
Semi-Honest 2-Party Faithful Truncation from
Two-Bit Extraction

Huan Zou1,2, Yuting Xiao1, and Rui Zhang1,2(�)

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

{zouhuan, xiaoyuting, r-zhang}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. As a fundamental operation in fixed-point arithmetic, truncation can
bring the product of two fixed-point integers back to the fixed-point representation.
In large-scale applications like privacy-preserving machine learning, it is essential to
have faithful truncation that accurately eliminates both big and small errors. In this
work, we improve and extend the results of the oblivious transfer based faithful trun-
cation protocols initialized by Cryptflow2 (Rathee et al., CCS 2020). Specifically, we
propose a new notion of two-bit extraction that is tailored for faithful truncation and
demonstrate how it can be used to construct an efficient faithful truncation protocol.
Benefiting from our efficient construction for two-bit extraction, our faithful trun-
cation protocol reduces the communication complexity of Cryptflow2 from growing
linearly with the fixed-point precision to logarithmic complexity.
This efficiency improvement is due to the fact that we reuse the intermediate results
of eliminating the big error to further eliminate the small error. Our reuse strategy
is effective, as it shows that while eliminating the big error, it is possible to further
eliminate the small error at a minimal cost, e.g., as low as communicating only an
additional 160 bits in one round.

Keywords: Secure two-party computation · Secure truncation · Bit extraction

1 Introduction

Secure 2-Party Computation (2PC) allows two parties to compute an arbitrary function of
their inputs without revealing anything about them, except for what can be deduced from
the function output. When applying 2PC protocols to enhance the privacy of applications
analyzing numerical data, such as privacy-preserving machine learning (PPML), an immedi-
ate challenge is to overcome the data representation mismatch between the application and
the 2PC cryptographic protocols. Typically, the application represents data as float type,
while the cryptographic protocols encode the data as big integers.

To address this challenge, two approaches have been adopted: (1) Floating-point arith-
metic [20], first encodes a floating-point number as a tuple of four integers, then emulates
the floating-point addition and multiplication with the four integers; (2) Fixed-point arith-
metic, first discretizes a floating-point number to a fixed precision 2−s, scales the discretized
number by 2s to be an l-bit signed integer, and encodes this signed integer into the ring Z2l .
For better efficiency, most prior works [8,19,16,21,17] based on the fixed-point arithmetic.
In this work, we also focus on fixed-point arithmetic.

2 H. Zou et al.

Truncation is required after fixed-point integer multiplication. When multiplying
two fixed-point integers a and b which have been both scaled by 2s, their product c = a · b
will be scaled by 22s. To bring c back to the fixed-point representation of scaling by 2s,
we need to execute “truncation” (i.e., a divide-by-2s protocol). Informally, the truncation
functionality takes as input the additive shares c0, c1 of c (i.e., c0 + c1 = c), and returns the
additive shares of c′, where c′ is supposed to be c

2s .

Faithful truncation and truncation errors. Faithful truncation means that the output
shares of c′ make the equation c′ = c

2s hold with probability 1. Otherwise, it is “probabilistic”.
Probabilistic truncation introduces the small error and big error. When the small error
occurs, c

2s − c′ = 2−s. The occurrence probability of this error is roughly 1
2 . When the big

error occurs, there is a sign bit flipping issue. That is, if c is a positive number, then c′ is
negative, and vice versa. The big error’s occurrence probability depends on the magnitude
of c. The larger magnitude c has, the more likely that the big error will occur [17].

Faithful truncation is necessary for large-scale applications. Intuitively, one ap-
proach to reduce the occurrence probability of the big error as well as minimize the effect of
the small error is to increase the computation modulus (i.e., increase the big length l of the
encoded data) [16,19]. However, this also leads to increased computation and communication
costs in the 2PC protocols [7].

In particular, it is unclear whether increasing computation modulus works for large-scale
applications like PPML, where billions of truncation operations are performed. That implies
the small error will be accumulated billions of times and the big error is almost certain
to occur. Indeed, multiple recent works have shown that additional steps are required to
eliminate the big error for training large models [7,12,21], and correct 2PC implementation
of the cleartext fixed-point execution is necessary [21]. Therefore, there is a need for efficient
faithful truncation protocols that can eliminate both big and small errors.

Prior works on eliminating the truncation errors. Cryptflow2 [21], Cheetah [12],
[BCG+21] [4] and LLAMA [10] have developed their truncation protocols based on the
unsigned integer comparison problem (also known as the millionaire problem). To achieve
faithful truncation, these protocols invoke two comparison instances—one for eliminating
the big error and the other for eliminating the small error.

[BCG+21] [4] and LLAMA [10] construct their comparison protocols from function secret
sharing [5] and enjoy attractive online communication complexity (i.e., each party sends 1
element) as well as round complexity (i.e., 1 round). However, they require a prohibitively
expensive offline phase, which can be made efficient with a trusted dealer.

Cryptflow2 [21] and Cheetah [12] construct logarithm rounds comparison protocols from
the oblivious transfer (OT) and can be implemented efficiently without a trusted dealer
by utilizing fast OT extensions [13,14,23]. Cheetah makes use of the advent of silent OT
extension built on vector oblivious linear evaluation [23], while Cryptflow2 instantiates OT
using the classical IKNP-style OT extension [13,14]. Furthermore, depending on their appli-
cations, Cheetah only eliminates the big error while Cryptflow2 achieves faithful truncation
eliminating both the big error and small error.

1.1 Our contributions

We continue the study of efficient faithful truncation construction. We improve and extend
previous results from Cryptflow2 [21] in several directions.

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 3

F l,s
Trunc

F l
B2A + FOT+ F l,s+1

2Bit-Extr F l
B2A + F int,l

DReLU + Fs
MILL + FOT

F l
Bit-Extr+Fs+1

Bit-Extr

“trivial construction”

Fcombine + FOT

“improved construction”

Sec. 4.2 Algorithm 5 in [21]

Sec. 3.2 Sec. 3.3

† An arrow A → B means that there exists a protocol realizes the functionality B by using the functionality A
as subroutine.

‡ Thick arrows indicate our constructions. Thin arrows indicate the known or trivial constructions. The texts
in gray shadowed highlight our new functionality.

Fig. 1. Comparing our faithful truncation construction with Cryptflow2’s [21]

New observation. Given an l-bit secret x, we found that acquiring the boolean shares of
its l-th bit x[l] and (s+1)-th bit x[s+1], confers a significant degree of simplification upon
the task of faithfully truncating x by s bits. With the boolean shares of x[l], the parties can
recognize the sign bit flipping issue and thus, address the resultant big error. The boolean
shares of x[s + 1] enable the parties to determine whether a carry-out is generated by the
least significant s bits being chopped off, which can mitigate the resultant small error.

New building functionality 2Bit-Extr for faithful truncation. Based on our new obser-
vation, we propose a new functionality F l,s

2Bit-Extr for two-bit extraction. This functionality
is a special form of bit decomposition, and extends the functionality F l

Bit-Extr for bit extrac-
tion [16]. Instead of a single bit, F l,s

2Bit-Extr simultaneously decomposes two bits—the MSB
(i.e., the most significant bit) and the s-th bit of x ∈ Z2l into their respective binary form.

We also propose a protocol that securely realizes faithful truncation F l,s
Trunc in the (F l

B2A,
FOT, F l,s+1

2Bit-Extr)-hybrid model.

New construction to realize 2Bit-Extr. We first propose a trivial protocol that realizes
F l,s+1

2Bit-Extr by making two calls to F l
Bit-Extr and Fs+1

Bit-Extr for extracting the MSB and (s+1)-
th bit of x, respectively. However, we observe that the inputs of the two calls are dependent
and some intermediate results are shared, such that it is not necessary to compute them
twice. We then propose a more efficient protocol by packing up the two calls. In particular,
the protocol first extracts the MSB, then further extracts the (s+1)-th bit by reusing those
intermediate results that have been computed in the MSB extraction.

