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Abstract. In this paper, we introduce a novel trapdoor generation technique for
Prest’s hybrid sampler over NTRU lattices. Prest’s sampler is used in particular in
the recently proposed Mitaka signature scheme (Eurocrypt 2022), a variant of the
Falcon signature scheme, one of the candidates selected by NIST for standardization.
Mitaka was introduced to address Falcon’s main drawback, namely the fact that the
lattice Gaussian sampler used in its signature generation is highly complex, difficult to
implement correctly, to parallelize or protect against side-channels, and to instantiate
over rings of dimension not a power of two to reach intermediate security levels.
Prest’s sampler is considerably simpler and solves these various issues, but when
applying the same trapdoor generation approach as Falcon, the resulting signatures
have far lower security in equal dimension. The Mitaka paper showed how certain
randomness-recycling techniques could be used to mitigate this security loss, but the
resulting scheme is still substantially less secure than Falcon (by around 20 to 50
bits of CoreSVP security depending on the parameters), and has much slower key
generation.

Our new trapdoor generation techniques solves all of those issues satisfactorily: it gives
rise to a much simpler and faster key generation algorithm than Mitaka’s (achieving
similar speeds to Falcon), and is able to comfortably generate trapdoors reaching the
same NIST security levels as Falcon as well. It can also be easily adapted to rings of
intermediate dimensions, in order to support the same versatility as Mitaka in terms
of parameter selection. All in all, this new technique combines all the advantages of
both Falcon and Mitaka (and more) with none of the drawbacks.

Keywords: Post-quantum cryptography · Hash-and-sign lattice-based signatures ·
NTRU trapdoors · Discrete Gaussian sampling

1 Introduction

1.1 Hash-and-sign lattice-based signatures

From GGH to Falcon. Falcon [PFH+22] is one of the three signature schemes already
selected for standardization in the NIST post-quantum competition. It represents the state
of the art in hash-and-sign lattice-based signatures, one of the two main paradigms for con-
structing lattice-based signatures alongside Lyubashevsky’s Fiat–Shamir with aborts [Lyu09,
Lyu12] (which is also represented among the final selected candidates of the NIST competi-
tion in the form of Dilithium [LDK+22]).
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This makes Falcon the culmination of a long line of research in constructing signature
schemes from lattice trapdoors. The basic idea, which dates back to the late 1990s with the
GGH [GGH97] and NTRUSign [HHP+03] signature schemes, is to use as the signing key a
“good” basis (the trapdoor) of a certain lattice allowing to approximate the closest vector
problem within a good factor, and as the verification key a “bad” basis which allows to
test membership but not decode large errors. The signature algorithm then hashes a given
message to a vector in the ambient space of the lattice, and uses the trapdoor to find a
relatively close lattice point to that vector. The difference is the signature, which is verified
by checking that it is small and that its difference with the hashed vector does indeed belong
to the lattice.

The GGH scheme, as well as several successive variants of NTRUSign, were eventually
broken by statistical attacks [GS02, NR06, DN12]: it turned out that signatures would leak
partial information about the secret trapdoor, that could then be progressively recovered
by an attacker. This problem was finally solved in 2008, when Gentry, Peikert and Vaikun-
tanathan (GPV) [GPV08] showed how to use Gaussian sampling in the lattice in order to
guarantee that signatures would reveal no information about the trapdoor.

GPV signatures over NTRU lattices. In order to instantiate the GPV framework efficiently
in practice, one then needs lattices with compact representation and efficiently computable
trapdoors, which has so far been achieved using module lattices over rings—in fact, mostly
rank-2 modules over cyclotomic rings, exactly corresponding to NTRU lattices (although
higher rank modules, namely ModNTRU lattices, have been shown to be usable as well in
certain ranges of parameters [CPS+20]). This was first carried out by Ducas, Lyubashevsky
and Prest (DLP) [DLP14], who analyzed trapdoor generation for power-of-two cyclotomic
ring NTRU lattices and constructed corresponding GPV-style signatures. DLP signatures
are compact, but the signing algorithm is rather slow: quadratic in the dimension 2d of
the lattice. This is because the lattice Gaussian sampling algorithm that forms the core
of its signing procedure (namely Klein–GPV sampling, in essence a randomized version of
Babai’s nearest plane algorithm for approximate CVP) cannot directly take advantage of
the algebraic structure of the lattice, and thus operates on the full (2d)× (2d) matrix of the
lattice basis as well as its Gram–Schmidt orthogonalization.

