
Fallen Sanctuary: A Higher-Order and
Leakage-Resilient Rekeying Scheme

Rei Ueno1, Naofumi Homma1, Akiko Inoue2 and Kazuhiko Minematsu2

1 Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai-shi, Miyagi, 980-8577, Japan
rei.ueno.a8@tohoku.ac.jp, naofumi.homma.c8@tohoku.ac.jp

2 NEC Secure System Platform Laboratories, 1753 Shimonumabe, Nakahara, Kawasaki,
Kanagawa 211–8666, Japan

a_inoue@nec.com, k-minematsu@nec.com

Abstract. This paper presents a provably secure, higher-order, and leakage-resilient
(LR) rekeying scheme named LR Rekeying with Random oracle Repetition (LR4),
along with a quantitative security evaluation methodology. Many existing LR primi-
tives are based on a concept of leveled implementation, which still essentially require
a leak-free sanctuary (i.e., differential power analysis (DPA)-resistant component(s))
for some parts. In addition, although several LR pseudorandom functions (PRFs)
based on only bounded DPA-resistant components have been developed, their validity
and effectiveness for rekeying usage still need to be determined. In contrast, LR4 is
formally proven under a leakage model that captures the practical goal of side-channel
attack (SCA) protection (e.g., masking with a practical order) and assumes no un-
bounded DPA-resistant sanctuary. This proof suggests that LR4 resists exponential
invocations (up to the birthday bound of key size) without using any unbounded
leak-free component, which is the first of its kind. Moreover, we present a quantitative
SCA success rate evaluation methodology for LR4 that combines the bounded leakage
models for LR cryptography and a state-of-the-art information-theoretical SCA evalu-
ation method. We validate its soundness and effectiveness as a DPA countermeasure
through a numerical evaluation; that is, the number of secure calls of a symmetric
primitive increases exponentially by increasing a security parameter under practical
conditions.
Keywords: Fresh rekeying · Leakage resilience · Side-channel attack

1 Introduction
1.1 Background
Side-channel attacks (SCAs) are physical attacks on cryptographic implementations [KJJ99].
SCA countermeasures are roughly categorized into three types: masking, hiding, and
leakage-resilient (LR) cryptography. Both masking and hiding are basically designed
to suppress/eliminate the leakage for a given algorithm/device. However, it has been
shown experimentally [BS21] and theoretically [DFS15, IUH22a,MRS22] that it might be
difficult for masking to achieve secure implementation on some low-end devices with trivial
noise. Hiding (e.g., a secure logic style like WDDL [TV04]) is also sometimes unsuitable
because its effectiveness depends heavily on the given device/technology. In contrast, LR
cryptography features cryptographic algorithms capable of secure computation up to a
specific, predetermined level of leakage. For developing practically secure cryptographic
modules, it is essential to investigate the possibility and limitations of LR cryptography as
well as masking and hiding.

mailto:rei.ueno.a8@tohoku.ac.jp
mailto:naofumi.homma.c8@tohoku.ac.jp
mailto:a_inoue@nec.com
mailto:k-minematsu@nec.com

2 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

This paper focuses on LR symmetric key cryptography1. Rekeying (or fresh rekeying)
is the pioneering and primordial concept of leakage resilience [KJJ99, Koc98, MOP07,
MSGR10,GFM13,BDSH+14] that updates the secret key using a deterministic function
with a master key before the attacker obtains a sufficient amount of leakages for the
key recovery. Then, LR pseudorandom generators (PRGs) and stream ciphers have been
studied. They take a secret key K and possibly an initializing vector IV and outputs a long
output S that are computationally hard to be distinguished from random as in the case of
conventional PRG/stream cipher. Moreover, LR PRGs/stream ciphers are designed in such
a way as to make distinguishing attack S from random infeasible even if there exists some
leakage of each internal state [DP08,Pie09,YSPY10,DP10]. That is, S = LR-PRG(K, IV)
is pseudorandom even with a partial information on K that is leaked. In 2012, two
LR pseudorandom functions (PRFs) [FPS12, MSJ12] based on the classical Goldreich–
Goldwasser–Micali (GGM) PRF [GGM86] were proposed. GGM PRF is the classical
method to build a PRF based on a PRG. Using a PRG f : {0, 1}nf → {0, 1}2nf , GGM
PRF forms a binary tree where each node corresponds to the input bit and each path has a
binary label. If label is 0 (1), it means the child node uses the first (last) nf bits of the PRG
output. Let f(K) = (f0(K), f1(K)) where |fi(K)| = nf . Then, for example, 2-bit-input
GGM PRF based on f is a depth-2 tree and it outputs f1(f0(K)) for input (01), using the
key K (See also Appendix A). As PRF is more functional than PRG, LR PRFs expand the
application area of LR cryptography, say it can be used to build a LR message authentication
code. More recently, LR authenticated encryption (AE) has become an active research
topic [PSV15,BGP+19,DJS19,KS20,DEM+20,BBB+20,BGP+19,SPS+22]. Here, a secure
AE scheme simultaneously implements encryption and message authentication, meaning
that the plaintext is computationally hard to guess from the ciphertext (i.e., confidentiality)
and a forgery against the ciphertext is also computationally hard (i.e., authenticity) [BN00].
AE has been extensively studied, and regarding the black-box security (no SCAs), there are
number of efficient schemes with provable security guarantee, namely the whole AE security
is reducible to the primitive’s security. However, most of such provable-secure schemes,
such as GCM or OCB, totally lose the security if SCAs are mounted and the underlying
primitive is vulnerable to SCAs. Applying full protection, say by using fully-protected AES
for every call of AES–GCM, is usually quite costly. The goal of LR-AE is to realize a secure
AE even with SCAs, in a more efficient way than the aforementioned naive combination of
a black-box-secure AE and a fully protected primitive. Typical LR-AEs consist of leak-free
(i.e., DPA-resistant) component(s) only for initialization/finalization and SPA-resistant
component(s) for associated data (AD) and plaintext/ciphertext processing, which enables
them to achieve more efficient SCA-resistant AE implementation than non-LR-AEs with
DPA-resistant components for whole computation (e.g., OCB) [BGP+19].

On the one hand, most rekeying schemes, LR-PRGs/stream ciphers, and LR-AEs
are based on the concept of leveled implementation [PSV15], which effectively combines
DPA- and SPA-resistant components. Such LR cryptographic schemes (implicitly) assume
the availability of leak-free (i.e., DPA-resistant) component(s). Rekeying schemes and
LR-AEs explicitly require such a leak-free component for their rekeying function and
initialization/finalization, respectively. LR-PRG/stream cipher is designed to be secure even
if there exists some leakage of the internal state during random bits/key stream generation;
however, the initial state updates must be protected against DPAs, as some practical DPAs
defeating PRG/stream ciphers have been reported, such as in [SPY+10,HHN+13,JB17,
KUH+17] (although these attacks might be outside the scope of LR-PRG/stream ciphers).
In practice, it is difficult to achieve a completely leak-free component (i.e., resistance
against DPA with an infinite number of traces, or unbounded DPA-resistance) even with
higher-order masking. In other words, masking schemes cannot achieve unbounded security

1LR public key cryptography is also an active research topic (e.g., [NS09,ADW09,KV09,DHLAW10,
BSW12,ASB14,CMY+16]).

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 3

against higher-order attackers, while the number of traces for key recovery increases
exponentially by the masking order [DFS15, IUH22a,MRS22].

On the other hand, the security of LR-PRFs has been discussed using a bounded data
or trace complexity model, which means that the number of plaintexts/traces available in
attacking the PRF with a secret key is bounded. Here, secure LR-PRF implementation
requires a component resistant to DPA with m plaintexts or traces (i.e., m-bounded
DPA-resistance). This is a more relaxed and practical condition than unbounded DPA
resistance. Nonetheless, the validity of the bounded complexity model needs to be clarified
in practice. At least, the model is valid only if it works with a dedicated protocol, but
there has been little discussion about its practical use. In addition, it is not trivial how to
determine m for a given device about SCA success rate on the LR-PRF. See Appendix A
for the details of existing LR-PRFs.

In summary, the existing LR cryptography schemes have some non-trivial limitations in
their practical use, and the relation and combination of the aforementioned LR cryptography
schemes have not been comprehensively discussed. It remains an open problem to determine
how far away LR cryptography is from a leak-free sanctuary.

1.2 Our contributions
We present a cryptographic scheme and its security evaluation to address the abovemen-
tioned challenges.

New LR rekeying scheme. We propose a provably secure, higher-order, and LR rekeying
scheme, named LR Rekeying with Random oracle Repetition (LR4). For this purpose, we
introduce a new leakage model for rekeying and provide a formal security proof of LR4.
We then show the validity of the leakage model and how to utilize LR4 in practice. We
also discuss its practical aspects and analyze its implementation cost, efficiency, and low
latency. We compare LR4 to state-of-the-art LR encryption schemes in Section 3.3, and
confirm the advantage and effectiveness of LR4.

From a technical viewpoint, our major contributions include the new definition of leakage
function, rather than the development of security proof technique or security notion. The
definition of the leakage function for security notion/proof has been extensively studied,
but its link to bounded trace complexity is largely unexplored. Currently, Accumulated
Interference (AI) in [DMP22] (see Section 2.2) is the state-of-the-art for it. In this paper,
we define another leakage function regarding trace complexity bound, which captures
practical features of side-channel leakage and overcomes some drawbacks of existing leakage
functions. We then prove the LR4 security using a promising security notion. Thus, LR4
achieves preferable features for practical rekeying (see Section 3), compared to existing LR
schemes.

Evaluation methodology for practical usage. We propose an information-theoretical
methodology for evaluating the attack cost and success rate on LR4 given a device/condition
by utilizing and extending state-of-the-art SCA evaluation methods [dCGRP19, IUH22a,
MRS22]. So far, the success rate has been commonly used for evaluating the SCA
capability/resistance [SMY09], and many studies have been devoted for its practical and
feasible estimation on symmetric primitive [MOS11,DFS15,dCGRP19, IUH22a,MRS22,
BCG+23], while there are few studies on the success rate evaluation on mode of operations
(rather than primitive). Thus, we formally define the attack success rate on LR4, and
then formally analyze the relationship between the attacks on LR4 and the underlying
symmetric primitive, which enables a quantitative evaluation of the attack cost as success
rate and the number of attack traces. Our methodology is able to determine the rekeying

4 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

order d and the trace bound m as the rekeying interval from a quantity of target device
(i.e., mutual information or signal-to-noise ratio (SNR)).

Validation. Using the proposed methodology, we show a numerical evaluation of the
attack cost on LR4 instantiated with AES. The results confirm an exponential increase
of the number of secure calls of a symmetric primitive by increasing the rekeying order d
under practical conditions. We also discuss properties required for a secure rekeying.

Technical challenges. The main technical challenge in our work is the simultaneous
pursuit of high practicality and strong provable security on leakage resilience in rekeying
mechanism. The former excludes several conventional techniques in LR cryptographic
schemes, most notably a leak-free component and generation and transmission of true
random values (where generation must also be secure against leakage). Our LR4 could be
viewed as an alternative interpretation of classical GGM PRF with a counter, however,
we need to show its leakage resilience both from theory and practice. This requires us to
develop a dedicated security model capturing practical protection methods applicable to
each module in LR4, such as higher-order masking of a practical order. Meanwhile, we
should consider how to determine the parameter in the security proof (i.e., trace bound m),
given a device, for the practical usage of LR4 with a quantitative security guarantee. For
evaluating LR4’s practical security, we develop a formal definition of SCA success rate on
LR4 and extend a state-of-the-art information theoretical evaluation method [dCGRP19]
to its evaluation. Consequently, we are able to show that LR4 has exponential security
with respect to the parameters (number of modules and leakage resistance of each module)
both from practical and theoretical viewpoints.

1.3 Conventional studies on rekeying
Rekeying is one of the primordial countermeasures against DPA suggested by Kocher et
al. [KJJ99]. The basic form of rekeying is illustrated in Figure 1. The rekeying schemes
exploit the fact that most SCAs on symmetric primitives require a number of traces (i.e.,
calls of the target primitive) for the key recovery. The basic idea behind the rekeying
is to use a temporal key (i.e., session key) ktmp generated from a master key kmst, and
then update the session key using a deterministic rekeying function (g in Figure 1) and a
(random) IV r at a frequency that does not allow any attackers to succeed in the temporal
key recovery. Here, the target primitive is assumed to have a minimal resistance against
SCAs with a certain number of traces (m-bounded DPA-resistance, or SPA-resistance
if the number of traces is one) because the temporal key is discarded after the number
of calls (or one). In contrast, the rekeying function should be DPA-resistant or leak-free
because it is called many times with the master or internal temporal key.

The above idea was formalized by Medwed et al. in 2010 (MSGR) [MSGR10] as Fresh
Rekeying. Fresh rekeying and its variants have been extensively studied from various
viewpoints such as efficient instantiations, formal or practical security, and both with and
without leakage [GFM13,MPR+11,BDSH+14,DEMM14,MS14,PM16,DFH+16,DMMS21].
In particular, realization of key derivation function (g in Figure 1) is one of the central
research topics in Fresh rekeying. MSGR suggested to use non-cryptographic operation
(ring/field multiplication) for the key derivation based on the observation that key derivation
should have no black-box security as the derived temporal key is never given in clear.
Dobraunig et al. [DEMM14] pointed out a problem of this instantiation by showing a
chosen-plaintext (master) key recovery attack. Their attack is a simple time-memory
tradeoff using a set of precomputed ciphertexts with guessed temporal keys and a fixed
plaintext. Dziembowski et al. [DFH+16] proposed rekeying components based on lattice
cryptography backed by a certain theoretical guarantee. This direction has been further

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 5

g

r

kmst f

M

ktmp

C

Figure 1: Basic form of rekeying scheme.

explored by Duval et al. [DMMS21]. Despite reports on some attacks [DEMM14,PM16],
in reality, the root of security—an unbounded DPA-resistant/leak-free module—is barely
implemented with sophisticated SCA countermeasures (e.g., masking) to the best of
authors’ knowledge.

1.4 Paper organization

Section 2 introduces notations and existing attack/leakage models for LR cryptography.
Section 3 proposes our higher-order and LR rekeying scheme, named LR4. Section 4
formally proves the security of LR4, with a formalization of leakage model for rekeying.
Section 5 presents a quantitative and information-theoretical evaluation methodology based
on formal analysis on attack cost and success rate on LR4 and how to use LR4 in practice.
This is followed by Section 6, which demonstrates the validity of LR4 through numerical
evaluations and discussion. Section 7 discusses the relation, comparison, and compatibility
of LR4 with existing LR cryptographic schemes. Finally, Section 8 concludes this paper.

2 Preliminaries

2.1 Basic notations

Let [i] denote {1, 2, . . . , i} for any positive integer i. We define {0, 1}i and {0, 1}∗ as the
set of i-bit strings and the set of all arbitrary-length strings, respectively. Let log denote
the binary logarithm.

A tweakable block cipher (TBC) is a keyed function Ẽ : K×Tw×M→M, where K is
the key space, Tw is the tweak space, and M = {0, 1}n is the message space, such that for
any (K, Tw) ∈ K × Tw, Ẽ(K, Tw, ·) is a permutation over M. We interchangeably write
Ẽ(K, Tw, M), ẼK(Tw, M), or ẼTw

K (M). The decryption routine is written as (ẼTw

K)−1(·),
where, if C = ẼTw

K (M) holds for some (K, Tw, M), we have M = (ẼTw

K)−1(C). When Tw

is a singleton, it is essentially a block cipher and is written as E : K ×M→M. For sets
X , Y , and Tw, Func(X ,Y) denotes the set of all functions from X to Y , Perm(X) denotes
the set of all permutations over X , and TPerm(Tw,X) denotes the set of all functions
f : Tw×X → X such that for any Tw ∈ Tw, f(Tw, ·) is a permutation over X . A tweakable
uniform random permutation (TURP) with a tweak space Tw and a message space X ,
P̃ : Tw × X → X , is a random tweakable permutation with uniform distribution over
TPerm(Tw,X). The decryption is written as (P̃−1)Tw (·) for TURP given tweak Tw. A
random oracle (RO) is a random function that is uniformly distributed over Func({0, 1}∗, n)
for some fixed n (which can be implemented with a lazy sampling). An ideal cipher (IC)
is a random block cipher that is uniformly distributed over TPerm(K,X) for some fixed
finite sets K and X (that is, the set of all the block ciphers with key space K and message
space X). These are assumed to be publicly accessible when involved in the game. An IC
accepts both encryption and decryption queries with a chosen key.

6 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

2.2 Attack/leakage models for LR cryptography
Data and trace bounded attacker. In an m-bounded data complexity model, the attacker
can call the underlying symmetric primitive with m different plaintexts using an identical
secret key [MR04,MSJ12]. If the data complexity bound m is sufficiently small, we expect
that the attacker cannot obtain sufficient information about the secret intermediate variable
(e.g., Sbox output) and secret key. Thus, a key-recovery SCA is (believed to be) difficult
if the number of available plaintexts is sufficiently bounded. However, Medwed et al.
reported in [MSJ12] that, even if m = 2, the attacker can recover the secret key from
low-noise devices (e.g., a low-end microcontroller) with a non-trivial success probability.
Accordingly, they suggested considering the number of available traces for an attack success.
In this paper, we suppose that an m-trace bounded attacker can utilize not more than
m traces. In the rekeying context, m corresponds to the rekeying interval. Note that
a malicious attacker may call the primitive with a fixed input many times, especially if
attacking the decryption module of a nonce/IV-based (authenticated) encryption scheme.
This observation means that we should consider how to implement a symmetric primitive
under m-bounded trace complexity in practice (which may require considering a high-level
protocol). LR4 handles this consideration, as discussed in Section 3.2.

