
Communication Lower Bounds
for Cryptographic Broadcast Protocols∗

Erica Blum† Elette Boyle‡ Ran Cohen§ Chen-Da Liu-Zhang¶

September 4, 2023

Abstract

Broadcast protocols enable a set of n parties to agree on the input of a designated sender, even
in the face of malicious parties who collude to attack the protocol. In the honest-majority setting,
a fruitful line of work harnessed randomization and cryptography to achieve low-communication
broadcast protocols with sub-quadratic total communication and with “balanced” sub-linear
communication cost per party.

However, comparatively little is known in the dishonest-majority setting. Here, the most
communication-efficient constructions are based on the protocol of Dolev and Strong (SICOMP
’83), and sub-quadratic broadcast has not been achieved even using randomization and cryptog-
raphy. On the other hand, the only nontrivial ω(n) communication lower bounds are restricted
to deterministic protocols, or against strong adaptive adversaries that can perform “after the
fact” removal of messages.

We provide new communication lower bounds in this space, which hold against arbitrary
cryptography and setup assumptions, as well as a simple protocol showing near tightness of our
first bound.

• Static adversary. We demonstrate a tradeoff between resiliency and communica-
tion for randomized protocols secure against n − o(n) static corruptions. For example,
Ω(n · polylog(n)) messages are needed when the number of honest parties is n/polylog(n);
Ω(n
√
n) messages are needed for O(

√
n) honest parties; and Ω(n2) messages are needed

for O(1) honest parties.
Complementarily, we demonstrate broadcast with O(n · polylog(n)) total communication
and balanced polylog(n) per-party cost, facing any constant fraction of static corruptions.

• Weakly adaptive adversary. Our second bound considers n/2 + k corruptions and a
weakly adaptive adversary that cannot remove messages “after the fact.” We show that
any broadcast protocol within this setting can be attacked to force an arbitrary party to
send messages to k other parties.
Our bound implies limitations on the feasibility of balanced low-communication protocols:
For example, ruling out broadcast facing 51% corruptions, in which all non-sender parties
have sublinear communication locality.
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1 Introduction
In a broadcast protocol (a.k.a. Byzantine generals [PSL80, LSP82]) a designated party (the sender)
distributes its input message in a way that all honest parties agree on a common output, equal to
the sender’s message if the sender is honest. Broadcast is amongst the most widely studied problems
in the context of distributed computing, and forms a fundamental building block in virtually any
distributed system requiring reliability in the presence of faults. The focus of this work is on
synchronous protocols that proceed in a round-by-round manner.

Understanding the required communication complexity of broadcast is the subject of a rich line
of research. Most centrally, this is measured as the total number of bits communicated within the
protocol, as a function of the number of parties n and corrupted parties t. Other metrics have also
been studied, such as message complexity (number of actual messages sent), communication locality
(defined as the maximal degree of a party in the induced communication graph of the protocol
execution [BGT13]), and per-party communication requirements (measuring how communication is
split across parties).

The classical lower bound of Dolev and Reischuk [DR85] showed that Ω(n + t2) messages are
necessary for deterministic protocols (a cubic message complexity is also sufficient facing any linear
number of corruptions [DR85, DS83, MR21]1). This result came as part of several seminal im-
possibility results for deterministic protocols presented in the ’80s, concerning feasibility [FLP83],
resiliency [LSP82, FLM86], round complexity [FL82, DS83], and connectivity [Dol82, FLM86].
Those lower bounds came hand in hand with feasibility results initiated by Ben-Or [Ben83] and
Rabin [Rab83], as well as Dolev and Strong [DS83], showing that randomization and cryptography
are invaluable tools in achieving strong properties within broadcast protocols.

As opposed to bounds on feasibility, resiliency, and round complexity, the impossibility of [DR85]
held for over 20 years, in both the honest- and dishonest-majority settings. Recently, there has been
progress in the honest-majority setting, with several works demonstrating how randomization and
cryptography can be used to bypass the classical communication complexity bound and achieve sub-
quadratic communication: with information-theoretic security [KSSV06, KS09, KS11, BGH13] or
with computational security under cryptographic assumptions [CM19, ACD+19, CKS20, BKLL20,
BCG21]; some of these protocols even achieve poly-logarithmic locality and “balanced” sub-linear
communication cost per party. While the security of some of these constructions holds against
a static adversary that specifies corruptions before the protocol’s execution begins, some of these
protocols are even secure against a weakly adaptive adversary; that is, an adversary that cannot
retract messages sent by a party upon corrupting that party. Abraham et al. [ACD+19] showed
that this relaxation is inherent for sub-quadratic broadcast, even for randomized protocols, by
demonstrating an Ω(t2) communication lower bound in the presence of a strongly rushing adversary;
that is, an adversary that can “drop” messages by corrupting the sender after the message is sent
but before it is delivered — this ability is known as after-the-fact removal.

Focusing on the dishonest-majority setting, however, comparatively little is known about com-
munication complexity. Here, the most communication-efficient broadcast constructions are based
on the protocol of Dolev and Strong [DS83], and broadcast with o(nt) messages has not been
achieved even using randomization and cryptography. The state-of-the-art protocols, for a con-
stant fraction t = Θ(n) of corruptions, are due to Chan et al. [CPS20] in the weakly adaptive

1We note that [DR85, DS83, MR21] rely on cryptography, so they are not deterministic per se; however, these
protocols make a black-box use of the cryptographic primitives and are deterministic otherwise.
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setting under a trusted setup assumption, and to Tsimos et al. [TLP22] in the static setting under
a weaker setup assumption; however, both works require Ω(nt) communication, namely Õ(n2).2 On
the other hand, the only nontrivial ω(n) communication lower bounds are those discussed above,
restricted to deterministic protocols, or against strong adaptive adversaries.

1.1 Our Contributions

In this work, we explore the achievable communication complexity of broadcast in the dishonest-
majority setting. We provide new communication lower bounds in this space, which hold against
arbitrary cryptographic and setup assumptions, as well as a simple protocol showing near tightness
of our first bound. Our results consider a synchronous communication model: lower bounds in
this model immediately translate into lower bounds in the asynchronous and partially synchronous
models, whereas protocols in the latter models can only tolerate t < n/3 corruptions [DLS88]
implying that synchrony is inherently needed for our protocol construction.

Static adversary. We begin with the setting of static corruptions. We demonstrate a simple
modification to the protocol of Chan et al. [CPS20], incorporating techniques from Tsimos et
al. [TLP22], which obtains a new protocol with essentially optimal Õ(n) communication. The
resulting protocol relies on the same assumptions as [CPS20]: namely, cryptographic verifiable
random functions (VRFs)3 and a trusted public-key infrastructure (PKI) setup, where the keys for
each party are honestly generated and distributed. Further, the protocol is resilient against any
constant fraction of static corruptions as in [TLP22], and achieves balanced Õ(1) cost per party.

Proposition 1.1 (sub-quadratic broadcast facing a constant fraction of static corruptions). Let
0 < ε < 1 be any constant. Assuming a trusted-PKI for VRFs and signatures, it is possible
to compute broadcast with Õ(n) total communication (Õ(1) per party) facing a static adversary
corrupting (1− ε) · n parties.

Perhaps more interestingly, in the regime of n − o(n) static corruptions, we demonstrate a
feasibility tradeoff between resiliency and communication that nearly tightly complements the above
upper bound. We show that resilience in the face of only ε(n) · n honest parties, for ε(n) ∈ o(1),
demands message complexity scaling as Ω(n/ε(n)). Note that a lower bound on message complexity
is stronger than for communication complexity, directly implying the latter. Our lower bound holds
for randomized protocols, given any cryptographic assumption and any setup information that is
generated by an external trusted party and given to the parties before the beginning of the protocol,
including the assumptions of the above upper bound.

Theorem 1.2 (communication lower bound for static corruptions). Let ε(n) ∈ o(1). If there
exists a broadcast protocol that is secure against (1− ε(n)) · n static corruptions, then the message
complexity of the protocol is Ω(n · 1

ε(n)).