We summarize the faithful truncation constructions mentioned above in Fig. 1, and com-
pare their concrete efficiency in Table 1. Compared with the state-of-the-art Cryptflow2 [21]
whose communication complexity grows linearly with the fixed-point precision s, the com-
munication complexity of our protocol is logarithm in s. When l = 32, s = 16, our protocol
only communicates 72% of the bits of Cryptflow2. Given that truncation is as fundamental
as multiplication in fixed-point arithmetic, our improvement in communication efficiency can
have a significant impact on large-scale applications like PPML, where billions of truncation
operations may be involved.

We note that we achieve efficiency improvement by adopting an intermediate result reuse
strategy for efficient two-bit extraction construction, which eliminates redundancies present
in existing constructions. In Table 1, we also compare our protocol with Cheetah [12], which

4 H. Zou et al.

Table 1. Comparing the concrete efficiency of OT-based truncation protocols

Application Protocol S-Err B-Err Comm. (bits) Round

Truncate an
l-bit string
by s bits

Cheetah‡ [12] ✗ ✓ ≈ λl ⌈log l⌉
Cryptflow2 [21] ✓ ✓ ≈ λl + λs + λ + l ⌈log l⌉ + 1

Trivial† ✓ ✓ ≈ 3λl + 3λs ⌈log l⌉ + 3

This work ✓ ✓ ≈ λl + λ + l + k,
k ∈ [0, 2λ⌈log ⌈ s−1

4 ⌉⌉)
⌈log l⌉ + 1

Truncation
example

l = 32, s = 16

Cheetah‡ [12] ✗ ✓ 4224 5
Cryptflow2 [21] ✓ ✓ 6093 6

Trivial† ✓ ✓ 19164 8
This work ✓ ✓ 4384 6

⋇ Symbol ✓/ ✗ means that the protocol eliminates / admits the small error (S-Err) (resp., big error (B-Err)).
Results regarding this work assume the two optimizations in Section 3.3 are used. The protocol parameter m is
set to be 4 for this work and for [21]. We use the security parameter λ = 128 to calculate the communication bits.
‡ For fair comparison, we assume [12] used the same IKNP-style OT extension [14] to realize FOT as Crypflow2.
† The trivial protocol refers to constructing a faithful truncation protocol from Fl,s+1

2Bit-Extr (Sec. 4.2), while Fl,s+1
2Bit-Extr

is realized by trivially invoking two instances of bit extraction [16].

only eliminates the big error. Our comparison suggests that while focusing on eliminating the
big error, a small additional cost (as small as communicating λ+ l bits in one round) can be
paid to further remove the small error, where λ is the security parameter. For example, when
the fixed-point precision s is set to be 16 (which is typically used by privately training large
machine learning models [7]), our protocol further removes the small error by communicating
only an additional 160 bits than Cheetah.

1.2 Organization

Section 2 introduces notations, definitions, and primitives used in this work. Section 3 de-
scribes the functionality and construction of our proposed notion of two-bit extraction.
Section 4 elaborates on faithful truncation and truncation errors, and presents our faithful
truncation protocol built from the two-bit extraction. In Section 5, we conduct experiments
to empirically compare the practical performance of our faithful truncation protocol with
that proposed by Cryptflow2 [21]. Finally, we conclude and discuss future work in Section 6.

2 Preliminaries

Notations. We use λ to denote the computational security parameter. We use [x, y] for
x, y ∈ Z to denote the set {x, x+ 1, x+ 2, . . . , y}. We use “||" to denote bit concatenation.
We consider two rings Z2 and Z2l . For x ∈ Z2, we use x to denote the bitwise NOT of x.
For x ∈ Z2l , we use xl|| . . . ||x1 to denote the binary form of x, xi|i∈[1,l] ∈ {0, 1}. We refer to
the l-th bit of x as the most significant bit (MSB), the i-th bit xi as x[i], and the j − i+ 1
bits xj || . . . ||xi as x[j : i]. We use x≫ s to denote arithmetic right shift x by s bits.

Fixed-point representation. Real numbers are encoded into Z2l using the fixed-point
notation. A real number is first discretized to a limited precision 2−s (denoted as xfxd).
Then xfxd is scaled by 2s to be an integer xint with bit length l, i.e., xint = xfxd · 2s. Then
this signed integer xint ∈ [−2l−1, 2l−1 − 1] is further encoded into the ring Z2l using the
two’s complement encoding. This encoding interprets the binary form xl|| . . . ||x1 of xint as
xint =

∑l−1
i=1 2

i−1 · xi if xl = 0. Otherwise, xint =
∑l−1

i=1 2
i−1 · xi − 2l when xl = 1. We say

a signed integer xint and a ring element x correspond to each other if they share the same
binary form xl|| . . . ||x1. Since xint = xfxd · 2s, given x ∈ Z2l , x[l] corresponds to the sign bit

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 5

of xfxd, x[l − 1 : s + 1] corresponds to the integer part of xfxd, and x[s : 1] corresponds to
the fraction part of xfxd.

Secret sharing schemes. We use 2-out-of-2 additive secret sharing schemes over Z2l and
Z2. A secret sharing scheme consists of two algorithms, Share and Reconst. On input a
value, the probabilistic algorithm Share outputs two shares of it. On input two shares, the
deterministic algorithm Reconst reconstructs a value from them.

Consistent with prior work [8], we refer to shares over Z2l and Z2 as Arithmetic ⟨x⟩A

and Boolean ⟨x⟩B shares. For x ∈ Z2l , its two shares are denoted as ⟨x⟩A0 and ⟨x⟩A1 such
that ⟨x⟩A0 + ⟨x⟩A1 = x where operation + denotes the addition over Z2l . For y ∈ Z2, its two
shares are denoted as ⟨y⟩B0 and ⟨y⟩B1 such that ⟨y⟩B0 ⊕ ⟨y⟩

B
1 = y where operation ⊕ denotes

the addition over Z2 (i.e., XOR).
Additive secret sharing schemes are perfectly hiding. Given an arithmetic share ⟨x⟩A

(resp., boolean share ⟨x⟩B ∈ Z2), the value x is completely hidden.

2.1 System model and security

Consistent with our baseline work Cryptflow2 [21], we consider a static, semi-honest ad-
versary A. We use the standard security definition for two-party computation [11] in this
work. Let F = (F0,F1) be a functionality. Parties P0 and P1 with inputs x0 and x1 run
protocol Π to learn F . We say that Π securely realizes F in the presence of A if there
exists probabilistic polynomial-time algorithms S0 and S1 such that:

{(S0(1λ, x0, f0(x0, x1)), f(x0, x1))}x0,x1,λ
∼= {(ViewΠ

0 (x0, x1, λ), output
Π (x0, x1, λ))}x0,x1,λ;

{(S1(1λ, x1, f1(x0, x1)), f(x0, x1))}x0,x1,λ
∼= {(ViewΠ

1 (x0, x1, λ), output
Π (x0, x1, λ))}x0,x1,λ.

In order to conceptually modularize the design of the protocols, the notion of “hybrid
model” is introduced. A protocol Π is said to be realized in the F -hybrid model if Π invokes
the ideal functionality F as a subroutine. This allows the simulator S to simulate F in the
ideal world as long as it “looks” indistinguishable from F -hybrid world.

2.2 Basic Operations

Oblivious transfer. We use
(

k
1

)
-OTl to denote the 1-out-of-k oblivious transfer (OT)

functionality. The sender uses k messages msg1, . . . ,msgk as input (each message is a l-bit
string), and the receiver uses i ∈ [1, k] as inputs. The receiver receives only msgi as output
and the sender receives no output. We use the OT extension protocols from [14] to improve
the efficiency of our implementations. The protocols for

(
k
1

)
-OTl [14] communicate 2λ+ kl

bits. The simpler
(
2
1

)
-OTl communicates only λ+ 2l bits [2].