Bounded leakage function. In LR cryptography, secret information (e.g., temporal key
and internal value/state) leaks through each call of the underlying symmetric primitive.
Let s(i) be the i-th state (which may include the i-th temporal key). At the i-th call,
information about s(i) is leaked as Li(s(i)) for each i, where Li is the i-th leakage function.
From practical constraints, we consider a non-adaptive leakage model: a fixed L exists
such that L = Li for any i [SPY+10]. The leakage function is given by, for example,
some bits of s(i) and its Hamming weight with noise; or, it is defined using the number of
leaked bits so that a state leaks at most λ bits. Note that the leakage function is usually
bounded somehow. The attacker trivially wins if he/she gets all the information about the
secret key or the intermediate value/state through leakage.

Accumulated interference (AI). Related to the bounded leakage function, Dobraunig et
al. presented the concept of Accumulated Interference (AI) [DMP22] in 2022, which models
leakages of permutation-based LR-AEs through both SCA and fault attacks. This model
allows evaluating the attacker’s advantage by the accumulated gain (AG). AG is defined
using an input dataset for a given SCA, and AI is related to the trace complexity bound.
However, AG has been evaluated only experimentally and empirically for specific SCAs;
therefore, the evaluated advantage value cannot be an upper bound regarding all possible
(even theoretically optimal) SCAs, which is essential for leakage resilience. Although an
asymptotic approximation of the attacker’s advantage for a given SCA is important to
evaluate the SCA resistance of a device in some applications, a theoretical upper-bound
evaluation is essential for both the theory and practice of LR cryptography. Dobraunig
et al. then presented an LR encryption scheme asakey and its variant strengthened asakey
based on AI/AG. In particular, the variant utilizes a caching strategy similar to LR4 for
improved leakage resilience. In Section 3.3, we compare LR4 and asakey to demonstrate
the significance of LR4.

Adaptive vs. non-adaptive leakages. Major existing LR cryptography schemes adopted
a non-adaptive leakage model (e.g., [DP10, YSPY10, FPS12, DMP22]). Actually, the
practical validity of the non-adaptive leakage model/assumptions were discussed in
[SPY+10, YSPY10, FPS12]; power/EM attackers must fix leakage function before ob-
taining any leakage/output because of physical constraints of power/EM measurement
(e.g., on-board pin/connector and EM probe). Although extreme attackers might move

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 7

ctr1

G1k1

ctr2

G2k2

ctrd

Gdkd kd+1 E

M

C
R(kmst, ctr

d)

Figure 2: Encryption of LR4, where k1 = kmst.

probe(s), its impracticality and meaninglessness were discussed in [SPY+10,FPS12]. Mean-
while, some impossibility results (difficulty in LR cryptography with practical construction
under adaptive leakage) were shown in [SPY+10,FPS12]. Known practical remote power
SCAs (e.g., [ZS18,LKO+21]) also utilize non-adaptive leakage. Thus, non-adaptive leak-
ages are more common, practical, and significant than adaptive ones, and we focus on
non-adaptive leakage in this paper.

3 Proposed scheme

3.1 Basic concept
As discussed in Section 1, while (fresh) rekeying is a promising approach for LR cryptog-
raphy, its full practicality is questionable due to the need for a leak-free function. We
present a solution to this problem, dubbed LR4, and detail its construction below.

Let a positive integer d be the rekeying order. For each i ∈ [d], let Gi : {0, 1}nk ×
{0, 1}nctr → {0, 1}nk be a function called a rekeying component, which takes an nk-bit
key and an nctr-bit counter and outputs an nk-bit key. We require each Gi should
behave like an independent RO; that is, for any input, the output looks random, and
the outputs from the same input to Gi and Gj for i ̸= j are uncorrelated. Let E, D :
{0, 1}nk ×{0, 1}nbc → {0, 1}nbc denote the encryption and decryption routines of an nbc-bit
block cipher with an nk-bit key. The LR4 rekeying scheme with order d consists of an
encryption function LR4.E and a decryption function LR4.D such that LR4.E , LR4.D :
{0, 1}nk × ({0, 1}nctr)d × {0, 1}nbc → {0, 1}nbc . LR4.E (resp. LR4.D) takes an nk-bit
master key kmst, a d-tuple of nctr-bit counters ctrd = (ctr1, ctr2, . . . , ctrd), and an nbc-bit
plaintext (resp. ciphertext) as inputs, and outputs an nbc-bit ciphertext (resp. plaintext).
Figure 3 show LR4.E and LR4.D using a temporal key derivation function R, such that
R : {0, 1}nk × ({0, 1}nctr)d → {0, 1}nk . R takes an nk-bit master key kmst and a d-tuple of
nctr-bit counters ctrd as inputs, and generates a temporal (or session) key ktmp (as defined
in Figure 3). See also Figure 2 for illustration.

For LR security, we assume that each Gi does not leak anything up to m ≤ 2nctr

encryption calls with the same key under SCAs. Similarly, we assume that E does not
leak up to m′ encryption and decryption calls with the same temporal key. See Section 4
for the formal treatment and Section 5 for how to determine m (and m′).

A sound SCA countermeasure should increase the number of traces for an attack
success by increasing the security parameter(s). The LR4 can generate md temporal keys
securely under the m-bounded trace complexity model. Thus, the number of secure E calls
increases exponentially by d, from m to md, under the bounded trace complexity model
(although m should be determined dependently on d, as discussed in Section 5). Formal
and rigorous security with a leakage model is defined and proven in Section 4. Note that
the proposed scheme does not contribute to the decrease of an SCA success rate, although
we confirm the exponential increase of the number of secure E calls under some practical

8 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

Algorithm LR4.E(kmst, ctrd, M)

1 ktmp ← R(kmst, ctrd)
2 C ← Ektmp(M)
3 return C

Algorithm LR4.D(kmst, ctrd, C)

1 ktmp ← R(kmst, ctrd)
2 M ← Dktmp(C)
3 return M

Algorithm R(kmst, ctrd)

1 k1 ← kmst

2 for i = 1 to d

3 ki+1 ← Gi(ki, ctri)
4 ktmp ← kd+1

5 return ktmp

Figure 3: Abstract of LR4 algorithm.

k3,1 k3,2 k3,3 k3,4 k3,5 k3,6 k3,7 k3,8 k3,9

k2,2 k2,3k2,1

k1,1

Figure 4: Key diagram of LR4 when d = 2 and m = 3. Solid, dashed, and dash-dotted
arrows mean that key is derived from key at parent’s node when ctri = 0, ctri = 1, and
ctri = 2, for each i ∈ [d] = [2], respectively. Temporal keys are generated and used from
left to right.

conditions as demonstrated in Section 6.1. Thus, the proposed scheme can be another
direction for provably secure SCA countermeasures apart from masking.

LR4 has a structural similarity to the classical GGM PRF, as the temporal key
generation is represented by an m-ary tree with nodes of counter value, as shown in
Figure 4. As mentioned in Section 1, GGM PRF has also been adopted by several LR-
PRFs [FPS12,MSJ12,MS14], although our objective—an LR rekeying scheme without an
(unbounded) leak-free component—makes LR4 different from these LR-PRFs in terms
of the interface and the security notion under leakage. See Appendix A for GGM and
existing LR-PRFs.

On implementation efficiency. Compared to the existing related LR cryptography (e.g.,
GGM, the LR-PRFs described in Appendix A, and asakey), LR4 achieves an advantage
of high-rate construction with provable security. For example, asakey, which is a state-
of-the-art nonce-based and sponge-based LR encryption scheme in 2022 [DMP22], has a
nonce-processing part with bit-by-bit absorption (represented by a binary tree like GGM)
for its leakage resilience. Due to the leakage function definition, asakey is enforced to
use a nonce processing part with a very low rate (i.e., 1-bit absorption per permutation)
for provable security with leakage resilience. In other words, it is difficult to achieve a
high-rate construction with provable security under its leakage function, as well as the
existing LR-PRFs. In contrast, LR4 is the first GGM-like LR scheme that achieves both

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 9

the provable security and a high rate. For example, if we instantiate ROs using SHA-3 as
Gi(ki, ctri) = SHA-3(ki ∥ ctri ∥ i), LR4 readily absorbs more than 128 bits with temporal
key using only one SHA-3 computation, whereas asakey requires n permutations to absorb
an n-bit nonce. See Section 3.3 for quantitative comparisons.

3.2 Caching intermediate keys for improved SCA security and compu-
tational efficiency

We propose that the computation of LR4 utilizes caching of all intermediate keys as long as
they can be used later in order to improve the computational efficiency and SCA security.
For example, if we increment a counter from 0 to 1 in Figure 2, k2,1 (ki,j denotes the j-th
intermediate/temporal key of ki), which has been computed by processing counter 0, is
cached to derive k3,2 for counter 1, and the computing device releases it when the counter
becomes 3. This is essential because re-computation of an intermediate key would lead to
unexpected side-channel leakage violating the trace bound (see also Remark 1).

Figure 5 displays the cache-based version of the temporal key derivation function R,
denoted by RC . It caches the intermediate keys and counters for given m and m′, where
khi and chi denote the caches for i-th intermediate key khd+1 = (kh1, kh2, . . . , khd, khd+1)
and counter values chd+1 = (ch1, ch2, . . . , chd, chd+1), respectively. Unlike Figure 2 and
Figure 3, we require an additional counter ctrd+1 to guarantee that E is called not more
than m′ times with an identical ktmp (note that the value of ctrd+1 has no influence on the
output, except for ⊥). Here, we consider a total counter value as

∑d+1
i=1 2nctr(i−1)ctrd+2−i.

This indicates that the counter is incremented from ctrd+1. In RC , we first check the
validity of input counters to detect counter replay attacks at Line 1. If the counter value
is smaller than the cached one (i.e., replayed value) or out of range (i.e., ctri ≥ m for
1 ≤ i ≤ d or ctrd+1 ≥ m′), we abort the encryption/decryption. Otherwise, we compute the
temporal key from the counters and master key with minimal computations. If ctri = chi

and flag = 0, the computation is omitted and the cached key is used to avoid the leakage
(where flag represents the necessity of computation). Note that chd+1 and ctrd+1 are
known to the attacker, which indicates that the side-channels (e.g., power/EM and timing)
of the if branches in RC leak no secret information.

Latency and computational efficiency. The caching strategy also improves the latency
and computational efficiency2, as stated in Proposition 1. This is a substantial improvement
over the straightforward computation requiring d times G.

Proposition 1. For a rekeying interval m, we need to run G only 1 + 1/(m − 1) < 2
times on average.

Proof. Let d and m denote the rekeying order and interval, respectively. By definition, LR4
takes at most md distinct counter values. The average number of G calls for processing
these md values is

1
md

(
d∑
i

imd−i(m− 1) + d

)
= d

md
+ (m− 1)

d∑
i=1

im−i. (1)

Let Sd :=
∑d

i=1 im−i. Taking the sum of geometric progression, we obtain

Sd = m

m− 1

(
m−1(1−m−d)

1−m−1 − d

md+1

)
= 1

m− 1

(
1−m−d

1−m−1 −
d

md

)
.

2This is also (briefly) mentioned in [MSJ12, Section 6] when their LR-PRF/encryption are used in the
CTR mode. In [DMP22, Section 3.2], a caching strategy is also (briefly) discussed for their LR encryption.
However, neither analyses on computational cost nor some practical aspects (e.g., replay detection) were
explicitly discussed.

10 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

Algorithm RC(ctrd+1; khd+1, chd+1)

1 if
∑d+1

i=1 2nctr(i−1)ctrd+2−i ≤
∑d+1

i=1 2nctr(i−1)chd+2−i or ∃i, ctri ≥ m or ctrd+1 ≥ m′

2 return ⊥ (Abort encryption/decryption)
3 else if
4 flag← 0
5 for i = 1 to d

6 if ctri > chi and flag = 0
7 flag← 1
8 if flag = 1
9 khi+1 ← Gi(khi, ctri)

10 ktmp ← khd+1

11 chd+1 ← ctrd+1

12 return ktmp; khd+1, chd+1

Figure 5: The cache-based version of the temporal key derivation function R. LR4
with cache invokes RC instead of R. The caches chd+1 and khd+1 are initially given as
chd+1 = (0, 0, . . . , 0), khi+1 = Gi(khi, 0) for each 1 ≤ i ≤ d, and kh1 = kmst. Here, khi

should be called at Line 9 only when it is actually used.

Hence, the right-hand side of Equation (1) is

d

md
+ (m− 1)Sd = 1−m−d

1−m−1 = md − 1
md

· m

m− 1

<
m

m− 1 = 1 + 1
m− 1

< 2.

This completes the proof.

Memory overhead. The cache-based LR4 requires a non-volatile memory (NVM) to
cache the intermediate keys. The memory overhead is given by (nk + nctr)(d + 1) bits.
For a practical parameter of nk = 128 and nctr = 20 (see Section 6.1), the memory
overhead is 148(d + 1) bits (e.g., 888 bits (= 111 bytes) when d = 5), which is efficient
and sufficiently practical, compared to existing ones (see Section 3.3). For example, even
low-end microcontrollers such as Atmel AVR Xmega128D series, which may be a major
target of SCA countermeasures, have a 16K–128K byte flash memory and 1K–2K byte
EEPROM. The memory overhead of LR4 is less than 10% of the very low-end ones. Thus,
we confirm the practicality of cache-based LR4.

Explicit synchronization and replay detection. As the nonce (i.e., counters) forms
a total order and LR4 caches its internal counters, LR4 detects replayed queries by
comparing the orders of query and internal counters at the validity check at Line 1
in RC(ctrd+1; khd+1, chd+1), before performing encryption/decryption. So, the attacker
cannot perform any replay (for trace averaging and trace complexity bound violation). In
contrast, if receiving a forwarded nonce (maliciously or accidentally), the LR4 module
updates the internal counter to the nonce at Line 11 (as well as a valid counter) and
performs encryption/decryption using the temporal key corresponding to the values. This
is because such counter-forwarding never yields a violation of trace bound. Thus, LR4
offers secure explicit synchronization for the cases of malicious/accidental synchronization

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 11

p

1

N1

1

N2

1

Nk

p p p
0

K K∗k c

Figure 6: The rekeying function of asakey. K is a master key, and p is an underlying
permutation. N1, . . ., Nk are one-bit split nonces where an input nonce N is written as
N1 ∥ · · · ∥Nk. K∗ is a derived temporal key input to the sponge-based encryption part.
ISAP has a similar rekeying function as this construction.

failures. Note that denial-of-service attacks by counter forwarding to exhaust key lifetime
remains an open problem to be prevented, while LR4 can prevent key-recovery SCAs.

Remark 1 (SCA security and potential threat). This paper focuses on a countermeasure
against non-invasive power/EM analysis, in which any cached key does not leak unless it
is called [MOP07]. We consider the trace complexity bound as how many times the cached
key is called; thus, the caching strategy essentially improves the SCA security of LR4.
In contrast, (semi-)invasive attacker may utilize a static leakage directly from memory
components [MOP07,SSAQ02]. Such a (semi-)invasive attacker attempts to directly read
secret/cached keys to bypass SCA countermeasures. For such cases, the number of calls and
trace complexity bound are no longer meaningful. Such (semi-)invasive attacks are outside
the scope, as in many existing studies on LR cryptography and SCA countermeasures.
(Semi-)Invasive attacks should be prevented by, for example, tamper-resistant memory and
memory encryption, rather than SCA countermeasures.

3.3 Comparison with state-of-the-art

The high rate and leakage function of LR4 yield an efficient implementation with provable
security, in comparison with existing LR cryptography such as asakey [DMP22] and
ISAP [DEM+20]. asakey and ISAP are sponge-based encryption and AE, respectively, and
thus they are functionally different from LR4. However, LR4’s temporal key derivation
function R and asakey/ISAP’s rekeying function are functionally compatible; therefore, we
compare them. As depicted in Figure 6, asakey uses a nonce-processing part as a rekeying
function, which consists of a bit-by-bit absorption of the nonce, followed by a sponge-
based encryption. The intermediate state derivation in the nonce absorption of asakey is
representable as a binary GGM. The strengthened asakey, which is a cache-based variant
with an up-counter nonce, caches the intermediate states during the nonce processing part.
To validate the effectiveness of LR4, we show its comparison to the strengthened asakey.
We instantiate the strengthend asakey using Keccak-p[1600, 12] with 128-bit key according
to [DMP22], while we instantiate RO in LR4 using Keccak-p[1600, 24] (i.e., SHA-3). We
mainly discuss (strengthened) asakey in the following paragraphs because ISAP has a
similar rekeying function as that of asakey. Note that ISAP has more parameters than
asakey, such as the length of nonce absorption per one permutation call and the number
of rounds of the underlying permutations. However, all instances of ISAP determine the
length of nonce absorption to be one, which is the same as asakey. The number of rounds
of the underlying permutations varies in each instance (mainly 1 round or 12 rounds),
but we leave out the schemes using 1-round permutations from our comparison since we
would like to focus on the schemes having provable security (also see the last paragraph in
comparison of computational cost/latency).