Falcon is a direct descendant of the DLP scheme, that replaces the generic, quadratic
complexity Klein–GPV sampler in signature generation by an efficient, quasilinear com-
plexity lattice Gaussian sampler that does take advantage of the ring structure. Specifically,
that new algorithm is constructed by randomizing the Fast Fourier Orthogonalization (FFO)
algorithm of Ducas and Prest [DP16], and operates in a tree-like fashion traversing the sub-
fields of the power-of-two cyclotomic field over which the NTRU lattice is defined. This
makes Falcon particularly attractive in various ways: it offers particularly compact signa-
tures and keys (providing the best bandwidth requirements of all signature schemes in the
NIST competition), achieves high security levels in relatively small lattice dimensions, and
has both fast signing and very efficient verification speeds.

However, the FFO-based Gaussian sampler is also the source of Falcon’s main draw-
backs: it is a really contrived algorithm that is difficult to implement correctly, parallelize or
protect against side-channels. It is also really difficult to adapt to other rings than power-
of-two cyclotomics, which drastically limits Falcon’s versatility in terms of parameter se-
lection: in fact, recent versions of Falcon in the NIST competition only target either the
lowest NIST security level (using cyclotomic fields of dimension 512) or the highest (using
fields of dimension 1024) and nothing in-between.6

6 The earliest version of the Falcon specification [PFH+17] also included an intermediate param-
eter set of dimension 768, but the corresponding algorithms were so complicated that it was
eventually dropped.
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1.2 The hybrid sampler and Mitaka

The Peikert and hybrid samplers. After the publication of the DLP paper, Ducas and Prest
explored and analyzed other approaches for lattice Gaussian sampling over NTRU lattices,
as discussed in depth in Prest’s Ph.D. thesis [Pre15], with a view towards overcoming the
quadratic complexity of the naive Klein–GPV sampler. While the introduction of the FFO
sampler was the final step of that exploration, they also considered two other major ap-
proaches along the way, which also achieve quasilinear complexity (see also [DP15]).

The first approach was not actually novel: it was the ring version of Peikert’s lattice
Gaussian sampler [Pei10], which is the randomization of the Babai rounding algorithm for
approximate CVP, just like Klein–GPV is the randomization of Babai’s nearest plane. For
NTRU lattices, this algorithm consists of independent one-dimensional Gaussian samplings
for each vector component (hence a linear number in total), as well as 2 × 2 matrix-vector
products over the ring, amounting to a constant number of ring multiplications, that are
all quasilinear when using FFT-based fast arithmetic. Thus, Peikert’s sampler for NTRU
lattices is quasilinear as required. However, Ducas and Prest analyzed the quality of NTRU
trapdoors (generated in the same way as DLP) with respect to Peikert’s sampler, and found
that it was much worse than for Klein–GPV, both concretely and asymptotically. In other
words, for the same choice of parameters, it would reduce security considerably to instantiate
DLP with Peikert’s sampler instead of Klein–GPV (and to recover the same security, a large
increase in the dimension of the underlying ring, and hence the size of keys and signatures,
would be required).

As a kind of middle ground between Peikert (fast but less secure) and Klein–GPV (secure
but much slower), they introduced as a second approach the hybrid sampler, which uses
the same structure as Klein–GPV (a randomized nearest plane algorithm) but over the
larger ring instead of over Z. In the rank-2 case of NTRU, this reduces to just two “nearest
plane” iterations consisting of Gaussian sampling over the ring, which is itself carried out
using Peikert’s sampler with respect to a short basis of the ring. This algorithm remains
quasilinear, but achieves a significantly better quality than Peikert for DLP-style NTRU
trapdoors, although not as good as Klein–GPV. Concretely, for those NTRU trapdoors over
the cyclotomic ring of dimension 512 (resp. 1024), signatures instantiated with the hybrid
sampler achieve a little over 80 bits (resp. 200 bits) of classical CoreSVP security, compared
to over 120 bits (resp. 280 bits) for Klein–GPV.

