
CSI-Otter: Isogeny-based (Partially) Blind Signatures from the
Class Group Action with a Twist

Shuichi Katsumata1, Yi-Fu Lai2, Jason T. LeGrow3, Ling Qin2

1PQShield Ltd. and AIST
shuichi.katsumata@pqshield.com

2University of Auckland
27182818284fu.lai@gmail.com, lqin276@aucklanduni.ac.nz

3Department of Mathematics, Virginia Polytechnic Institute and State University
jlegrow@vt.edu

August 16, 2023

Abstract
In this paper, we construct the first provably-secure isogeny-based (partially) blind signature scheme.

While at a high level the scheme resembles the Schnorr blind signature, our work does not directly
follow from that construction, since isogenies do not offer as rich an algebraic structure. Specifically, our
protocol does not fit into the linear identification protocol abstraction introduced by Hauck, Kiltz, and
Loss (EUROCYRPT’19), which was used to generically construct Schnorr-like blind signatures based on
modules such as classical groups and lattices. Consequently, our scheme is provably-secure in the poly-
logarithmic (in the number of security parameter) concurrent execution and does not seem susceptible
to the recent efficient ROS attack exploiting the linear nature of the underlying mathematical tool.

In more detail, our blind signature exploits the quadratic twist of an elliptic curve in an essential way
to endow isogenies with a strictly richer structure than abstract group actions (but still more restrictive
than modules). The basic scheme has public key size 128 B and signature size 8 KB under the CSIDH-512
parameter sets—these are the smallest among all provably secure post-quantum secure blind signatures.
Relying on a new ring variant of the group action inverse problem (rGAIP), we can halve the signature
size to 4 KB while increasing the public key size to 512 B. We provide preliminary cryptanalysis of rGAIP
and show that for certain parameter settings, it is essentially as secure as the standard GAIP. Finally,
we show a novel way to turn our blind signature into a partially blind signature, where we deviate from
prior methods since they require hashing into the set of public keys while hiding the corresponding secret
key—constructing such a hash function in the isogeny setting remains an open problem.

1 Introduction
Blind signatures, introduced by Chaum [Cha82], allow a user to obtain a signature on a message from a
signer, while the signer is blind to the message it signed. One can think of the physical analogy where a
user puts a letter—acting as the message—to be signed into a special carbon paper envelope. The signer
can sign the envelope without opening it; his signature is transferred to the letter by the carbon paper, and
the letter is never visible to the signer. In practice, it is sometimes necessary to consider the extension of
partially blind signatures, introduced by Abe and Fujisaki [AF96], that further allow embedding a message
agreed by both the signer and the user into the signature. The messages can now be divided into public and
private parts, where the public part can include, for instance, the expiration date of the signature. While

Author list in alphabetical order; see https://ams.org/profession/leaders/CultureStatement04.pdf.

1

https://ams.org/profession/leaders/CultureStatement04.pdf

(partially) blind signatures1 were originally used to construct e-cash [Cha82, CFN90, OO92], anonymous
credentials [Bra94, CL01], and e-voting [Cha88, FOO92], the notion has recently seen renewed interest due to
applications in blockchains [YL19, BDE+23] and privacy-preserving authentication tokens [VPN22, HIP+22].

Currently, the most promising class of efficient blind signatures known to withstand quantum attacks is
those based on lattices. We have recently encountered significant progress in lattice-based blind signatures,
such as [HKLN20, LNP22, AKSY22, dK22], where the signature size currently sits around 50 KB to 10 MB.
However, this is still an order of magnitude larger than their classical counterparts, with a signature size
ranging from a few hundred bytes to 1 KB. As we see a continuous surge of interest in post-quantum security
and better user privacy, we aim to investigate a post-quantum blind signature with a smaller signature size.

One potentially promising path to a post-quantum blind signature with a short signature is to rely on
isogeny-based constructions. This is because while their signing and verification times are less efficient,
standard isogeny-based signature schemes [DG19, BKV19, DKL+20] are known to produce comparable or
even smaller signatures compared to lattices. In fact, for a more advanced form of signature schemes such
as ring signatures and group signatures, isogenies can produce much shorter signatures compared to their
lattice counterparts [BKP20, BDK+22].

Unfortunately, at first glance this path seems difficult to follow. Very roughly, there are two approaches
to constructing a blind signature. The first approach is based on the Schnorr blind signature [CP93]. This
approach builds on a sigma (or an identification) protocol with a “nice” algebraic property and boosts it into
a blind signature by appropriately randomizing the interaction. This nice algebraic property has recently
been stated informally to be modules [HKL19, HKLN20], where isogenies are not known to be endowed
with: isogenies are only group actions that are strictly less structured than modules (see Section 1.2 for
more details). The second approach is based on the generic construction proposed by Fischlin [Fis06] that
requires proving, at the minimum, possession of a valid signature of a standard signature scheme using a non-
interactive zero-knowledge proof (NIZK). While del Pino and Katsumata [dK22] and Agrawal, Kirshanova,
Stehlé and Yadav [AKSY22] recently used this approach to construct more efficient lattice-based blind
signatures than were previously known, this seems impractical to translate to the isogeny setting due to the
lack of efficient NIZKs for such complex languages.

In summary, while isogenies have the potential to produce the shortest post-quantum blind signatures,
it is unclear how we can leverage known approaches to build them. This brings us to the main question of
this work:

Can we construct an efficient post-quantum (partially) blind signature scheme from isogenies?

1.1 Our Contribution
In this work, we answer the above question in the affirmative through four contributions. Our first contri-
bution is to construct the first post-quantum blind signature based on isogenies (or CSIDH group actions
to be more specific) called CSI-Otter, short for CSI-fish with Or-proof Twisted ThreE-Round protocol. The
construction is akin to the Schnorr blind signature [CP93] but follows a slightly different approach. Unlike
previous constructions that required the underlying mathematical tool to be a module [HKL19, HKLN20],
we bypass this requirement. The crux of our construction is to effectively use the quadratic twist of an
elliptic curve, or in layman’s terms, we use the fact that isogenies are slightly more expressive than a group
action. We build a basic blind signature with public key size 128 B and signature size 8 KB based on the
standard group action inverse problem (GAIP) over the CSIDH-512 parameter sets. We formally prove that
our basic blind signature is secure in the (classical) random oracle model with poly-logarithmically many
concurrent signing sessions following the recent work by Kastner, Loss, and Xu [KLX22a]. That is, the
security proof permits a poly-logarithmic number of signatures to be issued per public key in a concurrent
manner. However, we note that due to the lack of algebraic structures in isogenies, there seems to be no
straightforward ROS2 problem underlying the security of our blind signature [Sch01, Wag02]. This is in

1For readability, we focus on blind signatures below when the distinction between the partial and non-partial difference is
insignificant.

2ROS stands for for Random inhomogenities in an Overdetermined, Solvable system of linear equations.

2

contrast to the Schnorr blind signature that admits a concrete attack in such a regime [BLL+21], using the
linearity of the module elements which are non-existing in the group action setting. We leave the formal
analysis of our blind signature in the more desirable polynomial regime as an important open problem.

Our second contribution is to provide an optimization of our basic blind signature using a new hardness
assumption called the ζd-ring group action inverse problem (ζd-rGAIP), where ζd denotes a d-th primitive
root of unity over ZN . Informally, ζd-rGAIP asserts that given ([gs·ζj

d] ∗ E0)j∈[d] for a random exponent
s

$← ZN and base elliptic curve E0 : y2 = x3 + x, it is difficult to solve for s. Note that when d = 2, we
have ζ2 = −1 and we recover the standard GAIP, where [g−s] ∗ E0 is the (efficiently computable) quadratic
twist of [gs] ∗E0. At a high level, ζd-rGAIP allows us to use a larger challenge space for the underlying sigma
protocol by increasing the public key. This in turn implies that the number of parallel repetitions can be
lowered compared to our basic blind signature, and effectively, we obtain a public key size of (128 · d) B and
signature size of roughly (8/ log2 d) KB based on ζd-rGAIP. Our construction is generic and works for any
group actions for which the ζd-rGAIP is hard, however, we must show that such group actions exist for it to
be useful.

Our third contribution complements our second contribution: we provide a preliminary cryptanalysis on
the hardness of ζd-rGAIP for the CSIDH-512 parameter sets. We first show that the set of values {gcd(ζi

d −
1, N)}i∈[d] relates to the hardness of ζd-rGAIP. Informally, we create new GAIP instances over a series of
subgroups of the class group, where the size of these subgroups relate to each gcd(ζi

d − 1, N). Using known
attacks against GAIP in a Pohlig-Hellman manner, we can break this newly generated GAIP instances that
has a smaller order compared to the GAIP with CSIDH-512. For instance with CSIDH-512, when d = 7 or 8,
this attack shows that ζd-rGAIP only has half the security of GAIP over CSIDH-512. On the other hand, for
other values of d such as d = 2, 3, 4, 5, 9, . . . , this attack is no more effective than trying to break GAIP over
CSIDH-512. In fact, when gcd(ζi

d − 1, N) = N/poly(n) for n the security parameter, we show a reduction
from the ζd-rGAIP to GAIP, thus establishing the optimality of our attack for certain parameters such as
d = 3, 5, 9, In the end, due to other correctness constraints, we are only able to instantiate the above
optimized blind signature with d = 4, which leads to a public key of size 512 B and signature size of 4 KB.
While our preliminary cryptanalysis shows that ζ4-rGAIP is presumably as hard as GAIP over CSIDH-512,
we leave further cryptanalysis for future work as it is not covered by our reduction to GAIP.

Our final contribution is extending our basic blind signature into a partially blind signature. While
it is straightforward to construct a partially bind signature from a Schnorr-style blind signature in the
classical group or the lattice settings, this approach fails in the isogeny setting.3 For example, Abe and
Okamoto [AO00] constructed the first partially blind signature, where the main idea was to hash the public
message (also known as a tag) info to a group element hinfo ∈ G and let the signer prove that it knows either
the exponent of its public key h = ga or the hashed tag hinfo. In particular, the underlying sigma protocol
proves a 1-out-of-2 (or an OR) relation. In the security proof, the reduction samples ainfo

$← Zp, programs
the random oracle so that hinfo = gainfo , and uses ainfo to simulate the signing algorithm. Unfortunately, this
approach is inapplicable in the isogeny setting since we do not know how to map into the set of elliptic curves
while simultaneously hiding the exponent. Note that if the exponent is known, any real-world adversary can
use the reduction algorithm to forge a signature, thus rendering the scheme insecure.

To this end, we provide a new general approach to constructing partially blind signatures that may be of
an independent interest. At the core of our approach is devising a sigma protocol for a 2-out-of-3 relation
and embedding the tag info into the signature differently. Since the sigma protocol must also be compatible
with the blind signature, we are not able to rely on any 2-out-of-3 sigma protocols for threshold relations such
as Cramer-Damg̊ard-Schnoemakers’ sigma protocol [CDS94] using Shamir’s secret-sharing scheme [Sha79].
One downside of our partially blind signature is that compared to our blind signature, it requires a signature
size roughly three times as large. However, we note that even then, we still achieve a smaller signature size
than the lattice-based counterparts.

3We note that proving the security of a partially blind signature is more subtle and difficult. Indeed, it was only recently
that Kastner, Loss, and Xu [KLX22a] provided a corrected proof of the Abe-Okamoto (partially) blind signature [AO00].

3

1.2 Technical Overview
We now explain our contributions in detail. We first review the Schnorr blind signature and see where it
fails when translating the construction to the isogeny setting. We then explain our basic blind signature
CSI-Otter that uses the quadratic twist and further show how to extend it to the partially blind setting.
Finally, we explain the optimization using the newly introduced rGAIP assumption.

Reviewing the Schnorr Blind Signature. We first recall the Schnorr sigma/identification protocol
between a prover with (pk, sk) = (h = ga, a) ∈ G × Zp and a verifier with pk. The prover samples y

$← Zp

and sends Y = gy to the verifier. The verifier sends a random challenge c
$← Zp to the prover, where the

prover replies with r = y − a · c. The verifier is convinced that it was communicating with a prover in
possession of sk = a if gr · hc = Y . Here, if the verifier sets the challenge as c = H(Y ∥M) for a message
M and a hash function H modeled as a random oracle, then σ = (c, r) serves as a signature based on the
Fiat-Shamir transform [FS87], where the prover is the signer and the verifier is the user with M.

Clearly, this interactive signing protocol does not satisfy blindness, which roughly stipulates that a
signature cannot be traced back to a specific signing session. In particular, when the user outputs the pair
(M, σ), the signer will know in which session it signed σ—or equivalently, the signature σ can be traced back
to the user—by simply checking when the hash value c included in σ was used.

The main idea of the Schnorr blind signature [CP93] is to let the user randomize the interaction so
the session transcript becomes independent of the final signature. More explicitly, the user randomizes the
interaction so that the final signature becomes σ′ = (c + d, r + z), where (d, z) is uniform over Z2

p from the
view of the signer. The Schnorr blind signature accomplishes this as follows: When the user receives Y as the
first-sender message, it samples (d, z) $← Z2

p and sets Y ′ := gz · Y · hd. It then computes c′ = H(Y ′∥M) and
sends c := c′−d to the signer, where the signer replies with r = y−a · c as before. Since we have gr ·hc = Y ,
the user can multiply gz and hd on each side to obtain gr+z · hc+d = Y ′. Thus, σ′ = (c′, r′) := (c + d, r + z)
is a valid signature for the message M. Moreover, it can be checked that this satisfies (perfect) blindness
since any signature σ′ = (c′, r′) has an equal chance of being generated from a transcript (Y, c, r), where the
probability is taken over the randomness sampled by the user.

Difficulty with Group Actions. In the above, the user is implicitly using a specific structure of the
underlying Schnorr sigma protocol to randomize the interaction. Specifically, it is using the fact that G is
a Zp-module. This allows the user to randomize the first-signer message Y ∈ G by multiplying it with the
generator g ∈ G raised to the power of z ∈ Zp and the public key h = ga ∈ G lifted to the power of d ∈ Zp.
This property has been more formally abstracted as a linear identification protocol [HKL19, HKLN20], which
covers schemes based on classical groups and lattices.

Unfortunately, this does not extend to the isogeny setting since isogenies are only a group action. Con-
cretely, the CSIDH group action is defined as ∗ : G×E → E , where G is an ideal class group and E is a set of
elliptic curves, and we further assume the structure of G is known and can be expressed as G = ⟨[g]⟩ ∼= ZN

for some N ∈ N, where g is the generator [BKV19]. Let us make an attempt to construct an isogeny-based
Schnorr-style blind signature where the public key is pk = A = [ga] ∗ E0 ∈ E for a random a

$← ZN and a
fixed curve E0. While the analogy of setting the first-signer message as Y = [gy] ∗ E0 for y

$← ZN works,
it seems this is as far as we can get. Unlike the Schnorr blind signature, the user can only randomize Y
once from the left side. That is, while computing [gz] ∗ Y for a random z ∈ G is possible, combining Y with
[gd] ∗A is not possible since they are both set elements. We note that in the Schnorr blind signature setting,
the former and latter correspond to gz · Y and Y · hd, respectively. Since the blindness of the Schnorr blind
signature hinged on the fact that the first-sender message Y can be randomized twice; one randomness d to
hide the challenge c and another randomness z to hide the second-signer message r, it is unclear how to use
isogenies to construct a blind signature while having only one way to randomize Y .

Using the Quadratic Twist. Our main observation to overcome this problem is to rely on the property
that isogenies are slightly more expressive than a group action due to the quadratic twist. Given any

4

A = [ga] ∗ E0 for an unknown a ∈ ZN , we can efficiently compute its quadratic twist [g−a] ∗ E0, which we
denote4 by A−1.

We first explain the underlying isogeny-based sigma protocol, where we assume for now that the challenge
space is C = {−1, 1}. As above, the prover sends Y = [gy] ∗ E0 for y

$← ZN . The verifier then sends a
random challenge c

$← {−1, 1}, and the prover replies with r = y − a · c. The verifier then verifies the
“signature” σ = (c, r) by checking whether [gr] ∗Ac = Y , where note that Ac is well-defined for c ∈ {−1, 1}
even though A comes from the set of elliptic curves. For an honest execution of the protocol, we have
[gr] ∗Ac = [gr] ∗ ([ga·c] ∗ E0) = [gr+a·c] ∗ E0 = Y as desired.5

Our idea is to randomize this sigma protocol so that the signature σ = (c, r) becomes σ′ = (c ·d, r ·d+z),
where (d, z) is uniform over {−1, 1} × ZN from the view of the signer. Concretely, given the first-sender
message Y , the user randomizes Y by sampling random (d, z) $← {−1, 1} × ZN and sets Y ′ := [gz] ∗ Y d. It
then computes c′ = H(Y ′∥M) and sends c := c′ · d. The signer replies with r = y − a · c as before. Since we
have [gr] ∗Ac = Y , the user can first compute [gr·d] ∗Ac·d = Y d. Namely, it performs nothing if d = 1, and
computes the quadratic twist of both sides if d = −1. It then acts by [gz] to obtain [gr·d+z]∗Ac·d = [gz]∗Y d.
Since the right-hand side is Y ′, σ′ = (c′, r′) := (c · d, r · d + z) is a valid signature for the message M as
desired. Moreover, it can be checked that we have perfect blindness since c and r are both randomized; the
(multiplicative) randomness d ∈ {−1, 1} hides the challenge c and the (additive) randomness z ∈ ZN hides
the response r. Put differently, any signature σ′ = (c′, r′) has an equal chance of being generated from a
transcript (Y, c, r), where the probability is taken over the randomness sampled by the user.

Finally, to turn this basic idea into a secure blind signature, we enlarge the challenge space to be ex-
ponentially large, i.e., C = {−1, 1}n where n is the security parameter. All the above arguments naturally
extend to this enlarged challenge space by running the protocol n times in parallel.

Formal Security Proof. A knowledgeable reader may recall that the Schnorr blind signature is not known
to be secure in the random oracle model [BL13]. This is also the case for our described isogeny-based blind
signature. The Schnorr blind signature has been generalized by Pointcheval and Stern [PS96, PS00] and Abe
and Okamoto [AO00] in similar but different ways to have a security proof in the random oracle model. The
latter Abe-Okamoto blind signature is compatible with our isogeny-based construction, where the public key
is modified to a tuple pk = (A0, A1) = ([ga

0] ∗E0, [ga
1] ∗E0) ∈ E2 for a random (a0, a1) $← Z2

N , and the secret
key to sk = (δ, aδ) for a random δ

$← {0, 1}. The construction uses the OR composition of the underlying
sigma protocol and works well with our idea using the quadratic twist. While the original proof of Abe and
Okamoto [AO00] contained a subtle but non-trivially fixable bug, Kastner, Loss, and Xu [KLX22a] recently
provided a somewhat generic proof for Abe-Okamoto style blind signatures. The security proof of our blind
signature is established by adapting their result to our setting.

Turning it Partially Blind. As explained in Section 1.1, there is no analog of the Abe-Okamoto partially
blind signature in the isogeny setting. The only reason why we could replicate the Abe-Okamoto (non-partial)
blind signature in the isogeny setting was that both (A0, A1) in pk were set up in a way that the user did
not know the secret exponents. Generating A1 ∈ E as a hash of the tag info, i.e., A1 = H(info), would have
failed in the isogeny setting since we cannot do so without letting the computation of H(·) reveal the secret
exponent a1. If a1 is public, then the scheme becomes trivially forgeable.

Our main approach in constructing a partially blind signature is to keep the same public key pk = (A0, A1)
as before but to generate another curve A2 = H(info) with the secret exponent a2. We then modify the signer
to prove that it knows at least two of the three exponents of (A0, A1, A2). The reduction will be able to
extract either a secret key pair (a0, a2), (a1, a2), or (a0, a1) from the forgery: we can rely on the proof for

4The notation for the quadratic twist is not totally uniform in the literature. When E/k : y2 = x3 +Ax2 +x and c ∈ k× \k×2

one sometimes denotes Ec/k : cy2 = x3 + Ax2 + x. In this work we will always have −1 ∈ k× \ k×2 (since k = Fp and p ≡ 3
(mod 4)), and we will have E−1 ∼= E′ : y2 = x3 − Ax2 + x by the change of variables (x, y) 7→ (−x, y). So this notation—while
not usually used in the CSIDH literature—is reasonable, and will be convenient for our protocol description.

5Note that this is a standard (optimized variant of an) isogeny-based sigma protocol where 0 is removed from the challenge
space (see for instance [BKV19]).

5

the standard blind signature that the first two pairs occur with an almost equal probability independent of
the secret key used by the reduction, and the third case always allows the reduction to win.

The question is then how to construct a base sigma protocol for this 2-out-of-3 relation that is compatible
with the above randomization technique using the quadratic twist. For instance, we cannot use the well-
known Cramer-Damg̊ard-Schnoemakers’ sigma protocol [CDS94] using Shamir’s secret-sharing scheme [Sha79]
since the challenge space C = {−1, 1} is used as a multiplicative group in our construction, rather than a field
as required by Shamir’s secret-sharing scheme.6 To this end, we use a 2-out-of-3 multiplicative secret-sharing
scheme as follows: Given a secret c ∈ {−1, 1}, sample (c0, c1, c2) ∈ {−1, 1}3 uniformly random conditioned
on c0 · c1 · c2 = c. We then view (c0, c1), (c1, c2), and (c2, c0) as the three shares. One can check that any two
of the three shares allow reconstructing c, while c is information-theoretically hidden when only one share is
known.

We now construct a sigma protocol for a 2-out-of-3 relation using this secret-sharing scheme as follows:
the high-level idea is to assign the secret shares (c0, c1), (c1, c2), and (c2, c0) to the exponents a0, a1, and a2,
respectively. In more detail, assume the prover knows the exponents a0 and a2. It first samples two shares
(c1, c2) $← {−1, 1}2 and runs the honest-verifier zero-knowledge simulator to simulate the knowledge of the
unknown exponent a1. Specifically, it samples (r1,0, r1,1) $← Z2

N and sets (Y1,0, Y1,1) = ([gr1,0] ∗ Ac1
1 , [gr1,1] ∗

Ac2
1). It then sets (Yb,0, Yb,1) = ([gyb,0] ∗ Ab, [gyb,1] ∗ Ab) for b ∈ {0, 2} by sampling the y’s as before.

Upon receiving (Yb,0, Yb,1)b∈{0,1,2}, the verifier returns a random c ∈ {−1, 1}. The prover sets the final share
c0 = c·c1 ·c2 and computes (r0,0, r0,1) = (y0,0−a0 ·c0, y0,1−a0 ·c1) and (r2,0, r2,1) = (y2,0−a2 ·c2, y2,1−a2 ·c0),
where recall a2 is the publicly known exponent associated with the tag info. Finally, the prover replies with
(rb,0, rb,1)b∈{0,1,2}. The verifier can check the validity of the proof by a similar check as before and will be
convinced that the prover knows at least two secret exponents of pk = (A0, A1, A2).

Building on a similar argument using the quadratic twist, we turn this 2-out-of-3 sigma protocol into a
partially blind signature by allowing the user to appropriately randomize the first-signer message Y ’s . The
user samples three randomness from {−1, 1} to randomize the challenge (c0, c1, c2) and six randomness from
ZN to randomize the second-signer message (rb,0, rb,1)b∈{0,1,2}. We show that the proof of Kastner, Loss,
and Xu [KLX22a] can be slightly modified to work for this partially blind signature.

Optimization using Higher Degree Roots of Unity. Finally, we show how to optimize our blind
signature. One of the implicit reasons why the randomization of the sigma protocol worked was because the
challenge space C = {−1, 1} was a multiplicative subgroup of the ring ZN . We generalize this observation
and consider a larger challenge space Cd = {ζj

d}j∈[d], where ζd is the d-th primitive root of unity over ZN ,7
i.e., ζd

d = 1 and ζj
d ̸= 1 for any j ∈ [d−1]. Cd is indeed a larger multiplicative subgroup of the ring ZN , where

setting d = 2 recovers the challenge space C2 = C. The goal of the optimized scheme remains the same: we
want to randomize the signature σ = (c, r) ∈ Cd×ZN by σ′ = (c · d, r · d + z) for a random (d, z) $← Cd×ZN .
However, unfortunately, when we use a larger challenge space Cd for d > 2, the underlying sigma protocol
no longer satisfies correctness. Recall in the most simple sigma protocol, the verifier receives Y = [gy] ∗ E0,
outputs a challenge c ∈ {−1, 1}, receives r = y − a · c and checks if [gr] ∗ Ac = Y . The final check by the
verifier was computable since computing the quadratic twist (i.e., A−1) was efficient. This is no longer the
case for a more general c ∈ Cd since we do not know how to compute Aj := [ga·ζj

d] ∗E0 given only the curve
A = [ga] ∗ E0 ∈ E , j ∈ [d − 1], and ζd with d ≥ 3. To this end, we extend the public key to pk = (Aj)j∈[d]
to aid the verifier’s computation and modify the sigma protocol to address this extension. This is where we
rely on the new ζd-ring group action inverse problem (ζd-rGAIP) which states that given pk, it is difficult to
recover the exponent a ∈ ZN . Before getting into the hardness of ζd-rGAIP, we finish the overview of our
optimized blind signature below.