12 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

Memory overhead. The strengthened asakey requires an NVM to cache all its internal
states, whose bit length is the product of the permutation length (1,600 here) and key/nonce
length. In the above instantiation, the memory size of asakey is 1600 × 128 = 204800
bits. Although it can be reduced by limiting the number of calls by m, the required NVM
are given by 1600 log m bits, which is still very high cost for practical m. In contrast,
cache-based LR4 requires an NVM of only (nk + nctr)(d + 1) bits, which is far fewer for
realistic d (e.g., 888 bits for d = 5 and a practical parameter of nk = 128 and nctr = 20
for example). Thus, LR4 is adoptable of even low-end microcontrollers with a 16 K–128 K
byte flash memory and 1 K–2 K byte EEPROM as mentioned before.

Computational cost/latency. The strengthened asakey must call at least one Keccak-
p[1600, 12] for each encryption call, while LR4 calls at least one Keccak-p[1600, 24] (i.e.,
SHA-3) per m′ EK calls, where m′ is trace bound for EK . Note that EK can be instantiated
with an (LR-)AE. For example, as sponge-based encryption like ISAP or Ascon [DEM+20,
DEMS21], which can encrypt a message with (practically-)arbitrary bit length by only
one EK call (see also Section 6.2.1). On average per EK call, LR4 requires less than
2/m′ Keccak-p[1600, 24] calls (as proven in Proposition 1), while asakey always requires at
least one Keccak-p[1600, 12] call for nonce-processing. As m′ is usually greater than 10
(see Section 6.1), cache-based LR4 has a far lower latency than strengthened asakey on
average. Also, for non-cached version, LR4 requires only d Keccak-p[1600, 24] calls while
strengthened asakey requires 128 Keccak-p[1600, 12] calls.

Moreover, to improve computational cost and latency, asakey and ISAP specify instan-
tiations that use reduced-round permutations. For example, two instances of ISAP employ
a 1-round Keccak/Ascon permutation in the nonce processing part except for the first
and the last permutations. It significantly reduces computation cost and latency. To the
best of our knowledge, any practical weaknesses have not been reported in these instances.
However, in the asakey/ISAP’s security proofs, the underlying primitive should be a public
random permutation, which is intepreted as non-existence of structural distinguisher in
practice. The use of a 1-round permutation implies a deviation from this assumption.

Provable security. The LR notions of asakey and LR4 share a (common) principle;
consider a distinguishing game involving a leaky oracle, non-leaky oracle, and an idealized
primitive oracle, while asakey’s leakage model and ours are different and incomparable.
Our model captures features of practical SCA countermeasures (e.g., higher-order masking)
and dedicated to the tree-based re-keying schemes. As Section 4.3 shows, LR4 can be used
as a replacement for leak-free/fresh-rekeying components in some of the existing LR-AEs
(e.g., [Men20]), which helps make these schemes real.

Deleated and moved into above partially: We hereafter compare LR4 to ISAP’s rekeying
function (it is similar to asakey). ISAP uses lightweight primitives to overcome its low
rate. In fact, two schemes of the ISAP family use the 1-round permutation of ascon-
p/keccak-p[400] as a primitive in their rekeying functions. However, in the asakey/ISAP’s
security proofs, the underlying primitive should be a random permutation, which is far
from a 1-round permutation. Thus, its rekeying function cannot avoid a huge gap between
provable security and practical construction. In contrast, LR4 has both provable security
and efficiency.

Leakage evaluation. In [DMP22], asakey’s leakage resilience was evaluated for specific
SCAs (e.g., CPA) to derive the AG value. In other words, asakey’s leakage resilience
can be evaluated for SCAs feasible by the evaluator/designer. However, an advanced
attacker may mount stronger SCAs, which makes the asakey’s practical security unclear.
In contrast, LR4’s security proof and leakage evaluation method (in Section 5.2) consider
theoretically-optimal SCAs (i.e., most advanced SCA attacker) and capture the practical

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 13

aspects of (higher-order) masking. Thus, LR4’s leakage resilience includes practical security
and covers all possible SCA attackers including one evaluated in [DMP22].

4 Provable security analysis on LR4

4.1 Security definition
We introduce a formal security notion under leakage for rekeying schemes, including LR4.
The core idea of our security model is the same as [BMOS17]. We define the security of an
LR rekeying scheme as the probability that an adversary querying some leakage oracles
successfully distinguishes the two worlds: real and ideal. Following Mennink [Men20], we
model a rekeying scheme as a TBC, where a tweak corresponds to the IV (r in Figure 1)
of a rekeying scheme. Our model allows the adversary to choose tweaks arbitrarily in the
game and hence is more general than assuming it is a random value or a counter (although
a practical choice would be a counter). In the real world, the adversary accesses LR4.E
and LR4.D, while, in the ideal world, it accesses a TURP P̃ of tweak space {{0, 1}nctr}d

and message space {0, 1}nbc . Regarding leakage oracles, we define LR4-L.E and LR4-L.D
as those of LR4.E and LR4.D, respectively. We will detail them later. We also assume that
G1, G2, . . . , Gd are independent ROs, and E and D are IC. We define the leakage-resilience
of Fresh Rekeying (LFR) advantage for the security of LR4 as

AdvLFR
LR4 (A) :=

∣∣∣Pr
[
ALR4±,G,E±,LR4-L±

→ 1
]
− Pr

[
AP̃±,G,E±,LR4-L±

→ 1
]∣∣∣ ,

where LR4± denotes a pair of oracles LR4.E and LR4.D, and LR4-L± denotes LR4-L.E
and LR4-L.D. Also, P̃± (resp. E±) denotes P̃ (resp. E) and its inverse P̃−1 (resp.
D), and G := {G1, G2, . . . , Gd}. We call LR4± and P̃± construction oracles and call
queries to them construction queries. Similarly, we call LR4-L± leakage oracle and
call queries to it leakage queries. The use of idealized primitives, such as RO, can
be found in the theoretical analysis of LR schemes, particularly for obtaining efficient
schemes [YSPY10,BGP+19,DJS19,DM19,GSWY20,FPS12]. See also [BBC+20] for an
overview and discussion.

Leakage oracle. We here define LR4-L± to capture the m-bounded trace complexity
model introduced in Section 3.1, including caching keys shown in Section 3.2. We assume
that LR4-L.E and LR4-L.D have the same input/output as LR4.E and LR4.D, except that
they additionally output leakage Leak ∈ ({0, 1}nk ∪ {⊥})d+1. For the definition of Leak,
recall that we assume each rekeying component and a block cipher can securely perform
m and m′ calls with the same key, respectively. Also, we assume m = 2nctr to simplify
the proof. To capture this leakage assumption, we define that LR4-L.E and LR4-L.D
leak an overused key, which we detail below. We first assume that the leakage oracle
records all the invoked intermediate and the temporal key values of the underlying G and
E that appeared in the queries to the leakage oracle. For a query to the leakage oracle,
when the first i ∈ [d] counters (ctr1, . . . , ctri) are the same as some previous queries, the
leakage oracle merely refers to the memorized key value of (i + 1)-th intermediate key
ki+1; thus, they do not invoke G1, G2, . . . , Gi. Then, for i ∈ [d], when Gi is invoked with
the same key (e.g., ki ∈ {0, 1}nk) more than m times, we define ki as an overused key and
set the i-th element of Leak as its value ki. Otherwise, we set it as ⊥. Similarly, when
E is invoked with the same temporal key kd+1 m′ times, we define kd+1 as an overused
key and set the (d + 1)-th element of Leak as kd+1; otherwise, we set it as ⊥. We also
write Leak = ⊥ to mean that no keys are overused, i.e., Leak = ⊥ = (⊥,⊥, . . . ,⊥). Here,
our model regards the side-channel leakage with m traces during the computation of all

14 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

intermediate values and outputs. Thus, our leakage model and proof consider the best
possible SCAs (including an optimal SCA in Section 5.1).

Query rules. We assume the adversary can query the same counters up to m′ times
in the leakage queries to prevent a trivial leak of a temporal key. Note that there is no
restriction on repeating the same counters in the construction queries. Also, we suppose
the adversary does not perform repeating/replaying and forwarding queries; it does not
repeat a query across different oracles or the same oracle. In construction queries, we
assume that the adversary does not query (ctr, C) to LR4.D after querying (ctr, M) to
LR4.E and obtaining C, and vice versa. The same assumption applies to the leakage
queries. Note that the adversary can query any oracle in any order and can query counters
in any order in construction and leakage queries.

Relation to existing leakage models. Our security notion under leakage is defined with
a distinguishing game consisting of real and ideal worlds involving leaky and non-leaky
(classical) oracles, where the former is in the both worlds. The latter in the real world
performs real encryption whereas in the ideal world, it is idealized and returns always
random. We also allow the adversary to query primitive oracles (G and E) in the both
worlds. This framework itself is identical to those in the literature [BMOS17, KS20,
DEM+20,DMP22]. The main difference is the definition of leakage function (the response
of leaky oracle). A leakage function in existing models is stateless, namely does not reflect
the query/response history, while ours depends on the previous queries as we care about
how many times the same key has been used in each rekeying module. In addition, leakage
functions in the existing LR-AEs, such as [BMOS17, KS20], are a direct composition
of those defined for internal components (e.g., key/tag derivation functions, encryption
function and message hashing function). The leakage functions for leak-free components
(typically key/tag derivation functions) is vacuous and those for leaky components leak
everything about its computation. In case of sponge-based LR-AEs, the internal primitive
is typically a single cryptographic permutation and the leakage function determines the
input and output leakage per every permutation call occurred in an encryption/decryption
query to the leaky oracle. LR4 consists of two components, G and E, and defines different
leakage functions that are dependent on the query histories. So our model shares some
basic principles with existing works, however, the leakage function is dedicated to capture
what is aimed by practical protection methods, e.g., high-order masking.

4.2 Security bound for LR4
Theorem 1. Let A be the adversary following LFR game. Let q be the total number of
construction queries, and qL be the total number of leakage queries. For i ∈ [d], we assume
A queries pi times to Gi and pI times to E. Then, we have

AdvLFR
LR4 (A) ≤ d(q + qL)2

2nk+1 + (q + qL)(p + pI)
2nk

+ 4m′q

2nbc
,

where p =
∑d

i=1 pi and q ≤ 2nbc−1. We also assume qL ≤ m′2nctrd.

This theorem shows that LR4 has birthday-bound security regarding the internal key
length and almost optimal security regarding the block cipher length since m′ is small.
Also, the term (q + qL)(p + pI)/2nk indicates the relationship between the upper bounds
of online and offline complexities that the adversary requires to attack LR4.

Proof. We use the H-Coefficient technique [Pat08, CS14] for the proof. See Section B.1
for the technical background. We first define transcripts, a set of input/output values of
oracles in the LFR game the adversary obtains. Let QC , QG1 , . . ., QGd

, QE , and QL be

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 15

the transcripts consisting of input/output of the construction oracle, G1, . . ., Gd, E and D,
and the leakage oracle, respectively. In detail, we define QC = {(ctrd

1, M1, C1), . . . , (ctrd
q ,

Mq, Cq)}, QGi
= {(IKi,1, IVi,1, OKi,1), . . . , (IKi,pi

, IVi,pi
, OKi,pi

)} for each i ∈ [d], where
IKi,· is the input key; IVi,· is the input counter; and OKi,· is the output key. We also
define QE = {(K1, X1, Y1), . . . , (KpI

, XpI
, YpI

)}, where K· is the input key; X· is the
plaintext; and Y· is the ciphertext. In addition, we define QL = {(Lctrd

1, LM1, LC1, Leak1),
. . ., (Lctrd

qL
, LMqL

, LCqL
, LeakqL

)}.
To simplify the security proof, we assume that, after A finishes its interactions with

all oracles, the leakage oracle (LR4-L.E and LR4-L.D) reveals all the involved keys (the
master key, intermediate keys, and temporal keys) in computing the outputs. Then the
construction oracle also reveals keys involved in its output computations. Note that
constructions oracle in the ideal world uses P̃ and P̃−1 hence have no keys to reveal;
instead, the oracle outputs dummy values sampled uniformly at random from {0, 1}nk . To
prevent a trivial win of A, the construction oracle (of both worlds) does not reveal the
keys already revealed by the leakage oracle. For example, in Figure 4, assume that the
adversary queries three counters (Lctrd

1, Lctrd
2, Lctrd

3) = ((0, 0), (1, 0), (1, 1)) to the leakage
oracle and queries three counters (ctrd

1, ctrd
2, ctrd

3) = ((0, 1), (1, 1), (2, 0)) to the construction
oracle. In this case, as shown in Figure 7, the leakage oracle reveals (k1,1, k2,1, k3,1, k2,2,
k3,4, k3,5) and then the construction oracle reveals only (k3,2, k2,3, k3,7) since k1,1, k2,1,
k2,2, and k3,5 are already revealed by the leakage oracle. Let QK := {k(a)

i,j : a ∈ {0, 1},
i ∈ [d + 1], j ∈ [2nctr(i−1)]} be the transcript of keys revealed by the leakage and the
construction oracles, where a indicates which oracle reveals the key: a = 0 means that
the leakage oracle reveals the key, and a = 1 means that the construction oracle does.
The index i indicates the depth of the key, and j indicates the index of the key in i-th
depth keys, as shown in Figure 4 and Figure 7. In the case of the above example (i.e.,
Figure 7), the adversary obtains QK = {k(0)

1,1, k
(0)
2,1, k

(0)
2,2, k

(1)
2,3, k

(0)
3,1, k

(1)
3,2, k

(0)
3,4, k

(0)
3,5, k

(1)
3,7}. Thus,

all transcripts A obtains are {QC ,QG1 , . . . ,QGd
,QE ,QL,QK}.

We introduce four bad events. Roughly, if the transcripts defined above fulfill any bad
event, the adversary successfully distinguishes two worlds with high probability.

Bad1: A collision between the elements of QK in the same depth. That is, the event that
there exists i ∈ [d + 1], j1, j2 ∈ [2nctr(i−1)], j1 ̸= j2, and a1, a2 ∈ {0, 1} s.t. k

(a1)
i,j1

= k
(a2)
i,j2

.
This event also includes the event that A obtains Leak other than ⊥.

Bad2: A collision between the revealed key in i-th depth and the input key of Gi, where
i ∈ {1, . . . , d}. That is, the event that there exists i ∈ {1, . . . , d}, j ∈ [2nctr(i−1)], a ∈ {0, 1},
j′ ∈ [pi], s.t. k

(a)
i,j = IKi,j′ .

Bad3: A collision between the revealed temporal key and the input key of E. That is,
the event that there exists j ∈ [2nctrd], j′ ∈ [pI], a ∈ {0, 1} s.t. k

(a)
d+1,j = Kj′ .

Bad4: A ciphertext (resp. plaintext) collision between construction queries and leakage
queries when counters are the same and plaintexts (resp. ciphertexts) are distinct. That is,
the event that there exists i ∈ [q], j ∈ [qL], and ctrd

i = Lctrd
j s.t. Mi = LMj or Ci = LCj .

An upper bound of AdvLFR
LR4 (A) would correspond to an upper bound of pbad :=

Pr [Bad1 ∪ Bad2 ∪ Bad3 ∪ Bad4] in the ideal world. This argument holds because the
second part of the H-Coefficient technique, the so-called good transcript probability ratio,
is lower bounded by 1 (see e.g., [CS14] for details). We here move out the derivation of
this part to Appendix B because it is a typical one for birthday-secure constructions and
is tedious but rather straightforward. For readers unfamiliar with H-Coefficient, we refer

16 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

k3,1 k3,2 k3,3 k3,4 k3,5 k3,6 k3,7 k3,8 k3,9

k2,2 k2,3k2,1

k1,1

Figure 7: Example of key reveal procedure in the proof. The leakage queries are for
the leaves (3, 1), (3, 4) and (3, 5) and the relevant (intermediate) keys are circled by red.
The construction oracle queries are for the leaves (3, 2), (3, 5) and (3, 7) and the relevant
(intermediate) keys are circled by blue. First, the keys circled by red will be revealed.
Second, the keys circled by blue will be revealed—following the tree in the real world and
randomly sampled in the ideal world—except those not already revealed (i.e., circled by
red). Thus, the latter step only reveals k3,2, k2,3, and k3,7.

to [CLS15, Theorem 1] to get an idea of how typical H-coefficient proofs with the case
that the good transcript probability ratio is larger than one are conducted.