For example, for n − n/ logd(n) corruptions with a constant d ≥ 1 (i.e., ε(n) = log−d(n)), the
message complexity must be Ω(n·logd(n)). For n−

√
n corruptions (i.e., ε(n) = 1/

√
n), the message

2As standard in relevant literature, in this work Õ notation hides polynomial factors in log(n) as well as in the
cryptographic security parameter κ.

3A verifiable random function [MRV99] is a pseudorandom function that provides a non-interactively verifiable
proof for the correctness of its output.
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complexity must be Ω(n ·
√
n). And for n− c corruptions with a constant c > 1 (i.e., ε(n) = c/n),

the message complexity must be Ω(n2), in particular meaning that sub-quadratic communication
is impossible in this regime.

As noted, Theorem 1.2 holds for any cryptographic and setup assumptions. This captures,
in particular, PKI-style setup (such as the VRF-based PKI of Chan et al. [CPS20]) in which the
trusted party samples a private/public key-pair for each party and gives each party its private key
together with the vector of all public keys. It additionally extends to even stronger, more involved
setup assumptions for generating correlated randomness beyond a product distribution, e.g., setup
for threshold signatures where parties’ secret values are nontrivially correlated across one another.

Weakly adaptive adversary. The lower bound of Theorem 1.2 carries over directly to the
setting of weakly adaptive adversaries. Shifting back to the regime of a constant fraction of corrup-
tions, one may naturally ask whether a protocol such as that from Proposition 1.1 can also exist
within this regime.

Unfortunately, given a few minutes thought one sees that a balanced protocol with polylogarith-
mic per-party communication as demonstrated by Proposition 1.1 cannot translate to the weakly
adaptive setting. The reason is that if the sender party speaks to at most t other parties, then the
adaptive adversary can simply corrupt each receiving party and drop the message, thus blocking
any information of the sender’s input from reaching honest parties.

However, this attack applies only to the unique sender party. Indeed, non-sender parties con-
tribute no input to the protocol to be blocked; and, without the ability to perform “after-the-fact”
message removal, a weakly adaptive adversary cannot prevent communication from being received
by a party without a very large number of corruptions.

We therefore consider the locality of non-sender parties, and ask whether sublinear locality is
achievable. Our third result answers this question in the negative. That is, we show an efficient
adversary who can force any party of its choosing to communicate with a large number of neighbors.
Note that this in particular lower bounds the per-party communication complexity of non-sender
parties.

Theorem 1.3 (non-sender locality facing adaptive corruptions). Let 0 < k < (n− 1)/2 and let π
be an n-party broadcast protocol secure against t = n/2 + k adaptive corruptions. Then, for any
non-sender party Pi∗ there exists a PPT adversary that can force the locality of Pi∗ to be larger
than k, except for negligible probability.

For example, for k ∈ Θ(n), e.g., a constant fraction t = 0.51 · n of corruptions, the locality of
Pi∗ must be Θ(n), thus forming a separation from Proposition 1.1 for the locality of non-sender
parties. Similarly to Theorem 1.2, this bound holds in the presence of any correlated-randomness
setup and for any cryptographic assumptions.

We remark that our bound further indicates a design requirement for any protocol attempting
to achieve sub-quadratic o(n2) communication complexity within this setting. To obtain o(n2)
communication, it must of course be that nearly all parties have sublinear communication locality.
Our result shows that any such protocol must include instructions causing a party to send out
messages to a linear number of other parties upon determining that it is under attack.

Summary. For completeness, Table 1 summarizes our results alongside prior work.

3



setup corruptions total com. (non-sender)
locality ref.

adaptive
strongly

any
bare pki

t = Θ(n)
t < n

Ω(n2)
O(n3)

Ω(n)
n

[ACD+19]
[DS83]

adaptive
weakly

any
trusted pki

t = Θ(n)
t = Θ(n) Õ(n2)

Ω(n)
O(n)

Thm. 1.3
[CPS20]

(deterministic)
any

t = Θ(n) Ω(n2) Ω(n) [DR85]

bare pki t = Θ(n) Õ(n2) Õ(1) [TLP22]
static trusted pki t = Θ(n) Õ(n) Õ(1) Prop. 1.1

any

e.g., t = n−O(1)
e.g., t = n−

√
n

e.g., t = n− n
polylog(n)

t = (1− ε(n)) · n, ε(n) ∈ o(1)

Ω(n2)
Ω(n ·

√
n)

Ω(n · polylog(n))
Ω(n · 1

ε(n) )

Thm. 1.2

Table 1: Communication requirements of dishonest-majority (synchronous) broadcast. We consider the standard,
property-based definition of broadcast (see Definition 2.1). For each type of adversary (strongly adaptive, weakly
adaptive, and static), we consider the state-of-the-art protocols and lower bounds in terms of setup, number of
corruptions, total communication and (non-sender) locality. For setup we distinguish bare PKI, where each party
locally generates its key pair, as opposed to trusted PKI, where all keys are generated by a trusted dealer. Reference
[DR85] is only for deterministic protocols.

1.2 Technical Overview

The proof of Proposition 1.1 follows almost immediately from [CPS20] and [TLP22]. We therefore
focus on our lower bounds.

Communication lower bound for static corruptions. The high-level idea of the attack
underlying Theorem 1.2 is to split all parties except for the sender Ps into two equal-size subsets,
A and B, randomly choose a set S of size ε(n) − 1 parties in A and a party Pi∗ ∈ B, and corrupt
all parties but S ∪ {Pi∗} (as illustrated in Figure 1). The adversary proceeds by running two
independent executions of the protocol. In the first, the sender runs an execution on input 0
towards A, and all corrupted parties in ({Ps} ∪ A) \ S ignore all messages from parties in B
(pretending they all crashed). In the second, the sender runs an execution on input 1 towards B,
and all corrupted parties in ({Ps} ∪ B) \ {Pi∗} ignore all messages from parties in A.

As long as the honest parties in S and the honest party Pi∗ do not communicate, the adversary
will make them output different values. This holds because, conditioned on no communication
between S and Pi∗ , the view of honest parties in S is indistinguishable from a setting where the
adversary crashes all parties in B and an honest sender has input 0; in this case, all parties in A
(and in particular in S) must output 0. Similarly, conditioned on no communication between S
and Pi∗ , the view of Pi∗ is indistinguishable from a setting where the adversary crashes all parties
in A and an honest sender has input 1; in this case, all parties in B (and in particular Pi∗) must
output 1.

The challenge now is to argue that the honest parties in S and the honest party Pi∗ do not
communicate with noticeable probability. Note that this does not follow trivially from the overall
low communication complexity, as the communication patterns unfold as a function of the adver-
sarial behavior, which in particular depends on the choice of S and Pi∗ . The argument instead
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Ps

A

Pi∗
S

B

Corrupt HonestKey:

Figure 1: The partition of the parties used in the proof of Theorem 1.2. All the parties except for
the sender Ps are partitioned into two equal-size sets, A and B. A subset S ⊆ A of size ε(n) · n− 1
and a party Pi∗ ∈ B are uniformly sampled, and the adversary statically corrupts all parties but
S ∪ {Pi∗}. The goal of the attack is to ensure that S and Pi∗ do not communicate, thus forcing
them to output different bits.

follows from a series a delicate steps that compare the view of parties in this execution with other
adversarial strategies.

The underlying trick is to analyze the event of communication between S and Pi∗ by splitting
into two sub-cases: when S speaks to Pi∗ before receiving any message from Pi∗ , and when Pi∗
speaks to S before receiving any message from S. (Note, these events are not disjoint.) The
important observation is that before any communication is received by the other side, then each
side’s view in the attack is identically distributed as in a hypothetical execution in which the
corresponding set A or B crashes from the start. Since these simple crash adversarial strategies are
indeed independent of S and Pi∗ , then we can easily analyze and upper bound the probability of
S and Pi∗ communicating within their hypothetical executions. To finalize the argument, we carry
this analysis over to show that with noticeable probability Pi∗ does not communicate with S in an
actual execution with the original adversary.