Although we are now able to construct a sigma protocol with a larger challenge space, it does not yet
naturally extend to blind signatures due to the extra structure. In particular, the main issue is that when the
signer sends Y = [gy]∗E0 as the first message, our idea was to let the user randomize this by [gz]∗Y w, where
Y w := [gy·ζw

d]∗E0 for (z, w) $← ZN ×Cd. However, due to the same reason as above, this cannot be efficiently
6Since parallel repetition is not required to show blindness, we only focus on the small challenge space for simplicity.
7For the overview, we will ignore when such ζd exists and how to find them (see Section 7.1 for more details).

6

computed from only Y . To this end, we further extend the sigma protocol so that the prover includes all
(Y j)j∈[d] in the first message. While this structure cannot be efficiently checked by the verifier/user, we
modify the sigma protocol so that it performs some consistency checks on these Y j ’s. We show that this
check is sufficient to argue blindness of the resulting blind signature even when the malicious signer is using
a malformed public key, i.e., (Aj)j∈[d] does not have the correct ring structure.

Cryptanalysis of ζd-rGAIP. We have explained how to construct an optimized blind signature assuming
the hardness of ζd-rGAIP. We complement our result by providing a preliminary cryptanalysis of ζd-rGAIP
for the CSIDH-512 parameter. We provide an attack that exploits the additional structure of ζd-rGAIP for
specific choices of d. The insight is the difference of each curves in the public key always has a factor of
(ζi

d− ζj
d) for distinct i, j ∈ [d] which constitutes a non-injective endomorphism over the secret key space ZN .

By investigating these differences, we can reduce an ζd-rGAIP instance to a GAIP instance with a possibly
smaller group than ZN and recover partial information. Then, we can integrate these partial information in
a Pohlig-Hellman sense. As a consequence, we can evaluate the upper bound security strength of ζd-rGAIP
using known attacks against GAIP. For some choices of ζd, ζd-rGAIP only has half the security compared with
GAIP for the CSIDH-512 parameters. On the other hand, for some instances of ζd, we show that ζd-rGAIP
is as hard as GAIP, which demonstrates that the upper bounds obtained via our cryptanalysis are also the
lower bounds. There are some instances of ζd-rGAIP for which our attack does not apply while also having
no reduction to GAIP. We leave analysis of such instances of ζd-rGAIP for the CSIDH-512 parameter set as
an interesting future work.

1.3 Related Work
Isogeny-based Cryptography. The roots of isogeny-based cryptography can be traced back to a 1997
talk of Couveignes, later published online in 2006 [Cou06] and independently rediscovered by Rostovstev and
Stolbunov [RS06]. These works propose a post-quantum key establishment protocol—the CRS protocol—
whose security is based on the difficulty of the “parallelization” problem for the class group action on the set
of ordinary elliptic curves; that is, finding [a][b] ∗ E given E, [a] ∗ E, [b] ∗ E, where E is an ordinary elliptic
curve with endomorphism ring O, and [a], [b] ∈ Cℓ(O). This paralellization problem is the “Diffie-Hellman
analogue” of the perhaps more natural “group action inversion” problem: given two ordinary curves E and
E′ = [a] ∗ E, find [a]. The CRS scheme suffered primarily from two flaws: first, it was impractically slow—
requiring approximately 458 seconds to establish a key at the 128-bit security level [Sto10]—and second,
Childs, Jao, and Soukharev [CJS14] demonstrated that the CRS protocol is vulnerable to a subexponential-
time attack using Kuperberg’s algorithm [Kup05], with later works [BIJ18, JLLRL20, BS20] improving
the attack to require only polynomial quantum space due to Regev’s improved version of Kuperberg’s
algorithm [Reg04].

These problems with ordinary isogeny-based protocols led researchers to instead consider protocols based
on supersingular elliptic curves. The first such protocol was the hash function due to Charles, Lauter,
and Goren [CLG09]. Later, De Feo, Jao, and Plût introduced the Supersingular Isogeny Diffie-Hellman
(SIDH) key establishment protocol, which was later used to construct Supersingular Isogeny Key Estab-
lishment (SIKE) [JAC+17], which was a fourth round candidate in the NIST Post-Quantum Cryptography
competition. Despite passive attacks on “unbalanced” variants [Pet17, dQKL+21] and active attacks on
static/ephemeral implementations [GPST16, DGL+20, GL22], SIDH resisted cryptanalysis until 2022, when
a series of papers [CD23, MMP+23, Rob23] established that SIDH and SIKE could be broken in polynomial
time. While there are proposals for countermeasures to these devastating attacks [FMP23], the efficacy of
these countermeasures has not yet been thoroughly studied.

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) was introduced in 2017 by Castryck et
al. [CLM+18] as an alternative to SIDH. Unlike SIDH—which bears very little resemblance to CRS—CSIDH
is very much a supersingular analogue of CRS. In CSIDH, the supersingularity of the curves involved is
exploited to ensure that a torsion subgroup of very large smooth order is defined over Fp2 , which allows
approximately uniform random sampling and evaluation of complex multiplication to be performed very effi-

7

ciently, making CSIDH orders of magnitude faster than CRS. As well, CSIDH is not known to be susceptible
to any kind of adaptive attack, making it usable in the static/ephemeral setting.

The inability to uniformly sample elements of the ideal class group whose action can be computed ef-
ficiently (without knowing the relation lattice of the class group) makes it difficult to create CSIDH-based
signatures. De Feo and Galbraith were the first to solve this problem in their protocol SeaSign [DG19], using
rejection sampling to ensure that signing key information is never leaked. Later, Beullens, Kleinjung, and
Vercauteren were able to compute the relation lattice of the class group used in the CSIDH-512 parameter
set, and hence construct CSI-FiSh [BKV19]: a CSIDH-based signature scheme without rejection sampling.
Unfortunately, the best known classical algorithms to compute the relation lattice scale subexponentially in
the CSIDH security parameter, and so it is not currently possible to extend CSI-FiSh to larger parameter
sets. However, there are efficient quantum algorithms to compute these relation lattices, making CSI-FiSh
a candidate for post-post-quantum cryptography [DF19]: cryptographic protocols which require a quantum
computer to establish global parameters, but which are otherwise classical. However, it is shown by [Lai23a]
that evaluating isogenies in the way described in [DF19] is not polynomial-time in theory (with the prepro-
cessing using quantum computers) but is also slow in practice using lattice reduction estimations. A very
recent work [FFK+23] shows a feasible manner to obtain the group structure using the oriented supersin-
gular curves and imaginary quadratic orders with a large prime conductor. Though the isogeny evaluation
has subexponential complexity in theory, they show a feasible result in practice by carefully choosing the
parameters.

When the relation lattice of the class group is known, complex multiplication is an instance of what
Couveignes [Cou06] called a hard homogeneous space, and what is now often called a cryptographic group
action [ADMP20]. While many CSIDH/CSI-FiSh-based protocols have been constructed the group action
abstractly, the CSIDH group action actually has slightly more structure than an abstract cryptographic
group action. In particular, if E/Fp : y2 = x3 + Ax2 + x has endomorphism ring O and [b] ∈ Cℓ(O)

([b] ∗ E)−1 = [b]−1 ∗ E−1

where E−1 has Montgomery form E−1 : y2 = x3 − Ax2 + x. In particular, if we take E = E0 : y2 = x3 + x
we have ([b] ∗ E0)−1 = [b]−1 ∗ E0, and so given [b] ∗ E0, we have an efficient way of constructing [b]−1 ∗ E0.
This additional structure turns out to be a powerful tool, which has led to the construction of a UC-
secure isogeny-based oblivious trasnfer [LGd21], provably-secure isogeny-based password authenticated key
establishment [AEK+22] (which had been elusive for years [TSJL21, AJK+20]) and new techniques for fault
attack-resistance of static/ephemeral CSIDH. It is also a useful tool used in [BKV19, Lai23b] to compress
the signature or the proof size.

Post-Quantum Blind Signatures. The most active area of post-quantum blind signatures is those based
on lattices. The first lattice-based blind signature was proposed by Rükert [Rüc10], who followed a design
paradigm similar to the classical Schnorr or Okamoto-Schnorr blind signatures [Sch01, PS00]. This approach
has been optimized in subsequent works [PHBS19, LSK+19, AEB20a, AEB20b, AHJ21], where BLAZE+
by Alkadri et al. [AEB20b] currently stands as the most efficient proposal. However, recently, Hauck et
al. [HKLN20] showed that all constructions following the blueprint of Rükert’s blind signature contain the
same bug in their security proof, and provided the first provable secure lattice-based blind signature following
a similar template with a signature size of roughly 7.9 MB.

Recently, Lyubashevsky et al. [LNP22] constructed a novel blind signature based on a new approach using
one-time signatures and OR proofs. While they can support only a bounded polynomially many signatures
per public key, the signature size is small as 150 KB. In a concurrent and independent work, del Pino and
Katsumata [dK22] and Agrawal et al. [AKSY22] showed two different methods loosely following the generic
blind signature construction by Fischlin [Fis06]. The former has a signature size of roughly 100 KB under
the SIS assumption and is the first scheme to have provable security in the quantum random oracle model.
The latter has a signature size of roughly 50 KB under a newly introduced one-more SIS assumption. In
an independent and concurrent work to ours, Beullens et al. [BLNS23] recently took this approach one step

8

further and constructed a lattice-based blind signature with signature size of 22 KB. The construction relies
on an NIZK for proving relations of concrete hash functions.

Finally, there are a few blind signatures based on other post-quantum assumptions. Blazy et al. [BGSS17]
constructs a code-based blind signature following the generic blind signature construction by Fischlin. The
other is by Petzoldt et al. [PSM17] that constructs a multivariate-based blind signature under a non-standard
unforgeability notion.

2 Background
2.1 Notation
We denote the set of natural numbers and integers by N and Z, respectively. We define the ring of integers
modulo N , i.e., ZN , with representatives in [−q/2, q/2)∩Z. For a positive integer k, we let [k] denote the set
{1, 2, . . . , k}. For a vector −→h , hi denotes its i-th entry and −→h [i] denotes the vector of its first i-entries. For a
distribution D, we write x

$← D to denote x is sampled according to D. For a finite set S, we denote x
$← S

to sample x uniformly at random over S. We use ⊙ to denote the component-wise multiplication of vectors
in R. We use ∥ to denote the concatenation of two strings. For an element g and vector a = (a1, . . . , an), we
use ga as a shorthand for (ga1 , . . . , gan). Moreover, for any operation ∗ defined between two elements g and h
and vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we use ga ∗hb as a shorthand for (ga1 ∗hb1 , . . . , gan ∗hb1).

2.2 (Partially) Blind Signature
We define partially blind signatures consisting of three moves, which is sufficient to capture many known
protocols, e.g., [AO00, KLX22b, KLX22a]. Below, we retrieve the standard definition of (three-move) blind
signatures by ignoring the tag info or alternatively setting info to a predefined value.

Definition 2.1 (Partially Blind Signature Scheme). A three-move partially blind signature PBS =
(PBS.KGen, PBS.S, PBS.U, PBS.Verify) with an efficiently decidable public key space PK consists of the fol-
lowing PPT algorithms:

PBS.KGen(1n)→ (pk, sk) : On input the security parameter 1n, the key generation algorithm outputs a pair
of public and secret keys (pk, sk).

PBS.S = (PBS.S1, PBS.S2) : The interactive signer algorithm consists of two phases:

PBS.S1(sk, info)→ (stateS, ρS,1) : On input a secret key sk and a tag info, it outputs an internal signer
state stateS and a first-sender message ρS,1.8

PBS.S2(stateS, ρU))→ ρS,2 : On input a signer state stateS and a user message ρU, it outputs a second-
sender message ρS,2.

PBS.U = (PBS.U1, PBS.U2) : The interactive user algorithm consists of two phases:

PBS.U1(pk, info, M, ρS,1)→ (stateU, ρU) : On input a public key pk ∈ PK, a tag info, a message M, and
a first-sender message ρS,1, it outputs an internal user state stateU and a user message ρU.

PBS.U2(stateU, ρS,2))→ σ : On input a user state stateU and a second-signer message ρS,2, it outputs
a signature σ.

PBS.Verify(pk, info, M, σ)→ 1 or 0 : In input a public key pk, a tag info, a message M, and a signature σ,
the verification algorithm outputs 1 to indicate the signature is valid, and 0 otherwise.

8We assume without loss of generality that sk includes pk and stateS includes (pk, sk) and omit it when the context is clear.
Below, we also assume that stateU includes M.

9

If the partially blind signature only accepts a unique tag info, we drop the “partially” and simply call it a
blind signature (BS) and omit info from the syntax.

We require a partially blind signature to be complete, blind against malicious signer, and one-more
unforgeable. We first define correctness.

Definition 2.2 (Perfect Correctness). A three-move partially blind signature scheme PBS is perfectly
correct if for all public and secret key pairs (pk, sk) ∈ PBS.KGen(1n) and every tag and message pair (info, M),
we have

Pr

PBS.Verify(pk, info, M, σ) = 1

∣∣∣∣∣∣∣∣∣
(stateS, ρS,1) $← PBS.S1(sk, info)
(stateU, ρU) $← PBS.U1(pk, info, M, ρS,1)

ρS,2
$← PBS.S2(stateS, ρU)

σ
$← PBS.U2(stateU, ρS,2)

 = 1

The following definitions are taken from [KLX22b, KLX22a]. Partial blindness roughly requires the
transcript to be independent of the signature even if the signer choses the keys maliciously.

Definition 2.3 (Partial Blindness Under Chosen Keys). We define partial blindness of a three-move
partially blind signature scheme PBS via the following game between a challenger and an adversary A:

Setup. The challenger samples coin ∈ {0, 1} and runs A on input 1n.

Online Phase. When A outputs a tag info, messages M̃0 and M̃1, and a public key pk ∈ PK, it assigns
(M0, M1) := (M̃coin, M̃1−coin). A is then given access to oracles U1, U2, which behave as follows.

Oracle U1. On input b ∈ {0, 1}, and a first-signer message ρS,1,b, if the session b is not yet open,
the oracle marks session b as opened and runs

(
stateU,b, ρU,b

) $← PBS.U1 (pk, info, Mb, ρS,1,b). It
returns ρU,b to A.

Oracle U2. On input b ∈ {0, 1} and a second-signer message ρS,2,b, if the session b is opened, the
oracle creates a signature σb

$← PBS.U2
(
stateU,b, ρS,2,b

)
. It marks session b as closed. Oracle

U2 does not output anything.

Output Determination. When both sessions are closed and PBS.Verify(pk, info, Mb, σb) = 1 for b ∈ {0, 1},
the oracle returns the two signatures (σcoin, σ1−coin) to A, where note that σcoin (resp. σ1−coin) is a valid
signature for M̃0 (resp. M̃1) regardless of the choice of coin. A outputs a guess coin∗ for coin. We say
A wins if coin∗ = coin.

We say PBS is partially blind under chosen keys if the advantage of A defined as Pr[A wins] is negligible.

One-more unforgeability roughly ensures that at most one valid signature is generated after each execution
of PBS.Sign. Formally, we have the following.

Definition 2.4 (One-More-Unforgeability). We define ℓ-one-more unforgeability (ℓ-OMUF) for any ℓ ∈
N of a three-move partially blind signature scheme PBS via the following game between a challenger and an
adversary A:

Setup. The challenger samples (pk, sk) $← PBS.KGen(1n) and runs A on input pk. It further initializes
ℓclosed = 0 and openedsid = false for all sid ∈ N.

Online Phase. A is given access to oracles S1 and S2, which behave as follows.

Oracle S1: On input a tag info, the oracle samples a fresh session identifier sid. It sets openedsid ←
true and generates (stateS,sid, ρS,1) $← PBS.S1(sk, info). Then it returns sid and the first-sender
message ρS,1 to A.

10

Oracle S2: On input a user message ρU and a session identifier sid, if ℓclosed ≥ ℓ or openedsid = false,
then it returns ⊥. Otherwise, it sets ℓclosed + + and openedsid = false. It then computes the
second-signer message ρS,2

$← PBS.S2(stateS,sid, ρU) and returns ρS,2 to A.

Output Determination. When A outputs distinct tuples (M1, σ1, info1), . . . , (Mk, σk, infok), we say A wins
if k ≥ ℓclosed + 1 and for all i ∈ [k], PBS.Verify(pk, infoi, Mi, σi) = 1.

We say PBS is ℓ-one-more unforgeable if the advantage of A defined as Pr[A wins] is negligible.

2.3 Sigma Protocols
While we do not explicitly rely on a sigma protocol, we provide an informal treatment as it will aid the
intuition behind the construction of our (partially) blind signature. For concreteness, we provide a formal
treatment in Appendix A. A sigma protocol for an NP relation R ⊆ {0, 1}⋆ × {0, 1}⋆ is a special type of
public-coin three-move interactive protocol between a prover and a verifier.

Definition 2.5 (Sigma Protocol). A sigma protocol Σ for an NP relation R is a three-move public-coin
interactive protocol with two pairs of PPT algorithms P = (P1, P2), V with the following flow:

• The prover on input a statement and witness pair (X, W) ∈ R, runs (com, state) $← P1(X, W) and sends
a commitment com to the verifier.

• The verifier samples a random challenge ch $← C from a specified challenge set, and sends ch to the
prover.

• The prover runs rsp $← P2(state, ch) and returns a response rsp to the verifier.

• The verifier runs V(X, com, ch, rsp) and outputs 1 to indicate the prover is valid and 0 otherwise.

To be useful as an (implicit) building block for blind signatures, a sigma protocol must satisfy correct-
ness, honest verifier zero-knowledge (HVZK), witness indistinguishability, and special soundness. A formal
definition can be found in for example [Dam02].

Informally, correctness requires that if the prover has a valid statement and witness pair (X, W), the
verifier outputs 1 with probability 1. HVZK roughly requires that there exists a PPT simulator Sim
such that given any statement X (in the language) and challenge ch ∈ C, it outputs a valid transcript
(com, ch, rsp) that is indistinguishable from a real transcript. Witness indistinguishability is a weaker notion
compared with HVZK, where we require the interactions between a prover using a witness W1 or W2 satisfy-
ing (X, W1), (X, W2) ∈ R are indistinguishable. Namely, the interaction does not leak which witness is being
used. Finally, special soundness requires that there is a deterministic polynomial time extractor Ext such
that given two valid transcripts (com, ch1, rsp1) and (com, ch2, rsp2) for X with the same com and distinct
ch1 ̸= ch2, it outputs W such that (X, W) ∈ R.

We also define a hard instance generator for the NP relation R as follows.

Definition 2.6 (Hard Instance Generator). An NP relation R is associated with an instance generator
(IG) if IG, given as input the security parameter 1n, outputs a statement-witness pair (X, W) ∈ R. Moreover,
we say the instance generator is hard if the following holds for any PPT adversary A:

Pr[(X, W)← IG(1n), W′ ← A(X) : (X, W′) ∈ R] = negl(n).

2.4 Elliptic Curves and Isogenies
Let E denote the elliptic curve over a finite field Fp with p a large prime, and let 0E is the point at infinity on
E. The curve E is called supersingular if and only if #E (Fp) = p + 1. Therefore, by using point counting or
the Schoof’s algorithm [Sch95], one can verify the supersingularity of a given curve efficiently. Otherwise, the
curve is called ordinary curve. Given two elliptic curves E and E′, an isogeny ϕ is a morphism ϕ : E → E′ ,

11

namely, isogeny is a map given by rational functions and it is a group homomorphism such that ϕ (0E) = 0E′ .
An isomorphism is an isogeny whose inverse over the algebraic closure is also an isogeny and two elliptic
curves are isomorphic if and only if they have the same j-invariant. There is a one-to-one correspondence
from finite subgroups of an elliptic curve to separable isogenies from said curve, up to post-composition with
isomorphisms. To be more specific, any subgroup S ⊂ E

(
Fpk

)
determines a (separable) isogeny ϕ : E → E′

with ker ϕ = S, i.e. E′ = E/S. Given subgroup S, the equation equation for E′ and the isogeny ϕ can be
computed using Vélu’s formulae using O

(
#S(k log p)2)

bit-operations. As a result, only the small subgroups
S defined over Fp with small p can be computed efficiently.

The ring of endomorphisms End(E) consists of all isogenies from E to itself, and Endp(E) denotes the
ring of endomorphisms defined over Fp. When E/Fp is supersingular, the endomorphism ring Endp(E) is
isomorphic to an order O of the quadratic field Q(√−p) [CLM+18]. We recall that an order is a subring
of Q(√−p), which is also a finitely-generated Z-module containing a basis of Q(√−p) as a Q-vector space.
A fractional ideal a of O is a finitely generated O-submodule of Q(√−p). We say that a is invertible if
there exists another fractional ideal b of O such that ab = O, and that it is principal if a = αO for some
α ∈ Q(√−p). The invertible fractional ideals of O form an Abelian group whose quotient by the subgroup
of principal fractional ideals is finite. This quotient group is called the ideal class group of O, and denoted
by Cℓ(O).

The ideal class group Cℓ(O) acts freely and transitively on the set Eℓℓ, which contains all supersingular
elliptic curves E over Fp-modulo isomorphisms defined over Fp - such that there exists an isomorphism
between O and Endp(E) mapping √−p ∈ O to the Frobenius endomorphism π : (x, y) 7→ (xp, yp).

The quadratic twist of a given elliptic curve E : y2 = f(x) is Et : dy2 = f(x) where d ∈ F×
p \ F×2

p . When
p = 3 mod 4 and E0 is of j-invariant 1728, then E0 and Et

0 are Fp-isomorphic. The quadratic twist can be
efficiently computed in this setting. When p = 3 mod 4, the quadratic twist E′ : −y2 = x3 + Ax2 + x of
EA : y2 = x3 + Ax2 + x is Fp-isomorphic to E−A by considering (x, y) 7→ (−x, y). Further, ([a] ∗ E0)−1 =
[a]−1 ∗ E0 for any [a] ∈ Cℓ(O). Therefore, for any curve E ∈ Eℓℓp(O, π), we have, by the transitivity of the
action,

([a] ∗ E)−1 = [a]−1 ∗ Et.

Remark 2.7. Throughout the rest of the paper, we consider the underlying prime p = 3 mod 4. We assume
the structure of the ideal class group G = ⟨[g]⟩ ∼= ZN , justified by the Cohen-Lenstra heuristic, is known
for some N ∈ N and for each i ∈ [N] the action [gi] ∗ E can be efficiently evaluated. The setup is justified
by [BKV19]. Let E0 ∈ E be the supersingular curve of j-invariant 1728. Our cryptosystems rely on the
following assumptions.

Definition 2.8 (Group Action Inverse Problem (GAIP)). Given (E0, E′) ∈ Eℓℓ2 where E′ = [gs] ∗E0
and s

$← [N], the group action inverse problem is to find [g′] ∈ G such that [g′] ∗ E0 = E′.

The problem is equivalent to finding the exponent s mod N by considering f(m, n) = [gmg′n] ⋆ E0 and
applying the quantum period finding algorithm.

Recall that G ∼= ZN and ZN is a ring. We introduce a generalized version of the group action inverse
problem by considering a d-th primitive root of unity, denoted by ζd, over ZN such that ζd

d = 1 and ζj
d ̸= 1

for any j ∈ [d− 1]. We define the ring group action inverse problem with respect to ζd as follows.

Definition 2.9 (ζd-Ring Group Action Inverse Problem (rGAIP)). Given (E0, S) ∈ Ed+1 where
S = ([gsζj

d] ∗ E0)j∈[d], s
$← [N] and d|λ(N) (here λ is the Carmichael function), the ζd-ring group action

inversion problem (ζd-rGAIP) is to recover s.

When the context is clear, we may remove d from the subscript or remove ζd entirely and call it rGAIP
for simplicity. This problem is a generalized version of GAIP, which is a ζ2-rGAIP with ζ2 = −1. To see this,
by taking the quadratic twist of a GAIP instance E′ = [gs] ∗E0, we have (E′, E′−1) = ([gs] ∗E0, [g−s] ∗E0).
Such a ζd exists if d is a divisor of the Carmichael function λ(N). Concretely, if N = Πpei

i where pi are

12

distinct primes, we have λ(N) = lcmi(λ(pei
i)) where

λ(pei
i) =

{
1
2 φ(pei

i) if pi = 2 ∧ ei ≥ 3
φ(pei

i) otherwise

where φ is the Euler phi-function. Similar to GAIP [FIM+14, BN18, CDEL21] having polynomial-time
HSP algorithms for insecure group structures, the hardness of an ζd-rGAIP also relies on the underlying
algebraic structure and the specific choice of ζd. In Section 7.2, we provide a structural analysis on the
ζd-rGAIP for CSIDH-512 and display a few weak and hard instances depending on ζd. We show that for
some carefully-chosen d (depending on N), ζd-rGAIP is as essentially as hard as the original GAIP.

Finally, when constructing our optimized blind signatures in Section 6, we require d to satisfy a bit
more requirement other than ζd-rGAIP being hard. Informally, we require ηd = lcmi∈[d−1](gcd(ζi

d − 1, N))
to be small for the extractor of the underlying sigma protocol to be efficient. More details can be found
in Section 6.

3 Generic Proofs for Blind Schnorr-Type Signatures
In this section, we review the recent work of Kastner, Loss, and Xu [KLX22a] that provided a proof of the
Abe-Okamoto (partially) blind signature [AO00]. The original security proof of the one-more unforgeability
in [AO00] contained a leap of logic in the security proof (i.e., the scheme was correct but the security proof
was not), and Kastner, Loss, and Xu provided a somewhat generic proof that works for many of the blind
Schnorr-type signatures [CP93].9 While their focus was on the scheme by Abe and Okamoto, the proof is
generic enough to capture other similar schemes (see for instance [KLX22a, Appendix F] that provides a
proof sketch of [Abe01]). Indeed, the constructions we propose fall under their generic proofs as well. To
this end, we extract the minimal definitions and lemmas from [KLX22a] required to argue the security of
our (partially) blind signatures. Here, we note that it is likely that one can rewrite [KLX22a] in a more
generic fashion by borrowing the tools from [HKL19]. However, we chose not to for better readability and
since isogenies do not naturally endow a linear identification scheme as required by [HKL19]. Finally, we
emphasize that while this section is not contained in Section 2 (i.e., Background), we do not claim any
technical novelty of it.

Below, we provide a brief overview of the proof by Kastner, Loss, and Xu and then introduce the key
lemmas that need to be proven in this paper to apply their proof.

3.1 Proof Overview
Loosely speaking, a blind Schnorr-type signature is a type of blind signature that builds on top of a Schnorr-
type sigma protocol [Sch90]. The signer of the blind signature is identical to the prover in a sigma protocol,
while the user of the blind signature modifies the verifier in the sigma protocol by appropriately adding
blindness factors. In the proof of one-more unforgeability, the adversary (i.e., a malicious user) does not care
if its forgeries are blind, and thus, how the blindness is achieved can be ignored for now.

At a high level, to argue one-more unforgeability, we would like the reduction to embed a hard problem
into the public key of the blind signature and appeal to the special soundness of the underlying sigma
protocol to extract a solution from the forgeries. However, unlike standard Fiat-Shamir-based signatures,
the reduction cannot rely on HVZK to simulate the signatures since the challenge is under the adversary’s
control. To simulate the interaction between the adversary, we thus allow the public key to have two valid
secret keys, e.g., (vk = (E0, [ga0] ∗E0, [ga1] ∗E0), sk = (δ, aδ)) with δ ∈ {0, 1}. The reduction embeds a hard
problem into one of the secret keys while simulating with the other secret key.

9Note that the proof in [KLX22a] relies on the fact that there are two possible signing keys per public key. Therefore, their
proof does not work for the original Schnorr blind signature [CP93], which is known to be secure if we further rely on the
algebraic group model [KLX22b].

13

What makes the security proof of blind Schnorr-type signatures tricky is that even if the adversary’s view
is independent of the secret key being used, this alone does not complete the proof. This is because to argue
that the secret key extracted via the special soundness of the underlying sigma protocol is unbiased, we need
to argue that the algorithm (i.e., reduction) executing the extractor of the special soundness is unbiased.
While this holds for standard Fiat-Shamir based signature schemes since the reduction can invoke HVZK,
this is not the case for blind signatures. As we discussed above, since the adversary chooses the challenge, the
reduction can only try to invoke witness indistinguishability. However, witness indistinguishability breaks
when the reduction rewinds the adversary since the reduction needs to simulate two transcripts using the
same first commitment of the sigma protocol. Thus, the reduction is not compatible with the definition of
witness indistinguishability.

That being said since the view of the adversary (in each run) is independent of the secret key being
used, intuition tells us that the extraction works: the only thing that’s not working is the security proof.
To overcome this issue, Kastner, Loss, and Xu [KLX22a] provides a detailed analysis of the probability
of the reduction succeeding while implicitly relying on witness indistinguishability. We note that Abe and
Okamoto [AO00] also rely on the same proof approach but included a subtle but non-trivially fixable flaw
to compute the probability.

3.2 Key Definitions, Lemmas, and Theorems
We extract the minimal definitions and lemmas from [KLX22a] in a self-contained manner so that the
security of our (partially) blind signatures is established through several easy-to-state lemmas. For a more
full exposition, we refer the readers to [KLX22a].

Preparation. We first assume the adversary against the one-more unforgeability game is restricted to make
only ℓ + 1 distinct hash queries to the random oracle, where ℓ + 1 is the number of forgeries the adversary
outputs. Moreover, as with any blind Schnorr-type signature, we assume each signature in the forgery is
associated with a distinct hash query.10 We also assume the public key of the (partially) blind signature
has exactly two corresponding secret keys. More specifically, we assume the underlying sigma protocol is
for the NP OR-relation R defined with respect to another NP relation R′. That is, (X := (X′

0, X′
1), W :=

(δ, W′
δ)) ∈ R, where (X′

0, W′
0), (X′

1, W′
1) ∈ R′, X is the public key and W is the secret key. Finally, we assume

the adversary’s user-message ρU queried to the signing algorithm PBS.S2 satisfies ρU ∈ C, where C is the
challenge space of the underlying sigma protocol for relation R (and R′).

We first define the notion of instances. Roughly, an instance defines the signer’s key and randomness. We
present a variant of the definition of instances in [KLX22a, Definition 4] that is agnostic to the underlying
sigma protocol. We provide an explicit description of instances, analogous to [KLX22a, Definition 4], when
we detail our construction of (partial) blind signatures.

Definition 3.1 (Instances). Assume the public key of a blind Schnorr-type signature has exactly two cor-
responding secret keys sk0 = (0, W′

0) and sk1 = (1, W′
1). We define two types of instances I: A 0-side (resp.

1-side) instance consists of sk0 (resp. sk1) and the randomness used by the honest signer algorithm when the
secret key is fixed to sk0 (resp. sk1), i.e., randomness excluding those used by the key generation algorithm.

The main argument of Kastner, Loss, and Xu boils down to arguing that the output of the extraction
algorithm (i.e., forking algorithm) explained above is independent of the instances.

Let −→h be the vector of responses returned by the random oracle, where
∣∣∣−→h ∣∣∣ = ℓ + 1, and let rand be the

randomness used by the one-more unforgeability adversary. We define a deterministic wrapper algorithm W
that simulates the interaction between the signer and the adversary given input (I, rand,

−→
h). W invokes the

signer and the adversary on inputs I and rand, respectively, and uses −→h to answer the random oracle queries
made by the adversary. We define W(I, rand,

−→
h) to output ⊥ if the adversary aborts prematurely or fails to

10For those unfamiliar with Schnorr-type signatures, we encourage to look at our concrete construction, where the meaning
would be clear from context.

14

win the one-more unforgeability game, and otherwise, output what the adversary outputs. We then define
the notion of successful tuples as follows.

Definition 3.2 (Successful Tuples). We define the set of successful tuples as follows:

Succ := {(I, rand,
−→
h) | W(I, rand,

−→
h) ̸= ⊥}.

We next define a sufficient condition to invoke the extraction algorithm of the underlying sigma protocol.
This is a standard definition (often implicitly) used even for Fiat-Shamir based signatures.

Definition 3.3 (Successful Forking [KLX22a, Definition 7]). We say two successful input tuples
(I, rand,

−→
h), (I, rand,

−→
h ′) ∈ Succ fork from each other at index i ∈ [ℓ + 1] if

−→
h [i−1] = −→h ′

[i−1] but hi ̸= h′
i.

We denote the set of hash vector pairs (hi, h′
i) such that (I, rand,

−→
h), (I, rand,

−→
h ′) ∈ Succ fork at index i as

Fi(I, rand).

We next define the notion of transcripts. A query transcript denotes the user messages queried to the
signer. A full transcript denotes the entire transcript produced by the signer and the adversary, including
the final forgery.

Definition 3.4 (Query Transcript [KLX22a, Definition 5]). Consider the wrapperW running on input
(I, rand,

−→
h). The query transcript, denoted −→e (I, rand,

−→
h), is the vector of user message (ρU) queries made

to the signing algorithm PBS.S2 (simulated by W) by the adversary, ordered by sid.

Definition 3.5 (Full Transcript [KLX22a, Definition 6]). Consider the wrapper W running on input
(I, rand,

−→
h). The full transcript, denoted trans(I, rand,

−→
h), is the transcript produced between the signer and

the adversary, i.e., all messages sent between the signer and user played by the adversary, including the
forgeries.

We now define partners, which plays a key role in the analysis of [AO00, KLX22a]. Informally, two tuples
(I, rand,

−→
h), (I, rand,

−→
h ′) ∈ Succ are partners at i if they fork at this index i and produce the same query

transcript. Note that this does not necessarily imply that each tuple results in the same full transcript.

Definition 3.6 (Partners [KLX22a, Definition 8]). We say two successful tuples (I, rand,
−→
h), (I, rand,

−→
h ′)

are partners at index i ∈ [ℓ + 1] if the followings hold:

• (I, rand,
−→
h) and (I, rand,

−→
h ′) fork at index i.

• −→e (I, rand,
−→
h) = −→e (I, rand,

−→
h ′)

We denote the set of (−→h ,
−→
h ′) such that (I, rand,

−→
h) and (I, rand,

−→
h ′) are partners at index i by prti(I, rand).

A triangle is another key tool introduced in [AO00, KLX22a] in order to enhance the standard forking
tuples with the nice properties of partners. A triangle consists of three vectors −→h ,

−→
h ′,
−→
h ′′ such that each

two vectors fork at the same index, and additionally, (−→h ,
−→
h ′) are partners.

Definition 3.7 (Triangles [KLX22a, Definition 9]). A triangle at index i ∈ [ℓ + 1] with respect to I,
rand is a tuple of three successful tuples in the following set:

△i(I, rand) =


((I, rand,

−→
h), (−→h ,

−→
h ′) ∈ prti(I, rand)

(I, rand
−→
h ′), (−→h ,

−→
h ′′) ∈ Fi(I, rand))

(I, rand
−→
h ′′)) (−→h ′,

−→
h ′′) ∈ Fi(I, rand)


For a triangle ((I, rand,

−→
h), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ △i(I, rand), we call the pair of tuples ((I, rand,

−→
h),

(I, rand,
−→
h ′)) the base, and ((I, rand,

−→
h), (I, rand,

−→
h ′′)) and ((I, rand,

−→
h ′), (I, rand,

−→
h ′′)) the sides.

15

We next define a map that transforms a b-side instance into a (1−b)-side instance for b ∈ {0, 1}. Roughly,
the map allows us to relate the number of triangles with a 0-side instance to those with a 1-side instance. We
present a variant of the definition of instances in [KLX22a, Definition 12] that is agnostic to the underlying
sigma protocol. We provide an explicit description of the map, analogous to [KLX22a, Definition 12], when
we detail our construction of (partial) blind signatures.

Definition 3.8 (Mapping Instances via Transcript). For (I, rand,
−→
h) ∈ Succ, we define Φrand,

−→
h

(I) as
a function that maps a 0-side instance I (resp. 1-side instance I) to a 1-side instance I′ (resp. 0-side
instance I′).

Finally, we formally define the witness extractor used by the reduction. We present a variant of the
definition of witness extractor in [KLX22a, Definition 13] that is agnostic to the underlying sigma protocol.
This is because the witness extractor’s concrete description is defined using the special soundness extractor of
the underlying sigma protocol, which we will do when we detail our construction of (partial) blind signatures.

Definition 3.9 (Witness Extraction). Fix I, rand and let
−→
h ,
−→
h ′ ∈ Fi(I, rand) for some i ∈ [ℓ + 1].

Moreover, denote σi, σ′
i the signatures that correspond to hi, h′

i, respectively. We say deterministic algorithms
(Ext0, Ext1) are witness extractors if (Ext0(σi, σ′

i), Ext1(σi, σ′
i)) ∈ {(sk0,⊥), (⊥, sk1), (sk0, sk1)}.11 For b ∈

{0, 1}, we say that the b-side witness can be extracted from (I, rand,
−→
h) and (I, rand,

−→
h ′) at index i if

Extb(σi, σ′
i) outputs skb.

Sufficient Condition for One-More Unforgeability. We are now prepared to formally present the
main result of Kastner, Loss, and Xu [KLX22a]. First of all, if the map Φrand,

−→
h

is a bijection that preserves
transcripts for any rand and −→h , then a partner tuple with a b-side instance maps to another partner tuple
with a (1−b)-side instance for the same rand and −→h (see [KLX22a, Corollary 1 and Lemma 3]). This implies
that the extracted witness from a partner tuple is independent of the reduction’s secret key. However, it is
not clear if the reduction is able to obtain a partner tuple by rewinding. To this end, we use the sides of the
triangle rather than the base (i.e., partner tuple) to extract a witness, where the main observation is that if
a b-side witness can be extracted from the base of a triangle, then a b-side witness can be extracted from at
least one of the sides. Then, we argue that the reduction having a b-side witness hits one corner of the base
of a triangle in the first run, and then hits the top of the triangle such that it creates side with a (1− b)-side
witness with a probability of roughly 1/2.

The main contribution of Kastner, Loss, and Xu [KLX22a] was to make the above high-level argument
precise. Their result is mostly purely statistical and it suffices to only prove that our (partial) blind signature
satisfies the following two lemmas to invoke their main theorem concerning one-more unforgeability. The
first lemma shows that the blind signature is perfectly witness indistinguishable. This is used to establish
the extracted witness from a partner tuple is independent of the reduction’s secret key.

Lemma 3.10 ([KLX22a, Lemma 2]). Fix rand,
−→
h . For all tuples (I, rand,

−→
h) ∈ Succ, Φrand,

−→
h

is a self-
inverse bijection and trans(I, rand,

−→
h) = trans(Φrand,

−→
h

(I), rand,
−→
h).

The second lemma states that if a witness can be extracted from a base of a triangle, then the same
witness can be extracted from at least one of its sides.

Lemma 3.11 ([KLX22a, Corollary 3]). Fix I, rand and let (−→h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand), for some i ∈ [ℓ+1].

If the 0-side (1-side) witness can be extracted from the base (I, rand,
−→
h), (I, rand,

−→
h ′) of the triangle at index i,

then one can also extract the 0-side (1-side) witness from at least one of the sides (I, rand,
−→
h), (I, rand,

−→
h ′′)

or (I, rand,
−→
h), (I, rand,

−→
h ′′) at index i.

11[KLX22a] defined the witness extractors in such a way that it outputs only (sk0, ⊥) or (⊥, sk1). However, this restriction
is not required as long as Lemma 3.10 (i.e., [KLX22a, Corollary 3]) holds. We note that we need this extra relaxation for it
to be useful in our partially blind signature. Moreover, note that the extractors are only required to output W′

b included in
skb = (b, W′

b). We use W′
b and skb interchangeably for readability.

16

The following is the main theorem of Kastner, Loss, and Xu [KLX22a, Theorem 1] casted slightly generally
to be agnostic to the underlying hardness assumption.

Theorem 3.12. Let the (partially) blind Schnorr-type signature (P)BS be as defined in the preparation
of Section 3.2. In particular, assume the public key consists of two instances of the NP relation R′ generated
by a corresponding hard instance generator IG and the underlying sigma protocol has challenge space C.

If Lemmas 3.10 and 3.11 hold, then for all ℓ ∈ N, if there exists an adversary A that makes Q hash queries
to the random oracle and breaks the ℓ-one more unforgeability of (P)BS with advantage ϵA ≥ C1

|C| ·
(

Q
ℓ+1

)
, then

there exists an algorithm B that breaks the hard instance generator with advantage ϵB ≥ C2 · ϵ2
A

(Q
ℓ+1)2·(ℓ+1)3

for
some universal positive constants C1 and C2.

We note that Kastner, Loss, and Xu only show the above theorem for blind signatures. They then show
that it can be extended to a proof for their particular partially blind signature with a loss of 1/T , where
T is the number of the distinct tag info queries by the adversary (see [KLX22a, Theorem 2]). However,
as explained in the introduction, we cannot follow their approach since our partially blind signature must
deviate from prior constructions. To this end, we notice that the same proofs and theorem above can be
applied to the partially blind setting if the instances in Definition 3.1 can be defined independently from the
tags info used by the adversary. See Section 5 for more details.

4 Constructing Isogeny-Based Blind Signatures
In this section, we provide our isogeny-based blind signature. We first explain the sigma protocol that
underlies our isogeny-based blind signature and then show how to compile it into a blind signature.

4.1 Base Sigma Protocol for an OR Relation
To begin, we consider a sigma protocol to prove that the prover knows at least one of the two secrets
corresponding to the public statement X = (A0, A1) = ([ga0] ∗E0, [ga1] ∗E0). The sigma protocol is depicted
in Fig. 1. Note that this is a standard isogeny-based sigma protocol where 0 is removed from the challenge
space (see for instance [BKV19]). As explained in Section 1.2, the main reason for this slight modification
is to make the (non-soundness amplified) challenge space {−1, 1} to be a (multiplicative) subgroup of Z×

N .

P: X = (A0, A1) = ([ga0] ∗ E0, [ga1] ∗ E0)
W = (δ, aδ) ∈ {0, 1} × ZN

V: X = (A0, A1)

yδ
$← Zn

N

Yδ = [gyδ] ∗ E0
(c1−δ, r1−δ) $← {−1, 1}n × Zδ

N

Y1−δ = [gr1−δ] ∗A
c1−δ

1−δ

(Y0, Y1)
−−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−−

c $← {−1, 1}n

cδ = c⊙ c1−δ

rδ = yδ − aδ · cδ
(r0, r1, c0, c1)

−−−−−−−−−−−−−−−→
Accept if c = c0 ⊙ c1 and
∀b ∈ {0, 1}, [grb] ∗Acb

b = Yb

Figure 1: The base OR sigma protocol underlying our blind signature scheme.

While these properties are implicit in the blind signature, we sketch the properties of our sigma protocol
for completeness. Correctness can be verified through a routine check.

17

HVZK. Given a challenge c, a zero-knowledge simulator Sim samples random (c0, c1) $← ({−1, 1}n)2 and
(r0, r1) $← Z2

N conditioned on c0 ⊙ c1 = c. It then sets Yb = [grb] ∗ Acb

b for b ∈ {0, 1}, and outputs the
simulated transcript

(
(Y0, Y1), c, (r0, r1, c0, c1)

)
. Since there is a bijection between rb and Yb once cb is

fixed, this produces a transcript identically distributed as a real transcript.

Witness Indistinguishability. This is a direct consequence of the above since perfect HVZK implies
perfect witness indistinguishability.

Special Soundness. Let
(
(Y0, Y1), c, (r0, r1, c0, c1)

)
and

(
(Y0, Y1), c′, (r′

0, r′
1, c′

0, c′
1)

)
be two valid tran-

scripts such that c ̸= c′. Since c ̸= c′, either c0 ̸= c′
0 or c1 ̸= c′

1. Without loss of generality, assume
c0,1 ̸= c′

0,1, where c0,1 and c′
0,1 ∈ {−1, 1} are the first elements of c0 and c′

0, respectively. The extractor Ext
then given such two valid transcripts outputs a witness (0, a0 = r0,1−r′

0,1
c0,1−c′

0,1
), where r0,1, r′

0,1 ∈ ZN are the first
elements of r0 and r′

0. Let us verify the correctness of such an Ext. Since the two transcripts are valid, we
have [gr0,1]∗A

c0,1
0 = [gr′

0,1]∗A
c′

0,1
0 . Plugging in A0 = [ga0]∗E0, we have [gr0,1+c0,1·a0]∗E0 = [gr′

0,1+c′
0,1·a0]∗E0,

where we use the fact c0,1, c′
0,1 ∈ {−1, 1}. Cleaning up the exponents, we obtain the desired a0.

4.2 Description of Our Blind Signature
We present our isogeny-based blind signature building on top of the base sigma protocol in Section 4.1.
Let (p, N, E0) be the public parameter specified as the underlying prime, the order of the group and the
distinguished element, resp. Let g be a generator of the ideal class group Cℓ(O). We assume these parameters
are provided to all algorithms. Let H : {0, 1}∗ → {−1, 1}n be a hash function modeled as a random oracle
in the security proof. The following algorithms are summarized in Fig. 2.

BS.KGen (1n): On input the security parameter 1n, it samples a bit δ
$← {0, 1}, (a0, a1) $← Z2

N and outputs
a public key pk = (A0, A1) = ([ga0] ∗ E0, [ga1] ∗ E0) and secret key sk = (δ, aδ).

BS.S1(sk) : The signer first samples y∗
δ

$← Zn
N and sets Y∗

δ = [gy∗
δ] ∗ E0. It then samples (c∗

1−δ, r∗
1−δ) $←

{−1, 1}n×Zn
N and sets Y∗

1−δ = [gr∗
1−δ]∗Ac∗

1−δ

1−δ . It then outputs the signer state stateS = (y∗
δ , c∗

1−δ, r∗
1−δ)

and the first-sender message ρS,1 = (Y∗
0, Y∗

1).

BS.U1(pk, M, ρS,1) : The user parses (Y∗
0, Y∗

1) ← ρS,1, samples (db, zb) $← {−1, 1}n × Zn
N , and computes

Zb = [gzb] ∗ (Y∗
b)db for b ∈ {0, 1}. It then computes c = H(Z0∥Z1∥M) ∈ {−1, 1}n and outputs the user

state stateU = (db, zb)b∈{0,1} and user message ρU = c∗ = c⊙ d0 ⊙ d1.

BS.S2(stateS, ρU) : The signer parses (y∗
δ , c∗

1−δ, r∗
1−δ)← stateS, c∗ ← ρU, sets c∗

δ = c∗⊙c∗
1−δ ∈ {−1, 1}n, and

computes r∗
δ = y∗

δ − aδ · c∗
δ ∈ Zn

N .12 It then outputs the second-signer message ρS,2 = (c∗
b , r∗

b)b∈{0,1}.

BS.U2(stateU, ρS,2) : The user parses (db, zb)b∈{0,1} ← stateU, (c∗
b , r∗

b)b∈{0,1} ← ρS,2 and sets (cb, rb) =
(c∗

b ⊙ db, zb + r∗
b ⊙ db) for b ∈ {0, 1}. It then checks if

c0 ⊙ c1 = H
(

[gr0] ∗Ac0
0 ∥[gr1] ∗Ac1

1 ∥M
)

. (1)

If it holds, it outputs a signature σ = (cb, rb)b∈{0,1} ∈
(
{−1, 1}n × Zn

N

)2, and otherwise a ⊥.

BS.Verify(pk, M, σ): The verifier outputs 1 if Eq. (1) holds, and otherwise 0.

The correctness, blindness, and one-more unforgeability of our blind signature are provided in the sub-
sequent sections.

12Recall that we assume stateS includes sk (cf. Footnote 8).

18

BS.KGen(1n)
101 : δ

$← {0, 1}

102 : (a0, a1) $← Z2
N

103 : (A0, A1)← ([ga0] ∗ E0, [ga1] ∗ E0)
104 : return (pk = (A0, A1), sk = (δ, aδ))

BS.S1(sk)
201 : parse (δ, aδ)← sk
202 : y∗

δ ← Zn
N

203 : Y∗
δ ← [gy∗

δ] ∗ E0

204 : (c∗
1−δ, r∗

1−δ) $← {−1, 1}n × Zn
N

205 : Y∗
1−δ ← [gr∗

1−δ] ∗A
c∗

1−δ

1−δ

206 : stateS ← (y∗
δ , c∗

1−δ, r∗
1−δ)

207 : return (stateS, ρS,1 = (Y∗
0, Y∗

1))

BS.U1(pk, M, ρS,1)
301 : parse (Y∗

0, Y∗
1)← ρS,1

302 : for b ∈ {0, 1}

303 : (db, zb) $← {−1, 1}n × Zn
N

304 : Zb ← [gzb] ∗ (Y∗
b)db

305 : c← H(Z0∥Z1∥M)
306 : c∗ ← c⊙ d0 ⊙ d1 ∈ {−1, 1}n

307 : stateU ← (db, zb)b∈{0,1}

308 : return (stateU, ρU = c∗)

BS.S2(stateS, ρU)
401 : parse (y∗

δ , c∗
1−δ, r∗

1−δ)← stateS

402 : parse c∗ ← ρU

403 : c∗
δ ← c∗ ⊙ c∗

1−δ ∈ {−1, 1}n

404 : r∗
δ ← y∗

δ − aδ · c∗
δ ∈ Zn

N

405 : return ρS,2 = (c∗
b , r∗

b)b∈{0,1}

BS.U2(stateU, ρS,2)
501 : parse (db, zb)b∈{0,1} ← stateU

502 : parse (c∗
b , r∗

b)b∈{0,1} ← ρS,2

503 : for b ∈ {0, 1}
504 : (cb, rb)← (c∗

b ⊙ db, zb + r∗
b ⊙ db)

505 : c′ ← H
(

[gr0] ∗Ac0
0 ∥[g

r1] ∗Ac1
1 ∥M

)
506 : if c0 ⊙ c1 = c′

507 : return σ = (cb, rb)b∈{0,1}

508 : return σ = ⊥

BS.Verify(pk, M, σ)
601 : parse (cb, rb)b∈{0,1} ← σ

602 : c′ ← H
(

[gr0] ∗Ac0
0 ∥[g

r1] ∗Ac1
1 ∥M

)
603 : if c0 ⊙ c1 = c′

604 : return 1
605 : return 0

Figure 2: Our blind signature scheme. We assume the algorithms return ⊥ and terminate if parse is not in
the correct format.

4.3 Proof of Correctness and Blindness
Correctness can be checked by a routine calculation. For completeness, we provide the proof below.

Theorem 4.1 (Correctness). The blind signature scheme in Figure 2 is (perfectly) correct.

Proof. To show correctness, it suffices to show that Eq. (1) holds when both the signer and user follow the
protocol. First, it can be checked that we have Y∗

b = [gr∗
b] ∗ A

c∗
b

b for b ∈ {0, 1}. The case b = 1− δ holds by
definition and the other case holds due to the correctness of the base OR sigma protocol (see Section 4.1).
Then, substituting (cb, rb) = (c∗

b ⊙ db, zb + r∗
b ⊙ db) for b ∈ {0, 1}, we have

[grb] ∗Acb

b = [gzb+r∗
b ⊙db] ∗A

c∗
b ⊙db

b

= [gzb] ∗
(

[gr∗
b ⊙db] ∗A

c∗
b ⊙db

b

)
= [gzb] ∗ (Y∗

b)db = Zb. (2)

Finally, since c = c∗ ⊙ d0 ⊙ d1 = c∗
0 ⊙ c∗

1 ⊙ d0 ⊙ d1 = c0 ⊙ c1, where c = H(Z0∥Z1∥M), we obtain Eq. (1)
as desired. Note that we use the fact that x⊙ x = 1 for any x ∈ {−1, 1} in the first equality.

19

The proof of blindness is also standard. Since checking A is a valid elliptic curve can be done efficiently
and for such valid A, there exists a unique a ∈ ZN such that [ga] ∗ E0 = A, our blind signature is secure
even against a malicious server outputting an arbitrary public key.

Theorem 4.2 (Blindness). The blind signature scheme in Figure 2 is (perfectly) blind under chosen keys.

Proof. It suffices to show that for any valid public key pk, any first and second-signer messages ρS,1 =
(Y∗

0, Y∗
1) and ρS,2 = (c∗

b , r∗
b)b∈{0,1} ∈ ({−1, 1}n×Zn

N)2, and valid signature σ = (cb, rb)b∈{0,1} ∈ ({−1, 1}n×
Zn

N)2, there exists a unique and pair-wise distinct user state stateU = (db, zb)b∈{0,1} ∈
(
{−1, 1}n × Zn

N

)2

that could have generated σ. In other words, it suffices to show that fixing an arbitrary (pk, ρS,1, ρS,2), there
exists a bijection between a valid σ and stateU. Here, note that any public key pk = (A0, A1) output by the
adversary (i.e., malicious signer) A can be efficiently checked to be valid elliptic curves (i.e., supersingularity).
Below, we let (a0, a1) ∈ Z2

N be the unique secret key sk = (a0, a1) such that (A0, A1) = ([ga0]∗E0, [ga1]∗E0).
Let us fix sk = (a0, a1) (hence pk), ρS,1 = (Y∗

0, Y∗
1), ρS,2 = (c∗

b , r∗
b)b∈{0,1}, and a valid signature σ =

(cb, rb)b∈{0,1}. Let us further define the user state stateU = (db, zb)b∈{0,1} as db = cb⊙c∗
b and zb = rb−r∗

b⊙db

for b ∈ {0, 1}. Following Eq. (2) from right to left, we have Zb = [grb] ∗ Acb

b for b ∈ {0, 1}. Combining this
with σ being a valid signature, we have c0 ⊙ c1 = H

(
[gr0] ∗ Ac0

0 ∥[gr1] ∗ Ac1
1 ∥M

)
= H(Z0∥Z1∥M). Therefore,

stateU is indeed a user state that results in the valid signature σ. Moreover, for any choice of ρS,2 and any
σ ̸= σ′, it can be checked that the corresponding user states stateU and state′

U defined as above are distinct.
Hence, there is a bijection between a valid signature and a user state. This concludes the proof.

4.4 Proof of One-More Unforgeability
Our proof of OMUF consists of preparing the necessary tools to invoke Theorem 3.12. Specifically, we define
instances (see Definition 3.1), the map Φrand,

−→
h

(see Definition 3.8), the witness extractors (Ext0, Ext1) (see
Definition 3.9) and prove that Lemmas 3.10 and 3.11 hold.

Below, we denote −→X as a shorthand for a vector (X(1), . . . , X(ℓ)) and endow −→X with the same opera-
tions defined for X(k) by operating them component wise. Moreover, recall rand denotes the adversary’s
randomness, and −→h = (c(1), . . . , c(ℓ)) is the random oracle’s response vector conditioned on the adversary
making only ℓ random oracle queries. Finally, once the instance, adversary’s randomness and hash output
tuple (I, rand,

−→
h) is fixed, the query transcript −→e (I, rand,

−→
h) — the vector of user message ρU queries made

to the signing algorithm BS.S2 — is defined. We denote this as −→c∗ below to be consistent with the notations
used in our construction.

Preparation: Instances. Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we
assume the adversary against the one-more unforgeability game makes ℓ-signing queries in total.

A 0-side instance I0 = (0, a0, A1,
−→
y∗

0,
−→
c∗

1,
−→
r∗

1) is defined as follows:

• (0, a0) : The secret key sk when δ = 0.

• A1 : The part of the public key pk = (A0, A1) whose secret key is unknown.

• y∗(k)
0 : The exponent of the commitment Y∗(k)

0 in the k-th (k ∈ [ℓ]) first-sender message when δ = 0
such that Y∗(k)

0 = [gy∗(k)
0] ∗ E0.

• c∗(k)
1 : The simulated challenge in the k-th (k ∈ [ℓ]) first-sender message when δ = 0.

• r∗(k)
1 : The exponent of the commitment Y∗(k)

1 in the k-th (k ∈ [ℓ]) first-sender message when δ = 0
such that Y∗(k)

1 = [gr∗(k)
1] ∗A

c∗(k)
1

1 .

A 1-side instance I1 = (1, a1, A0,
−→
y∗

1,
−→
c∗

0,
−→
r∗

0) is defined as follows:

20

Ext0(σ, σ′)
101 : if ∃t ∈ [n] s.t. c0,t ̸= c′

0,t

102 : return a0 =
r0,t − r′

0,t

c0,t − c′
0,t

103 : return ⊥

Ext1(σ, σ′)
101 : if ∃t ∈ [n] s.t. c1,t ̸= c′

1,t

102 : return a1 =
r1,t − r′

1,t

c1,t − c′
1,t

103 : return ⊥

Figure 3: Witness extractors for our blind signature. In the above, σ = (ck, rk)k∈{0,1} and σ′ =
(c′

k, r′
k)k∈{0,1}, where ck, c′

k live in {−1, 1}n and rk, r′
k live in Zn

N . Non-bold font indicates the entries
of a vector.

• (1, a1) : The secret key sk when δ = 1.

• A0 : The part of the public key pk = (A0, A1) whose secret key is unknown.

• y∗(k)
1 : The exponent of the commitment Y∗(k)

1 in the k-th (k ∈ [ℓ]) first-sender message when δ = 0
such that Y∗(k)

1 = [gy∗(k)
1] ∗ E0.

• c∗(k)
0 : The simulated challenge in the k-th (k ∈ [ℓ]) first-sender message when δ = 1.

• r∗(k)
0 : The exponent of the commitment Y∗(k)

0 in the k-th (k ∈ [ℓ]) first-sender message when δ = 0
such that Y∗(k)

0 = [gr∗(k)
0] ∗A

c∗(k)
0

1 .

Preparation: Map Φrand,
−→
h

. We next define the map Φrand,
−→
h

that maps a 0-side instance I0 into a 1-side

instance I1 and vice versa. Concretely, a 0-side instance I0 = (0, a0, A1,
−→
y∗

0,
−→
c∗

1,
−→
r∗

1) maps to a 1-side instance
I1 such that

I1 =
(

1, a1, A0 = [ga0] ∗ E0,
−→
y∗

1 = −→r∗
1 + a1 ·

−→
c∗

1,
−→
c∗

0 = −→c∗ ⊙
−→
c∗

1,
−→
r∗

0 = −→y∗
0 − a0 ·

−→
c∗

0

)
,

where a1 is such that [ga1] ∗ E0 = A1 and recall that −→c∗ = −→e (I0, rand,
−→
h). On the other hand, a 1-side

instance I1 = (1, a1, A0,
−→
y∗

1,
−→
c∗

0,
−→
r∗

0) maps to a 0-side instance I0 such that

I0 =
(

0, a0, A1 = [ga1] ∗ E0,
−→
y∗

0 = −→r∗
0 + a0 ·

−→
c∗

0,
−→
c∗

1 = −→c∗ ⊙
−→
c∗

0,
−→
r∗

1 = −→y∗
1 − a1 ·

−→
c∗

1

)
,

where a0 is such that [ga0] ∗ E0 = A0 and recall that −→c∗ = −→e (I1, rand,
−→
h).

Preparation: Witness Extractors (Ext0, Ext1). Fix I, rand and let (−→h ,
−→
h ′) ∈ Fi(I, rand) for some i ∈

[ℓ + 1]. Let us denote σ = (cb, rb)b∈{0,1} and σ′ = (c′
b, r′

b)b∈{0,1} the signatures that correspond to c(i) and
c′(i), respectively, where recall c(i) (resp. c′(i)) is the i-th entry of −→h (resp. −→h ′). In particular, we have
c0 ⊙ c1 = c(i) and c′

0 ⊙ c′
1 = c′(i). We define the witness extractors (Ext0, Ext1) as in Fig. 3.

The following lemma establishes the correctness of the witness extractors.

Lemma 4.3. (Ext0, Ext1) in Fig. 3 satisfy the definition of witness extractors in Definition 3.9.

Proof. By the definition of Fi(I, rand) (see Definition 3.3), we have (I, rand,
−→
h), (I, rand,

−→
h ′) ∈ Succ and

c(i) ̸= c′(i). The former implies that the two signatures σ and σ′ are valid. Concretely, we have

c(i) = c0 ⊙ c1 = H
(

[gr0] ∗Ac0
0 ∥[gr1] ∗Ac1

1 ∥M
)

21

c′(i) = c′
0 ⊙ c′

1 = H
(

[gr′
0] ∗A

c′
0

0 ∥[gr′
1] ∗A

c′
1

1 ∥M
)

.

Moreover, since −→h and −→h ′ agree up to the i-th entry and the challenger and adversary’s randomness are
fixed, the input to the hash functions agree. Namely, we have

[grb] ∗Acb

b = [gr′
b] ∗A

c′
b

b for b ∈ {0, 1} ∧ M = M′.

Since c(i) ̸= c′(i), we must have c0 ̸= c′
0 or c1 ̸= c′

1. Based on the special-soundness of the underlying
sigma protocol (see Section 4.1), one of Ext0 or Ext1 always outputs a valid secret key. This completes the
proof.

Proof of One-More Unforgeability. We prove the following two lemmas required to invoke the main
theorem Theorem 3.12.

Lemma 4.4. Lemma 3.10 holds for our definition of the map Φrand,
−→
h

.

Proof. Since the proof for the 0-side and 1-side instances I0 and I1 are analogous, we only consider the
0-side instance. For any rand,

−→
h , let us consider the query transcript −→e (I0, rand,

−→
h) = −→c∗, i.e., the vector

of user message ρU queries made by the adversary to the signing algorithm BS.S2. Since the underlying
sigma protocol is perfectly witness indistinguishable (see Section 4.1), for each i ∈ [ℓ] and c∗(i), there is a
set of randomness that the signer with a secret key (1, a1) (i.e., a 1-side witness) could have used to produce
the same view (i.e., first and second-signer messages) to the adversary. Concretely, this set of randomness
is exactly those defined by Φrand,

−→
h

(I0). Hence, we have trans(I0, rand,
−→
h) = trans(Φrand,

−→
h

(I0), rand,
−→
h) as

desired. Moreover, it is easy to check that Φrand,
−→
h

(Φrand,
−→
h

(I0)) from the definition of Φrand,
−→
h

. Hence, it is a
bijection as desired. This completes the proof.

Lemma 4.5. Lemma 3.11 holds for our definition of the witness extractors (Ext0, Ext1).

Proof. Since the proof of 0-side and 1-side is analogous, we only consider the 0-side case. We prove the lemma
by contradiction. Suppose the 0-side witness can be extracted from the base (I, rand,

−→
h), (I, rand,

−→
h ′) at index

i, but cannot be extracted from either of the sides (I, rand,
−→
h ′), (I, rand,

−→
h ′′) or (I, rand,

−→
h), (I, rand,

−→
h ′′).

By Lemma 4.3, the assumption holds if and only if c0 = c′′
0 and c′

0 = c′′
0 . As a result, c0 = c′

0. By
Lemma 4.3, the 0-side witness cannot be extracted from (I, rand,

−→
h), (I, rand,

−→
h ′). However, this contradicts

our assumption.

Combining everything together, we obtain the following.

Theorem 4.6 (One-more Unforgeability). The blind signature scheme in Figure 2 is one-more unforge-
able. To be more specific, for all ℓ ∈ N, if there exists an adversary A that makes Q hash queries to the
random oracle and breaks the ℓ-one more unforgeability of BS with advantage ϵA ≥ C1

2n ·
(

Q
ℓ+1

)
, then there

exists an algorithm B that breaks the GAIP problem with advantage ϵB ≥ C2 · ϵ2
A

(Q
ℓ+1)2·(ℓ+1)3

for some universal
positive constants C1 and C2.

Proof. We define the hard instance generator IG to output a GAIP problem instance. Then, the proof follows
from the above Lemma 4.4 and by Theorem 3.12, i.e., the main theorem of Kastner et al. [KLX22a].

5 Extension to Partially Blind Signatures
In this section, we provide our isogeny-based partially blind signature. We first explain the sigma protocol
that underlies our isogeny-based partially blind signature and then show how to compile it into a partially
blind signature.

22

5.1 Base Sigma Protocol for a 2-Out-of-3 Relation
We consider a sigma protocol to prove that the prover knows at least two out of the three secrets corresponding
to the public statement X = (A0, A1, A2) = ([ga0] ∗E0, [ga1] ∗E0, [ga2] ∗E0). The sigma protocol is depicted
in Fig. 4. Since the secret a2 for A2 will be known by the signer and user in our partially blind signature,
we assume the prover always knows the secret a2 and proves knowledge of one other secret a0 or a1 in our
sigma protocol.

P: X = (A0, A1, A2) = ([ga0] ∗ E0, [ga1] ∗ E0, [ga2] ∗ E0)
W = (δ, aδ, a2) ∈ {0, 1} × Z2

N
V: X = (A0, A1, A2)

For j ∈ {0, 1}
(yδ,j , y2,j) $← (Zn

N)2

Yδ,j = [gyδ,j] ∗ E0
Y2,j = [gy2,j] ∗ E0
(c[1−δ+j]3 , r1−δ,j) $← {−1, 1}n × Zn

N

Y1−δ,j = [gr1−δ,j] ∗A
c[1−δ+j]3
1−δ

(Yk,j) k∈[0:2]
j∈{0,1}

−−−−−−−−−−→

c
←−−−−−−−−−−

c $← {−1, 1}n

c[3−δ]3 = c⊙ c[1−δ]3 ⊙ c[2−δ]3

For j ∈ {0, 1}
rδ,j = yδ,j − aδ · c[δ+j]3

r2,j = y2,j − a2 · c[2+j]3

(rk,j) k∈[0:2]
j∈{0,1}

,

(ck)k∈[0:2]
−−−−−−−−−−→

Accept if c = c0 ⊙ c1 ⊙ c2
∧ ∀(k, j) ∈ [0 : 2]× {0, 1},

[grk,j] ∗A
c[k+j]3
k = Yk,j

Figure 4: The base 2-out-of-3 sigma protocol underlying our partially blind signature scheme. Recall [0 : 2]
denotes the set {0, 1, 2} and [x]3 is a shorthand for x mod 3.

While these properties are implicit in the partially blind signature, we sketch the properties of our sigma
protocol for completeness.

Correctness. Observe that the prover creates six first-flow commitments (Yk,j)(k,j)∈[0:2]×{0,1}, where
(Yk,j)j∈{0,1} is used for the k-th statement Ak, and the challenges associated with Yk,j are defined as
c[k+j]3 . Specifically, we have the correspondence (Y0,0, Y0,1) 7→ (c0, c1), (Y1,0, Y1,1) 7→ (c1, c2), and
(Y2,0, Y2,1) 7→ (c2, c0). Correctness then follows from a routine check.

HVZK. Given a challenge c, a zero-knowledge simulator Sim samples random (c0, c1, c2) $← ({−1, 1}n)3

and (rk,j)(k,j)∈[0:2]×{0,1}
$← Z6

N conditioned on c0 ⊙ c1 ⊙ c2 = c. It then sets Yk,j = [grk,j] ∗ A
c[k+j]3
k for

(k, j) ∈ [0 : 2] × {0, 1}, and outputs the simulated transcript
(
(Yk,j)(k,j)∈[0:2], c, ((rk,j , ck)k∈[0:2])j∈{0,1}

)
.

Since there is a bijection between rk,j and Yk,j once c[k+j]3 is fixed, this produces a transcript identically
distributed as a real transcript.

Witness Indistinguishability. This is a direct consequence of the above since perfect HVZK implies
perfect witness indistinguishability.

Special Soundness. Let
(
(Yk,j)(k,j)∈[0:2], c, ((rk,j , ck)k∈[0:2])j∈{0,1}

)
and

(
(Yk,j)(k,j)∈[0:2], c′, ((r′

k,j , c′
k)k∈[0:2])j∈{0,1}

)
be two valid transcripts such that c ̸= c′. Since c ̸= c′, there exists k ∈ [0 : 2] such that ck ̸= c′

k. Without
loss of generality, assume c0,1 ̸= c′

0,1, where c0,1 and c′
0,1 ∈ {−1, 1} are the first elements of c0 and c′

0, respec-
tively. The extractor Ext then given such two valid transcripts outputs a witness (0, a0 = r0,0,1−r′

0,0,1
c0,1−c′

0,1
, a2 =

r2,1,1−r′
2,1,1

c0,1−c′
0,1

), where (r0,0,1, r′
0,0,1, r2,1,1, r′

2,1,1) ∈ Z4
N are the first elements of (r0,0, r′

0,0, r2,1, r′
2,1). Let us verify

23

the correctness of such an Ext. Since the two transcripts are valid, we have [gr0,0,1] ∗ A
c0,1
0 = [gr′

0,0,1] ∗ A
c′

0,1
0

and [gr2,1,1] ∗A
c0,1
0 = [gr′

2,1,1] ∗A
c′

0,1
0 . Plugging in A0 = [ga0] ∗E0 and A2 = [ga2] ∗E0 and following the same

argument as in Section 4.1, we obtain the desired (a0, a2).

5.2 Description of Our Partially Blind Signature
We are now able to present our isogeny-based partially blind signature. Let (p, N, E0) be the public param-
eters, g be a generator in Cℓ(O), and H : {0, 1}∗ → {−1, 1}n as defined in Section 4. We also require another
hash function G : {0, 1}∗ → ZN that is modeled as a random oracle. Note that H and G can be implemented
by a single random oracle by using domain separation. The following algorithms are summarized in Fig. 5.

PBS.KGen (1n): On input the security parameter 1n, it samples a bit δ
$← {0, 1}, (a0, a1) $← Z2

N and outputs
a public key pk = (A0, A1) = ([ga0] ∗ E0, [ga1] ∗ E0) and secret key sk = (δ, aδ).

PBS.S1(sk, info) : The signer performs the following for j ∈ {0, 1}: It samples (y∗
δ,j , y∗

2,j) $← (Zn
N)2 and

sets (Y∗
δ,j , Y∗

2,j) = ([gy∗
δ,j] ∗ E0, [gy∗

2,j] ∗ E0). It then samples (c∗
[1−δ+j]3

, r∗
1−δ,j) $← {−1, 1}n × Zn

N

and sets Y∗
1−δ,j = [gr∗

1−δ,j] ∗ A
c∗

[1−δ+j]3
1−δ . Finally, it outputs the signer state stateS = (y∗

δ,j , y∗
2,j ,

c∗
1−δ,j , r∗

1−δ,j)j∈{0,1} and the first-sender message ρS,1 = (Y∗
k,j)(k,j)∈[0:2]×{0,1}.

PBS.U1(pk, info, M, ρS,1) : The user parses (Y∗
k,j)(k,j)∈[0:2]×{0,1} ← ρS,1. It then samples dk

$← {−1, 1}n,
zk,j

$← Zn
N , and computes Zk,j = [gzk,j] ∗ (Y∗

k,j)d[k+j]3 for (k, j) ∈ [0 : 2]×{0, 1}. It then computes c =
H

(
(Zk,j)(k,j)∈[0:2]×{0,1}∥info∥M

)
∈ {−1, 1}n and outputs the user state stateU = (dk, (zk,j)j∈{0,1})k∈[0:2]

and user message ρU = c∗ = c⊙ d0 ⊙ d1 ⊙ d2.

PBS.S2(stateS, ρU) : The signer computes a2 = G(info) ∈ ZN , parses (y∗
δ,j , y∗

2,j , c∗
1−δ,j , r∗

1−δ,j)j∈{0,1} ←
stateS, c∗ ← ρU and sets c∗

[3−δ]3
= c∗ ⊙ c∗

[1−δ]3
⊙ c∗

[2−δ]3
∈ {−1, 1}n. It then computes r∗

δ,j =
y∗

δ,j − aδ · c∗
[δ+j]3

∈ Zn
N and r∗

2,j = y∗
2,j − a2 · c∗

[2+j]3
∈ Zn

N for j ∈ {0, 1}. Finally, it outputs the
second-signer message ρS,2 = (c∗

k, (r∗
k,j)j∈{0,1})k∈[0:2].

PBS.U2(stateU, ρS,2) : The user first computes a2 = G(info) ∈ ZN and sets A3 = [ga2] ∗ E0. It then parses
(dk, (zk,j)j∈{0,1})k∈[0:2] ← stateU, (c∗

k, (r∗
k,j)j∈{0,1})k∈[0:2] ← ρS,2 and sets ck = c∗

k ⊙ dk and rk,j =
zk,j + r∗

k,j ⊙ d[k+j]3 for (k, j) ∈ [0 : 2]× {0, 1}. It then checks if

c0 ⊙ c1 ⊙ c2 = H
(

([grk,j] ∗A
c[k+j]3
k)(k,j)∈[0:2]×{0,1}∥info∥M

)
. (3)

If it holds, it outputs a signature σ = (ck, (rk,j)j∈{0,1})k∈[0:2] ∈
(
{−1, 1}n ×

(
Zn

N

)2)3, and otherwise a
⊥.

PBS.Verify(pk, M, σ): The verifier outputs 1 if Eq. (3) holds, and otherwise 0.

The correctness, blindness, and one-more unforgeability of our blind signature are provided in the sub-
sequent sections.

5.3 Proof of Correctness and Blindness
Correctness can be checked by a routine calculation. For completeness, we provide the proof below.

Theorem 5.1. The partially blind signature scheme in Figure 5 is (perfectly) correct.

24

PBS.KGen(1n)
101 : δ

$← {0, 1}

102 : (a0, a1) $← Z2
N

103 : (A0, A1) = ([ga0] ∗ E0, [ga1] ∗ E0)
104 : return (pk = (A0, A1), sk = (δ, aδ))

PBS.S1(sk, info)
201 : parse (δ, aδ)← sk
202 : for j ∈ {0, 1}

203 : (y∗
δ,j , y∗

2,j) $← (Zn
N)2

204 : Y∗
δ,j = [gy∗

δ,j] ∗ E0

205 : Y∗
2,j = [gy∗

2,j] ∗ E0

206 : (c∗
[1−δ+j]3 , r∗

1−δ,j) $← {0, 1}n × Zn
N

207 : Y∗
1−δ,j = [gr∗

1−δ,j] ∗A
c∗

[1−δ+j]3
1−δ

208 : stateS = (y∗
δ,j , y∗

2,j , c∗
1−δ,j , r∗

1−δ,j)j∈{0,1}

209 : ρS,1 = (Y∗
k,j)(k,j)∈[0:2]×{0,1}

210 : return (stateS, ρS,1)

PBS.U1(pk, info, M, ρS,1)
301 : parse (Y∗

k,j)(k,j)∈[0:2]×{0,1} ← ρS,1

302 : for k ∈ [0 : 2]

303 : dk
$← {−1, 1}n

304 : for j ∈ {0, 1}

305 : Zk,j = [gzk,j] ∗ (Y∗
k,j)d[k+j]3

306 : c = H((Zk,j)(k,j)∈[0:2]×{0,1}∥info∥M)
307 : c∗ = c⊙ d0 ⊙ d1 ⊙ d2 ∈ {−1, 1}n

308 : stateU = (dk, (zk,j)j∈{0,1})k∈[0:2]

309 : return (stateU, ρU = c∗)

PBS.S2(stateS, ρU)
401 : parse (y∗

δ,j , y∗
2,j , c∗

1−δ,j , r∗
1−δ,j)j∈{0,1} ← stateS

402 : parse c∗ ← ρU

403 : a2 = G(info)
404 : c∗

[3−δ]3 = c∗ ⊙ c∗
[1−δ]3 ⊙ c∗

[2−δ]3 ∈ {−1, 1}n

405 : for j ∈ {0, 1}
406 : r∗

δ,j = y∗
δ,j − aδ · c∗

[δ+j]3 ∈ Zn
N

407 : r∗
2,j = y∗

2,j − a2 · c∗
[2+j]3 ∈ Zn

N

408 : return ρS,2 = (c∗
k, (r∗

k,j)j∈{0,1})k∈[0:2]

PBS.U2(stateU, ρS,2)
501 : parse (dk, (zk,j)j∈{0,1})k∈[0:2] ← stateU

502 : parse (c∗
k, (r∗

k,j)j∈{0,1})k∈[0:2] ← ρS,2

503 : a2 = G(info)
504 : A2 = [ga2] ∗ E0

505 : for k ∈ [0 : 2]
506 : ck = c∗

k ⊙ dk

507 : for j ∈ {0, 1}
508 : rk,j = zk,j + r∗

k,j ⊙ d[k+j]3

509 : c′ = H
(

([grk,j] ∗A
c[k+j]3
k)(k,j)∈[0:2]×{0,1}∥info∥M

)
.

510 : if c0 ⊙ c1 ⊙ c2 = c′

511 : return σ = (ck, (rk,j)j∈{0,1})k∈[0:2]

512 : return σ = ⊥

PBS.Verify(pk, info, M, σ)
601 : parse (ck, (rk,j)j∈{0,1})k∈[0:2] ← σ

602 : c′ = H
(

([grk,j] ∗A
c[k+j]3
k)(k,j)∈[0:2]×{0,1}∥info∥M

)
603 : if c0 ⊙ c1 ⊙ c2 = c′

604 : return 1
605 : return 0

Figure 5: Our partially blind signature scheme. We assume the algorithms return ⊥ and terminate if parse
is not in the correct format. Recall [0 : 2] denotes the set {0, 1, 2} and [x]3 is a shorthand for x mod 3.

25

Proof. To show correctness, it suffices to show that Eq. (3) holds when both the signer and user follow the
protocol. First, it can be checked that we have Y∗

k,j = [gr∗
k,j] ∗ A

c∗
[k+j]3

k for (k, j) ∈ [0 : 2] × {0, 1}. The
case k = 1 − δ holds by definition and the other cases hold due to the correctness of the base 2-out-of-3
sigma protocol (see Section 5.1). Then, plugging in ck = c∗

k ⊙ dk and rk,j = zk,j + r∗
k,j ⊙ d[k+j]3 for

(k, j) ∈ [0 : 2]× {0, 1}, we have

[grk,j] ∗A
c[k+j]3
k = [gzk,j+r∗

k,j⊙d[k+j]3] ∗A
c∗

[k+j]3
⊙d[k+j]3

k

= [gzk,j] ∗
(

[gr∗
k,j⊙d[k+j]3] ∗A

c∗
[k+j]3

⊙d[k+j]3
k

)
= [gzk,j] ∗ (Y∗

k,j)d[k+j]3 = Zk,j . (4)

Finally, since c = c∗ ⊙ d0 ⊙ d1 ⊙ d2 = c∗
0 ⊙ c∗

1 ⊙ c∗
2 ⊙ d0 ⊙ d1 ⊙ d2 = c0 ⊙ c1 ⊙ c2, where c =

H((Zk,j)(k,j)∈[0:2]×{0,1}∥info∥M), we obtain Eq. (3) as desired. Note that we use the fact that x ⊙ x = 1
for any x ∈ {−1, 1} in the first equality.

The proof of blindness is also standard. Since checking A is a valid elliptic curve can be done efficiently
and for such valid A, there exists a unique a ∈ ZN such that [ga] ∗ E0 = A, our partially blind signature is
secure even against a malicious server outputting an arbitrary public key.

Theorem 5.2. The partially blind signature scheme in Figure 5 is (perfectly) blind under chosen keys.

Proof. It suffices to show that for any valid public key pk, tag info, any first and second-signer messages
ρS,1 = (Y∗

k,j)(k,j)∈[0:2]×{0,1} and ρS,2 = (c∗
k, (r∗

k,j)j∈{0,1})k∈[0:2] ∈ ({−1, 1}n × (Zn
N)2)3, and valid signature

(ck, (rk,j)j∈{0,1})k∈[0:2] ∈ ({−1, 1}n×(Zn
N)2)3, there exists a unique and pair-wise distinct user state stateU =

(dk, (zk,j)j∈{0,1})k∈[0:2] ∈ ({−1, 1}n × (Zn
N)2)3 that could have generated σ. In other words, it suffices to

show that fixing an arbitrary (pk, info, ρS,1, ρS,2), there exists a bijection between a valid σ and stateU. Here,
note that any public key pk = (A0, A1) output by the adversary (i.e., malicious signer) A can be efficiently
checked to be valid elliptic curves (i.e., supersingularity). Below, we let (a0, a1) ∈ Z2

N be the unique secret
key sk = (a0, a1) such that (A0, A1) = ([ga0] ∗ E0, [ga1] ∗ E0) and set a2 = G(info) and A2 = [ga2] ∗ E0.

Let us fix sk = (a0, a1) (hence pk), (a2, A2) (hence info), ρS,1 = (Y∗
k,j)(k,j)∈[0:2]×{0,1} and ρS,2 =

(c∗
k, (r∗

k,j)j∈{0,1})k∈[0:2], and a valid signature σ = (ck, (rk,j)j∈{0,1})k∈[0:2]. Let us further define the user state
stateU = (dk, (zk,j)j∈{0,1})k∈[0:2] as dk = ck ⊙ c∗

k and zk,j = rk,j − r∗
k,j ⊙ d[k+j]3 for (k, j) ∈ [0 : 2]× {0, 1}.

Following Eq. (4) from right to left, we have Zk,j = [grk,j] ∗ A
c[k+j]3
k for (k, j) ∈ [0 : 2] × {0, 1}. Combining

this with σ being a valid signature, we have c0 ⊙ c1 ⊙ c2 = H
(

([grk,j] ∗ A
c[k+j]3
k)(k,j)∈[0:2]×{0,1}∥info∥M

)
=

H
(

(Zk,j)(k,j)∈[0:2]×{0,1}∥info∥M
)

. Therefore, stateU is indeed a user state that results in the valid signature σ.
Moreover, for any choice of ρS,2 and any σ ̸= σ′, it can be checked that the corresponding user states stateU
and state′

U defined as above are distinct. Hence, there is a bijection between a valid signature and a user
state. This concludes the proof.

5.4 Proof of One-More Unforgeability
Our proof of OMUF consists of preparing the necessary tools to invoke Theorem 3.12. Specifically, we define
instances (see Definition 3.1), the map Φrand,

−→
h

(see Definition 3.8), the witness extractors (Ext0, Ext1) (see
Definition 3.9) and prove that Lemmas 3.10 and 3.11 hold. We refer the readers to Section 4.4 for some of
the notations used below.

Preparation: Instances. Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we
assume the adversary against the one-more unforgeability game makes ℓ signing queries in total.

A 0-side instance I0 = (0, a0, A1,
−−→
y∗

0,0,
−−→
y∗

0,1,
−→
c∗

1,
−→
c∗

2,
−−→
r∗

1,0,
−−→
r∗

1,1,
−−→
y∗

2,0,
−−→
y∗

2,1) is defined as follows:

• (0, a0): The secret key sk when δ = 0.

26

• A1: The part of the public key pk = (A0, A1) whose secret key is unknown.

• (y∗(k)
0,0 , y∗(k)

0,1): The exponent of the commitment (Y∗(k)
0,0 , Y∗(k)

0,1) in the k-th (k ∈ [ℓ]) first-sender message
when δ = 0 such that (Y∗(k)

0,0 , Y∗(k)
0,1) = ([gy∗(k)

0,0] ∗ E0, [gy∗(k)
0,1] ∗ E0).

• (c∗(k)
1 , c∗(k)

2): The simulated challenge in the k-th (k ∈ [ℓ]) first-sender message when δ = 0.

• (r∗(k)
1,0 , r∗(k)

1,1): The exponent of the commitment (Y∗(k)
1,0 , Y∗(k)

1,1) in the k-th (k ∈ [ℓ]) first-sender message

when δ = 0 such that (Y∗(k)
1,0 , Y∗(k)

1,1) = ([gr∗(k)
1,0] ∗A

c∗(k)
1

1 , [gr∗(k)
1,1] ∗A

c∗(k)
2

1).

• (y∗(k)
2,0 , y∗(k)

2,1): The exponent of the commitment (Y∗(k)
2,0 , Y∗(k)

2,1) in the k-th (k ∈ [ℓ]) first-sender message
when δ = 0 such that (Y∗(k)

2,0 , Y∗(k)
2,1) = ([gy∗(k)

2,0] ∗ E0, [gy∗(k)
2,1] ∗ E0). .

A 1-side instance I1 = (1, a1, A0,
−−→
y∗

1,0,
−−→
y∗

1,1,
−→
c∗

0,
−→
c∗

1,
−−→
r∗

0,0,
−−→
r∗

0,1,
−−→
y∗

2,0,
−−→
y∗

2,1) is defined as follows:
• (1, a1): The secret key sk when δ = 1.

• A0: The part of the public key pk = (A0, A1) whose secret key is unknown.

• (y∗(k)
1,0 , y∗(k)

1,1): The exponent of the commitment (Y∗(k)
1,0 , Y∗(k)

1,1) in the k-th (k ∈ [ℓ]) first-sender message
when δ = 1 such that (Y∗(k)

1,0 , Y∗(k)
1,1) = ([gy∗(k)

1,0] ∗ E0, [gy∗(k)
1,1] ∗ E0).

• (c∗(k)
0 , c∗(k)

1): The simulated challenge in the k-th (k ∈ [ℓ]) first-sender message when δ = 1.

• (r∗(k)
0,0 , r∗(k)

0,1): The exponent of the commitment (Y∗(k)
0,0 , Y∗(k)

0,1) in the k-th (k ∈ [ℓ]) first-sender message

when δ = 1 such that (Y∗(k)
0,0 , Y∗(k)

0,1) = ([gr∗(k)
0,0] ∗A

c∗(k)
0

0 , [gr∗(k)
0,1] ∗A

c∗(k)
1

1).

• (y∗(k)
2,0 , y∗(k)

2,1): The exponent of the commitment (Y∗(k)
2,0 , Y∗(k)

2,1) in the k-th (k ∈ [ℓ]) first-sender message
when δ = 1 such that (Y∗(k)

2,0 , Y∗(k)
2,1) = ([gy∗(k)

2,0] ∗ E0, [gy∗(k)
2,1] ∗ E0).

In the above, note that the randomness (−−→y2,0,−−→y2,1) associated with the tags −−→info are identical for both
instances, and moreover, chosen independently of the tags queried by the adversary. This will be a crucial
observation when applying Theorem 3.12, which focuses on the one-more unforgeability of blind signatures,
to the partially blind signature setting.

Preparation: Map Φrand,
−→
h

. We next define the map Φrand,
−→
h

that maps a 0-side instance I0 into a 1-side

instance I1 and vice versa. Concretely, a 0-side instance I0 = (0, a0, A1,
−−→
y∗

0,0,
−−→
y∗

0,1,
−→
c∗

1,
−→
c∗

2,
−−→
r∗

1,0,
−−→
r∗

1,1,
−−→
y∗

2,0,
−−→
y∗

2,1),
Φrand,

−→
h

(I0) maps to a 1-side instance I1 given by

I1 =


a1 such that [ga1] ∗ E0 = A1, A0 = [ga0] ∗ E0,

1, −−→
y∗

1,0 = −−→r∗
1,0 + a1 ·

−→
c∗

1,
−−→
y∗

1,1 = −−→r∗
1,1 + a1 ·

−→
c∗

2,
−−→
y∗

2,0, −−→y∗
2,1−→

c∗
0 = −→c∗ ⊙

−→
c∗

1 ⊙
−→
c∗

2,
−→
c∗

1,
−−→
r∗

0,0 = −−→y∗
0,0 − a0 ·

−→
c∗

0,
−−→
r∗

0,1 = −−→y∗
0,1 − a0 ·

−→
c∗

1,

 ,

where recall that −→c∗ = −→e (I0, rand,
−→
h). On the other hand, a 1-side instance I1 = (1, a1, A0,

−−→
y∗

1,0,
−−→
y∗

1,1,
−→
c∗

0,
−→
c∗

1,
−−→
r∗

0,0,
−−→
r∗

0,1,
−−→
y∗

2,0,
−−→
y∗

2,1), Φrand,
−→
h

(I1) maps to a 0-side instance I0 such that

I0 =


a0 such that [ga0] ∗ E0 = A0, A1 = [ga1] ∗ E0,

0, −−→
y∗

0,0 = −−→r∗
0,0 + a0 ·

−→
c∗

0,
−−→
y∗

0,1 = −−→r∗
0,1 + a0 ·

−→
c∗

1,
−−→
y∗

2,0, −−→y∗
2,1−→

c∗
1,

−→
c∗

2 = −→c∗ ⊙
−→
c∗

0 ⊙
−→
c∗

1,
−−→
r∗

1,0 = −−→y∗
1,0 − a1 ·

−→
c∗

1,
−−→
r∗

1,1 = −−→y∗
1,1 − a1 ·

−→
c∗

2,

 ,

27

Ext0(σ, σ′)
101 : if ∃t ∈ [n] s.t. c0,t ̸= c′

0,t

102 : return a0 =
r0,0,t − r′

0,0,t

c0,t − c′
0,t

103 : elseif ∃t ∈ [n] s.t. c1,t ̸= c′
1,t

104 : return a0 =
r0,1,t − r′

0,1,t

c1,t − c′
1,t

105 : return ⊥

Ext1(σ, σ′)
101 : if ∃t ∈ [n] s.t. c1,t ̸= c′

1,t

102 : return a1 =
r1,0,t − r′

1,0,t

c1,t − c′
1,t

103 : elseif ∃t ∈ [n] s.t. c2,t ̸= c′
2,t

104 : return a1 =
r1,1,t − r′

1,1,t

c2,t − c′
2,t

105 : return ⊥

Figure 6: Witness extractors for our partially blind signature. In the above, σ = (ck, (rk,j)j∈{0,1})k∈[0:2] and
σ′ = (c′

k, (r′
k,j)j∈{0,1})k∈[0:2], where ck, c′

k live in {−1, 1}n and rk,j , r′
k,j live in Zn

N . Non-bold font indicates
the entries of a vector.

where recall that −→c∗ = −→e (I1, rand,
−→
h).

Preparation: Witness Extractors (Ext0, Ext1). Fix I, rand and let (−→h ,
−→
h ′) ∈ Fi(I, rand) for some i ∈

[ℓ + 1]. Let σ = (ck, (rk,j)j∈{0,1})k∈[0:2] and σ′ = (c′
k, (r′

k,j)j∈{0,1})k∈[0:2] be the signatures that correspond
to c(i) and c′(i), respectively, where c(i) (resp. c′(i)) is the i-th entry of −→h (resp. −→h ′). In particular, we have
c0 ⊙ c1 ⊙ c2 = c(i) and c′

0 ⊙ c′
1 ⊙ c′

2 = c′(i). We define the witness extractors (Ext0, Ext1) as in Fig. 6.
The following lemma establishes the correctness of the witness extractors.

Lemma 5.3. (Ext0, Ext1) in Fig. 6 satisfy Definition 3.9.

Proof. By the definition of Fi(I, rand) (see Definition 3.3), we have (I, rand,
−→
h), (I, rand,

−→
h ′) ∈ Succ and

c(i) ̸= c′(i). The former implies that the two signatures σ and σ′ are valid. Concretely, we have

c(i) = c0 ⊙ c1 ⊙ c2 = H
(

([grk,j] ∗A
c[k+j]3
k)(k,j)∈[0:2]×{0,1}∥info∥M

)
c′(i) = c′

0 ⊙ c′
1 ⊙ c′

2 = H
(

([gr′
k,j] ∗A

c′
[k+j]3

k)(k,j)∈[0:2]×{0,1}∥info′∥M′
)

.

Moreover, since −→h and −→h ′ agree up to the i-th entry and the challenger and adversary’s randomness are
fixed, the input to the hash functions agree. Namely, we have

[grk,j] ∗A
c[k+j]3
k = [gr′

k,j] ∗A
c′

[k+j]3
k for (k, j) ∈ [0 : 2]× {0, 1} ∧ (info, M) = (info′, M′).

Due to the special soundness of the underlying sigma protocol (see Section 5.1), the witness extractors Ext0
and Ext1 each outputs a valid secret key from the 0-side and 1-side instances, respectively. Moreover, since
c(i) ̸= c′(i), we must have ck ̸= c′

k for some k ∈ [0 : 2]. Thus, at least one of Ext0 or Ext1 always outputs a
valid secret key; if c1 ̸= c′

1, then they both output a valid secret key. This completes the proof.

Proof of One-More Unforgeability. We prove the following two lemmas required to invoke the main
theorem Theorem 3.12.

Lemma 5.4. Lemma 3.10 holds for the map Φrand,
−→
h

.

Proof. Since the proof for the 0-side and 1-side instances I0 and I1 are analogous, we only consider the
0-side instance. For any rand,

−→
h , let us consider the query transcript −→e (I0, rand,

−→
h) = −→c∗, i.e., the vector

of user message ρU queries made by the adversary to the signing algorithm PBS.S2. Since the underlying

28

sigma protocol is perfectly witness indistinguishable (see Section 5.1), for each i ∈ [ℓ] and c∗(i), there is a
set of randomness that the signer with a secret key (1, a1) (i.e., a 1-side witness) could have used to produce
the same view (i.e., first and second-signer messages) to the adversary. Concretely, this set of randomness
is exactly those defined by Φrand,

−→
h

(I0). Hence, we have trans(I0, rand,
−→
h) = trans(Φrand,

−→
h

(I0), rand,
−→
h) as

desired. Moreover, it is easy to check that Φrand,
−→
h

(Φrand,
−→
h

(I0)) from the definition of Φrand,
−→
h

. Hence, it is a
bijection as desired. This completes the proof.

Lemma 5.5. Lemma 3.11 holds for the witness extractors (Ext0, Ext1).

Proof. Since the proof of 0-side and 1-side witnesses are analogous, we only consider the 0-side witness.
Suppose the 0-side witness can be extracted from base (I, rand,

−→
h), (I, rand,

−→
h ′) at index i, but cannot

be extracted from either of the sides (I, rand,
−→
h ′), (I, rand,

−→
h ′′) or (I, rand, H), (I, rand,

−→
h ′′). Due to the

description of our witness extractors (Ext0, Ext1) in Fig. 6, we have (c′
0, c′

1) = (c′′
0 , c′′

1) and (c0, c1) = (c′′
0 , c′′

1)
if the 0-side witness cannot be extracted from either of the sides. This implies that (c0, c1) = (c′

0, c′
1).

However, this means that Ext0 fails to extract a 0-side witness, thus contradicting our assumption. This
completes the proof.

Combining everything together, we obtain the following.

Theorem 5.6 (One-more Unforgeability). The partially blind signature scheme in Figure 5 is one-more
unforgeable. More precisely, for all ℓ ∈ N, if there exists an adversary A that makes Q hash queries to the
random oracle and breaks the ℓ-one more unforgeability of our PBS with advantage ϵA ≥ C1

2n ·
(

Q
ℓ+1

)
, then

there exists an algorithm B that breaks the GAIP problem with advantage ϵB ≥ C2 · ϵ2
A

(Q
ℓ+1)2·(ℓ+1)3

for some
universal positive constants C1 and C2.

Proof. We define the hard instance generator IG to output a GAIP instance. Then, the proof follows from
the above Lemmas 3.10 and 3.11 and by invoking Theorem 3.12, i.e., the main theorem of Kastner, Loss,
and Xu [KLX22a]. To be precise, [KLX22a, Theorem 1] is for blind signatures and not the partially blind
variant—however, it can be checked that the same proof applies to our partially blind signature by observing
that our definition of 0-side and 1-side instances are defined independently of the tags −−→info used by the
adversary, where note that −−→info is implicitly defined by (I, rand,

−→
h). In particular, the probability that the

reduction extracts the correct witness (i.e., the witness not used by the reduction), can be bounded following
the same argument as [KLX22a, Theorem 1].

Remark 5.7 (Comparing to the Abe-Okamoto Partially Blind Signature). We note that the reason why the
same argument does not hold for the Abe-Okamoto partially blind signature [AO00] is that the tag info is
explicitly required to define the instances. In more detail, the Abe-Okamoto partially blind signature only
has one secret key a0 ∈ Zp attached to the verification key h0 = ga0 ∈ G. To sign with respect to a tag info,
the signer hashes info to a group element hinfo and then performs an OR proof that it knows a secret key
to either h0 or hinfo. In the security proof, the reduction hashes info to a group element hinfo = gainfo while
knowing the exponent ainfo. In case the adversary is restricted to use only one tag info, the proof can define
the 0-side and 1-side instances by using a0 and ainfo, respectively, and in particular independently of the
adversary’s randomness. However, when there is more than one tag, we can no longer define a well-defined
1-side instance. This is why Kastner, Loss and Xu and Abe and Okamoto first prove the single-tag setting
and then prove the multi-tag setting by guessing which tag info the adversary forges on.

6 Optimization Using Higher Degree Roots of Unity
We investigate the possibility of reducing the signature size by exploiting the Z-module structure of the
ideal class group. In this section, we present a generalized construction of the blind signature presented in
Section 4 based on a new assumption, the ring group action inverse problem (rGAIP), which is a generalized

29

version of the group action inverse problem (GAIP). In Sections 6.4 to 6.6, we provide the proofs of the
correctness, blindness, and OMUF of the construction under the assumption that rGAIP is hard and discuss
the applicability of the partialness technique given in Section 5. In Section 7, we provide analysis on the
hardness of the rGAIP for the CISHD-512 parameter set and show that not all rGAIP instances are equally
difficult.

6.1 Overview and Preparation
Notations. We summarize some notations unique to this section. We use Zd to denote the set {0, . . . , d−1}.
Moreover, any vector is indexed from 0, e.g., a ∈ Zκ

d is expressed as (a0, . . . , aκ−1). With an overload of
notations, for any integer j, we define the bold font j as the length-κ vector (j, . . . , j). For any positive
integer d and a ∈ Z or Zd, we use [a]d to denote (a mod d) ∈ Zd. For the simplicity of the notations, we
use the exponent of ⟨ζ⟩ to represent the challenge space of a sigma protocol with an understanding that ⟨ζ⟩
is the d-th primitive root of unity. That is, we will draw a challenge c from Zd. The operation between the
challenges is thereby the addition c0 + c1, corresponding to the multiplication of ζc0+c1 = ζc0ζc1 .

Overview. It is a natural attempt to reduce the signature size by considering a larger public key space.
Indeed, as shown in [BKV19, Section 5.1], such an optimization is possible for standard signature schemes by
relaxing GAIP to the multi-target GAIP. As a result, the soundness error of the underlying sigma protocol in
a single round decreases to 1

2S−1 from 1
3 for a public key size S. Since the number of repetitions is decreased

to n
log2(2S−1) , this technique makes it possible to decrease the signature size, signing, or verification time at

the cost of increased public key size. For isogeny-based protocols—which are generally slow but offer small
key sizes—this is a very favorable tradeoff.

Unfortunately, a natural adaptation of the same relaxation will not apply to our case because the multi-
target GAIP does not offer the particular structure that our blind signature requires. Roughly speaking, a
main component of our blind signature requires a user/verifier to compute [gz+y∗d] ∗ E0 while only given
[gy∗] ∗ E0 ∈ E , z ∈ ZN and d. This is only feasible by using the quadratic twist which is when d ∈ {−1, 1}.
An unstructured random public key not only fails to benefit the user but also breaches the group structure
of the challenge space since d is no longer restricted in {−1, 1}.

To this end, we present a novel technique that allows us to trade off between efficiency and the signature
size using a structured public key. The high-level idea is fairly simple: to generalize the concept of the
quadratic twist in the sense of the group action relation. In the previous section, both parties compute
the action of [gr] on a curve E0 or E−1

0 with respect to the challenge c ∈ Z×
3 = {−1, 1}. Recall that

([gr] ∗ E0)−1 = [g−r] ∗ E0. In other words, the challenge c ∈ Z×
3 = {−1, 1} is encoded into gc. Since −1 is

a second primitive root of unity over ZN , the challenge space, as a (multiplicative) group, induces an action
on E by computing the twist.

We generalize the concept by expanding the challenge space to ⟨ζ⟩ = {1, ζ, ζ2, . . . , ζd−1}, where d ∈ N
and ζ, a d-th primitive root of unity over Z×

N ; that is, ζ satisfies ζd = 1 and ζj ̸= 1 for any j ∈ [d− 1]. Note
that ⟨ζ⟩ is naturally a multiplicative (sub)group, which offers the operation over the challenge space. The
action (r, c) ∈ ZN × Zd on a curve E0 ∈ E is defined to be [grζc] ∗ E0. When k = 2 and ζ can be taken to
be −1, this is identical to the scheme in the previous section. However, unlike the case d = 2 where we have
the formula derived from the quadratic twist, when d ≥ 3 the signer is required to compute [gy∗

b,jζ] ∗ E0 for
each (b, j) ∈ [2]× [κ] in BS.S1 to aid the user’s computation.

Preparation. Our construction requires one more property from the d-th primitive root of unity ζ to be
useful. Looking ahead, when we construct a sigma protocol for the rGAIP relation, the special soundness
extractor must solve for the secret exponent a ∈ ZN , given c1, c2 ∈ Z2

N and r1 = y + aζc1 , r2 = y + aζc2

(mod N) for an unknown a and y. If ZN i a finite field, then this is trivial. However, in general when ZN

is a ring, such a may not be efficiently computable. One sufficient condition would be to only use a d ∈ ZN

30

such that (ζc1 − ζc2) is invertible over ZN for all distinct (c1, c2) ∈ Z2
N . However, this is an overly restrictive

requirement and we thus make the following relaxed requirement.

Requirement 1. We require ηd = lcmi∈[d−1](gcd(ζi − 1, N)) = poly(n).

The requirement is equivalent to finding a d such that d divides many Euler- values of maximal prime
power divisors of the class number (see Section 7.1 about the existence and finding a root). Informally, when
ηd is polynomial in the security parameter n, then we can brute force all a ∈ ZN such that a · (ζc1 − ζc2) = z
for a given (c1, c2, z) ∈ Z3

N . Formally, we have the following.

Lemma 6.1. Let (N, d, ζ) be a public parameter where the factorization of N is known and let ηd =
lcmi∈[d−1](gcd(ζi − 1, N)). Then, there exists an extractor Ext′ that takes as input the public parameter
and (r1, r2, c1, c2) ∈ Z2

N × Z2
d where c1, c2 are distinct with relations r1 = y + aζc1

d , r2 = y + aζc2
d (mod N),

and outputs a list containing a ∈ ZN of size not greater than ηd in time poly(ηd).

Proof. By calculating (r1 − r2)ζ−c2
d = a(ζc1−c2

d − 1), the extractor solves a by solving the linear equation
lifted to the prime power factor of N , then using the Chinese remainder theorem to obtain a list of candidates
of a. The size of the list is the number of solutions for the linear equation, which is at most ηd.

6.2 Base Sigma Protocol with a Large Challenge Space
We first introduce the base sigma protocol with a larger challenge space assuming Requirement 1. This is
depicted in Fig. 7 with the boxed components omitted. We will show the correctness, HVZK, and, impor-
tantly, special soundness of this sigma protocol.

P:
X = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
)

= (([ga0ζj] ∗ E0)j∈Zd
, ([ga1ζj] ∗ E0)j∈Zd

)
W = (δ, aδ) ∈ {0, 1} × ZN

V: X = ((Aj
0)j∈Zd

, (Aj
1)j∈Zd

)

yδ
$← Zκ

N

Yδ = [gyδ] ∗ E0

(Yj
δ = [gyδζj] ∗ E0)j∈Zd

(c1−δ, r1−δ) $← Zκ
d × Zκ

N

Y1−δ = [gr1−δ] ∗A
c1−δ

1−δ

(Yj
1−δ = [gr1−δζj] ∗A

[c1−δ+j]d

1−δ)j∈Zd

(Y0, Y1)
(Yj

0, Yj
1)j∈Zd

−−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−−

c $← Zκ
d

cδ = c− c1−δ

rδ = yδ − aδζcδ
(r0, r1, c0, c1)

−−−−−−−−−−−−−−−→

Accept if c = c0 + c1 and
∀ b ∈ {0, 1}, ∀j ∈ Zd ,
[grb] ∗Acb

b = Yb

[grbζj] ∗A
[cb+j]d

b = Yj
b

Figure 7: The base sigma protocol with a large challenge space, where the box is to be ignored. Recall
Zd = {0, 1, . . . , d − 1}. Aj

b denotes [gabζj] ∗ E0 for j ∈ Zd and the vector A
[c]d

b denotes (A[c0]d

b , . . . , A
[cκ−1]d

b)
where c = (c0, . . . , cκ−1) ∈ Zκ. If c ∈ Zκ

d , then A
[c]d

b is simply Ac
b . Other notations are explained in the

paragraph above Section 6.2. The base sigma protocol can be made compatible with blind signatures by
running the boxed lines instead of the preceding non-boxed lines.

31

Correctness. It suffices to show the equation.

[grb] ∗Acb

b = Yb (5)

for b ∈ {0, 1}. For the case b = 1− δ, the equation holds naturally. For the case b = δ, we have

[grδ] ∗Acδ

δ = [gyδ−aδζcδ] ∗Acδ

δ

= [gyδ−aδζcδ] ∗
(
[gaδζcδ] ∗ E0

)
= Yδ,

where we use the fact that Ac
δ = [gaδζc] ∗ E0 for any c ∈ Zd.

HVZK. Given a challenge c ∈ Zκ
d , a zero-knowledge simulator Sim samples random (c0, c1) $← Zκ

d condi-
tioned on c0 + c1 = c. Then, for each b ∈ {0, 1}, the simulator generates rb

$← Zκ
N and Yb = [grb] ∗ Acb

b ,
and outputs ((Y0, Y1), c, (r0, r1, c0, c1)). Since there is a bijection between rb and Yb once cb is fixed, this
produces a transcript identically distributed as a real transcript.

Witness Indistinguishable. This is a direct consequence of the above since perfect HVZK implies perfect
witness indistinguishability.

Special Soundness. It suffices to show that special soundness holds for κ = 1. Let ((Y0, Y1), c, (r0, r1, c0, c1)),
and ((Y0, Y1), c′, (r′

0, r′
1, c′

0, c′
1)) be two valid transcripts. Since c = c0 + c1, c = c′

0 + c′
1 and c ̸= c′, we assume

c0 ̸= c′
0 without loss of generality. We have r0, r′

0 ∈ ZN , and distinct c0, c′
0 ∈ Zd which satisfy r0 = y + a0ζc0

d ,
r′

0 = y + a0ζ
c′

0
d (mod N) where y, a0 are unknown. Since we assume Requirement 1 holds, we can use the

extractor Ext′(r0, r′
0, c0, c′

0) in Lemma 6.1 to obtain a list of size η = lcmi∈[d−1](gcd(ζi − 1, N)) = poly(n)
containing a0 ∈ ZN in polynomial time. We can find a0 from the list by running through each element in the
list and checking if it maps to the statement (Aj

0)j∈Zd
or (Aj

1)j∈Zd
. Here, we implicitly assume the statement

is honestly generated and that this check always terminates.

6.3 Enhancing the Base Sigma Protocol for Blind Signatures
Before explaining our blind signature, we make a subtle but important modification to our base sigma
protocol. To understand this modification, notice that if we tried to use a similar idea as in the prior
sections to blind Yb = [gyb] ∗ E0 for b ∈ {0, 1}, the user must randomize it to a value [gzb] ∗

(
[gybζdb] ∗ E0

)
,

where (zb, db) $← Zκ
N×Zκ

d . This was doable when d = 2, since ζ = −1 and [gybζdb]∗E0 is simply the quadratic
twist of Yb. However, in general, such a computation cannot be performed. To this end, we let the prover
include components that will later help the user in the blind signature. This extension to our basic sigma
protocol is illustrated in Fig. 7, where the box represents the modification. The prover sends [gybζj] ∗ E0
for all j ∈ Zd so that the user in the blind signature can choose whichever one based on the dd it samples.
We also modify the verifier of the base sigma protocol to check that [gybζdb] ∗ E0 were generated correctly.
Below, we show that the extended sigma protocol satisfies correctness and HVZK. Since the extended sigma
protocol includes the transcript of the base sigma protocol, special soundness is inherited.

Correctness. It suffices to show that

[grbζj

] ∗A
[cb+j]d

b = Yj
b

32

for any (b, j) ∈ {0, 1} × Zd. For the case b = 1− δ, the equation holds by definition. For the case b = δ, we
have

[grδζj

] ∗A
[cδ+j]d

δ = [gyδζj−aδζcδ+j
] ∗A

[cδ+j]d

δ

= [gyδζj−aδζcδ+j
] ∗

(
[gaδζcδ+j

] ∗ E0
)

= Yj
δ,

where we use the fact that A
[c]d

δ = [gaδζc] ∗ E0 for any c ∈ Z.

HVZK. Given a challenge c ∈ Zκ
d , a zero-knowledge simulator Sim samples random (c0, c1) $← Zκ

d con-
ditioned on c0 + c1 = c. Then, for each (b, j) ∈ {0, 1} × Zd, the simulator generates rb

$← Zκ
N and

Yj
b = [grbζj] ∗ A

[cb+j]d

b , and outputs ((Yj
0, Yj

1)j∈Zd
, c, (r0, r1, c0, c1)) Since for every j ∈ Zd, there is a bijec-

tion between rb and Yj
b once cb is fixed, this produces a transcript identically distributed as a real transcript.

6.4 Description of Our Optimized Blind Signature
We present our optimized isogeny-based blind signature building upon of the enhanced base sigma protocol
in Section 6.2. Let (p, N, E0) be the public parameter and g be a generator of the ideal class group Cℓ(O) as in
Section 4. Let ζ to be a d-th root of unity. We assume these parameters are provided to all algorithms. The
parameter κ ∈ N indicates the number of repetition of the underlying sigma protocol such that dκ ≥ 2n. Let
H : {0, 1}∗ → Zκ

d be a hash function modeled as a random oracle. The following algorithms are summarized
in Fig. 8.

BS.KGen (1n): On input the security parameter 1n, it samples a bit δ
$← {0, 1}, (a0, a1) $← Z2

N , and outputs
a public key pk = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
) where Aj

b = [gabζj] ∗ E0 for (b, j) ∈ {0, 1} × Zd, and secret key
sk = (δ, aδ).

BS.S1(sk) : The signer first samples y∗
δ

$← Zκ
N and sets Yj∗

δ = [gy∗
δ ζj] ∗ E0 for j ∈ Zd. It then samples

(c∗
1−δ, r∗

1−δ) $← Zκ
d × Zκ

N and sets Yj∗
1−δ = [gr∗

1−δζj] ∗ A
c∗

1−δ+j
1−δ for j ∈ Zd. It then outputs the signer

state stateS = (y∗
δ , c∗

1−δ, r∗
1−δ) and the first-sender message ρS,1 = (Yj∗

0 , Yj∗
1)j∈Zd

.

BS.U1(pk, M, ρS,1) : The user parses (Yj∗
0 , Yj∗

1)j∈Zd
← ρS,1, samples (db, zb) $← Zκ

d × Zκ
N , and computes

Zb = [gzb]∗
(
Y

db,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)
for b ∈ {0, 1}. Here, note that Y

db,j∗
b,j denotes the j-th (j ∈ Zd) element

of Ydb,j∗
b ∈ Eκ and db,j is the j-th element of db ∈ Zκ

d . It then computes c = H(Z0∥Z1∥M) ∈ Zκ
d and

outputs the user state stateU = (d0, d1, z0, z1) and user message ρU = c∗ = c− d0 − d1.

BS.S2(stateS, ρU) : The signer parses (y∗
δ , c∗

1−δ, r∗
1−δ) ← stateS, c∗ ← ρU, sets c∗

δ = c∗ + c∗
1−δ ∈ Zκ

d , and
computes r∗

δ = y∗
δ − aδζc∗

δ ∈ Zκ
N .It then outputs the second-signer message ρS,2 = (c∗

0, c∗
1, r∗

0, r∗
1).

BS.U2(stateU, ρS,2) : The user parses (d0, d1, z0, z1) ← stateU, (c∗
0, c∗

1, r∗
0, r∗

1) ← ρS,2 and checks if [gr∗
b ζj] ∗

A
[c∗

b +j]d

b = Yj∗

b holds for all (b, j) ∈ {0, 1} × Zd. If not, it outputs ⊥. Otherwise, it sets (cb, rb) =
(c∗

b + db, zb + r∗
bζdb) ∈ Zκ

d × Zκ
N for b ∈ {0, 1}. It then checks if

c0 + c1 = H
(

[gr0] ∗Ac0
0 ∥[gr1] ∗Ac1

1 ∥M
)

. (6)

If it holds, it outputs a signature σ = (c0, c1, r0, r1) ∈ (Zκ
d)2 × (Zκ

N)2, and otherwise ⊥.

BS.Verify(pk, M, σ): The verifier outputs 1 if Eq. (6) holds, and otherwise 0.

33

BS.KGen(1n)
101 : (a0, a1, δ) $← Z2

N × {0, 1}

102 : (Aj
0)j∈Zd ← ([ga0ζj

] ∗ E0)j∈Zd

103 : (Aj
1)j∈Zd ← ([ga1ζj

] ∗ E0)j∈Zd

104 : pk← ((Aj
0)∈Zd , (Aj

1)j∈Zd)
105 : return (pk, sk = (δ, aδ))

BS.S1(sk)
201 : parse (δ, aδ)← sk

202 : y∗
δ

$← Zκ
N

203 : (c∗
1−δ, r∗

1−δ) $← Zκ
d × Zκ

N

204 : for j ∈ Zd

205 : Yj∗
δ = [gy∗

δ
ζj

] ∗ E0

206 : Yj∗
1−δ = [gr∗

1−δ
ζj

] ∗A
c∗

1−δ
+j

1−δ

207 : stateS = (y∗
δ , c∗

1−δ, r∗
1−δ)

208 : ρS,1 = (Yj∗
0 , Yj∗

1)j∈Zd

209 : return (stateS, ρS,1)

BS.U1(pk, M, ρS,1)
301 : parse (Yj∗

0 , Yj∗
1)j∈Zd ← ρS,1

302 : for b ∈ {0, 1} do

303 : (db, zb) $← Zκ
d × Zκ

N

304 : Zb = [gzb] ∗
(
Y

db,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)
305 : c = H(Z0||Z1||M)
306 : c∗ = c− d0 − d1 ∈ Zκ

d

307 : stateU ← (d0, d1, z0, z1)
308 : return (stateU, ρU = c∗)

BS.S2(stateS, ρU)
401 : parse (y∗

δ , c∗
1−δ, r∗

1−δ)← stateS

402 : parse c∗ ← ρU

403 : c∗
δ ← c∗ − c∗

1−δ

404 : r∗
δ ← y∗

δ − aδζc∗
δ

405 : return ρS,2 = (c∗
0, c∗

1, r∗
0, r∗

1)

BS.U2(stateU, ρS,2)
501 : parse (d0, d1, z0, z1)← stateU

502 : parse (c∗
0, c∗

1, r∗
0, r∗

1)← ρS,2

503 : for (b, j) ∈ {0, 1} × Zd

504 : if [gr∗
b

ζj

] ∗A
[c∗

b
+j]d

b ̸= Yj∗
b

505 : return σ =⊥
506 : for b ∈ {0, 1}
507 : cb ← c∗

b + db

508 : rb ← zb + r∗
bζdb

509 : c′ = H ([gr0] ∗Ac0
0 ∥ [gr1] ∗Ac1

1 ∥ M)
510 : if c0 + c1 = c′

511 : return σ = (c0, c1, r0, r1)
512 : return σ =⊥

BS.Verify(pk, M, σ)
601 : parse (c0, c1, r0, r1)← σ

602 : c′ = H ([gr0] ∗Ac0
0 ∥ [gr1] ∗Ac1

1 ∥ M)
603 : if c0 + c1 = c′

604 : return 1
605 : return 0

Figure 8: The optimized version of the blind signature where H is a hash function and ζ is a d-th primitive
root of unity. Recall Zd = {0, 1, . . . , d − 1} and that we use the notations d = (d0, . . . , dκ−1) ∈ Zκ

d and
Yj = (Y j

0 , . . . , Y j
κ−1) ∈ Eκ. Moreover, if c ∈ Zκ

d , then A
[c]d

b is simply Ac
b for b ∈ {0, 1}. See the caption

of Fig. 7 for further explanation on the notations.

34

Remark 6.2. One can observe that the only source of overhead in the communication bandwidth compared
to the blind signature in Section 4 is in BS.S1. The bandwidth is increased by a factor of dκ

2n .

Remark 6.3. We remark that it is possible to fuse our partial blindness technique and the generalized con-
struction in this section and obtain an optimized PBS variant. By doing so, we can obtain a PBS with a
smaller signature size based on the rGAIP. Roughly, there are three sequences of the curves in the public
statement (A0, A1, A2) = (([ga0ζj] ∗ E0)j∈Zd

, ([ga1ζj] ∗ E1)j∈Zd
, ([ga2ζj] ∗ E2)j∈Zd

where the secret key of the
third public key is derived from the public information. The underlying sigma protocol is to prove for a
two-out-of-three secret corresponding to this statement. However, given the proofs in Section 5 and in this
section, we expect the proof to be highly involved. We leave this as a future work.

6.5 Proof of Correctness and Blindness
The subsection shows that our blind signature presented in Section 6.4 has (perfect) correctness and blindness.

Theorem 6.4. The blind signature scheme in Figure 8 is (perfectly) correct.

Proof. To show correctness, it suffices to show the equation

c0 + c1 = H ([gr0] ∗Ac0
0 ∥ [gr1] ∗Ac1

1 ∥ M)

holds when both the signer and user follow the protocol.
From the description of BS.U1, BS.S2 and BS.U2, we have c = c∗ +d0 +d1, c∗ = c∗

1 +c∗
2, and cb = c∗

b +db

for b ∈ {0, 1}. Therefore, we have c = c0 + c1, which shows the l.h.r. equation. It remains to show
Zb = [grb] ∗Acb

b for each b ∈ {0, 1}. Following the definition of Zb computed by BS.U1, we have

Zb = [gzb] ∗
(
Y

db,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)
= [gzb] ∗

(
[gr∗

b,0ζdb,0] ∗A
[c∗

b,0+db,0]d

b , . . . , [gr∗
b,κ−1ζdb,κ−1] ∗A

[c∗
b,κ−1+db,κ−1]d

b

)
(7)

=
(
[gzb,0+r∗

b,0ζdb,0] ∗A
[c∗

b,0+db,0]d

b , . . . , [gzb,κ−1+r∗
b,κ−1ζdb,κ−1] ∗A

[c∗
b,κ−1+db,κ−1]d

b

)
= [grb] ∗Acb

b , (8)

where Eq. (7) follows from the check performed by BS.U2 and Eq. (8) follows from the definition of (cb, rb).

Next, we will show the generalized blind signature has perfectly blindness. Notably, blindness holds
even under chosen keys. This is a strong property since if a malicious signer uses malformed supersingular
curves in E without the ring structure as the public key, the user cannot detect this. The main reason why
we can argue perfect blindness is that if the public key is malformed, then the pair of curves in the first
message (Yj∗

0 , Yj∗
1)j∈Zd

is also malformed in a controlled manner. If there exists one user state that leads
to a valid signature, then we can argue that the first message must be in a specific (but possibly incorrect)
form regardless of the user state. Using this, we are able to establish a bijection between an arbitrary user
state and a valid signature conditioning on a fixed first and second signature messages and a user message.
Namely, any valid signature could have been produced with an equal probability.

Theorem 6.5. The blind signature scheme in Figure 8 is (perfectly) blind under chosen keys.

Proof. Let (ρS,1,0, ρS,2,0) and (ρS,1,1, ρS,2,1) be the two sets of first and second-signer message pairs the
adversary A queries to oracles U1 and U2. Moreover, let ρU,b be the user message returned by oracle U1
when A queries with ρS,1,b for b ∈ {0, 1}, and let (σcoin, σ1−coin) be the two signatures A sees at the end,
where note that these two corresponds to M̃0 and M̃1, respectively, regardless of the choice of coin ∈ {0, 1}.
We call (ρS,1,b, ρU,b, ρS,2,b)b∈{0,1} the view of A. To prove perfect blindness, it suffices to prove that the
view is independent of coin ∈ {0, 1}. In other words, since the randomness used by oracle U1 is defined by
(stateU,b)b∈{0,1} and oracle U2 is deterministic, we prove that there exist two sets of states (state(0)

U,b)b∈{0,1}

and (state(1)
U,b)b∈{0,1} that can be sampled by oracle U1 with an equal probability such that they generate the

35

same view to A but produce a different pair of signatures (σ0, σ1) and (σ1, σ0), respectively. Considering that
the set of valid signature space and user randomness/state space is identical, we prove a stronger statement
that for any non-aborting (partial) view (ρS,1,0, ρU,0, ρS,2,0) of A, there is a bijection between a valid signature
σ0 on message M0 and a state stateU,0 of the oracle U1. Below, we drop the subscript 0 for readability.

Let us denote the first and second-signer message as ρS,1 = (Yj∗
0 , Yj∗

1)j∈Zd
, ρS,2 = (c∗

0, c∗
1, r∗

0, r∗
1), a user

message as ρU = c∗, and a valid signature for message M as σ = (c0, c1, r0, r1) ∈ (Zκ
d)2 × (Zκ

N)2. Here,
note that any public key pk = ((Aj

0)j∈Zd
, (Aj

1)j∈Zd
) output by the adversary (i.e., malicious signer) A can

be efficiently checked to be valid elliptic curves (i.e., supersingularity) but cannot be checked if it has the
correct cyclic structure.

We define a map between the signature σ = (c0, c1, r0, r1) and user state stateU = (d0, d1, z0, z1) by
db = cb−c∗

b and zb = rb−r∗
b ·ζdb for b ∈ {0, 1}. It is easy to check that once the view (or ρS,2 = (c∗

0, c∗
1, r∗

0, r∗
1))

is fixed, then this mapping is indeed a bijection. It remains to prove that this stateU is a state that produces σ.
Observe that if BS.U1(pk, M, ρS,1) samples stateU, then it computes Zb = [gzb] ∗

(
Y

d∗
b,0

b,0 , . . . , Y
d∗

b,κ−1
b,κ−1

)
for

b ∈ {0, 1} using ρS,1. It then sets c′ = H(Z0||Z1||M) and defines ρ′
U = c′∗ = c′ − d0 − d1. Moreover, due

to restrictions on the blindness game, the view is non-aborting for at least one state stateU. Combining this
with the fact that the first check performed by BS.U2(stateU, ρS,2) only depends on ρS,2, and in particular
independent of stateU, we have [gr∗

b ζj] ∗ A
[c∗

b +j]d

b = Yj∗

b for j ∈ Zd and any state stateU. Therefore, BS.U2
always outputs σ as desired since the signature σ is assumed to be valid.

It remains to check that ρ′
U = c′∗ generated by BS.U1 is the desired ρU = c∗ to complete the proof. Since

σ is valid and due to the definition of stateU, we have c∗
0 + c∗

1 + d0 + d1 = H ([gr0] ∗Ac0
0 ∥ [gr1] ∗Ac1

1 ∥ M).
Moreover, since the view is non-aborting, we are guaranteed that c∗ = c∗

0 + c∗
1. Therefore, if Zb = [grb] ∗Acb

b

for b ∈ {0, 1}, then we can conclude that c∗ = c′∗ as desired. This can be checked as follows, where we use
the fact that [gr∗

b ζj] ∗A
[c∗

b +j]d

b = Yj∗

b for j ∈ Zd in the second equality:

Zb = [gzb] ∗
(
Y

db,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)
= [gzb] ∗

(
[gr∗

b,0ζdb,0] ∗A
[c∗

b,0+db,0]d

b , . . . , [gr∗
b,κ−1ζdb,κ−1] ∗A

[c∗
b,κ−1+db,κ−1]d

b

)
=

(
[gzb,0+r∗

b,0ζdb,0] ∗A
[c∗

b,0+db,0]d

b , . . . , [gzb,κ−1+r∗
b,κ−1ζdb,κ−1] ∗A

[c∗
b,κ−1+db,κ−1]d

b

)
= [grb] ∗Acb

b .

This completes the proof.

6.6 Proof of One-More Unforgeability
Our proof of OMUF consists of preparing the necessary tools present in Section 3 to invoke Theorem 3.12.
Specifically, we define instances I0, I1 (see Definition 3.1), the map Φrand,

−→
h

(see Definition 3.8), the witness
extractors (Ext0, Ext1) (see Definition 3.9) and prove that Lemmas 3.10 and 3.11 hold. We refer the readers
to Section 4.4 for some of the notations used below.

Preparation: Instances. Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we
assume the adversary against the one-more unforgeability game makes ℓ-signing queries in total.

A 0-side instance I0 = (0, a0, A1,
−→
y∗

0,
−→
r∗

1 ,
−→
c∗

1) is defined as follows:

• (0, a0) : The secret key sk when δ = 0.
• A1 : The part of the public key pk = (A0 = (Aj

0)j∈Zd
, A1 = (Aj

1)j∈Zd
) whose secret key is unknown.

• y∗(k)
0 : The exponent of the commitment (Yj∗(k)

0)j∈Zd
in the k-th (k ∈ [ℓ]) first-sender message when

δ = 0 such that Yj∗(k)
0 = [gy∗(k)

0 ζj] ∗ E0 for each j ∈ Zd.

• c∗(k)
1 : The simulated challenge in the k-th (k ∈ [ℓ]) first-sender message when δ = 0.

36

Ext0(σ, σ′)
101 : if ∃t ∈ [κ] s.t. c0,t ̸= c′

0,t

102 : L← Ext′(r0,t, r′
0,t, c′

0,t, c0,t)
103 : for a′ ∈ L

104 : if [ga′
] ∗ E0 = A0

0

105 : return a′

106 : return ⊥

Ext1(σ, σ′)
101 : if ∃t ∈ [n] s.t. c1,t ̸= c′

1,t

102 : L← Ext′(r1,t, r′
1,t, c′

1,t, c1,t)
103 : for a′ ∈ L

104 : if [ga′
] ∗ E0 = A0

1

105 : return a′

106 : return ⊥

Figure 9: Witness extractors for our generalized blind signature for σ, σ′. In the above, σ = (c0, c1, r0, r1)
and σ′ = (c′

0, c′
1, r′

0, r′
1), where c0, c1, c′

0, c′
1 live in Zκ

d and r0, r1, r′
0, r′

1 live in Zκ
N . Ext′ is the extractor in

Lemma 6.1. Non-bold font indicates the entries of a vector.

