
HI-Kyber: A novel high-performance
implementation scheme of Kyber based on GPU

Xinyi Ji∗, Jiankuo Dong∗, Pinchang Zhang∗, Tonggui Deng∗, Jiafeng Hua†, and Fu Xiao∗
∗School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

†Xidian University, Xi’an, China

Abstract—CRYSTALS-Kyber, as the only public key encryp-
tion (PKE) algorithm selected by the National Institute of
Standards and Technology (NIST) in the third round, is con-
sidered one of the most promising post-quantum cryptography
(PQC) schemes. Lattice-based cryptography uses complex dis-
crete alogarithm problems on lattices to build secure encryption
and decryption systems to resist attacks from quantum com-
puting. Performance is an important bottleneck affecting the
promotion of post quantum cryptography. In this paper, we
present a High-performance Implementation of Kyber (named
HI-Kyber) on the NVIDIA GPUs, which can increase the key-
exchange performance of Kyber to the million-level. Firstly,
we propose a lattice-based PQC implementation architecture
based on kernel fusion, which can avoid redundant global-
memory access operations. Secondly, We optimize and implement
the core operations of CRYSTALS-Kyber, including Number
Theoretic Transform (NTT), inverse NTT (INTT), pointwise
multiplication, etc. Especially for the calculation bottleneck NTT
operation, three novel methods are proposed to explore extreme
performance: the sliced layer merging (SLM), the sliced depth-
first search (SDFS-NTT) and the entire depth-first search (EDFS-
NTT), which achieve a speedup of 7.5%, 28.5%, and 41.6%
compared to the native implementation. Thirdly, we conduct
comprehensive performance experiments with different parallel
dimensions based on the above optimization. Finally, our key
exchange performance reaches 1,664 kops/s. Specifically, based
on the same platform, our HI-Kyber is 3.52× that of the GPU
implementation based on the same instruction set and 1.78× that
of the state-of-the-art one based on AI-accelerated tensor core.

Index Terms—PQC, Kyber, NTT, Polynomial Multiplication,
GPU

I. INTRODUCTION

Public key cryptography is an important fundamental com-
ponent of secure communication. However, quantum comput-
ing based on Shor [1] and Gorver [2] will break currently
widely used public key cryptography (such as Rivest Shamir
Adleman (RSA) and elliptic curve cryptography (ECC)) in
polynomial time in the future. Many research institutions and
enterprises (such as Google, IBM [3], etc.) have made signif-
icant progress in the field of quantum computing. Therefore,
in response to this challenge, NIST has initiated a process
to solicit quantum-safe cryptographic algorithms worldwide
[4], which can replace public-key cryptographic algorithms.
In 2022, NIST announced the Round 3 results of Post-
Quantum Cryptography Standardization Process, including
four selected algorithms (CRYSTALS-Kyber [5], CRYSTALS-
DILITHIUM, Falcon, SPHINCS+) and four candidate algo-

Corresponding author: Fu Xiao.

rithms (BIKE [6], Classic McEliece [7], HQC [8], SIKE).
Among the selected algorithms, CRYSTALS-KYBER is the
only public key encryption and key-establishment algorithm.

A. Related works

As the only PKE scheme selected in Round 3 of the
NIST PQC Standardization Process, the performance of Kyber
undoubtedly receive significant attention in future research. To
expedite cryptographic algorithms, researchers have applied
various accelerators and parallel instructions to enhance promi-
nent computational workloads. Botros et al. [9] presented
an optimized software implementation of the module-lattice-
based key-encapsulation mechanism Kyber for the ARM
Cortex-M4 microcontroller. On the same embedded platform,
Alkim et al. [10] and Abdulrahman et al. [11] completed
the further optimization implementation of Kyber. Becker et
al. [12] and Nguyen et al. [13] completed software imple-
mentations using Advanced Single-Instruction Multiple-Data
(SIMD) vector instructions (a.k.a. NEON instructions) based
on ARM chips with more abundant resources. And with Intel
similar SIMD architecture (AVX2), Hwang et al. [14] verified
NTT Multiplications for Kyber and other NIST PQC KEM
Lattice Finalists.

Compared to traditional CPUs (Intel Core series, etc.),
GPUs have more logical computing units and cores, providing
significant performance advantages. In 2006, NVIDIA intro-
duced a general-purpose computing platform and program-
ming model named CUDA (Compute Unified Device Archi-
tecture) [15]. By leveraging the parallel computing engine
in NVIDIA GPUs, CUDA enables the efficient solution of
complex computational problems. Plenty of works [16]–[20]
have achieved notable results in studying cryptography parallel
acceleration on the GPU. Gao et al. [18] applied GPU to
the elliptic curve cryptography (ECC) algorithm. And their
throughput performance has exceeded ten million per second,
which has made a great breakthrough in performance com-
pared with the CPU implementation. As for GPU-based Kyber
implementation, Gupta et al. [21] implemented the optimiza-
tion of subfunctions of Kyber-1024 in NVIDIA Tesla V100
of Volta architecture, especially the number-theoretic trans-
form and Keccak, which are the two most time-consuming
algorithms. Lee et al. [19] focused on the implementation of
three different fine-grained parallelism approaches for NTT
on NVIDIA RTX2060. Wan et al. [20] used the Tensor Core

to accelerate polynomial multiplication and obtain a better
performance improvement.

B. Our Contribution

Based on the same CPU platform (Intel Core), the per-
formance of Kyber [22] has been found to be within the
same order of magnitude (in tens of thousands per second) as
traditional elliptic curve cryptography (e.g., Curve25519 [23]).
However, on the GPU platform, the optimal implementation
[21] throughput based on universal fixed-point computing
capability is 473 kops/s, while the state-of-art one [20] based
on AI accelerated computing capability (Tensor Core) is
820 kops/s. These implementations exhibit a significant gap
compared to the optimal elliptic curve performance (7,200
kops/s) [18]. Therefore, there is still considerable potential for
performance improvements in GPU-based implementations of
Kyber. The main innovation points are as follows:

• We design a novel and complete High-performance Im-
plementation scheme of CRYSTALS-Kyber based on
GPU (HI-Kyber), including complete public-key encryp-
tion (key generation, encryption, and decryption). Com-
pared to [21] which also relies on the integer computing
power of GPU, we propose a more efficient kernel fusion
scheme adapted to Kyber, including the underlying func-
tions such as NTT, INTT, SHA3, Encode, Decode, etc.
It greatly reduces the number of global memory accesses
during computation and improves the overall performance
of the algorithm.

• We optimize the core operations of CRYSTALS-Kyber,
including NTT, INTT, pointwise multiplication, etc. Es-
pecially for the calculation bottleneck NTT operation, we
propose three novel schemes that are universal on other
platforms: SLM, SDFS-NTT and EDFS-NTT, which
achieve a speedup of 7.5%, 28.5%, and 41.6% respec-
tively compared to the native NTT implementation. For
pointwise multiplication, our approach involves leverag-
ing two theoretical knowledge to minimize the overhead
of multiplication with modular reduction, resulting in
better lazy reduction. We also compare two modular re-
duction suites as the underlying implementation baseline
for better optimization.

• We conduct comprehensive performance experiments
with different parallel dimensions based on the above op-
timization. By testing extensive comparative experiments
on GPUs, we aim to find the optimal parallel parameters
and achieve optimal peak performance. Finally, our key
exchange performance of HI-Kyber reaches 1,664 kops/s.
Notably, based on the same platform, our HI-Kyber is
3.52× that of Gupta et al. [21] implementation based on
the same instruction set and 1.78× that of Wan et al. [20]
implementation based on AI-accelerated tensor core.

The rest of the paper is organized as follows. Section
2 introduces some basic preparatory knowledge. Section 3
presents our specific optimization implementation scheme on
GPU. Section 4 shows the experimental results. Section 5
concludes.

II. PRELIMINARY KNOWLEDGE

This section introduces the preparatory knowledge related
to our work. Firstly, we briefly introduce the GPU architecture.
Then, we describe the lattice-related difficult problem. Finally,
the relevant theoretical concepts of modular reduction and
NTT are given.

A. GPU Architecture

GPUs have thousands of cores. Usually, dozens of cores
form a group, and the group corresponds to the block, which
has its own shared memory. Within a block, many threads
can be launched. Each thread corresponds to a core. In the
hardware, there are registers that can only be used by blocks.
Threads in the same block will share registers. So the more
threads are launched, the fewer registers can be used, which
constrains the scale of parallelism. By CUDA programming,
the kernel function can call GPU resources. Due to the par-
allelism principle in hardware design, the smallest execution
unit in SM is called a warp. All threads in a warp execute the
same instruction, which maximizes GPU efficiency when the
instructions executed by all threads remain consistent.

