
Quasilinear Masking to Protect ML-KEM
Against Both SCA and FIA⋆

Pierre-Augustin Berthet1,2[0009−0005−5065−2730] (�), Yoan
Rougeolle2[0009−0004−7088−6203], Cédric Tavernier2[0009−0007−5224−492X],

Jean-Luc Danger1[0000−0001−5063−7964], and Laurent
Sauvage1[0000−0002−6940−6856]

1 Télécom Paris, 19 Place Marguerite Perey, F-91123 Palaiseau Cedex, France
{(�)berthet,jean-luc.danger,laurent.sauvage}@telecom-paris.fr

2 Hensoldt SAS France, 115 Avenue de Dreux, 78370 Plaisir, France
{pierre-augustin.berthet,yoan.rougeolle,cedric.tavernier}@hensoldt.net

Abstract. The recent technological advances in Post-Quantum Cryp-
tography (PQC) raise the questions of robust implementations of new
asymmetric cryptography primitives in today’s technology. This is the
case for the lattice-based Module Lattice-Key Encapsulation Mechanism
(ML-KEM) algorithm which is proposed by the National Institute of
Standards and Technology (NIST) as the first standard for Key Encap-
sulation Mechanism (KEM), taking inspiration from CRYSTALS-Kyber.
We must ensure that the ML-KEM implementation is resilient against
physical attacks like Side-Channel Analysis (SCA) and Fault Injection
Attacks (FIA). To reach this goal, we propose to adapt a masking coun-
termeasure, more precisely the generic Direct Sum Masking method
(DSM). We extend previous results from a paper using Reed-Solomon
codes on AES for Code-Based Masking (CBM). This work present a
complete masked implementation of ML-KEM with both SCA and FIA
resilience thanks to the error correcting capabilities of Code-Based Mask-
ing. Due to the structure of this masking, we propose new generic so-
lutions to address the non-linear parts of ML-KEM, with algorithmic
optimizations. To do so, we develop a new conversion methodology be-
tween boolean and arithmetic Code-Based Maskings in the specific case
of ML-KEM. Performances on a laptop as well as on a SAM4S micro-
controller are detailed. Security is experimentally verified by performing
a Test Vector Leakage Assessment (TVLA) on a SAM4S target thanks
to a Chipwhisperer Husky. We also provide formal proofs of security in
the SNI model.

Keywords: Post-Quantum Cryptography · ML-KEM · Side-Channel Analysis
· Masking · Code-Based Masking · Code-Based Masking Conversion

⋆ Supported by Agence de l’Innovation de Défense, Ministère des Armées, France,
Grant 2022156 Thèse CIFRE Défense.

1 Introduction

The likelihood of an efficient quantum computer in the coming 30 years is high
[MP22]. Such a computer would be able to break current asymmetric cryptog-
raphy primitives by taking advantage of the Shor quantum algorithm [Sho94].
The NIST launched a standardization process for PQC in 2016 [CCJ+16]. This
international competition aims to standardize digital signature and KEM pro-
tocols secured against quantum and classical computers. Three signatures and
one KEM were selected [AAC+22] while 4 other KEMs are heading for a fourth
round to serve as alternatives in case of a cryptanalysis breakthrough 3. At the
time of writing this work, three out of four selected candidates are now in their
final standard version: ML-KEM or FIPS 203 [MLK24], ML-DSA or FIPS 204
[MLD24] and SLH-DSA or FIPS 205 [SLH24].

On the other hand, we have to take into account side channel threats. Since
the late 1990s and the publication of Kocher on Side-Channel Analysis [Koc96],
physical attacks try to take advantage of physical leakages or faults injected
within the implementation to recover sensitive data. The recent Post-Quantum
Cryptography (PQC) primitives are particularly targeted as their implementa-
tion still requires secure architectures and analysis to make them robust against
these physical attacks.

1.1 Background on Masking

One of the most efficient and proven countermeasure against SCA is masking
[CJRR99]. The core idea is to avoid manipulating a sensitive data but instead
random shares of it that are reassembled once the computations are done. The
shares are a combination of the sensitive data and a number of random vari-
ables called masks. We denote by sharing the set of shares masking a sensitive
value. The order of masking is determined by the minimum number of shares an
attacker needs to recover the secret data. A high-order masking means a better
security against differential attacks but it generally comes at the cost of worse
performances and space.
Classical masking involves either arithmetic masking, where the random masks
are subtracted or added to the secret, or boolean masking where the random
masks are XORed with the secret. In this paper we use a variant of the Direct
Sum Masking (DSM) introduced by Bringer et al. [BCC+14], namely a Code-
Based Masking adapted from Carlet et al. [CDGT24].
We focus on ML-KEM [MLK24], inspired by CRYSTALS-Kyber [SAB+22], a
post-quantum PKE/KEM. There are several publications on how to mask it
with classical masking. For instance, Heinz et al. [HKL+22] proposed the first
open-source implementation of a masked Kyber on microprocessor while relying
on the work of Oder et al. [OSPG18] on previous lattice-based primitives. Bos

3 SIDH/SIKE [JAC+22], one of the KEMs of the 4th round, fell victim to such break-
throughs [CD23,MMP+23,Rob23,FP22], stressing the need for alternative standards
and hybridization

2

et al. [BGR+21] proposed a masked software implementation of Kyber while
Bronchain and Cassiers [BC22] proposed new gadgets for Arithmetic to Boolean
(A2B) and Boolean to Arithmetic (B2A) conversions and tested them in an
open-source masked implementation of CRYSTALS-Kyber for microprocessors.
When it comes to SCA and FIA resilient implementations, Heinz and Pöppelmann
[HP23] proposed a combined fault and DPA protection for lattice-based cryp-
tography. However, they only secured the linear parts of the algorithm and were
not able to correct faults. Fault attacks against masked implementations of ML-
KEM are a real concern, with work from Delvaux [DM21] and Kundu et al.
[KCS+24] successfully using FIA to break masked implementations of ML-KEM
on microcontroller. Thus, there is a clear need for solutions with better resilience
to combined attacks using SCA and FIA. Our work aims not only to provide
such a solution with wider possibilities for error detection, but also to add an
error correcting capability that does not yet exist to this day in the state-of-the-
art literature regarding masked ML-KEM up to our knowledge. The correction
capacity can be useful for satellite applications where cosmic radiation can fault
the computations.

1.2 Our Contributions

We extend results from a previous work on AES from Carlet et al. [CDGT24]
to apply Code-Based Masking on a post-quantum cryptography primitive with
finite fields, namely ML-KEM. We detail first- and third-order masking method
for this algorithm, with a built-in solution against FIA. There is currently no
other solution in the state-of-the-art capable of providing resilience against both
SCA and FIA for the entirety of the algorithm. The only existing solution for
combined protection from Heinz and Pöppelmann [HP23] only covers the Num-
ber Theoretic Transform (NTT) used in ML-KEM and does not correct errors.

By construction, Code-Based Masking is restrictive and masking some key func-
tions requires to perform new algorithmic methods. Hence, we present in this
paper some efficient alternatives to the state-of-the-art [BGR+21,BC22] regard-
ing the masking techniques.
Noticeably, ML-KEM alternates between arithmetic computations and the use
of boolean functions. We study some conversions between different Code-Based
Maskings for the specific case of ML-KEM.While conversions between arithmetic
and boolean masking have been widely studied, there is currently no literature
on conversions between Code-Based Masking procedures.
ML-KEM contains non-linear functions like the compression function and cipher-
text comparison. We propose generic masking solutions for these functions using
Lagrangian interpolations. To optimize the algorithmic complexity, we use the
Paterson and Stockmeyer [PS73] method to evaluate polynomials. We adapt this
method to evaluate masked polynomials in a finite field of characteristic q ̸= 2,
compared to current literature only covering q = 2. We also use Fermat’s little
theorem to further reduce the cost of evaluating Lagrangian interpolations. We
provide details on the complexity of evaluating such interpolations in a secure
manner.

3

Code-Based Masking can be used to encode several sensitive data within one
mask through a process introduced by Wang et al. [WMCS20] called Cost-
Amortization. We study the application of this method to ML-KEM and provide
some details on how to switch from a masking using Cost-Amortization to one
not using it and vice versa. We perform this switch for Code-Based Masking in
characteristic 2.

A Test Vector Leakage Assessment (TVLA) [GGJR+11] is performed on isolated
gadgets as well as on compositions of gadgets, providing experimental validation
of our security claims at the first order of masking. Regarding formal security,
we provide an estimation of the resilience of our design in the SNI model from
Barthe et al. [BBD+16].

We provide some performances from a PoC on a laptop equipped with a 11th
Gen Intel(R) Core(TM) i7-11850H CPU and 16GB of RAM, as well as on a
SAM4S microcontroller. The performances are compared with a state-of-the-art
implementation from [BGR+21].

The paper is structured as follows: in Section 2, we introduce the notations
and the ML-KEM algorithm. In Section 3, we present the adaptation of the
Code-Based Masking gadgets from [CDGT24] to ML-KEM. The conversion and
the secure polynomial evaluation are studied respectively in Section 4 and 5. An
estimation of the security based on experiments is proposed in Section 7. Finally,
in Section 8, we discuss about the performances. The Section 9 concludes our
paper.

2 Preliminaries

2.1 Notations

We consider the finite field Fq with q a prime integer. Let ν a primitive element
of Fq. We assume that if an integer µ ̸= 0 mod q divides q − 1, then we have

ω = ν
q−1
µ ⇒ ωµ = 1.