The AND functionality FAND takes as input boolean shares of x and y, and returns
the boolean shares of z = x ∧ y. FAND can be realized using the well-known Beaver bit
triple [3] of the form (⟨δx⟩B, ⟨δy⟩B, ⟨δz⟩B) such that δz = δx ∧ δy. Cryptflow2 (appendix A.1
in [21]) generates two such bit triples using an instance of

(
16
1

)
-OT2. The communication

complexity per bit triple is λ + 16 bits. Given one bit triple, the parties need to exchange
additional 4 bits to compute a FAND call. Hence, the communication complexity of invoking
a FAND instance is λ+ 20 bits, and the security is in the

(
16
1

)
-OT2-hybrid model.

6 H. Zou et al.

The correlated AND functionality FcAND takes as input boolean shares of x, y and z,
and returns the boolean shares of d = x ∧ y and e = x ∧ z. To generate the corresponding
correlated bit triple (⟨δx⟩B, ⟨δy⟩B, ⟨δd⟩B) and (⟨δx⟩B, ⟨δz⟩B, ⟨δe⟩B), Cryptflow2 (appendix A.2
in [21]) uses an instance of

(
8
1

)
-OT2. The communication complexity of invoking a FcAND

instance is 2λ+ 22 bits, and the security is in the
(
8
1

)
-OT2-hybrid model.

Boolean to arithmetic share conversion F l
B2A converts the same secret x’s boolean

shares over Z2 to arithmetic shares over Z2l . For example, F2
B2A may convert the boolean

shares ⟨x⟩B0 = 0, ⟨x⟩B1 = 0 of secret x = 0 to arithmetic shares ⟨x⟩A0 = 1, ⟨x⟩A1 = 3 over Z4.
F l

B2A can be realized with one call to 1-out-of-2 correlated OT [2] (denoted as
(
1
2

)
-COTl),

with communicating λ+ l bits and is in the
(
1
2

)
-COTl-hybrid model (appendix A.4 in [21]).

2.3 Parallel Prefix Adder (PPA)

Adder is a fundamental concept in the field of digital electronics. In the context of addition,
an adder circuit takes two l-bit numbers, a and b, and produces a sum c. The circuit calculates
c bit-by-bit from the least significant to the most significant bit. In particular, the i-th bit of
c is calculated as c[i] = a[i]⊕b[i]⊕carry, where carry is the carry bit from previous calculation
of c[i−1] (i.e., the carry-out bit in the (i−1)-th bit of a+ b). The carry calculation problem
arises when adding two binary numbers with multiple bits. In particular, calculating c[i]
requires the carry bit of calculating c[i− 1], and so on. All carry bits have to be computed
sequentially, which results in potentially large delays in computing the final sum.

As the most common choice for faster adders, parallel prefix adders (PPA) use a pre-
computation technique that allows them to calculate the carry bits in parallel [1]. This is
done by dividing the bits into groups and using a series of logical operations to compute
the carry bits for each group. The carry bits are then combined in a final step to produce
the final sum. For a group from the j-th bit to the i-th bit with j ≥ i, define the group
propagate signal as Pj:i and group generate signal as Gj:i. We refer to j− i+1 as the group
length. When the group length equals 1 (i.e., j = i), we use the simpler notations Pi and
Gi, which are defined as:

Gi
def
= a[i] ∧ b[i], Pi

def
= a[i]⊕ b[i] (1)

When j > i, the group signals (Pj:i, Gj:i) are defined as:

Pj:i
def
= Pj ∧ Pj−1 ∧ . . . ∧ Pi (2)

Gj:i
def
= Gj ⊕ (Pj ∧Gj−1)⊕ (Pj ∧ Pj−1 ∧Gj−2)⊕ · · · ⊕ (Pj ∧ Pj−1 ∧ · · · ∧ Pi+1 ∧Gi)

We can combine two adjacent groups (Pz:y+1, Gz:y+1) and (Py:x, Gy:x) into a longer
group (Pz:x, Gz:x) of length z − x+ 1 (z > y ≥ x), by defining the dot ◦ operator:

(Pz:x, Gz:x) = (Pz:y+1, Gz:y+1) ◦ (Py:x, Gy:x) (3)
def
= (Pz:y+1 ∧ Py:x, Gz:y+1 ⊕ Pz:y+1 ∧Gy:x)

The calculation of group signals (Pj:i, Gj:i) is done once i reaches the least significant
bit (i.e., i = 1). At this point, Gj:1 is exactly the carry-out bit of calculating c[j].

Take l = 4 as an example. Suppose we want to use PPA to learn the carry-out bit
of calculating c[4] (i.e., the group generate signal G4:1). In the first step, PPA calculates

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 7

in parallel the group signals (P1, G1), (P2, G2), (P3, G3), (P4, G4) for groups of length 1. In
the second step, PPA combines the groups in parallel by equation 3 to obtain the signals
(P2:1, G2:1), (P4:3, G4:3) for groups of length 2. In the third step, PPA further combines the
groups to obtain the desired signals (P4:1, G4:1) for the group of length 4.

3 Two-Bit Extraction

In this section, we first define our new notion of two-bit extraction 2Bit-Extr that is cus-
tomized for faithful truncation. We then present two protocols to realize it.

3.1 Defining Two-Bit Extraction

Before defining our new notion, we recall the related bit extraction notion. Bit extraction is a
special case of bit decomposition [16], where a single m-th (m ≤ l) bit of the arithmetic share
⟨x⟩A ∈ Z2l should be decomposed into a boolean sharing, i.e., ⟨x[m]⟩B. We can constrain the
bit extraction to the MSB extraction, because extracting the m-th bit from x is equivalent
to extracting the MSB of x[m : 1] with shorter bit length of m. Let F l

Bit-Extr denote the bit
extraction functionality which takes as input the arithmetic shares of x ∈ Z2l and returns
the boolean shares of x[l] as outputs.

Two-bit extraction extends the notion of bit extraction, in which two bits—the m-th and
s-th (m > s) bit of the arithmetic share ⟨x⟩A should be decomposed into their respective
boolean sharing, i.e., ⟨x[m]⟩B and ⟨x[s]⟩B. Similarly, we constrain two-bit extraction to
extracting the MSB and a lower s-th bit (1 ≤ s < l).

The functionality F l,s
2Bit-Extr for two-bit extraction takes arithmetic shares of x ∈ Z2l as

input and returns boolean shares of x[l] and x[s] as outputs.

3.2 Trivial construction for F l,s
2Bit-Extr

A trivial two-bit extraction construction can be achieved by invoking two instances of bit
extraction: the first invocation F l

Bit-Extr extracts the MSB of x while the second invocation
Fs

Bit-Extr extracts the MSB of x[s : 1]. The parties can provide ⟨x⟩A and ⟨x⟩A[s : 1] as inputs
to the first and second invocations, respectively, to obtain the desired two-bit extraction.

The correctness of this trivial construction directly follows from the correctness of F l
Bit-Extr

and Fs
Bit-Extr. This trivial construction securely realizes F l,s

2Bit-Extr in the (F l
Bit-Extr,Fs

Bit-Extr)-
hybrid model. For b ∈ {0, 1}, the simulator Sb of the view of the corrupted party Pb gets
input (⟨x⟩Ab , (⟨x[l]⟩

B
b , ⟨x[s]⟩

B
b)) (i.e., the input and output of Pb), which is the identical to the

view of Pb in the corresponding execution (where here ⟨x[l]⟩Bb and ⟨x[s]⟩Bb serve as the re-
sponses of F l

Bit-Extr and Fs
Bit-Extr, respectively). The simulation is trivial, i.e., Sb can simply

forward ⟨x[l]⟩Bb and ⟨x[s]⟩Bb to Pb. Thus, the view of party Pb can be perfectly simulated.
The invocations to F l

Bit-Extr and Fs
Bit-Extr are highly interconnected. The first invocation

takes input x, and the second invocation takes input x[s : 1]. This mutual input dependence
suggests that a more efficient construction that combines the two invocations and leverages
the shared input, may exist.