Pros and cons of hybrid vs. FFO. This substantial security loss is presumably the main
reason that led to the hybrid sampler being abandoned in favor of the FFO sampler (which
achieves the same quality as Klein–GPV but with quasilinear complexity) in the Falcon
scheme. Indeed, security aside, the hybrid sampler has a number of advantages compared
to the FFO sampler of Falcon: it is considerably simpler to implement, somewhat more
efficient in equal dimension, easily parallelizable and less difficult to protect against side-
channels; it also has an online-offline structure that can be convenient for certain applica-
tions, and it is easier to instantiate over non power-of-two cyclotomics, making it easier to
reach intermediate security levels.

For these reasons, the use of the hybrid sampler to instantiate signatures over NTRU
lattices was recently revisited by Espitau et al. as part of their proposed scheme Mi-
taka [EFG+22]. One of the key contributions of that paper is an optimization of trapdoor
generation for the hybrid sampler that mitigates the security loss by making it possible to
construct better quality trapdoor in reasonable time. Combined with the various advantages
of the hybrid sampler, this allows the authors of Mitaka to achieve a trade-off between sim-
plicity and security that they argue can be more attractive than Falcon. However, despite
their efforts, Mitaka remains substantially less secure than Falcon in equal dimension (it
loses over 20 bits of classical CoreSVP security over rings of dimension 512, and over 50
bits over rings of dimension 1024), with a much slower and more contrived key generation
algorithm as well. In particular, Mitaka falls short of NIST security level I in dimension 512
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and of level V in dimension 1024, making it less than ideal from the standpoint of parameter
selection.

1.3 Contributions and technical overview of this paper

In this paper, we introduce a novel trapdoor generation technique for Prest’s hybrid sampler
that solves the issues faced by Mitaka in a natural and elegant fashion. Our technique gives
rise to a much simpler and faster key generation algorithm than Mitaka’s (achieving similar
speeds to Falcon), and it is able to comfortably generate trapdoors reaching the same NIST
security levels as Falcon. It can also be easily adapted to rings of intermediate dimensions,
in order to support the same versatility as Mitaka in terms of parameter selection (just
with better security). All in all, this new technique achieves in some sense the best of both
worlds between Falcon and Mitaka.

NTRU trapdoors and their quality. In order to give a overview of the technical ideas involved,
we need to recall a few facts about NTRU trapdoors and their quality with respect to the
Klein–GPV and hybrid samplers. For simplicity, we concentrate on the special case of power-
of-two cyclotomic rings R = Z[x]/(xd + 1). Over such a ring, an NTRU lattice is simply a
full-rank submodule lattice of R2 generated by the columns of a matrix of the form:

Bh =

[
1 0
h q

]
for some rational prime number q and some ring element h coprime to q. Note that this can
also be described as a lattice of pairs (u, v) ∈ R2 such that uh− v = 0 mod q.

A trapdoor for this lattice is a relatively short basis:

Bf,g =

[
f F
g G

]
where the basis vectors (f, g) and (F,G) are not much larger than the normalized volume√
detBh =

√
q of the lattice. Since those vectors belong to the lattice, we have in particular

that g/f = G/F = h mod q. Moreover, since the determinants are equal up to a unit of R,
we can impose without loss of generality that fG− gF = q.

Using the trapdoor Bf,g, lattice Gaussian samplers are able to output lattice vectors
following a Gaussian distribution on the lattice of standard deviation7 a small multiple α√q
of the normalized volume √

q. The factor α is the quality, and depends both on the trapdoor
and on the sampler itself. The lower the quality, the better the trapdoor, and the higher the
security level of the resulting signature scheme. For the Klein–GPV sampler, one can show
that the quality α is (1/√q times) the maximum norm of a vector in the Gram–Schmidt
orthogonalization of the basis Bf,g regarded as a (2d)× (2d) matrix over Z, whereas for the
hybrid sampler, it is similar but with the Gram–Schmidt orthogonalization over R itself.

Those quantities admit a simple expression in terms of the embeddings of the ring el-
ements f and g. Recall that the embeddings are the d ring homomorphisms φi : R → C;
when elements of R are seen as polynomials, these embeddings are simply the evaluation
morphisms φi(u) = u(ζi) where the ζi’s are the d primitive 2d-th roots of unity in C. Then,
quality of the basis Bf,g with respect to the Klein–GPV sampler admits the following simple
expression:

(αGPV)
2 = max

(1
d

d∑
i=1

|φi(f)|2 + |φi(g)|2
q

,
1

d

d∑
i=1

q

|φi(f)|2 + |φi(g)|2
)
.