Locality lower bound for weakly adaptive corruptions. We proceed to consider the setting
of weakly adaptive corruptions. As mentioned above, in the adaptive setting it is easy to see that
the sender must communicate with many parties, since otherwise the adversary may crash every
party that the sender communicates with; therefore, the challenging part is to focus on non-sender
parties. Further, when considering strong adaptive adversaries that can perform after-the-fact
message removal by corrupting the sender, every honest party must communicate with a linear
number of parties [ACD+19]. In our setting, we do not consider such capabilities of the adversary.
In particular, once the adversary learns that an honest party has chosen to send a message, this
message cannot be removed or changed.

Unlike our previous lower bound which assumed n− o(n) corruptions, here we consider n/2 + k
corruptions for k ∈ O(n), so we cannot prevent sets of honest parties from communicating with
each other. Our approach, instead, is to keep the targeted party Pi∗ confused about the output of
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other honest parties.
More concretely, our adversarial strategy splits all parties but the sender and Pi∗ into disjoint

equal-size sets S0 and S1 of parties, samples a random bit b and corrupts the sender party and the
parties in S1−b. The adversary communicates with S0 as if the sender’s input is 0 and all parties in
S1 have crashed, and at the same time plays towards S1 as if the sender’s input is 1 and all parties
in S0 have crashed (as illustrated in Figure 2). Although the adversary cannot prevent honest
parties from Sb from sending messages to the targeted party Pi∗ , it can corrupt every party that
receives a message from Pi∗ . The effect of this attack is that, although Pi∗ can tell that the sender
is cheating, Pi∗ cannot know whether parties in S0 or parties in S1 are honest. And, moreover,
Pi∗ cannot know whether the remaining honest parties know that the sender is cheating or if they
believe that the sender is honest and other parties crashed—in which case they must output a bit
(either 0 if S0 are honest or 1 if S1 are honest). To overcome this attack, Pi∗ must communicate
with sufficiently many parties such that the adversary’s corruption budget will run out, i.e., with
output locality at least k.

Start of execution: sample b← {0, 1},
then corrupt all parties in S1−b.

Corrupt HonestKey:

During execution: corrupt any honest
party that receives a message from Pi∗ .

Ps

S1−b

Pi∗

SbS1−b Sb

Ps Pi∗

Figure 2: The partition of the parties used in the proof of Theorem 1.3. At the start of the
execution, the adversary partitions all parties except for the sender Ps and targeted party Pi∗
into equal-size sets S0 and S1, and corrupts the parties in S1−b (for a random bit b). During the
execution, whenever an honest party Pj ∈ Sb receives a message from the targeted party Pi∗ , the
adversary corrupts Pj .

1.3 Further Related Work

Since the classical results from the ’80s, a significant line of work has been devoted to understanding
the complexity of broadcast protocols.4

4In this work we consider broadcast protocols that achieve the usual properties of termination, agreement, and
validity. We note that stronger notions of broadcast have been considered in the literature, e.g., in the adaptive
setting, the works of [HZ10, GKKZ11, CGZ23] study corruption fairness ensuring that once any receiver learns the
sender’s input, the adversary cannot corrupt the sender and change its message. As our main technical contributions
are lower bounds, focusing on weaker requirements yields stronger results.
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Communication complexity. In the honest-majority regime, we know of several protocols,
deterministic [BGP92, CW92, MR21] or randomized [Mic17, FLL21], that match the known lower
bounds [DR85, ACD+19] for strongly adaptive adversaries. When considering static, or weakly
adaptive security, a fruitful line of works achieved sub-quadratic communication, with information-
theoretic security [KSSV06, KS09, KS11, BGH13] or with computational security [CM19, ACD+19,
CKS20, BKLL20, BCG21] .

In the dishonest-majority regime, the most communication-efficient broadcast constructions are
based on the protocol of Dolev and Strong [DS83]. This protocol is secure facing any number
of strongly adaptive corruptions and the communication complexity is O(n3). When considering
weakly adaptive corruptions, Chan et al. [CPS20] used cryptography and trusted setup to dynam-
ically elect a small, polylog-size committee in each round and improved the communication to
Õ(n2). In the static-corruption setting, Tsimos et al. [TLP22] achieved Õ(n2) communication by
running the protocol of [DS83] over a “gossiping network” [DGH+87, KSSV00]. This work fur-
ther achieved amortized sub-quadratic communication facing weakly adaptive corruptions when all
parties broadcast in parallel.

A line of works focused on achieving balanced protocols, where all parties incur the same work in
terms of communication complexity [KS11, BCG21, ADD+22]. The work of [BCG21] also showed
lower bounds on the necessary setup and cryptographic assumptions to achieve balanced protocols
when extending almost-everywhere agreement to full agreement.5 Message dissemination protocols
[DXR21, LZMT22] have also been proven useful for constructing balanced protocols.

The work in [HKK08] showed that without trusted setup assumptions, at least one party must
send Ω(n1/3) messages, in the static filtering model, where each party must decide which set of
parties it will accept messages from in each round before the rounds begins. We remark that our
lower bounds hold also given trusted setup, and in the dynamic-filtering model (in which sub-
quadratic upper bounds have been achieved).

Connectivity. Obtaining communication-efficient protocols inherently relies on using a strict
subgraph of the communication network. Early works [Dol82, FLM86] showed that deterministic
broadcast is possible in an incomplete graph only if the graph is (t+ 1)-connected. The influential
work of King et al. [KSSV06] laid a path not only for randomized Byzantine agreement with
sub-quadratic communication, but also for protocols that run over a partial graph [KS09, KS11,
BGH13, BCG21]. The graphs induced by those protocols yield expander graphs, and the work of
[BCDH18] showed that in the strongly adaptive setting and facing a linear number of corruptions,
no protocol for all-to-all broadcast in the plain model (without PKI setup) can maintain a non-
expanding communication graph against all adversarial strategies. Further, feasibility of broadcast
with a non-expander communication graph, admitting a sub-linear cut, was demonstrated in weaker
settings [BCDH18].

Round complexity. In terms of round complexity, when considering deterministic protocols,
t+ 1 rounds are known to be sufficient [PSL80, DS83, GM93] and necessary [FL82, DS83]. Ben-Or
[Ben83] and Rabin [Rab83], showed that this lower bound can be overcome using randomiza-

5Almost-everywhere agreement [DPPU88] is a relaxed problem in which all but an o(1) fraction of the parties must
reach agreement. For this relaxation, King et al. [KSSV06] showed an efficient protocol, with poly-logarithmic locality,
communication, and rounds. This protocol serves as a stepping stone to several sub-quadratic Byzantine agreement
protocols, by extending almost-everywhere agreement to full agreement [KSSV06, KS09, KS11, BGH13, BCG21].

7



tion. In the case of fixed-round protocols, the works of [FM97, Mic17, FLL21] showed protocols
achieving 2−r error within O(r) rounds. On the other hand, Karlin and Yao [KY86] and Chor,
Merritt and Shmoys [CMS89] showed that any r-round protocol incurs an error probability of
r−r when the number of corruptions is linear, a bound that has recently been matched by Gh-
inea, Goyal and Liu-Zhang [GGL22]. For protocols with probabilistic termination, randomized
broadcast with expected-constant number of rounds was achieved in the honest-majority setting
[FM97, FG03, KK06], even under composition [CCGZ19, CCGZ21]. It was further shown that
two rounds are unlikely to suffice for reaching agreement, even with weak guarantees, as long as
t > n/4 [CHM+22] (as opposed to three rounds [Mic17]). In the dishonest-majority setting, there
are sublinear-round broadcast protocols [GKKO07, FN09, CPS20, WXDS20], and even expected-
constant-round protocols [WXSD20, SLM+23]. These results match the lower bound of Ω(n/(n−t))
rounds (allowing up to constant failure probability) [GKKO07].

Outline of Paper

The paper is organized as follows. In Section 2, preliminary content including notations, security,
and network model is introduced. In Section 3, we present the message-complexity lower bound
for static corruptions. In Section 4, we present the locality lower bound for weakly adaptive
corruptions. Finally, in Section 5, we describe a statically secure broadcast protocol with sub-
quadratic communication and poly-logarithmic locality.