B. Lattices and Related difficult problem

Lattice. A lattice is the entirety of a vector consisting of
all integer linear combinations of a set of linearly independent
vectors. If the vectors in the lattice are all integer vectors,
such a lattice is said to be an integer lattice. Any lattice can
be composed by a base V = {v1,v2, ,vn}, as

L = {a1v1 + a2v2 + + anvn | ai ∈ Z}

Module− learning with errors(MLWE) [24]. The
assumption states that for the given m samples where A is
a uniformly-random matrix in Zk×k×m

q , q is the modulus, s
is a uniformly-random vector in Zk

q and the coefficients of e
are chosen from the distribution X , it is hard to distinguish
whether all of them are from A or As+ e.

Kyber uses MLWE as the foundation for its key encapsu-
lation mechanism, where a shared secret key is generated by
both the sender and receiver using public and private keys,
and the private key is shared securely. This shared secret key
can then be utilized for symmetric encryption and decryption.

C. Key Encapsulation Mechanism of Kyber

Kyber is an IND-CCA2-secure KEM whose security is
based on the hardness of learning with errors over modules
on a lattice. The Kyber family consists of three different
algorithms: Kyber512, Kyber768, and Kyber1024, which differ
in their security levels of NIST Security Levels 1, 3, and
5. Their security levels correspond to AES128, AES192, and
AES256, respectively. Kyber uses parameter k to fix the lattice
dimension as a multiple of n. It is set to 256 so that each bit
of the message can be encoded into a single coefficient of
the polynomial. Changing k is the main mechanism to scale
security.

The definition of key generation, encryption, and decryp-
tion of the Kyber.CPAPKE public-key encryption scheme are

described in Algorithm 1, 2 and 3. In CPAPKE.KeyGen, ρ
and σ are random variables generated by a random number
d through the hash function SHA3 512. The matrix Â is
generated in NTT domain to compute with parameters ŝ and
ê which are sampling from a binomial distribution. The public
and private key pairs require encoding. In CPAPKE.Enc, after
decoding pk, parameters r, e1 and e2 are sampling from two
centered binomial distribution. u and v form the ciphertext
c. In CPAPKE.Dec, by decoding the ciphertext c and sk to
recovery message m.

Algorithm 1: Kyber.CPAPKE.KeyGen()
Output:

Secret key sk, Public key pk.
1: d← RandomBytes()
2: (ρ, σ) := SHA3 512(d)
3: Â ∈ Rk∗k

q in NTT domain← Gen matrix(ρ)
4: (s, e) ∈ Rk

q ← CBD Sampleη1(σ)
5: (̂s, ê)← (NTT (s), NTT (e))
6: t̂ := Â ◦ ŝ+ ê
7: (pk, sk) := (Encode(̂t||ρ), Encode(̂s))
8: return (pk, sk)

Algorithm 2: Kyber.CPAPKE.Enc()
Input:

Random coins r, Public key pk, Message m.
Output:

Ciphertext c.
1: (̂t, ρ)← Decode(pk)
2: ÂT ∈ Rk∗k

q in NTT domain← Gen matrix(ρ)
3: r ∈ Rk

q ← CBD Sampleη1(r)
4: e1 ∈ Rk

q ← CBD Sampleη2
(r)

5: e2 ∈ Rq ← CBD Sampleη2
(r)

6: r̂ := NTT (r)
7: u := NTT−1(ÂT ◦ r̂) + e1
8: v := NTT−1(̂tT ◦ r̂) + e2 +Decompress(m)
9: (c1, c2) := (Encode(u), Encode(v))

10: return (c1||c2)

Algorithm 3: Kyber.CPAPKE.Dec()
Input:

Ciphertext c, Secret key sk.
Output:

Message m.
1: (u, v)← Decode(c)
2: ŝ← Decode(sk)
3: m := Compress(v −NTT−1(̂s ◦NTT (u)))
4: return m

D. Modular Reduction
It is time-consuming for a computer to perform a native

module operation. Modular reduction helps prevent arithmetic

overflow and improves the efficiency of mathematical com-
putations by reducing the size of intermediate values. In our
paper, we not only implement the native modular reduction
(Barrett reduction and Montgomery reduction) in Kyber but
apply the recent arithmetic techniques (Improved Plantard
multiplication and Improved Plantard reduction), which are
more suitable for word size moduli.
Barrett Reduction : It was proposed by P. D. Barrett

[25] in 1986. The required division is converted into multipli-
cation by multiplying by the inverse of the modulus q, which
reduces the integer f to h, 0 ≤ h < q. The input of Barrett
Reduction is a 16-bit signed integer f ∈ [−215q, 215q), and
the output of Barrett Reduction is a 16-bit signed integer h ∈
[0, q].

h = f mod q = f − ⌊fq−1⌋q = f − ⌊f/2k⌋⌊2k/q⌋q

Here ⌊ ⌋ refers to the largest integer that is not greater than
f , where ⌊2k/q⌋ can be computed in advance, and ⌊f/2k⌋ is
just a shift. k is 26 in Kyber.
Montgomery Reduction : Montgomery reduction [26]

is one of the most used reduction algorithms and very efficient
for large modulus. It needs to transfer the data f from the
normal domain to the MONT domain. It converts the required
division by adding k times the modulus q to the data on
the MONT field. The input of Montgomery Reduction is a
32-bit signed integer f ∈ [−215q, 215q), and the output of
Montgomery Reduction is a 16-bit signed integer h ∈ (−q, q).

k = −q−1 mod R

h = [f + (fk mod R)q] / R

Where k is a constant, R is a power of 2. Note that constant
can be precomputed and both modulo R and division by R
can be implemented with shifts.
Improved Plantard Multiplication : Thomas Plan-

tard [27] came up with an efficient word size modular arith-
metic to fit the small moduli of PQC, which only supported
unsigned input range. Shortly after, improved Plantard reduc-
tion [28] is proposed to back up signed input of the existing
lattice-based cryptography. The mod ±q maps integers to
(− q

2 ,
q
2), and ≫ represents the right shift operation. The input

of Improved Plantard Multiplication is a 16-bit signed integer
f , g ∈ [−23q, 23q], and the output of Improved Plantard
Multiplication is a 16-bit signed integer h ∈ (− q

2 ,
q
2).

h = fg(−2−2l) mod ±q

= ((fgq
′

mod 2l)≫ l + 2α)q ≫ l

Where q
′
= q−1 mod ±22l is precomputed, l = 16, and α =

3. When g is a constant, we can precompute g(−2−2l) to save
one multiplication.
Improved Plantard Reduction : When the number in

the normal domain needs to be shortened, improved Plantard
reduction can reduce the normal number by multiplying a
constant in the Plantard domain. It ensures that the number
remains in the normal domain after Plantard reduction. The
input of Improved Plantard Reduction is a 32-bit signed

Keccak_absorb

Keccak_squeezeblocks

KeccakF1600_StatePermute

Kyber.CPAPKE.KeyGen Kyber.CPAPKE.Enc Kyber.CPAPKE.Dec

SamplingSHA3-512 Polynomial MultiplicationGen_matrix

SHAKE128_absorb

SHAKE128_squeezeblocks

reject uniform

SHAKE256_absorb

SHAKE256_squeezeblocks

CBD

basemul

Pointwise Multiplication

Montgomery Reduction

Montgomery Reduction

NTT

Barrett
Reduction

INTT

Montgomery
Reduction

(De)Encode

(De)Compress

(To)Frombytes

Csubq

Butterfly Operation Butterfly Operation

Fig. 1. The overall algorithmic framework of Kyber

integer f ∈ [−26q2, 26q2], and the output of Improved Plantard
Reduction is a 16-bit signed integer h ∈ (− q

2 ,
q
2).

h = f(−2−2l) mod ± q

= ((fq
′

mod 2l)≫ l + 2α)q ≫ l

Where q
′
= q−1 mod ±22l is precomputed, l = 16, and α =

3.

E. NTT

NTT [29] is the transformation of a sequence of n ele-
ments v = [v0, v1, , vn−1] into another sequence V =
[V0, V1, , Vn−1] using the formula:

Vi =

n−1∑
j=0

vj · ζij

where ζ denotes a primitive n-th root of unity. The powers
of ζ are called twiddle factors, which need to satisfy that ζn ≡
1 mod q does not exist ζi ≡ 1 mod q (0 ≤ i < n). The twiddle
factor is a complex exponential that depends on the position
of the element in the sequence. INTT can utilize a similar
formula to restore the original n sequences.

vj = n−1
n−1∑
i=0

Vi · (ζij)−1

Considering that polynomials have coefficient representation
and point value representation, Cooley and Tukey [30] intro-
duced a butterfly transform in O(nlogn) time, which is based
on the idea of divide and conquer, to speed up the calculation
of polynomial multiplication.