8 H. Zou et al.

Input: For b ∈ {0, 1}, party Pb uses four boolean shares ⟨P2⟩Bb , ⟨P1⟩Bb , ⟨G2⟩Bb , ⟨G1⟩Bb ∈ Z2 as input.
Output: Pb receives two boolean shares ⟨P ⟩Bb and ⟨G⟩Bb s.t. P = P2 ∧ P1, G = G2 ⊕ (P2 ∧G1).

1. Parties P0 and P1 invoke an instance of FcAND, where Pb uses ⟨P2⟩Bb , ⟨P1⟩Bb , ⟨G1⟩Bb as
input and receives two boolean shares ⟨P2 ∧ P1⟩Bb and ⟨P2 ∧G1⟩Bb .

2. Party Pb outputs ⟨P ⟩Bb = ⟨P2 ∧ P1⟩Bb , ⟨G⟩Bb = ⟨G2⟩Bb ⊕ ⟨P2 ∧G1⟩Bb .

Fig. 2. Protocol Πcombine (Combine)

3.3 Improved construction Πl,s
2Bit-Extr

This section begins with the definition of the combine functionality Fcombine, which is a
subroutine used in our improved two-bit extraction construction. Next, we introduce our
improved construction for F l,s

2Bit-Extr. At last, we apply two optimizations to this improved
construction.

The combine subroutine. Let Fcombine denote the combine functionality that takes as
input the boolean shares of P2, P1, G2 and G1, and output the boolean shares of P = P2∧P1

and G = G2 ⊕ (P2 ∧G1).
A combine protocol Πcombine appears in Fig. 2. Its correctness directly follows the cor-

rectness of FcAND. Its security is in the FcAND-hybrid model. For b ∈ {0, 1}, the simulator Sb
of the view of the corrupted party Pb gets input ((⟨P2⟩Bb , ⟨P1⟩Bb , ⟨G2⟩Bb , ⟨G1⟩Bb), (⟨P ⟩

B
b , ⟨G⟩

B
b))

(i.e., the input and output of party Pb). To simulate the responses of FcAND received by Pb,
Sb simply forwards ⟨P ⟩Bb and ⟨G⟩Bb ⊕⟨G2⟩Bb to Pb, which is identical to the view of Pb in the
corresponding real execution. Thus, the view of Pb can be perfectly simulated. The protocol
Πcombine only involves one call to FcAND which requires communicating 2λ+ 22 bits.

The improved construction Πl,s
2Bit-Extr. By extracting the MSB and the s-th bit in

a batch, we present a more efficient construction for F l,s
2Bit-Extr. Our key observation is

that extracting the MSB and s-th bit of the same value x are highly interconnected: the
intermediate results of extracting the MSB can be reused to extract the lower s-th bit.
- Construction overview. Our construction first reduces the bit extraction problem to a
carry calculation problem, because ⟨x[i]⟩B0

⊕
⟨x[i]⟩B1 =⟨x⟩A0 [i]

⊕
⟨x⟩A1 [i]

⊕
carry, where carry

represents the carry-out bit in the (i− 1)-th bit of ⟨x⟩A0 + ⟨x⟩A1 . The parties Pb only need to
learn the boolean shares of the corresponding carry-out bit ⟨carry⟩Bb , as ⟨x[i]⟩Bb = ⟨x⟩Ab [i]⊕
⟨carry⟩Bb . To solve the carry calculation problem, we rely on PPA (Section 2.3).

Our construction makes use of two subroutines: (1) to calculate the group propagate
signal and the generate signal from the two input additive shares ⟨x⟩A0 and ⟨x⟩A1 ; and (2)
to combine the signals of two adjacent groups into the ones for a longer group. In partic-
ular, we use

(
2
1

)
-OT1 employing the lookup-table based approach of [9], and the combine

functionality Fcombine to instantiate the two subroutines, respectively.
Fig. 3 illustrates the circuit used in our construction to compute the carry-out bits

necessary for extracting the MSB and 13-th bit of x ∈ Z232 . To extract the MSB, we utilize
PPA to calculate the carry-out bit in the (l − 1)-th bit (i.e., denoted as the group generate
signal G31:1). To calculate G31:1, PPA first calculates the group signal Pi and Gi from
the two input additive shares, and then iteratively combines the signals of two adjacent

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 9

groups into the ones for a longer group. The involved operations are marked as black in
Fig. 3. To further extract the s-th bit, i.e., to calculate the group generate signal G12:1,
we observe that some intermediate group signals of the previous G31:1 calculation can be
reused. Specifically, in Round 5, we can combine the group signal (P12:9, G12:9) generated in
Round 3 and (P8:1, G8:1) generated in Round 4 to calculate the desired G12:1. Our two-bit
extraction protocol is formally described in Fig. 4.

- Correctness analysis. We first demonstrate that the adopted 2PC subroutines can accu-
rately implement the circuit of our protocol, and then we show that the implemented circuit
can correctly extract the MSB and the s-th bit. Our protocol’s circuit only requires two
subroutines. For the

(
2
1

)
-OT1 subroutine, we have verified that Reconst(⟨Gi⟩B0 , ⟨Gi⟩B1) =

⟨x⟩A0 [i] ∧ ⟨x⟩
A
1 [i] by enumerating all possible values of ⟨x⟩A0 [i], ⟨x⟩

A
1 [i] ∈ Z2. Additionally,

Reconst(⟨Pi⟩B0 , ⟨Pi⟩B1) = ⟨x⟩
A
0 [i] ⊕ ⟨x⟩

A
1 [i]. As a result, we can confirm the accuracy of cal-

culating the group signals Pi and Gi from the two input additive shares. Moreover, by the
correctness of Fcombine, combing two groups into a longer group is also correct. Therefore, we
conclude that the adopted 2PC subroutines can faithfully realize the implemented circuit.

To show Reconst(⟨x[l]⟩B0 , ⟨x[l]⟩
B
1) = ⟨GL⟩B0 ⊕ ⟨GL⟩B1 ⊕ ⟨x⟩

A
0 [l]⊕ ⟨x⟩

A
1 [l] = x[l], we in fact

have to show GL = ⟨GL⟩B0 ⊕ ⟨GL⟩B1 is the carry-out bit of calculating the (i− 1)-th bit of
⟨x⟩A0 + ⟨x⟩A1 . Since we exploit PPA to solve the carry calculation problem, we essentially
have to show the updated boolean shares of GL in step 23 are reconstructed to be the group
generate signal Gl−1:1. Note that step 13 and 17 iteratively combines two adjacent groups
into a longer group and step 14 updates GL accordingly. At the last iteration when i = log l
and j = 1, GL is updated to be Gl−1:1. Thus, the circuit can correctly extract the l-th bit.

When s = 1, we have Reconst(⟨x[1]⟩B0 , ⟨x[1]⟩
B
1) = ⟨x⟩

A
0 [1] ⊕ ⟨x⟩

A
1 [1] = x[1]. When s > 1,

we need to show the updated GS in step 23 equals the group generate signal Gs−1:1. Let
{jk, . . . , j1} denote the positions (in descending order) of the k ∈ [1, ⌈log s⌉] non-zero bits in
the binary form slog l|| . . . ||s1 of s− 1. When i = j1 (i.e., the position of the least significant
non-zero bit), we have 2j1−1 ·⌊ s−1

2j1−1
⌋ = s−1. So we have GS is initially set to be Gs−1:s−2j1−1

in step 22. When i = j2 and y = 2j2−1 · ⌊ s−1
2j2−1 ⌋ = s − 1 − 2j1−1 in step 18, the following

step 20 essentially combines the signals Gs−1:s−2j1−1 and Gs−2j1−1−1:s−2j1−1−2j2−1 of two
adjacent groups. Then GS is updated to be the combined signal Gs−1:s−2j1−1−2j2−1 . When
i = jr|r>2, we have GS is updated to be Gs−1:s−

∑r
t=1 2jt−1 . When i reaches jk, GS is updated

† The diamond and the circle symbol refer to the
(

2
1

)
-OT1 and Fcombine subroutine, respectively.