2 Preliminaries
In this section, we present the security model and preliminary definitions.

Notations. We use calligraphic letters to denote sets or distributions (e.g., S), uppercase for
random variables (e.g., R), lowercase for values (e.g., r), and sans-serif (e.g., A) for algorithms (i.e.,
Turing machines). For n ∈ N, let [n] = {1, . . . , n}. Let poly denote the set all positive polynomials
and let PPT denote a probabilistic (interactive) Turing machines that runs in strictly polynomial
time. We denote by κ the security parameter. A function ν : N 7→ [0, 1] is negligible, denoted
ν(κ) = negl(κ), if ν(κ) < 1/p(κ) for every p ∈ poly and sufficiently large κ. Moreover, we say that
ν : N 7→ [0, 1] is noticeable if ν(κ) ≥ 1/p(κ) for some p ∈ poly and sufficiently large κ. When using
the Õ(n) notation, polynomial factors in log(n) and the security parameter κ are omitted.

Protocols. All protocols considered in this paper are PPT (probabilistic polynomial time): the
running time of every party is polynomial in the (common) security parameter κ, given as a unary
string. For simplicity, we consider Boolean-input Boolean-output protocols, where apart from the
common security parameter, a designated sender Ps has a single input bit, and each of the honest
parties outputs a single bit. We note that our protocols can be used for broadcasting longer strings,
with an additional dependency of the communication complexity on the input-string length.

As our main results are lower bounds, we consider protocols in the correlated randomness model;
that is, prior to the beginning of the protocol π a trusted dealer samples values (r1, . . . , rn)← Dπ
from an efficiently sampleable known distribution Dπ and gives the value ri to party Pi. This model
captures, for example, a trusted PKI setup for digital signatures and verifiable random functions
(VRFs), where the dealer samples a public/private keys for each party and hands to each Pi its
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secret key and a vector of all public keys; this is the setup needed for our upper bound result in
Section 5. The model further captures more involved distributions, such as setup for threshold
signatures, information-theoretic PKI [PW92], pairwise correlations for oblivious transfer [Bea95],
and more.

We define the view of a party Pi as its setup information ri, its random coins, possibly its input
(in case Pi is the sender), and its set of all messages received during the protocol.

Communication model. The communication model that we consider is synchronous, meaning
that protocols proceed in rounds. In each round every party can send a message to every other
party over an authenticated channel, where the adversary can see the content of all transmitted
messages, but cannot drop/inject messages. We emphasize that our lower bounds hold also in
the private-channel setting which can be established over authenticated channels using public-key
encryption and a PKI setup; our protocol construction only requires authenticated channels. It
is guaranteed that every message sent in a round will arrive at its destination by the end of that
round. The adversary is rushing in the sense that it can use the messages received by corrupted
parties from honest parties in a given round to determine the corrupted parties’ messages for that
round.

Adversary model. The adversary runs in probabilistic polynomial time and may corrupt a
subset of the parties and instruct them to behave in an arbitrary (malicious) manner. Some of our
results (the lower bound in Section 3 and the protocol in Section 5) consider a static adversary
that chooses which parties to corrupt before the beginning of the protocol, i.e., before the setup
information is revealed to the parties. Note that this strengthens the lower bound, but provides
a weaker feasibility result. Our second lower bound (Section 4) considers an adaptive adversary
that can choose which parties to corrupt during the course of the protocol, based on information it
dynamically learns. We consider the atomic-multisend model (also referred to as a weakly adaptive
adversary), meaning that once a party Pi starts sending messages in a given round, it cannot be
corrupted until it completes sending all messages for that round, and every message sent by Pi
is delivered to its destination. This is weaker than the standard model for adaptive corruptions
[Fel88, CFGN96, Can01] (also referred to as a strongly rushing adversary), which enables the
adversary to corrupt a party at any point during the protocol and drop/change messages that were
not delivered yet. Again, we note that the weaker model we consider yields a stronger lower bound.
Further, in the stronger model, a result by Abraham et al. [ACD+19] rules out sub-quadratic
protocols with linear resiliency, even in the honest-majority setting.

Broadcast. We consider the standard, property-based definition of broadcast.

Definition 2.1 (Broadcast protocol). An n-party protocol π, where a distinguished sender Ps
holds an initial input message x ∈ {0, 1}, is a broadcast protocol secure against t corruptions, if the
following conditions are satisfied for any PPT adversary that corrupts up to t parties:

• Termination: There exists an a-priori-known round R such that the protocol is guaranteed
to complete within R rounds (i.e., every so-far honest party produces an output value).

• Agreement: For every pair of parties Pi and Pj that are honest at the end of the protocol,
if party Pi outputs yi and party Pj outputs yj, then yi = yj with all but negligible probability
in κ.

9



• Validity: If the sender is honest at the end of the protocol, then for every party Pi that is
honest at the end of the protocol, if Pi outputs yi then yi = x with all but negligible probability
in κ.

The communication locality [BGT13, BCDH18] of a protocol corresponds to the maximal degree
of any honest party in the communication graph induced by the protocol execution. While defining
the incoming communication edges to a party can be subtle (as adversarial parties may “spam”
honest parties; see e.g., a discussion in [BCDH18]), out-edges of honest parties are clearly identifiable
from the protocol execution. In this paper, we will focus on this simpler notion of output-locality,
and use the terminology locality of the protocol to simply refer to this value. Our results provide
a lower bound on output locality of given protocols, which in turn directly lower bounds standard
locality as in [BGT13, BCDH18].

Definition 2.2 (Output locality). An n-party t-secure broadcast protocol π with setup distribution
Dπ has locality `, if for every PPT adversary Adv corrupting up to t parties and every sender input
x it holds that

Pr [OutEdges(π,Adv,Dπ, κ, x) > `] ≤ negl(κ),

where OutEdges(π,Adv,Dπ, κ, x) is the random variable of the maximum number of parties any
honest party sends messages to, defined by running the protocol π with the adversary Adv and
setup distribution Dπ, security parameter κ and sender input x. The probability is taken over the
random coins of the honest parties, the random coins of Adv, and the sampling coins from the setup
distribution Dπ.

3 Message-Complexity Lower Bound for Static Corruptions
We begin with the proof of Theorem 1.2. The high-level idea of the lower bound is that if a
protocol has o(n2) messages, then, with noticeable probability, a randomly chosen pair of parties
do not communicate even under certain attacks.

Theorem 3.1 (Theorem 1.2, restated). Let ε(n) ∈ o(1). If there exists a broadcast protocol that
is secure against (1 − ε(n)) · n static corruptions, then the message complexity of the protocol is
Ω(n · 1

ε(n)).

Proof. Let ψ(n) = 1
12ε(n) and let π be a broadcast protocol with message complexity MC = n ·ψ(n)

that is secure against (1− ε(n)) · n static corruptions. (In fact, we will prove a stronger statement
than claimed, where the message complexity of the protocol must be greater than n · 1

12ε(n) .)
Without loss of generality, we assume that the setup information sampled before the beginning of
the protocol (r1, . . . , rn)← Dπ includes the random string used by each party. That is, every party
Pi generates its messages in each round as a function of ri, possibly its input (if Pi is the sender),
and its incoming messages in prior rounds. Again, without loss of generality, let P1 denote be the
sender, and split the remaining parties to two equal-size subsets A and B (for simplicity, assume
that n is odd).

Consider the adversary Adv1 that proceeds as follows:

1. Choose randomly a set S ⊆ A of size ε(n) · n− 1 and a party Pi∗ ∈ B.

2. Corrupt all parties except for S ∪ {Pi∗}.
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3. Receive the setup information of the corrupted parties {ri | Pi /∈ S ∪ {Pi∗}}.