According to the Chinese Remainder Theorem (CRT) [31],
Rq and

∏
i Zq[X]/(X − ζi) are isomorphic. Using this idea,

the polynomial X256 + 1 can be written as

X256 + 1 =

127∏
i=0

(X2 − ζ2i+1) =

127∏
i=0

(X2 − ζ2br7(i)+1)

where br7(i) is the bit reversal of the unsigned 7-bit integer
i. In that way, a polynomial of f ∈ Rq is given by

(f mod X2 − ζ2br7(0)+1, , f mod X2 − ζ2br7(127)+1)

Hence, the NTT of f can be further written as

NTT (f) = f̂0 + f̂1X
1 + + f̂255X

255

with

f̂2i =

127∑
j=0

f2jw
(2br7(i)+1)j

f̂2i+1 =

127∑
j=0

f2j+1w
(2br7(i)+1)j

III. OPTIMIZED IMPLEMENTATION OF KYBER ON GPU

The detailed optimization strategies of Kyber on GPU are
discussed in the section. Firstly, we show the overall frame-
work of Kyber and adopt the kernel fusion implementation
as a baseline. Then, the design framework for polynomial
multiplication is given. Based on the idea of the framework, we
introduce the optimization methods of NTT, INTT, pointwise
multiplication, and lazy reduction one by one.

A. The overall framework of Kyber Implementation

Fig. 1 shows the overall algorithm composition framework
of Kyber.PKE.KeyGen, Kyber.PKE.Enc, and Kyber.PKE.Dec.
When implementing Kyber on GPU, we are committed to
reducing the memory access from global memory as off-chip
memory has higher latency and lower access speed. In the
traditional multi-kernel scheme, which is used in Gupta et
al. [21] implementation, each kernel assigned with computing
tasks stores the data in global memory and the data will be
loaded before the next kernel executes. Such extensive access
to global memory inevitably consumes a significant amount of
memory-access time. To some extent, the penalty cannot be
compensated by optimizing thread parallelism.

Accordingly, as shown in Fig. 2, taking the partial core
algorithms in Enc as an example, we adopt the kernel fusion
technique to improve the performance of parallel computations
by combining multiple kernel functions into a single kernel
on GPU. When multiple kernel functions are combined into
a single kernel, the number of accessing global memory is
reduced from 4 to 1. That means it reduces the amount of time
that is spent transferring data between the CPU and GPU. And,
the overhead associated with launching and managing multiple
kernels is reduced.

In our work, we realize the kernel fusion of Kyber on GPU.
Table I compares the additional global memory-access times
caused by calling kernels on the multi-kernel scheme with
the kernel-fusion scheme. It is evident that the kernel-fusion
scheme has greatly reduced the number of global memory

Sampling (I)NTT Pointwise
Multiplication

(De)Encode

loading

storing

GM

GM

(a) Multi-kernel scheme

(De)EncodePointwise
Multiplication

(I)NTTSamplingSampling (I)NTT Pointwise
Multiplication

(De)Encode

loading

storing

GM

GM

kernel-fusion

(b) Kernel-fusion scheme

Fig. 2. Multi-kernel VS. Kernel-fusion

accesses triggered by calling kernels. Our work tests the
kernel fusion implementation as a baseline. The throughput of
PKE.KeyGen, PKE.Enc and PKE.Dec can reach 1,348 kops/s,
1,373 kops/s, and 5,064 kops/s respectively, which can achieve
a speed-up of 1.25× that of Gupta et al. [21] implementation.
The detailed calculation formula is described in Section IV-D.

TABLE I
ADDITIONAL GLOBAL MEMORY-ACCESS TIMES CAUSED BY DIFFERENT

PARALLEL METHODS

Parallelization KeyGen Enc Dec
multi-kernel 12 17 8
kernel-fusion 1 1 1

It can be seen that three parts of polynomial multiplication:
NTT, INTT, and pointwise multiplication, have appeared mul-
tiple times, which is also the most time-consuming function
part in Kyber. The next focus is to introduce the improvement
optimization of polynomial multiplication in this article.

B. Design for polynomial multiplication on GPU

Fig. 3 depicts the design framework of polynomial multi-
plication. In the underlying implementation, we choose two
modular reduction suites: one is the native implementation of
Kyber and the other is the improved Plantard arithmetic (see
Section II-D) which is customized for LBC schemes. Then,
we present three novel algorithms to explore the optimization
methods of NTT and subsequently implement INTT. Besides,
two excellent theoretical methods are applied to accelerate
pointwise multiplication. Details are discussed in Section II-E,
III-D, and III-E respectively. By regulating these underlying
algorithms, the efficiency of polynomial multiplication can be
exploited to the fullest.

Improved Plantard ReductionImproved Plantard MultipicationBarrett Reduction Montgomery Reduction

Native Suite Improved Plantard Suite

SLM Method Ⅰ Method Ⅱ

NTT INTT Pointwise Multiplication

Polynomial Multiplication

Modular Reduction

SLM SDFS-NTT EDFS-NTT

Fig. 3. Design scheme of polynomial multiplication

Before delving into the topic, it is important to understand
that if loading all the temporary variables into the stack
in the actual experiment, an error segmentation fault (core
dumped) is encountered, which means that the memory ac-
cessed exceeds the memory space allocated to the program by
the system. Hence, we must store all the data in the global
memory, then load it into the register. Whether for the global
memory or the cache, reducing the time of memory access
is imperative. Registers are a scarce resource on GPU, and
therefore, their utilization must be maximized as much as
possible. In the specific experimental scheme, as the scheme
designer of the GPU, it is crucial to reuse registers as much
as possible, although we cannot accurately control the specific
data saved by each register.

C. NTT

In this section, we introduce the SLM and provide pseu-
docode for a generic implementation for the first time. Then,
we innovatively propose the concept of an NTT tree and
a novel traversal mode: depth-first search. Finally, Two de-
signed implementations of NTT are presented: SDFS-NTT and
EDFS-NTT.

1) A sliced layer merging scheme: Kyber used a variant
of NTT, so the total number of NTT layers is logN − 1. For
the original NTT, N NTT coefficients are loaded from global
memory and then stored back in global memory after each
layer of the CT butterfly. The native NTT results in a total
cost of (logN−1)×N times memory loading and storing. To
optimize this, we adopt the layer merging technology [32] to
decompose NTT into different sub-layers, namely, L1+L2+··
·+Li+···+Ln = logN−1. Li means the number of sub-layer
that may contain two or three NTT layers. The maximum value
of n can be taken to logN − 1, but it is meaningless as we
can achieve the same result using the precompiler instruction
#program unroll. In general, n is less than logN

2 .
The main idea of [32] is to reuse multiple layers of NTT

coefficients, thus reducing memory-access times to global
memory. For n = 2, L1 = 4, and L2 = 3, we only need to
load and store N points before and after L1 and L2, instead
of loading and storing (logN − 1)N from global memory,
thus reducing the number of memory-access times. [32] used
8 registers processing 8 coefficients on Cortex-m4 while [10]
processed 16 coefficients. It should be noted that the reused
data must be loaded in registers to avoid being put back into

global memory. The scale of coefficients that needed to be
processed is a vital factor. Usually, the amount of data loaded
in a loop is determined based on the number of registers on
Cortex-m4 or other platforms.

In our work, we present a sliced layer merging scheme.
It divides N NTT coefficients into several slices to adapt to
the dynamic scheduling of registers. When Li is ensured, the
maximum number of slices that N NTT coefficients will be
divided depends on the distance of butterfly units in the last
layer of Li. Fetch coefficients from global memory in batches.
Fig. 4 shows that when N NTT coefficients are divided into
equal length slices fij , where j presents the j-th slice. Every
slice has N

j coefficients. The k-th coefficient of all slices ij
which can be called Groupk performs the same CT butterfly
units. What should be understood is that loading all N NTT
coefficients sequentially into the registers (the number of slices
is 1) is not an option, because it is obvious that it is impossible
to load N NTT coefficients for the scarce resource registers.

In the beginning, it is no different from the original NTT,
which needs to load data from global memory. However,
during the computation process of the merged layer Li, it
is no longer necessary to access the global memory. Then,
the grouped data can be loaded into the register to perform
butterfly operations by slicing the N -dimensional vector. It is
obvious that processing the grouped data in the register file
directly is a smart option.

lo
ad

 N
 N

T
T-

po
in

ts
 fr

om
 g

lo
ba

l m
em

or
y

st
or

e
N

 N
T

T-
po

in
ts

 to
 g

lo
ba

l m
em

or
y

for (len = 128 len = 64 len = 32 len = 16) + (len = 8 len = 4 len = 2)

GM GM GM

Continue computing
the remaining
merged layers

Note
N points are divided into different groups to perform the same operation.