For any vector (u0, ..., uµ−1) ∈ Fµ
q , we can associate the polynomial U(X) =

u0 + u1X + . . . + uµ−1X
µ−1. The Discrete Fourier Transform (DFT) and its

inverse (IDFT or DFT−1) are defined by

DFTω(u0, ..., uµ−1) =
(
U(ωj)

)
j∈[0···µ−1]

,

IDFTω(U(1), . . . , U(ωµ−1)) = (u0, ..., uµ−1).

The DFTω operation is equivalent to a Vandermonde matrix multiplication
V (ω) with V (ω) = (ωij)i,j∈J0,µ−1K and

DFTω(u0, ..., uµ−1) = (u0, ..., uµ−1)× V (ω). (1)

We perform DFT−1 by composing the DFT with a permutation.

4

Given a code length l ∈ N and a code dimension k ∈ N, for length l vectors of
the form (u0, ..., uk−1, 0, . . . , 0), the DFTω operation corresponds to an encoding
procedure by the Reed-Solomon code denoted: RS[l, k, l − k + 1]. A generator
matrix of this code is given by the shortened matrix (ωij)i∈J0,k−1K,j∈J0,2k−1K.
We recall some results that can be found in [RS02]: this error correcting code is
classic, it is a MDS (maximum distance separable) code, which means that its
minimal distance is optimal and equals l − k + 1 where l is code length and k
is its dimension. Among the good properties of these codes, we have, if R is a
generator matrix of MDS code RS of length l and dimension k that:

– IfRS is MDS, thenRS⊥ is MDS whereRS⊥ is the code defined by kernel(R);
– If RS is MDS, then all set of k columns are linearly independent.

We remind that any [l, k, l− k + 1]-linear code can detect up to l− k errors.
We denote by τ the number of sensitive data encoded within one mask sharing.

Let two vectors V1 and V2 in Fl
q, then we define the operation V = V1 ⊙ V2 with

V ∈ Fl
q satisfying ∀i ∈ J0, l − 1K, V [i] = V1[i]× V2[i] over Fq.

2.2 ML-KEM

ML-KEM or FIPS 203 [MLK24] is the first post-quantum KEM standard by the
NIST. It relies on several instances of the Module-LWE/LWR problems and is
based on the LPR [LPR10] framework.
ML-KEM has a CPA-Secure PKE core. To ensure CCA-level of security and a
KEM status, a modified version of the Fujisaki-Okamoto Transform [FO99] is
used.
ML-KEM has three levels of security, with different parameter sets ([MLK24]
Table 2 page 39). All sets use the same modulo, namely q = 3329 and mes-
sage length n = 256. We also denote Fq[X]/(Xn + 1) by Rq and Sη := {P ∈
Rq, ∥P∥∞ ≤ η} a subset of Rq.

Amongst the other notations defined by ML-KEM, we have ⌈·⌋, the nearest
integer with ties rounded up. It is used in the compression and decompression
functions, defined as follow:

Compressq(α, di) =

⌈
2di

q
· α
⌋
mod 2di , α ∈ Fq (2)

Decompressq(β, di) =
⌈ q

2di
· β
⌋
, β ∈ F2di (3)

For a vector of polynomials, these two functions are applied to each coefficient
of each polynomial separately.

Remark 1. For di = 1, the Decompressq function can be seen as a multiplication
by a scalar, as the value β in the equation 3 can be extracted from the rounding
as it can only be 0 or 1. Thus, we have ⌈ q

2 · β⌋ = 1665 · β.

5

Remark 2. The compression functions are lossy:

If m′ = Decompressq(Compressq(m, di), di), then |m−m′| ≤ ⌈q/2di+1⌋ (4)

The compression and decompression functions are used in the message process-
ing as well as in the ciphertext comparison. The compression is non-linear and
requires a specific masking strategy. The decompression is often used on public
data (apart from its usage on the message documented in Remark 1) and thus
does not require to be masked.

In ML-KEM, the distribution used for random sampling of sensitive values
is the Center Binomial Distribution (CBD):

CBDη(β) =

n−1∑

i=0

(

η∑

j=0

β2iη+j −
η∑

j=0

β2iη+η+j)X
i with β ∈ {0, 1}2×n×η (5)

This function is fed with a pseudo-random input β, generated with a nonce N
by the PseudoRandom Function PRF:

PRF(seed,N) = SHAKE256(seed∥N). (6)

SHAKE256 is a hash function described in the FIPS 202 standard [Dwo15]. The
counter N allows the seed reuse for the multiple values sampled during the PKE
algorithms of ML-KEM. It is incremented after each call to CBD.

KEM.Decaps and its subfunctions PKE.Decrypt and PKE.Encrypt are presented
in the Algorithm 1.

Algorithm 1: ML-KEM Decapsulation, Encrypt and Decrypt

1 Procedure PKE.Encrypt(pk = (A, t⃗), seed,m):
2 r⃗, e⃗1, e2 sampled with CBD from seed
3 u⃗ = A · r⃗ + e⃗1
4 v = t⃗⊥ · r⃗ + e2 +Decompressq(m, 1)
5 return c = (Compressq(u⃗, du), Compressq(v, dv))

6

7 Procedure PKE.Decrypt(c = (cu, cv), s⃗):
8 u⃗ = Decompressq(cu, du), v = Decompressq(cv, dv)

9 return m = Compressq(v − s⃗⊥ · u⃗, 1)
10

11 Procedure KEM.Decaps(c = (cu, cv), sk = (s⃗, pk, h = H(pk), z)):
12 m′ := PKE.Decrypt(s⃗, c)
13 (K ′, seed′) := G(m′∥h)
14 K̃ = J(z∥c, 32)
15 c′ := PKE.Encrypt(pk,m′, seed′)
16 if c ̸= c′ then
17 K ′ = K̃
18 end
19 return K ′

6

Remark 3. H,G and J are all different Keccak [Dwo15] instances.

More information about ML-KEM are available in the FIPS 203 standard from
the NIST [MLK24] and the CRYSTALS-Kyber specification papers [SAB+22].

2.3 Formal Security Proofs and Masking

t−probing Security The security of the masking was first formalized by Ishai
et al. in [ISW03]. They introduced the t−probing model. In this model an at-
tacker has access to t wires within the circuit. These t accesses are formally
represented as a physical access to the device under an attack using measure-
ment of t probes, and it is defined as follows:

Definition 1. (Probing security [ISW03]). A circuit is t−probing secure if and
only if any set of at most t intermediate variables is independent from the secret.

Compositional Security Probing security does not necessarily scale to the
composition of t−probing secure gadgets [CPRR14]. Thus, other criterion are
used in literature to ensure composition security. The most used in the literature
are the t−Non-Interference (t−NI) and the t−Strong Non-Interference (t−SNI)
criteria from Barthe et al. [BBD+16]. They define the notion of simulatability
as follows:

Definition 2. (Simulatability, [BBD+16,WMCS20]) Let P be a set of probes of
a circuit (resp. gadget) C with input variables χ and let χ′ ⊆ χ. A simulator is

a randomized function S: F|χ′|
q → F|P|

q . A distinguisher is a randomized function

D: (F|P|
q ,F|χ|

q) → {0, 1}. The set of probes P can be simulated (resp., simulated
under valid input sharings) with input χ′ if and only if there exists a simulator

S such that for any distinguisher D and any input x ∈ F|χ|
q (resp., any valid input

sharings), we have:

Pr[D(CP(x), x) = 1] = Pr[D(S(x|χ′ , χ) = 1],

where the probability is over the random coins in C,S and D and x|χ′ denotes the
elements of x corresponding to the inputs in χ′.

There exist different strategies to prove that an implementation meets the t−SNI
criterion such as studying the composition of t−NI and t−SNI gadgets or design-
ing a correct circuit. Compared to the t−probing model, the Non-Interference
model benefits from gadget composition properties. We have the following defi-
nition:

Definition 3. (Non-Interference security [BBD+16]). A circuit is said to be
t−Non-Interference secure (t−NI) if and only if any set of at most t intermediate
variables can be perfectly simulated from at most t shares of each input.

7

The Strong Non-Interference security is a stronger notion than Non-Interference
security as it additionally guarantees the independence between input and output
sharings. The latter property is very convenient to securely compose gadgets
with related inputs. Hence, the composition of t−SNI gadgets is itself t−SNI.
The criterion is defined as follows:

Definition 4. (Strong Non-Interference security [BBD+16]). A circuit is said
t−Strong Non-Interference secure (t−SNI) if and only if any set of at most t
intermediate variables whose t1 on the internal variables (id est intermediate
variables except the output’s ones) and t2 on output variables can be perfectly
simulated from at most t1 shares of each input.

A consequence, we have the following implications:

t− SNI ⇒ t−NI ⇒ t− probing (7)

Regarding the composition of t−NI and t−SNI gadgets, we have the following
lemma:

Lemma 1. (Composability of t−NI and t-SNI gadgets [WMCS20]). A composi-
tion of gadgets is t−NI if all gadgets are t−NI or t−SNI, based on the following
composition rule: each sharing is used at most once as input of a gadget other
than t−SNI refresh gadget. Moreover, a composition of gadgets is t−SNI if it is
t−NI and the output sharings are from t−SNI gadgets.

A key gadget in the t−SNI model is the Refresh gadget. It is essential
in turning t−NI gadgets into t−SNI gadgets and thus a major element within
t−SNI model proofs. It is defined as follows:

Definition 5. (t−SNI Refresh gadget [BBD+16,WMCS20]). A t−SNI refresh
gadget is a t−SNI gadget with one input sharing and one output sharing that
ensures correctness for the identity function.

3 Code-Based Masking for ML-KEM

Arithmetic or boolean masking can be seen through the scope of code theory as
reduced parity codes. On the other hand, Direct-Sum Masking (DSM) is more
generic. In this paper, we use a specific type of DSM introduced by Carlet et al.
[CDGT24]: Quasilinear Code-Based Masking.