4. Maintain two independent executions, denoted Exec0 and Exec1, as follows.

• In the execution Exec0, the adversary runs in its head the parties in A \ S honestly on
their setup information {ri | Pi ∈ A \ S} and a copy of the sender, denoted P0

1, running
on input 0 and setup information r1.
The adversary communicates on behalf of the virtual parties in (A \ S) ∪ {P0

1} with the
honest parties in S according to this execution. Every corrupted party in B\{Pi∗} crashes
in this execution, and the adversary drops every message sent by the virtual parties in
(A \ S) ∪ {P0

1} to Pi∗ and does not deliver any message from Pi∗ to these parties.
• In the execution Exec1, the adversary runs in its head the parties in B \ {Pi∗} honestly

on their setup information {ri | Pi ∈ B \ {Pi∗}} and a copy of the sender, denoted P1
1,

running on input 1 and setup information r1.
The adversary communicates on behalf of the virtual parties in (B \ {Pi∗}) ∪ {P1

1} with
the honest Pi∗ according to this execution. Every corrupted party in A \ S crashes in
this execution, and the adversary drops every message sent by the virtual parties in
(B \ {Pi∗}) ∪ {P1

1} to honest parties in S and does not deliver any message from S to
these parties.

We start by defining a few notations. Consider the following random variables

SetupAndCoins = (R1, . . . , Rn, S, I
∗) ,

where R1, . . . , Rn are distributed according to Dπ, and S takes a value uniformly at random in
the subsets of A of size ε(n) · n − 1, and I∗ takes a value uniformly at random in B. During the
proof, Ri represents the setup information (including private randomness) of party Pi, whereas the
pair (S, I∗) corresponds to the random coins of the adversary Adv1 (used for choosing S and Pi∗).
Unless stated otherwise, all probabilities are taken over these random variables.

Let AttackMain be the random variable defined by running the protocol π with the adversary
Adv1 over SetupAndCoins. That is, AttackMain consists of a vector of n + 1 views: of the
honest parties in S ∪ {PI∗} and of the corrupted parties in A\S and B \ {PI∗}, where the ith view
is denoted by VIEWmain

i , and of two copies of the sender P0
1 and P1

1, denoted VIEWmain
1-0 and VIEWmain

1-1 ,
respectively. Each view consists of the setup information Ri, possibly the input, and the set of
received messages in each round. Specifically,

AttackMain =
(

VIEWmain
1-0 ,VIEWmain

1-1 ,VIEWmain
2 , . . . ,VIEWmain

n

)
.

Denote by Emain
disconnect the event that PI∗ and S do not communicate in AttackMain; that is,

PI∗ does not send any message to parties in S (according to VIEWmain
I∗ ) and every party PJ with

J ∈ S does not send any message to PI∗ (according to VIEWmain
J ). We proceed to prove that the

event Emain
disconnect occurs with noticeable probability.

Lemma 3.2. Pr
[
Emain

disconnect
]
≥ 1

3 .

Proof. Denote by Emain
S→P the event that a party in S sends a message to PI∗ in AttackMain, and

PI∗ did not send any message to any party in S in any prior round. We begin by upper bounding
the probability of Emain

S→P.
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Claim 3.3. Pr
[
Emain

S→P
]
≤ 1

3 .

Proof. Consider a different adversary for π, denoted AdvB, that statically corrupts all parties in
B and crashes them (all other parties including the sender are honest). Let AttackCrashB
denote the random variable defined by running the protocol π with the adversary AdvB over
SetupAndCoins, in which the honest sender’s input is 1. That is, AttackCrashB consists of a
vector of n/2 + 1 views: of the honest parties in A, where the ith view is denoted by VIEWcrash-B

i ,
and the sender P1 denoted by VIEWcrash-B

1 . Each view consists of the setup information Ri, the
input 1 for P1, and the set of received messages in each round. Specifically,

AttackCrashB =
(

VIEWcrash-B
i

)
i∈A∪{1}

.

Denote by Ecrash-B
S→P the event that a party in S sends a message to PI∗ in AttackCrashB such

that PI∗ did not send any message to any party in S in any prior round. Note that as long as
parties in S do not receive a message from PI∗ until some round ρ in AttackMain, their joint
view is identically distributed as their joint view in AttackCrashB up until round ρ. Therefore,

Pr
[
Emain

S→P

]
= Pr

[
Ecrash-B

S→P

]
.

Note that, by the definition of AdvB, the distribution of AttackCrashB, and therefore
Pr
[
Ecrash-B

S→P

]
, is independent of the random variables S and I∗. Hence, one can consider the mental

experiment where R1, . . . , Rn are first sampled for setting AttackCrashB, and later, S and I∗

are independently sampled at random. This does not affect the event Ecrash-B
S→P .

Recall that the message complexity of π is MC = n · ψ(n) for ψ(n) = 1
12ε(n) . Further, S is of

size |S| = ε(n) ·n−1 and |A| = |B| = n/2. Observe that the message complexity upper-bounds the
number of communication edges between A and B. Further, the probability that a party in S talks
first to PI∗ is upper-bounded by the probability that there exists a communication edge between
S and PI∗ . Since S and I∗ are uniformly distributed in A and B, respectively, we obtain that this
probability is bounded by

Pr
[
Ecrash-B

S→P

]
≤ MC · 1

|B|
· |S|
|A|

= n · ψ(n) · 1
n/2 ·

ε(n) · n− 1
n/2

≤ n · ψ(n) · 1
n/2 ·

ε(n) · n
n/2

= 4 · ψ(n) · ε(n)

= 4 · ε(n)
12 · ε(n) = 1

3 .

Similarly, denote by Emain
P→S the event that PI∗ sends a message to a party in S in AttackMain,

such that no party in S sent a message to PI∗ in any prior round; i.e., changing the order from
Emain

S→P. We upper bound the probability of Emain
P→S in an analogous manner.

Claim 3.4. Pr
[
Emain

P→S
]
≤ 1

3 .
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Proof. Consider a different adversary for π, denoted AdvA, that statically corrupts all parties in A
and crashes them. Let AttackCrashA be a random variable defined by running the protocol π
with the adversary AdvA over SetupAndCoins, in which the honest sender’s input is 0. That
is, AttackCrashA consists of a vector of n/2 + 1 views: of the honest parties in B, where the
ith view is denoted by VIEWcrash-A

i , and the sender P1 denoted by VIEWcrash-A
1 . Each view consists

of the setup information Ri, the input 0 for P1, and the set of received messages in each round.
Specifically,

AttackCrashA =
(

VIEWcrash-A
i

)
i∈B∪{1}

.

Denote by Ecrash-A
P→S the event that PI∗ sends a message to a party in S in AttackCrashA, and

no party in S sent a message to PI∗ in any prior round. As long as PI∗ does not receive a message
from parties in S until some round ρ in AttackMain, its view is identically distributed as its view
in AttackCrashA up until round ρ. Therefore,

Pr
[
Emain

P→S

]
= Pr

[
Ecrash-A

P→S

]
.

An analogue analysis to the previous case shows that Pr
[
Ecrash-A

P→S

]
≤ 1/3, as desired.

Combined together, we get that

Pr
[
¬Emain

disconnect

]
= Pr

[
Emain

S→P ∪ Emain
P→S

]
≤ Pr

[
Emain

S→P

]
+ Pr

[
Emain

P→S

]
≤ 2

3 .

Therefore, Pr
[
Emain

disconnect
]
≥ 1/3. This concludes the proof of Lemma 3.2.

We proceed to show that conditioned on Emain
disconnect, agreement of the protocol π is broken. Denote

by Y main
i the random variable denoting the output of Pi according to AttackMain. Further, denote

by J∗ the random variable corresponding to the minimal value in S.

Lemma 3.5. Pr
[
Y main
I∗ 6= Y main

J∗ | Emain
disconnect

]
≥ 1− negl(κ).

Proof. We begin by showing that conditioned on Emain
disconnect, party PI∗ outputs 0 with overwhelming

probability.

Claim 3.6. Pr
[
Y main
I∗ = 0 | Emain

disconnect
]
≥ 1− negl(κ).

Proof. Consider again the adversary AdvA that statically corrupts all parties in A and crashes
them, with the corresponding random variable AttackCrashA. Denote by Ecrash-A

disconnect the event
that PI∗ does not send any message to parties in S (according to VIEWcrash-A

I∗ ). It holds that

Pr
[
Ecrash-A

disconnect

]
= Pr

[
¬Ecrash-A

P→S

]
= 1− Pr

[
Ecrash-A

P→S

]
≥ 2/3.