7 The actual standard deviation also includes an additional factor (the smoothing parameter of the
ring) which we omit in this overview for simplicity’s sake.
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Similarly, the quality with respect to the hybrid sampler satisfies:

(αhybrid)
2 = max

1⩽i⩽d

(
max

( |φi(f)|2 + |φi(g)|2
q

,
q

|φi(f)|2 + |φi(g)|2
))

.

Note that |φi(f)|2+|φi(g)|2 = φi(ff
∗+gg∗) where the star denotes the complex conjugation

automorphism of R (defined by x∗ = 1/x = −xd−1). Thus, put differently, one can say that
a trapdoor Bf,g achieves quality α or better for the Klein–GPV sampler if and only if the
embeddings of (ff∗ + gg∗)/q and of its inverse are at most α on average, whereas quality α
or better is obtained for the hybrid sampler if all of the embeddings of these values are at
most α. This shows in particular that the quality of a given trapdoor is always at least as
good for Klein–GPV as it is for the hybrid sampler, which explains why it may be easier in
practice to construct good quality trapdoors for the former than for the latter.

Trapdoor generation in Falcon and Mitaka. Now, the way trapdoors are generated in
Falcon is by sampling f and g according to a discrete Gaussian in R (which can easily be
done by sampling the coefficients as discrete Gaussians over Z) so that their expected length
is a bit over √q, and verifying using the condition above that the quality with respect to the
Klein–GPV (or equivalently Falcon’s) sampler is αFalcon = 1.17 or better, and restarting
otherwise (the value 1.17 here is chosen roughly as small as possible while keeping the number
of repetitions relatively small).

The approach to generate trapdoors in Mitaka is similar using the quality formula
for the hybrid sampler, and a target quality of αMitaka = 2.04 in dimension 512 (and
slightly increasing as the dimension becomes larger). Doing so directly would take too many
repetitions, however; therefore, the candidates for f and g are actually obtained by linear
combinations of smaller Gaussian vectors and by applying Galois automorphisms to generate
many candidate vectors (f, g) from a limited number of discrete Gaussian samples. Using
that approach, Mitaka achieves the stated quality with a comparable number of discrete
Gaussian samples as Falcon; its key generation algorithm is much slower, however, as it
has to carry out an exhaustive search on a much larger set of possible candidates.

Our Antrag strategy: annular NTRU trapdoor generation. In both Falcon and Mitaka,
however, the overall strategy is to generate random-looking candidates (f, g) of plausible
length, and repeat until the target quality is reached. In this paper, we suggest a completely
different strategy that is in some sense much simpler and more natural: just pick the pair
(f, g) uniformly at random in the set of vectors that satisfy the desired quality level. We
propose and analyze this approach specifically for the hybrid sampler.8

Concretely, yet another way of reformulating the quality condition for the hybrid sampler
is to say that the quality is α or better if and only if for all the embeddings φi, one has:

q/α2 ⩽ |φi(f)|2 + |φi(g)|2 ⩽ α2q.

In other words, for each embedding, the pair
(
|φi(f)|, |φi(g)|

)
lies in the annulus A

(√
q/α, α

√
q
)

bounded by the circles of radii √q/α and α√q—or more precisely, in the arc A+
α = A+

(√
q/α, α

√
q
)

of that annulus located in the upper-right quadrant of the plane since those absolute values
are non-negative numbers. Our approach is then to sample f and g by their embeddings (i.e.,
directly in the Fourier domain), and select those embeddings uniformly and independently
at random in the desired space. Namely, we sample d/2 pairs (xi, yi) in the arc of annulus

8 One could consider doing so for Klein–GPV as well, but this appears less relevant for two reasons.
First, since 1.17 is already quite close to the theoretical optimal quality of 1, and since the number
of repetitions in Falcon’s key generation is fairly modest, there is not much to gain in the Klein–
GPV setting. Second, the space of key candidates has a less elegant geometric description, making
it more difficult to sample uniformly in it. Extending the approach to ModFalcon [CPS+20],
however, could be an interesting, albeit challenging, avenue for future research.
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A+
α , and set the i-th embedding of f (resp. g) to a uniformly random complex number of

absolute value xi (resp. of absolute value yi).
An obvious issue is that the elements f and g constructed in this way will generally

not lie in the ring itself: after mapping back to the coefficient domain by Fourier inversion,
their coefficients are a priori arbitrary real numbers instead of integers. But this is easy to
address: we simply round coefficient-wise to obtain an actual ring element.