We evaluate pbad in the ideal world. We start by evaluating Pr[Bad1]. For each i ∈ [d+1],
let nki be the number of elements k

(·)
i,· in QK (i.e., the number of revealed keys in i-th

depth). Now, we have nk1 = 1 assuming q + qL ̸= 0, and nk1 ≤ nk2 ≤ · · · ≤ nkd+1 ≤ q + qL.
In the ideal world, the elements k

(1)
·,· are chosen uniformly at random and independently,

and k
(0)
·,· are derived from ROs. Thus, we obtain Pr[Bad1] ≤

∑d+1
i=2

(nki

2
)
· 1/2nk ≤

d(q + qL)2/2nk+1. We then evaluate Pr[Bad2 ∩ Bad1] ≤ Pr[Bad2 | Bad1]. We obtain
Pr[Bad2 | Bad1] ≤

∑d
i=1 nkipi/2nk ≤

∑d
i=1(q + qL)pi/2nk = (q + qL)p/2nk . For Bad3,

Pr[Bad3∩Bad1∩Bad2] ≤ Pr[Bad3 | Bad1∩Bad2] ≤ (q + qL)pI/2nk holds. For Bad4, we
define Cnc as the number of distinct counters in construction queries, and c̃trd

1, . . ., c̃trd
Cnc as

the distinct counters. Let q1, . . ., qCnc be the number of construction queries whose counter
is c̃trd

1, . . ., c̃trd
Cnc, respectively; thus,

∑Cnc
i=1 qi = q. We evaluate Pr[Bad4 ∩ Bad1 ∩ Bad2 ∩

Bad3] ≤ Pr[Bad4 | Bad1 ∩ Bad2 ∩ Bad3]. For each i ∈ [Cnc], recall that the adversary
queries to LR4-L with the counter c̃trd

i , at most m′ times. Assuming Bad1 ∩Bad2 ∩Bad3
happens, for each i ∈ [τ], the probability of a plaintext/ciphertext collision is at most∑qi−1

j=0 m′/(2nbc−j)+
∑m′−1

j=0 qi/(2nbc−j) ≤
∑qi−1

j=0 2m′/2nbc +
∑m′−1

j=0 2qi/2nbc ≤ 4m′qi/2nbc ,
where qi ≤ 2nbc−1 and m′ ≤ 2nbc−1. Therefore, Pr[Bad4 | Bad1 ∩ Bad2 ∩ Bad3] ≤∑Cnc

i=1 4m′qi/2nbc = 4m′q/2nbc holds. We evaluate Theorem 1 by summing up the four
probabilities of bad events.

Tightness of Theorem 1. The bound in Theorem 1 is tight, as we have two matching
attacks. We here present two distinguishing attacks to show the tightness of Theorem 1.
The attacks try to invoke the events corresponding to Bad1 and Bad4 defined in the proof.

The first attack shows the tightness of the term dq2
L/2nE+1, and it corresponds to

Bad1. The attacker first repeats queries to LR4-L.E with the same plaintexts and distinct
counters. With a sufficient number of queries, the attacker can find a key collision defined
in Bad1 with a high probability by obtaining Leak other than ⊥ or finding collisions of some

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 17

ciphertexts. Once the attacker finds the key collision, it can distinguish two construction
oracles LR4 and P̃ by querying twice to a non-leakage oracle with the same plaintext and
the counters where the key collision occurs. If ciphertext collision occurs, the attacker
figures out that it queries LR4 with a high probability; otherwise, it does that it queries P̃.
This attack requires q = O(1) and sufficiently large qL ≈ O(2nE/2) since the probability of
the key collision is at most dq2

L/2nE+1. Note that we can show the tightness of the term
dq2/2nE+1 in the same manner as the above attack. The attacker repeats construction
queries with the same plaintexts and distinct counters. If ciphertext collision occurs in
some counters, the attacker can distinguish two worlds by checking if other plaintexts also
collide with the counters.

The second attack shows the tightness of the term 4m′q/2nbc , and it corresponds to
Bad4. The attacker repeats construction queries and leakage queries with the same counters
and distinct plaintext. If the attacker queries to the real world, the output ciphertexts
cannot collide. However, if it queries to the ideal world, the probability of ciphertext
collision is at most 4m′q/2nbc , as aforementioned.

4.3 Applications of LR4
As a primary application of fresh rekeying, Medwed et al. considered a challenge-response
(CR) protocol with low-cost devices (e.g., RFID) [MSGR10]. LR4 can be used for CR
protocols, utilizing counters instead of random challenge values. A more practically useful
application is LR-AE (e.g., [DJS19,KS20,Men20,BGP+19]). However, one line of research
has presented various LR-AEs based on different leakage models for different security
goals, utilizing different (LR and non-LR) primitives. Pinpointing how known LR-AEs
can benefit from our proposal is not easy due to this wide variety of problem settings. In
a very general sense, if an LR-AE scheme uses a nonce-based rekeying component which is
assumed to be leak-free (e.g.. ISAP [DEM+20]) it could be replaced with LR4 (but again
it depends on the details of the scheme and needs ad-hoc security analysis).

Some examples. Given the aforementioned limitations in mind, we describe example
applications of LR4 to existing LR-AEs in more detail. The first is the proposal of
Mennink at Asiacrypt 2020 [Men20]. Mennink proposed a class of LR-AEs based on
ΘCB (a TBC-based idealized version of OCB) [KR11]. He proposes to instantiate ΘCB
by replacing the internal TBC with a fresh rekeying scheme, where the input value r
of Figure 1 is used as a tweak. Mennink presented the black-box security of the proposal
but did not clearly show what leakage-resilience security would be possible3. Still, the
crucial point of his argument is that any TBC-based AE can use a fresh rekeying scheme
as long as each encryption takes distinct tweaks determined by the nonce and the length
of input variables (rather than the value of an input variable itself). If this holds and the
nonce is a counter, each tweak is unique and determined incrementally, and we can use
LR4 as the underlying TBC of ΘCB efficiently. As a result, the encryption of ΘCB does
not leak anything from the TBC up to the bound of Theorem 34. We should point out
that Mennink’s proposal does not strictly follow the rule mentioned above of tweak update
in the processing of AD, as a TBC encrypts each AD block without taking a nonce (see
e.g., [Men20, Fig. 5]). However, this can be easily fixed by involving the nonce for each AD
block encryption. This fix does not harm the security under the standard model, namely,
without leakage. Unlike many existing LR-AEs, the resulting scheme is parallelizable and
the rate is one; namely, it needs just one TBC (realized by LR4) call to process one input
block, and thus it is quite efficient.

3The main purpose of [Men20] was to show the conceptual similarities between rekeying-based TBC
modes and fresh rekeying schemes, not to present a concrete LR-AE.

4We also need to protect outside the TBC so that the mode does not leak anything. In the case of ΘCB,
this is much cheaper than protecting the primitives because it consists of simple linear operations (XORs).

18 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

ΘCB has a relatively large state size due to its parallel structure. If we want to reduce
the implementation size, serial counterparts such as PFB_plus and PFBω by Naito et
al. [NSS20] could be used instead. These modes are specifically designed with (higher-
order) masking implementations in mind. Romulus [IKMP20], a finalist of the NIST
Lightweight cryptography project [Nat23], could also be used, with a similar modification
to the AD processing as mentioned above to the Mennink’s scheme. Meanwhile, some
TBC-based LR-AEs do not follow the condition mentioned above on the tweak values used
in encryption, such as HOMA [NSS22] and TEDT [BGP+19]. LR4 is not suitable for these
because the tweak cannot be updated in an incremental manner. Designing efficient LR
rekeying schemes (or TBCs) that suit these LR-AEs remains an interesting open problem.

The second example is FGHF [DJS19] or its improvement [KS20]. These LR-AEs
are encryption-then-MAC composition, where the encryption and MAC function uses
single-block leak-free PRFs. The first is directly replaceable with LR4 as it takes nonce
N as an input (which will be a counter of LR4; the input block of E could be a fixed
constant). The second leak-free PRF takes the (key-less) hash value V of the tuple of
(ciphertext, nonce, associated data), and does not take a nonce N . Using LR4, this PRF
can be modified so that it takes V as E’s input and the next nonce (N + 1) as the counter
of LR4. We do not go into the details here, however, the security proof with leakage
could be obtained in a similar manner to that of [KS20] (given certain restrictions on the
decryption leakege imposed by m′).

5 Quantitative success rate evaluation methodology for
rekeying schemes

5.1 SCA backgrounds and success rate

Notations for SCA. We introduce notations for the discussion about SCA. An uppercase
letter (e.g., X) denotes a random variable/vector on a set denoted by the calligraphic
character (e.g., X), and a lowercase character (e.g., x) denotes an element of the set (i.e.,
x ∈ X), unless otherwise defined. Let Pr be the probability measure and p be the density
or mass function. A side-channel trace is defined as x ∈ X ⊂ Rℓ, where ℓ is the number
of sample points. Let m be the number of traces available for an attack. Let X and T
be the random variables for side-channel trace and nb-bit partial plaintext/ciphertext,
respectively. We suppose that m side-channel traces Xm = (X1, X2, . . . , Xm) and
plaintexts/ciphertexts T m = (T1, T2, . . . , Tm) are independent and identically distributed
(i.i.d). A secret variable utilized in SCA is denoted by Z. If we need to specify a secret
key k, we denote it by Z(k). For example, Z(k) = Sbox(T ⊕ k) and nb = 8 for major AES
software implementations.

Optimal SCA. In SCA on symmetric ciphers/primitives, we usually compute the rank of
key candidates from side-channel traces and partial plaintexts/ciphertexts, and estimate
the correct key according to the score. Let S : K×Xm×T m → R be a score function and
let δS : Xm × T m → K be an SCA distinguisher using S. For example, the correlation
power analysis (CPA) utilizes the absolute value of Pearson’s correlation coefficient as a
score function, combined with a leakage function [BCO04]. Deep-learning based SCA (DL-
SCA) utilizes a negative-log likelihood (NLL) calculated using a probability distribution
represented by a neural network (NN) as a score function [MHM14, ZBHV19, ISUH21].
If a true probability distribution of a secret intermediate value Z given a side-channel
trace X, denoted by pZ|X , is available, it is proven to provide an optimal attack, which
theoretically maximizes the success rate [HRG14, IUH21]. Concretely, a score function L

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 19

for a key candidate k defined as

L(k; Xm, T m) = − 1
m

m∑
i=1

log pZ|X(Z(k)
i |Xi)

is proven to provide an optimal attack, where pZ|X denotes the true conditional probability
distribution of Z given X. In other words, δL(Xm, T m) = arg mink L(k; Xm, T m) is an
optimal distinguisher5. The function L is called NLL. For a given device, considering
such an optimal attack is sufficient to evaluate the SCA resistance (and leakage resilience)
against all possible SCAs.

Success rate. Success Rate (SR) has been commonly used for evaluating SCA perfor-
mance and the validity of SCA countermeasures for various cryptographic implementa-
tions [SMY09]. SR given from m traces, denoted by SRm, is defined as the probability
that the rank of correct key k∗ becomes one, as

SRm = Pr [rank(k∗, m) = 1] , (2)

where rank(k∗, m) denotes the correct key rank in an optimal SCA, defined as

rank(k∗, m) = 1 +
∑

k∈K\{k∗}

1{L(k∗)≥L(k)}.

Here, 1 denotes the indicator function. Note that, for a simplified notation, we here omit
the inputs of Xm and T m to rank and L; therefore, rank and NLLs are random variables
in this context.

A sound SCA countermeasure should exponentially increase the number of traces
required to achieve an SR by an increase of security parameter(s). For example, masking
schemes are proven to satisfy this property: the SR of SCA on masked implementations
exponentially decreases by an increase of the masking order, which corresponds to the
number of traces to achieve the SR, under a condition about mutual information [DFS15,
IUH22a,MRS22].

SR upper-bound evaluation. As the true probability distribution is usually unknown
and unavailable, it is quite difficult to evaluate the SR of an optimal SCA in practice.
Currently, one of the most popular methods for evaluating an optimal SR would be to
use DL-SCA: the evaluator profiles the device under test (i.e., trains an NN to imitate
the true probability distribution pZ|X) and repeats an attack with m traces using the
trained NN to evaluate the SRm empirically [ZBHV19,PHJ+19,dCGRP19]. However, an
empirical approach like this incurs a non-negligible computational cost, and the soundness
and validity of the evaluation result are sometimes uncertain due to NN approximation
error, NN hyperparameter variations, and the stochastic aspects of learning. Alternatively,
an inequality evaluation is sometimes useful for estimating the theoretically achievable SR
from a quantity (e.g., mutual information and SNR) for a given device/implementation, as
stated in Theorem 2.

Theorem 2 (SR upper-bound [dCGRP19, IUH22a]). Let I(Z; X) be the mutual informa-
tion between the secret intermediate value Z and side-channel trace X. Let SRm be the
success rate of SCA with m traces. SRm is upper-bounded as

ξ(SRm) ≤ mI(Z; X), (3)
5There are various constructions of optimal distinguisher [IUH22b]. For example, template at-

tack [CRR02], which uses pX|T,K , is also optimal [HRG14]. Our discussion/methodology is valid regardless
of the construction of optimal distinguishers, although we here focus on the optimal distinguisher based
on pZ|X for ease of explanation.

20 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

where ξ(SRm) is a function ξ : [0, 1]→ R+
0 , defined as

ξ(SRm) = H(K)− (1− SRm) log(|K| − 1)−H2(SRm). (4)

In Equation (4), H(K) denotes the entropy of K, log is the binary logarithm, and H2 is
the binary entropy function; namely, H2 : [0, 1]→ [0, 1] : p 7→ −p log p− (1− p) log(1− p).

Usually, it holds H(K) = nb and |K| = 2nb , where nb denotes the bit length of a partial
secret key targeted by the SCA. Inequality (3) evaluates the SR of an optimal attack, and
every SCA (on Z) must satisfy Inequality (3)6. Note that an SR upper-bound conversely
represents the lower-bound of the number of traces required to achieve a given SR.

5.2 Formal analysis on success rate of SCA on LR4
5.2.1 Formalization

In the following, we consider the cache-based LR4. This section presents a methodology to
evaluate the overall success rate in attacking LR4 (AR in short) in a quantitative manner.
Our methodology is derived as a combination/unification of trace complexity bound and
bounded leakage from underlying primitive(s) through an information-theoretical SR
evaluation to quantify the attack cost and AR, whereas the existing studies utilize only the
trace complexity bound as a threshold value for attack success/failure. For this purpose,
we consider the bounded leakage as the mutual information I(Z; X), which is a common
leakage representation, as in many previous studies, and extend Inequality (3) for the
numerical evaluation of attack cost/AR. This unification is essential for the practical usage
of LR4 with a guarantee of quantitative security. Hereafter, we refer to the success rates
of overall attack on LR4 and a partial key recovery as AR and SR, respectively.

In this paper, as a common case, we suppose that the rekeying components for LR4
have a construction similar to an AES-like block cipher; that is, its round function consists
of ns parallel evaluations of an nb-bit Sbox for key-plaintext XOR (corresponding to
SubBytes following AddRoundKey in AES). We also suppose that the LR4 instantiates
rekeying components using an identical primitive. Recall that the d-th order LR4 consists
of d rekeying components. with m-bounded traces (i.e., rekeying interval of m). Here, the
computations of the rekeying components under an m-bounded traces model (meaning
rekeying interval of m) are performed for

∑d
i=1 mi−1 different keys, as the i-th rekeying

component generates mi different temporal intermediate keys for the (i + 1)-th rekeying
component. This indicates that the attacker has mi−1 chances/trials for key-recovery SCA
with m traces on the i-th rekeying component. It would be sufficient for the attacker to
recover at least one key among all the SCA trials. Here, we consider AR as a probability
that an attacker can achieve the full recovery of at least one intermediate/temporal key of
a rekeying component by all possible SCA trials with m traces. Using the rank metric as
well as SR, AR is formally defined as follows.

Definition 1 (Success rate of SCA on LR4). Let ARd,m be the probability that an attacker
succeeds in at least one full key recovery by attacking the d-th order m-bounded LR4
instantiated using rekeying component(s) with ns parallel Sboxes. Using the rank metric,
ARd,m is defined by

ARd,m = Pr

 d⋃
i=1

mi−1⋃
j=1

ns⋂
h=1

rank(k∗
i,j,h, m) = 1

 , (5)

6Let SRm(δS) = Pr [k∗ = δS(Xm, T m)] be the SR of m-trace SCA with distinguisher δS (which is
equivalent to Equation (2) with score function S). SRm in Inequality (3) means SRm = supδ∈D SRm(δ) =
SRm(δL), where D is a set of all possible SCA distinguishers.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 21

where k∗
i,j,h denotes the h-th nb-bit correct partial key of the j-th temporal key at the i-th

rekeying component of LR4.

In Definition 1, the right-most intersection
⋂ns

h=1 means that the attacker should recover
a full key from SCA on ns parallel Sboxes; the center union

⋃mi−1

j=1 means that the attacker
can mount an m-bounded-trace SCA (i.e., a trial) on the i-th rekeying component mi−1

times with different keys; and the left-most union
⋃d

i=1 means that the attacker can mount
the trial mi−1 times for d different rekeying components. It is sufficient for the attacker to
succeed in at least one full-key recovery among all trials. Hence, we should take the union
of events

⋂ns

h=1 rank(k∗
i,j,h, m) = 1 in terms of i and j, whereas the full-key recovery of a

trial is represented as the intersection in terms of h.
Remark 2 (On payload encryption). LR4 generates md temporal keys, and we call the
payload encryption m′ × md times in total. Definition 1 considers SCAs on rekeying
components, excluding the payload encryption. If we use a primitive for the payload
encryption same as the rekeying component (implying that m = m′), it is sufficient for the
evaluation including the payload encryption calls to consider ARd,m, as in the numerical
evaluation in Section 6.1. Even if we use a distinct primitive for the payload component,
we can readily evaluate its AR by an union of full-key recovery events for the primitive
involved in m′ in a similar manner, which is extendable to Theorem 3 below.
Remark 3 (Relation to multi-user security). Our definition is similar to the security notion
in the multi-user encryption setting [DLMS14,BT16,LMP17,HTT18,DGGP21,NSSY22],
which has been used to determine the rekeying frequency in real-world cryptographic
protocols such as (D)TLS and QUIC [Res18,RTM18,TT21]. Security analysis of LR4 is
related to a cryptanalysis in the multi-user setting. This is because we perform multiple
rekeying component evaluations using different keys, which would correspond to the case
that multiple users evaluate a block cipher with distinct keys. Note that, in attacking LR4,
rekeying component outputs are available only through leakage, different from common
cryptanalyses. The numbers of queries and users correspond to the trace bound m and
key lifetime (or the number of SCA trials) described below as σd,m, respectively. In other
words, the above definition and the following theorem(s) are used to evaluate the success
rate (or advantage) and the rekeying frequency in a setting similar to multi-user encryption
with an SCA leakage.