First, since the sender is honest and has input 0, by validity all honest parties in B output 0 in
such execution, except for negligible probability. This holds even conditioned on Ecrash-A

disconnect (since
Ecrash-A

disconnect occurs with noticeable probability). Denote by Y crash-A
i the random variable denoting the

output of Pi according to AttackCrashA. Then,

Pr
[
Y crash-A
I∗ = 0

∣∣∣ Ecrash-A
disconnect

]
≥ 1− negl(κ). (1)
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Second, note that conditioned on Ecrash-A
disconnect (by an analogous analysis of Lemma 3.2, this prob-

ability is non-zero), the view of PI∗ is identically distributed in AttackCrashA as its view in
AttackMain conditioned on Emain

disconnect. Indeed, conditioned on Emain
disconnect, party PI∗ receives mes-

sages only from corrupt parties in AttackMain, which are consistently simulating precisely this
execution where A has crashed and the sender has input 0. Therefore,

Pr
[
Y crash-A
I∗ = 0

∣∣∣ Ecrash-A
disconnect

]
= Pr

[
Y main
I∗ = 0

∣∣∣ Emain
disconnect

]
. (2)

The proof follows from Equations 1 and 2. This concludes the proof of Claim 3.6.

We proceed to show that, conditioned on Emain
disconnect, parties in S output 1 with overwhelming

probability under the attack of Adv1. Recall that J∗ denotes the random variable corresponding to
the minimal value in S.

Claim 3.7. Pr
[
Y main
J∗ = 1 | Emain

disconnect
]
≥ 1− negl(κ).

Proof. The proof follows in nearly an identical manner. Namely, consider the adversary AdvB that
statically corrupts all parties in B and crashes them, and the random variable AttackCrashB.
Denote by Ecrash-B

disconnect the event that for every J ∈ S, party PJ does not send any message to PI∗

(according to VIEWcrash-B
J ). It holds that

Pr
[
Ecrash-B

disconnect

]
= Pr

[
¬Ecrash-B

S→P

]
= 1− Pr

[
Ecrash-B

S→P

]
≥ 2/3.

Since the sender is honest and has input 1, by validity all honest parties in A output 1 except
for negligible probability. This holds even conditioned on Ecrash-B

disconnect (since Ecrash-A
disconnect occurs with

noticeable probability). Denote by Y crash-B
i the random variable denoting the output of Pi according

to AttackCrashB, and recall that J∗ corresponds to the minimal value in S. Then,

Pr
[
Y crash-B
J∗ = 1

∣∣∣ Ecrash-B
disconnect

]
≥ 1− negl(κ). (3)

Conditioned on Ecrash-B
disconnect, the view of PJ∗ is identically distributed in AttackCrashB as its

view in AttackMain conditioned in Emain
disconnect. Therefore,

Pr
[
Y crash-B
J∗ = 1

∣∣∣ Ecrash-B
disconnect

]
= Pr

[
Y main
J∗ = 1

∣∣∣ Emain
disconnect

]
. (4)

The proof follows from Equations 3 and 4. This concludes the proof of Claim 3.7.

Since PI∗ and PJ∗ are honest, the proof of Lemma 3.5 follows from Claim 3.6 and Claim 3.7.

Collectively, we have demonstrated an adversarial strategy Adv1 that violates the agreement
property of protocol π with noticeable probability:

Pr
[
Y main
I∗ 6= Y main

J∗

]
= Pr

[
Y main
I∗ 6= Y main

J∗ | Emain
disconnect

]
· Pr

[
Emain

disconnect

]
+ Pr

[
Y main
I∗ 6= Y main

J∗ | ¬Emain
disconnect

]
· Pr

[
¬Emain

disconnect

]
≥ Pr

[
Y main
I∗ 6= Y main

J∗ | Emain
disconnect

]
· Pr

[
Emain

disconnect

]
≥ (1− negl(κ)) · 1

3 .

Note that the attack succeeds for any choice of distribution for setup information, and that the
adversarial strategy runs in polynomial time, thus applying even in the presence of computational
hardness assumptions. This concludes the proof of Theorem 3.1.

14



4 Locality Lower Bound for Adaptive Corruptions
We proceed with the proof of Theorem 1.3. Here we show how a weakly adaptive adversary that
can corrupt n/2+k parties can target any party of its choice and force a that party to communicate
with k neighbors. We refer to Section 1.2 for a high-level overview of the attack.

Theorem 4.1 (Theorem 1.3, restated). Let 0 < k < (n − 1)/2 and let π be an n-party broadcast
protocol secure against t = n/2 + k adaptive corruptions. Then, for any non-sender party Pi∗ there
exists a PPT adversary that can force the locality of Pi∗ to be larger than k, except for negligible
probability.

Proof. Let π be a broadcast protocol that is secure against t = n/2 + k adaptive corruptions.
Without loss of generality, we assume that the setup information sampled before the beginning of
the protocol (r1, . . . , rn)← Dπ includes the random string used by each party. That is, every party
Pi generates its messages in each round as a function of ri, possibly its input (if Pi is the sender),
and its incoming messages in prior rounds. Again, without loss of generality, let P1 denote be the
sender. Further, fix the party Pi∗ , and split the remaining parties (without P1 and Pi∗) to two
equal-size subsets S0 and S1 (for simplicity, assume that n is even).

Consider the following adversary Adv that proceeds as follows:

1. Wait for the setup phase to complete. Later on, whenever corrupting a party Pi, the adversary
receive its setup information ri.

2. Corrupt the sender P1.

3. Toss a random bit b← {0, 1} and corrupt all parties in S1−b.

4. Maintain two independent executions, denoted Exec0 and Exec1, as follows.

• In the execution Execb, the adversary runs in its head a copy of the sender, denoted Pb1,
honestly running on input b and setup r1. The adversary communicates on behalf of the
virtual party Pb1, and eventually corrupted parties in Sb, with all honest parties Sb∪{Pi∗}
according to this execution. The virtual parties in S1−b are emulated as crashed in this
execution.
Whenever Pi∗ sends a message to a party Pi ∈ Sb this party gets corrupted and ignores
this message (i.e., the adversary does not deliver messages from Pi∗ to Pi).

• In the execution Exec1−b, the adversary runs in its head the parties in S1−b honestly on
their setup information {ri | Pi ∈ S1−b} and a copy of the sender, denoted P1−b

1 , running
on input 1−b and setup r1. The adversary communicates on behalf of the virtual parties
in (S1−b) ∪ {P1−b

1 } with Pi∗ according to this execution. The honest parties in Sb are
emulated as crashed in this execution; that is, the adversary drops every message sent
by the virtual parties in (S1−b) ∪ {P1−b

1 } to Sb and does not deliver any message from
Sb to these parties.
Whenever Pi∗ sends a message to a party Pi ∈ S1−b this party ignores this message (i.e.,
the adversary does not deliver the message to Pi).

We start by defining a few notations. Consider the following random variables

SetupAndCoins = (R1, . . . , Rn, B) ,
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where R1, . . . , Rn are distributed according to Dπ, and B takes a value uniformly at random in
{0, 1}. During the proof, Ri represents the setup information (including private randomness) of
party Pi, whereas B corresponds to the adversarial choice of which set to corrupt. Unless stated
otherwise, all probabilities are taken over these random variables.

Let AttackMain be the random variable defined by running the protocol π with the adversary
Adv over SetupAndCoins. That is, AttackMain consists of a vector of n+1 views: of the parties
in Sb ∪ {PI∗}, of the corrupted parties in S1−b, where the ith view is denoted by VIEWmain

i , and
of two copies of the sender P0

1 and P1
1, denoted VIEWmain

1-0 and VIEWmain
1-1 , respectively. Each view

consists of the setup information Ri, possibly the input (for the sender), and the set of received
messages in each round. Specifically,

AttackMain =
(

VIEWmain
1-0 ,VIEWmain

1-1 ,VIEWmain
2 , . . . ,VIEWmain

n

)
.

Denote by Emain
low-locality the event that the output-locality of PI∗ is at most k in AttackMain;

that is, PI∗ sends messages to at most k parties (according to VIEWmain
I∗ ). If Pr[Emain

low-locality] = negl(κ),
then the proof is completed. Otherwise, it holds that Pr[Emain

low-locality] is non-negligible (in particular,
Pr[Emain

low-locality] > 0). We will show that conditioned on Emain
low-locality, agreement is broken. Denote by

Y main
i the random variable denoting the output of Pi according to AttackMain.
First, note that conditioned on Emain

low-locality, the view of Pi∗ is identically distributed no matter
which set Sb is corrupted.