Processing in the Register File

...

...

...

Fig. 4. A sliced layer merging scheme for NTT

When combining NTT layers 1, 2, 3, and 4, the distance of
butterfly units in the last layer L1 is 16. Hence, the Group0,
{f0, f16, f32, f48, f64, f80, f96, f112, f128, f144, f160, f176,
f192, f208, f224, f240}, a set of a N -dimensional vector
which contains the first coefficient of all slices can accomplish
independent butterfly operations, i.e., these 16 numbers in the
merged four layers have no external dependencies. There-
fore, we should iterate the butterfly operation 16 times by
grouping N

16 NTT coefficients. N NTT coefficients will group
the minimum pair of butterfly operations that can process
completely unrelated coefficients where slice = 2Lfinished ,
Group = len = N ≫ Lfinished, and Lfinished presents
the NTT layers which have been merged. This will save
(logN − 1− n)N loading and storage.

Algorithm 4: A sliced layer merging scheme of Li

for NTT
input : f(x) ∈ Zq[X]/(Xn + 1), ζn ∈ Zq

output: f̂(x) ∈ Zq[X]/(Xn + 1), after Li Layer
Merging

Lfinished ←
∑i−1

j=1 Lj

MAX Group← N ≫ (Lfinished + Li)
for Group← 0 to MAX Group do

k ← N
N≫(Lfinished)

for len← N ≫ (Lfinished + 1) to
N ≫ (Lfinished + Li) do

/* shift right one layer */
for start← Group to N do /* step by
j + len */

zeta← ζk++

for j ← start to start+ len do
/* step by MAX_Group */

Butterfly Unit(f [j + len], fj])

In the classic layer merging implementation, most of the
ARM underlying instruction sets are used to complete the
loading and storage of data. Even though performance is
improved, the code is very verbose, which increases the
compilation burden. We present the pseudocode of merging
the Li-th layer in Algorithm 4. In essence, it is actually a
method of performing more fine-grained grouped divide-and-
conquer inside the layer merging NTT.

Taking a deeper consideration, if there are too few slices,
the NTT coefficients to be processed within a group may
exceed the number of available registers. This situation will
influence performance because it requires coefficients to be
stored temporarily in local or global memory and then fetched
again. Therefore, in general, we usually choose the maximum
number of slices to process the minimum pair of butterfly
operations. The details will be discussed in Section IV-B.

2) NTT Tree: As we know, NTT adopts the idea of re-
cursive divide-and-conquer, dividing the original problem into
several similar and smaller subproblems. The original problem
is solved by the solutions of the subproblems. Similarly, NTT
of the N -dimensional vector can be seen as a full binary tree
with a depth of logN−1. A CT butterfly with the same twiddle
factor is a node, then, NTT can be considered a breadth-
first search (BFS) for a full binary tree. Based on the order
of traversing the root node, Left-subtree, and Right-subtree,
the subtrees solve the same subproblem of each layer, finally
merging the solution of the subproblems to get the result
of the original problem. The BFS means traversing all N
NTT coefficients, whereas there are not enough registers to
manipulate these coefficients. In this paper, we propose an
innovative approach that uses the depth-first search of NTT.
Each element in a node is accessed in the order of preorder
traversal (perform the CT butterfly in the node).

lo
ad

 N
 N

T
T-

po
in

ts
 fr

om
 g

lo
ba

l m
em

or
y

st
or

e
N

 N
T

T-
po

in
ts

 to
 g

lo
ba

l m
em

or
y

len = 128 len = 64 len = 32 len = 16 len = 8 len = 4 len = 2
GMGM

`

Cache works

Processing in the
Register File

directly

st
or

in
g

7

10

: global memory

: cache

: registerRelease
memory of 1

19

8
6

11
9

5

4

3

2

1

12

lo
ad

in
g

Fig. 5. A depth-first search implementation scheme for NTT

Fig. 5 reveals the DFS implementation scheme for NTT.
We have simplified the NTT coefficients of the same twiddle
factor into a node. Due to the space limitations of the drawing
board, only a part of the depth-first traversal process is shown.
Starting from the root node, follow the direction of the left
subtree longitudinally until the leaf node is found. Then go
back to the previous node and traverse the right subtree until
all reachable nodes are traversed. That is, the NTT tree of
the depth-first search will first complete all butterflies of the
first layer [f0, f1, · · ·, fN−1]len=128. When the traversal of
the root node is finished, we need to go to the left node of
the root node and locate the ζ of the root node in the Left-
subtree, namely, the butterfly of the second layer [f0, f1, · · ·,
fN

2 −1]len=64 will be performed. In the longitudinal traversal of
the Left-subtree, until the butterfly of the last layer [f0, f1, f2,
f3]len=2 is completed, the Left-subtree traversal stops. Then
backtrace the node, and locate the ζ of the father node. We
can go to the right node in the Right-subtree, and calculate the
butterfly of [f4, f5, f6, f7]len=2. By constantly backtracking
until the full NTT Tree is traversed, the DFS is executed.

In DFS, the number of coefficients loaded in a node is
always half of the last node. However, due to the scarcity
of registers, the memory resources of node 1 will be released
when the root node finishes the CT butterfly. At this point,
the coefficients loaded to node 2 may come from the global
memory or from the cache (depending on where the value
will be stored after node 1 finishes the computation). If
there are insufficient registers, the return value of the node
is more possible to be stored in the cache. For example, when
computing node 19, the coefficients which are left from its
father node 3 may well be loaded from the cache.

Based on the idea of layer merging and depth-first search,
taking memory-access-friendly and register-friendly as the
starting point, we explore two novel schemes of traversing
NTT: SDFS-NTT and EDFS-NTT.

A sliced DFS scheme : In this paper, we design a sliced
depth-first search scheme for NTT based on SLM. SLM
reduces the number of memory accesses, and on the basis
of data slicing, the N -dimensional vectors are divided into
disjoint slices to maximize the utilization of registers. When

the last layer of Li is fixed, the maximum number of slices
is ensured, and the minimum is 2. Each slice has N

len(slice)
coefficients which can be organized into a group to do CT
butterfly.

lo
ad

 N
 N

T
T-

po
in

ts
 fr

om
 g

lo
ba

l m
em

or
y

st
or

e
N

 N
T

T-
po

in
ts

 to
 g

lo
ba

l m
em

or
y

for (len = 128 len = 64 len = 32 len = 16) + (len = 8 len = 4 len = 2)

GM GM GM

Continue computing
the remaining
merged layers

Note
N points are divided into different groups to perform the same operation.

...

...

...

Processing in the Resigter File

1 2 3 4

5

6

9

Register
reuse

Processing in the Register File

1 2 3 4

5

6

9

Register
reuse

Fig. 6. A sliced depth-first search scheme for NTT

Unlike Fig. 4, the butterfly operations for each group in
Fig. 6 are not executed sequentially, but in the order of
preorder traversal. Step 1 performs all the butterfly units in
each group. Then, Step 2 performs half of the previous step,
and so on. When L1 equals 4, the N coefficients are split into
sixteen slices, the procedure is as follows: Firstly, we split
N -dimensional vectors into sixteen slices where the size of
the slice depends on the distance of the butterfly in the last
layer of Li. The size of the first merged layers L1 is 4, and
the len of the last layer is 16. So the slice equals 2L1 , and
the number of groups is N ≫ L1. Then, the k-th (0 ≤ k
≤ len(slice) − 1) coefficient of each slice performs the first
butterfly units. Followed by the first butterfly units, the k-th (0
≤ k ≤ len(slice)

2 −1) coefficient performs the second butterfly
units. Besides, as the depth increases, the scale continues to
halve. Until visiting the whole tree in preorder traversal, sub-
NTT completes all computations. Repeat this process sixteen
times to complete the first four layers of data conversion.