5.2.2 Information-theoretical evaluation

We next formally provide the relation between AR and SR to derive a concrete and
quantitative AR evaluation method, under some standard and realistic assumptions.

Lemma 1 (Relation between AR and SR). Let ARd,m be the overall success rate of SCA
on the d-th order m-bounded LR4. Suppose that all temporal keys are mutually independent.
Suppose that, for rekeying components, the SR of SCA on nb-bit partial key recovery is
identical for all Sboxes/partial keys. Let SRm be the partial key recovery success rate of an
SCA with m traces. It holds that

ARd,m = 1− (1− (SRm)ns)σd,m , (6)

SRm =
(

1− (1−ARd,m)1/σd,m

)1/ns

, (7)

where σd,m =
∑d

i=1 mi−1 denotes the number of SCA trials available for the attacker.

Proof. We first show that Equation (6) holds. Let (Ω,F , Pr) be a probability space. Let
[A]c denote the complement of a set A ∈ F (i.e., [A]c = Ω \A). Let Am

i,j,h denote an event

22 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

of rank(k∗
i,j,h, m) = 1. According to De Morgan’s law, Equation (5) is transformed into

ARd,m = Pr

 d⋂
i=1

mi−1⋃
j=1

ns⋂
h=1

Am
i,j,h

cc
= Pr[Ω]− Pr

 d⋂
i=1

mi−1⋂
j=1

[
ns⋂

h=1
Am

i,j,h

]c
 . (8)

Here, events of
⋂ns

h=1 Am
i,j,h (i.e., success of full-bit temporal key recovery in a trial) for

all i and j are mutually independent, as temporal keys are supposed to be mutually
independent owing to RO. In addition, the rekeying components are performed on an
identical device, which indicates that the events

⋂ns

h=1 Am
i,j,h are i.i.d in terms of i and j.

Therefore, Equation (8) is followed by

ARd,m = Pr[Ω]−
d∏

i=1

mi−1∏
j=1

Pr
[[

ns⋂
h=1

Am
i,j,h

]c]

= Pr[Ω]−
d∏

i=1

mi−1∏
j=1

(
Pr[Ω]− Pr

[
ns⋂

h=1
Am

i,j,h

])
.

Due to the assumption on SR of SCA on nb-bit partial key recovery, events Am
i,j,h for all h

are also mutually independent, which indicates that it holds

Pr
[

ns⋂
h=1

Am
i,j,h

]
=

ns∏
h=1

Pr
[
Am

i,j,h

]
for any i and j. In addition, owing to the assumptions, we consider an identical SR for all
i, j, and h because SRm = Pr[Am

i,j,h] as well as Equation (2). Thus, we conclude

ARd,m = Pr[Ω]−
d∏

i=1

mi−1∏
j=1

(
Pr[Ω]−

ns∏
h=1

Pr
[
Am

i,j,h

])

= 1−
d∏

i=1

mi−1∏
j=1

(
1−

ns∏
h=1

SRm

)
= 1− (1− (SRm)ns)σd,m ,

as required. Equation (7) is derived from Equation (6) as

1− (1− (SRm)ns)σd,m = ARd,m ⇔ (1− (SRm)ns)σd,m = 1−ARd,m

⇔ 1− (SRm)ns = (1−ARd,m)1/σd,m

⇔ (SRm)ns = 1− (1−ARd,m)1/σd,m ,

and finally we conclude

SRm =
(

1− (1−ARd,m)1/σd,m

)1/ns

,

as required.

Lemma 1 states how much/little SR is required to achieve an AR, and Equation (7)
is used for deriving the SR corresponding to a given AR. In designing a cryptographic

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 23

module with SCA countermeasure(s), an acceptable AR is determined in advance. For
LR4, the parameters (rekeying order d and interval m) should be determined for a required
AR and given device with mutual information I(Z; X) as a leakage amplitude (or an SNR,
which upper-bounds I(Z; X) via the Shannon–Hartley theorem). For the evaluation, we
introduce an upper-bound of AR as Theorem 3.

Theorem 3 (AR upper-bound). Let ARd,m be the success rate of m-bounded-trace attack
on the d-th order LR4, as in Definition 1. Let I(Z; X) be the mutual information between
the secret intermediate value Z and side-channel trace X. With the same assumption as
Lemma 1, the ARd,m is upper-bounded as

ξ

((
1− (1−ARd,m)1/σd,m

)1/ns
)
≤ mI(Z; X), (9)

where σd,m =
∑d

i=1 mi−1 and ξ is the function defined as Equation (4) in Theorem 2.

Proof. It is obvious from Inequality (3) in Theorem 2 and Equation (7) in Lemma 1.

Theorem 3 states the relation between AR with m-bounded traces and the mutual
information I(Z; X) considered as a leakage from each rekeying component; thus, this is
a unified security metric of the bounded trace model and underlying primitive leakage.
Using Theorem 3, we can determine the security parameters d and m for a required AR
and given device with I(Z; X) or SNR.

Meanings of Theorem 3. According to [dCGRP19,IUH22b,IUH22a], function ξ represents
the number of bits required to achieve an SR. For example, SR = 1/2nb implies that the
attacker has no advantage in the attack, as represented by by ξ(1/2nb) = 0. Conversely,
SR = 1 implies that the attacker obtains the full-bit information of a secret key, as
represented by ξ(1) = nb. In contrast, mI(Z; X) represents the amount of information
that the attacker receives through m traces. Note that nsI(Z; X) = λ, where λ is the
bounded leakage and ns denotes the number of parallel S-boxes, and m means the traces
bound. Thus, Theorem 3 reveals the relation between the bounded leakage function and
trace complexity bound in an analytical and quantitative manner. In practice, Inequality (9)
evaluates an upper-bound of SRm to achieve a given ARd,m (i.e., attack cost), to determine
the appropriate trace bound m (i.e., the rekeying interval).
Remark 4 (On SR range). In Inequality (9), SRm is defined in the range of [0, 1]. However,
the minimum value of SRm should be 1/2nb , which means that the attacker has no
advantage in guessing the secret key. In other words, it makes no sense to consider the case
that SRm ∈ [0, 1/2nb), because any attacker trivially achieves SRm = 1/2nb by a random
guess. Therefore, we should determine d and m such that they satisfy SRm ≥ 1/2nb in
addition to Inequality (9). Conversely, if SRm ≥ 1/2nb is not achievable for a given AR
and I(Z; X), such AR cannot be reached by the device.
Remark 5 (Relation between Theorem 1 and Theorem 3). Theorem 1 proves the security
bound against an SCA attacker under a theoretical (yet reflecting the idea of practical
protection methods, e.g., high-order masking) leakage model with idealized primitives. In
contrast, Theorem 3 states a bound of overall success rate of an optimal and real SCA on
actual symmetric primitive(s). Each theorem captures different and essential aspects of
LR4.

5.3 Practical usage of LR4
We can utilize LR4 as an SCA countermeasure with a guarantee of quantitative security
evaluated by our methodology in Section 5.2. The proposed design flow is as follows.

24 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

Step 1: Device profiling. We first need to know the value of mutual information I(Z; X)
or achievable SNR of side-channel measurement by profiling the target device. For example,
a deep-learning based profiling method in [IUH22a, Section 6] is useful to evaluate a tight
upper-bound of I(Z; X). In addition, according to the Shannon–Hartley theorem, I(Z; X)
is upper-bounded by SNR as I(Z; X) ≤ 1/2 log (1 + SNR) (assuming that noise is additive
Gaussian). This indicates that it would be sufficient to evaluate the SNR, which may be
easier than I(Z; X) evaluation.

Step 2: Determination of master key lifetime and acceptable key recovery success
rate. In this paper, we define the master key lifetime as the number of temporal keys
generated under a given I(Z; X) or SNR. The master key lifetime should be considered
with the number of calls the target cipher or LR-AE required for the application. At the
same time, we determine an acceptable full-key recovery success rate as a threshold value
of AR ∈ (0, 1].

Step 3: Determination of security parameters. We then determine the security pa-
rameters including the rekeying order d and rekeying interval m (i.e., appropriate trace
complexity bound for the situation) using Theorem 3 such that, for a given AR, the key
lifetime exceeds the desired value determined in Step 2. Namely, for a given AR, we should
determine d and the corresponding maximum value of m with satisfying Inequality (9) and
SRm ≥ 1/2nb such that the master key lifetime requirement is met. If the requirement
cannot be met with practical d and m (see also Remark 4), we need to mitigate/reduce
the leakage by other SCA countermeasures such as masking and hiding.

Here, if we adopt a masking scheme, we do not have to profile masking gadgets
because we can precisely estimate the resulting leakage from masked implementation using
the aforementioned profiling method in [IUH22a]. Alternatively, under some conditions
(see [IUH22a]), we can use another inequality instead of Inequality (9) in the following
corollary:
Corollary 1. Let e be the masking order. Let I(S; L) be the mutual information between
a masking share S and its corresponding leakage L. It holds

ξ

((
1− (1−ARd,m)1/σd,m

)1/ns
)
≤ m log

(
1 + (2nb − 1) (2 ln(2)I(S; L))e+1

)
, (10)

where log and ln are the binary and natural logarithms, respectively.
Proof. It is proven by combining Theorem 3 and a lemma in [IUH22a, MRS22] stating
that I(Z; X) ≤ log

(
1 + (2nb − 1) (2 ln(2)I(S; L))e+1

)
.

Here, I(S; L) is equal to the I(Z; X) of non-masked implementation in some settings;
therefore, Inequality (10) can be used to evaluate the AR on masked implementation from
the profiling result on non-masked implementation, without actual evaluation on masking
gadgets [IUH22a].
Remark 6 (Conditions for Inequality (10)). Inequality (10) is meaningful for a non-trivially
low I(S; L) (i.e., worse SNR) and/or large masking order e, as mentioned in [IUH22a,
Remark 5.1]. At least, it should hold I(S; L) < 2 ln(2) ≈ 0.72 to use Inequality (10). If
I(S; L) is relatively high and e is relatively small, we need to actually profile the adopted
masking gadgets or to use the aforementioned method in [IUH22a]. It should be noted
that Béguinot et al. recently proved another bound in [BCG+23], in which they claim a
more precise evaluation than [IUH22a,MRS22]. It would be useful for the practical and
more precise evaluation, although we used Corollary 1 based on [IUH22a,MRS22] for the
proof-of-concept evaluation in this paper. In other words, for masked implementation,
we can achieve a more precise evaluation if we use a precise inequality about masked
implementations.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 25

Step 4: Actual design/implementation. After determining the parameters that satisfy
the master key lifetime requirement, we conduct an actual design and implementation for
LR4. Here, if we adopt no SCA countermeasure other than LR4, it is sufficient to use a
common non-protected implementation like naïve or reference implementations as it is,
which may have been used in Step 1. Otherwise, a sound masked implementation should be
utilized. The masking scheme used here should be provably secure under a practical leakage
model (e.g., [NRS11,RBN+15,GMK16,GM17,BBD+16]), and implementation should be
done by carefully considering the physical defaults that cause security order degradation
(e.g., coupling, cross-share interaction, and glitches), which have been shown and analyzed
in many studies [RSVC+11,BGG+14,dCBG+17,DCEM18,FGP+18,GMPO20,SCS+21,
SSB+21,MKSM22]. Usage of leakage detection/verification tools, design automation tools
and/or open-source implementations is promising to achieve such a provably secure masked
implementation (e.g., [Rep16, UHMA17, UHMA21, BBC+19, KSM20, SCS+21, SSB+21,
KMMS22,BMRT22]).

6 Validity evaluation
6.1 Numerical evaluation
We show the validity of LR4 through a numerical evaluation of the key lifetime for a given
d and mutual information.

First, we virtually determine the mutual information in Step 1. We set the acceptable
full-key recovery success rate as 1% as an example7 and then evaluate the master key
lifetime for various rekeying orders d (and masking orders e) using Inequality (9) (or
Inequality (10)) with achievable trace bound m for ARd,m = 0.01. Here, we assume that
each rekeying component in LR4 is implemented using one AES encryption call (namely,
Gi(ki, ·) = Eki

(·) where E is AES for any i) for a proof-of-concept evaluation, although
such a plain AES encryption is not an RO. See Section 6.2 for a discussion about the
instantiation of an RO using AES or other symmetric primitives. Note that the evaluation
result under the assumption of one AES encryption call would be consistent with actual
RO instantiations. In addition, we suppose that AES is utilized for encrypting payload
data using a temporal key generated by LR4. The AES encryption for payloads should be
trace-bounded by m, so the key lifetime is given by m×md = md+1, as md corresponds
to the number of generatable temporal keys.

Table 1 and Table 2 list the evaluation results of key lifetime lower-bounds of LR4
with non-masked and masked implementations, respectively, where I(Z; X) is the virtually
determined mutual information value; SR denotes the SR required to satisfy ARd,m = 0.01
with a maximum value of m for a given d (evaluated using Equation (7)); m denotes the
maximum value of m under the conditions evaluated using Inequalities (9) and (10) for
non-masked and masked implementations, respectively; and md+1 denotes a lower-bound
of the maximum number of secure encryption calls with generated temporal keys. “N/A”
means that we cannot derive the value due to the computational difficulty (that is, the
evaluation requires extremely high-precision floating-point arithmetic). Note that rekeying
and masking are not applied if d and e are zero, respectively (if d = 0, the master key is
used for the payload encryption as it is).

The results demonstrate the validity of LR4 as an SCA countermeasure: the key
lifetime increases exponentially (i.e., digit-wisely) by an increase of the rekeying order d in
most parts of the tables. In addition, from Table 2, we confirm that a combination with
masking is more effective for improving key lifetimes if I(Z; X) is sufficiently smaller (i.e.,
the leakage is sufficiently noisy). It should be noted that, in I(Z; X) = 0.01 of Table 2, the

7Even for AR < 0.01, the resulting key lifetime is not very different. Empirically, the key lifetime seems
to be linear to log AR in our experiment.

26 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

Table 1: Key lifetime lower-bound evaluation results of non-masked LR4 for ARd,m = 0.01
d

I(Z; X) = 1 I(Z; X) = 0.1 I(Z; X) = 0.01
SR m md+1 SR m md+1 SR m md+1

0 0.75 6 6 0.75 52 52 0.75 519 519
1 0.67 5 25 0.60 39 1,521 0.52 319 101,761
2 0.61 5 125 0.49 30 27,000 0.38 212 9,528,128
3 0.57 4 256 0.41 24 331,776 0.29 149 492,884,401
4 0.52 4 1,024 0.35 20 3,200,000 0.23 109 15,386,239,549

d
I(Z; X) = 0.001 I(Z; X) = 0.0001

SR m md+1 SR m md+1

0 0.75 5,190 5,190 0.75 51,892 51,892
1 0.46 2,673 7,144,929 0.40 22,405 501,984,025
2 0.30 1,524 3,539,605,824 0.23 10,949 1,312,572,700,349
3 0.21 932 754,507,653,376 0.15 5,821 1,148,128,234,489,681
4 0.15 603 79,723,537,443,243 0.10 3,393 449,696,283,350,000,192

Table 2: Key lifetime lower-bound evaluation results of masked LR4 for ARd,m = 0.01
d e

I(S; L) = 0.01 I(S; L) = 0.001 I(S; L) = 0.0001
SR m md+1 SR m md+1 SR m md+1

0 0 0.75 519 519 0.75 5 K 5 K 0.75 51 K 51 K
1 0.75 76 76 0.75 7 K 7 K 0.75 733 K 734 K
2 0.75 5 K 5 K 0.75 5 M 5 M 0.75 5 G 5 G

1 0 0.52 319 101 K 0.46 2 K 7 M 0.40 22 K 501 M
1 0.58 54 2 K 0.45 3 K 13 M 0.34 258 K 66 G
2 0.46 2 K 7 M 0.31 1 M 2 T 0.23 938 M 881 P

2 0 0.38 212 9 M 0.30 1 K 3 M 0.23 10 K 1 T
1 0.47 41 68 K 0.29 2 K 8 G 0.18 105 K 1 P
2 0.30 1 K 3 G 0.14 569 K 184 P N/A N/A N/A

3 0 0.29 149 492 M 0.21 932 754 G 0.15 5 K 1 P
1 0.39 32 11 M 0.20 1 K 2 T 0.10 47 K 5 E
2 0.21 948 858 G N/A N/A N/A N/A N/A N/A

key lifetime of first-order masked implementation is smaller than non-masked one. This
is because Inequality (10) evaluates a lower-bound of key lifetime for a given ARd,m, but
does not necessarily precisely/tightly represent an actual value under some conditions. As
mentioned in Remark 6, Inequality (10) cannot provide a meaningful evaluation of the
bound if I(S; L) is too low and e is too small. I(S; L) = 0.01 and e = 1 may be such a
condition, but an actual key lifetime would be longer than the non-masked implementation.