Claim 4.2. For every β ∈ {0, 1} it holds that

Pr
[
Y main
i∗ = β | Emain

low-locality ∩ (B = 0)
]

= Pr
[
Y main
i∗ = β | Emain

low-locality ∩ (B = 1)
]
.

Proof. By the construction of Adv, for each β ∈ {0, 1} party Pi∗ receives from the parties in Sβ and
from P1 messages that correspond to an execution by honest parties on sender input β as if the
parties in S1−β all crashed, and where every party in Sβ that Pi∗ talks to ignores its message (since
Pi∗ talks to at most k parties conditioned on Emain

low-locality, the adversary can corrupt all of them).
Further, Pi∗ receives from the parties in S1−β and from P1 messages that correspond to a

simulated execution by honest parties on sender input 1− β as if the parties in Sβ all crashed, and
where every party in S1−β that Pi∗ talks to ignores its message.

Clearly, the view of Pi∗ is identically distributed in both cases; hence, its output bit is identically
distributed as well.

We proceed to show that conditioned on Emain
low-locality, party Pi∗ outputs 0 for B = 0 and outputs

1 for B = 1.

Claim 4.3. For every β ∈ {0, 1} it holds that

Pr
[
Y main
i∗ = β | Emain

low-locality ∩ (B = β)
]

= 1− negl(κ).

Proof. Consider a different adversary for π, denoted Advβ, that proceeds as follows:

1. Wait for the setup phase to complete.

2. Corrupt all parties in S1−β and crash them.
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3. Whenever Pi∗ sends a message to a party Pi ∈ Sβ this party gets corrupted and ignores this
message (i.e., the adversary does not deliver messages from Pi∗ to Pi).

Let AttackCrashSβ be the random variable defined by running the protocol π with the
adversary Advβ over SetupAndCoins, in which the honest sender’s input is β. That is,
AttackCrashSβ consists of a vector of n/2 views: of the parties in Sβ ∪ {Pi∗} (both honest
and corrupted), where the ith view is denoted by VIEW

crash-Sβ
i , and the sender P1 denoted by

VIEW
crash-Sβ
1 . Each view consists of the setup information Ri, the input β for P1, and the set of

received messages in each round. Specifically,

AttackCrashSβ =
(

VIEW
crash-Sβ
i

)
i∈Sβ∪{1,i∗}

.

Let us denote by EcrashSβ
low-locality the event that the output-locality of PI∗ is at most k in

AttackCrashSβ; that is, PI∗ sends messages to at most k parties (according to VIEW
crash-Sβ
i∗ ).

If Pr[EcrashSβ
low-locality] = negl(κ), then Advβ can force the locality of PI∗ to be high in AttackCrashSβ,

and the proof is completed. Otherwise, it holds that Pr[EcrashSβ
low-locality] is non-negligible.

Note that since |Sβ| = (n− 1)/2 and k < (n− 1)/2, then conditioned on EcrashSβ
low-locality there exists

at least one remaining honest party in Sβ at the end of the execution with Advβ. By validity, each
such honest party must output β with overwhelming probability. Denote by Y crash-Sβ

i the random
variable denoting the output of Pi according to AttackCrashSβ. Denote by J∗ the random
variable corresponding to the minimal index of an honest party in Sβ at the end of the execution
with Advβ. Then

Pr
[
Y

crash-Sβ
J∗ = β | EcrashSβ

low-locality

]
= 1− negl(κ). (5)

Further, note that the set of all honest parties in Sβ and their joint view in an execution with
Advβ conditioned on EcrashSβ

low-locality is identically distributed as in an execution with Adv conditioned
on Emain

low-locality ∩ (B = β). Therefore,

Pr
[
Y

crash-Sβ
J∗ = β | EcrashSβ

low-locality

]
= Pr

[
Y main
J∗ = β | Emain

low-locality ∩ (B = β)
]
. (6)

Finally, by agreement, since both PJ∗ and Pi∗ are honest at the end of the execution with Adv,
conditioned on Emain

low-locality ∩ (B = β), it holds that

Pr
[
Y main
i∗ = β | Emain

low-locality ∩ (B = β)
]

= Pr
[
Y main
J∗ = β | Emain

low-locality ∩ (B = β)
]
− negl(κ). (7)

The claim follows from Equations 5, 6, and 7.

By Claim 4.2 and Claim 4.3 it follows that Pr[Emain
low-locality] = negl(κ). This concludes the proof

of Theorem 4.1.

5 Statically Secure Sub-Quadratic Broadcast
In this section we prove Proposition 1.1 by presenting a broadcast protocol secure against a constant
fraction of static corruptions that requires Õ(n) bits of total communication, given a trusted-PKI
setup for VRFs. The protocol is balanced, and each party communicates polylog(n) · poly(κ) bits.
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Proposition 5.1 (Proposition 1.1, restated). Let 0 < ε < 1 be any constant. Assuming a trusted-
PKI for VRFs and signatures, it is possible to compute broadcast with Õ(n) total communication
(Õ(1) per party) facing a static adversary corrupting (1− ε) · n parties.

Our protocol is a simple variant of Chan, Pass, and Shi [CPS20], where every step that requires
all-to-all communication is substituted by a more communication-efficient message-propagation
mechanism. We first describe the message-propagation mechanism, which follows the spirit of Tsi-
mos, Loss and Papamanthou [TLP22], and afterwards the modified broadcast protocol of [CPS20].

A message-propagation mechanism. Consider the problem where each party has (possibly)
an input message it would like to disseminate to all the other parties. This can trivially be solved by
letting each party send its input message to all other parties, which would incur a communication
complexity of n2 · `, where ` is the length of the input message.

In some cases, however, we are interested in disseminating only messages of a certain type.
More precisely, we want that if any honest party has a message of type T, then all honest parties
obtain at least one message of type T, but we do not need that all parties obtain all input messages
of type T.
Definition 5.2 (Message-propagation protocol). Let T be a predicate. An n-party protocol π, where
each party Pi has an initial input xi (or no input), is a message-propagation protocol for type-T
messages secure against t static corruptions, if for any PPT adversary that statically corrupts up
to t parties, the following holds except for negligible probability in κ: If any honest party holds an
input of type-T, then all honest parties output a value of type-T.

The trivial approach described above (where every party sends its input message to every other
party) still requires quadratic communication, since a linear number of parties may distribute a
type-T message towards all parties. A more efficient solution employs instead a flooding mechanism
over a communication graph that forms an expander (i.e., a sparse graph with strong connectivity
properties). More concretely, it is possible to form a communication graph where each party is
connected only to O(log(n) +κ) other parties, and the honest parties form a connected component
except with negligible probability in κ.

Each party Pi can then send its input to its neighbors (if the input is of type T), and if Pi has
no input or an input that is not of type T, party Pi can simply forward to its neighbors the first
type-T message that it received. It is easy to see that, since the honest parties form a connected
component, if any honest party has a message of type T, then all honest parties obtain at least one
message of type T. Moreover, the communication complexity is O(n · (log(n)+κ) · `), where ` is the
length of a type-T message. We describe the protocol in Figure 3 and obtain the following lemma.
Lemma 5.3. Let κ be a security parameter, let n be the number of parties, and let 0 < ε < 1 be
a constant. Protocol Flood(T, n, ε, κ) is a message-propagation protocol for type-T messages, secure
against static (1− ε) · n corruptions. The communication complexity is O(n · (log(n) + κ) · `) bits,
where ` is the size of a type-T message.
Proof. From [LZMM+22, Lem. 15], we know that the communication graph induced by the honest
parties during an execution of Flood is connected and has diameter at most ρ = 7 ln

(
n

2·(ln(n)+κ)
)
+2

with overwhelming probability in κ. Therefore, if any honest party has a type-T input message, all
honest parties receive a type-T message within ρ rounds.