A detailed observation reveals that in the SDFS-NTT, the
combination of SLM and DFS not only reduces the number
of accesses to the global memory but also greatly increases
the reuse of registers. When calculating Step 6, coefficients
would be loaded from the cache which is left from Step 2.
And, when the grouped data in the register file reach the
leaf node in batches, computational resources are released.
With idle registers in advance, the compiler will schedule
other available work. This is an ideal situation when you
have a suitable amount of data. In cases where registers are
overloaded or redundant, we have alternative solutions. On the
one hand, when a register is overloaded, it is the compiler’s job
to load the remaining unloadable coefficients into the cache for
the next access. In our experiment, we choose the maximum
number of slices, namely, the most coefficients that can be
grouped. On the other hand, when the register is redundant,
we conduct experiments to determine the appropriate amount
of loaded data to saturate the register. However, as mentioned

Algorithm 5: SDFS-NTT scheme
input : f(x) ∈ Zq[X]/(Xn + 1), ζn ∈ Zq

output: f̂(x) ∈ Zq[X]/(Xn + 1), after Li Layer
Merging

Lfinished ←
∑i−1

j=1 Lj

MAX Group← N ≫ (Lfinished + Li)
for Group← 0 to MAX Group do

a← Group /* the location where
the butterfly begins */
Leafnode num← 0 /* the number of
leaf nodes traversed */
k ← N

N≫(Lfinished+Li−2)

/* locate the ζ of the father
node */
len← N ≫ (Lfinished + Li − 1) /* visit
the root node */

while Leafnode num ̸= N
N≫(Lfinished+Li−2)

do
/* Jump nodes in layer

(Lfinished + Li) are not fully
traversed */

if len ̸= N ≫ (Lfinished + Li + 1) then
/* Non-empty node */

zeta← ζk

for start← a to a+ len
2 do /* step

by j + len */
for j ← start to start+ len do
/* step by MAX_Group */

Butterfly Unit(f [j + len], fj])

len← len≪ 2 /* go to the left
node */

k ← k ≫ 2
else

len← len≪ 2 /* backtrace the
node */
k ← k ≫ 2
zeta← ζk+1 /* go to the right
node in Right-subtree */
a = j + len

/* butterfly begins in the
leaf node */
for j ← a to a+ len

2 do /* step by
MAX_Group */

Butterfly Unit(f [j + len], fj])
a = j + len

/* butterfly begins in the
backtracing node */
k = k+2

pow(2,jumpi)
/* locate the ζ

of the backtracing node */
len = pow(2, jumpi + 1)
/* backtrace the node */
Leafnode num++ /* add the
number of visited node */

Algorithm 6: EDFS-NTT scheme
input : f(x) ∈ Zq[X]/(Xn + 1), ζn ∈ Zq

output: f̂(x) ∈ Zq[X]/(Xn + 1), after Li Layer
Merging

Lfinished ←
∑i−1

j=1 Lj

Leafnode num← 0 /* the number of
leaf nodes traversed */
a← 0 /* the location where the
butterfly begins */

while Leafnode num ̸= N
N≫(Lfinished+Li−2) do

/* Leaf nodes are not fully
traversed */

if len ̸= N ≫ (Lfinished + Li + 1) then
/* Non-empty node */

zeta← ζk

for start← a to a+ len
2 do /* step by

j + len */
for j ← start to start+ len do

Butterfly Unit(f [j + len], fj])

len← len≪ 2 /* go to the left
node */
k ← k ≫ 2

else
len← len≪ 2 /* backtrace the
node */
k ← k ≫ 2 zeta← ζk+1 /* go to the
right node in Right-subtree */
a = j + len

/* CT butterfly begins in the
leaf node */
for j ← a to a+ len do

Butterfly Unit(f [j + len], fj])
a = j + len

/* CT butterfly begins in the
next node */
k = k+2

pow(2,jumpi)
/* locate the ζ of

the backtracing node */
len = pow(2, jumpi + 1)
Leafnode num++ /* add the
number of visited node */

before, we cannot accurately control the specific data saved by
each register. We can only reuse registers as much as possible,
and reduce the offset of memory access addresses.

We show the pseudocode of the SDFS-NTT with layer
merging Li in Algorithm 5. Frequent recursive will consume
a lot of stack space, so we opt to use an iterative method to
expand the search. The maximum number of slices is chosen
as the termination condition for the number of each group.
When the N coefficients are split into an abundance of slices,
the grouped data is much smaller than the number of registers,
which may lead to register redundancy. We will discuss the

situation in Section IV-C.
An entire DFS scheme : Specifically, when the number

of slices is 1 (uncut original N NTT coefficients), we present
another thought: the entire depth-first search scheme for NTT.
Unlike the SLM, it is just dividing a bid loop into two or three
small loops, which can not change the truth that the register
resources are so scarce that can not load all N coefficients
and access global memory frequently.

However, different from the batch mode, the entire DFS
in NTT will load all of the N coefficients at first. Even
though the register resource is not enough for the native N
coefficients, it is no doubt that when the halved coefficients
reach a certain point, these coefficients can be processed
directly in the register. Another beneficial point is that the
probability of cache-hit will be greatly raised, as the amount
of loaded coefficients that need to be loaded is ranging in
N 99K N

2 99K N
4 · ··. This is the choice we can guide the

compiler to make.

lo
ad

 N
 N

T
T-

po
in

ts
 fr

om
 g

lo
ba

l m
em

or
y

st
or

e
N

 N
T

T-
po

in
ts

 to
 g

lo
ba

l m
em

or
y

len = 128 len = 64 len = 32 len = 16 len = 8 len = 4 len = 2
GMGM

Processing in the Register File

DFS of child note

44
42

47

45

41

43

46

Processing in the Register File

1 2 3 4

5

6

9

Register reuse

16

154
152

157

155

151

153

156

25

Fig. 7. An entire depth-first search scheme for NTT

The process of the EDFS-NTT is shown in Fig. 7, where
the first four layers are merged. The trait of DFS of the
entire NTT will load all of the N coefficients in the first
layer, which is different from the batch mode. When the
DFS reaches the leaf node in Li, the register can be reused
immediately owing to the enormous data scale. Moreover,
regardless of the number of sub-layer, the depth-first search of
the entire tree always accesses consecutive memory locations.
It is friendly for threads to reduce the memory-access time
whether from global memory or cache. For this reason, when
processing the later sub-layer, the coefficients of the subtree
must be a consecutive segment of N coefficients. Such as
the node 16 which is the left subtree of node 4, has only 16
intersecting coefficients in the next three layers. That means
the coefficients are loaded from consecutive memory locations,
and mathematical operations of the latter three layers can be
performed directly in registers without putting them back.

At the same time, another important merit of layer merging
in EDFS-NTT is reducing the depth of the NTT tree, thereby
allowing early reaching of the leaf node. The frequent reuse
of registers ensures the efficient utilization of the GPU’s
computational resources, resulting in a high acceleration ratio.

Algorithm 6 shows the pseudocode of the entire DFS scheme
for NTT when layer merging Li.

D. INTT

What is different from the CT butterfly is that the distance
of the GS butterfly is increased layer by layer. The distance of
the butterfly is changing from ranging in [128,64,32,16,8,4,2]
to [2,4,8,16,32,64,128], which can be understood as the back-
tracking process of the NTT tree. Fig. 8 shows that in the
backtracking process, the upper layer of the INTT depends on
the lower layers. For instance, in INTT, node 4 depends on the
values of the underlying node 8 and the underlying node 9,
and the final node 1 depends on the values of node 2 and node
3. If we get the value of 4 by calculating the underlying nodes
8 and 9, we cannot free the memory of it in advance until node
5 is calculated. The computation of node 2 needs its left and
right child nodes. Similarly, if node 3 is not calculated, the
memory of node 3 cannot be released. In this case, the depth-
first search cannot be used because the value of the parent
node is determined by its left and right child nodes. However,
this does not affect the sliced layer merging. Think in another
way, the sliced layer merging essentially performs the breadth-
first search, that is, sequentially calculating the GS butterfly
of all coefficients layer-by-layer.

1

98

54

2

1110

76

3

1312 1514

1

98

54

2

1110

76

3

1312 1514

NTT Divide and Conquer INTT Backtracking

Fig. 8. NTT and INTT

E. Pointwise Multiplication

We can compute the product of two polynomial f · g in
a short time using NTT and NTT−1 as h = f ◦ g equals
to h = NTT−1(ĥ) = NTT−1(f̂ ◦ ĝ) = NTT−1(NTT (f) ◦
NTT (g)). At this point, the product between polynomial vec-
tors are transformed as ĥ2i + ĥ2i+1X = (f̂2i+ f̂2i+1X)(ĝ2i+
ĝ2i+1X) mod X2 − w2br7(i)+1, with

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br7(i)+1

ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i
(1)

A polynomial of degree 1 requires five multiplications and
five reductions. Based on the special feature between the four
variables, we adopt two well-known algorithms to ameliorate
equation 1. The first algorithm we use is the Karatsuba
algorithm [33], which reduces the scale of the multiplication
by reusing the results of the products f̂2iĝ2i and f̂2i+1ĝ2i+1

twice. It only takes four multiplications and four reductions.
We call it method I. The formula is

ĥ2i = (f̂2iĝ2i)q + ((f̂2i+1ĝ2i+1)qζ
2br7(i)+1)q

ĥ2i+1 = ((f̂2i+f̂2i+1)(ĝ2i + ĝ2i+1))q

− (f̂2iĝ2i)q − (f̂2i+1ĝ2i+1)q

(2)