3.1 Masking gadget

The DSM method uses the following function to mask an element x:

∀x⃗ ∈ K, r⃗ random ∈ K, MaskDSM (x⃗, r⃗) = x⃗ ·G+ r⃗ ·H (8)

In Equation 8, the matrix G refers to a generator of a code C and H to a parity-
check matrix for the code C.

8

Carlet et al. [CDGT24] use the Reed-Solomon codes with the DSM framework.
This allows the use of the Discrete Fourier Transform (DFT) in many operations
within this Code-Based Masking, like fault detection, masked multiplication and
all of this operation are performed in quasilinear time. The Mask function is
defined as follows:

Mask(x) = (x, r⃗) ·A−1 · V (ω) (9)

with A =



1 1
α α2 . . .
. . .


 , V (ω) =



1 1 1 1
1 ω ω2 ω3 . . .

. . .


 ,

The choice of α and ω depends on the code’s field Fq. Given field order q, (q1, q2)
coprime subfactors of q − 1 and a primitive root ν in Fq, we take α = νq2 and
ω = νq1 . These conditions are sufficient according to [CDGT24]. The product
A−1 · V (ω) can be seen as an encoder tied to a Reed-Solomon code.

Remark 4. The matrice V (ω) is a Vandermonde matrice. By setting (x, r⃗) =

(c0, c1, . . . , ck−1) = c⃗, c⃗ × A−1 = (p0, p1, . . . , pk−1) and P (X) =
∑k−1

i=0 piX
i,

another equation for this Code-Based Masking is Mask(x) = DFTω(P (X)). Inter-
estingly, by setting (uj)

i = Ai,j , we have that P satisfies P (ui) = ci.

Formal security of the masking gadget We first introduce the notion of
Generic encoder from [WMCS20]:

Definition 6. (Generic encoder, [WMCS20]). Let τ, k and l be three positive
integers, a generic encoder is a code-based encoder with the following restriction

on R ∈ F(τ+m)×l
q :

– G is the τ × l upper part of R, which is the part multiplied by the encoded
variables. Rank(G) = τ and we refer to CG for the code generated by G.

– H is the (k− τ)× l lower part of R, which corresponds to the part multiplied
by the randomness. Rank(H) = (k − τ) and we refer to CH for the code
generated by H.

– CG ∩ CH = {0}.
The encoding procedure corresponds to the operation

Mask : x ∈ Fτ
q → (x, r) ∈ Fk

q → (x, r)×R.

Proposition 1. (Generic encoders and t−privacy, [WMCS20]) . Let Mask be a
generic encoder, let d denote the minimal distance of CH⊥ , then Mask is t−private
with:

t = max{i ∈ {0, . . . , l} : ∀w ∈ {CH⊥}i, GwT = 0T }, (10)

= d− 1 + max{i ∈ {0, . . . , l − d+ 1} : ∀w ∈ {CH⊥}d−1+i, GwT = 0T }.(11)

Proposition 2. Mask is a (d− τ)−private generic encoder.

Proof. Mask has been proven (d− τ)−probing secure by [CDGT24] and by con-
struction it satisfies the definition 6 and the proposition 1. ⊓⊔

9

3.2 Addition and scaling

Let z⃗ = Mask(x), z⃗′ = Mask(x′) and λ ∈ Fq. Due to the linear nature of the
Reed-Solomon codes, we can define the addition and scaling as follows:

AddMask(x, x′) = Mask(x+ x′) = z⃗ + z⃗′ (12)

ScalMask(λ, x) = Mask(λ · x) = λ · z⃗ (13)

Formal security of the addition and scaling We use the Theorem 3 from
[WMCS20], stating the following:

Theorem 1. ([WMCS20])Let x, y ∈ Fq, Mask the (d − τ)−private generic en-
coder with R = A−1V (ω) ∈ Fk×l

q . Then, the gadget AddMask with inputs x′ =
Mask(x), y′ = Mask(y) and output z′ ensures that Unmask(z′) = x + y, and
AddMask is t−NI for any positive integer t such that t ≤ (d− τ).

Proof. [WMCS20]). By construction, we have Unmask(z′) = Unmask(x′ + y′) =
Unmask(Mask(x) + Mask(y)) = x+ y and we get the correctness. Since the oper-
ations are performed share-wisely, any probe (internal and output) in AddMask

has one of the following three forms: x′[i], y′[i] or x′[i]+ y′[i] where i ∈ [1..l]. Let
I be the indexes appearing in the t probes, by construction |I| ≤ t, and x′[I]
and y′[I] are sufficient to simulate all the probes. Therefore, for any set P of
t ≤ l probes we can build a simulator S such that: Pr[D(CP(x′, y′), x′, y′) =
1] = Pr[D(S(x′[I], y′[I]), x′, y′) = 1],for any distinguisher D.

Theorem 2. The gadget ScalMask is t−NI secure for any positive integer t
such that t ≤ (d− τ).

Proof. This gadget performs a linear operation on each share independently.
Similarly to the proof of Theorem 1, it is t−NI secure. ⊓⊔

3.3 Refresh gadget

The Refresh gadget is performed by adding to the masked value an encoding
of 0:

Refresh(Mask(x)) = Mask(x) + Mask(0) (14)

Theorem 3. The refresh gadget Refresh (Equation 14) is (d− τ)−SNI secure.

Proof. Our Refresh uses the same construction as the one from [WMCS20] and
is consequently (d− τ)−SNI as well. ⊓⊔

3.4 Multiplication

We have in this case a difference of sign with [CDGT24], thus we summarize the
computation below. If z⃗ = Mask(x) and z⃗ ′ = Mask(y), then

z⃗ ⊙ z⃗ ′ = DFTω(a0, . . . , ak−1, 0, . . . , 0)⊙ DFTω(a
′
0, . . . , a

′
k−1, 0, . . . , 0). (15)

10

The polynomial obtained by performing DFT−1
ω (DFTω(Px)×DFTω(Py)) = Px(X)×

Py(X) = C(X) is a 2k − 2 degree polynomial, which satisfies C(ui) = Px(ui)×
Py(ui) = xiyi for i in {0, . . . , τ − 1}. Now we build a degree k − 1 polynomial
D(X) that satisfies D(ui) = C(ui) for all 0 ≤ i ≤ τ − 1. We introduce the
polynomials

Uj(X) = uk−1
j

(X − u0) · · · (X − uj−1)(X − uj+1) · · · (X − uτ−1)

(uj − u0) · · · (uj − uj−1)(uj − uj+1) · · · (uj − uτ−1)
, (16)

which satisfy Uj(uj) = uk−1
j , Uj(ui) = 0 ∀ i ∈ {0, . . . , τ−1}\{j} and deg(Uj(X)) =

τ − 1. We then build

D(X) = c0 + c1X + · · ·+ ck−1X
k−1 + (ckX + · · ·+ c2k−τ−1X

k−τ)

τ∑

j=1

Uj(X)

+

τ−1∑

i=1

c2k−τ−1+i

τ∑

j=1

Uj(X)uk−τ+i
j ,

which satisfies D(ui) = C(ui) = xiyi of i ∈ {0, . . . , τ − 1}. Hence, we get, with
the difference with [CDGT24] highlighted in red:

DFTω(D(X)) = DFTω(C(X))

− DFTω(ckX
k + · · ·+ c2k−2X

2k−2)

+ DFTω(ckX + · · ·+ c2k−τ−1X
k−τ)⊙ u⃗

+

τ−1∑

i=1

c2k−τ−1+i ·Gi = Mask(x⊙ y),

where Gi = DFTω(
∑τ

j=1 Uj(X)uk−τ+i
j) for i ∈ {1, . . . , τ − 1} as well as u⃗ =

DFTω(
∑τ

j=1 Uj(X)) are precomputed values, and ck, . . . , c2k−2 is given by the
function extractLastCoefficients(z⃗ ⊙ z⃗ ′). extractLastCoefficients has
been defined in [CDGT24], that is to say IDFTω(z⃗ ⊙ z⃗ ′) = (ci)i∈{0,...,l−1} =

C(X), then if we denote Z = z⃗ ⊙ z⃗ ′, by definition cj+k =
∑l−1

i=0 Ziω
−i(j+k) =∑n−1

i=0 (Ziω
−ik)ω−ij ∀ 0 ≤ j ≤ k − 1 and (cj+k)j∈{0,...,k−1} is obtained from

IDFT
(
(Ziω

−ik)0≤i≤l−1

)
.

Finally, if we denote ϕ(C,ω) = −DFTω(ck+1X
k+· · ·+c2k−2X

2k−2)+DFTω(ckX+

· · ·+ c2k−τ−1X
k−τ)⊙ u⃗+

∑τ−1
i=1 c2k−τ−1+i ·Gi where C represents the k− 1 last

coefficients of IDFT(Mask(x)⊙ Mask(y)), then we get that

Mask(x⊙ y) = Mask(x)⊙ Mask(y) + ϕ(C,ω). (17)

Formal security and fault resilience of the multiplication First, we detail
the tree decomposition for the DFT in Figure 1. We adopt this peculiar structure
to ensure Theorem 4. In the Figure 1, we use the following notations: for read-
ability, we omit the (X) in P (X), also we use brackets to express the modulo

11

P [Q] ≡ P (X) modulo Q(X). The Qi and Ti polynomials are moduli polynomi-
als for the DFT in accordance with the construction from Wang and Zhu [WZ88].
The Ri polynomials are degree i randomized polynomials. All three instances of
Ri within the tree are randomized and different.