‡ The operations related to the MSB extraction are marked in black while the additional operations required
by further extracting the s-th bit are marked in red.

Fig. 3. The circuit of calculating the carry-out bits for extracting the MSB and 13-th bit of x ∈ Z232

10 H. Zou et al.

Input: For b ∈ {0, 1}, party Pb uses ⟨x⟩Ab ∈ Z2l as input.
Output: Pb receives two boolean shares ⟨x[l]⟩Bb and ⟨x[s]⟩Bb .

1. for (i = 1; i < l; i = i+ 1) do:
2. Party P0 first samples ⟨Gi⟩B0

$← Z2, then for j ∈ {0, 1} sets msgj = (⟨x⟩A0 [i]∧j)⊕⟨Gi⟩B0 .
3. Parties P0 and P1 invoke an instance of

(
2
1

)
-OT1, where P0 plays the role of sender

and P1 plays the role of receiver. Party P0 uses {msgj}j∈{0,1} as input, and receives
noting. Party P1 uses ⟨x⟩A1 [i] as input, and receives a value which is recorded as ⟨Gi⟩B1 .

4. Party Pb sets ⟨Pi⟩Bb = ⟨x⟩Ab [i].

5. Party Pb initializes ⟨PL⟩Bb , ⟨GL⟩Bb , ⟨PS⟩Bb and ⟨GS⟩Bb as null values.
6. if (s == 1) then: Party Pb sets ⟨PS⟩Bb = ⟨GS⟩Bb = 0.
7. Party Pb parses s−1 as a (log l)-bit binary string slog l|| . . . ||s1, where si|i∈[1,log l] ∈ {0, 1}.

8. for (i = 1; i ≤ log l; i = i+ 1) do:
9. for (j = 1; j + 2i − 1 ≤ l; j = j + 2i) do:

10. Party Pb sets z = j + 2i − 1, y = j + 2i−1 − 1, x = j.
11. if (z == l) then:
12. if (⟨PL⟩Bb and ⟨GL⟩Bb is not null) then:
13. Parties P0 and P1 invoke an instance of Fcombine, where Pb uses ⟨Pl−1:y+1⟩Bb ,

⟨Py:x⟩Bb ,⟨Gl−1:y+1⟩Bb , ⟨Gy:x⟩Bb as inputs, and receives ⟨Pl−1:x⟩Bb , ⟨Gl−1:x⟩Bb .
14. Party Pb updates ⟨PL⟩Bb as ⟨Pl−1:x⟩Bb , ⟨GL⟩Bb as ⟨Gl−1:x⟩Bb .
15. else: Party Pb sets ⟨PL⟩Bb = ⟨Pl−1⟩Bb , ⟨GL⟩Bb = ⟨Gl−1⟩Bb .
16. else:
17. Parties P0 and P1 invoke an instance of Fcombine, where Pb uses ⟨Pz:y+1⟩Bb ,

⟨Py:x⟩Bb ,⟨Gz:y+1⟩Bb , ⟨Gy:x⟩Bb as inputs, and receives ⟨Pz:x⟩Bb , ⟨Gz:x⟩Bb .

18. if (si == 1 and y == 2i−1 · ⌊ s−1
2i−1 ⌋) then:

19. if (⟨PS⟩Bb and ⟨GS⟩Bb is not null) then:
20. Parties P0 and P1 invoke an instance of Fcombine where Pb uses ⟨Ps−1:y+1⟩Bb ,

⟨Py:x⟩Bb , ⟨Gs−1:y+1⟩Bb , ⟨Gy:x⟩Bb as input, and receives ⟨Ps−1:x⟩Bb , ⟨Gs−1:x⟩Bb .
21. Party Pb updates ⟨PS⟩Bb as ⟨Ps−1:x⟩Bb , ⟨GS⟩Bb as ⟨Gs−1:x⟩Bb .
22. else: Party Pb sets ⟨PS⟩Bb = ⟨Py:x⟩Bb , ⟨GS⟩Bb = ⟨Gy:x⟩Bb .

23. Party Pb outputs ⟨x[l]⟩Bb = ⟨GL⟩Bb ⊕ ⟨x⟩
A
b [l], ⟨x[s]⟩

B
b = ⟨GS⟩Bb ⊕ ⟨x⟩

A
b [s].

Fig. 4. Protocol Πl,s
2Bit-Extr (Two-bit extraction)

to be Gs−1:s−
∑k

t=1 2jt−1 . Since
∑k

t=1 2
jt−1 = s−1, GS is updated to be Gs−1:1 at last. Thus,

we have Reconst(⟨x[s]⟩B0 , ⟨x[s]⟩
B
1) = ⟨GS⟩B0 ⊕ ⟨GS⟩B1 ⊕ ⟨x⟩

A
0 [s]⊕ ⟨x⟩

A
1 [s] = x[s].

- Security analysis. The proposed protocol Π l,s
2Bit-Extr is in the (

(
2
1

)
-OT1,Fcombine)-hybrid

model. We construct two simulators for the following two cases:

Case 1: P0 is corrupted. The simulator S0 gets input (⟨x⟩A0 , (⟨x[l]⟩
B
0 , ⟨x[s]⟩B0)) (i.e., the

input and output of P0). S0 needs to simulate those intermediate messages received by
P0 when invoking Fcombine. Before the last round, S0 returns random r1, r2 ∈ Z2 as the
responses of Fcombine. Due to the uniform distribution of r1, r2, P0 cannot distinguish r1, r2
from the real boolean shares output by Fcombine. In the last round, S0 returns r3 = ⟨x[l]⟩B0 ⊕
⟨x⟩A0 [l], r4 = ⟨x[s]⟩B0 ⊕⟨x⟩

A
0 [s] as the responses of Fcombine, which conforms to the view of P0

in the corresponding execution. Furthermore, r3 and r4 are uniformly distributed, because

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 11

they are masked by random ⟨x⟩A0 [l] and ⟨x⟩A0 [s]. Thus, P0 cannot distinguish r3, r4 from the
real boolean shares output by Fcombine.

Case 2: P1 is corrupted. The simulator S1 gets input (⟨x⟩A1 , (⟨x[l]⟩
B
1 , ⟨x[s]⟩B1)) (i.e., the

input and output of P1). S1 needs to simulate those intermediate messages received by P1

when invoking
(
2
1

)
-OT1 as well as invoking Fcombine. When

(
2
1

)
-OT1 receives P1’s input,

S1 returns random r1 ∈ Z2 as the response of
(
2
1

)
-OT1. Since the real OT message msg

output to P1 is masked by a random value uniformly sampled by P0, msg is also uniformly
distributed. Thus, P1 cannot distinguish r1 from msg. To simulate the responses of Fcombine,
S1 operates the same as S0 does for the corrupted party P0. That is, the simulator-generated
view of the corrupted party P1 is identically distributed to that of a real execution.

Thus, we conclude that the view of each party Pb, b ∈ {0, 1} can be perfectly simulated.

- Communication complexity. To extract the l-th bit, Π l,s
2Bit-Extr involves l − 1 calls

to
(
2
1

)
-OT1 and l − 2 calls to Fcombine. To additionally extract the s-th bit based on the

intermediate results of MSB extraction, 0 ≤ k ≤ ⌈log s⌉ − 1 calls to Fcombine are needed,
because there are at most ⌈log s⌉ non-zero bits in the binary form slog l|| . . . ||s1 of s − 1.
Thus, the communication bits are 3λl + 24l − 5λ− 46 + (2λ+ 22)k in total.