• r∗(k)
1 : The exponent of the commitment Yj∗(k)

1 in the k-th (k ∈ [ℓ]) first-sender message when δ = 0
such that Yj∗(k)

1 = [gr∗(k)
1 ζj] ∗A

[c∗(k)
1 +j]d

1 for each j ∈ Zd.

A 1-side instance I1 = (1, a1, A0,
−→
y∗

1,
−→
r∗

0 ,
−→
c∗

0) is defined as follows:

• (1, a1) : The secret key sk when δ = 1.
• A0 : The part of the public key pk = (A0 = (Aj

0)j∈Zd
, A1 = (Aj

1)j∈Zd
) whose secret key is unknown.

• y∗(k)
1 : The exponent of the commitment (Yj∗(k)

1)j∈Zd
in the k-th (k ∈ [ℓ]) first-sender message when

δ = 1 such that (Yj∗(k)
1)j∈Zd

= [gy∗(k)
1 ζj] ∗ E0 for each j ∈ Zd.

• c∗(k)
0 : The simulated challenge in the k-th (k ∈ [ℓ]) first-sender message when δ = 1.

• r∗(k)
0 : The exponent of the commitment Yj∗(k)

0 in the k-th (k ∈ [ℓ]) first-sender message when δ = 1
such that Yj∗(k)

0 = [gr∗(k)
0 ζj] ∗A

[c∗(k)
0 +j]d

0 for each j ∈ Zd.

Preparation: Map Φrand,
−→
h

. We next define the map Φrand,
−→
h

that maps a 0-side instance I0 into a 1-side

instance I1 and vice versa. Concretely, a 0-side instance I0 = (0, a0, A1,
−→
y∗

0,
−→
r∗

1 ,
−→
c∗

1) maps to a 1-side instance
I1 such that

I1 = (1, a1, A0 = (Aj
0)j∈Zd

= ([ga0ζj

] ∗ E0)j∈Zd
,
−→
y∗

1 =
−→
r∗

1 + a1ζ
−→
c∗

1 ,
−→
c∗

0 =
−→
c∗ −

−→
c∗

1,
−→
r∗

0 =
−→
y∗

0 − a0ζ
−→
c∗

0),

where a1 ∈ ZN such that A0
1 = [ga1] ∗ E0 and recall that −→c∗ = −→e (I0, rand,

−→
h). On the other hand, a 1-side

instance I1 = (1, a1, A0,
−→
y∗

1,
−→
r∗

0 ,
−→
c∗

0) maps to a 0-side instance I0 such that

I0 = (0, a0, A1 = (Aj
1)j∈Zd

= ([ga1ζj

] ∗ E0)j∈Zd
,
−→
y∗

0 =
−→
r∗

0 + a0ζ
−→
c∗

0 ,
−→
c∗

1 =
−→
c∗ −

−→
c∗

0,
−→
r∗

1 =
−→
y∗

1 − a1ζ
−→
c∗

1)

where a0 ∈ ZN such that A0
0 = [ga0] ∗ E0 and recall that −→c∗ = −→e (I1, rand,

−→
h).

Preparation: Witness Extractors (Ext0, Ext1). Fix I, rand and let (−→h ,
−→
h ′) ∈ Fi(I, rand) for some i ∈

[ℓ + 1]. Moreover, denote the two signatures σ = (c0, c1, r0, r1), σ′ = (c′
0, c′

1, r′
0, r′

1) be the signatures that
correspond to c(i) and c′(i), respectively, where recall c(i) (resp. c′(i)) is the i-th entry of −→h (resp. −→h ′).
In particular, we have c0 + c1 = c(i) and c′

0 + c′
1 = c′(i). We define the witness extractors (Ext0, Ext1) as

in Fig. 9.
The following lemma establishes the correctness of the witness extractors.

37

Lemma 6.6. (Ext0, Ext1) in Fig. 9 satisfy the definition of witness extractors in Definition 3.9.

Proof. By the definition of Fi(I, rand) (see Definition 3.3), we have (I, rand,
−→
h), (I, rand,

−→
h ′) ∈ Succ and

c(i) ̸= c′(i). The former implies that the two signatures σ and σ′ are valid. Concretely, we have

c(i) = c0 + c1 = H
(

[gr0] ∗Ac0
0 ∥ [gr1] ∗Ac1

1 ∥ M
)

c′(i) = c′
0 + c′

1 = H
(

[gr′
0] ∗A

c′
0

0 ∥ [gr′
1] ∗A

c′
1

1 ∥ M′
)

.

Moreover, since −→h and −→h ′ agree up to the i-th entry and the challenger and adversary’s randomness are
fixed, the input to the hash functions agree. Namely, we have

[gr0] ∗Ac0
0 = [gr′

0] ∗A
c′

0
0 ∧ [gr1] ∗Ac1

1 = [gr′
1] ∗A

c′
1

1 ∧ M = M′

Since c(i) ̸= c′(i), we must have c0 ̸= c′
0 or c1 ̸= c′

1. Thus, due to the special soundness of the underlying
sigma protocol (see Section 6.2) one of Ext0 or Ext1 always outputs a valid secret key. This completes the
proof.

Proof of One-More Unforgeability. We have the following two lemmas required to invoke the main
theorem Theorem 6.9. Since the proof is almost identical to our earlier proofs in Section 4.4, we omit the
proof of the lemmas.

Lemma 6.7. Lemma 3.10 holds for our definition of the map Φrand,
−→
h

above.

Lemma 6.8. Lemma 3.11 holds for our definition of the witness extractors (Ext0, Ext1) Fig. 9.

Combining everything together, we obtain the following.

Theorem 6.9 (One-more Unforgeability). The partially blind signature scheme in Figure 8 is one-more
unforgeable. More precisely, for all ℓ ∈ N, if there exists an adversary A that makes Q hash queries to the
random oracle and breaks the ℓ-one more unforgeability of our scheme with advantage ϵA ≥ C1

dκ ·
(

Q
ℓ+1

)
, then

there exists an algorithm B that breaks the ζ-rGAIP problem with advantage ϵB ≥ C2 · ϵ2
A

(Q
ℓ+1)2·(ℓ+1)3

for some
universal positive constants C1 and C2. Note we use a d-th primitive root of unity ζ and κ denotes the
number of parallel repetitions of the underlying sigma protocol.

Proof. Upon receiving an rGAIP instance, the wrapper proceeds as described in Section 3.2. The proof
follows from the above Lemmas 6.7 and 6.8 and Theorem 3.12 (i.e., [KLX22a, Theorem 1]) and the result
follows.

7 Analysis of Ring GAIP
This section analyzes the ζd-ring group action inverse problem (ζd-rGAIP) over CSIDH-512. Section 7.1
discusses the existence of the root parameter for the assumption and the finding method. Section 7.2 recalls
the most efficient classical and quantum algorithms against GAIP and presents a structural attack on ζd-
rGAIP which effectively reduces ζd-rGAIP for a few choices of d to a GAIP instance with a smaller group size
compared to the original group considered by ζd-rGAIP. In Section 7.3, we complement our cryptanalysis
by proving that ζd-rGAIP for a few choices of d is as hard as GAIP defined over the same group. This shows
optimality of our structural attack for ζd-rGAIP for some choices of d. We note that the concrete value of
d’s that admit an attack or a reduction depends on the concrete CSIDH-512 parameter set.

38

7.1 Finding a Root of Unity and Satisfying Requirement 1
We briefly discuss the existence of and a process for finding a primitive d-th root of unity ζd ∈ Z×

N which
satisfies Requirement 1. Firstly, it is a straightforward consequence of the fundamental theorem of finitely-
generated abelian groups and the definition of λ(N) that Z×

N
∼= Zn1 ×Zn2 × · · · ×Znr

where n1 |n2 | · · · |nr

and nr = λ(N), so that a d-th root of unity exists if and only if d is a divisor of λ(N)—here, λ(·) is the
Carmichael function.

To find such a root for a given valid d, the most intuitive method, perhaps, is to start with a primitive
λ(N)-th root of unity ζλ(N), and compute ζ

λ(N)
d

λ(N) , which will have order exactly d. Unfortunately, this may
result in a d-th root of unity that does not meet Requirement 1 (even when one exists which satisfies
Requirement 1). In particular, we have to ensure that ζ is a generator modulo all but small prime power
divisors of N to conclude ηd = lcmi∈[d−1](gcd(ζi − 1, N)) = poly(n). To this end, in every Sylow subgroup
of Z×

N , we find a generator of a cyclic subgroup of order d (if one exists) and use the Chinese remainder
theorem to obtain a d-th root of unity. If a root meeting Requirement 1 exists, this method ensures finding
such a root.

Concretely, for the CSIDH-512 parameter sets we have
N = 3× 37× 1407181× 51593604295295867744293584889

× 31599414504681995853008278745587832204909,

λ(N) = 23 × 32 × 5× 72 × 47× 71× 499× 43872112495999887537664613
× 111265544030570407933127742061928986637,

and we can construct the following primitive d-th roots of unity with respect to CSIDH-512 following this
method for 2 ≤ d ≤ 9, 47 and 499:

ζ2 = −1
ζ3 = 247769943790849565037110451253594899400495635540473277008987864733013892490349
ζ4 = 8472499114678701993773553438173395921228936189139636336209864846564687757945
ζ5 = 72453024324688395187181869396509941269039951262689579224914692627674819998175
ζ7 = 72860468942899689738460495171518121784504211848373863183929808636917555788857
ζ8 = 17968081027951002862127994231802972521244754950515032766640065054960810210290
ζ9 = 144532467211328912938314429897930357983622454065276078255242921094258103952704

ζ47 = 6284781180379609583005371256408016347485447032979579744856129688235933726820
ζ499 = 27716990710015300853542735667675665633828171067931279717294182935872148507972.

Remark 7.1. In the list above, we only display d that is a prime power. For other composite divisors of λ(N),
one can obtain the corresponding root by multiplication. For instance, we can obtain ζ23453 = ζ47ζ499.

Concretely, for the CSIHD-512 parameter set, the totients of the small prime divisors of N have the
following (maximal) small prime power divisors:

φ(3) : 2
φ(37) : 22, 32

φ(1407181) : 22, 3, 5, 47, 499
φ(51593604295295867744293584889) : 23, 3, 72

φ(31599414504681995853008278745587832204909) : 22, 71.

This implies that for the CSIDH-512 parameter we can only find a 4th root of unity meeting Requirement 1
(with η4 = 3) since only Z×

3 has no cyclic subgroups of order 4. For example, for any 3rd root of unity ζ3, we
always have a 134-bit divisor of gcd(ζ3, N). Therefore, ζ4-rGAIP over CSIDH-512 is the candidate hardness
assumption that can be used for our optimized blind signature construction.

In the next subsection, we show that the hardness of ζd-rGAIP varies with the choice of ζd. Since we
believe ζd-rGAIP may be of independent interest, we waive Requirement 1 when considering the cryptanalysis.

39

7.2 Cryptanalysis and Structural Attack on rGAIP
In the previous section, we showed how to choose a root ζd according to the decomposition of the multi-
plication group of Z×

N . In this section, we show that the underlying structure of ζd in each component is
related to the security of ζd-rGAIP by presenting a concrete cryptanalysis on the overstretched ζd-rGAIP with
respect to the CSIDH-512 parameters.

Generic Attacks on GAIP. The best known classical algorithm against GAIP is the meet-in-the-middle
attack [GHS02, GS13] with time complexity O(

√
|Cℓ(O)|) = O(4

√
p) against GAIP.

The best-known quantum algorithm against GAIP is Kuperburg’s algorithm [Kup05, Reg04, Kup11,
Pei20, BS20]. Typically, given a challenge E to find a ∈ ZN such that E0 = [ga] ∗E, we have a hidden shift
problem by defining f(x) = [gx] ∗E0 and g(x) = [gx] ∗E, the permutations f, g over E are hidden shifted by
a. By applying the Kuperburg’s algorithm, one can solve GAIP in time complexity 2O(

√
log(|Cℓ(O)|)). It is not

clear whether the additional structure can give an advantage to the adversary by reducing the group size in
general. The subset {1, ζd, . . . , ζd−1

d } forms a group with multiplication instead of addition. Modifying the
group action by restricting to the multiplication subgroup of Z×

N does not give a feasible g with a hidden
shift a. Also, ζ generates the additive group ZN , so that the quotient group does not help in this case.

Structural Attack on rGAIP. Let ζd be a d-th primitive root of unity and N be the class number. We
show that the underlying structure of the root in each component of Z×

N is related to security by displaying
a structural attack against ζd-rGAIP and the efficacy of the attack is related to each gcd(ζi

d − 1, N).
The high-level strategy of our structural attack is to break down a ζd-rGAIP instance into several GAIP

instances over smaller subgroups or quotient groups. The idea is to exploit the differential information of
any two curves in the instance and launch a Pohlig-Hellman-type attack. Recall that the instance is of
the form (X0 = [ga] ∗ E0, X1 = [gaζd] ∗ E0, . . . , Xd−1 = [gaζd−1

d] ∗ E0). For any two curves Xi, Xj in the
instance, there exists a unique group element [gij] = [gaζj

d
−aζi

d] ∈ Cℓ(O) such that [gij]∗Xi = Xj . Therefore,
recovering differential action [gij] gives the information of a. Typically, it is difficult to recover such [gij]
due to the size of the group and considering the GAIP of (Xi, Xj). However, depending on the knowledge of
ηd derived from the public ζd, the hardness of the GAIP of the structural (Xi, Xj) can be reduced. This is
because Gij := {[gn(ζj

d
−ζi

d)] |, n ∈ ZN} possibly constitutes a proper subgroup of Cℓ(O) up to i and j. For
any [g′] ∈ Cℓ(O), we have [g′] ∗Xi = [gij] ∗Xi = Xj if and only if [g′]Gij = [gij]Gij . As a result, recovering
[g′]Gij is exactly a GAIP problem of (Xi, Xj) over the quotient group G/Gij . Then, after obtaining such
[g′] ∈ Cℓ(O) such that [g′]Gij = [gaζj

d
−aζi

d]Gij = [ga]Gij , we can recover [ga] by solving (E0, (g′)−1 ∗X0) over
Gij for g′−1[ga]. Therefore, the main strength against our structural attack depends on the GAIP hardness
with the group size of max(|Gij |, |G/Gij |). Choosing a proper subsequence of (i, j), the root ζd gives the
following ascending chain: {1} = G1 < G2 < . . . < Gk = Cℓ(O), where for each ℓ ∈ [k], Gℓ = Gij for some
distinct i, j ∈ [d]. Using the aforementioned structural attack, the hardness of ζd-rGAIP is determined by
the size of the largest quotient group Gℓ+1/Gℓ for some ℓ ∈ [k − 1].

Remark 7.2. We note that gcd(ζi
d − 1, N) is divisible by a prime divisor p of N if and only if ζ

d
gcd(i,d)
d ≡ 1

(mod p). Thus we only need to calculate gcd(ζd′

d − 1, N) for every divisor d′ of d to find ηd. In particular,
when d is prime, we need only compute gcd(ζd − 1, N) to find ηd. Therefore, we only need to consider
gcd(ζd − 1, N) for d = 3, 5, 7, 11, 47, 499 for the CSIDH-512 parameter set.

We use the method of Remark 7.2 to analyze the strength of ζd-rGAIP for a few parameters over CSIDH-
512 as follows.

gcd(ζ2 − 1, N) = gcd(ζ4 − 1, N) = 1
gcd(ζ3 − 1, N) = 3× 1407181× 51593604295295867744293584889

× 31599414504681995853008278745587832204909

40

gcd(ζ2
4 − 1, N) = 3

gcd(ζ5 − 1, N) = 3× 37× 51593604295295867744293584889
× 31599414504681995853008278745587832204909

gcd(ζ7 − 1, N) = 3× 37× 1407181× 31599414504681995853008278745587832204909
gcd(ζ8 − 1, N) = 31599414504681995853008278745587832204909
gcd(ζ2

8 − 1, N) = gcd(ζ8 − 1, N)× 3
gcd(ζ4

8 − 1, N) = gcd(ζ2
8 − 1, N)× 37× 1407181

gcd(ζ9 − 1, N) = gcd(ζ2
9 − 1, N) = gcd(ζ3 − 1, N)

gcd(ζ47 − 1, N) = gcd(ζ499 − 1, N) = gcd(ζ5 − 1, N).

As a consequence, we reduce each ζd-rGAIP instance to a GAIP instance with a group size determined by
ζd. This is summarized in Table 1. For ζ8, we have a chain {1} = G1 < G2 < G3 < G4 < G5 = Cℓ(O) where
G2, G3, G4 is of size gcd(ζ8−1, N), gcd(ζ2

8−1, N), gcd(ζ4
8−1, N), respectively, and the largest quotient group

is |G2/G1| ≈ 2134, which demonstrates the invulnerability of ζ8-rGAIP. For instance, for ζ3 we have a chain
{1} = G1 < G2 < G3 = Cℓ(O) where G2 is of size 37 and the largest quotient group is |G3/G2| ≈ 2251. For
ζ4, ζ47 and ζ499 we have a chain {1} = G1 < G2 < G3 = Cℓ(O) where G2 is of size 1407181 with the largest
quotient group |G3/G2| ≈ 2236. Our cryptanalysis gives an upper bound of ζd-rGAIP from the perspective
of GAIP. Importantly, ζ4-rGAIP which we use for our optimized blind signature only seems to lose 2 bits of
security compared with ζ2-rGAIP, or equivalently, GAIP over CSIDH-512.

ζd-rGAIP ζ2 ζ3 ζ4 ζ5 ζ7 ζ8 ζ9 ζ47 ζ499
GAIP with Group Size in log2 257 251 255 236 161 134 251 236 236

Table 1: The upper row denotes ζd-rGAIP over CSIDH-512. Using our cryptanalysis in Section 7.2, we
reduce each ζd-rGAIP instance into a GAIP instance with a group size summarized in the lower row. Note
that GAIP over CSIDH-512 is equivalent to ζ2-rGAIP over CSIDH-512.

7.3 Equivalence between GAIP and rGAIP
We complement our cryptanalysis by showing that our attack is optimal for some parameters. Although a
few instances of ζd-rGAIP were shown to be significantly weaker than the original GAIP over CSIDH-512,
we present a surprising condition that allows to reduce ζd-rGAIP to the original GAIP. This shows that the
attack in Table 1 is optimal for those specific choices of ζd. We note that though the condition does not
cover all cases (including ζ4 which meets Requirement 1), the result gives us some guidance of the hardness
of ζd-rGAIP.

Large gcd(ζd−1, N) ≈ N . Note first that in this case we do not know how to have an efficient extractor in
our optimized sigma protocol due to the large value of ηd (see Lemma 6.1). Requirement 1 is not satisfied.

It is clear that GAIP is never easier than ζd-rGAIP. The key insight of the reverse reduction is that when
gcd(ζd − 1, N) ≈ N (or gcd(ζd − 1, N) = N/poly(n) to be precise), given a GAIP instance we can generate
a ζd-rGAIP instance by trial and error. Additionally, the success rate can also be amplified by repetitively
invoking the GAIP oracle and testing the correctness.

Concretely, given X0 = [ga]∗E0 and access to an ζd-rGAIP adversary A for a d-th root of unity ζd, we can
construct a GAIP adversary B which invokes A on input (X0, [a′]∗X0, [a′ζd]∗X0, . . . , [a′ζd−1

d]∗X0) where a′ is
sampled uniformly at random from the subgroup {rζd−1|r ∈ Cℓ(O)}. Then, B outputs whatever A outputs.
Since the subgroup is of size N/gcd(ζd−1, N) = poly(n), the adversary B invokes A on a well-formed instance
with probability gcd(ζd − 1, N)/N , which is non-negligible.We thus obtain the following theorem.

41

Theorem 7.3. Given any ζd-rGAIP adversary A for a known-order effective group action of the group size
N , there exists a GAIP adversary B in time d over the same action such that Advζd-rGAIP(A) ≤ N

gcd(ζd−1,N) ·
AdvGAIP(B).

As a consequence, we know that for CSIDH-512 we have ζ3, ζ9, ζ5, ζ47, ζ499-rGAIPs are as hard as
the original GAIP with a reduction loss of factors 37, 37, 1407181, 1407181, 1407181 respectively. Similarly,
ζ117265 = ζ5ζ47ζ499 also has a reduction loss of a factor 1407181.

8 Performance
We present an overall performance in Table 2 for our protocols instantiated using CSIDH-512. As explained
in Section 7, we instantiate the ζd-rGAIP assumption with the 4-th root of unity ζ4 as it is the only parameter
that satisfies Requirement 1 while being presumably as hard as GAIP over CSIDH-512. We also analyze the
trade-off between our basic blind signature in Section 4 and the optimized blind signature using a d-th
primitive root of unity in Section 6. This helps us illustrate the effect of the value d on our optimized scheme
and may be useful in the future when new group actions where ζd-rGAIP is hard are discovered.

The public key is d times larger compared to the basic scheme in general, which can be halved when d is
even and ζ

d
2 = −1. Let w = log2(N)/8 denote the byte size of a class group element in ZN and approximately

2w for one elliptic curve in E ; for example w ≈ 32 for a CSIDH-512 group. In Section 4, the sender and
user bandwidths and the signature size of the basic blind signature are 4wn B, n/8 B (i.e., one hash), and
2n(w + n/8) B, respectively. On the other hand, in Section 6 the sender and user bandwidths and the
signature size of the optimized blind signature are 2κ(wd + w + log2 d) B, (κ log2 d)/8 B, and 2κ(w + log2 d)
B, respectively. Now, given the security parameter n, the number of repetitions κ with a d-th primitive root
of unity is required to satisfy dκ = 2n, i.e., n = κ log2 d. Therefore, the communication cost of the signer is
increased by roughly dκ

2n , while the signature is decreased by roughly n
κ . The computation cost is increased

by a factor of dκ
2n in group action evaluations for both the signer and the user. Concretely, when d = 4, we

have n = 2κ and thus the signature size is reduced by approximately 50%.

Bandwidth.S Bandwidth.U |sk| |pk| |σ| Assumption
Basic. (Fig. 2) 16 KB 16 B 16 B 128 B 8 KB GAIP
Fig. 8 with ζ4 64 KB 16 B 16 B 512 B 4 KB ζ4-rGAIP
PBS. (Fig. 5) 48 KB 16 B 16 B 128 B 24 KB GAIP

Table 2: The overall performance of our blind signature family regarding the bandwidth, the secret key size,
the public size, and the signature size using CSIDH-512. We take n = 128 and sk is generated by a seed
of n bits. The first two rows are our blind signatures and the final row is our (unoptimized) partially blind
signature.

It takes roughly 40 ms to perform an action on a 2.70 GHz processor [CLM+18, BKV19], and we can
estimate the running time in terms of the number of the isogeny action. Since the signing (respectively,
verifying) process requires 6×128 (respectively, 2×128) actions in Section 4, it takes 30 seconds (respectively,
10 seconds) for the procedure.

Acknowledgements
Shuichi Katsumata was partially supported by JST, CREST Grant Number JPMJCR22M1 and by JST, AIP
Acceleration Research JPMJCR22U5. Yi-Fu Lai, Jason T. LeGrow, and Ling Qin were supported in part by
the Ministry for Business, Innovation and Employment of New Zealand. Jason T. LeGrow was supported
in part by the Commonwealth of Virginia’s Commonwealth Cyber Initiative (CCI), an investment in the

42

advancement of cyber R&D, innovation, and workforce development. For more information about CCI, visit
www.cyberinitiative.org.

References
[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In

Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer,
Heidelberg, May 2001.

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 411–439. Springer, Heidelberg, December 2020.

[AEB20a] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. BLAZE: Practical
lattice-based blind signatures for privacy-preserving applications. In Joseph Bonneau and Na-
dia Heninger, editors, FC 2020, volume 12059 of LNCS, pages 484–502. Springer, Heidelberg,
February 2020.

[AEB20b] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. On lattice-based
interactive protocols: An approach with less or no aborts. In Joseph K. Liu and Hui Cui, editors,
ACISP 20, volume 12248 of LNCS, pages 41–61. Springer, Heidelberg, November / December
2020.

[AEK+22] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and Doreen Riepel.
Password-authenticated key exchange from group actions. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 699–728. Springer,
Heidelberg, August 2022.

[AF96] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo Kim and
Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 244–251. Springer,
Heidelberg, November 1996.

[AHJ21] Nabil Alkeilani Alkadri, Patrick Harasser, and Christian Janson. BlindOR: an efficient lattice-
based blind signature scheme from OR-proofs. LNCS, pages 95–115. Springer, Heidelberg, 2021.

[AJK+20] Reza Azarderakhsh, David Jao, Brian Koziel, Jason T. LeGrow, Vladimir Soukharev, and Oleg
Taraskin. How not to create an isogeny-based PAKE. In Mauro Conti, Jianying Zhou, Emiliano
Casalicchio, and Angelo Spognardi, editors, ACNS 20, Part I, volume 12146 of LNCS, pages
169–186. Springer, Heidelberg, October 2020.