P

(P +Rk/2)[Q0]

(P +Rk/2 +Rk/4)[T0]

P [T0]

(P +Rk/2)[T1]

P [T1]

P [Q1]

(P +Rk/2)[T2]

P [T2]

P [T3]

Fig. 1: Tree for the DFT

Theorem 4. The DFT described in Figure 1 is (d− τ)−SNI secure.

Proof. The tree in Figure 1 has a recursive structure. Thus, we demonstrate
correctness and (d− τ)−SNI security for one branching and, thanks to the com-
position Lemma 1, the entire tree will be (d− τ)−SNI secure.
We remind some properties around Chinese Remainder Theorem: Let Q0 and
Q1, such that gcd(Q0, Q1) = 1, the the following morphism is an isomorphism:

φ : Z[X]
Q0Q1

7→ Z[X]
Q0

× Z[X]
Q1

P → (P [Q0], P [Q1]).

It means in terms of linear algebra that there exists two matrices A and B such
that

φ(p0, p1, . . . , pd) = (p0, p1, . . . , pd)× (A,B)

By construction, the DFT coming from [WZ88] is such that at any node, gcd(Q0, Q1) =
1. As a consequence, as vector spaces, we have A ∩B = {0}.
Due to the linear bijection, simulating a set of I input requires a total of at least
I (internal and output) probes, then the circuit of φ is t−NI ∀t ≤ (d− τ).

If the circuit computing φ(P) is t−NI, then it is necessary to refresh one of the
leaf: let’s chose P1 = P mod Q1+R where R is a random degree k/2 polynomial
such that R(α) = 0. Then the Chinese Remainder Theorem states that there
exists some polynomials u and v such that uQ0 + vQ1 = 1.

We remark that P ′ = P + uQ0R satisfies φ(P ′) = (P0, P1) and P ′(α) = P (α),
thus the scheme including the refresh is correct and (d− τ)−SNI secure. Hence,
the entire tree is by recursion correct and (d− τ)−SNI secure. ⊓⊔

12

In order the retain the error-correcting capability of the masking throughout
the multiplication computation, we take inspiration from the work of Berndt et
al. [BEF+23]. The multiplication is described in Figure 2. To compute DFT(P (X)P ′(X)),

we decompose P (X) = P0(X) +Xk/2P1(X) = DFT−1(z⃗). We do the same for z⃗′

to compute P ′
0(X) and P ′

1(X). Once these four polynomials are extracted, we
compute

P (X)P ′(X) = P0(X)P ′
0(X) +Xk/2(P0(X)P ′

1(X) + P ′
0(X)P1(X))

+Xk(P1(X)P ′
1(X)).

We do so in the DFT domain by computing each PiP
′
j separately and multiplying

the result by the proper evaluation of Xk or Xk/2. This is denoted by the Eval
function. We reassemble each result by first performing a Refresh and then
summing them up together to obtain the final result.

z⃗

z⃗′

DFT−1(⃗z) = P0(X) + Xk/2P1(X)

DFT−1(z⃗′) = P′0(X) + Xk/2P′1(X)

DFT(P0)

DFT(P1)

DFT(P′0)

DFT(P′1)

γ0 = DFT(P0)⊙ DFT(P′0)

γ1 = DFT(P0)⊙ DFT(P′1)

γ2 = DFT(P1)⊙ DFT(P′0)

γ3 = DFT(P1)⊙ DFT(P′1)

γ′
0 = (γ0)

γ′
1 = Eval(γ1, k/2)

γ′
2 = Eval(γ2, k/2)

γ′
3 = Eval(γ3, k)

Mask(xy) =
∑3

i=0 Refresh(γ
′
i)

Fig. 2: Multiplication gadget with a NI and SNI color code

Theorem 5. The multiplication gadget described in Figure 2 is (d − τ)−SNI
secure.

Proof. In this proof we use the composition Lemma 1. We justify the color coding
for each block, with green blocks or functions being (d − τ)−SNI and red ones
being t−NI.
The inverse DFT is, due to the (d−τ)−SNI security of the DFT proved in Theorem
4, (d − τ)−SNI as well as we simply perform a composition by a permutation
matrix. The permutation is t−NI as it simply switches the shares but the com-
position with a t−SNI gadget turns it into a t−SNI gadget as well. Extracting
the Pi and Pj can be done with independent wiring within the circuit and thus
is not considered in our formal proof as it does not impact the security.
Multiplying coordinates-wise the DFTs is a t−NI secure computation as it is
performed on each share separately.
Similarly, the Eval function is t−NI secure as it is a multiplication by a precom-
puted scalar and thus a linear operation performed on each share separately.
Finally, it is important to perform a Refresh before adding each computation
together. We proved in Theorem 3 that our Refresh gadget is (d−τ)−SNI. Thus,
by applying the composition lemma, as the wires on which we compute γi and γ′

i

13

independently all end up by a (d− τ)−SNI secure gadget, they form separately
(d− τ)−SNI secure gadgets. Even if the final addition is a t−NI secure gadget,
thanks once again to the composition lemma, we have that our multiplication is
a (d− τ)−SNI secure gadget. ⊓⊔

More details are available in the original Quasilinear Code-Based Masking
paper from Carlet et al. [CDGT24].

3.5 Codes For ML-KEM

We list the possible Reed-Solomon encoders for several masking order and each
characteristic for ML-KEM in Table 1. We choose the length of the encoders to
ensure we can easily perform the DFT. This length must then be a factor of q−1.

Order 1 2 3 4 5 6

Over Fq RS[4, 2, 3] RS[8, 3, 6] RS[8, 4, 5] RS[13, 5, 9] RS[13, 6, 8] RS[13, 7, 7]

Over F16 RS[3, 2, 2] RS[5, 3, 3] None None None None
Over F64 RS[3, 2, 2] RS[7, 3, 5] RS[7, 4, 4] RS[9, 5, 5] None None
Over F256 RS[3, 2, 2] RS[5, 3, 3] RS[15, 4, 12] RS[15, 5, 11] RS[15, 6, 10] RS[15, 7, 9]

Table 1: Possible encoders for different fields and masking order up to order 6

In this paper we only present performances for orders 1 and 3. We choose to
skip order 2 as the encoder over Fq for order 2 has the same length as the one
for order 3, thus resulting in similar performances over Fq. However, it forces us
to use an encoder over F64 instead of F16 for boolean functions masked at the
third order. As most of the computations are performed over Fq, the drawback
of using a bigger field in characteristic 2 is compensated by having a higher order
security.

Remark 5. We use Code-Based Masking over Fq to mask each polynomial coef-
ficient in each vector or matrix object within ML-KEM. However, contrary to
[CDGT24] where entire bytes are masked, we only mask one bit per code word
when using Code-Based Masking over F16 or F64. This is due to the operations
within Keccak, which require to manipulate bits separately.

We give the first order masking matrices for both fields as example. For
F16 = F2[X]/ < X4 +X + 1 >, ν is the generator, α = ν3, ω = ν5,

A−1 · V (ω) =

(
14 10 6
15 7 5

)
, (18)

For Fq, we take ν = 17, ω = ν
q−1
4 = 1729, α = ν

q−1
13 = 2970,

A−1 · V (ω) =

(
103 2590 1545 2387
3227 740 1785 943

)
. (19)

14

In this work we will only focus on the non-linear part of ML-KEM. As we use
a linear code, then any linear function within ML-KEM can be easily masked.

4 Conversion

By construction, some data in ML-KEM are first processed in Fq and then used
with boolean operands. To ensure that the computations remain secure, the
state-of-the-art of the masked implementations of ML-KEM [BGR+21,BC22]
uses to switch between arithmetic and boolean masking considering some con-
versions. While conversions between arithmetic and boolean masking and back
are well documented in the literature, there is no prior work to this paper on
the matter of masking conversions in the case of Code-Based Masking up to
our knowledge. In this section we detail how to perform such conversions in the
specific case of ML-KEM.

4.1 Overall Idea

Performing Arithmetic to Boolean conversion can be interpreted as a conversion
from a field of characteristic other than 2 to a field of characteristic 2. Both rep-
resentations must be equipped of masking methods with similar probing orders.
We have seen previously that Fq can be equipped with Reed-Solomon Code-
Based Masking. According to the parameters, we can benefit of the Fast Fourier
calculation or at worst, simply a Vandermonde matrix multiplication. The re-
sults of [CDGT24] state that we have such an encoder over characteristic 2 fields
and we consider the characteristic 2 field F2b with b ∈ N∗.

There is no common subfield between F2b and Fq. However it is possible to build
(F2,⊗,⊕) as a subset of (Fq,×,+). We have the following properties,

∀(x, y) ∈ {0q, 1q}2,
{
x× y ⇔ x⊗ y;

x+ y − 2× x× y ⇔ x⊕ y.
(20)

We also have an inverse relation:

∀(x, y) ∈ {02b , 12b}2,
{
x⊗ y ⇔ x× y;

x⊕ y with the carry x⊗ y ⇔ x+ y.
(21)

We deduce that, given (a, b) ∈ {0q, 1q}2, Maskq(a⊕ b) = Maskq(a) + Maskq(b)−
2 · Maskq(a) ⋆ Maskq(b) and Maskq(a⊗ b) = Maskq(a) ⋆ Maskq(b).

Remark 6. If the value masked is not certain to be either 0 or 1, it is necessary
to obtain its binary decomposition before performing the conversion. This can
be performed securely with Lagrange’s interpolations. This is however costly,
with an estimated complexity of ⌈log(q)⌉ × (2⌊√q⌋ − 1) masked multiplications
in the worst case4. As a result, ⌈q⌉ conversions must be performed.