6.2 Discussion
6.2.1 Practical instantiations

Standard instantation using SHA-3. The provable security analysis of LR4 assumes
that Gi is an RO and E is an IC. A straightforward instantiations would be e.g., SHA-3
for G (as Gi(ki, ctri) = SHA-3(ki ∥ ctri ∥ i)) and AES for E. If one wants to avoid
multiple distinct primitives for implementation efficiency, E can be also permutation-based,
say using Keccak-p with an adequate domain separation and output truncation (but the
resulting function is non-invertible so it limits the applications). In principle, instead of E
we can use more complex functions, such as nonce-based encryption or AE, possibly using
a permutation. What security/efficiency benefit is expected depends on the scheme we
use, and exploring such combinations would be an interesting future direction.

Instantiation using AES. Our SR evaluation in Section 6.1 assumes a naïve use of AES for
G for ease of evaluation, but this instantiation has a gap from the proof. It is important to
consider secure instantiations using AES owing to its ubiquity and maturity as a symmetric
primitive. We briefly discuss secure instantiations of E and G based solely on an ideal
cipher Ebase.

For simplicity, let Ebase have a key length one-bit longer than E so that we can
generate two independent ideal ciphers, E′ and E′′, from Ebase by using this extra key
bit for domain separation. The problem is how to instantiate G from E′. What we need

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 27

for G is indifferentiability [MRH04] from the fixed-length RO. Note that classical block
cipher-based compression functions (e.g., Davies–Mayer), are not indifferentiable [KM07].
We present two secure examples here. First, if E′ is a block cipher of n-bit block and
n-bit key, we can instantiate G by Mennink’s F 3 construction [Men17], which is n/2-bit
indifferentiability from the (fixed-length) RO and needs three calls of E′. Second, if E′

is a block cipher of n-bit block and 2n-bit key, G can be a 2n-bit indifferentiable hash
function using Hirose’s double-block-length compression function [Hir06] with a proper
domain extension. For example, we can use MDPH [Nai19], which has (n − log n)-bit
indifferentiability [GIM22]. Both examples utilize different primitives and offer different
security levels, so the proper choice will depend on the security goal, application, and the
available primitives.

We should point out that the average computation cost of LR4 is at most two G calls
plus one E call (Section 3), which means the impact of G’s cost on the total computation
is limited. In addition, security evaluation for the aforementioned (secure) instantiations
could be done in the same manner as Section 6.1 as long as we use AES as Ebase.

6.2.2 Conditions for exponential increase of key lifetime.

Interestingly, in Table 1 and Table 2, SR and the trace bound m get more severe for
larger d. For larger d, the attacker can have the larger number of SCA trials (i.e., σd,m

increases), which enables at least one full-key recovery with a smaller value of SR. This
is also represented as Equation (7), which shows a monotonic decrease in terms of σd,m

for a fixed ARd,m. In other words, the key lifetime gets longer by increasing d only if the
gain of md+1 is greater than the decrease of SR and m. In fact, if d is very large, the
key lifetime does not (exponentially) increase and AR decreases anymore by increasing d,
which implies that LR4 is valid as an SCA countermeasure for sufficiently small d.

In contrast, the security of masking is guaranteed as the SR decreases exponentially by
increasing the masking order e. In particular, the security of masking is asymptotically
proven; that is, it holds SRm → 1/2nb as e → ∞, although the exponential increase
may not be guaranteed for a small e [IUH22a]. Thus, the rekeying and masking have
opposite features to each other. A higher-order SCA countermeasure usually incurs a large
performance overhead. If LR4 is available, its adoption can be one of the best choices to
counter SCAs, as it is very efficient for small d and its overhead is practically small (as
shown in Section 3).

6.2.3 On upper-bound of master key lifetime for general rekeying schemes

In the above, we mentioned that the master key lifetime does not increase exponentially
by increasing d if d is (very) large, although it is effective for practical values of d. In
general, the increasing rate gets slower for larger d, and the increase of master key lifetime
eventually stops for a certain value of d, depending on I(Z; X). Intuitively, this is because
the minimum value of SRm should be 1/2nb (as mentioned in Remark 4), although SRm

is monotonically decreasing in terms of d and SRm ∈ [0, 1] to the definition. In fact, any
rekeying scheme including LR4 has an upper-bound of master key lifetime according to
Proposition 2.

Proposition 2 (Attacker with infinite trials almost surely succeeds in at least one full-key
recovery). Let TRσ,m be the probability of at least one success during σ SCA trials with
m-bounded-trace, defined as

TRσ,m = Pr
[

σ⋃
v=1

ns⋂
h=1

rank(k∗
v,h, m) = 1

]
,

28 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

where rank(k∗
v,h, m) denotes the correct key rank of the h-th partial key at the v-th trial

with m traces. With the same assumption as Lemma 1, it holds TRσ,m → 1 as σ →∞;
namely,

Pr
[

lim
σ→∞

σ⋃
v=1

ns⋂
h=1

rank(k∗
v,h, m) = 1

]
= 1,

if SRm ̸= 0.

Proof. If SRm ̸= 0, then it holds Pr[
⋂ns

h=1 rank(k∗
v,h, m) = 1] = (SRm)ns > 0 for any

v, according to the assumption on the SR. Therefore, as the SCA trials are mutually
independent of each other, it holds

∞∑
v=1

Pr
[

ns⋂
h=1

rank(k∗
v,h, m) = 1

]
=∞. (11)

According to the Borel–Cantelli lemma [Fel91, pp. 201–202], Equation (11) is followed by

Pr
[

lim sup
v→∞

ns⋂
h=1

rank(k∗
v,h, m) = 1

]
= 1,

which means that events
⋂ns

h=1 rank(k∗
v,h, m) = 1 (i.e., successful full-key recoveries)

infinitely often occur with probability one. This implies Proposition 2.

Corollary 2. Let ARd,m be the success rate of attack on the d-th order m-bounded-trace
LR4 defined in Definition 1. With the same assumption as Lemma 1, it holds ARd,m → 1
as d→∞ or m→∞.

Proof. It is proven8 by Proposition 2 as the case that TRσ,m = ARd,m with σ = σd,m,
where it holds σd,m →∞ as d→∞ or m→∞. Note that SRm → 1 as m→∞ usually
holds.

Proposition 2 implies that, for a given TR value τ , there always exists the number
of SCA trials σ such that TRσ ≥ τ , and the implementation cannot achieve a master
key lifetime of more than σ with regard to the overall success rate of τ . In other words,
Proposition 2 implies that, for any given AR, we should make SRm approach to zero when
d→∞, although SRm should be greater than 1/2nb . Here, the master key life time σd,m

is maximized by d and m which tightly satisfies Inequality (9) with SRm = 1/2n. Thus,
for a given I(Z; X) (or I(S; L) and masking order) and AR, there exists an upper-bound
of the master key lifetime, distinctly from a brute-force/cryptanalysis on the master key.
Theorem 3 is an upper-bound of the master key lifetime with regard to SCA9, and it is a
case study of LR4. Our discussion emphasizes a (trivial) fact that an ultimate goal of SCA
countermeasures including rekeying is to achieve a (master) key lifetime as long as lifetime
against pure cryptanalysis, such that SCA leakage is no longer useful for the attacker.

Related to Proposition 2, the convergence rate of TR → 1 is very important and
represents the achievable security by rekeying schemes. It depends on the value of I(Z; X).
Fortunately, for LR4, we experimentally confirmed that the convergence is slow for practical
d and a wide range of I(Z; X), which indicates the validity of LR4 security for many

8Note that the proof of Lemma 1 does not include the case where d → ∞ or m → ∞ as the proof
of Proposition 2 requires an interchange between Pr and lim, which indicates that we cannot conclude
ARd,m → 1 as d → ∞ or m → ∞ from Equation (6).

9Abdalla and Bellare also discussed the key lifetime in [AB00]. Their work considered neither the
side-channel adversary nor leakage resilience, whereas this paper focuses on the rekeying security in the
presence of leakage.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 29

practical conditions. In contrast, for very high I(Z; X) (e.g., I(Z; X) = 1), the leakage is
not sufficiently bounded at all, and it is impossible for any SCA countermeasure to protect
such a leaky device (see also [BS21]). Discussion on the convergence rate for a wider range
of I(Z; X) would be useful for achievable security of rekeying schemes. The purpose/goal
of the rekeying scheme is to improve master key lifetime in general; hence, investigating
(the existence of) tighter upper-bounds and the convergence rate for rekeying schemes is
an important future work for making the rekeying security more concrete.

6.2.4 Resilience against fault attacks

We here briefly discuss the resilience of LR4 against fault attacks [BDL97]. A major
fault attack would be differential fault analysis (DFA) [BS97]. DFA recovers the secret
key from pair(s) of correct and faulty ciphertexts for an identical input, where faulty
ciphertext means that an error (e.g., bit flip) is induced to an intermediate value of the
encryption/decryption. For example, in the case of AES encryption, one-bit fault in
the eighth-round input is sufficient for the full-key recovery if the corresponding correct
ciphertext is available [PQ03]. However, the DFA attacker should observe the output of
the symmetric primitive to obtain the pair(s) of correct and faulty ciphertexts. As the
output of ROs of LR4 is not (directly) available for the attacker, DFA is inapplicable to
LR4 implementation (except for the payload encryption). In addition, DFA must require
to query an identical plaintext twice to obtain pair of correct and faulty ciphertexts. If the
LR4 is correctly implemented in such a way as to detect the replayed queries as mentioned
in Section 3.2 (and the payload encryption is nonce-based), ROs (and payload encryption)
never evaluate an identical input more than once, which also indicates the inapplicability
of DFA.

Some other fault attacks have been also developed, such as fault sensitivity analysis
(FSA) [LSG+10, MMP+11], differential fault intensity analysis (DIFA) [GYTS14], and
persistent fault analysis (PFA) [ZLZ+18,ZHF+23]. These fault attacks utilize a statistical
mean for the key recovery like DPAs. Hence, LR4 can offer a leakage resilience by
determining an appropriate trace bound m and m′ similarly to Section 5 (which may be
trivial for some attacks). Moreover, we want to stress that the FSA requires to query
an identical plaintext many times to observe the leakage of fault sensitivity; the DFIA
utilizes the output ciphertext; in addition, PFA is a chosen-plaintext fault attack. Neither
such chosen-plaintext strategies nor RO outputs are avaialble in attacking ROs in LR4;
thus, it would be difficult to apply these fault attacks to ROs in LR4 (in a naïve manner).
Meanwhile, the payload encryption part can be protected using an appropriate trace bound
m′, a fault attack resilient mode of operation, and/or countermeasure against fault attacks
(e.g., fault detection schemes).

Note that fault attacks on hash functions (e.g., SHA-3), which may be a natural choice
for RO instantiation, would be frequently more difficult than block ciphers, although we
basically discuss fault attacks on AES in this section.

7 Relation to existing LR Schemes
7.1 Comparison to LR-PRG/stream cipher
LR-PRG and stream cipher may be used for generating a key stream as a temporal key. For
example, Pietrzak’s LR stream cipher [Pie09] is based on a weak PRF F (whose outputs are
pseudorandom as long as inputs are random) and its initial state is one uniformly random
input of F , in addition to two keys of F which are the master key, and the random input
is sent in clear. F is called in an alternating manner, using an internal state consisting of
two keys and one input to F . Leakage model is different from ours, namely it is assumed
that F leaks a certain amount of bits for each invocation via a leakage function restricted

30 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

on the output size. The security is proved in terms of the pseudorandomness of single
(possibly long) output sequence with leakage (hence the game does not consider multiple
initializations).

One of the advantages of LR4 over LR-PRG/stream cipher is that LR4 offers an explicit
synchronization. LR4 can immediately generate arbitrary temporal keys, which indicates
that LR4 can redeem the communication whenever the synchronization fails (maliciously
or accidentally) and can start a new session without reset. In contrast, LR-PRG and
stream cipher require a reset with a new initialization vector in cases of synchronization
failure or new session beginning. As mentioned in Section 1, an attacker may mount an
SCA on LR-PRG/stream cipher during some first state updates, if the attacker can trigger
resets repeatedly. Thus, an explicit synchronization is essential for an LR rekeying, which
makes LR4 more suitable.

7.2 Relation and comparison to LR-PRFs
As mentioned, known LR-PRFs [MSJ12,FPS12] have structural similarities to our approach
in terms of the use of GGM, but LR4 and [MSJ12,FPS12] are basically incomparable due
to the different leakage models and the assumptions on the primitives. In [FPS12], the
authors assume non-adaptive bounded leakage and a weak PRF as an underlying primitive.
They show how to construct leakage resilient non-adaptive PRF, in which the adversary
non-adaptively chooses the inputs of PRF. In [MSJ12], a formal security proof is not given,
but the authors show that parallel implementation improves the security and efficiency
of GGM-like LR-PRF. In terms of the constructions, two LR-PRFs [MSJ12,FPS12] use
independent public randomness for each node on the path. These public random values
(IVs) are crucial for their security proofs and significantly increase the bandwidth. Moreover,
the generation of these random values must be secure even under leakage, which can be
quite costly in practice. For completeness, we briefly describe GGM and [MSJ12,FPS12]
in Appendix A.

7.3 Applicability of LR4 to LR-AEs
As discussed in Section 4.3, many LR-AE proposals are designed with leveled implemen-
tation [BBC+20] in mind [PSV15, BGP+19, DJS19, KS20, DEM+20, BBB+20, SPS+22].
Although their security assumptions and leakage models vary (as discussed in [BBC+20]),
they share the core idea of combining a leak-free/DPA-resistant component for, for example,
the derivation of a temporal key, and SPA-resistant component(s) using the derived tem-
poral key for the rest of the encryption routine. As we have discussed in Section 4.3, LR4
could be used as a component of existing LR-AEs if they meet certain conditions. However,
these conditions are not always met, particularly when it comes to the tag-generation
function (TGF) (see [BBC+20]). As discussed in Section 4.3, extending LR4 to handle
such case would be an interesting future direction.

Ultimately, the goal of LR-AEs is to improve the temporal key lifetime and change the
key lifetime unit from the number of (tweakable) block cipher calls to AE calls. When
applicable, an LR rekeying scheme contributes to this goal.

8 Conclusion
8.1 Summary
This paper studied rekeying as a power/EM SCA countermeasure and presented a new
higher-order and LR rekeying scheme named LR4. We developed a leakage model for
rekeying to formally prove the security of LR4, and analyzed its performance overhead
and practical usecases. In addition, we defined the success rate of attack on rekeying

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 31

schemes and developed a methodology for evaluating the success rate quantitatively
through a unification of bounded trace complexity and bounded leakage. This is useful for
determining the rekeying frequency for a bounded leakage (defined as a mutual information
value for a given device here) regarding a success rate, which is mandatory for the
practical usage of LR4. Through a numerical evaluation, we confirmed the validity and
effectiveness of LR4 as an SCA countermeasure (as well as masking), as the number of
secure encryption/decryption calls increases exponentially by an increase of rekeying order
under practical conditions.

8.2 Future works
Relaxing security assumption. Our current security proof relies on the idealized primitives.
A standard model-based proof would provide additional confidence (see e.g., [BGPS21]).
It might be possible to remove a (pseudo)random property for G as observed by MSGR.
Moreover, it should be noted that our SR definition is related to the multi-user analy-
sis [DLMS14,BT16,LMP17,HTT18,DGGP21,NSSY22] (as in Remark 3). Clarifying the
relationship would be an interesting future direction.

Investigation of other possible rekeying construction. In this paper, we discussed
the evaluation of LR4 in Section 5.2, but Definition 1 and our evaluation methodology
are readily and naturally generalizable and extendable to other rekeying schemes (as in
Proposition 2 in Section 6.2.3). It is an important future work to investigate efficient
rekeying constructions that make the master key lifetime longer.

Extension to SCAs other than power/EM attack. The focus of this paper was power/EM
SCAs, for which we developed the models, security proofs, and an evaluation methodology.
It would be valuable to extend our theory and methodology to utilize rekeying in a provable
secure manner against other SCAs such as timing and cache attacks.

Acknowledgments
We are grateful to anonymous reviewers and shepherd for their comments and considerations,
which were very useful for improving our paper. This work has been supported by JSPS
Kakanhi Grant No. 19H21526 and JST CREST No. JPMJCR19K5.

A Existing LR-PRFs
Goldreich–Goldwasser–Micali (GGM) scheme [GGM86]. Existing LR-PRFs are based
on the classical Goldreich–Goldwasser–Micali (GGM) PRF that is built on a PRG. Let
f : {0, 1}nf → {0, 1}2nf be a PRG, and let f(K) = (f0(K), f1(K)), where |f0(K)| =
|f1(K)| = nf . To implement a PRF with nf -bit key and d-bit input, GGM builds a
binary tree of depth d. Each node at depth i represents the i-th input bit and the entire
input determines the path from the root to the leaf node, where each edge specifies
whether f0 or f1 is used to derive the key for the child node. More specifically, for input
X = (X1, . . . , Xd) ∈ {0, 1}d and the key k, GGM PRF output is

fXd
(fXd−1(. . . fX3(fX2(fX1(k))) . . .).

Faust–Pietrzak–Schipper (FPS) scheme [FPS12]. The FPS scheme consists in weak
PRF (wPRF), whose outputs are indistinguishable from random only for random inputs.
Let nk denote the secret key bit-length. Let Fk(·) denote an nF -bit-input and nF ′-bit-
output LR-PRF by FPS (nF ′ = 2nk). Let fk(·) denote an nE-bit-input and nF ′ -bit-output

32 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

wPRF. Let f̄k(r; 0) and f̄k(r; 1) be the lower and upper nk bits of fk(r), respectively.
Using nF nE-bit public randomness r1, r2, . . . , rnF

, the FPS scheme evaluates Fk(t) as
Fk(t) = fknF

(rnF
),

ki+1 = f̄ki
(ri; t[i]) (1 ≤ i < nF),

k1 = k.