- Optimizations for Π l,s
2Bit-Extr. Similar to the observation made in [21,6] which construct

comparison protocols from binary tree traversal, our 2Bit-Extr construction in Fig. 4 can
be optimized in two ways. First, utilizing

(
2m

1

)
-OT2 (m ≥ 2), we can calculate signals for

groups of length ≥ 2. For example, by invoking an instance of
(
4
1

)
-OT2, we can directly

calculate the signals for group of length 2 from the two input additive shares ⟨x⟩A0 and ⟨x⟩A1 .
Namely, according to equation 1 and equation 2, we can calculate Pi+1:i as (⟨x⟩A0 [i + 1] ⊕
⟨x⟩A1 [i+1])∧(⟨x⟩A0 [i]⊕⟨x⟩

A
1 [i]) and Gi+1:i as (⟨x⟩A0 [i+1]∧⟨x⟩A1 [i+1])⊕(⟨x⟩A0 [i+1]⊕⟨x⟩A1 [i+

1])∧ (⟨x⟩A0 [i]∧⟨x⟩
A
1 [i]). Taking the above m = 2 example, we employ the lookup-table based

approach of [9] to implement this optimization as follows:

– Party P0 samples ⟨Pi+1:i⟩B0 , ⟨Gi+1:i⟩B0
$← Z2. For j = {00, 01, 10, 11}, party P0 parses j

as a 2-bit binary string j2||j1, then sets msg0j = (⟨x⟩A0 [i+1]⊕j2)∧(⟨x⟩A0 [i]⊕j1)⊕⟨Pi+1:i⟩B0
and msg1j = (⟨x⟩A0 [i+1]∧ j2)⊕ (⟨x⟩A0 [i+1]⊕ j2)∧ (⟨x⟩A0 [i]∧ j1)⊕ ⟨Gi+1:i⟩B0 , and finally
sets msgj = msg0j ||msg1j .

– Parties P0 and P1 invoke an instance of
(
4
1

)
-OT2 where P0 plays the sender with inputs

{msgj}j∈{00,01,10,11} and P1 plays the receiver with input ⟨x⟩A1 [i+1] || ⟨x⟩A1 [i]. P1 parses
its output as a 2-bit string msg0||msg1, and sets ⟨Pi+1:i⟩B1 as msg0 and ⟨Gi+1:i⟩B1 as msg1.

Given this optimization used, the round complexity of Π l,s
2Bit-Extr can be brought down

⌊logm⌋ rounds. For the communication complexity, let l′ = ⌈ l−1
m ⌉ and s′ = ⌈ s−1

m ⌉. When

extracting the MSB, this optimization involves at most l′ calls to
(

2m

1

)
-OT2 and l′−1 calls

to Fcombine. To further extract the s-th bit, at most 1 call to
(

2m

1

)
-OT2 and ⌈log s′⌉ − 1

calls to Fcombine are needed. With parameters λ, l, s and m, we can obtain an approximate
estimation of the number of communication bits. Our analysis reveals that m = 6 offers the
most significant advantage in terms of communication complexity for the typical values of l
and s used by PPML (see Table 2). However, the computational cost also increases super-
polynomially with m. While benchmarking the faithful truncation protocol which utilized
this optimized two-extraction construction, we concluded that m = 4 offered a competitive

12 H. Zou et al.

trade-off between communication and computation. This empirical finding is consistent with
our baseline work Cryptflow2 [21] whose protocol also involves parameter m.

The second optimization is to eliminate operations that involve unused propagate signals.
For groups reaching the least significant bit, their propagate signals are never used. So
we can safely remove operations combing such signals (e.g., the combine operations on the
rightmost branches in Fig. 3). With this optimization, instead of invoking a Fcombine instance
to combine both the propagate and generate signal, we can invoke a call to FAND to combine
only the generate signal. A call to Fcombine and FAND requires communicating 2λ+ 22 and
λ+20 bits, respectively. This optimization removes log l useless propagate signal calculations
and thus saves λ log l + 2 log l communication bits in total.

4 Truncation Errors and Faithful Truncation

We begin by providing an example of local truncation that can result in both small and
big errors. Through this example, we show the importance of learning the boolean shares
of the MSB and the (s+1)-th bit in eliminating the errors. Finally, we describe the faithful
truncation construction in detail, which is based on the aforementioned two-bit extraction.

4.1 Why local truncation fails

Truncation is the process of converting the product xint of two fixed-point integers from
a representation scaled by 22s to the fixed-point representation scaled by 2s. In the two’s
complement encoding, dividing xint by 2s is equivalent to performing an arithmetic right
shift of x by s bits. A naive solution to this problem is local truncation: party Pb, holding the
additive share ⟨x⟩Ab , outputs ⟨y⟩Ab = ⟨x⟩Ab ≫ s as its additive share for y, in the hope that
yint will equal xint

2s . However, this local truncation may fail with certain probabilities [16].
Consider the example where l = 4, s = 1, and the product to be truncated xint = 6

whose corresponding ring element x = 0110. Suppose x is additively shared as ⟨x⟩A0 = 1001

and ⟨x⟩A1 = 1101. To obtain the shares of y⋆ = 0011 corresponding to the truncated product
xint

2 = 3, the parties arithmetic right shift ⟨x⟩A by s bits, and output shares ⟨y⟩A0 = 1100

and ⟨y⟩A1 = 1110. But y = Reconst(⟨y⟩A0 , ⟨y⟩
A
1) is 1010, which corresponds to −6, instead.

The local truncation is flawed since it ignores small and big errors. Specifically, it neglects
the carry-out bit in the s-th bit of ⟨x⟩A0 + ⟨x⟩A1 , which can lead to the small error if the
truncated s-bit has a carry-out of 1. Additionally, the arithmetic right shift is sign-extended,
which can cause the big error if the MSBs of the two shares are opposite to that of the secret.

To address the above issue, a preliminary step is required to detect the occurrence of
small and big errors. This can be done easily by utilizing the boolean shares of x[l] and
x[s+ 1]. For example, ⟨x[s+ 1]⟩B can be used to determine the small error indicator t (i.e.,
the carry-out bit in the s-th bit) as t = ⟨x[s+ 1]⟩B0 ⊕ ⟨x[s+ 1]⟩B1 ⊕ ⟨x⟩

A
0 [s+1]⊕ ⟨x⟩A1 [s+1].

Moreover, the big error indicator k can be learned by checking whether the MSBs of the
shares are opposite to that of the secret (i.e., x[l] = ⟨x[l]⟩B0 ⊕ ⟨x[l]⟩

B
1).

Once the error indicators k and t have been determined, the parties can proceed to
correct the errors to achieve faithful truncation. This can be accomplished by performing
additional computations based on k and t.

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 13

Input: For b ∈ {0, 1}, party Pb uses ⟨x⟩Ab ∈ Z2l as input.
Output: Party Pb receives ⟨y⟩Ab s.t. y = x≫ s.

1. Parties P0 and P1 invoke an instance of F l,s+1
2Bit-Extr, where Pb uses ⟨x⟩Ab as input and

receives two boolean shares ⟨x[l]⟩Bb and ⟨x[s+ 1]⟩Bb .
2. Party P0 locally execute the following steps:

– Samples a random element ⟨k⟩A0
$← Z2l ;

– Sets i2 = ⟨x⟩A0 [l] and i1 = ⟨x[l]⟩B0 ;
– For j ∈ {00, 01, 10, 11}, parses j as a 2-bit string j2||j1, computes msgj = 2l−s · (i2 ∧

j2 ∧ i1 ⊕ j1) + (2l − 2l−s) · (i2 ∧ j2 ∧ (i1 ⊕ j1))− ⟨k⟩A0 .
3. Parties P0 and P1 invoke an instance of

(
4
1

)
-OTl, where P0 plays the role of sender and

P1 plays the role of receiver. Party P0 uses {msgj}j∈{00,01,10,11} as input, and receives
nothing. Party P1 uses ⟨x⟩A1 [l] || ⟨x[l]⟩

B
1 as input, and receives a value to be set as ⟨k⟩A1 .