4 Some interpolations might have a structure and thus the possibility of reducing the
degree of the evaluated polynomial through variable changes.

15

The overall strategy consists in interpolating the masking operations from
one field with the operations of the other field. This allows to perform the Mask2
and Unmask2 operations in Fq and the Maskq and Unmaskq operations in F2b .

4.2 From Fq to F2b

We want to convert a length l2 ∈ N Reed-Solomon encoder defined over Fq in
an encoder defined over F2b that we denote M2 and we must evaluate

Mask2(x) = ((x, r⃗)⊗M2) =
(
(0, r⃗)⊗M2 ⊕ (x, 0⃗)⊗M2

)
. (22)

The first step consists in computing R = (0, r⃗)⊗M2 and we mask 0:

F⃗ = (f0, f1, . . . , fl2−1) = Mask2(0). (23)

Then, we mask every bits of each coordinates of F⃗ with Maskq:

R =




Maskq(f
(0)
0) . . . Maskq(f

(0)
l2−1)

.

Maskq(f
(b−1)
0) . . . Maskq(f

(b−1)
l2−1)


 (24)

We compute now L = (x, 0⃗)⊗M2 and we only require the first line of the encoder
that we denote (c0, . . . , cl2−1). Hence, we performe:

L =




c
(0)
0 · Maskq(x) . . . c

(0)
l2−1 · Maskq(x)

.

c
(b−1)
0 · Maskq(x) . . . c

(b−1)
l2−1 · Maskq(x)


 (25)

Finally, the conversion is performed by XORing L and R using the interpolation
S = L ⊕ R = L + R − 2LR. The final step remains to apply Unmaskq with
Unmaskq(S) = Mask2(x).

4.3 From F2b to Fq

The strategy is similar to the previous conversion except the final steps where
we must perform S = L + R by interpolating the operand ”+” as the binary
addition ”+2” columns per columns. Hence, by denoting m⃗ = Mask2(x), G =
(g0, . . . , glq−1) = Maskq(0) and (h0, . . . , hlq−1) the first line of the length lq Reed-
Solomon encoder over Fq, then we have:

S =




Mask2(g
(0)
0) . . . Mask2(g

(0)
lq−1)

.

Mask2(g
(11)
lq−1) . . . Mask2(g

(11)
lq−1)


+2



h
(0)
0 ⊗ m⃗ . . . h

(0)
lq−1 ⊗ m⃗

.

h11
0 ⊗ m⃗ . . . h

(11)
lq−1 ⊗ m⃗


 , (26)

and the final step consist in computing Unmask2(S) to recover Maskq(x).

16

4.4 Conversions in ML-KEM

The state-of-the-art of the implementations [BGR+21,BC22] relies heavily on
conversions to perform the non-linear functions of ML-KEM whereas our con-
versions can be performed only when we have the guarantee that the masked
values are binary values. Thus, we cannot rely on their designs for our masking
and we must propose some new methodologies to mask the non-linear functions
of ML-KEM. In particular we remark that the message compression is a function
from PKE.Decrypt defined over Fq that outputs 256 elements from Fq which are
”0” or ”1”. These outputs are interpreted as bits over F2 and are processed by
a Keccak instance to generate a seed bitstring.

The seed bistring serves as an input to the CBD instances in PKE.Encrypt during
KEM.Decaps. Within these instances, bits are summed and subtracted according
to Equation 5 in order to compute a random bounded value. Thus, ML-KEM
requires to convert from Fq to F2b after the compression in PKE.Decrypt and to
perform the inverse conversion during the CBD instances.

Furthermore, to reduce the number of conversions performed, we propose to
slightly modify Equation 5 by only adding bits together and subtracting the
resulting bias afterwards:

CBDη(β) =

n−1∑

i=0

(

η∑

j=0

(β2iη+j + β2iη+η+j)− η)Xi with β ∈ {0, 1}2×n×η (27)

Operations in blue are performed with a binary addition. We can compute the
binary decomposition of the sum from the bits directly by using the boolean
functions. We then convert these results to Code-Based Masking in Fq, add the
elements of the decomposition together and finally subtract the bias. The impact
on the number of conversions required is highlighted in Table 2:

Table 2: Number of conversions to perform in different ML-KEM-512/-768/-1024
functions for various strategies

Strategy Key Generation KEM Encaps or Decaps

Immediate Conversion 6144/6144/8192 7168/7168/9216
Delayed Conversion 3072/4608/6144 3840/5376/6912

5 Message Compression and Ciphertext Comparison

The state-of-the-art of ML-KEM masked implementations [BC22,BGR+21] pro-
poses specific solutions to mask the non-linear parts of ML-KEM by using
boolean formulae, where conversions are largely involved. To develop alterna-
tives to their methodologies, we present in this section generic solutions to mask
the message compression and the ciphertext comparison within ML-KEM which
can be applied to any type of masking.

17

Paterson-Stockmeyer Fast Polynomial Evaluation in Characteristic
q ̸= 2 In ML-KEM, both the message compression and the ciphertext com-
parisons acts as ”mappings” of values from Fq to {0, 1}. Mathematically, this
is equivalent to consider Lagrangian interpolations. Consequently, our method-
ology to securely compute these functions relies on evaluating polynomials. We
use the work from Paterson and Stockmeyer [PS73] to minimize the number of
sensitive multiplications required to evaluate these polynomials. Sensitive mul-
tiplications are more expensive than additions or scalar multiplications, thus we
manage to reduce their number.

Remark 7. The adaptation of Paterson and Stockmeyer [PS73] for masking in
characteristic 2 has been covered by Roy and Vivek [RV13].

Theorem 6. ([PS73]) Let P be a public polynomial and deg its degree. Let’s
assume first that s =

√
deg is an integer for simplicity. We notice that P (X),

where X is the sensitive data we mask, can be written as:

P (X) = P0(X) +XsP1(X) + . . .+Xdeg−sPs−1(X),

with ∀i ∈ J0, s− 2K,deg(Pi(X)) ≤ s− 1 and deg(Ps−1(X)) = s
(28)

Then evaluating this polynomial in X can be done in O(2s) sensitive multiplica-
tions.

5.1 Message Compression

In the state-of-the-art of masked implementations [BGR+21,BC22], the masked
compression is performed using A2B conversions and boolean formulae. As stated
in Section 4, A2B conversions using Code-Based Masking are costly. Thus, we use
an alternative methodology to perform the message compression by proposing
and evaluating a variant of Lagrange interpolations.

We see Compressq(M = v− s⃗T · u⃗, 1) in PKE.Decrypt as a mapping of elements
from Fq to either 0 or 1. If we perform a Lagrange interpolation, we have to
evaluate a degree 3330 polynomial. However, we choose to only evaluate the part
of the Lagrange interpolation mapping points to 0. This results in a polynomial
P of degree 1665. By factoring the (X − 0) polynomial from P and using the
symmetric nature of the set of points mapped to 0, we evaluate a degree 832
polynomial and then multiply by the evaluation of X:

P (X) = X ·
832∏

i=1

(X2 − i2). (29)

Evaluating Equation 29 performs the mapping to 0. However, the results which
should be mapped to 1 are mapped to random non-zero values in Fq. To map
to 1, instead of using the normal Lagrange interpolation, we use Fermat’s little
theorem which stipulates that, if q is prime, then ∀β ∈ Z such as q ∤ β, βq−1 ≡
1 mod q. Thus, we use the methodology described Algorithm 2:

18

Algorithm 2: Fast Polynomial Evaluation Methodology

1 Input: A value β ∈ Fq;
2 Input: A function F mapping Fq to {0, 1};
3 Input: A polynomial PF ∈ Fq[X] performing the F mapping to 0;
4 Output: F (β) ∈ {0, 1};
5 Procedure:
6 γ = PF (β);
7 return γq−1 mod q

Remark 8. The cost of Algorithm 2 in terms of sensitive multiplications is equal
to the cost of evaluating PF added to the cost of a fast exponentiation algorithm.
In ML-KEM case, we perform 13 sensitive multiplications after the evaluation
of PF .

We will denote the mapping done by the message compression by FM and thus
the associated polynomial by PFM .

5.2 Ciphertext Comparison

In the reference implementation [MLK24], the ciphertext comparison is per-

formed by compressing newly generated ciphertexts u⃗′ and v′ and ensuring that
there is a strict equality with the received ciphertext c. While we propose in
Algorithm 2 an efficient method to perform the message compression, the map-
pings induced by Compressq(·, du) and Compressq(·, dv) do not map towards
either 0 or 1. However, the output of the ciphertext comparison does.

To obtain a mapping towards {0, 1} from polynomial coefficients of the cipher-
texts, we use a similar strategy to Bos et al. [BGR+21] masked ML-KEM. Instead
of compressing the newly generated ciphertexts, we compare the decompression
of the received ciphertext with the newly generated ones. However, as stipulated
in Remark 2, there is a loss of information. Thus, instead of checking for strict
equality, we ensure that the biases between the received ciphertext in its decom-
pressed state and the newly generated ones do not exceed some specific values
tied to the parameters du and dv. This is equivalent to check that ∥u⃗′− u⃗∥∞ ≤ 2
and ∥v′ − v∥∞ ≤ 104 in the case of ML-KEM-512.