Faust et al. proved that the above PRF is leakage resilient if both the leakage function
and inputs are non-adaptive.

Medwed–Standaert–Joux (MSJ) scheme [MSJ12]. The MSJ scheme consists in a
multi-ary tree for an improved computational cost, whereas GGM and FPS employ a
binary tree. Let nb denote a positive integer divisible nE , and let ns = nE/nb. Typically,
nb is defined as the bit-length of Sbox (e.g., nb = 8 and ns = 16 for AES). Let t(nb)[i]
(1 ≤ i ≤ ns) denote the i-th digit of t in the 2nb -ary number representation. For example,
t(nb)[i] is typically given by two hexadecimal numbers for AES as 2nb = 162. Using 2nb

distinct public values r0, r1, . . . , r2nb −1, the MSJ scheme evaluates Fk(t) using ns iterative
block cipher calls, as 

Fk(t) = kns+1,

ki+1 = Eki
(rt(nb)[i]) (1 ≤ i ≤ ns),

k1 = k.

The MSJ scheme performs one Fk(t) evaluation with ns encryption calls, which is a
significant reduction from nE = nbns of the GGM scheme. For the MSJ scheme, Medwed
et al. suggested determining the i-th public value ri as ri = i ∥ i ∥ · · · ∥ i, which
increases the trace complexity bound (i.e., decreases the SR or increases the number
of traces). Some improvements and practical evaluations of MSJ have been devoted
in [MSNF16,USS+20,BMPS21].

B Proof of Theorem 1
B.1 H-coefficient technique
Assume that computationally-unbounded adversary A queries to the two worlds: real and
ideal, denoted by Ore and Oid, and tries to distinguish them. The H-coefficient [Pat08,CS14]
is a general technique to evaluate the distinguishing probability of A. We define a transcript
as a set of input/output values that A obtains during the interaction with the world. Let
Tre (resp. Tid) denote the probability distribution of the transcript induced by the real
world (resp. the ideal world). By extension, we also use the same notation to refer to
a random variable distributed according to each distribution. We say that a transcript
τ is attainable if Pr[Tid = τ] > 0 holds with respect to A. Let Θ denote the set of
attainable transcripts. The following is the fundamental lemma of H-coefficient technique;
see e.g. [CS14] for the proof.

Lemma 2. Let Θ = Θgood⊔Θbad be a partition of the set of attainable transcripts. Assume
that there exists ε1 ≥ 0 such that for any τ ∈ Θgood, one has

Pr[Tre = τ]
Pr[Tid = τ] ≥ 1− ε1,

and that there exists ε2 ≥ 0 such that Pr[Tid ∈ Θbad] ≤ ε2. Then |Pr[AOre → 1]−Pr[AOid →
1]| ≤ ε1 + ε2.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 33

B.2 Evaluation of good transcript probability ratio

In Section 4, we defined bad events to show how to partite the set of attainable transcripts
and then showed the evaluation of ε2, i.e., Pr[Tid ∈ Θbad] ≤ d(q +qL)2/2nk+1 +(q +qL)(p+
pI)/2nk + 4m′q/2nbc . All that remains is evaluating a good transcript probability ratio,
i.e., ε1 in Lemma 2.

Lemma 3. For any τ ∈ Θgood, we obtain the following evaluation:

Pr[Tre = τ]
Pr[Tid = τ] ≥ 1.

Proof. Let τ = {QC ,QG1 , . . . ,QGd
,QE ,QL,QK} and τ ∈ Θgood. Let TC , TG1 , . . ., TGd

,
TE , TL, TK denote the random variables of each transcript. Let ∗ ∈ {re, id}. In both real
and ideal worlds, we obtain the following evaluation:

Pr[T∗ = τ]
= Pr[TC = QC , TG1 = QG1 , . . . , TG1 = QGd

, TE = QE , TL = QL, TK = QK]
= Pr[TG1 = QG1 , . . . , TG1 = QGd

, TE = QE]︸ ︷︷ ︸
:=P1∗

× Pr[TK = QK | TG1 = QG1 , . . . , TG1 = QGd
, TE = QE]︸ ︷︷ ︸

:=P2∗

× Pr[TC = QC , TL = QL, | TG1 = QG1 , . . . , TG1 = QGd
, TE = QE , TK = QK]︸ ︷︷ ︸

:=P3∗

:= P1∗ × P2∗ × P3∗.

To prove Lemma 3, we evaluate the lower bound of (P1re · P2re · P3re)/(P1id · P2id · P3id).

Evaluation of P1re and P1id. We first obtain P1re = P1id because the probability
distribution of transcripts defined by the interactions with the oracles G1, . . ., Gd, and
E± are identical in both worlds.

Evaluation of P2re and P2id. In the ideal world, the keys revealed by the construction
oracle (i.e., k

(1)
·,·) are chosen at random and independently from {0, 1}nk . Regarding keys

revealed by the leakage oracle (i.e., k
(0)
·,·), recall that the transcript τ is good; thus, there

is no collision between the revealed keys in the same depth in QK (i.e., Bad1), and there
is no collision between in revealed keys of depth i, k

(0)
i,· , and the input keys of the RO Gi

where i ∈ [d] (i.e., Bad2). Therefore, we obtain P2id = (1/2nk)Σd+1
i=1 nki , where nki is the

number of elements k
(·)
i,· in QK (i.e., the number of revealed keys in i-th depth).

In the real world, keys revealed from the construction oracle are all real, unlike in the
ideal world. However, due to Bad1 and Bad2, we obtain P2re = (1/2nk)Σd+1

i=1 nki in the same
manner as the above discussion of keys revealed by the leakage oracle in the ideal world.
Therefore, we obtain P2re = P2id.

34 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

Evaluation of P3re and P3id. In the ideal world, the construction oracle is TURP P̃±;
thus, TC and TL are independent. Then we obtain the following equations.

P3id := Pr[TC = QC , TL = QL, | TG1 = QG1 , . . . , TG1 = QGd
, TE = QE , TK = QK]

= Pr[TC = QC | TG1 = QG1 , . . . , TG1 = QGd
, TE = QE , TK = QK]︸ ︷︷ ︸

:=P4id

× Pr[TL = QL, | TG1 = QG1 , . . . , TG1 = QGd
, TE = QE , TK = QK]︸ ︷︷ ︸

:=P5id

:= P4id × P5id.

Recall that Cnc is the number of distinct counters in construction queries, and c̃trd
1, . . .,

c̃trd
Cnc are the distinct counters. Also recall that q1, . . ., qCnc are the number of construction

queries whose counter is c̃trd
1, . . ., c̃trd

Cnc, respectively. Since the adversary queries to P̃±

which is independent from other oracles, we obtain

P4id =
Cnc∏
i=1

qi−1∏
j=0

1
(2nbc − j) .

Similarly, we define Lnc as the number of distinct counters in leakage queries, and L̃ctrd
1,

. . ., L̃ctrd
Lnc as the distinct counters. Also, let qL,1, . . ., qL,Lnc be the number of leakage

queries whose counter is L̃ctrd
1, . . ., L̃ctrd

Lnc, respectively; thus, qL,i ≤ m′ for i ∈ [Lnc] and∑Lnc
i=1 qL,i = qL. Here, temporal key values inputted into E in LR4-L, which are derived

from L̃ctrd
1, . . ., L̃ctrd

Lnc, are all distinct due to Bad1. Also, there is no collision between
the temporal keys in LR4-L and input keys of the IC due to Bad3. Thus, we obtain

P5id =
Lnc∏
i=1

qL,i−1∏
j=0

1
(2nbc − j) .

In the real world, unlike the case of P3id, we cannot divide the evaluation of P3re into two
evaluations about TC and TL since they are not independent in the real world. However,
we can discuss the evaluation of P3re in almost the same manner as P5id. We define CLnc
as the number of distinct counters throughout the construction and leakage queries (i.e.,
CLnc ≤ Cnc + Lnc), and C̃Lctrd

1, . . ., ˜CLctrd
CLnc as the distinct counters throughout QC and

QL. Also, let qCL,1, . . ., qCL,CLnc be the summation number of construction and leakage

queries whose counter is C̃Lctrd
1, . . ., ˜CLctrd

CLnc, respectively; thus,
∑CLnc

i=1 qCL,i = q + qL.

As in the case of P5id, all the temporal keys derived from C̃Lctrd
1, . . ., ˜CLctrd

CLnc are distinct
and have no collision with the input key of the IC due to Bad1 and Bad3. Thus, we obtain

P3re =
CLnc∏
i=1

qCL,i−1∏
j=0

1
(2nbc − j) .

We next show P3re ≥ P4id · P5id holds. For ∀i ∈ [CLnc], the query of C̃Lctrd
i in QC and

QL can be classified into any of the following three cases: (Case 1) C̃Lctrd
i is queried only

in QC , (Case 2) C̃Lctrd
i is queried only in QL, (Case 3) C̃Lctrd

i is queried in both QC and

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 35

QL. When (Case 1), there exists i′ ∈ [Cnc] s.t. C̃Lctrd
i = c̃trd

i′ , and qCL,i = qi′ holds; thus,
we obtain

qCL,i−1∏
j=0

1
(2nbc − j) =

qi′ −1∏
j=0

1
(2nbc − j) . (12)

In the same manner as (Case 1), when (Case 2), we obtain the following evaluation:

qCL,i−1∏
j=0

1
(2nbc − j) =

qL,i′′ −1∏
j=0

1
(2nbc − j) , (13)

where i′′ ∈ [Lnc] s.t. C̃Lctrd
i = L̃ctrd

i′′ , and qCL,i = qL,i′′ . When (Case 3), there exists

i′ ∈ [Cnc] and i′′ ∈ [Lnc] s.t. C̃Lctrd
i = c̃trd

i′ = L̃ctrd
i′′ , and qCL,i = qi′ + qL,i′′ holds; thus,

we obtain
qCL,i−1∏

j=0

1
(2nbc − j) >

qi′ −1∏
j=0

1
(2nbc − j) ·

qL,i′′ −1∏
j=0

1
(2nbc − j) . (14)

By multiplying any of the (in)equations (12), (13), (14) for all i ∈ [CLnc], we obtain
P3re ≥ P4id · P5id.

Wrapping up of the proof. From the above three paragraphs, we obtain the following
inequality:

Pr[Tre = τ]
Pr[Tid = τ] = P1re · P2re · P3re

P1id · P2id · P3id
= P3re

P3id
= P3re

P4id · P5id
≥ 1.

This completes the proof.

References
[AB00] Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: A

comparative analysis of the security of re-keying techniques. In Advances in
Cryptology—ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer
Science, pages 546–559. Springer, 2000.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key
cryptography in the bounded-retrieval model. In Advances in Cryptology—
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
36–54, 2009.

[ASB14] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Modelling after-
the-fact leakage for key exchange. In ACM Symposium on Information,
Computer, and Communications Security (ASIA CCS 2014), pages 207–216,
2014.

[BBB+20] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers,
Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi,
Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert,
Balazs Udvarhelyi, and Friedrich Wiemer. Spook: Sponge-based leakage-
resistant authenticated encryption with a masked tweakable block cipher.
IACR Transactions on Symmetric Cryptology, 2020(S1):295–349, 2020.

36 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

[BBC+19] Gilles Barthe, Sonia Balaïd, Gaëtan Cassiers, Pierre-Alan Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated verification
of higher-order masking in presence of physical defaults. In European Sympo-
sium on Research in Computer Security (ESORICS 2019), volume 11735 of
Lecture Notes in Computer Science, pages 300–318. Springer, 2019.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmetric
cryptography: A practical guide through the leakage-resistance jungle. In
Advances in Cryptology—CRYPTO 2022, volume 12170 of Lecture Notes in
Computer Science, pages 369–400, 2020.

[BBD+16] Gilles Barthe, Sonia Balaïd, Fraonçois Dupressoir, Pierre-Alan Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In ACM SIGSAC Con-
ference on Computer Communications Security (CCS 2016), pages 116–129,
2016.

[BCG+23] Julien Béguinot, Wei Cheng, Sylvain Guilley, Yi Liu, Loïc Masure, Olivier
Rioul, and François-Xavier Standeart. Removing the field size loss from Duc
et al.’s conjectured bound for masked encodings. In International Workshop
on Constructive Side-Channel Analysis and Secure Design (COSADE 2023),
volume 13979 of Lecture Notes in Computer Science, pages 86–104, 2023.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Marc Joye and Jean-Jacques Quisquater,
editors, International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2004), Lecture Notes in Computer Science, pages 16–29,
Berlin, Heidelberg, 2004. Springer.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults. In Advances in Cryptology—
EUROCRYPT ’97, pages 37–51, 1997.

[BDSH+14] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jørn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
Towards fresh re-keying with leakage-resilient PRFs: Cipher design principles
and analysis. Journal of Cryptographic Engineering, 4(3):157–171, 2014.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked soft-
ware implementations. In International Conference on Smart Card Research
and Advanced Applications (CARDIS 2014), volume 8968 of Lecture Notes
in Computer Science, pages 64–81, 2014.

[BGP+19] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a leakage-resist AEAD mode for high physical
security applications. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(1):256–320, 2019.

[BGPS21] Francesco Berti, Chun Guo, Thomas Peters, and François-Xavier Standaert.
Efficient leakage-resilient MACs without idealized assumptions. In Advances
in Cryptology—ASIACRYPT 2021 (2), volume 13091 of Lecture Notes in
Computer Science, pages 95–123. Springer, 2021.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 37

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated encryption in the face of protocol and side channel leakage. In
Advanced in Cryptology—ASIACRYPT 2017, volume 10624 of Lecture Notes
in Computer Science, pages 693–723. Springer, 2017.

[BMPS21] Olivier Bronchain, Charles Momin, Thomas Peters, and François-Xavier
Standaert. Improved leakage-resistant authenticated encryption based on
hardware AES coprocessors. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(3):641–676, 2021.

[BMRT22] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
IronMask: Versatile verification of masking security. In IEEE Symposium on
Security and Privacy (SP), pages 142–160, 2022.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition Paradigm.
In ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages
531–545. Springer, 2000.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology—CRYPTO ’97, pages 513–525, 1997.

[BS21] Olivier Bronchain and François-Xavier Standeart. Breaking masked im-
plementations with many shares on 32-bit software platforms: or when
the security order does not matter. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 3:202–234, 2021.

[BSW12] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures.
Journal of Cryptology, 26:513–558, 2012.

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Advances in Cryptology—CRYPTO
2016, Lecture Notes in Computer Science, pages 247–276, 2016.

[CLS15] Benoit Cogliati, Rodolphe Lampe, and Yannick Seurin. Tweaking Even-
Mansour Ciphers. In Advances in Cryptology—CRYPTO 2015 (1), volume
9215 of Lecture Notes in Computer Science, pages 189–208. Springer, 2015.

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, and Fuchun Guo.
Strongly leakage-resilient authenticated key exchange. In Topics in
Cryptology—CT-RSA 2016, volume 9610 of Lecture Notes in Computer
Science, pages 19–36, 2016.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2002), LNCS, pages 13–28, 2002.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In EUROCRYPT, pages 327–350. Springer, 2014.

[dCBG+17] Thomas de Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. Does coupling affect the security of masked
implementations? In International Workshop on Constructive Side-Channel
Analysis and Secure Design (COSADE 2017), volume 10348 of Lecture Notes
in Computer Science, pages 1–18, 2017.

38 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

[DCEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking,
revisited. IACR Transactions on Cryptographic Hardware and Embedded
Systems, (2):123–148, 2018.

[dCGRP19] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful: Mutual information and success rate in
side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(2):49–79, 2019.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennik, Robert Primas, and Thomas Unterlaggauer. Isap v2.0. IACR
Transactions on Symmetric Cryptology, 2020(S1):390–416, 2020.

[DEMM14] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Florian Mendel.
On the security of fresh re-keying to counteract side-channel and fault at-
tacks. In International Conference on Smart Card Research and Advanced
Applications (CARDIS 2014), volume 8968 of Lecture Notes in Computer
Science, pages 233–244. Springer, 2014.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon: Lightweight authentication & hashing, 2021.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In Advances in Cryptology—CRYPTO
2016, volume 9815 of Lecture Notes in Computer Science, pages 272–301,
2016.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete: Or how to evaluate the security of any
leakage device. In Advances in Cryptology—EUROCRYPT 2015, volume
9056 of Lecture Notes in Computer Science, pages 401–429. Springer, 2015.

[DGGP21] Jean Paul Degabriele, Jërôme Govinden, Felix Günther, and Kenneth G.
Paterson. The security of ChaCha20-Poly1305 in the multi-user setting. In
ACM SIGSAC Conference on Computer Communications Security (CCS
2021), pages 1981–2003, 2021.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage. In
Advances in Cryptology—ASIACRYPT 2010, volume 6477 of Lecture Notes
in Computer Science, pages 613–631, 2010.

[DJS19] Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges resist
leakage: The case of authenticated encryption. In Advances in Cryptology—
ASIACRYPT 2019, volume 11922 of Lecture Notes in Computer Science,
pages 209–240, 2019.

[DLMS14] Yuanxi Dai, Jooyoung Lee, Bart Mennik, and John Steinberger. The security
of multiple encryption in the ideal cipher model. In Advances in Cryptology—
CRYPTO 2014, Lecture Notes in Computer Science, pages 20–38, 2014.