Method II is the Proposition proposed by Alkim et al. [10].
If we perform one reduction followed by one multiplication,
the resulting coefficients are much smaller than the range
that the reduction function can handle. Therefore, adding the
results of several multiplications within the processing range
of the reduction function is an alternative. It can decrease two
times of the reduction, as

ĥ2i = (f̂2iĝ2i + (f̂2i+1ĝ2i+1)qζ
2br7(i)+1)q

ĥ2i+1 = (f̂2iĝ2i+1 + f̂2i+1ĝ2i)q
(3)

We designed a thread-friendly program using the character-
istics of the GPU to minimize the address offsets. The impor-
tant intention is that we hope threads can access consecutive
memory as much as possible. Fig. 9 points out the design
ideas. In Method I, two 32-bit temporary variables a, b and two
16-bit temporary variables c, d are required to save the value of
f̂2iĝ2i, f̂2i+1ĝ2i+1, f̂2i + f̂2i+1, and ĝ2i + ĝ2i+1 respectively.
We try to place f̂2i + f̂2i+1 earlier after ĝ2if̂2i in order to
reduce the thread access distance. Considering the different
types of stored variables after the two arithmetic operations,
the addresses of a and c are most likely discontinuous. So we
run the two multiplications and additions consecutively with
the memory contiguity of temporary variables as a priority.

int32_t

int32_t

int16_t

int16_t

int32_t

int32_t

int16_t

int16_t

native modified native modified

Fig. 9. Memory access optimization

Note that the Improved Plantard Arithmetic scheme uses
32-bit twiddle factors. In Method II, the output range after
multiplying two variables f̂2iĝ2i mod q is (− q

2 ,
q
2). After

multiplying with the 32-bit twiddle factor, the result needs to
be stored in 64-bit, which means one extra register is needed
here for storing the result. Hence, we selectively reduce the
number of registers by adjusting the order of the product of
variables and twiddle factors. Algorithm 7 shows the process
in which only two 32-bit temporary variables are needed. First,
variable f is multiplied with the twiddle factor first to perform
the reduction operation and obtain the result in (− q

2 ,
q
2). The

variable g is multiplied to get a number resulting in 18-bit,
which can be stored in the 32-bit.

In Method II, the native procedure is to compute f̂2iĝ2i+1

after f̂2i+1ĝ2i. It is clear that these four variables are irrelevant.

Algorithm 7: Pointwise Multiplication with Erdem
Alkim scheme

input : two 16-bit integer f0, f1 of polynomial f
two 16-bit integer g0, g1 of polynomial g

output: two 16-bit integer h0, h1 of polynomial h

tmp0← 0;tmp1← 0
h0 ← Reduction module(f1, ζ)
tmp0← f1g0
tmp1← g0f0
tmp0← f0g1 + tmp0
tmp1← g1h0 + tmp1
h0 ← Reduction module(tmp1)
h1 ← Reduction module(tmp0)

The modified procedure is shown on the right side of Fig. 9.
By adjusting the order of instructions, the modified path of
threads brings reused variables closer together, which shortens
the address offset between adjacent instructions.

F. Lazy Reduction

The purpose of lazy reduction is to skip unnecessary re-
ductions without affecting correctness. In Kyber, reductions
usually occur in the following three cases: firstly, after the
product of two coefficients, the reduction is necessary to
decrease the size of the product, such as the operation gζ
in CT butterfly. Secondly, when adding or subtracting two
coefficients, the resulting double coefficient may exceed the
storage type limit, such as f + g in GS butterfly. Finally,
reductions are applied to all coefficients, which appear at the
end of the NTT and at the end of the pointwise multiplication.

It is worth noting that the range of inputs and outputs plays
a crucial role in achieving better lazy reductions when using
deterministic formulas. We adopt two suites of reduction func-
tions: the native modular reduction and the improved Plantard
modular reduction. A complete polynomial multiplication is
divided into three parts: NTT, pointwise multiplication, and
INTT. By detailed analysis, we can simplify the required
number of reductions in the three parts above and compare the
difference between two suites of reduction, i.e., Montgomery
arithmetic and improved Plantard arithmetic.
CT Butterfly. The butterfly units in forward NTT per-

form a pair of f ± gζ. Owing to the symmetry of the
output range of Montgomery arithmetic and improved Plantard
arithmetic, either in (−q, q) or (− q

2 ,
q
2), we can only discuss

the upper limit of f ± gζ. For Montgomery arithmetic, all
of the N NTT coefficients grow by q after each layer and
reach q + 7q finally. However, a variable of 8q cannot enter
base multiplication, which uses Montgomery multiplication in
pointwise multiplication in that 8q >

√
215q. Therefore, in

the native modular reduction, all of the N NTT coefficients
must undergo a one-time modular reduction after forward
NTT for the purpose of entering base multiplication. For
improved Plantard arithmetic, all of the N NTT coefficients
grow by q

2 after each layer and reach q + 3.5q finally. Thus,

the coefficients can enter base multiplication directly without
modular reduction due to the objective fact that the input upper
range of improved Plantard multiplication is 23q.
Pointwise Multiplication. As is mentioned in III-E,

two methods are used to reduce the number of multiplications
and reductions required. The main requirement is to ensure
that the limit values of the coefficients are within the admis-
sible range of the function. In matrix-vector multiplication,
all of the coefficients expand K times, which is 4. For
Montgomery arithmetic, all of the N NTT coefficients are
reduced to [0, q]. When using Method I, the odd coefficients
of equation1 expand to 12q after matrix-vector multiplication,
which exceeds the range of 16-bit signed integers. In Method
II, all N NTT coefficients expand to 4q and none of them need
to be reduced as the impact factor in the following INTT must
be within 16-bit. For improved Plantard arithmetic, the odd
coefficients grow to 6q in Method I after base multiplication,
while the even coefficients are 4q. Yet, all N NTT coefficients
will be within 2q in Method II. Overall, except for using
Method I in Montgomery arithmetic, which is not feasible, no
reduction needs to be performed after pointwise multiplication.

GS Butterfly. The butterfly units in inverse NTT perform
a pair of f + g and (f − g)ζ. That means we can ignore half
of N coefficients since they are always q or q

2 in the second
formula (f − g)ζ. Noted that the distance of GS butterfly is
doubled by the power of 2. The doubled coefficients f + g
are influenced by two sets. When the distance is 4, the set
(f0, f1, f2, f3) will double but the extremes are not synchro-
nized if the limit of (f0, f1) isn’t equal to (f2, f3) in the first-
layer butterflies. The challenge is to determine the most cost-
effective modular reduction process. Even if the number of
modular reductions can be cut (either for all coefficients or
parts), it is not efficient to pause a loop to perform additional
reductions. Therefore, we have been trying to find a balance
between lazy reduction and extra overhead. For Montgomery
arithmetic, the even coefficients grow to 4q. After the first-
layer butterflies, half of N coefficients grow to 8q and the
other half are q. For 8q < 215 − 1 < 10q, one modular
reduction is required to keep the coefficients in q. 3 Layers
butterflies can be conducted over Barrett reduction. In the
forth-layer butterflies, eight sets of coefficients (fi ∼ fi+3),
i ∈ {0, 32, 64, 96, 128, 160, 192, 224} grow to 8q. Considering
the next four sets (fi+4 ∼ fi+7), i ∈ {0, 64, 128, 192} will
also grow to 8q in the fifth layer and two sets (fi+8 ∼ fi+15),
i ∈ {0, 128} in the sixth layer, i.e, one modular reduction
of 256 coefficients is required in the forth-layer butterflies in
order to continue the next third-layer butterflies without any
more reductions.

For improved Plantard arithmetic, the coefficients expand
to 12q after the first-layer butterflies by using Method I.
One modular reduction is required to keep the coefficients
in q

2 . Within the allowed range, four layers of reductions
can be skipped. Four sets of coefficients (fi ∼ fi+3), i ∈
{0, 64, 128, 192} grow to 8q. Same as Montgomery arithmetic,
the wise choice is to perform one modular reduction of 256
coefficients after the fourth-layer butterflies, instead of 16, 8,

and 8 reductions in the fifth-layer, sixth-layer, and seventh-
layer, respectively. In Method II, [28] discussed the condition
of initial value 2q, choosing modular reduction of 128 co-
efficients after the second-layer butterflies and 8 coefficients
after the sixth-layer butterflies. In our case, it is not worth
suspending access to consecutive memory for threads, even
though the number of modular reductions can be decreased.
Detailed discussions will be displayed in Section IV-C.