4. Party Pb locally computes ⟨tmp⟩Bb = ⟨x⟩Ab [s+ 1]
⊕
⟨x[s+ 1]⟩Bb .

5. Parties P0 and P1 invokes an instance of F l
B2A, where Pb uses ⟨tmp⟩Bb ∈ Z2 as input, and

receives ⟨t⟩Ab ∈ Z2l .
6. Party Pb outputs ⟨y⟩Ab = (⟨x⟩Ab ≫ s) + ⟨t⟩Ab + ⟨k⟩Ab .

Fig. 5. Protocol Πl,s
Trunc (Faithful truncation)

4.2 Faithful truncation from two-bit extraction

Let F l,s
Trunc denote the faithful truncation functionality that takes arithmetic shares of x ∈ Z2l

as input, and returns arithmetic shares of y = x ≫ s as output. We propose a faithful
truncation protocol in Fig. 5, whose correctness relies on the following proposition.

Proposition 1. Let ⟨x⟩A0 and ⟨x⟩A1 denote the arithmetic shares of x ∈ Z2l . Let t denote
the carry-out in the s-th bit of ⟨x⟩A0 + ⟨x⟩A1 . Let k be defined as:

k =

2l − 2l−s : ⟨x⟩A0 [l] = ⟨x⟩
A
1 [l] = 0 , x[l] = 1;

2l−s : ⟨x⟩A0 [l] = ⟨x⟩
A
1 [l] = 1 , x[l] = 0;

0 : otherwise.
(4)

Then we have:

(⟨x⟩A0 ≫ s) + (⟨x⟩A1 ≫ s) + k + t = (x≫ s) (5)

Proof. The proposition follows from Corollary 4.2 in [21]. When the sign bit flipping issue
happens, term k corrects the big error. When the carry-out of the s-th bit is 1 (i.e., the least
significant s bits wrap around 2s), term t corrects the small error.

- Correctness analysis. By the correctness of F l,s+1
2Bit-Extr, we have Reconst(⟨x[l]⟩B0 , ⟨x[l]⟩

B
1) =

x[l]. Furthermore, by the correctness of
(
4
1

)
-OTl, we have Reconst(⟨k⟩A0 , ⟨k⟩

A
1) equals the

k defined by equation 4. Namely, our protocol correctly calculates the term k in equa-
tion 5. By the correctness of F l,s+1

2Bit-Extr, Reconst(⟨x[s+ 1]⟩B0 , ⟨x[s+ 1]⟩B1) = x[s + 1]. So
Reconst(⟨tmp⟩B0 , ⟨tmp⟩B1) = ⟨x⟩

A
0 [s+ 1]⊕ ⟨x⟩A1 [s+ 1]⊕ x[s+ 1], which is exactly the carry-

out bit in the s-th bit of ⟨x⟩A0 + ⟨x⟩A1 . Next, by the correctness of F l
B2A which creates the

arithmetic shares of the same secret tmp, we have Reconst(⟨t⟩A0 , ⟨t⟩
A
1) equals the term t in

equation 5. By equation 5, Reconst(⟨y⟩A0 , ⟨y⟩
A
1) = (⟨x⟩A0 ≫ s)+(⟨x⟩A1 ≫ s)+k+t = (x≫ s).

14 H. Zou et al.

- Security analysis. The protocol Π l,s
Trunc securely realizes the functionality F l,s

Trunc in the
(F l,s+1

2Bit-Extr,
(
4
1

)
-OTl,F l

B2A)-hybrid model. We construct two simulators for two cases.
Case 1: P0 is corrupted. The simulator S0 gets input (⟨x⟩A0 , ⟨y⟩

A
0) (i.e., the input and

output of the corrupted party P0). S0 needs to simulate P0’s received intermediate messages
including: (⟨x[l]⟩B0 , ⟨x[s+ 1]⟩B0) received from F l,s+1

2Bit-Extr and ⟨t⟩A0 received from F l
B2A.

– When F l,s+1
2Bit-Extr receiving ⟨x⟩A0 from P0, S0 returns random r1, r2 ∈ Z2 to P0. Since r1

and r2 are uniformly distributed, P0 cannot distinguish r1 and r2 from the real boolean
shares ⟨x[l]⟩B0 and ⟨x[s+ 1]⟩B0 output by F l,s+1

2Bit-Extr.
– When

(
4
1

)
-OTl receiving {msgj} from P0, S0 extracts ⟨k⟩A0 (which is uniformly sampled

by P0) from {msgj}. Concretely, S0 extracts ⟨k⟩A0 = 2l−s · (⟨x⟩A0 [l] ∧ ⟨x[l]⟩
B
0)−msg11.

– When F l
B2A receiving ⟨tmp⟩B0 from P0, S0 returns r3 = ⟨y⟩A0 − (⟨x⟩A0 ≫ s) − ⟨k⟩A0 to

P0, which conforms to the view of P0 in the corresponding real execution. Furthermore,
since ⟨k⟩A0 is uniformly distributed, r3 is also uniformly distributed. Hence, party P0

cannot distinguish r3 from the real arithmetic share output by F l
B2A.

Case 2: P1 is corrupted. The simulator S1 gets input (⟨x⟩A1 , ⟨y⟩
A
1). S1 needs to simulate

P1’s received intermediate messages including: (⟨x[l]⟩B1 , ⟨x[s+ 1]⟩B1) received from F l,s+1
2Bit-Extr,

⟨k⟩A1 received from
(
4
1

)
-OTl, and ⟨t⟩A1 received from F l

B2A.
– When F l,s+1

2Bit-Extr receiving ⟨x⟩A1 from P1, S1 operates the same as S0 does for P0.
– When

(
4
1

)
-OTl receiving ⟨x⟩A1 [l] || ⟨x[l]⟩

B
1 from P1, S1 returns a random value r1 ∈ Z2l

to P1. Note that the real message ⟨k⟩A1 output by
(
4
1

)
-OTl is also uniformly distributed,

because ⟨k⟩A1 is masked by ⟨k⟩A0 which is uniformly sampled by P0. Hence, P1 cannot
distinguish r1 from the real message ⟨k⟩A1 output by

(
4
1

)
-OTl.

– When F l
B2A receiving ⟨tmp⟩B1 from P1, S1 returns r2 = ⟨y⟩A1 − (⟨x⟩A1 ≫ s) − r1, which

conforms to P1’s view in a real execution. As r1 is uniformly distributed, r2 is uniformly
distributed. P1 cannot distinguish r2 from the real arithmetic share output by F l

B2A.
Thus, we conclude that the view of each party Pb, b ∈ {0, 1} can be perfectly simulated.

- Communication complexity. Π l,s
Trunc involves a single call each to F l,s+1

2Bit-Extr,
(
4
1

)
-OTl

and F l
B2A. Using the optimized two-bit extraction construction in section 3.3 and setting

parameter m = 4, the communication bits of our construction are approximately (2λ +
32)(l′ + t) + (2λ+ 22)(l′ + k − 1)− (λ+ 2)⌈log l′⌉+ 5l + 3λ, where l′ = ⌈ l−1

4 ⌉, s
′ = ⌈ s−1

4 ⌉,
t ∈ [0, 1] and k ∈ [0, ⌈log s′⌉ − 1] are parameters depending on s. For l = 32 and s = 16,
using the parameter m = 4 recommended by the authors of Cryptflow2 [21], the concrete
communication of our construction is 4384 bits as opposed to 6093 bits for Cryptflow2.