A first step is thus to perform u⃗′ − u⃗ and v′ − v. As the ciphertexts comparison
should map to either 0 or 1, we propose to check the inequalities for each poly-
nomial coefficient separately by mapping them to either 0 or 1 and then perform
a masked arithmetized OR5 of every results. This OR is arithmetized to avoid
using costly conversions.
To check ∥U = (u⃗′ − u⃗)∥∞ ≤ 2, we use a mapping denoted by FU such as, if
U ∈ J−2, 2K, FU(U) = 0, else FU(U) = 1. The associated polynomial mapping
to 0 denoted by PFU is PFU (X) = X(X2 − 1)(X2 − 4) which only requires 3

5 ∀a, b ∈ {0, 1}2, a OR b = a+ b− a ∗ b

19

sensitive multiplications. We use Algorithm 2 to compute the mapping to 1.
To check ∥V = (v′ − v)∥∞ ≤ 104, we use a mapping denoted by FV such as, if
V ∈ J−104, 104K, FV (V) = 0, else FV (V) = 1. We will denote the associated
polynomial by PFV . Due to the symmetric nature of the set of points mapped
to 0 by FV , the degree of PFV can be reduced similarly to FM and we evaluate
a polynomial of degree 104 then multiply by the evaluation of X. Mapping to 1
is once again performed according to Algorithm 2.

5.3 Complexity

We use the methodology proposed in Algorithm 2 and our adaption of Paterson
and Stockmeyer [PS73] to masked polynomials with coefficients in Fq. Table 3
highlights the complexity of evaluating the mappings FM , FU and FV . FU1024

and FV1024 refer to the mapping FU and FV for the parameter set ML-KEM-
1024 where du = 11, ∥U∥∞ ≤ 1 and dv = 5, ∥V ∥∞ ≤ 52. ML-KEM-512 and ML-
KEM-768 share the same values for du and dv but have different sec parameters.

Table 3: Complexity of mappings in terms of sensitive multiplications

Mapping F Complexity of PF Total complexity Occurrences

FM 58 = 1 + 1 + (2
√
784) 71 ×256

FU 3 16 ×256× sec

FV 21 = 1 + 1 + (2
√
100− 1) 34 ×256

FU1024 2 15 ×256× 4

FV1024 15 = 1 + 1 + (2
√
49− 1) 28 ×256

6 Cost-Amortization

Cost-Amortization was first introduced by Wang et al. [WMCS20]. The under-
lying idea is to mask several secrets within one code word, thus reducing the
amount of computations required at the cost of either security or code length.
In this section we present a method to swap from a Code-Based Masking us-
ing Cost-Amortization to one not using it (and back) when using Code-Based
Masking in characteristic 2. We denote an un-amortized Code-Based Masking
by Mask and an amortized one by MaskCA for this section.

Remark 9. We assume that MaskCA and Mask both use the same matrices A
and V (ω). They do not share the same G and H matrices in the DSM model
however. Thus, when choosing A and V we use H⊥

CA to set our desired masking
order taking into account Cost-Amortization.

6.1 From Two Code Words to One Amortized

For readability in this section, we omit the ×A−1 × V (ω) when detailing either

Mask(x) or MaskCA(x, y). We have Mask(x) = (x, r⃗) and Mask(y) = (y, r⃗′). To

20

compute MaskCA(x, y) from Mask(x) and Mask(y), we first compute MaskCA(x, 0)
and MaskCA(0, y). We then XOR the results.

As we use Reed-Solomon codes, we have the following:

P (X) = IDFT(Mask(x)), P (X) =

k−1∑

i=0

piX
i. (30)

Evaluating P in ui allows to recover the ith symbol in (x, r⃗). We compute the
desired mask as follows:

Mask(x)⊕MaskCA(0, P (u1)) ⇐⇒ MaskCA(x, r1)⊕MaskCA(0, r1) = MaskCA(x, 0).
(31)

To compute MaskCA(0, y) from Mask(y), we rely on a similar equation:

Given Q(X) = IDFT(Mask(y)) =

k−1∑

i=0

qiX
i, we set T (X) =

k−1∑

i=0

q2iX
i (32)

As we are working in characteristic 2, we have the following equation:

T (u1) = T (u2
0) =

k−1∑

i=0

q2i (u
2
0)

i =

(
k−1∑

i=0

qiu
2
0

)i

= (Q(u0)
2) = y2 (33)

As we are in a characteristic 2 field, we have y2 = y. Thus, T (u1) = y and
DFT(T) = MaskCA(T (u0), y). By computing MaskCA(T (u0), 0), we then have

Mask(T (u0), 0)⊕ Mask(T (u0), y) = Mask(0, y) (34)

6.2 Code-Based Masking De-Amortization

We want to swap from one code word encoding two data to two code words
encoding one datum each. For the first datum, this can be trivially performed
by applying an un-amortized Refresh:

Mask(0) ⇔ (0, r⃗)×A−1 × V (ω) ⇔ MaskCA(0, r1) with r⃗ random (35)

Thus, as r1 is uniformly random,

Refresh(MaskCA(x, y)) ⇔ MaskCA(x⊕ 0, y ⊕ r1) ⇔ MaskCA(x, r
′
1) ⇔ Mask(x)

(36)
To get the code words for the other data, we can compute P (X) = IDFT(maskCA).
There exists a polynomial Q(X) such as Q(X) = P (X2) and thus Q(U0) =
P (U2

0) = P (U1). However, the degree of Q is 2k − 2. To reduce it to k − 1 we
use similar method to the ones used in the multiplication.

Swapping from MaskCA to Mask and back scales trivially with the amount of
secrets encoded within one code word.

21

6.3 Cost-Amortization in ML-KEM

We investigate about the possible use of Cost-Amortization within ML-KEM.
A first application would be the parallel ciphering of several instances of ML-
KEM. However, it is also possible to parallelize some parts of ML-KEM. We
restricted ourselves to parallelize Code-Based Masking in characteristic 2 and
leave the investigation of parallelization of Code-Based Masking in characteristic
q as future work.

During the PKE.Encrypt procedure, several instances of CBD are computed. We
can use Cost-Amortization to parallelize them at an algorithmic level. The seed
taken as input of these instances is un-amortized and we use the methodology
we just detailed to create amortized masks. All the CBD instances use the same
seed, however a nonce is added to the seed as a salt to ensure different results
through the PRF. Thus, we amortize the seed with itself and the nonce among
themselves. This helps in reducing the amount of Keccak instances needed to
perform all the CBD instances. The results are de-amortized at the end of the
CBD instances, when a conversion to arithmetic is required.

7 Experimental security

7.1 Leakage Assessment

We test the resilience of our design by conducting a statistical leakage detec-
tion on physical side-channel measurements. We use a ChipWhisperer Husky to
capture power consumption traces. The targeted support is a SAM4S mounted
on the CW313 platform, namely the ATSAM4S2A clocking at 7 MHz. As the
traces for specific functions can contain a great magnitude of clock cycles, we
take only 1 sample per clock cycle.

To detect leakage we rely on the Test Vector Leakage Assessment (TVLA)
[GGJR+11]. This testing methodology performs a Welch t-test. We use the fixed
vs random approach. The goal is to ensure that the correlation factor between
traces captured with a fixed secret and traces captured with a random secret
does not exceed a certain threshold. The most commonly used threshold used in
the literature is 4.5 and corresponds to an α value of 0.01. However, as our t-tests
are performed on a great number of points, we rely on observations made by Ding
et al. [DZD+17] to adapt the threshold for each t-test we perform. Otherwise,
the probability of observing at least one false positive would be close to 1, thus
falsely labelling the target as leaky. We remind the formulae to compute the new
αTH and TH threshold values given by Ding et al. [DZD+17]:

αTH = 1− (1− α)
1

NL , TH = CDF−1
N(1,0)(1− αTH/2). (37)

NL is the number of points in the t-test and CDFN(1,0) the Cumulative Distri-
bution Function of the standard normal distribution. Table 4 uses those formulae
to estimate the correct thresholds for each TVLA.

22

Table 4: Thresholds values for each t-tests and associated Figures

Target Figure Number of traces Number of points Threshold

Conversion q → 64 3a,3b 500 000 132 766 5.37
Conversion 64 → q 3c,3d 500 000 211 622 5.46
Compression 4a,4b 50 000 552 083 5.62
CBD 4c,4d 50 000 652 662 6.05
Keccak 3e, 3f 30 000 75 193 521 6.42

Remark 10. The compression and the CBD in Table 4 are both performed on
only one polynomial coefficient.

Our t-test results are summed up in Figures 3 and 4. There are two t-tests
per targeted gadgets. One t-test is performed with the randomness turned off,
meaning the masks are not randomized. This is denoted by the tag ”w/o rand.”
in our figures’ subcaptions. The other t-test is performed with the randomness
turned on. This highlights the effectiveness of our design at the first order of
masking.

(a) Conversion q → 64
w/o rand.

(b) Conversion q → 64
(c) Conversion 64 → q
w/o rand.

(d) Conversion 64 → q (e) Keccak w/o rand. (f) Keccak

Fig. 3: TVLA for the conversions and Keccak instances

7.2 Fault Injection Attack Resilience

Similarly to Heinz and Pöppelmann [HP23], we make our FIA resilience claims
based on a realistic fault model [KSV13,BBK16]. We consider an attacker capa-

23

(a) Compression w/o rand. (b) Compression

(c) CBD w/o rand. (d) CBD

Fig. 4: TVLA for the compression and the CBD, both on one polynomial coeffi-
cient

ble of performing one precise fault injection out of 3 categories on a coefficient
during data processing or storage. The attacker cannot impact the input pa-
rameters nor the instruction processing part. We also consider that this attacker
cannot perform a fault during the detection/correction process. We leave fault
propagation as future work.

The three categories of faults we claim resilience against are:

– Bit flipping fault : an attacker can flip or set the values of some bits within
a code word element,

– Random fault : an attacker can disturb a computation or memory access. As
a result the device proceeds a random data. However, we reduce our claim
on this fault to the scenarios where the fault occurs within the code word
and not on the code word address. We thus consider that the faulted device
calls the right code word but some elements of the code word are randomized
by this type of faults.

– Zeroization fault : an attacker sets a code word to 0.

Our resilience to these faults is a direct consequence of the use of error-correcting
codes. Fault detection on a code word C of RS[l, k, l − k + 1] is performed by
computing c = IDFT(C). If the degree of c is not k−1, it means some faults have
occurred. This detection can be performed with complexity O(l log(l)) and we
can detect as well as correct up to l − k faults.

More details are available in the Carlet et al. [CDGT24] paper we based our
masking on.

24

8 Performances

We test our implementation on a personal laptop and a microcontroller. The
laptop is equipped with a 11th Gen Intel(R) Core(TM) i7-11850H processor
operating at 2.50 GHz with 16 GB of RAM. The source code was compiled and
executed using gcc version 11.3.0 . We have the laptop performances in Table 5,
at orders 1 and 3, with Cost-Amortization (CA) or without CA:

Table 5: Performances in milliseconds at different orders on a laptop

Masking order 0 1 1(CA) 3(CA) 3

Key generation 0.03 17.67 20.22 42.32 70.42
Encapsulation 0.03 17.76 24.87 56.83 76.10
Decapsulation 0.03 29.90 31.98 68.47 101.14

Remark 11. Our implementations on laptop and microcontroller are not opti-
mized as they are PoC (Proof-of-Concept) implementations in plain C. On the
other side, the reference implementation is fully optimized and uses the hard-
coded SHA3 in the laptop CPU.

Remark 12. In Table 5, we see that Cost-Amortization gives better performances
at order 3 but worse at order 1. We leave a more thorough study on the benefits
of using Cost-Amortization in ML-KEM as future work. Our comparison with
Bos et al. [BGR+21] on microcontroller will not use Cost-Amortization for this
reason.

We also test our design on a microcontroller. We use a ATSAM4S-XPRO
board for performances evaluation. Performances are presented in Table 6. For
the sake of comparison, we also add in Table 6 the performances of another
masked implementation [BGR+21]. However, there are several important points:

– The implementation we compare to is performed on CRYSTALS-Kyber and
not ML-KEM. There are thus minor differences.

– Bos et al. [BGR+21] proposed a masked implementation of Kyber768. We
evaluate ML-KEM-512. We use a different board, as Bos et al. [BGR+21] per-
form their evaluation on a STM32F407G. Yet, both boards use the Cortex-
M4 technology.

– Our design is not optimized from an implementation point of view. We have
yet to use assembly subroutines and other implementation tricks to improve
our performances. Our goal in this work is to demonstrate the feasibility and
experimental security of our design, while showcasing the challenges we face
in using a Code-Based Masking to protect a Post-Quantum KEM.

Remark 13. We also made a slight adjustment compared to the ML-KEM stan-
dard [MLK24]. By taking into account some comments made on the FIPS 203

25

draft, we pre-hash the received ciphertext c before its concatenation with the
secret z⃗ during the KEM Decapsulation. This reduces the size of the input of the
sensitive hash function J at the cost of an unmasked call to the hash function
H, thus greatly improving performances.

We also add to the comparison in Table 6 the performances of the pqm4 project
as shown in [BGR+21].

8.1 Discussion on Results Compared to the State-of-the-art

The results presented in Table 6 highlight several points:

– Our masking scales better than [BGR+21] with the masking order, thus
experimentally verifying its quasilinear nature compared to the quadratic
nature of the masking of [BGR+21].

– For the ciphertext comparison, we have a similar order of magnitude in terms
of cost to [BGR+21] at the third order of masking. It could be interesting
to see how our method will fare when applied to a classical masking as it
seems more efficient at higher orders than current state-of-the-art masked
ciphertext comparison.

– We perform better in terms of randomness than [BGR+21] at the third order
of masking for PKE.Decrypt.

Remark 14. Our Code-Based Masking is able of correcting up to j faults at
masking order j. A naive way of correcting this much faults with classical mask-
ing is to use repetition codes: One can run 2∗j+1 instances of the same classical
masking and perform a masked majority vote to correct faults. Comparisons are
provided in Figure 5. We can conjecture that asymptotically, our method will
perform better at higher orders than the state-of-the-art, both in times and
randomness.

8.2 Comparison with Classical Masking

Arithmetic and boolean maskings have limitations at higher orders, due to their
quadratic complexity both in time and randomness. Several works have also in-
vestigate the security of those masking against different types of attacks at higher
order and exposed weaknesses [BCPZ16,BS21]. Code-Based Masking seems to
suffer less from those issues as its complexity in both time and randomness is
quasilinear. However, its better resilience at higher orders compared to other
masking is still only a conjecture as of writing this work.

9 Conclusion

In this paper we propose a masked implementation of ML-KEM using Code-
Based Masking. Using the work from Carlet et al. [CDGT24], we propose specific

26

1 3 1 3

1

10

100

275
×256.32

×20.94

×85.5

×2.99

×58.37

×1.64

×19.46

×0.23

Masking order d

O
ve
rh
ea
d
(m

u
lt
ip
li
ca
ti
ve
)

Cost, without (2d+1)-tuplication

Cost, with (2d+1)-tuplication

Randomness, without (2d+1)-tuplication

Randomness, with (2d+1)-tuplication

Fig. 5: Multiplicative overheads compared to [BGR+21]

27

T
ab

le
6:

P
er
fo
rm

an
ce
s
in

1
0
3
cy
cl
es

a
t
th
e
fi
rs
t
a
n
d
th
ir
d
o
rd
er
s
o
f
m
a
sk
in
g
o
n
a
m
ic
ro
co
n
tr
o
ll
er

O
p
er
a
ti
o
n

pq
m
4

[B
G
R

+
2
1
]

[T
h
is

w
o
rk

]
M
a
sk
in
g
O
rd
er

0
1

3
(v
s
1
st

o
rd
er
)

1
3
(v
s
1
st

o
rd
er
)

c
r
y
p
t
o
k
e
m
d
e
c

8
8
2

3
1
1
6

1
1
5
4
8
1

(×
3
7
)

7
9
8
7
1
5

2
4
1
8
9
0
1

(×
3
)

i
n
d
c
p
a
d
e
c

−
1
7
4

9
2
8
8

(×
5
3
.4
)

2
4
0
8
2
7

3
4
6
0
1
4

(×
1
.4
)

C
o
n
v
e
r
s
i
o
n

−
−

−
−

6
5
0
3

5
2
1
7
6

(×
8
)

h
a
s
h
g

−
1
1
8

2
6
5
9

(×
2
2
.5
)

3
4
7
0
8

8
9
6
2
8

(×
2
.6
)

i
n
d
c
p
a
e
n
c

−
2
1
9
6

3
0
9
3
8

(×
1
4
.1
)

4
5
0
1
8
5

1
7
5
9
1
1
0

(×
3
.9
)

c
o
m
p
a
r
i
s
o
n

−
4
6
2

7
2
5
6
8

(×
1
5
7
.1
)

3
1
9
2
6

8
3
7
9
1

(×
2
.6
)

k
d
f

−
1
4

1
4

(×
1
)

3
2
8

9
9
2

(×
3
)

#
ra

n
d
om

by
te
s

−
1
2
0
7
2

2
4
3
4
1
7
0

(×
2
0
1
.6
)

7
0
4
6
3
1

3
9
9
8
7
4
5

(×
5
.7
)

i
n
d
c
p
a
e
n
c

6
7
6

2
1
9
6

3
0
8
3
8

(×
1
4
.1
)

4
5
0
1
8
5

1
7
5
9
1
1
0

(×
3
.9
)

p
o
l
y
a
r
i
t
h
m

−
3
0
1

6
5
3

(×
2
.2
)

6
8
7
3

7
8
5
2

(×
1
.1
)

p
o
l
y
g
e
t
n
o
i
s
e

−
1
3
8
4

2
9
3
4
7

(×
2
1
.2
)

4
4
3
3
1
3

1
7
5
1
2
5
8

(×
4
)

#
ra

n
d
om

by
te
s

−
7
0
3
0

5
6
2
9
7
4

(×
8
0
.1
)

5
2
7
4
5
2

3
4
4
8
9
2
6

(×
6
.5
)

i
n
d
c
p
a
d
e
c

6
4

1
7
4

9
2
8
8

(×
5
3
.4
)

2
4
0
8
2
7

3
4
6
0
1
4

(×
1
.4
)

u
n
p
a
c
k

−
2
3

3
6

(×
1
.6
)

1
5
0

4
1
3

(×
2
.8
)

p
o
l
y
a
r
i
t
h
m

−
8
9

1
4
9

(×
1
.7
)

3
7
7
8

4
9
2
0

(×
1
.3
)

c
o
m
p
r
e
s
s

−
6
1

9
1
0
2

(×
1
4
9
.2
)

2
3
6
9
0
2

3
4
0
6
4
1

(×
1
.4
)

#
ra

n
d
om

by
te
s

−
6
4
0

2
0
1
9
8
4

(×
3
1
5
.6
)

4
8
2
5
6

1
1
7
5
0
4

(×
2
.4
)

R
em

a
rk

1
5
.
D
u
e
to

th
e
in
te
ll
ec
tu
a
l
p
ro
p
er
ty

re
g
u
la
ti
o
n
in

p
la
ce

in
o
u
r
w
o
rk
in
g
en
v
ir
o
n
m
en
t,

w
e
a
re

n
o
t
a
b
le

to
sh
a
re

th
e

so
u
rc
e
co
d
e
of

ou
r
P
o
C

im
p
le
m
en
ta
ti
o
n
s
a
t
th
e
m
o
m
en
t.