IV. PERFORMANCE EVALUATION

In our work, the performance of Kyber implementation is
evaluated in the following environment. The hardware envi-
ronment of the CPU is a 36-core Intel (R) Xeon (R) CPU E5-
2699 v3 @ 2.30GHz. The hardware environment of the GPU
is Titan V with NVIDIA Volta architecture and 5120 CUDA
cores, and the memory bandwidth is 653 GB/s. The software
environment is Linux Ubuntu 20.04 operating system and
NVCC compiler, the compilation parameters are –std=c++11
–relocatable-device-code=true, and the CUDA version number
is 11.4.

A. Evaluation Criteria

• Throughput: The number of requests completed by the
host and the device in a unit of time, such as 1 second.

• Latency: In cryptographic algorithms, the time it takes
for the host and the device to complete the computation
from the time the request is received, respectively.

• Threads/Block: the number of threads contained in a
CUDA block.

• Registers/Thread: the number of registers assigned for
each thread, the maximum number of registers in a block
is 65537. The Register/Thread equals 65537 divided by
Threads/Block.

• Block Number: the number of blocks contained in a
CUDA kernel.

B. Performance of NTT

The metric we are most concerned with is the throughput
of Kyber implementation on GPU. The performance of native
NTT on GPU reaches 48,318 kops/s. As the reference, three
proposed implementations of NTT achieve 7.5%, 28.5%, and
41.6% speed-ups for SLM, SDFS-NTT, and EDFS-NTT re-
spectively.

First, we evaluate the performance of SLM. Fig. 10a shows
the effectiveness of SLM by selecting the most suitable sub-
layers of 7. The default number of data loaded into a group
is N divided by the maximum number of slices. When n =
2, the loss from large address offsets where the distance of
CT butterfly is 128 in the first layer, is greater than the gain
from reducing the memory-access times of global memory. It
is obvious that owing to the smaller address offsets, merging
more layers in the first stage can get better performance.
Compared with the native NTT, the best performance of
2+2+2+1 can reach 51,924 kops/s.

As stated above, we set the maximum number of slices as
initial inputs. The amount of coefficients within a group is the

48,318,228

31,054,482

34,570,691

40,512,253

47,170,376

47,562,860

44,927,072

51,924,485

51,744,403

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

native

1+6

2+5

3+4

4+3

5+2

6+1

2+2+2+1

3+3+1

Thoughput (ops/s)

Su
b-

la
ye

rs
 se

lc
et

io
n

Throughput for SLM When loading the minimum data in a group

55,233,212

53,250,832

47,671,565

46,836,258

42,299,897

39,953,637

34,159,511

29,911,085

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

(4,16,64)

(8,32,64)

(16,64,64)

(32,64,64)

(32,64,128)

(64,64,128)

(64,128,128)

(128,128,128)

Thoughput (ops/s)

T
he

 n
um

be
r

of
 d

at
a

lo
ad

ed

Throughput for layer merging When loading more data in a group
(sub-layer is 3+3+1)

Fig. 10. Performance of SLM

48,318,228

52,332,510

56,381,352

57,005,677

50,242,232

58,932,606

57,659,887

62,078,289

56,018,843

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000

native

1+6

2+5

3+4

4+3

5+2

6+1

2+2+2+1

3+3+1

Thoughput (ops/s)

Su
b-

la
ye

rs
 se

lc
et

io
n

Throughput for SDFS-NTT When loading the minimum data in a group

48,318,228

68,417,992

62,580,403

60,891,284

61,022,702

66,819,650

63,968,229

58,028,471

59,274,272

0 10,000,00020,000,00030,000,00040,000,00050,000,00060,000,00070,000,00080,000,000

native

1+6

2+5

3+4

4+3

5+2

6+1

2+2+2+1

3+3+1

Thoughput (ops/s)

Su
b-

la
ye

rs
 se

lc
et

io
n

Throughput for EDFS-NTT When loading the minimum data in a group

Fig. 11. Performance of SDFS-NTT and EDFS-NTT

678

1,198 1,288
1,630 1,640

1,192

0

10

20

30

40

0

500

1,000

1,500

2,000

(16,384)(32,384)(48,384)(64,384)(80,384)(96,384)

L
at

en
cy

/(m
s)

T
ho

ug
hp

ut
/(k

op
s/

s)

(Batch Size)

Throughput for KeyGen

Throughput Latency

665

1,158 1,332
1,650 1,764

1,294

0

10

20

30

0

500

1,000

1,500

2,000

(16,384)(32,384)(48,384)(64,384)(80,384)(96,384)

L
at

en
cy

/(m
s)

T
ho

ug
hp

ut
/(k

op
s/

s)

(Batch Size)

Throughput for Enc

Throughput Latency

2,374
4,271

5,765
7,116 7,885

5,688

0

2

4

6

8

0
2,000
4,000
6,000
8,000

10,000

(16,384)(32,384)(48,384)(64,384)(80,384)(96,384)

L
at

en
cy

/(m
s)

T
ho

ug
hp

ut
/(k

op
s/

s)

(Batch Size)

Throughput for Dec

Throughput Latency

Fig. 12. Performance of Kyber implementation

minimum that can be processed in sub-layers. Take the sub-
layer 3+3+1 as a test, for the first two layers, 4 coefficients
within a group performing CT butterfly. For the subsequent
two layers, the size increases to 16 and 64 coefficients de-
pending on the last layer of Li. However, we can decrease
the number of slices to load more coefficients to a group.
Hence, we test this condition to judge whether the registers
are redundant. Fig. 10b reveals that when the number of loaded
coefficients in a group increases, registers become unable to
handle the overloaded data efficiently.

Significantly, both SDFS-NTT and EDFS-NTT outperform
the native implementation of NTT, as shown in Fig. 11. Com-
pared with the native NTT, all schemes achieve improvements
by using the concept of the NTT tree and adjusting the
traversal order into a depth-first search. For the sliced depth-

first search NTT, we also test the throughput of processing
more coefficients into a group and find no register redundancy.
The total number of registers available per block in NVIDIA
Titan V is 65536. When the thread size is fixed to 384,
available registers per block are 168. After computing the first
layer, the left-subtree and right-subtree of the root node will
process 128 data which can be loaded in 168 registers. Benefit
from access to consecutive memory locations and halved data
layer by layer, ultimately, the peak performance reaches 68,418
kops/s in EDFS-NTT.

C. Performance of Polynomial Arithmetic

Compared with the native polynomial arithmetic, the
throughput of the proposed polynomial arithmetic implementa-
tion achieves 35.8% speed-up. Except for the optimized NTT,

TABLE II
COMPARISON OF THROUGHPUT ON HI-KYBER WITH THE RELATED WORK

Platform KeyGen/(ops/s) Enc/(ops/s) Dec/(ops/s) Perf/(KX/s)

Sanal et al. [34] Apple A12 2-cores Vortex
at 2.490 GHz and 4-cores 26,157 26,774 27,360 13

Xing et al. [35] Xilinx Artix7 17,182 14,728 11,600 7

C-Ref [22] Intel Core i7-4770K
3.5 GHz (Haswell), 4 Cores 11,390 10,101 8,826 5

AVX2-Ref [22] Intel Core i7-4770K
3.5 GHz (Haswell), 4 Cores 47,591 35,962 44,232 23

Gupto et al. [21] NVIDIA Volta V100
GV100, 5120 CUDA cores - - - 473

L. Wan et al. [20] NVIDIA GeForce RTX 3080 1,250,000 1,298,701 2,380,952 820

Our work

NVIDIA Titan V
Volta GV100, 5120 CUDA cores 1,639,949 1,763,898 7,885,157 1,358

NVIDIA Tesla V100
Volta GV100, 5120 CUDA cores 2,022,552 2,105,977 9,378,937 1,664

NVIDIA GeForce RTX 3080 1,916,227 2,204,866 6,091,689 1,458

INTT using SLM has a speed-up of 2.5%. Since INTT is the
process of backtracking, the distance of GS butterfly is from
2 to 128. Hence, we select three sub-layers of 1+2+2+2 and
1+3+3 because of smaller address offsets. The experiments
show that the performance of Method I and Method II in
pointwise multiplication has no big difference. However, after
applying two schemes into NTT, pointwise multiplication, and
INTT, combining lazy reduction strategy, Method I achieves a
better performance of Kyber implementation. This means the
overhead of multiplication is larger than modular reduction.

It should be noted that two underlying modular reduction
suites have different input ranges and output ranges, where
we can ignore the input range because of the limit of 16-
bit signed integers. So, What plays a role in GS butterfly is
the output range. In the naive suite, two modular reductions
are required to execute in the first and fourth layers. When
choosing sub-layers of INTT in 1+3+3, the modular reduction
can be inserted in the first sub-layer. Considering the overhead
of breaking down a loop to do other work, the modular
reduction of the fourth layer can be inserted in the second
sub-layer to maintain the original order of memory access. The
experiments demonstrate that inserting in the original order of
INTT in 1+3+3 outperforms breaking down the three-layer
loop. According to the same principle, in improved Plantard
arithmetic, we adjust the modular reduction to the second sub-
layer, which is the most efficient scheme.