5 Experiments

Table 1 presents a comparison of the theoretical communication complexity for truncation
protocols, while this section provides an empirical evaluation of their practical performance.
Benchmarks. We compared our protocol with Cryptflow2 [21], which is currently consid-
ered the state-of-the-art OT-based faithful truncation protocol under the 2PC setting. To
ensure a fair comparison, we used the recommended protocol parameter m = 4, as sug-
gested by the authors of Cryptflow2 (Section 6.1 in [21]), for both our optimized protocol
(Section 3.3) and Cryptflow2. We evaluated two bit length l = 32 and l = 64. For each bit
length, we varied the fixed-point precision s in the range of {8, 10, 12, 14, 16}. These values

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 15

of l and s are representative in the field of privacy-preserving machine learning (PPML) [7].
For each combination of l and s, a batch of 220 truncations was evaluated. This number of
truncations is typically required in PPML, e.g., one epoch of training the textbook LeNet
model on the MNIST dataset [15] roughly requires one million truncations.

Hardwares and softwares. We simulated the two parties with two virtual machines having
2.90 GHz Intel Core i5-9400 processors with 6 CPUs and 8 GBs of RAM. The simulated
bandwidth between the two machines was 100 Mbps and the echo latency was 40 ms.
Our implementation was built upon the SCI library [18] which implements Cryptflow2 [21].
SCI [18] is written in C++ and makes use of the EMP toolkit [22] to generate the application-
level OT types like

(
2m

1

)
-OT. The code was compiled by gcc 9.4.0 on Ubuntu 20.04.

Result analysis. The experiment results are presented in Table 2. It is noteworthy that
our protocol consistently communicated fewer bits and ran faster than Cryptflow2 for all
values of l and s being evaluated. Our improvement is due to eliminating redundancies
in the faithful truncation construction of Cryptflow2: while Cryptflow2 uses two related
comparison instances to detect the small error and big error respectively, we use only one
two-bit extraction instance.

Our improvement is mainly dominated by the fixed-point precision s. The larger value
of s, the more communication bits and running time our protocol can save compared to
Cryptflow2. This is because Cryptflow2’s communication complexity grows linearly with
s, while ours is logarithmic. When s = 16, we observe the most significant improvement,
as we save roughly 1.5 Gbit communication bits compared to Cryptflow2. This result is
as expected, because our two-bit extraction protocol can output the intermediate group
generate signal G16:1 of the MSB extraction directly as the corresponding carry-out bit
for the s-th bit extraction without requiring combine operations. Namely, in this case, to
additionally eliminate the small error, our faithful truncation protocol involves only a single
call to the boolean to arithmetic share conversion F l

B2A which communicates λ+ l bits.

It is worth noting that when l is large, the efficiency bottleneck of both our protocol and
Cryptflow2 is eliminating the big error. For example, when s is fixed, increasing l from 32
to 64 doubles the running time of both protocols. Additionally, when l = 32 with s = 16
fixed, our protocol saves 28% communication bits compared to Cryptflow2. However, when
l = 64, our protocol only saves 16% communication bits. These findings suggest that the
elimination of the big error incurs significant costs when l is large. To enhance the overall
efficiency of faithful truncation, it would be beneficial to investigate techniques that can
reduce the costs of eliminating the big error in future research.

Table 2. Empirically comparing our faithful truncation protocol with Crypflow2 [21]

Bit Length
l

Precision
s

Crypflow2 [21] This work
Time (s) Comm. (Gbit) Time (s) Comm. (Gbit)

32

8 77.50 4.21 68.67 3.63
10 82.00 4.60 75.03 4.01
12 82.78 4.63 71.88 3.80
14 87.64 5.06 77.52 4.23
16 88.37 5.09 69.00 3.63

64

8 160.11 8.75 145.21 8.11
10 164.08 9.13 153.25 8.49
12 165.01 9.16 146.10 8.26
14 178.32 9.67 160.20 8.76
16 180.04 9.70 145.37 8.11

† Results were reported for a batch of 220 truncations. The network had 100 Mbps and its echo latency was 40ms.

16 H. Zou et al.

6 Conclusions

In this work, we investigate efficient constructions for faithful truncation, a crucial operation
in fixed-point arithmetic. We extend previous studies of oblivious transfer based construc-
tions [21,12] by proposing a building functionality two-bit extraction customized for faithful
truncation. Our faithful truncation protocol capitalizes on the efficient constructions for
two-bit extraction, resulting in a reduction of the communication complexity of [21] from
linear in s to logarithmic in s, where s is the fixed-point precision. This work highlights the
possibility of removing the small error at a negligible cost by reusing the intermediate results
from eliminating the big error. In the future work, we would like to investigate techniques
that can further reduce the costs of eliminating the big error.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments. This
work was supported in part by the National Natural Science Foundation of China under
Grant Nos, 62172411, 62172404, 61972094, 62202458.

References

1. Abbas, K.: Handbook of Digital CMOS Technology, Circuits, and Systems (2020)
2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and ex-

tensions for faster secure computation. In: CCS’13. https://doi.org/10.1145/2508859.2516738
3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: CRYPTO ’91. https:

//doi.org/10.1007/3-540-46766-1_34
4. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee, M.: Function

secret sharing for mixed-mode and fixed-point secure computation. In: EUROCRYPT’21. https:
//doi.org/10.1007/978-3-030-77886-6_30

5. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT’15. https://doi.org/
10.1007/978-3-662-46803-6_12

6. Couteau, G.: New protocols for secure equality test and comparison. In: ACNS’18. https://doi.
org/10.1007/978-3-319-93387-0_16

7. Dalskov, A.P.K., Escudero, D., Keller, M.: Fantastic four: Honest-majority four-party se-
cure computation with malicious security. In: USENIX Security’21. https://www.usenix.org/
conference/usenixsecurity21/presentation/dalskov

8. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-protocol
secure two-party computation. In: NDSS’15. https://www.ndss-symposium.org/ndss2015/
aby---framework-efficient-mixed-protocol-secure-two-party-computation

9. Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup ta-
bles. In: NDSS’17. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
pushing-communication-barrier-secure-computation-using-lookup-tables/

10. Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D.: LLAMA: A low latency math library
for secure inference. In: PoPETs’22 https://doi.org/10.56553/popets-2022-0109

11. Hazay, C., Lindell, Y.: Efficient secure two-party protocols: Techniques and constructions (2010)
12. Huang, Z., Lu, W., Hong, C., Ding, J.: Cheetah: Lean and fast secure two-party deep neural net-

work inference. In: USENIX Security’22. https://www.usenix.org/conference/usenixsecurity22/
presentation/huang-zhicong

13. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In:
CRYPTO’03. https://doi.org/10.1007/978-3-540-45146-4_9

https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/978-3-319-93387-0_16
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://doi.org/10.56553/popets-2022-0109
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://doi.org/10.1007/978-3-540-45146-4_9

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 17

14. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In:
CRYPTO’13. https://doi.org/10.1007/978-3-642-40084-1_4

15. LeCun, Y., Cortes, C.: The mnist database of handwritten digits (2005)
16. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning. In: CCS’2018.

https://doi.org/10.1145/3243734.3243760
17. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving machine learning.

In: SP’17. https://doi.org/10.1109/SP.2017.12
18. mpc–msri/EzPC: Secure and Correct Inference (SCI) Library. https://github.com/mpc-msri/

EzPC/tree/master/SCI (2016)
19. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: improved mixed-protocol se-

cure two-party computation. In: USENIX Security’21. https://www.usenix.org/conference/
usenixsecurity21/presentation/patra

20. Rathee, D., Bhattacharya, A., Sharma, R., Gupta, D., Chandran, N., Rastogi, A.: Secfloat:
Accurate floating-point meets secure 2-party computation. In: SP’22. https://doi.org/10.1109/
SP46214.2022.9833697

21. Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: Crypt-
flow2: Practical 2-party secure inference. In: CCS ’20. https://doi.org/10.1145/3372297.3417274

22. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit (2016)

23. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for correlated OT
with small communication. In: CCS ’20. https://doi.org/10.1145/3372297.3417276

https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://doi.org/10.1109/SP46214.2022.9833697
https://doi.org/10.1109/SP46214.2022.9833697
https://doi.org/10.1145/3372297.3417274
https://github.com/emp-toolkit
https://doi.org/10.1145/3372297.3417276

	Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction

