
Verifiable random function from the Deuring
correspondence and higher dimensional isogenies

Antonin Leroux,

1 DGA-MI, Bruz, France antonin.leroux@polytechnique.org
2 IRMAR, Université de Rennes, France

Abstract. In this paper, we introduce DeuringVUF, a new Verifiable
Unpredictable Function (VUF) protocol based on isogenies between su-
persingular curves.

The most interesting application of this VUF is DeuringVRF a post-
quantum Verifiable Random Function (VRF). The main advantage of
this new scheme is its compactness, with combined public key and proof
size of roughly 450 bytes, which is orders of magnitude smaller than
other generic purpose post-quantum VRF constructions. This scheme
is also the first post-quantum VRF satisfying unconditional uniqueness.
We show that this scheme is practical by providing a first non-optimized
C implementation that runs in roughly 18ms for verification and 160ms
for evaluation. Up to our knowledge, this is the fastest implementation
of a post-quantum VRF.

The function at the heart of our construction is the one that computes
the codomain of an isogeny of big prime degree from its kernel. The eval-
uation can be performed efficiently with the knowledge of the endomor-
phism ring using a new ideal-to-isogeny algorithm introduced recently by
Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert and Wesolowski
that uses computation of dimension 2 isogenies between elliptic prod-
ucts to compute effectively the translation through the Deuring corre-
spondence of any ideal. On the other hand, without the knowledge of
the endomorphism ring, this computation appears to be hard. The secu-
rity of our DeuringVUF holds under a new assumption call the one-more
isogeny problem (OMIP).

Another application of DeuringVUF is the first hash-and-sign signature
based on isogenies in the standard model. While we don’t expect the
signature in itself to outperform the recent variants of SQIsign, it remains
very competitive in both compactness and efficiency while providing a
new framework to build isogeny-based signature that could lead to new
interesting applications.

We also introduce several new algorithms for the effective Deuring corre-
spondence. In particular, we introduce an algorithm to translate an ideal
of norm a big power of a small prime ℓ into the corresponding isogeny
of dimension 1 using isogenies between abelian variety of dimension 2
as a tool. This algorithm can be used to improve the SQIsign signature
scheme.
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1 Introduction

A Verifiable Random Function (VRF) is a way to generate authenticated ran-
domness in a verifiable manner. This notion was introduced in [37] and have
found several practical applications in the DNSSEC protocol [25] or in blockchain
consensus [7,23,13].

The most widely-used VRF constructions are based on pairings and elliptic
curves such as [4] and are not resistant to an attacker that can access a quantum
computer. Thus, it is an important problem to devise new schemes that are
compact, efficient and resistant to quantum attackers.

Verifiable Unpredictable Functions (VUF) are very closely related to VRF as
there is a very simple transform from one to the other in the ROM. Recently, [24]
showed that the VRF obtained from this transform have the additional property
of being unbiasable, which is often a desirable feature in practice.

In this work, we explore the possibilities offered by isogeny-based cryptogra-
phy, one of the newest family of post-quantum candidates known for the com-
pactness of its schemes, to build a VUF and thus a VRF. The main tools of
isogeny-based cryptography are isogenies, that are maps between abelian vari-
eties. Until very recently, only isogenies between elliptic curves, i.e. varieties of
dimension 1, had been really studied. However, isogenies between abelian vari-
eties of higher dimension (namely 2, 4 and 8) have recently found some surprising
applications in the cryptanalysis of the SIDH key-exchange protocol [28]. A se-
ries of paper by Castryck and Decru [6], Maino, Martindale, Panny, Pope and
Wesolowski [36], and Robert [39] have shown how to use isogenies of higher di-
mension to break completely SIDH. This breakthrough has produced a small
revolution in the field, first by breaking its most famous protocol, and more
recently by finding several new constructive applications (see [1,8,11,2] among
many examples).

In this article, we follow the example set in [1,11] and explore the combina-
tions of these new techniques with another sub-domain of the field related to the
study of the Deuring correspondence, a link between quaternion algebras and
isogenies between elliptic curves. As for isogenies of higher dimension, the Deur-
ing correspondence was first explored for its cryptanalitic applications [31,17]
before revealing its constructive potential in signature schemes [22,14]. These
protocols rely on some complex algorithms to realize effectively the Deuring
correspondence: i.e. the translation from isogenies to ideals (their quaternionic
counterparts) and vice versa. In particular, we will make good use of a new al-
gorithm introduced in [1] to evaluate efficiently isogeny of arbitrary degree from
the corresponding ideal. In this work, we improve the efficiency of some existing
algorithms by tackling the case of translating an ideal of norm a big power of a
small prime to the corresponding isogeny.

Related Works. There exists several other proposals of quantum-resistant VRF.
Lattice-based constructions were the first to appear with [26,42]. These first
constructions suffered from huge proof sizes and has been subsequently improved
[43,21]. Among those, the recent proposal from [21] appears to be quite practical
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with a relatively reasonable combined key and proof size of around 20KB. We
can also mention [20] that introduces a practical few-times construction.

There are other existing solutions relying on the security of symmetric prim-
itives such as [5] that introduces several construction based on hash functions.

Finally, two proposals based on isogenies have been recently introduced in
[32]. The VRF protocols presented in [32] are constructed from isogeny-based
group actions and share almost nothing with our new VRF construction apart
from the fact that isogenies are involved in both cases. Our construction uses a
lot of different techniques and is much more compact. Conceptually, our Deuring-
VUF schemes is much closer to the recent weak VDF proposal of [16] or the new
SQIsign2D-west [1] variant of the SQIsign signature scheme.

Contributions. Our contributions can be summarized in the following manner:

– A new VUF protocol DeuringVUF based on the Deuring correspondence and
isogenies between abelian varieties of high dimension. The security of the
construction is based on a new hardness assumption that is related to well-
studied algorithmic problem of isogeny-based cryptographic.

– A new VRF protocol DeuringVRF (easily derived from DeuringVUF) with un-
conditional uniqueness, pseudo-randomness and unbiasability in the random
oracle model. DeuringVRF is much more compact than all existing post-
quantum constructions as exhibited in Table 1. Moreover, DeuringVRF is
also unbiasable with no additional cost.

– A C implementation of our proposed scheme based on the code from [1] which
is, as far as we know, the most efficient implementation of post-quantum
VRF scheme.

– The first hash-and-sign signature scheme based on isogenies in the standard
model.

– A new algorithm for the effective Deuring correspondence to translate ideals
to their corresponding isogenies using isogenies in dimension 2. This new
algorithm relaxes the constraints of previous existing solutions and requires
only “SIDH primes” of the form c2f3e − 1 for the characteristic of the un-
derlying field. These primes are easy to find at any level of security unlike
the “SQIsign primes” required by the algorithms used in [14,15]. This new
approach appears to be a promising direction to explore in order to improve
the efficiency of the SQIsign [14] signature scheme.

– A new algorithm to evaluate an isogeny from its ideal representation with
less torsion requirement than existing solutions.

In Table 1, we compare the concrete sizes we obtain for DeuringVRF for the
example parameters that we will introduce in Section 4.2 with other existing
constructions. We see that our new protocol is much more compact than all
existing solutions and also that it is the only one with unconditional uniqueness.

Remark 1. Note that the compactness gap between our isogeny-based VRF and
lattice-based VRF is much larger than the gap between SQIsign and lattice-
based signatures. This is because the uniqueness feature required by VRF is
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much harder to get in the lattice setting where things are inherently noisy. This
is illustrated by the fact that our VRF is the first one in the post-quantum
setting to achieve unconditional uniqueness (as opposed to computational). As
such, VRF seems to be one of the most promising application of isogeny-based
cryptography as showcased by our new scheme.

Public Key Proof Unrestricted Uniqueness Assumption Security
(bytes) (bytes) evaluation level

LB - VRF [20] 3.3K 4.9K ✗ Computational MSIS/MLWE(Latt.) 128

SL - VRF [5] 48 40K ✓ Computational LowMC(Hash) 128

LaV [21] 8.81K 10.27K ✓ Computational MSIS/MLWR(Latt.) 128

CAPYBARA [32] 8.3K 39K ✓ Computational DDH(Isog.) < 128
TSUBAKI [32] 5.3K 34K ✓ Computational sDDH(Isog.) < 128

DeuringVUF 192 256 ✓ Unconditional OMIP2dim(Isog.) 128

Table 1: Comparison of the sizes and security properties of several post-quantum
VRF schemes with our protocol DeuringVRF for the parameters of Section 4.2.

As far as we know, from the unrestricted primitives mentioned in Table 1,
only SL-VRF has been implemented with an evaluation time of 765ms and veri-
fication time of 475ms. In comparison, our C implementation achieves 160ms for
evaluation and 18ms for verification which makes it the fastest implementation
of a post-quantum VRF.

1.1 Technical overview

The high-level idea of our DeuringVUF construction is the following: given a
supersingular curve E (the public key), the DeuringVUF function associates the
curve E/G to the subgroup G of E. Computing E/G is difficult from the sole
knowledge of E and G when the order of G is a big prime, but it can be done
efficiently when one knows the endomorphism ring of E (and a few additional
information) using the Deuring correspondence.

The main feature of a VUF is the verifiability of the output. In DeuringVUF,
the correctness of the result can be proven by embedding the isogeny E → E/G
in a 2-dimensional isogeny using the techniques recently introduced to attack
SIDH [6,36,39].

At its heart, our construction exploits the differences between the different
known ways of representing a cyclic isogeny.

First, there is the kernel representation made of one generator of the kernel.
When the kernel is defined over a small field extension, this representation is
quite easy to sample from the domain curve and it enables simple verification
of the correctness of the computation by evaluating the isogeny on its kernel.
However, there is no known efficient algorithm to compute or evaluate an isogeny

4



from the kernel in the generic case. All those properties makes the kernel repre-
sentation a perfect input to our random function.

Then, there is the ideal representation obtained from the Deuring correspon-
dence. This representation is the most powerful one as it allows us to perform all
the possible operations efficiently. However, as it also encodes the knowledge of
the endomorphism ring of the domain, it essentially contains all the information
there is to know about the isogeny, its domain and its codomain. This is why the
ideal representation matches exactly the requirements of a secret key/trapdoor.

Finally, there is the 2-dimensional isogeny representation (noted 2dim here-
after) introduced recently by Robert [38]. It allows us to evaluate efficiently the
isogeny with the help of dimension 2 isogenies without revealing anything on the
endomorphism ring. This is ideal for the proof as it provides verifiability when
combined with the kernel representation while not leaking anything secret.

Below, we give a more precise description of the various mechanisms and pa-
rameters constituting our DeuringVUF scheme. The notations introduced below
are kept throughout the paper.

Parameters. Let p,N be two distinct primes. For a supersingular elliptic curve
E defined over Fp2 , let f be the biggest exponent such that E[2f ] is defined over
Fp2 . The N -torsion is defined over a Fp2 as well (but on a quadratic twist of E).
Finally, let E0 be some public curve of known endomorphism ring.

Keys. The public keys are made of:

1. a supersingular curve E,

2. a basis ⟨R,S⟩ of E[N ],

Secret keys are constituted by:

1. an ideal I connecting a fixed maximal order O0 to O ∼= End(E) correspond-
ing to some isogeny φI : E0 → E.

2. a matrix M keeping track of how the basis R,S was computed.

3. a basis U0, V0 of E0[2
f ] and its preimage U, V through the dual of the isogeny

φ̂I .

Evaluation Mechanism. On input x, the VRF evaluation is as follows: hash
x into one element (r : s) ∈ P1(Z/NZ), compute Rx = [r]R+ [s]S and compute
Ex = E/⟨Rx⟩. The output is then v = j(Ex). The knowledge of M will enable
the efficient computation of the kernel ideal Ix corresponding to the subgroup
⟨Rx⟩. Then, the Deuring correspondence can be used to find the curve whose
endomorphism ring is isomorphic to the right order of Ix (corresponding to the
codomain of an N -isogeny φx : E → Ex).

The computation of the matrix M and the basis R,S to allow an efficient
and correct computation of Ix will be the key of the key generation process.
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Proof and Verification Protocol. Proving the correctness of the computation
can be done by revealing a representation of the isogeny φx : E → Ex. If the
verifier can check the degree of this isogeny and evaluate it on Rx, then the
output must be correct. For that, we propose to use the representation of [38]
obtained by embedding φx inside a 2f -isogeny in dimension 2.

The crucial step to compute this high-dimensional representation is the eval-
uation of some isogenies on well-chosen torsion points. Using the secret key and
the ideal Ix, the prover will be able to evaluate these isogenies efficiently using
[1, Algorithm 3].

After that, the verification simply consists in checking that the isogeny rep-
resentation is valid and has kernel Rx. This last part can be done with an
IsogEval2dim algorithm to evaluate the isogeny from its 2dim representation (see
[12]).

Hard Problem and security. The security of our new VRF scheme essentially
stems from the problem of computing the codomain of an isogeny from its kernel.
The best known algorithm to solve this problem was introduced in [3] and has
polynomial complexity in the degree of the isogeny.

Since the pseudo-randomness property of our scheme allows the adversary
to evaluate the function on several inputs, the concrete security is based on
the OMIP2dim, a variant of this problem, where the adversary has access to an
oracle that computes the codomain and a 2dim isogeny representation on given
instances. The goal is then to find the answer for one instance that was not
queried to this oracle. This problem has not been used anywhere in cryptography
before, but the problem of computing the codomain of an isogeny from its kernel
has been studied extensively due to its impact on the efficiency of several schemes
in isogeny-based cryptography and has been recently considered for a proposal
of weak post-quantum VDF [16].

The formal description of our DeuringVUF scheme can be found in Section 3.1.
The concrete protocols include several additional steps to meet the requirements
of a cryptographic VUF.

New algorithm for the effective Deuring correspondence. The task of
translating an ideal of norm a big power of a small prime ℓ into the corresponding
isogeny is at the heart of the SQIsign signature scheme [14]. The algorithm
proposed in the original article was improved in [15] and it was used in the
version of SQIsign submitted to the NIST.

We propose a new method to solve this problem. The motivation for this new
algorithm is to overcome the remaining obstacles of the method from [15] with
the new possibilities offered by high-dimensional isogenies. More specifically, the
bottleneck in this algorithm is the computation of some endomorphisms. While
the best solution in dimension 1 is to require that these endomorphisms have big
smooth norm T 2 for some smooth integer T , we can remove this requirement by
using embedding the endomorphisms in isogenies of dimension 2. This idea sim-
plifies a lot the choice of parameters by removing the need of so-called “SQIsign
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primes” (and replacing them by “SIDH primes”), and turns out to be more effi-
cient thanks to the fast formulas to compute chain of (2, 2)-isogenies in the theta
model introduced in [12]. We introduce this new method in Appendix A.

Ackowledgements. We thank the anonymous reviewers for useful remarks on a
previous version of this paper. We thank the SQIsign2D-west team for privately
sharing their code with us.

The rest of this paper is organized as follows. Section 2 introduces prelimi-
naries on VRFs and the Deuring correspondence. Our VRF construction is in-
troduced and analyzed in Section 3. In Section 3.3, we present all the algorithms
required to instantiate the protocols. In Section 4.1, we look at parameters, size
and efficiency for the proposed VRF construction.

2 Background material

We call negligible a function f : Z>0 → R>0 if it is asymptotically dominated
by O(x−n) for all n > 0. When a quantity a depending on some parameter x is
negligible we will sometimes write a ≤ negl(x).

2.1 Verifiable Unpredictable and Random Functions

A Verifiable Function (VF) consists in the following algorithms:

– ParamGen(1λ), returns a set of public parameters pp.
– KeyGen(pp), returns a pair (pk, sk) of public key and secret key from the

public parameters.
– VUFEval(sk, x) = (v, π), takes the secret key sk and an input x ∈ {0, 1}n1(λ)

and computes the output v ∈ {0, 1}n2(λ) along with a proof π.
– Verify(pk, π, x, v) takes the VRF public key, proof, input and output and

returns 0 or 1.

There are two basic security properties that we want in a verifiable function.

– Provability: The verification always returns 1 on correctly generated proof
and output from a given input (see Definition 2).

– Uniqueness: There does not exist a key and input and two pairs (v1, π1)
and (v2, π2) with v1 ̸= v2 both passing the verification (see Definition 5).

In cryptography, we are interested in Verifiable Functions with additional
properties. In particular, in cases where it is hard to compute the output of the
function without the secret key. There are two main flavours of this idea each
leading to a different kind of verifiable function: VUFs and VRFs.

The weakest one is called Unpredictability and it requires an adversary
with access to a evaluation oracle under a given public key to produce the output
corresponding to an input that wasn’t queried to the oracle. A VF satisfying
Unpredictability is called a VUF (see Definition 3).
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The stronger property is called Pseudo-randomness, and it requires that
an adversary cannot distinguish between VRFEval(sk, x0) and a random value
even with access to an oracle computing VRFEval(sk, x) for x ̸= x0, (see Defini-
tion 6). A verifiable function satisfying pseudo-randomness is called a VRF.

It is well known that the two notions are equivalent in the ROM as one can
obtain a VRF from a VUF by hashing the output of the VUF to get the output
of the VRF. We will use this transform to obtain DeuringVRF from DeuringVUF

Recently, in [24] it was shown that the VRF constructions obtained in this
manner also satisfy an additional property called unbiasability which is impor-
tant for practical applications.

2.2 Elliptic curves, quaternion algebras and the Deuring
correspondence

Below, we briefly expose the useful features and definitions of the Deuring cor-
respondence. For a more complete treatment of supersingular elliptic curves
and quaternion algebras and their link through the Deuring correspondence see
[27,30,34,40].

The Deuring correspondence is an equivalence of categories between iso-
genies of supersingular elliptic curves and the left ideals over maximal order
O of Bp,∞, inducing a bijection between conjugacy classes of supersingular j-
invariants and maximal orders (up to equivalence) [30]. Moreover, this bijection
is explicitly constructed as E → End(E). Hence, given a supersingular curve
E0 with endomorphism ring O0, the pair (E1, φ), where E1 is another super-
singular elliptic curve and φ : E0 → E1 is an isogeny, is sent to a left integral
O0-ideal. The right order of this ideal is isomorphic to End(E1). One way of
realizing this correspondence is obtained through the kernel ideals defined in
[41]. Given an integral left-O0-ideal I, we define the kernel of I as the subgroup
E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}. To I, we associate the isogeny
φI : E0 → E0/E0[I]. Conversely, given an isogeny φ, the corresponding kernel
ideal is Iφ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(φ)}. Sometimes, when the
kernel of φ is given as a group G generated by a point P , we also write IG or
IP for this ideal. Two ideals I, J are said to be equivalent if I = Jβ for some
β ∈ B×

p,∞ and we write I ∼ J .
The main properties of the Deuring correspondence are summarized in Ta-

ble 2.

Notation for duals and conjugates. Dual isogenies are denoted with a hat (φ→
φ̂), and conjugates with an overline (γ → γ). As highlighted in Table 2, under
the deuring correspondence, these two operations are equivalent.

On push-forward isogenies and ideals. Given two isogenies φ,ψ of coprime de-
gree. We can define the push-forward of φ by ψ that we denote by [ψ]∗φ as
the isogeny of degree degφ and kernel ψ(kerφ). The same can be done for the
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Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(φ) n(Iφ)

φ̂ Iφ
φ : E → E1, ψ : E → E1 Equivalent Ideals Iφ ∼ Iψ
τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ

Table 2: The Deuring correspondence, a summary from [14].

push-forward of φ by ψ. This way, we get the following commutative diagram.

E3

[ψ]∗φ // E4

E1

ψ

OO

φ // E2

[φ]∗ψ

OO

Under the Deuring corresponding we can define the push-forward of an ideal
I by another ideal J of coprime norm as the ideal [J ]∗I corresponding to the
push-forward isogeny [φJ ]∗φI . Formulas to compute the push-forward ideals are
given in [14, Lemma 3].

In this work, we build upon several existing algorithms of the Deuring cor-
respondence. We give precise references for all of them when they appear. Note
that a description for all those algorithms can be found in [34, Chapters 3 and
4].

2.3 Isogeny Representation

The formal notion of isogeny representation is gaining more and more importance
as the variety of existing method to build these representations is expanding.
This definition appears at various places in the literature [33,34,11] with some
small changes. The common and most important part is the existence of an
algorithm to evaluate the isogeny from its representation. The representation is
called efficient when the size of the representation and the complexity of the
evaluation algorithm is polylogarithmic in the degree and field characteristic p.

Since, we are going to work with several family of representations, we will
label each of those families with a tag xx. All the data and algorithms associated
with the family xx will bear the same tag.

Definition 1. An efficient isogeny representation xx for an isogeny φ : E → E′

of degree N defined over Fq is denoted by sφxx. It has size O (polylog(qN)), and
there exists the following algorithm: IsogEvalxx that takes E, sφxx and a point P in
E[Fqk ] in input, and computes φ(P ) ∈ E′[Fqk ] in time O

(
polylog(qkN)

)
.
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On existing isogeny representations. There exists several isogeny representation
in the literature. A non-exhaustive list of them can be found in [34, chapter
4]. In this work, we will use two of the representations presented there: the
kernel representation based on the Vélu formulas (which is one of the “histori-
cal” isogeny representation) and the ideal representation based on the Deuring
correspondence.

For the kernel representation, we use the tag ker. The representation sφker
is made of a generator of kerφ. This representation can be quite compact
(O (polylog(p))) when the kernel points are defined over a small field extension.
However, the complexity of IsogEvalker is polynomial in the biggest prime factor
of the degree which makes it efficient only for smooth degree isogenies. Hence, it
does not meet our definition of efficient isogeny (but this gap is actually desir-
able for our construction). The kernel representation has another advantage : it
is quite efficient to “sample” when the kernel points of order N are defined over
a small extension. By efficient to sample, we mean that, for a given supersingular
curve E, it is easy to compute the kernel representation of a random isogeny of
degree N (we can even sample uniformly at random from the set of N -isogenies
starting from E).

For the ideal representation we use the tag id. The representation sφid is made
of a basis of the ideal Iφ corresponding to φ under the Deuring correspondence.
The ideal representation matches our definition of efficient, however it requires
to know the endomorphism ring of the domain. When End(E) is known, we can
also efficiently sample ideal representations of uniformly random N -isogenies.

The recent attacks against the scheme SIDH [6,36,39] have introduced a
new way to build an isogeny representation, as was noted by Robert in [38],
by evaluating φ on a basis of the T -torsion for T ≥

√
N . The evaluation can

be performed by computing an isogeny between abelian varieties of dimension
y > 1 that embeds the isogeny φ. There are different variants of this idea for
different values of y. In this work, we will look at the version for y = 2. We will
call dimension-2 representation (with the tag 2dim), the isogeny representation
obtained from this principle. In most of this work, we are going to use these
representations in a black box manner. We refer the reader to [6,36,38,11,12] to
see how to instantiate the required algorithms. We give a brief summary below.

Embedding isogenies in higher dimension isogenies with Kani’s lemma. The goal
of this paragraph is to explain how one can embed isogenies in higher dimension
using Kani’s lemma. This result introduced in [29] describe how to build isogenies
of dimension 2y from isogenies in dimension y.

Lemma 1 (Kani). Let us consider a commutative diagram of isogenies between
principally polarized abelian varieties of dimension g

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO
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where φ and φ′ are a-isogenies and ψ and ψ′ are b-isogenies for two integers
a, b. The isogeny F : A×B′ −→ B ×A′ given in matrix notation by

F :=

(
φ ψ̂′

−ψ φ̂′

)
is a d-isogeny between abelian varieties of dimension 2g with d = a+ b, for the
product polarisations.

If a and b are coprime, the kernel of F is

ker(F ) = {([degφ]x, ψ′ ◦ φ(x)) | x ∈ A[d]}.

Remark 2. This lemma was first proven in [29, Theorem 2.3]. We are going to
use it for g = 1 to obtain the 2dim representation. The idea is that the isogeny
F provides a representation for the isogeny φ : A→ B since φ can be recovered
as ρ2 ◦ F ◦ ρ1 where ρ1 is any embedding morphism from A to A×B′ and ρ2 is
the projection from B ×A′ to B.

More details on Kani’s Lemma and the ways to compute efficiently isogenies
in dimension 2 in the theta model can be found in [12]. Below, we explain more
concretely how Kani’s Lemma can be applied to get our isogeny representations
for an isogeny φ : E1 → E2.

The 2dim isogeny representation. In dimension g = 1, Lemma 1 can be applied
to embed φ in an isogeny of dimension 2 with A = E1 and B = E2. The degree
d is chosen to be 2f for the smallest exponent f such that 2f > N . In that case,
the isogeny ψ is any isogeny of degree 2f −N coprime to N of domain E1. This
will define an isogeny diagram of the form

E4
φ′
// E3

E1

ψ

OO

φ // E2

ψ′

OO

Nothing is required of ψ other than having the correct domain and degree. We
define sφ2dim as P,Q a basis of E1[2

f ], the curve E3 and the points ψ′ ◦φ(P ), ψ′ ◦
φ(Q). Kani’s Lemma tells us that this is enough information to compute the
kernel of F , and F can be computed from its kernel. Note that despite our
notation, there isn’t a unique representation of any given φ (as it suffices to
replace P,Q by another basis or replace ψ by an isogeny of the same domain
and degree). However, all the representations are equivalent in the sense that we
can evaluate φ from any sφ2dim with the same complexity. After the full isogeny
F has been computed, the isogeny φ can be evaluated on any point as ρ2 ◦F ◦ρ1.
This is how we get the algorithm IsogEval.2dim We don’t give a full description
of this algorithm which can be based on the formulas from [12] and use it as a
black-box in the rest of this work.
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2.4 Ideal to isogeny translation from isogenies in dimension 2

Recently, Basso et al. introduced as [1, Algorithm 3] an efficient algorithm to
evaluate any ideal I corresponding to an isogeny φI : E0 → E on points of E0.

This algorithm has no restriction on the degree of I, and requires a prime
characteristic p of the special form c2f − 1 where c is as small as possible to be
efficient. This algorithm requires to computes three chain of (2, 2)-isogenies of
variable length.

In this work, we use this algorithm as a blackbox and denote it as AnyIdealTo-
Isogeny. It takes as input an O0-ideal and some points and outputs the codomain
of the isogeny φI represented by I and the image of the torsion points given in
input under φI .

To make that algorithm efficient, we will take a prime characteristic of the
form p = c2f − 1 although not exactly the one used in [1] (more details in
Section 4.1).

3 New post-quantum VUF from isogenies

In this section, we provide a generic description of our DeuringVUF protocol. The
algorithms are detailed in Section 3.1. The security of the scheme is analyzed in
Section 3.2.

3.1 Formal description

In this section, we give a formal description of the different algorithms that
constitutes our DeuringVUF protocol. We try to provide a high-level presentation
to allow the reader to grasp the idea of the construction without wondering too
much about the technical details. We postpone the detailed description of the
most complicated building blocks to Sections 3.2 and 3.3. We also omit the
discussion about parameters; it will be discussed later in Section 4.1.

Henceforth, let us assume that there are three distinct odd primes p,N,Nsk,
and one exponent f such that all the 2f and N torsion points of supersingular
curves over Fp2 can be defined over Fp2 (possibly over different twists of the
same curve), and 2f > N . Nsk is the degree of the secret key isogeny. Let us
write f ′ ≤ f the smallest exponent f ′ such that 2f

′
> N . The 2dim-isogeny

representation we are going to compute as proof of the evaluation will have
degree 2f

′
.

There is also a curve E0 over Fp2 of known endomorphism ring O0. The
public parameters also include a basis (P0, Q0) of E0[N ] and the related kernel
ideal IP0 together with an endomorphism κ ∈ O0 such that κ(P0) = Q0 and
tr(κ)2 − 4n(κ) is not a square mod N . We write pp = (p,N,E0, P0, Q0, IP0 , κ).

The ideal IP0
and the endomorphism κ allow us to compute efficiently the

kernel ideal corresponding to subgroups of order N of the form [x]P0 + [y]Q0 for
any x, y. If φI : E0 → E is the secret isogeny corresponding to the secret key
ideal I of norm Nsk, then the public key basis R,S of E[N ] is simply computed
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as φI(P0), φI(Q0) rerandomized by a random matrixM . With this rerandomiza-
tion, the distribution of R,S is independant of the secret, and the knowledge of
the matrixM will be enough to reexpress any [r]R+[s]S as [x]φI(P0)+[y]φI(Q0)
which will allow us to compute the ideal of kernel generated by [r]R+[s]S (from
the ideal of kernel generated by [x]P0 + [y]Q0).

We write fin : {0, 1}n1(λ) → P1(Z/NZ) an injective function where n1(λ) is
a function of the security parameter λ.

The KeyGen, VUFEval, and Verify algorithms are described as Algorithms 1
to 3 respectively. The key generation algorithms makes use of a so-called deter-
ministic basis of the public key curve E. By this, we mean a basis generated from
the curve E by any deterministic algorithm. This is classical in isogeny-based
cryptography. The only important part is that this basis can be recomputed
from public information.

Algorithm 1 KeyGen(pp)

Input: Public parameters pp.
Output: A pair of DeuringVUF keys sk, pk.
1: Generate a random O0-ideal I of norm Nsk.
2: E,P,Q,U ′, V ′ ← AnyIdealToIsogeny(I, P0, Q0, U0, V0).
3: θ ← φI ◦ κ0 ◦ φ̂I , Q← [Nsk]Q.
4: Generate a random M = ( a bc d ) ∈ GL2(Z/NZ).
5: Set (R,S)← ([a]P + [b]Q, [c]P + [d]Q).
6: s← N−1

sk mod 2f

7: U ′, V ′ ← [s]U ′, [s]V ′.
8: Compute a deterministic basis U, V of E[2f ].

9: Compute the matrix M ′ =
(
a′ b′

c′ d′

)
∈ GL2(Z/NZ) such that U, V ← ([a′]U ′ +

[b′]V ′, [c′]U ′ + [d′]V ′).
10: U0, V0 ← ([a′]U0 + [b′]V0, [c

′]U0 + [d′]V0).
11: return (sk, pk) = ((E, I,M,U0, V0, U, V ), (E,R, S)).

As already mentioned in Section 2.3, the algorithm IsogEval2dim is used as
blackbox in this article and we do not give any details about it. There are,
however, several tasks that need more details in the algorithms we have out-
lined above. We list them below. These missing algorithms will be treated in
Sections 3.2 and 3.3.

– The algorithm IsogenyRepresentation2dim to compute the 2dim isogeny rep-
resentation and the codomain.

– The IsogVerif2dim algorithm to check that the 2dim representation is correct.

3.2 Security Analysis

In this section, we study the security properties of our VUF scheme.
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Algorithm 2 VUFEval(sk, x)

Input: A DeuringVUF secret key, and an input x ∈ {0, 1}n1(λ).
Output: A proof π and the evaluation v of the DeuringVUF function on input x.
1: Parse sk as E, I,M,U0, V0, U, V .
2: Set a, b, c, d such that M = ( a bc d ) ∈ GL2(Z/NZ)
3: (r : s)← fin(x).
4: γ ← (ra+ sc) + (rb+ sd)κ
5: Let α be such that IP0 = O0⟨α,N⟩.
6: Ix ← O0⟨αγ,N⟩.
7: Ex, (E3, U3, V3)← IsogenyRepresentation2dim(I, Ix, E, U, V, U0, V0).
8: π ← E3, U3, V3.
9: v ← j(Ex).
10: return (π, v).

Algorithm 3 Verify(pk, π, x, v)

Input: A DeuringVUF public key, an input x ∈ {0, 1}n1(λ), a proof π and an output
v ∈ {0, 1}n2(λ).

Output: A bit b.
1: Parse pk as E,R, S.
2: if R = 0E or S = 0E or [N ]R ̸= 0E or [N ]S ̸= 0E then
3: Return 0
4: end if
5: Parse π as E3, U3, V3 and parse v as j ∈ Fp2 .
6: Compute U, V a canonical basis of E[2f ].

7: sφ2dim ← E, [2f−f
′
]U, [2f−f

′
]V,E3, [2

f−f ′ ]U3, [2
f−f ′ ]V3

8: (r : s)← fin(x)
9: Rx ← [r]R+ [s]S
10: if Rx = 0E or IsogVerif2dim(s

φ
2dim, j) = 0 then

11: return 0.
12: end if
13: if r = 0 then
14: Pφx ← IsogEval2dim(s

φ
2dim, R)

15: else
16: Pφx ← IsogEval2dim(s

φ
2dim, S)

17: end if
18: Qφx ← IsogEval2dim(s

φ
2dim, Rx)

19: if Pφx = 0Ex or Qφx ̸= 0Ex then
20: return 0.
21: end if
22: return 1.
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Provability. The first and most basic notions a VUF must satisfy is provability.
This notion implies that a correctly generated proof for a given input and key
will pass the verification.

Definition 2. A VUF is said to be provable if, for any x ∈ {0, 1}n1(λ), (sk, pk)←
KeyGen(pp) and (π, v)← VUFEval(sk, x), the following equality is satisfied:

Verify(pk, π, x, v) = 1

Using results later proven in this section, we are able to show that Deuring-
VUF is provable.

Proposition 1. DeuringVUF is provable.

Proof. In KeyGen, the correctness of AnyIdealToIsogeny, ensures that the isogeny
φI on which the points are evaluated is the one corresponding to the ideal I.
Thus, the curve E is the codomain of φI and we have P,Q = φI(P0, Q0) and
U ′, V ′ = φI(U0, V0).

In VUFEval for an input x, we have (r : s) = fin(x). Let us write Rx =
[r]R + [s]S where R,S are the points of the public key. By definition (0 : 0) is
excluded from the projective line and so Rx is a non-trivial point of order N .
Then, since degφx is coprime to N , the point φ̂I(Rx) is also a non-zero point
of order N. We need to justify that Iφ̂I(Rx) = O0⟨αγ,N⟩. For that, it suffices to
prove that kerαγ ∩ E0[N ] = ⟨φ̂I(Rx)⟩.

If α is such that IP0
= O0⟨α,N⟩, then the principal ideal O0α correspond

to an endomorphism of E0 that we write α (by abuse of notation) such that
α(P0) = 0 and the multiples of P0 are the only points of order N in kerα.

After application of the matrixM , we have that Rx = [ar+cs]P+[br+ds]Q,
thus ⟨φ̂I(Rx)⟩ = ⟨[ar + cs]P0 + [br + ds]Q0⟩. Since κ is such that Q0 = κ(P0),
then the endomorphism γ = (ar + cs) + (br + ds)κ sends ⟨P0⟩ to ⟨φ̂I(Rx)⟩.

Now, note that n(γ) is coprime toN . Indeed, the discriminant of the quadratic
equation n(t + zκ) = 0 mod N is exactly tr(κ)2 − 4n(κ) which is not a square
by definition of κ, and so unless t, z = 0, 0 mod N , there are no solution to this
equation. This is not the case here for ar+ cs, br+ ds as r, s ̸= 0, 0 mod N and
the matrix M was chosen to be invertible mod N .

This means (since we can invert n[γ]) that γ also sends ⟨φ̂I(Rx)⟩ to ⟨P0⟩,
and moreover that the preimage of ⟨P0⟩ through γ is exactly ⟨φ̂I(Rx)⟩. Thus, it
implies that φ̂I(Rx) is exactly kerαγ∩E0[N ] which proves that the computation
of Ix is correct.

IsogenyRepresentation2dim will compute the representation for the isogeny
[φI ]∗φIx whose kernel is generated by Rx by what we just showed, and so the
evaluation Rφ, Sφ of the points R,S in Verify will satisfy [r]Rφx

+ [s]Sφx
= 0Ex

if the 2dim representation is valid.
This follows from the correctness of IsogenyRepresentation2dim and Lemma 1.

We just need to show that the input I, Ix, U0, V0, U, V is well-formed. For that
it suffices to prove that U0, V0 = φ̂I(U, V ) which is true since U ′, V ′ is set to be
[1/Nsk]φI(U0, V0). Then, the matrix M ′ is computed to be the transition matrix

15



from U ′, V ′ to U, V . Thus after application of M ′ on the basis U0, V0, we get

that U0, V0 = ˆφI(U, V ).
Since sφ2dim is honestly computed as a valid representation of an isogeny of

degree N , the output of IsogVerif2dim will be 1 by Proposition 3 and this proves
the result. ⊓⊔

Unpredictability. This notion states that it is hard to evaluate the function
without the secret key.

Definition 3. Let A be an algorithm running in time t and playing the following
experiment:

1. pp← ParamGen(1λ)
2. (pk, sk)← KeyGen(pp).
3. (x⋆, y⋆, π⋆)← AVUFEval(·),Hout(·)(pk).
4. If x⋆ was previously queried, then b← 0.
5. Else, (y, π)← VUFEval(sk, x⋆), b← (y == y⋆).

The Unpredictability advantage of A is defined as

AdvAUP(t) = Pr{b = 1} (1)

The advantage of the protocol is defined as AdvUP(t) = maxA AdvAUP(t)
The VUF is unpredictable if

AdvUP(t) ≤ negl(λ)

when t is in O (poly(λ)).

The Unpredictability property of our VUF is based on the hardness of Prob-
lem 1 that we introduce below. This problem is defined with respect to an arbi-
trary isogeny representation labelled with the tag xx. Even though, the security
of our scheme only depends on the 2dim representation, there is no harm in
introducing the problem in a more general setting. Note that the resulting prob-
lem might not be as hard for all isogeny representations. To define Problem 1,
we need to define an isogeny oracle in the fashion of the RADIO and RUGDIO
introduced in [11]. We call this new oracle a N -FIXDIOxx.

Definition 4. Given two odd prime N ̸= p, a FIXed Degree N -Isogeny Oracle
(N -FIXDIO) takes in input a supersingular elliptic curve E/Fp2 , and a point
P ∈ E[N ] and outputs the j-invariant j(E/⟨P ⟩) and an isogeny representation
sφxx for the N -isogeny φ : E → E/⟨P ⟩.

Problem 1. One-More Isogeny Problem (OMIPxx) Given two odd primes
N ̸= p, let E be a random supersingular elliptic curve over Fp2 . Given access
to the N -FIXDIOxx on input E, the goal is to compute the j-invariant of the
codomain of an isogeny not given as the output of the N -FIXDIOxx.
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We define AdvOMIPxx
(t) = maxA Pr{AN-FIXDIOxx(·)() solves Pb. 1} forA rang-

ing over all algorithms running in time t.
The hardness of Problem 1 underlies the Unpredictability of our VUF as we

prove in Proposition 2.
Let us define Sp to be the set of isomorphism class of supersingular curves

over Fp2 , and let DNsec be the distribution obtained by sampling a curve as the
codomain of a uniformly random isogeny of degree N of domain E0. Let ∆Nsec

be the statistical distance between the uniform distribution on Sp (denoted by
USp) and DNsec .

Proposition 2. The scheme DeuringVUF satisfies

AdvUP(t) ≤ (1 + 2#Sp ·∆Nsec) ·AdvOMIP2dim
(t′)

against any adversary A for some time t′ polynomial in t.

Proof. Let us define AdvUP$(t) as the advantage against a modification of the
experiment defined in Definition 3 where the distribution of pk is uniform in Sp,
and let us define G(E) the output of the experiment when pk = E.

|AdvUP$(t)−AdvUP(t)|

≤
∑
E∈Sp

Pr{G(E) = 1|pk = E} · |Pr{USp = E} − Pr{DNsec = E}|

≤
∑
E∈Sp

Pr{G(E) = 1|pk = E} ·
∑
E∈Sp

|Pr{USp = E} − Pr{DNsec = E}|

≤2#Sp ·∆Nsec ·AdvUP$(t)

The proof is concluded by proving that AdvUP$(t) ≤ AdvOMIP2dim
(t). For that,

we build an adversary C against the OMIP2dim from an adversary A against the
modified unpredictability experiment with uniform public key.

This adversary C is very simple. It sets the public key as the curve E given
in the instance of the problem, answers to any evaluation query from A by using
the 2dim-FIXDIO. In the end, it gets a value y⋆ from A, and it outputs y⋆.

By definition the simulation of the unpredictability challenger is perfect, and
it is clear that C solves the problem if and only if A wins the unpredictability
game as fin is injective. This proves the desired result.

By the Ramanujan property of the supersingular isogeny graph, if log(p) ≈
2λ, one can show that by taking Nsk ≈ p2, one gets ∆Nsk

= negl(λ).

Analysis of the OMIP2dim. The most obvious way to attack the OMIP2dim is to
try to compute directly any isogeny of domain E and degree N from its kernel.
The best known method is the

√
élu algorithm from [3]. This algorithm takes

O(
√

maxd|N d) (ignoring logarithmic factors) operations over the field of defini-
tion of the kernel. Thus, even when E[N ] is defined over a small extension (which
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will be the case in our protocols), the complexity is exponential when N is a
prime number. Another approach would be to try to compute the endomorphism
ring End(E) (which would amount to key recovery in the context of our Deuring-
VUF protocols). As our protocols can run in polynomial-time, the knowledge of
the endomorphism ring is obviously enough to break the OMIP2dim. However,
the complexity to compute the endomorphism ring of a random supersingular
curve is O(

√
p) (see [18] for instance).

The two methods we described above are rather generic attacks that are not
really using the fact that an access to the N -FIXDIO2dim is provided in the
OMIP2dim. In particular, the attacker has access to several isogenies of degree
N that he can evaluate. One might wonder if there could be a way to “tweak”
one of the isogenies given by the N -FIXDIO2dim to obtain a new isogeny that
would lead to a suitable solution to the OMIP2dim. However, there does not
seem to be an obvious way to do so. The only way to “tweak” an isogeny seems
to be to apply some kind of push-forward and realize a commutative diagram
where two parallel arrows are isogenies of degree N , one that is the output of
the N -FIXDIO and the other one that would be the “tweaked” isogeny. There
is nothing to prevent this from happening, however the tweaked isogeny will not
have E as domain with overwhelming probability. The only possibility to have E
as the domain of the “tweaked” isogeny would be that one of the perpendicular
arrows of the commutative diagram is an endomorphism of E. Computing one
endomorphism of a random supersingular curve also has complexity O(

√
p) and

so this is not possible.

Finally, one might wonder if the access to the N -FIXDIO might help finding
endomorphisms. It was argued in [11, Section 6.4] that the RADIO and RUGDIO
oracles introduced there should not help to compute some endomorphisms of a
given supersingular curve as we already know how to compute efficiently all
isogenies of smooth degree. Given that our N -FIXDIO oracle is pretty similar
to the RADIO and RUDGIO, the same reasoning applies in our case to justify
that the N -FIXDIO should not be of any help.

The 2dim representation reveals more information than isogenies of degree
N , as each 2dim representation also embeds an isogeny of degree 2f −N . This
isogeny can also be chosen to be uniform among all isogenies of the same domain
and degree, and so for the same reason that revealing isogenies of degree N is
not problematic, this additional information does not seem to help breaking the
problem either.

Uniqueness. A VUF scheme satisfy unconditional full uniqueness when there
cannot be two possible output for the same input. This is formalized in Defini-
tion 5 below.

Definition 5. A VUF is said to satisfy unconditional full uniqueness when no
values pk, v, v′, x, π, π′ can satisfy Verify(pk, π, x, v) = 1 and Verify(pk, π′, x, v′) =
1 with v ̸= v′.
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To prove the uniqueness of our scheme, we need to give more details about
the verification procedure. In particular, we need to details the IsogVerif2dim
algorithms.

Verification in dimension 2. The verification in dimension 2 is pretty simple:
we need to verify that the provided isogeny representation is well-formed. This
means verifying that we can compute F , an isogeny of dimension 2 that rep-
resents an isogeny between E and a curve of the correct j-invariant. This part
of the verification is handled by the IsogVerif2dim algorithm. For uniqueness, we
also need to verify that the degree and kernel are correct. These two properties
will be verified during the check that φ(Rx) = 0 performed in Verify (the full
justification can be found in the proof of Proposition 4).

Algorithm 4 IsogVerif2dim(E1, s
φ
2dim, j)

Input: A curve E1, a 2dim representation sφ2dim, and a j-invariant j.
Output: A bit b.
1: Parse sφ2dim as E1, P1, Q1, E3, P3, Q3.
2: G← ⟨([N ]P1, P3), ([N ]Q1, Q3)⟩
3: if G is not a kernel of a 2f

′
-isogeny of dimension 2 then

4: return 0.
5: end if
6: Compute F : E1 × E3 → E2 × E4 of kernel G.
7: if the computation of F fails in any way then
8: return 0.
9: end if
10: if j(E2) ̸= j then
11: return 0.
12: else
13: return 1.
14: end if

Note that, in the statement below, when the output IsogVerif is 1, there is no
guarantee that the degree of the isogeny represented is N exactly simply that
the degree is smaller than 2f .

Proposition 3. If IsogVerif2dim(s
φ
2dim, j) = 1, then sφ2dim constitutes a valid

2dim isogeny representation for an isogeny φ : E1 → E2 of degree smaller than
2f

′
where j(E2) = j.
Conversely, if sφ2dim is a valid 2dim isogeny representation for an isogeny of

degree N from E1 to E2, then IsogVerif2dim(E1, s
φ
2dim, j(E2)) = 1.

Proof. When IsogVerif2dim(E1, s
φ
2dim, j) = 1, there exists a 2f

′
-isogeny F =: E1×

E3 → E2 × E4 with j(E2) = j. Kani’s Lemma imply that we have a valid 2dim
representation for the isogeny ρ2 ◦ F ◦ ρ1 : E1 → E2 where ρ1, ρ2 are defined as
in Remark 2, and that the degree of this isogeny must be smaller than 2f

′
.
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Conversely, when sφ2dim is a valid representation for an isogeny φ of degree
N , then by definition, we must have P3, Q3 = ψ′ ◦ φ(P1, Q1). In this case, the
subgroup G agrees exactly with the subgroup defined in Lemma 1. Thus, G is a
correct kernel of a dimension 2 isogeny whose codomain is isomorphic to E2×E4.
Thus, the output of IsogVerif2dim is 1. ⊓⊔

Proposition 4. The scheme DeuringVUF satisfies unconditional full unique-
ness.

Proof. Let us assume that we have a value v = j passing the verification for an
input x, a public key pk and proof π. We want to prove that the only possibility
is that j(E′) = j(E/⟨Rx⟩).

By Proposition 3, we know that a valid isogeny representation for an isogeny
φx : E → E′ with j(E′) = j can be extracted from pk and π if IsogVerif2dim(s

φ
2dim, j) ̸=

0.
Then, in Verify we check that R,S both have order N and are non-zero, and

that Rx is non-zero. Then, in checking that Pφx
̸= 0, we check that R,S are a

basis of E[N ]. Indeed, if r = 0, then Rx and R are colinear, and if not, then S
and Rx must be colinear. So if R,S were not a basis (and so were colinear), Rx
would be colinear with them too (since Rx is non-zero), and so Pφx

would be
also 0. Since it is not, then R,S must be a basis of E[N ]. Thus, Rx have full
order N . And since φx(Rx) = 0Ex

, we know that ⟨Rx⟩ ⊂ kerφx. This implies
that N divides the degree of φ. But since φ has degree smaller than 2f

′
and we

defined f ′ to be the smallest exponent such that 2f
′
> N , we get that degφ

must be N , and so kerφ = ⟨Rx⟩ and so E′ must be isomorphic to E/⟨Rx⟩ which
proves the result. ⊓⊔

3.3 Isogeny representation computation in dimension 2.

It remains to introduce the algorithm IsogenyRepresentation2dim. As for KeyGen,
the main building block of this algorithm is the AnyIdealToIsogeny from [1].

Algorithm 5 IsogenyRepresentation2dim(I, J, E, P,Q, φ̂I(P ), φ̂I(Q))

Input: I an O0-ideal of norm Nsk, J an O0-ideal of norm N , a curve E such that
End(E) ∼= OR(I), a basis U, V of E[2f ] and the image U0, V0 = φ̂I(U, V ).

Output: Ex,E3, U3, V3 where φ : E → Ex is the pushforward isogeny [φI ]∗φJ of degree

N and U3, V3 = ψ ◦ φ(U, V ) for some isogeny ψ : Ex → E3 of degree 2f
′
−N .

1: Compute K an O0-ideal of norm 2f
′
−N .

2: L← I ∩ J ∩K.
3: E3, U3, V3 ← AnyIdealToIsogeny(L,U0, V0).

4: s← N−1
sk mod 2f

′
.

5: U3, V3 ← [s]U3, [s]V3.
6: Compute the codomain of F : E × E3 → Ex × Fx of kernel

[2f−f
′
]⟨([N ]U,U3), ([N ]V, V3)⟩.

7: return Ex, (E3, U3, V3).
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The correctness of this algorithm follow from Lemma 1. Indeed, for the out-
put of IsogenyRepresentation to be a correct, we need to verify that F the points
([Nsk]U,U3), ([Nsk]V, V3) correctly generate the kernel of the isogeny F embed-
ding φJ .

The ideal L correspond to some composition of isogenies ψ ◦ [φI ]∗φJ where
ψ : Ex → E3 is an isogeny of degree (2f

′ − N) and E3 is some supersingular
curve. By definition of AnyIdealToIsogeny, and U0, V0 = φ̂I(u, V ), the points
U3, V3 are thus equal to [Nsk]ψ◦[φI ]∗φJ(U, V ). This proves that the computation
of E3, U3, V3 is correct.

Hence, after multiplication by [s], by Lemma 1 the points ([Nsk]U,U3), ([Nsk]V, V3)
correctly generate the kernel of a 2f

′
-isogeny of dimension 2 embedding [φI ]∗φJ

and so the computation of Ex is correct.

4 Parameters and Performances

In this section, we discuss the choice of parameters to instantiate our Deuring-
VUF family as efficiently as possible at a given level of security λ. We propose a
concrete set of parameters for λ = 128 presumably corresponding to the NIST-I
level of security.

4.1 Parameter computation.

The main parameter we need to choose is the value of p. After that is done, all
the other parameters can be deduced almost directly. Before explaining how to
find this prime concretely, let us give a brief reminder on the various constraints
and requirements.

A summary of the constraints for security. The generic key recovery attack
has complexity Õ(

√
p). Thus, we need to take log(p) ≈ 2λ. Similarly, the best

known algorithm to compute N -isogenies has complexity Õ(
√
N). Thus, we need

to target log(N) ≈ 2λ. The Õ notation hiding polynomial factors in log log p, we
can afford to be a bit below the 2λ threshold for both log p and logN without
damaging the security.

A summary of the constraints for efficiency. We need to take a prime p of
the form c2f − 1 with c as small as possible and such that N | (p − 1)/2 to
ensure that the N torsion of supersingular curve can be defined over F2

p. The
complexity of finding such a p is logarithmic. Indeed, the primality of p and of
the near primality of (p− 1)/2 both have a probability of ≈ 1/ log p to happen.
Thus, it suffices to try a logarithmic number of c, f until a suitable solution is
found.

Computation of remaining public parameters. Now that we have specified
the choices of all the integral parameters, we need to explain how to compute
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the remaining public parameters of our scheme. In particular, we need to find a
basis P0, Q0 of E0[N ], an endomorphism κ such that κ(P0) = Q0 and the kernel
ideal IP0 . This operation is not completely trivial as N is a large prime number,
but it can be done as we explain next. Let us take as E0 one of the curves of
known endomorphism ring O0 (for instance the curve of j-invariant 1728 which
is supersingular since we have p = 3 mod 4). Our solution uses the fact that
we can evaluate efficiently any endomorphisms of E0 on points of E0 using the
endomorphisms π : (x, y)→ (xp, yp) and ι(x, y)→ (−x,

√
−1y).

First, we can select R0 as any point of order N . Then, we compute α ∈
End(E0) of norm satisfying gcd(n(α), N2) = N . Then, we can set P0 = α(R0).
If P0 = 0 we can try with another R0 until we have P0 of order N . When P0

has order N , the ideal IP0
is equal to O0⟨α,N⟩. To finish the precomputation,

we can take any endomorphism κ of norm coprime to N that is not contained in
Z+ IP0

and we set Q0 = κ(P0). This ensures that P0, Q0 is a basis of E0[N ] as if
κ(P0) = µP0 for some integer µ, then κ− µ ∈ IP0 and so κ would be contained
in Z+ IP0 .

4.2 Example parameters for λ = 128

We now describe concrete parameters for λ = 128 that are estimated to reach
the NIST-I security level. The prime p = c2f − 1 was found after exhausting a
small set of values c, f selected to ensure p < 2256.

We found the 249-bit prime p

p+ 1 = 305 · 2240

for which the 239-bit prime N = (p− 1)/1182 is equal to:

455912313669549255941544617365981512121305066452676634709889925037435729.

An example of endomorphism α to compute IP0
is the endomorphism

597586948685359749757390890506743252+314328096788165707865159343442888735π

of norm N and κ can be taken as ι.

4.3 Sizes

In this section, we explain how to compute the sizes given in Table 1 for the
parameters given in Section 4.2. We also provide abstract formulas that are true
for any security level λ assuming that log p = 2λ.

On compression. To reduce the size of the public key and proof, we can use
standard compression techniques for elliptic curves and their points.

– Curves can be represented by their j-invariants which are always defined
over Fp2 for supersingular curves.
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– A basis of the 2f -torsion can be compressed as two Fp2 elements and 1 bit
corresponding to the x-coordinates of the two points of the basis, and one
bit indicating the relative sign of these points.

– A point of arbitrary order N defined over Fp2 can always be represented as
one element over Fp2 and a bit (representing the x-coordinates of the point
and the parity of the y-coordinate).

Computation of key and proof sizes. Using the compressed representations that
we described above for all the points and curves involved in our construction, we
can deduce the size of keys and proofs of our DeuringVUF protocol. The public
key is made of 1 curve, and 2 points of order N . This can be represented by
three elements over Fp2 and 2 bits so 12λ+2 bits. The proof is made of 1 curve,
and a basis of the 2f torsion. This can be represented by 3 elements over Fp2
and 1-bit, so this is 12λ+ 1.

Since we need the function fin to be injective to avoid collisions, the input
space cannot be bigger than N + 1. Thus, we can take the input space has size
n1(λ) = ⌊log2N⌋.

The output space is one element over Fp2 so this takes 4λ.
These results are summarized in Table 3.

y Input (bits) Output (bits) Public Key (bits) Proof (bits)

2 2λ 4λ 12λ+ 3 12λ+ 1

Table 3: Size of the inputs, outputs, keys and proofs of the DeuringVUF schemes.

Note that the basis of E[2f ] could further be reduced to 3 scalars modulo
2f at the cost of an additional pairing computation. However, the sizes being
already very compact, it does not seem that the additional computational cost
would really be worth it.

4.4 Implementation

We made a C implementation of our scheme basing ourselves on the code from
[1] for the algorithms AnyIdealToIsogeny and IsogEval2dim. The need to handle
points of order N on the quadratic twists of supersingular curves required a little
bit of adaptation, but apart from that, all the main building blocks were already
there. The performance of our implementation are reported in Table 4. Below,
we analyze a little bit those results.

The prime characteristic being different, we couldn’t use the optimized finite
field arithmetic developed by the authors of [1], and so we used a generic finite
field arithmetic from fiat-crypto instead. Our results should thus be compared
with the performances of [1, Table 3] and not [1, Table 4]. With an optimized
finite field arithmetic, we’re expecting an improvement factor similar to the
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one between Table 3 and Table 4 in [1]. In particular, the verification time of
DeuringVUF should be within a factor two of SQIsign2D-west’s verification.

We also expect an optimized implementation of the evaluation of DeuringVUF
to be at least as fast as SQIsign2D-west signature. However, our current imple-
mentation of the evaluation is much slower than that. There are two reasons for
that, and both are related to the performance of the AnyIdealToIsogenyalgorithm,
and in particular the search for the two integers u, v (see [1, Section 4.2] for more
details). The first one should be easily addressed whereas it is less obvious if any-
thing can be done for the second one.

The first explanation is that this step requires to reduce the ideal given in
input which can be done with the LLL algorithm. The current implementation
of LLL from [1] seems to be very slow when the ideal given in input is quite big.
In our scheme, it is much bigger than in SQIsign2D-west, and the LLL execution
accounts for almost a third of the total running in our current implementation.
This operation could definitely be optimized with a proper LLL implementation
and we ultimately expect the running time of this step to be negligible compared
to the rest of the computation.

The second reason comes from the heuristics detailed in [1, Section 4.2]. This
heuristic tells us that the running time of the search procedure for u and v is
proportionnal to the ratio p/2f . For the SQIsign2D-west prime at NIST level 1,
this ratio is 5, whereas it is 305 in DeuringVUF.

Metric KeyGen VUFEval Verify

Clockcycles (106 cycles) 256 371 40
Time (ms) 111 161 17.4

Table 4: Average running time of the C DeuringVUF implementation on an intel
core i7 at 2.3GHz with turbo-boost disabled, adapted from the code of [1]

5 Interesting Applications

In this section, we detail two interesting applications of our VUF. The first, and
most interesting one is a VRF scheme, the second one is a hash-and-sign style
signature scheme. Both schemes are derived almost directly from the VUF.

5.1 Verifiable Random Function

As explained in Section 2.1, one can derive almost directly a VRF from a VUF
by adding one extra step in the evaluation algorithm: define the VRF output as
the hash of the VUF output with the public key and the input. Then, the proof
must also include the VUF output. The whole transform is described precisely
in [24, Figure 9].

24



With this small modification, in the random oracle model, it is possible to
extend the unpredictability property of the VUF (which reduces to a computa-
tional problem) to the pseudo-randomness required by a VRF (which reduces to
a decisional problem). In [24, Theorem 1], Giunta and Stewart prove that the
resulting protocol is a VRF satisfying the additional property of unbiasability.

The VRF obtained by applying this transform to our scheme DeuringVUF
is called DeuringVRF. The security of this scheme follows in the ROM from
Propositions 1 and 2 and [24, Theorem 1]. The public key is the same as Deuring-
VUF. The proof size is slightly bigger than the one in DeuringVUF as one needs
to include the VUF output which adds 4λ bits to the proof. This is how we got
the sizes showcased in Table 1. In terms of performances, the overhead of the
transform is completely negligible.

Below, we recall the formal definition of pseudo-randomness of a VRF.

Pseudo-randomness. This security notion implies that it is hard to distinguish
the output from a random value without knowing the secret key.

Definition 6. Let A = (A1,A2) be an algorithm running in time t and playing
the following experiment:

1. pp← ParamGen(1λ)
2. (pk, sk)← KeyGen(pp).

3. (x⋆, st1)← AVUFEval(·),Hout(·)
1 (pk).

4. (v0, π0)← VUFEval(sk, x⋆).

5. v1
$←− {0, 1}n2(λ).

6. b
$←− {0, 1}.

7. b′ ← AVUFEval(·),Hout(·)
2 (vb, st).

where the query of VUFEval on x⋆ are implicitly forbidden. The pseudo-random-
ness advantage of A is defined as

AdvAPR(t) = Pr{b = b′} (2)

The advantage of the protocol is defined as AdvPR(t) = maxA AdvAPR(t)
The VRF is pseudo-random if

AdvPR(t) ≤ 1/2 + negl(λ)

when t is in O (poly(λ)).

5.2 Hash-and-sign Signature

A similarly easy transform allow us to derive a signature from a VUF. For that it
suffices to have a function to hash the message to the input space of the VUF, and
then output the result of the VUF evaluation as the signature. The unforgeability
of the resulting signature protocol holds under the unpredictability of the VUF
and the collision resistance of the hash function.
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The sizes and performances of our VUF (see in Tables 1 and 4), and the
discussion in Section 4.4 show that the resulting signature is not much worse (in
both size and speed) than the recent SQIsign2D-west signature in all metric.

While the resulting signature in itself does not improve upon the state of
the art in isogeny-based signatures (it is less compact, and less efficient than
SQIsign’s most recent variants), we hope that the radically different way it was
obtained (when compared to SQIsign) could still lead to interesting applications.
Also, note that the security of this new scheme holds in the standard model and
does not require the ROM, which is also a first in isogeny-based cryptography.

6 Prospects, open questions and future work

We have introduced a new DeuringVUF protocol based on isogenies between su-
persingular curves by making use of two important sub-fields of isogeny-based
cryptography: the Deuring correspondence and isogenies between abelian vari-
eties of high dimension. The security of our new problem stands upon a new se-
curity assumption, the OMIP. Despite its novelty, this new assumption is related
to various well-studied problem in isogeny-based cryptography, and its hardness
appears quite plausible. Interestingly, progress in the resolution of this problem
could have very positive impacts on the efficiency of other areas of isogeny-based
cryptography. Nonetheless, the OMIP, requires more study, in particular in the
quantum setting.

We derive two interesting applications from this DeuringVUF. The main one
is a VRF that is efficient and more compact (by a good margin) than every
other post-quantum VRF protocol, thus proving that VRFs could be one of the
most promising case of application of isogeny-based cryptography. The second
contribution is the first hash-and-sign signature based on isogenies.
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17. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: Reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 329–
368. Springer International Publishing (2018)
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A Some new algorithms for the Deuring correspondence

A.1 Translating ideals of norm a big prime power of a small power.

The goal of this section is to instantiate an algorithm IdealToIsogeny2ℓ• to trans-
late an ideal of norm a power of ℓ into their corresponding isogeny for some small
prime ℓ using isogenies of dimension 2 as a tool.

For the rest of this section, we fix an exponent e such that the ℓe torsion
of supersingular curves can be defined over Fp2 . For simplicity, we will target

the case where the norm of the input to IdealToIsogeny2ℓ• is exactly ℓne for some
integer n. The generic case can be derived trivially from there.

The outline of this algorithm IdealToIsogeny2ℓ• is inspired by the IdealToIso-
genyEichlerℓ• algorithm introduced as [15, Algorithm 5] in the context of the
SQIsign signature scheme. When the input has norm ℓne, the algorithm Ideal-
ToIsogenyEichlerℓ• consists in n sequential executions of a sub-algorithm Ideal-
ToIsogenyEichlerℓe ([15, Algorithm 4]) that performs the translation for inputs of
norm ℓe exactly.

We will keep the same structure for our algorithm IdealToIsogeny2ℓ• , and we
introduce an algorithm IdealToIsogeny2ℓe to replace IdealToIsogenyEichlerℓe .

We start with a brief summary of the ideas underlying IdealToIsogenyEich-
lerℓe to provide some insights on how and why its dimension 2 counterpart was
designed.

Translating ideal to isogenies with isogenies in dimension 1, a summary. The
main subtlety in IdealToIsogenyEichlerℓe is that each translation of length e “con-
sumes” the ℓe torsion points (those points are necessary to express the kernel
of the ℓe-isogenies to be translated). This is why the algorithm IdealToIsogeny
Eichlerℓe performs a “refresh” operation, necessary to all its subsequent execu-
tions inside IdealToIsogeny1ℓ• . In IdealToIsogenyEichlerℓe , this refresh is done by
evaluating some well-chosen endomorphism θ of the domain curve on the ℓe tor-
sion. In dimension 1, there is only one way to ensure that this endomorphism θ
can be efficiently evaluated: ensure that deg θ|T 2 where T is a smooth integer
such that the T -torsion points are defined over a small field extension. Endomor-
phisms satisfying these constraintes can be found using the SpecialEichlerNormT

algorithm [15, Algorithm 3]. But this algorithm only succeeds when the value of
T is quite big (T ≈ p5/4).

This constraint on the size of T is the main cause of the relative inefficiency
of IdealToIsogeny1ℓ• , because having the T -torsion defined over a small field ex-
tension of Fp2 implies a very strong constraint on the two integers p and T . A
suitable solution can be always be found, but the smoothness bound of T might
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not be very small. This smoothness bound in turn impacts the cost of the T -
isogenies that must be computed in order to evaluate the endomorphism θ (the
smoother T , the faster the computation will be).

This limitation is the main motivation to introduce a variant using isogenies
of dimenion 2. The goal of this algorithm is to overcome the obstacle of dimension
1 by exploiting the 2dim isogeny representation.

Translating ideal to isogenies with isogenies in dimension 2, an overview. Our
goal is to simplify the computation of the endomorpism θ. To overcome the ob-
stacles encountered with the dimension 1 algorithm, we follow a reasoning that
resembles the idea behind the recent SQIsignHD scheme [11]: by embedding θ in
an 2f -isogeny of higher dimension (for some exponent f), we can relax most of
the constraints on its degree (and in particular the smoothness). This means that
we can get rid of SpecialEichlerNormT and simply look for θ among the endomor-
phism of small norm in End(E). The concrete requirements for IdealToIsogeny2ℓe
are in fact slightly more complex than that. In the next paragraph, we introduce
an algorithm RandomGoodEndomorphism to find suitable endomorphisms.