D. Comparison with related works

Fig. 12 shows that the throughput of Kyber increases with
the launching of more batch sizes. Since NVIDIA Titan V has
80 stream processors, we test the number of blocks up to 96.
Additionally, We calculate the number of key exchanges when
the number of threads and registers is (384, 168) in that when
we test the baseline experiment on GPU, (384, 168) always
outperforms other groups. The number of key exchanges is
obtained by the formula ab

a+b , where a and b refer to the

throughput of KeyGen and Dec. At this point, we determine
the optimal parallel parameters (80, 384, 168) for HI-Kyber.
The number of key exchanges reaches 1, 358 kops per second.

Table II shows the performance comparison with the state-
of-the-art implementation whether on different platforms or
the same. It is obvious that our throughput of HI-Kyber is
far superior to theirs. Compared with the state-of-the-art CPU
implementation, our work achieves a speed-up of 34×, 49×,
and 178×, respectively.

On the GPU platform, we test our work on V100 and
GeForce RTX 3080 to illustrate the performance on different
GPUs. Compared with state-of-the-art GPU implementations,
the throughput of HI-Kyber is 3.52× and 1.78× faster than
[21] and [20]. The speed-ups for Kyber mainly come from
the efficient EDFS-NTT which is the first to propose on GPU
and memory access optimization in the whole polynomial
arithmetic. However, the parallel parameters used in V100 and
GeForce RTX 3080 are the optimal chosen in NVIDIA Titan
V. We believe better experimental results can be obtained on
other GPUs by tuning the parallel parameters as well as the
selected SDFS-NTT or EDFS-NTT.

V. CONCLUSION

In this paper, we explore three schemes for NTT implemen-
tation on GPU, SLM, SDFS-NTT, and EDFS-NTT. For these
optimized schemes, We consider the valuable time of memory
access and the efficient utilization of registers as starting
points to explore the research direction. From the experimental
results, our HI-Kyber performance obtains a new speed record
compared to existing implementations. The throughput of HI-
Kyber is 1.78× faster than all other works.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[2] L. K. Grover, “Quantum computers can search rapidly by using almost
any transformation,” Physical Review Letters, vol. 80, no. 19, p. 4329,
1998.

[3] I. Company®. (2023) IBM Quantum Computing. [Online]. Available:
https://www.ibm.com/quantum/

[4] NIST. (2023) Post-Quantum Cryptography Standardiza-
tion. [Online]. Available: https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization

[5] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a CCA-secure
module-lattice-based KEM,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2018, pp. 353–367.

[6] N. Aragon, P. S. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Guneysu, C. A. Melchor et al.,
“Bike: bit flipping key encapsulation,” 2017.

[7] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier
et al., “Classic McEliece: conservative code-based cryptography,” NIST
submissions, 2017.

[8] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-
C. Deneuville, P. Gaborit, E. Persichetti, G. Zémor, and I. Bourges,
“Hamming quasi-cyclic (HQC),” NIST PQC Round, vol. 2, no. 4, p. 13,
2018.

[9] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient
high-speed implementation of Kyber on Cortex-M4,” in Progress in
Cryptology–AFRICACRYPT 2019: 11th International Conference on
Cryptology in Africa, Rabat, Morocco, July 9–11, 2019, Proceedings
11. Springer, 2019, pp. 209–228.

[10] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4 optimiza-
tions for {R, M} LWE schemes,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 336–357, 2020.

[11] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels,
“Faster kyber and Dilithium on the Cortex-m4,” in Applied Cryptography
and Network Security: 20th International Conference, ACNS 2022,
Rome, Italy, June 20–23, 2022, Proceedings. Springer, 2022, pp. 853–
871.

[12] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang,
“Neon NTT: faster Dilithium, Kyber, and Saber on Cortex-A72 and
Apple M1,” Cryptology ePrint Archive, 2021.

[13] D. T. Nguyen and K. Gaj, “Optimized software implementations of
CRYSTALS-Kyber, NTRU, and Saber using NEON-based special in-
structions of ARMv8,” in Proceedings of the NIST 3rd PQC Standard-
ization Conference (NIST PQC 2021), 2021.

[14] V. Hwang, J. Liu, G. Seiler, X. Shi, M.-H. Tsai, B.-Y. Wang, and B.-Y.
Yang, “Verified NTT Multiplications for NISTPQC KEM Lattice Final-
ists: Kyber, SABER, and NTRU,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 718–750, 2022.

[15] NVIDIA, “CUDA C programming guide 9.0,”
https://docs.nvidia.com/cuda/cuda-c-programming-guide/, 2017.

[16] W. Pan, F. Zheng, W. Zhu, and J. Jing, “An efficient elliptic curve cryp-
tography signature server with GPU acceleration,” IEEE Transactions
on Information Forensics and Security, 2017.

[17] J. Dong, F. Zheng, N. Emmart, J. Lin, and C. Weems, “sDPF-RSA:
Utilizing floating-point computing power of GPUs for massive digital
signature computations,” in 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2018, pp. 599–609.

[18] L. Gao, F. Zheng, N. Emmart, J. Dong, J. Lin, and C. Weems, “DPF-
ECC: Accelerating Elliptic Curve Cryptography with Floating-Point
Computing Power of GPUs,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 494–504.

[19] W.-K. Lee and S. O. Hwang, “High throughput implementation of post-
quantum key encapsulation and decapsulation on GPU for Internet of
Things applications,” IEEE Transactions on Services Computing, vol. 15,
no. 6, pp. 3275–3288, 2021.

[20] L. Wan, F. Zheng, G. Fan, R. Wei, L. Gao, Y. Wang, J. Lin, and J. Dong,
“A Novel High-Performance Implementation of CRYSTALS-Kyber with
AI Accelerator,” in Computer Security–ESORICS 2022: 27th European
Symposium on Research in Computer Security, Copenhagen, Denmark,
September 26–30, 2022, Proceedings, Part III. Springer, 2022, pp.
514–534.

[21] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, “PQC acceler-
ation using GPUs: Frodokem, Newhope, and kyber,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 3, pp. 575–586, 2020.

[22] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint,
V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehle, “CRYSTALS-
Cryptographic Suite for Algebraic Lattices: Kyber,” NIST Round 3
Submissions, 2020.

[23] O. S. Foundation, “OpenSSL Cryptography and SSL/TLS Toolkit,”
http://www.openssl.org/, 2016.

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[25] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Con-
ference on the Theory and Application of Cryptographic Techniques.
Springer, 1986, pp. 311–323.

[26] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[27] T. Plantard, “Efficient word size modular arithmetic,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021.

[28] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. Cheung, Ç. K. Koç, and
D. Chen, “Improved Plantard Arithmetic for Lattice-based Cryptogra-
phy,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2022, no. 4, pp. 614–636, 2022.

[29] M. Bhattacharya, R. Creutzburg, and J. Astola, “Some historical notes
on number theoretic transform,” in Proc. 2004 Int. TICS Workshop on
Spectral Methods and Multirate Signal Processing, vol. 2004, 2004.

[30] F. W. Vote, “Discrete Fourier Transform for 360/67 Computing System
(Cooley-Tukey FFT Method).” MASSACHUSETTS INST OF TECH
LEXINGTON LINCOLN LAB, Tech. Rep., 1972.

[31] D. Pei, A. Salomaa, and C. Ding, Chinese remainder theorem: applica-
tions in computing, coding, cryptography. World Scientific, 1996.

[32] E. Alkim, P. Jakubeit, and P. Schwabe, “Newhope on ARM Cortex-
m,” in Security, Privacy, and Applied Cryptography Engineering: 6th
International Conference, SPACE 2016, Hyderabad, India, December
14-18, 2016, Proceedings. Springer, 2016, pp. 332–349.

[33] A. A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers
on Automata,” Soviet physics. Doklady, vol. 7, pp. 595–596, 1963.

[34] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and M. Mozaffari-
Kermani, “Kyber on ARM64: Compact Implementations of Kyber on
64-Bit ARM Cortex-A Processors,” in Security and Privacy in Commu-
nication Networks, J. Garcia-Alfaro, S. Li, R. Poovendran, H. Debar,
and M. Yung, Eds. Cham: Springer International Publishing, 2021, pp.
424–440.

[35] Y. Xing and S. Li, “A Compact Hardware Implementation of CCA-
Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, pp. 328–356,
2021.