[DM19] Christoph Dobraunig and Bart Mennink. Leakage resilience of the duplex
construction. In Advances in Cryptology—ASIACRYPT 2019, volume 11923
of Lecture Notes in Computer Science, pages 225–255. Springer, 2019.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 39

[DMMS21] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Stan-
daert. Exploring crypto-physical dark matter and learning with physical
rounding: Towards secure and efficient fresh re-keying. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 1:373–401, 2021.

[DMP22] Christoph Dobraunig, Bart Mennink, and Robert Primas. Leakage and tam-
per resilient permutation-based cryptography. In ACM SIGSAC Conference
on Computer Communications Security (CCS 2022), pages 859–873, 2022.

[DP08] Stefan Dziembowski and Krzysztof Pietzrak. Leakage-resilient cryptography.
In Annual IEEE Symposium on Foundations of Computer Science (FOCS
2008), pages 293–302, 2008.

[DP10] Yavgeniy Dodis and Kryzsztof Pietzrak. Leakage-resilient pseudorandom
functions and side-channel attacks on Feistel networks. In Advances in
Cryptology—CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 21–40, 2010.

[Fel91] Willilam Feller. An Introduction to Probability Theory and Its Applications,
Volume 1, 3rd Edition. Wiley, 1991.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Transactions on
Cryptographic Hardware and Embedded Systems, (3):89–120, 2018.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2012), volume 7428 of
Lecture Notes in Computer Science, pages 213–232. Springer, 2012.

[GFM13] Berndt Gammel, Wieland Fischer, and Stefan Mangard. Generating a session
key for authentication and secure data transfer. US Patent App. 14/074, 279,
2013. https://patents.google.com/patent/US20100316217.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, 1986.

[GIM22] Chun Guo, Tetsu Iwata, and Kazuhiko Minematsu. New indifferentiability
security proof of MDPH hash function. IET Inf. Secur., 16(4):262–281, 2022.

[GM17] Hannes Gross and Stefan Mangard. Reconciling d + 1 masking in hardware
and software. In International Conference on Cryptographic Hardware and
Embedded Systems (CHES 2017), volume 10529 of Lecture Notes in Computer
Science. Springer, 2017.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. In ACM Workshop on Theory of Implementation Security (TIS 2016),
page 3, 2016.

[GMPO20] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing:
Friend or foe? IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(1):152–174, 2020.

[GSWY20] Chun Guo, François-Xavier Standaert, Weijia Wang, and Yu Yu. Efficient
side-channel secure message authentication with better bounds. IACR Trans-
actions on Symmetric Cryptology, 2019, Issue 4:23–53, 2020.

40 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schau-
mont. Differential fault intensity analysis. In Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pages 49–58, 2014.

[HHN+13] Takafumi Hibiki, Naofumi Homma, Yuto Nakano, Kazuhide Fukushima, Shin-
saku Kiyomoto, Yuta Miyake, and Takafumi Aoki. Chosen-IV correlation
power analysis on KCipher-2 and a countermeasure. In International Work-
shop on Constructive Side-Channel Analysis and Secure Design (COSADE
2013), volume 7864 of Lecture Notes in Computer Science, pages 169–183,
2013.

[Hir06] Shoich Hirose. Some plausible constructions of double-block-length hash
functions. In Fast Software Encryption (FSE 2006), volume 4047 of Lecture
Notes in Computer Science, pages 210–225. Springer, 2006.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough:
Deriving optimal distinguishers from communication theory. In International
Workshop on Cryptographic Hardware and Embedded Systems (CHES 2014),
pages 55–74, 2014.

[HTT18] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The
multi-user security of GCM, revisited: Tight bounds for nonce randomization.
In ACM SIGSAC Conference on Computer Communications Security (CCS
2018), pages 1429–1440, 2018.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The romulus and remus families of lightweight AEAD
algorithms. IACR Trans. Symmetric Cryptol., 2020(1):43–120, 2020.

[ISUH21] Akira Ito, Kotaro Saito, Rei Ueno, and Naofumi Homma. Imbalanced data
problems in deep learning-based side-channel attacks: Analysis and solution.
IEEE Transactions on Information Forensics and Security, 16:3790–3802,
2021.

[IUH21] Akira Ito, Rei Ueno, and Naofumi Homma. Toward optimal deep-learning
based side-channel attacks: Probability concentration inequality loss and
its usage. Cryptology ePrint Archive, Report 2021/1216, 2021. https:
//ia.cr/2021/1216.

[IUH22a] Akira Ito, Rei Ueno, and Naofumi Homma. On the success rate of side-
channel attacks on masked implementations: Information-theoretical bounds
and their practical usage. In ACM SIGSAC Conference on Computer and
Communications Security (CCS 2022), pages 1521–1535, 2022.

[IUH22b] Akira Ito, Rei Ueno, and Naofumi Homma. Perceived information revis-
ited: New metrics to evaluate success rate of side-channel attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 4:228–254,
2022.

[JB17] Bernhard Jungk and Shivam Bhasin. Don’t fall into a trap: Physical side-
channel analysis on ChaCha20-Poly1305. In IEEE/ACM Design, Automation
and Test in Europe Conference and Exhibition (DATE 2017), pages 1110–
1115, 2017.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology—CRYPTO’ 99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397, 1999.

https://ia.cr/2021/1216
https://ia.cr/2021/1216

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 41

[KM07] Hidenori Kuwakado and Masakatu Morii. Indifferentiability of single-block-
length and rate-1 compression functions. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., 90-A(10):2301–2308, 2007.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Auto-
mated generation of masked hardware. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 1:589–629, 2022.

[Koc98] Paul C. Kocher. Leak-resistant cryptographic indexed key update. US Patent
US6539092B1, 1998. https://patents.google.com/patent/US6539092B1/en.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Fast Software Encryption (FSE 2011), volume 6733 of
Lecture Notes in Computer Science, pages 306–327. Springer, 2011.

[KS20] Juliane Krämer and Patrick Struck. Leakage-resilient authenticated encryp-
tion from leakage-resilient pseudorandom functions. In International Work-
shop on Constructive Side-Channel Analysis and Secure Design (COSADE
2020), volume 12244 of Lecture Notes in Computer Science, pages 315–337,
2020.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER—statistical inde-
pendence and leakage verification. In Advances in Cryptology—ASIACRYPT
2020, volume 12491 of Lecture Notes in Computer Seience, pages 787–816,
2020.

[KUH+17] Wataru Kawai, Rei Ueno, Naofumi Homma, Takafumi Aoki, Kazuhide
Fukushima, and Shinsaku Kiyomoto. Practical power analysis on KCipher-2
software on low-end microcontrollers. In Workshop on Security for Embedded
and Mobile System, IEEE European Symposium on Security and Privacy
Workshops (SEMS, EuroSPW 2017), pages 113–121, 2017.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded
leakage resilience. In Advances in Cryptology—ASIACRYPT 2009, volume
5912 of Lecture Notes in Computer Science, pages 703–720, 2009.

[LKO+21] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS: Software-based
power side-channel attacks on x86. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 355–371, 2021.

[LMP17] Atul Luykx, Bart Mennink, and G. Kenneth Paterson. Analyzing multi-key
security degradation. In Advances in Cryptology—ASIACRYPT 2017, volume
10625 of Lecture Notes in Computer Seience, pages 575–605, 2017.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic
Hardware and Embedded Systems (CHES), pages 320–334, 2010.

[Men17] Bart Mennink. Optimal collision security in double block length hashing
with single length key. Des. Codes Cryptogr., 83(2):357–406, 2017.

[Men20] Bart Mennink. Beyond birthday bound secure fresh rekeying: Application to
authenticated encryption. In Advances in Cryptology—ASIACRYPT 2020,
volume 12491 of Lecture Notes in Computer Science, pages 630–661. Springer,
2020.

42 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

[MHM14] Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power
analysis using neural network. In International Conference on Smart Card
Research and Advanced Applications (CARDIS 2014), Lecture Notes in
Computer Science, pages 94–107. Springer International Publishing, 2014.

[MKSM22] Nicolai Müller, David Knichel, Pascal Sasdrich, and Amir Moradi. Transi-
tional leakage in theory and practice: Unveiling security flaws in masked
circuits. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2:266–288, 2022.

[MMP+11] Amir Moradi, Oliver Mischke, Christof Paar, Yang Li, Kazuo Ohta, and
Kazuo Sakiyama. On the power of fault sensitivity analysis and collision
side-channel attacks in a combined setting. In International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), pages 292–311,
2011.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer New York, 2007.

[MOS11] S. Mangard, E. Oswald, and F.-X. Standaert. One for all – all for one:
Unifying standard differential power analysis attacks. IET Information
Security, 5(2):100–110, June 2011.

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: securing multiple parties
against side-channel and fault attacks. In International Conference on Smart
Card Research and Advanced Applications (CARDIS 2011), volume 7079 of
Lecture Notes in Computer Science, pages 115–132. Springer, 2011.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (ex-
tended abstract). In Theory of Cryptography Conference (TCC 2004), volume
2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Theory of Cryptography Conference (TCC 2004), volume
2951 of Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

[MRS22] Loïc Masure, Olivier Rioul, and François-Xavier Standaert. A nearly tight
proof of Duc et al.’s conjectured security bound for masked implementa-
tions. In International Conference on Smart Card Research and Advanced
Applications (CARDIS), volume 13820 of Lecture Notes in Computer Science.
Springer, 2022.

[MS14] Taha Mostafa and Patrick Schaumont. Key updating for leakage resiliency
with application to AES modes of operation. IEEE Transactions on Infor-
mation Forensics and Security, 10(3):519–528, 2014.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh re-keying: Security against side-channel and fault
attacks for low-cost devices. In Progress in Cryptology—AFRICACRYPT
2010, volume 6055 of Lecture Notes in Computer Science, pages 279–296.
Springer, 2010.

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards
super-exponential side-channel security with efficient leakage-resilient PRFs.
In International Workshop on Cryptographic Hardware and Embedded Systems

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 43

(CHES 2012), volume 7428 of Lecture Notes in Computer Science, pages
193–212. Springer, 2012.

[MSNF16] Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov, and Martin
Feldhofer. Unknown-input attacks in the parallel setting: Improving the
security of the CHES 2012 leakage-resilient PRF. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology—ASIACRYPT 2016, pages
602–623. Springer Berlin Heidelberg, 2016.

[Nai19] Yusuke Naito. Optimally indifferentiable double-block-length hashing with-
out post-processing and with support for longer key than single block. In
Progress in Cryptology—LATINCRYPT 2019, volume 11774 of Lecture Notes
in Computer Science, pages 65–85. Springer, 2019.

[Nat23] National Institute of Standards and Technology. Lightweight cryptography,
March 2023.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. Journal of
Cryptology, 24(2):292–321, 2011.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage.
In Advances in Cryptology—CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 18–35, 2009.

[NSS20] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenticated
encryption mode suitable for threshold implementation. In Advances in
Cryptology—EUROCRYPT 2020, volume 12106 of Lecture Notes in Computer
Science, pages 705–735, 2020.

[NSS22] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Secret can be public: Low-
memory AEAD mode for high-order masking. In Advances in Cryptology—
CRYPTO 2022, Lecture Notes in Computer Science, July 2022. https:
//eprint.iacr.org/2022/812.

[NSSY22] Yusuke Naito, Yu Sasaki, Takeshi Sugawara, and Kan Yasuda. The multi-
user security of triple encryption, revisited: Exact security, strengthening,
and application to TDES. In ACM SIGSAC Conference on Computer
Communications Security (2022), pages 2323–2336, 2022.

[Pat08] Jacques Patarin. The “coefficients H” technique. In Selected Areas in
Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
328–345. Springer, 2008.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The Curse of Class Imbalance and Conflicting Metrics with
Machine Learning for Side-channel Evaluations. IACR Transactions on
Cryptographic Hardware and Embedded Systems, (1):209–237, 2019.

[Pie09] Kryzsztof Pietzrak. A leakage-resilient mode of operation. In Advances in
Cryptology—EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer
Science, pages 462–482, 2009.

[PM16] Peter Pessl and Stefan Mangard. Enhancing side-channel analysis of binary-
field multiplication with bit reliability. In Topics in Cryptology—CT-RSA
2016, volume 9610 of Lecture Notes in Computer Science, pages 255–270.
Springer, 2016.

https://eprint.iacr.org/2022/812
https://eprint.iacr.org/2022/812

44 Fallen Sanctuary: A Higher-Order and Leakage-Resilient Rekeying Scheme

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack tech-
nique against SPN structures, with application to the AES and Khazad. In
International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 77–88, 2003.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic prim-
itives. In ACM SIGSAC Conference on Computer and Communications
Security (CCS 2015), pages 96–108, 2015.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svelta Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology—
CRYPTO 2015, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015.

[Rep16] Oscar Reparaz. Detecting flawed masking schemes with leakage detection
tests. In Fast Software Encryption (2016), volume 9783 of Lecture Notes in
Computer Science, pages 204–222, 2016.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.3,
2018. https://doi.org/10.17487/RFC8446.

[RSVC+11] Mathieu Renauld, François-Xavier Standeart, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre. A formal study of power variability issues
and side-channel attacks for nanoscale devices. In Advances in Cryptology—
EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 109–128, 2011.

[RTM18] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The Datagram
Transport Layer Security (DTLS) protocol version 1.3—draft-ietf-tls-dtls13-
43, 2018. https://tools.ietf.org/html/draft-ietf-tls-dtls13-43.

[SCS+21] A. Madura Shelton, Łukasz Chmielewski, Niels Samwel, Markus Wagner,
Lejla Batina, and Yuval Yarom. Rosita++: Automatic higher-order leakage
elimination from cryptographic code. In ACM SIGSAC Conference on
Computer Communications Security (CCS 2021), pages 685–699, 2021.

[SMY09] François-Xavier Standeart, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Advances in
Cryptology—EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer
Science, pages 443–461, 2009.

[SPS+22] Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Classiers,
and Corentin Verhamme. Triplex: an efficient and one-pass leakage-resistant
mode of operation. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 4:135–162, 2022.

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. Leakage Resilient Cryptography in Practice,
pages 99–134. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[SSAQ02] David Samyde, Sergei Skorobogatov, Ross Anderson, and Jean-Jacques
Quisquater. On a new way to read data from memory. In First International
IEEE Security in Storage Workshop, pages 65–69, 2002.

Rei Ueno, Naofumi Homma, Akiko Inoue and Kazuhiko Minematsu 45

[SSB+21] A. Madura Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. In Network and Distributed System Security
Symposium (NDSS 2021), 2021.

[TT21] Martin Thomson and Sean Turner. Using TLS to secure QUIC. RFC 9001,
2021.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation. In IEEE/ACM Design,
Automation and Test in Europe Conference and Exhibition (DATE 2004),
pages 246–251, 2004.

[UHMA17] Rei Ueno, Naofumi Homma, Sumio Morioka, and Takafumi Aoki. Automatic
generation of formally-proven tamper-resistant Galois-field multipliers based
on generalized masking scheme. In Design, Automation and Test in Europe
Conference and Exhibition (DATE 2017), pages 978–983. IEEE, 2017.

[UHMA21] Rei Ueno, Naofumi Homma, Sumio Morioka, and Takafumi Aoki. A sys-
tematic design methodology of formally proven side-channel-resistant crypto-
graphic hardware. IEEE Design & Test, 38(3):84–92, 2021.

[USS+20] Florian Unterstein, Marc Schink, Thomas Schamberger, Lars Tebelmann,
Manuel Ilg, and Johann Heyszl. Retrofitting leakage resilient authenticated
encryption to microcontrollers. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2020(4):365–388, 2020.

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical
leakage-resilient pseudorandom generators. In ACM SIGSAC Conference on
Computer and Communications Security (CCS 2010), pages 141–151, 2010.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(1):1–
36, 2019.

[ZHF+23] Fan Zhang, Run Huang, Tianxiang Feng, Xue Gong, Yulong Tao, Kui Ren,
Xinjie Zhao, and Shize Guo. Efficient persistent fault analysis with small
number of chosen plaintexts. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2023(2):519–542, 2023.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi
Ding, Samiya Qureshi, and Kui Ren. Persistent fault analysis on block
ciphers. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(3):150–172, 2018.

[ZS18] Mark Zhao and G. Edward Suh. FPGA-based remote power side-channel
attacks. In 2018 IEEE Symposium on Security and Privacy (SP), pages
229–244, 2018.

	Introduction
	Background
	Our contributions
	Conventional studies on rekeying
	Paper organization

	Preliminaries
	Basic notations
	Attack/leakage models for LR cryptography

	Proposed scheme
	Basic concept
	Caching intermediate keys for improved SCA security and computational efficiency
	Comparison with state-of-the-art

	Provable security analysis on LR4
	Security definition
	Security bound for LR4
	Applications of LR4

	Quantitative success rate evaluation methodology for rekeying schemes
	SCA backgrounds and success rate
	Formal analysis on success rate of SCA on LR4
	Practical usage of LR4

	Validity evaluation
	Numerical evaluation
	Discussion

	Relation to existing LR Schemes
	Comparison to LR-PRG/stream cipher
	Relation and comparison to LR-PRFs
	Applicability of LR4 to LR-AEs

	Conclusion
	Summary
	Future works

	Existing LR-PRFs
	Proof of Theorem 1
	H-coefficient technique
	Evaluation of good transcript probability ratio