In the remaining of this section, we assume ℓ ̸= 2, and we fix and exponent
f such that the 2f torsion of supersingular curves is defined over Fp2 .

Finding suitable endomorphisms for the dimension 2 representation. As ex-
plained in Section 2.3, the 2dim representation for any isogeny φ of degree a
requires a second isogeny β of degree b such that 2f = a + b. In our case, the
isogeny we want to represent is an endomorphism θ. Following an idea introduced
in [9], we propose to choose β as an endomorphism of E as well. With the method
described in [9] (see the algorithm OrientDiamondDim2), it is possible to find effi-
ciently two endomorphisms θ, β in the same quadratic order satisfying the norm
equation 2f = n(θ)+n(β). Since θ, β are each defined by two coefficients, this is
quaternary quadratic equation that can be solved using Cornacchia’s algorithm
[10] when 2f is big enough compared to n. In Appendix B, we introduce an algo-
rithm ExtendedOrientDiamondDim2 (which is a simple variant of [9, Algorithm
1]) to handle that task.

As in SpecialEichlerNorm, the endomorphism θ computed by RandomGood-
Endomorphism must satisfy an additional constraint: it can not be contained
in the Eichler order Z + K for some ideal K of norm ℓ given in input. This
additional constraint is quite strong and it implies that RandomGoodEndomor-
phism will always fail for some maximal order O. Fortunately, it can be shown
heuristically that this will only happen with very small probability when we
consider a random supersingular curve, and this will be enough for our need. We
provide some more insights on these potential failures later in this section.

Before proving the correctness and termination of our algorithm, we need
to state a preliminary result. The following lemma, adapted from a result first
mentioned by Elkies in [19] tells us that we can always find a non-trivial en-
domorphism ω of norm smaller than p2/3. We have also included a result by
Boneh and Love regarding the number of curves having an endomorphism of
norm smaller than some bound [35, Proposition A.3].
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Algorithm 6 RandomGoodEndomorphism(O,K, f)
Input: A maximal order O, an O-ideal K of norm ℓ, and an integer f .
Output: θ, β ∈ O ∖ (2O ∪ Z+K) and 2f = n(θ) + n(β), gcd(n(θ), n(β)) = 1.
1: Sample random element ω of norm smaller than 2f in O⊥ until ω is not contained

in Z+K and Dω = tr(ω)2 − 4n(ω) is equal to 5 mod 8.
2: if no such elements ω can be found then
3: Return ⊥
4: end if
5: if ExtendedOrientDiamondDim2(Dω, f) ̸= ⊥ then
6: θ, β = ExtendedOrientDiamondDim2(D, f).
7: Return θ, β.
8: end if
9: return Return ⊥.

Lemma 2. For any supersingular curve E, there exists a non-trivial endomor-
phism ω : E → E of degree smaller than 2p2/3.

Moreover, given any B < p2/3, the number of curves having a non-trivial
endomorphism of norm smaller than B is in O(B3/2).

Proof. Let O be isomorphic to End(E). Let us consider the rank 3 lattice O/Z.
Since the reduced discriminant of O is p, the determinant of O/Z is p2 and,
by Minkowski’s theorem, it must contain an element θ of norm smaller than
2p2/3. The second result regaring the number of curves having a non-trivial
endomorphism smaller than B was proven as [35, Proposition A.3]. ⊓⊔

The correctness and complexity of ExtendedOrientDiamondDim2 is stated in
Proposition 8 of Appendix B. This proposition holds under Heuristic 1 which is
a plausible heuristic assumption (adapted from [9, Heuristic 13]) regarding the
distribution of numbers of the form 2e+D(1+z2) where D is the discriminant of
a quadratic imaginary order equal to 1 mod 4. Thus, Proposition 5 holds under
the same heuristic assumption.

Proposition 5. Assuming Heuristic 1, for any κ > 0, there exists η = Θ(log log(p)+
κ) such that, if f > 2/3 log(p)+ η, then RandomGoodEndomorphism will succeed
with probability bigger than 1−2−κ on input O,K, f if the maximal order O is a
uniformly random maximal order in Bp,∞, and K is a random O-ideal of norm
ℓ.

Proof. For the algorithm to fail, either no suitable ω was found or Extended-
OrientDiamondDim2 failed on input Dω, f .

Let us write α1, α2, α3 for the three successive minimas of O⊥. First, note
that if n(α3) < 2h, then there exists an endomorphism of norm smaller than
2h that is not contained in Z + K. Indeed, if α1, α2, α3 we cannot have all
three elements α1, α2, α3 contained in Z + K as O/ℓO ∼= M2(Z/ℓZ) and so
O⊥/ℓO⊥ ∼= M2(Z/ℓZ)/Z. Let us now take the smallest ω ∈ O⊥ such that
n(ω) < A and ω ̸∈ Z+K and Dω = 5 mod 8.
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Then, by Proposition 8, the success probability of ExtendedOrientDiamondDim2
on input Dω, f is upper-bounded by

(1− λ0/log(|Dω|))
√

2f/|Dω|.

For Dω and f big enough, this function will clearly increase as Dω increases.
Thus, for any O such that n(ω) < A (which implies Dω < 4A) we can upper-
bound the failure probability of RandomGoodEndomorphism on input O by

(1− λ0/ log(4A))
√

2f+2/A.

If we write p(A), the probability that a random O in Bp,∞ is such that n(ω) <
A, then the conditional probability formula associated to a trivial majoration
of any probability by 1 gives us that the probability of failure of RandomGood-
Endomorphism on a random input O is upper-bounded by

p(A) + (1− λ0/ log(4A))
√

2f+2/A

We can now use Lemma 2 to upper-bound p(A).
By Minkowski’s second theorem, we know that n(α1)n(α2)n(α3) ≤ µ0p

2 for
some constant µ0. Thus, if n(α3) > A, then n(α1) ≤ µ1p/

√
A for some constant

µ1. By Lemma 2, this implies that the number of curves with n(α3) < A is
smaller than µ2p

3/2/A3/4 for some constant µ2.
It is sufficient that a constant number of (linearly-independent) endomor-

phisms in O⊥ are smaller than A, to get an element ω that is not in Z + K
and of discriminant equal to 5 mod 8. Since α1, α2, α3 constitutes a basis of
elements of norm smaller than A, we obtain enough elements to find ω with
constant probability and so we get p(A) ≤ µ3

√
p/A3/4 for some constant µ3.

We derive the following upper-bound on the failure probability:

µ3

√
p

A3/4
+

(
1− λ0

log(4A)

)√2f/A

(3)

Now, it is easily verified that for any κ > 0, there exists η = Θ(κ+log log(p))
such that if f > 2/3 log(p) + η, then there exists a = 2/3 log(p) + Θ(κ) smaller
than f such that the upper-bound of the failure probability given in Equation 3
is smaller than 2−κ when A = 2a. ⊓⊔

Potential failures of RandomGoodEndomorphism. We can extract easily the
cases where RandomGoodEndomorphism will potentially fail: when the smallest
endomorphism of O⊥ is smaller than usual so all the endomorphisms of norm
smaller than 2f all lie in the same quadratic order that is either either contained
in Z + K or does not have a discriminant equal to 5 mod 8. Depending on
the value of p and f , this might happen for some maximal orders and values
of K. In those cases, RandomGoodEndomorphism will simply fail. The results of
Proposition 5 allow us to adjust the value of f to reduce the probability of this
bad event as much as possible. Moreover, note that it can be shown that the
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third successive minima must be in Θ(p). Thus, when f > log(p) the proportion
of failing maximal order will decrease very quickly to 0. In all of our applications
of RandomGoodEndomorphism, it should not be too hard to rerandomize the
choice of maximal order, thus these failures should not really be problematic as
soon as we are careful to pick a value of f that is not too close to 2/3 log(p). We
made some experiments by sampling random maximal orders as right orders of
O0-ideals of norm 2256 (for a prime p ≈ 2256) and did not find a single example
where the algorithm failed out of thousands of trials.

The full ideal-to-isogeny subroutine in dimension 2. As we explained above,
we obtain IdealToIsogeny2ℓe by adapting IdealToIsogenyEichlerℓe to use Random-
GoodEndomorphism instead of SpecialEichlerNorm and compute θ from a 2dim
isogeny representation rather than as a T -isogeny. This yields Algorithm 7. We
remind the reader that we use in a black-box manner an algorithm IsogEval2dim
to evaluate isogenies from their 2dim-representation.

The algorithm IdealToIsogeny2ℓe also assumes the knowledge of a curve E0 with
its endomorphism ring End(E0). For this curve, it is known how to evaluate any
endomorphism θ0 ∈ End(E0).

Algorithm 7 IdealToIsogeny2ℓe(O, I, J, φJ , P )
Input: I a left O-ideal of norm ℓe, an (O0,O)-ideal J of norm in ℓ• and φJ : E0 → E

the corresponding isogeny, the generator P ∈ E[ℓe] of kerφK s.t φ̂J = φK′ ◦ φK .
Output: φI of degree ℓe

1: Set K = J +Oℓ.
2: if RandomGoodEndomorphism(O,K, 2f) = ⊥ then
3: Return ⊥.
4: end if
5: Compute θ, β = RandomGoodEndomorphism(O,K, h).
6: Select α ∈ I s.t. I = O⟨α, ℓe⟩.
7: Compute C,D s.t. α · (C +Dθ) ∈ K and gcd(C,D, ℓ) = 1 using linear algebra.
8: Compute R,S a basis of E[2f ], t = degφ−1

J mod 2f .
9: Compute W,X = φ̂J(R,S).
10: Set θ0 = φ̂J ◦ θ ◦ φJ ∈ End(E0) and compute U, V = θ0(W,X).
11: Set β0 = φ̂J ◦ β ◦ φJ ∈ End(E0) and compute W,X = β0(W,X) and Y,Z =

β0(U, V ).
12: Compute U, V = [t2]φJ(U, V ),W,X = [t2]φJ(W,X),and Y,Z = [t3]φJ(Y,Z).

13: Set sθ2dim = E,E,U, V, Y, Z, and c
n(θ)
2dim(E) = E,R, S,W,X.

14: Compute Q = IsogEval2dim(s
θ
2dim, c

n(θ)
2dim(E), P )

15: Compute φI of kernel ⟨[C]P + [D]Q⟩.
16: return φI .