Since each honest party only sends a type-T message at most once, and the neighborhood of a
party is of size O(log(n) + κ), the claimed communication complexity follows.
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Flood(T, n, ε, κ)

Parameters: T is the type of messages to propagate, n is the number of parties, ε is the fraction
of honest parties, and κ is the security parameter.
Variables: Pi sets local variables Ni = ∅ and Relayedi = 0.
Message propagation:
Each party Pi has an input xi (no input is interpreted as ⊥).
Each party Pi locally adds Pj to the set Ni with uniform probability pflood ..= log(n)+κ

εn .a
Let ρ = 7 ln

(
n

2·(ln(n)+κ)
)

+ 2. Each party Pi does the following.
Round 1: If the input message xi is of type T, send xi to each Pj ∈ Ni, set Relayedi = 1, and set
yi = xi.
for each round r ∈ {2, . . . , ρ} do

Let S be the messages received in round r − 1. If there is a message m ∈ S of type-T and
Relayedi = 0, then send m to each Pj ∈ Ni, set Relayedi = 1, and set yi = m.

Output yi.
aWe note that with static corruptions, each party Pi can maintain the same neighborhood set Ni across

several instances of Flood.

Figure 3: Message-propagation mechanism for n parties for messages of type T.

Chan et al.’s modified protocol. We describe a modified version of Chan et al.’s broadcast pro-
tocol, where every all-to-all communication step is simply substituted by the message-propagation
mechanism described above.

Following [ACD+19, CPS20], we describe the protocol in a hybrid world assuming an ideal
functionality Fmine parameterized by probability p ..= min{1, κ+1

εn }, which can be realized assuming
a trusted-PKI for VRFs as setup. Fmine serves as a committee-election oracle, and has the following
interface:

• Mining: when a party Pi calls Fmine.mine(b) on a bit b ∈ {0, 1} for the first time, Fmine flips
a p-weighted coin and returns the result b′ ∈ {0, 1}. (1 indicates success, 0 indicates failure.)
Calling Fmine.mine(b) again in the future returns the same result b′.

• Verifying: any node can call Fmine.verify(b, i) on a bit b and index i. If Pi has already
called Fmine.mine(b) and received result b′ = 1, then Fmine.verify(b, i) returns 1; otherwise,
Fmine.verify(b, i) returns 0.

At the start of the protocol, parties invoke the ideal functionality Fmine to choose a committee C
of size |C| = R = O(κ) parties, which will contain at least one honest party (with high probability).
The protocol is based on the Dolev-Strong protocol [DS83], where only the committee members C
(and the sender) contribute signatures on the input message and every protocol stage r is split into
two mini-stages. We define a message of type-Tb,r as a message that contains the bit b along with
at least r correct signatures, including the signatures from the sender and at least r − 1 distinct
committee-parties.

• Each party Pi keeps a set Exti (initially empty). In stage 0, the sender signs its input bit and
sends b and the signature to all parties (this is a Tb,1 message).

• For each stage r = 1 to R+ 1, each party Pi does the following.
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1. First mini-stage: for every b /∈ Exti such that Pi has received a type-Tb,r message,
add b to Exti and run the message-propagation protocol Flood(Tb,r, n, ε, κ) to distribute
a type-Tb,r to all parties (and wait until the protocol ends).

2. Second mini-stage: for every b /∈ Exti such that a committee member Pi ∈ C has received
a type-Tb,r message, pick any such message, add b to Exti, create a type-Tb,r+1 message by
adding its own signature, and run the message-propagation protocol Flood(Tb,r+1, n, ε, κ)
to distribute a type-Tb,r+1 message to all parties (and wait until the protocol ends).

• Stage R+2: Each party Pi outputs the bit contained in Exti if |Exti| = 1; otherwise, output 0.

See Figure 4 for the formal description of the protocol.

Flood-BCn,ε,κFmine

Parameters: Let n be the number of parties, let ε be the fraction of honest nodes, and let κ the
security parameter. Let (KeyGen,Sign,Ver) be a digital signature scheme.

Setup: Let Fmine be the committee-election oracle. The parties have access to a PKI setup where
each party Pi samples (pki, ski)← KeyGen(1κ) and all parties obtain (pk1, . . . , pkn).

Input: Let bs be the input of the sender Ps.

Stage 0 (Initialization):

• The sender Ps computes σ = Signsks
(bs) and sends the message (bs, σ) to all parties.

• Each party Pi sets its extracted set Exti ← ∅ and also queries Fmine, parameterized with
p ..= min{1, κ+1

εn }. Let C denote the elected committee.

Let the number of stages be R ..= 3
ε (κ + 1). In the following, we denote by type-Tb,r as a

message that contains the bit b along with at least r correct signatures (i.e., such that Ver
outputs 1) from public keys of distinct committee-parties and also including the sender.

Stage r = 1, . . . , R+ 1:

1. (Stage r.1) Each party Pi does the following:
• For each bit b such that Pi has received a type-Tb,r message m and b /∈ Exti: add b to

Exti and invoke protocol Flood(Tb,r, n, ε, κ), to propagate one type-Tb,r message m.
2. (Stage r.2) Each party Pi ∈ C does the following:

• For each bit b such that Pi has received a type-Tb,r message m and b /∈ Exti: add b
to Exti and if Pi can create a type Tb,r+1 message m by adding a signature Signski

(b)
to the received Tb,r message, execute protocol Flood(Tb,r+1, n, ε, κ), to propagate one
type-Tb,r+1 message m.

Stage R+ 2 (Termination): Each party Pi does the following:

• If |Exti| = 1, then Pi outputs the unique bit bi ∈ Exti; else, Pi outputs the default bit 0.

Figure 4: Chan et al.’s modified Broadcast Protocol in the Fmine-hybrid world

We proceed to prove Proposition 5.1.

Proof of Proposition 5.1. Termination is trivial, since all parties output a value at stage R+ 2.
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To prove validity, let the sender be an honest party with input b. At the end of stage 0, all
honest parties receive a type-Tb,1 message. Therefore, each party Pi adds b to the set Exti in the first
mini-stage of stage 1. Moreover, no other value is added to Exti (except for negligible probability),
since the sender does not sign any other value. At stage R + 2, all honest parties output b except
for negligible probability.

To prove agreement, we show that the sets Exti of each honest party Pi contain the same set of
values the end of the protocol at stage R+ 2.

• First, consider the case where the first honest party Pi that adds a bit b to its set Exti, does
so in the first mini-stage of stage r. This means that Pi received a type-Tb,r message and a
type-Tb,r message was subsequently propagated through Flood. Note that since a type-Tb,r
message contains r signatures, and C contains at least one honest party, then it holds that
r < R + 1 (otherwise an honest committee-member added b to its extracted set previously,
contradicting the assumption that Pi is the first honest party that adds b to its set).
The message-propagation mechanism then ensures that all honest parties receive a type-Tb,r
message at the end of this first mini-stage. Therefore, in the second mini-stage of stage r, there
is an honest committee-member that can form a type-Tb,r+1 message, which is distributed
through Flood. Therefore, in the next stage r + 1 all parties add b to their extracted set.

• Second, consider the case where the first honest party Pi that adds a bit b to its set Exti,
does so in the second mini-stage of stage r. Since the second mini-stage is only executed by
committee members, Pi ∈ C. Moreover, Pi received a type-Tb,r message for the first time and
can form a type-Tb,r+1 message, which is distributed through Flood. Note that r < R + 1
since the type-Tb,r message does not contain Pi’s signature. Therefore, in the next stage r+1
(first mini-stage), all parties add b to their extracted set.

In each stage r, there are at most 4 invocations to Flood (one per bit, per mini-stage), and the
message contains up to R+ 1 signatures and a bit value. Assuming each signature is of size O(κ),
the size of the message is bounded by ` = O((R + 1)κ + 1) = O(κ2). Since the number of stages
invoking Flood is R+ 1 = O(κ) and the cost of each instance of Flood is O(n · (log(n) + κ) · `), the
total incurred communication complexity is O(κ·n ·(log(n)+κ) ·κ2) = O(κ3n log(n)+κ4n)) = Õ(n)
and the per-party communication is Õ(1).
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