28

codes to mask ML-KEM in Section 3. We provide improved security against Fault
Injection Attacks (FIA) on ML-KEM compared to the current state-of-the-art
[HP23] by being able to correct faults. In Section 4 we introduced a method-
ology to perform conversions between two different Code-Based Masking. To
address the non-linear functions of ML-KEM, we propose new generic solutions.
We adapt an evaluation method from Paterson and Stockmeyer [PS73] to se-
curely evaluate a polynomial in characteristic other than 2 in Section 5. We use
this evaluation method alongside Fermat’s little theorem to secure the message
compression as well as the ciphertexts comparison. The security of our design is
experimentally verified using a Welsh’s t-test and results are presented in Sec-
tion 7. Our performances’ comparison in Section 8 shows that, while we have
higher costs in time and randomness at the first masking order compared to the
state-of-the-art [BGR+21], at higher orders our method will be asymptotically
more efficient with the added benefit of correcting/detecting more faults. We
best the septuplication6 of the third masking order of Bos et al. [BGR+21] in
terms of randomness needs.

Our method for the masked ciphertext comparison seems to fare better with
masking order scaling than the state-of-the-art [BGR+21] as we are less reliant
on conversions. However this hypothesis has to be validate by using the same
masking for comparison. Finally, with Deep Learning Side Channel Analysis
[DNGW23,WBD24] able of breaching state-of-the-art masked ML-KEM at low
orders, it would be interesting to study the impact of the structure of Code-Based
Masking on such attacks.

Acknowledgments This work was realized thanks to the grant 2022156 from
the Appel à projets 2022 thèses AID Cifre-Défense by the Agence de l’Innovation
de Défense (AID), Ministère des Armées (French Ministry of Defense). This pa-
per is also part of the on-going work of Hensoldt France SAS for the Appel à pro-
jets Cryptographie Post-Quantique launched by Bpifrance for the Stratégie Na-
tionale Cyber (France National Cyber Strategy) and Stratégie Nationale Quan-
tique (France National Quantum Strategy) which take part in the France 2030
vision. In this, Hensoldt France SAS is a part of the X7-PQC project in part-
nership with Secure-IC, Télécom Paris and Xlim.

6 Necessary to correct 3 faults

29

References

AAC+22. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta,
et al. Status report on the third round of the nist post-quantum cryp-
tography standardization process. US Department of Commerce, NIST,
2022.

BBD+16. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

BBK16. Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based
signature schemes and their sensitivity to fault attacks. In 2016 Workshop
on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa
Barbara, CA, USA, August 16, 2016, pages 63–77. IEEE Computer Society,
2016.

BC22. Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean
masking conversions for fun and profit with application to lattice-based
KEMs. IACR TCHES, 2022(4):553–588, 2022.

BCC+14. Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and
Houssem Maghrebi. Orthogonal direct sum masking: A smartcard friendly
computation paradigm in a code, with builtin protection against side-
channel and fault attacks. Cryptology ePrint Archive, Report 2014/665,
2014. https://eprint.iacr.org/2014/665.

BCPZ16. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg,
August 2016.

BEF+23. Sebastian Berndt, Thomas Eisenbarth, Sebastian Faust, Marc Gourjon,
Maximilian Orlt, and Okan Seker. Combined fault and leakage resilience:
Composability, constructions and compiler. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part III, volume 14083 of
LNCS, pages 377–409. Springer, Heidelberg, August 2023.

BGR+21. Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Chris-
tine van Vredendaal. Masking Kyber: First- and higher-order implementa-
tions. IACR TCHES, 2021(4):173–214, 2021. https://tches.iacr.org/

index.php/TCHES/article/view/9064.
BS21. Olivier Bronchain and François-Xavier Standaert. Breaking masked im-

plementations with many shares on 32-bit software platforms. IACR
TCHES, 2021(3):202–234, 2021. https://tches.iacr.org/index.php/

TCHES/article/view/8973.
CCJ+16. Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene

Peralta, Ray A Perlner, and Daniel Smith-Tone. Report on post-quantum
cryptography, volume 12. US Department of Commerce, National Institute
of Standards and Technology . . . , 2016.

CD23. Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 423–447. Springer, Heidelberg, April
2023.

30

https://eprint.iacr.org/2014/665
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/8973
https://tches.iacr.org/index.php/TCHES/article/view/8973

CDGT24. Claude Carlet, Abderrahman Daif, Sylvain Guilley, and Cédric Tavernier.
Quasi-linear masking against SCA and FIA, with cost amortization. IACR
TCHES, 2024(1):398–432, 2024.

CJRR99. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–
412. Springer, Heidelberg, August 1999.

CPRR14. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 410–424. Springer,
Heidelberg, March 2014.

DM21. Jeroen Delvaux and Santos Merino Del Pozo. Roulette: Breaking Kyber
with diverse fault injection setups. Cryptology ePrint Archive, Report
2021/1622, 2021. https://eprint.iacr.org/2021/1622.

DNGW23. Elena Dubrova, Kalle Ngo, Joel Gärtner, and Ruize Wang. Breaking a fifth-
order masked implementation of crystals-kyber by copy-paste. In Masayuki
Fukumitsu and Shingo Hasegawa, editors, Proceedings of the 10th ACM
Asia Public-Key Cryptography Workshop, APKC 2023, Melbourne, VIC,
Australia, July 10-14, 2023, pages 10–20. ACM, 2023.

Dwo15. Morris J Dworkin. Sha-3 standard: Permutation-based hash and
extendable-output functions. NIST FIPS, 2015.

DZD+17. A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure. In
Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research and
Advanced Applications - 16th International Conference, CARDIS 2017,
Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers, vol-
ume 10728 of Lecture Notes in Computer Science, pages 105–122. Springer,
2017.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg,
August 1999.

FP22. Tako Boris Fouotsa and Christophe Petit. A new adaptive attack on SIDH.
In Steven D. Galbraith, editor, CT-RSA 2022, volume 13161 of LNCS,
pages 322–344. Springer, Heidelberg, March 2022.

GGJR+11. Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A
testing methodology for side-channel resistance validation. In NIST non-
invasive attack testing workshop, volume 7, pages 115–136, 2011.

HKL+22. Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas
Pöppelmann, Peter Schwabe, and Amber Sprenkels. First-order masked
Kyber on ARM Cortex-M4. Cryptology ePrint Archive, Report 2022/058,
2022. https://eprint.iacr.org/2022/058.

HP23. Daniel Heinz and Thomas Pöppelmann. Combined fault and DPA protec-
tion for lattice-based cryptography. IEEE Trans. Computers, 72(4):1055–
1066, 2023.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

JAC+22. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMac-
chia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev,

31

https://eprint.iacr.org/2021/1622
https://eprint.iacr.org/2022/058

David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron Hutchin-
son. SIKE. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-4-submissions.
KCS+24. Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman

Karmakar, Debdeep Mukhopadhyay, and Ingrid Verbauwhede. Carry your
fault: A fault propagation attack on side-channel protected LWE-based
KEM. IACR TCHES, 2024(2):844–869, 2024.

Koc96. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, vol-
ume 1109 of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

KSV13. Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware
designer’s guide to fault attacks. IEEE Trans. Very Large Scale Integr.
Syst., 21(12):2295–2306, 2013.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

MLD24. Module-lattice-based digital signature. National Institute of Standards and
Technology, NIST FIPS PUB 204, U.S. Department of Commerce, August
2024.

MLK24. Module-lattice-based key-encapsulation mechanism. National Institute of
Standards and Technology, U.S. Department of Commerce, August 2024.

MMP+23. Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. A direct key recovery attack on SIDH. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 448–471. Springer, Heidelberg, April 2023.

MP22. M Mosca and M Piani. 2021 quantum threat timeline report global risk
institute. Global Risk Institute, 2022.

OSPG18. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR
TCHES, 2018(1):142–174, 2018. https://tches.iacr.org/index.php/

TCHES/article/view/836.
PS73. Mike Paterson and Larry J. Stockmeyer. On the number of nonscalar mul-

tiplications necessary to evaluate polynomials. SIAM J. Comput., 2(1):60–
66, 1973.

Rob23. Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 472–503. Springer, Heidelberg, April 2023.

RS02. Eric M Rains and Neil JA Sloane. Self-dual codes. arXiv preprint
math/0208001, 2002.

RV13. Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic
higher-order masking scheme of FSE 2012. Cryptology ePrint Archive,
Report 2013/345, 2013. https://eprint.iacr.org/2013/345.

SAB+22. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.

32

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://eprint.iacr.org/2013/345
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society
Press, November 1994.

SLH24. Stateless-hash-based digital signature algorithm. National Institute of
Standards and Technology, NIST FIPS PUB 203, U.S. Department of Com-
merce, August 2024.

WBD24. Ruize Wang, Martin Brisfors, and Elena Dubrova. A side-channel attack
on a higher-order masked CRYSTALS-kyber implementation. In Christina
Pöpper and Lejla Batina, editors, ACNS 24, Part III, volume 14585 of
LNCS, pages 301–324. Springer, Heidelberg, March 2024.

WMCS20. Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Stan-
daert. Efficient and private computations with code-based masking. IACR
TCHES, 2020(2):128–171, 2020. https://tches.iacr.org/index.php/

TCHES/article/view/8547.
WZ88. Yao Wang and Xuelong Zhu. A fast algorithm for the fourier transform

over finite fields and its vlsi implementation. IEEE Journal on Selected
Areas in Communications, 6(3):572–577, 1988.

33

https://tches.iacr.org/index.php/TCHES/article/view/8547
https://tches.iacr.org/index.php/TCHES/article/view/8547

	Quasilinear Masking to Protect ML-KEM Against Both SCA and FIA