Proposition 6. Let O, I, J, φJ , P be the input to IdealToIsogeny2ℓe and let K =
J + Oℓ. If RandomGoodEndomorphism(O,K, h) ̸= ⊥, then IdealToIsogeny2ℓe re-
turns the correct output on input O, I,K, φJ , P .
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Proof. By [15, Lemma 8], if the point Q is equal to θ(P ), then the group ⟨[C]P+
[D]Q⟩ is the kernel of the desired isogeny φI . Thus, for our purpose, it suffices to
show thatQ is indeed equal to θ(P ). By the presumed correctness of IsogEval2dim,

we need to show that the isogeny representation c
n(θ)
2dim(E), sθ2dim is correct. First,

note that since θ, β are commutative endomorphisms, the commutative diagram
they generate only involvde the curve E and we have θ′ = θ and β′ = β. Second,
we need to verify that U, V = θ(R,S), W,X = β(R,S) and Y,Z = β ◦ θ(R,S).
Following the various computations, we see that U, V = [t2]φJ ◦ θ0 ◦ φ̂J(R,S).
By definition of θ0 this is [t2][degφ2

J ]θ(R,S) = θ(R,S). The same can be shown
forW,X, and for Y,Z with β0◦θ0 = [degφJ ]φ̂J ◦β◦θ◦φJ . This defines a correct
2dim isogeny representation according to the formulas given in Section 2.3 and
this concludes the proof. ⊓⊔

The generic ideal-to-isogeny algorithm. We are now ready to introduce
the full algorithm IdealToIsogeny2ℓ• algorithm. As we said at the beginning of
this section, this is a simple generalization of [15, Algorithm 5]. We refer the
reader to [15] for the proof of correctness.

Algorithm 8 IdealToIsogeny2ℓ•(I, J, φJ)

Input: I a left O-ideal of norm ℓne, an (O0,O)-ideal J of norm ℓ• and φJ : E0 → E
the corresponding isogeny

Output: φI of degree ℓne.
1: Set Ji = J , Ii = I + ℓfO, I ′i = I−1

i I, Oi = O.
2: Set φi of degree ℓ

f as the isogeny such that φ̂J = φ′ ◦ φi
3: Set φI = [1]E and Ei = E.
4: for i ∈ [1, n] do
5: Compute Pi ∈ Ei[ℓf ] s.t kerφi = ⟨Pi⟩.
6: Compute φIi = IdealToIsogeny2ℓe(Oi, Ii, Ji, φI ◦ φJ , Pi).
7: Set φi = φ̂Ii , φI = φIi ◦ φI and Ei is the codomain of φIi .
8: Set Ji = Ji · Ii, Oi = OL(I ′i), Ii = I ′i + ℓfOi and I ′i = I−1

i I ′i.
9: end for
10: return φI .

A.2 Evaluating isogenies from the ideal representation when the
order is not coprime with the degree

In this section, we introduce an algorithms IsogEvalNonCoprime1id to evaluate
isogenies of dimension 1 from their ideal representation when the norm is a
power of ℓ and the order of the points to be evaluated is not coprime to ℓ.

This algorithm is based on the following idea: given an isogeny ψ : E0 → E
of arbitrary degree coprime to ℓ, another isogeny φJ : E0 → E of degree ℓ•, an
endomorphism θ of E of norm coprime to ℓ can be used to compute the image
of any subgroup G ⊂ E0[G] efficiently, assuming a few conditions on θ.
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Our algorithm IsogEvalNonCoprime1id is obtained by combining this idea with
the algorithm introduced in the proof of Lemma 3 below to obtain the images
of an isogeny on given points of smooth order from the images of this isogeny
on subgroups of the same order.

Lemma 3. Let N be an integer coprime to some small prime ℓ. Let E0, E be
two elliptic curves connected by an isogeny ψ : E0 → E. Assume that E[2f ] is
defined over Fp2 . There is an algorithm of complexity O (poly(log(p) + f)) that
takes G1, G2, G3, H1, H2, H3 where G1, G2, G3 are three subgroups of order 2f

such that Gi ∩Gj = {0} for all 1 ≤ i < j ≤ 3 and Hi = ψ(Gi) for i = 1, 2, 3, a
point P ∈ E0[2

f ] and computes ψ(P ) up to sign.

Proof. Let Pi, Qi be the respective generators of Gi, Hi for i = 1, 2, 3. We know
there exists λi such that φ(Pi) = [λi]Qi. By assumption that G1 ∩ G2 = {0},
the two points Q1, Q2 form a basis of E[2f ]. By solving a bidimensional discrete
logarithm in E[2f ], one can find µ1, µ2 such that Q3 = [µ1]Q1+[µ2]Q2. Doing the
same on E0, we obtain P3 = [ν1]P1+[ν2]P2. Then, we get that λ3/λi = νi/µi for
i = 1, 2 (µi ̸= 0 sinceH3∩H1 = {0}, H3∩H2 = {0} because ψ has degree coprime
to ℓ). Thus, the three values Ri = λ3ψ(Pi) can be computed for i = 1, 2, 3.

Then, computing the discrete logarithm of e(P1, P2) and e(R1, R2), we get the
scalar λ23N mod 2f . Dividing by N and computing a squareroot s of the result
mod 2f , we get Si = s−1Ri = ±ψ(Pi). Then, to evaluate any point P ∈ E0[2

f ]
is suffices to find a, b such that P = aP1 + bP2 and to output aS1 + bS2.

It is clear that all the operations above can be performed inO (poly(log(p) + f)).
⊓⊔

The algorithm IsogEvalNonCoprime1id uses several building blocks of the Deur-
ing correspondence based on isogenies in dimension 1. There is the SpecialEichler-
NormT 2 algorithm (see [15, Algorithm 3]) to compute endomorphisms of norm
dividing T 2 in any maximal order barred of an Eichler order of level ℓ, and the
IdealToKernelD and IdealToIsogenyD algorithms to translate an ideal of norm D
in the corresponding kernel and isogeny respectively (see [34, section 4.2.1]). The
integer T is an implicit parameter of Algorithm 9.

Proposition 7. (Heuristic) IsogEvalNonCoprimeid1 is correct and terminates with
constant probability when T > p5/4.

Proof. The heuristics involved in this proof are the same than in the proofs
of correctness and termination of KLPT2• , IdealToKernel2f IdealToIsogeny1ℓ• and
SpecialEichlerNormT (see [34] and [15] for statements and proofs regarding the
termination and correctness of these algorithms).

The termination of IsogEvalNonCoprime1 follows from the termination of all
the building blocks. The condition on T and the constant success probability
both come from [15, Proposition 6].

Let us now prove correctness. After the ideal J and the isogeny φJ have been
computed together with the point Q. The steps 5 to 15 are essentially the same
that are performed in IdealToIsogenyEichlerℓe . We refer the reader to the proof of
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Algorithm 9 IsogEvalNonCoprime1id(I, P )

Input: I a left O0-ideal of norm N coprime to 2, a point P ∈ E0[2
f ].

Output: ±φI(P )
1: Set O = OR(I).
2: Compute J = KLPT2•(I).
3: Compute φJ = IdealToIsogeny12•(O0, 1, J).
4: Compute Q the kernel of the dual of the last isogeny composing φJ .
5: Set K = J +O2.
6: Compute θ = SpecialEichlerNormT (O,K) of norm dividing T 2.
7: Take any n1|T and n2|T s.t. n1n2 = n(θ). Compute H1 = O⟨θ, n1⟩ and H2 =
O⟨θ, n2⟩.

8: Compute Lj = [J ]∗Hj , and φj = [φJ ]∗IdealToIsogenynj
(Lj) for j ∈ {1, 2}.

9: Compute Q′ = φ̂2 ◦ φ1(Q).
10: Compute I1, I2, I3 three O0-ideals of norm 2f such that Ii + O02 ̸= Ij + O02 for

1 ≤ i < j ≤ 3.
11: for i = 1, 2, 3 do
12: Compute ⟨Pi⟩ = IdealToKernel2f (Ii).
13: Compute αi such that [I]∗Ii = O0⟨αi, 2f ⟩.
14: Compute Ci, Di s.t. αi · (Ci + Diθ) ∈ K and gcd(Ci, Di, 2) = 1 using linear

algebra.
15: Compute the kernel Qi = [Ci]Q+ [Di]Q

′.
16: end for
17: Compute µ1, µ2 such that Q3 = [µ1]Q1 + [µ2]Q2.
18: Compute ν1, ν2 such that P3 = [ν1]P1 + [ν2]P2.
19: Set R3 = Q3 and Ri = (µi/νi mod 2f )Qi for i = 1, 2.
20: Compute λ such that e2f (P1, P2)

λ = e2f (R1, R2).

21: Compute s =
√
λ/N

−1
mod 2f .

22: Compute Si = [s]Ri for i = 1, 2, 3.
23: Compute a, b such that P = [a]P1 + [b]P2.
24: return [a]S1 + [b]S2.

[15, Proposition 6] for a proof that the subgroup ⟨Qi⟩ is the kernel of the ideal
[I]∗Ii for i = 1, 2, 3. This means that ⟨Qi⟩ = φI(⟨Pi⟩) for i = 1, 2, 3.

Steps 17 to 22 correspond to the algorithm described in the proof of Lemma 3.
We refer the reader to this proof to show that S1, S2, S3 = ±φI(P1, P2, P3). Then,
since P = [a]P1 + [b]P2, we get [a]S1 + [b]S2 = ±φI(P ).

⊓⊔

B On the ExtendedOrientDiamondDim2 algorithm.

In this section, we give some details on the ExtendedOrientDiamondDim2 algo-
rithm and provide some statement on this algorithm. We remind the reader
that this algorithm is almost identical to the OrientDiamondDim2 algorithm ([9,
Algorithm 1]). The only real difference being that the exponent h is given in
input.
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Algorithm 10 ExtendedOrientDiamondDim2(DO, h)

Input: An imaginary quadratic order O with discriminant DO = 5 mod 8.
Output: θ, β ∈ O such that n(θ) + n(β) is a 2-power and gcd(n(θ), n(β)) = 1.
1: Set x := 0, y := 0.

2: for z ∈ ×[1, ⌊
√

2h+1

|DO| − 1⌋] do
3: M := 2h+2 +DO(z

2 + 1).
4: if M is a prime such that M ≡ 1 mod 4 or M = 2M ′ where M ′ is a prime such

that M ′ ≡ 1 mod 4 then
5: Use Cornacchia’s algorithm to find X,Y such that X2 + Y 2 =M .
6: Set x = (X −DO)/2 and y = (Y − zDO)/2.
7: break
8: end if
9: end for
10: if x = 0 and y = 0 then
11: Return ⊥.
12: end if

13: θ := x+
DO+
√
DO

2
, β := y + z

DO+
√
DO

2
.

14: return θ, β.

We reuse the heuristic introduced in [9, Heuristic 13] as Heuristic 1 below.
Assuming that heuristic, and following the proof provided of [9, Proposition 14],
we can prove Proposition 8.

Heuristic 1. Let h,DO = 5 mod 8 be the inputs to Algorithm 10. If z are
sampled as random integers then the integers 2e+2 + DO(1 + z2) behave like
random odd integers of the same size that are either congruent to 1 modulo 4 or
equal to 2 times an integer that is congruent to 1 modulo 4.

Proposition 8. Assuming Heuristic 1, ExtendedOrientDiamondDim2 is correct,
and there exists a constant λ1 such that the computation will succeed with prob-
ability at least:

1− (1− λ0/ log(|DO|))
√

2h/|DO|.
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