[AKSY22] Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav. Practical, round-optimal
lattice-based blind signatures. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 39–53. ACM Press, November 2022.

[AO00] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg,
August 2000.

[BDE+23] Maxime Buser, Rafael Dowsley, Muhammed Esgin, Clémentine Gritti, Shabnam Kasra Ker-
manshahi, Veronika Kuchta, Jason Legrow, Joseph Liu, Raphaël Phan, Amin Sakzad, et al. A
survey on exotic signatures for post-quantum blockchain: Challenges and research directions.
ACM Computing Surveys, 55(12):1–32, 2023.

43

www.cyberinitiative.org.

[BDK+22] Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pintore. Group
signatures and more from isogenies and lattices: Generic, simple, and efficient. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 95–126. Springer, Heidelberg, May / June 2022.

[BGSS17] Olivier Blazy, Philippe Gaborit, Julien Schrek, and Nicolas Sendrier. A code-based blind signa-
ture. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2718–2722.
IEEE, 2017.

[BIJ18] Jean-Franccois Biasse, Annamaria Iezzi, and Michael J. Jacobson Jr. A note on the security of
CSIDH. In Debrup Chakraborty and Tetsu Iwata, editors, INDOCRYPT 2018, volume 11356
of LNCS, pages 153–168. Springer, Heidelberg, December 2018.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices. In Shiho Moriai and Huaxiong Wang, edi-
tors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 464–492. Springer, Heidelberg,
December 2020.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient isogeny
based signatures through class group computations. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 227–247. Springer, Heidelberg,
December 2019.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature
schemes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 82–99. Springer, Heidelberg, December 2013.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On
the (in)security of ROS. In Anne Canteaut and Franccois-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021.

[BLNS23] Ward Beullens, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Lattice-
based blind signatures: Short, efficient, and round-optimal. Cryptology ePrint Archive, Paper
2023/077, 2023. https://eprint.iacr.org/2023/077.

[BN18] Xavier Bonnetain and María Naya-Plasencia. Hidden shift quantum cryptanalysis and impli-
cations. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume
11272 of LNCS, pages 560–592. Springer, Heidelberg, December 2018.

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Heidelberg,
August 1994.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages
493–522. Springer, Heidelberg, May 2020.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. LNCS, pages
423–447. Springer, Heidelberg, June 2023.

[CDEL21] Wouter Castryck, Ann Dooms, Carlo Emerencia, and Alexander Lemmens. A fusion algorithm
for solving the hidden shift problem in finite abelian groups. In Jung Hee Cheon and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021,
pages 133–153. Springer, Heidelberg, 2021.

44

https://eprint.iacr.org/2023/077

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839
of LNCS, pages 174–187. Springer, Heidelberg, August 1994.

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg, August 1990.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982.

[Cha88] David Chaum. Elections with unconditionally-secret ballots and disruption equivalent to break-
ing RSA. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 177–182.
Springer, Heidelberg, May 1988.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isogenies in
quantum subexponential time. Journal of Mathematical Cryptology, 8(1):1–29, 2014.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001.

[CLG09] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions from
expander graphs. Journal of Cryptology, 22(1):93–113, January 2009.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An
efficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, edi-
tors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg,
December 2018.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291,
2006. https://eprint.iacr.org/2006/291.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

[Dam02] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department for Computer
Science, page 84, 2002.

[DF19] Luca De Feo. Seasign: Compact isogeny signatures from class group actions, 2019. Talk at
Eurocrypt 2019.

[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from class group
actions. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume
11478 of LNCS, pages 759–789. Springer, Heidelberg, May 2019.

[DGL+20] Samuel Dobson, Steven D. Galbraith, Jason LeGrow, Yan Bo Ti, and Lukas Zobernig. An
adaptive attack on 2-sidh. International Journal of Computer Mathematics: Computer Systems
Theory, 5(4):282–299, 2020.

[dK22] Rafaël del Pino and Shuichi Katsumata. A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 306–336. Springer,
Heidelberg, August 2022.

45

https://eprint.iacr.org/2006/291

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski.
SQISign: Compact post-quantum signatures from quaternions and isogenies. In Shiho Mo-
riai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages
64–93. Springer, Heidelberg, December 2020.

[dQKL+21] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale, Lorenz Panny, Christophe
Petit, and Katherine E. Stange. Improved torsion-point attacks on SIDH variants. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 432–470,
Virtual Event, August 2021. Springer, Heidelberg.

[FFK+23] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz
Panny, and Benjamin Wesolowski. Scallop: scaling the csi-fish. Cryptology ePrint Archive,
Paper 2023/058, 2023. https://eprint.iacr.org/2023/058.

[FIM+14] Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and Pranab Sen. Hidden
translation and translating coset in quantum computing. SIAM Journal on Computing, 43(1):1–
24, 2014.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer,
Heidelberg, August 2006.

[FMP23] Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit. M-SIDH and MD-SIDH: Countering
SIDH attacks by masking information. LNCS, pages 282–309. Springer, Heidelberg, June 2023.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In AUSCRYPT, pages 244–251. Springer, 1992.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[GHS02] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the GHS Weil descent attack.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 29–44. Springer,
Heidelberg, April / May 2002.

[GL22] Steven D Galbraith and Yi-Fu Lai. Attack on sheals and heals: The second wave of gpst.
In Post-Quantum Cryptography: 13th International Workshop, PQCrypto 2022, Virtual Event,
September 28–30, 2022, Proceedings, pages 399–421. Springer, 2022.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of su-
persingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 63–91. Springer, Heidelberg, December
2016.

[GS13] Steven Galbraith and Anton Stolbunov. Improved algorithm for the isogeny problem for ordinary
elliptic curves. Applicable Algebra in Engineering, Communication and Computing, 24(2):107–
131, 2013.

[HIP+22] Scott Hendrickson, Jana Iyengar, Tommy Pauly, Steven Valdez, and Christopher A. Wood. Pri-
vate access tokens. internet-draft draft-private-access-tokens-01, April 2022. Work in Progress.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from iden-
tification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019.

46

https://eprint.iacr.org/2023/058

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures,
revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 500–529. Springer, Heidelberg, August 2020.

[JAC+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes,
Vladimir Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron Hutchin-
son. Supersingular isogeny key encapsulation. Technical report, National Institute of Standards
and Technology, 2017.

[JLLRL20] David Jao, Jason LeGrow, Christopher Leonardi, and Luis Ruiz-Lopez. A subexponential-time,
polynomial quantum space algorithm for inverting the cm group action. Journal of Mathematical
Cryptology, 14(1):129–138, 2020.

[KLX22a] Julia Kastner, Julian Loss, and Jiayu Xu. The abe-okamoto partially blind signature scheme
revisited. In ASIACRYPT 2022, Part IV, LNCS, pages 279–309. Springer, Heidelberg, December
2022.

[KLX22b] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the
algebraic group model. In PKC, pages 468–497. Springer, 2022.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. SIAM Journal on Computing, 35(1):170–188, 2005.

[Kup11] Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. arXiv preprint arXiv:1112.3333, 2011.

[Lai23a] Yi-Fu Lai. Advanced Isogeny-based Cryptosystems. Phd thesis, The University of Auckland,
2023. To appear.

[Lai23b] Yi-Fu Lai. CAPYBARA and TSUBAKI: Verifiable random functions from group actions and
isogenies. Cryptology ePrint Archive, Report 2023/182, 2023. https://eprint.iacr.org/
2023/182.

[LGd21] Yi-Fu Lai, Steven D. Galbraith, and Cyprien de Saint Guilhem. Compact, efficient and UC-
secure isogeny-based oblivious transfer. In Anne Canteaut and Franccois-Xavier Standaert, edi-
tors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 213–241. Springer, Heidelberg,
October 2021.

[LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Planccon. Efficient lattice-based blind
signatures via gaussian one-time signatures. In PKC 2022, Part II, LNCS, pages 498–527.
Springer, Heidelberg, May 2022.

[LSK+19] Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, and Dung Hoang Duong. A
blind signature from module latices. In Dependable and Secure Computing (DSC), pages 1–8.
IEEE, 2019.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski. A
direct key recovery attack on SIDH. LNCS, pages 448–471. Springer, Heidelberg, June 2023.

[OO92] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, Heidelberg, August 1992.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–492. Springer, Heidelberg, May
2020.

47

https://eprint.iacr.org/2023/182
https://eprint.iacr.org/2023/182

[Pet17] Christophe Petit. Faster algorithms for isogeny problems using torsion point images. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages
330–353. Springer, Heidelberg, December 2017.

[PHBS19] D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides. Leakage-resilient
lattice-based partially blind signatures. Cryptology ePrint Archive, Report 2019/1452, 2019.
https://eprint.iacr.org/2019/1452.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May
1996.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology, 13(3):361–396, June 2000.

[PSM17] Albrecht Petzoldt, Alan Szepieniec, and Mohamed Saied Emam Mohamed. A practical multi-
variate blind signature scheme. In Aggelos Kiayias, editor, FC 2017, volume 10322 of LNCS,
pages 437–454. Springer, Heidelberg, April 2017.

[Reg04] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup problem with
polynomial space. arXiv preprint quant-ph/0406151, 2004.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. LNCS, pages 472–503. Springer, Heidelberg,
June 2023.

[RS62] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6(1):64 – 94, 1962.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.org/2006/145.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 413–430. Springer, Heidelberg, December 2010.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal de théorie des nombres
de Bordeaux, 7(1):219–254, 1995.

[Sch01] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, November 2001.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[Sto10] Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action
on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 4(2):215–235,
2010.

[TSJL21] Oleg Taraskin, Vladimir Soukharev, David Jao, and Jason T. LeGrow. Towards isogeny-based
password-authenticated key establishment. Journal of Mathematical Cryptology, 15(1):18–30,
2021.

[VPN22] Vpn by Google one, explained. https://one.google.com/about/vpn/howitworks, 2022. Ac-
cessed: 2022-02-02.

48

https://eprint.iacr.org/2019/1452
https://eprint.iacr.org/2006/145
https://one.google.com/about/vpn/howitworks

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 288–303. Springer, Heidelberg, August 2002.

[YL19] Xun Yi and Kwok-Yan Lam. A new blind ECDSA scheme for bitcoin transaction anonymity.
In Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin Kirda, and
Zhenkai Liang, editors, ASIACCS 19, pages 613–620. ACM Press, July 2019.

A Sigma Protocols
A.1 Security of Sigma Protocols
In this section we state the security properties required for a secure sigma protocol.

Definition A.1 (Perfect Completeness). A sigma protocol is perfectly correct if whenever the protocol
is executed by an honest prover and verifier (that is, a prover and verifier who follow the specification of the
protocol), the verifier will return “Accept” with probability 1.

Definition A.2 (Special Soundness). A sigma protocol has special soundness if there is an efficient
(i.e., polynomial-time) extractor Ext which, given two accepting transcripts τ1 = (com, ch1, rsp1) and τ2 =
(com, ch2, rsp2) for the same public key X, with ch1 ̸= ch2, produces a witness W to the statement X.

Definition A.3 (Honest Verifier Zero-Knowledge). A sigma protocol is honest verifier zero-knowledge
(HVZK) if there is an efficient algorithm Sim—the simulator—which, given a statement X outputs a tran-
script τ = (com, ch, rsp) such that the distribution of outputs of Sim is identical to the distribution of tran-
scripts of honest executions of the protocol.

A.2 Our Basic Sigma Protocol for Isogeny Knowledge
In this section we introduce the basic sigma protocol that we use to construct the OR-proofs which form the
basis for our blind signature in Section 4 and our partially blind signature in Section 5. Though the protocol
is essentially standard, we include this discussion because this Sigma protocol is not simply the protocol used
in CRS [Cou06, RS06] adapted to the supersingular setting (as in CSI-FiSh [BKV19])—rather, our proof
uses the quadratic twist in a fundamental way, which is necessary when constructing our signature schemes.

To begin, our protocol is depicted in Figure 10.

P: X = A = [ga] ∗ E0
W = a ∈ ZN

V: X = A = [ga] ∗ E0

y
$← ZN

Y = [gy] ∗ E0
Y

−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−−
c

$← {−1, 1}

r = y − a · c r
−−−−−−−−−−−−−−−→

Accept if
[gr] ∗Ac = Y

Figure 10: The basic Sigma protocol underlying our blind signature scheme and partially-blind signature
scheme.

We prove that the scheme depicted in Figure 10 is a secure sigma protocol; that is, that it satisfies perfect
completeness, special soundess, and honest verifier zero-knowledge (HVZK).

Lemma A.4 (Perfect Completeness). The protocol depicted in Figure 10 is perfectly complete.

49

Proof. Suppose that the protocol is executed according to the specification. Then

[gr] ∗Ac = [gy−a·c] ∗ [ga·c] ∗ E0 = [gy] ∗ E0 = Y

so that V accepts, as required.

Lemma A.5 (Special Soundess). The protocol depicted in Figure 10 satisfies special soundness.

Proof. Using the notation of Figure 10, without loss of generality we may assume that c = 1 and c′ = −1.
Then

r′ − r = (y + a)− (y − a) = 2a.

Recall the parameter where p = 3 (mod 4) implies |Cℓ(O)| is odd. Therefore, we can solve for the unique
value of a ∈ ZN as

a ≡ 2−1(r′ − r) (mod N).

Lemma A.6 (Honest Verifier Zero-Knowledge). The protocol depicted in Figure 10 satisfies the honest
verifier zero-knowledge property.

Proof. For a fixed statement X = [ga] ∗ E0, the distribution of honest transcripts is uniform on the set

T = {(Y = [gy] ∗ E0, c, r = y − a · c) : y ∈ ZN , c ∈ {−1, 1}}
= {(Y = [gr+ac] ∗ E0, c, r) : r ∈ ZN , c ∈ {−1, 1}}
= {(Y = [gr] ∗Ac, c, r) : r ∈ Zn, c ∈ {−1, 1}}. (9)

Considering Equation 9, we see that the following procedure will perfectly simulate the honest distribution
of transcripts:

1. Choose r ∈ ZN uniformly at random.

2. Choose c ∈ {−1, 1} uniformly at random.

3. Set Y = [gr] ∗Ac.

Thus we have defined the required Sim, and so the protocol satisfies the honest verifier zero-knowledge
property.

A.3 Our rGAIP-based Sigma Protocol
For clarity, in this section we describe the most basic version of rGAIP-based sigma protocol which underlies
the OR sigma protocol of Figure 7, used in the construction of our optimized variant of our isogeny-based
blind signatures in Section 6.

As we did for the protocol of Figure 10, we prove here that this protocol is perfectly complete, specially
sound, and honest verifier zero knowledge.

Lemma A.7 (Perfect Completeness). The protocol depicted in Figure 11 is perfectly complete.

Proof. Suppose the protocol is executed according to its specification. Then for j = 0, 1, . . . , d− 1 we have

[grζj

] ∗Aj+c = [gyζj−aζj+c

] ∗ ([gaζj+c

] ∗ E0) = [gyζj

] ∗ E0 = Y j

so that ([grζj] ∗Aj+c)j∈Zd
= Y, which leads the verifier to accept, as required.

50

P:
X = (Aj)j∈Zd

= ([gaζj] ∗ E0)j∈Zd

W = a ∈ ZN

V:
X = (Aj)j∈Zd

= ([gaζj] ∗ E0)j∈Zd

y
$← ZN

Y← ([gyζj] ∗ E0)j∈Zd

Y
−−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−−

c
$← Zd

r = y − a · ζc r
−−−−−−−−−−−−−−−→

Accept if
([grζj] ∗Ac+j)j∈Zd

= Y

Figure 11: The basic rGAIP-based sigma protocol underlying our optimized blind signature scheme and
partially-blind signature scheme.

The special soundness is slightly different from the previous constructions. We require a relaxed relation

R̃ =
{

(state = (A
j

)j∈Zd
,

witness = (a′, ∆))

∣∣∣∣∣ (a′, ∆) ∈ ZN × Zd

[ga′ζj

] ∗A∆+j = Aj for any j ∈ Zd

}
,

which contains the rGAIP relation

R =
{

(state = (A
j

)j∈Zd
, witness = a)

∣∣∣ [gaζj

] ∗ E0 = Aj for any j ∈ [d]
}

,

where the relations are implicitly parameterized by Cℓ(O), Eℓℓ, N, ζ and the embedding a′ = a(ζ − 1) and
∆ = 0 implies the containment.

The relation R is relaxed as R̃ in the sense that the “center” of the ring can be shifted from E0. Also,
R̃ allows ⟨ζ∆⟩ < ⟨ζ⟩ such that the state can be divided into multiple “smaller” rings. Alternatively, when
the ring of R̃ is centered at E0 and d is a prime the relations are essentially the same. In general, as long
as Requirement 1 is met, solving an instance in R̃ for a witness is not easier than in R since the embedding
a 7→ a(ζ − 1) is recoverable (see Lemma 6.1).

Lemma A.8 (Special Soundess). The protocol depicted in Figure 11 satisfies special soundness for a
relaxed relation R̃.

Proof. Given two accepting transcripts τ1 = (Y, c, r) and τ2 = (Y, c′, r′) such that c ̸= c′, we have

([grζj

] ∗Ac+j)j∈Zd
= ([gr′ζj

] ∗Ac′+j)j∈Zd
= Y.

Therefore, we have (r − r′, c− c′) such that ((Aj)j∈Zd
, (r − r′, c− c′)) ∈ R̃.

Lemma A.9 (Honest Verifier Zero-Knowledge). Provided that gcd(d, N) = 1, the protocol depicted in
Figure 11 satisfies the honest verifier zero-knowledge property.

Proof. For a fixed valid statement X = ([agζj] ∗E0)j∈Zd
, the distribution of honest transcripts is uniform on

the set

T =
{(

Y = ([gyζj

] ∗ E0)j∈Zd
, c, r = y − aζc

)
: y ∈ ZN , c ∈ Zd

}
=

{(
Y = ([gζj(r+aζc)] ∗ E0)j∈Zd

, c, r
)

: r ∈ ZN , c ∈ Zd

}
=

{(
Y = ([grζj

] ∗Aj+c)j∈Zd
, c, r

)
: r ∈ ZN , c ∈ Zd

}
. (10)

Considering Equation 10, we see that the following procedure will perfectly simulate the honest distribu-
tion of transcripts:

51

1. Choose r ∈ ZN uniformly at random.
2. Choose c ∈ [0 : d− 1] uniformly at random.
3. Set Y = ([grζj] ∗Aj+c)j∈Zd

.

Thus we have defined the required Sim, and so the protocol satisfies the honest verifier zero-knowledge
property.

B Sampling of a Root of Unity Discussion
As mentioned in Section 7, given λ(N) that Z×

N
∼= Zn1×Zn2×· · ·×Znr where n1 |n2 | · · · |nr and nr = λ(N),

to find such a primitive d-th root for a given valid d (i.e. dividing λ(N)), the most intuitive method is to
start with a primitive λ(N)-th root of unity ζλ(N), and compute ζ

λ(N)
d

λ(N) , which will have order exactly d.
Unfortunately, this may result in a d-th root of unity that does not meet Requirement 1, which is required

to construct our optimized blind signatures. This is because only when gcd(d, nr−1) = 1, every primitive dth
root of unity ζd in Z×

N takes the form ζd = ζ
j

λ(N)
d

λ(N) for some j ∈ Z×
d ; thus, using this method to find a primitive

d-th root of unity which satisfies Requirement 1 (if one exists) may result in a weak rGAIP instance.
Take CSIDH-512 for instance, the invariant factors are Z×

N
∼= Z2×Z4×Z12×Z12×Zλ(N). We find that

ζ ′
λ(N) = 9354782498481722470036074004357850236471551682503028716965716251297543631763

is a primitive λ(N)-th root of unity. However, by raising it to the power of λ(N)/4, we have a primi-
tive 4-th root of unity ζ ′

4. Regarding the security, following the method presented in Section 7.2 we have
gcd(ζ ′2

4 − 1, N) ≈ 2161 so the strength of the ζ ′
4-rGAIP is much less than the ζ4-rGAIP. The same argument

can also apply to ζ ′
9 = ζ

′λ(N)/9
λ(N) , which give a weaker rGAIP than ζ9 in Section 7.2.

Therefore, this method can only be used to find a primitive d-th root of unity where only one Sylow
subgroup of ZN has a cyclic subgroup of size d. For instance, in CSIDH-512, we can use this to find for
d = 5, 7, 47, 71, 499 and will result in the same as using the method in Section 7.1. We analyze the probability
to find such a primitive λ(N)-th root of unity. First note that by the invariant factors decomposition,
exactly n1n2 · · ·nr−1φ(λ(N)) = φ(N)

λ(N) φ(λ(N)) elements of Z∗
N have order λ(N), and so the probability that

a randomly-chosen element of Z∗
N has order exactly λ(N) is

Pr[ζ $← Z×
N : ζ has order exactly λ(N)] =

φ(N)
λ(N) φ(λ(N))

φ(N) = φ(λ(N))
λ(N) .

Applying the fact that φ(n) ≥ n
eγ ln ln n+ 3

ln ln n

(where γ is the Euler-Mascheroni constant) whenever n ≥
3 [RS62, Theorem 15] and λ(N) ≤ N we have

Pr[ζ $← Z×
N : ζ has order exactly λ(N)] ≥ λ(N)

λ(N)(3
log log λ(N) + eγ log log λ(N))

≥ 1
3

ln ln 2 + eγ log log N
(11)

as long as N ≥ 9. So to find the necessary ζλ(N), we simply sample elements of Z∗
N uniformly a random until

we find one of order λ(N) (which can be tested efficiently, using the factorization of λ(N)). By Equation 11,
only a polynomial number of samples are required, in expectation, and this technique to find such a primitive
λ(N)-th root of unity is feasible.

52

Contents
1 Introduction 1

1.1 Our Contribution . 2
1.2 Technical Overview . 4
1.3 Related Work . 7

2 Background 9
2.1 Notation . 9
2.2 (Partially) Blind Signature . 9
2.3 Sigma Protocols . 11
2.4 Elliptic Curves and Isogenies . 11

3 Generic Proofs for Blind Schnorr-Type Signatures 13
3.1 Proof Overview . 13
3.2 Key Definitions, Lemmas, and Theorems . 14

4 Constructing Isogeny-Based Blind Signatures 17
4.1 Base Sigma Protocol for an OR Relation . 17
4.2 Description of Our Blind Signature . 18
4.3 Proof of Correctness and Blindness . 19
4.4 Proof of One-More Unforgeability . 20

5 Extension to Partially Blind Signatures 22
5.1 Base Sigma Protocol for a 2-Out-of-3 Relation . 23
5.2 Description of Our Partially Blind Signature . 24
5.3 Proof of Correctness and Blindness . 24
5.4 Proof of One-More Unforgeability . 26

6 Optimization Using Higher Degree Roots of Unity 29
6.1 Overview and Preparation . 30
6.2 Base Sigma Protocol with a Large Challenge Space . 31
6.3 Enhancing the Base Sigma Protocol for Blind Signatures . 32
6.4 Description of Our Optimized Blind Signature . 33
6.5 Proof of Correctness and Blindness . 35
6.6 Proof of One-More Unforgeability . 36

7 Analysis of Ring GAIP 38
7.1 Finding a Root of Unity and Satisfying Requirement 1 . 39
7.2 Cryptanalysis and Structural Attack on rGAIP . 40
7.3 Equivalence between GAIP and rGAIP . 41

8 Performance 42

A Sigma Protocols 49
A.1 Security of Sigma Protocols . 49
A.2 Our Basic Sigma Protocol for Isogeny Knowledge . 49
A.3 Our rGAIP-based Sigma Protocol . 50

B Sampling of a Root of Unity Discussion 52

53

	Introduction
	Our Contribution
	Technical Overview
	Related Work

	Background
	Notation
	(Partially) Blind Signature
	Sigma Protocols
	Elliptic Curves and Isogenies

	Generic Proofs for Blind Schnorr-Type Signatures
	Proof Overview
	Key Definitions, Lemmas, and Theorems

	Constructing Isogeny-Based Blind Signatures
	Base Sigma Protocol for an OR Relation
	Description of Our Blind Signature
	Proof of Correctness and Blindness
	Proof of One-More Unforgeability

	Extension to Partially Blind Signatures
	Base Sigma Protocol for a 2-Out-of-3 Relation
	Description of Our Partially Blind Signature
	Proof of Correctness and Blindness
	Proof of One-More Unforgeability

	Optimization Using Higher Degree Roots of Unity
	Overview and Preparation
	Base Sigma Protocol with a Large Challenge Space
	Enhancing the Base Sigma Protocol for Blind Signatures
	Description of Our Optimized Blind Signature
	Proof of Correctness and Blindness
	Proof of One-More Unforgeability

	Analysis of Ring GAIP
	Finding a Root of Unity and Satisfying Requirement 1
	Cryptanalysis and Structural Attack on rGAIP
	Equivalence between GAIP and rGAIP

	Performance
	Sigma Protocols
	Security of Sigma Protocols
	Our Basic Sigma Protocol for Isogeny Knowledge
	Our rGAIP-based Sigma Protocol

	Sampling of a Root of Unity Discussion

