemma C.2 and Definition C.1,
the biggest divisor of Xm − 1 is the polynomial Φm(X) = X

m
2 + 1 with degree m

2 . Thus the rank of
X is at least m− m

2 and at least a half of elements in Xs mod 2 are uniformly randomly distributed.

This means hintj ← decodeRq
(wj)[: n] is uniformly random as long as n ≤ m

2 .

42

	Introduction
	Our Contributions

	Technical Overview
	Spirit: Lattice-based Stealth Signature
	Generic Transformation: Security with Key-exposure
	Fuzzy Tracking
	Scalable Fuzzy Tracking
	From Stealth Addresses to FIDO

	Preliminaries
	Definitions of (Fuzzy) Stealth Signatures
	Security of SS Without Key Exposure
	Security of SS With Key Exposure
	Fuzzy Stealth Signatures
	Scalable Fuzzy Tracking

	Generic Transformation To Get Security With Key Exposure
	Spirit: Lattice based (Fuzzy) Stealth Signature
	Lattice-based Stealth Signature
	Lattice-based Fuzzy Stealth Signature
	Scalable Lattice-based Fuzzy Tracking

	Conclusion
	Discussions about Quantum Random Oracles
	Performance Analysis
	Additional Preliminaries
	Assumptions
	Cryptographic Tools
	Statistical Tools

	Group-based Construction against Bounded Leakage
	Security Analysis of Generic Transform
	Security Analysis of Stealth Signature Without Fuzzy Tracking
	Analysis of Post-quantum FMD
	Analysis of Scalable Fuzzy Tracking