A second issue is that this rounding step will not necessarily preserve the quality property
we started from: the embeddings of the rounded values do not necessarily remain in the
correct domain. In fact, the probability that all embeddings remain in the correct domain
after rounding is very low. But there is again a simple workaround: we just carry out our
original continuous sampling in the Fourier domain from a slightly smaller annulus than the
target one. Instead of picking the pairs (xi, yi) in A+

α as above, we sample them uniformly
in some A+(r,R) with r slightly larger than √

q/α and R slightly smaller than α
√
q. This

considerably increases the probability that, after rounding, all of the pairs
(
|φi(f)|, |φi(g)|

)
will in fact end up in A+

α .
And voilà: the description above is essentially a complete trapdoor generation algorithm

for the hybrid sampler, that easily reaches the same NIST security levels as Falcon. Con-
cretely, we target α = 1.15 in dimension 512 (even better than Falcon’s 1.17) and α = 1.23
in dimension 1024 (which comfortably exceeds the 256 bits of classical CoreSVP security
corresponding to NIST level V), and with those numbers, we achieve key generation speeds
close to Falcon’s, while benefiting of all the advantages of Mitaka in terms of simplicity
of implementation, efficiency, parallelizability and so on as far as signing in concerned.

Our contributions. The main contribution of this paper is to introduce, analyze and imple-
ment the Antrag trapdoor generation algorithm for the hybrid sampler described above.

The analysis includes a heuristic estimate of the success probability of sampling in the
required domain, as well as a discussion of possible attacks on the resulting keys (and even
though our security analysis is in a very optimistic model for the attacker, we find no
weakness as long as the original sampling domain A+(r,R) is not chosen to be extremely
narrow), and concrete parameters to instantiate a signature scheme.

We also provide a full portable C implementation of the corresponding signature scheme [Tib23]
based on those of Falcon and Mitaka. In fact, since the C implementation of Mitaka did
not include the key generation algorithm, our implementation is the first complete implemen-
tation of the corresponding paradigm. This implementation lets us compare the performance
of our key generation with Falcon’s, and we find that they are quite close.

Although most of the previous discussion was in the context of power-of-two cyclotomics,
our approach also extends with little change to other base rings such as the cyclotomic rings
with 3-smooth conductors considered in Mitaka (and we actually provide an analysis in
a more general setting still). In particular, it is still possible to map candidate continuous
random values generated in the Fourier domain to the ring by coefficient-wise rounding (we
could consider other decoding techniques, but this one is sufficient for our purposes; it was
in fact already used in the original ternary version of Falcon: see [PFH+17, Algorithm 10]).
This only changes the distribution of the “rounding error” and hence the success probability
slightly, but the analysis carries over easily. It follows that our approach supports the same
versatility as Mitaka in terms of parameter selection.

2 Preliminaries

For two real numbers 0 ⩽ r ⩽ R, we denote by A(r,R) the annulus limited by radii r and
R, i.e. the following subset of the plane R2: A(r,R) :=

{
(x, y) ∈ R2 | r2 ⩽ x2 + y2 ⩽ R2

}
.

We also denote by A+(r,R) the arc of annulus in the upper-right quadrant of the plane, i.e.,
A+(r,R) :=

{
(x, y) ∈ A(r,R) | x, y ⩾ 0

}
.

When f is a real-valued function over a countable set S, we write f(S) =
∑
s∈S f(s)

assuming that this sum is absolutely convergent. We note ⌊·⌉ the rounding of a real number to
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Table 1. Comparison with Falcon and Mitaka for the same dimensions 512 and 1024 and the
same modulus q = 12289 (excerpt from Table 4).

Falcon [PFH+22] Mitaka [EFG+22] This paper

d 512 1024 512 1024 512 1024

Quality α 1.17 1.17 2.04 2.33 1.15 1.23
Classical sec. 123 284 102 233 124 264
Key size (bytes) 896 1792 896 1792 896 1792
Sig. size (bytes) 666 1280 713 1405 646 1260

its closest integer. We extend this notation for the coefficient-wise rounding of polynomials.
If x = (x1, . . . , xk) is a random variable, we let E[x] the expected vector and Cov(x) its
covariance matrix. The variance of a scalar random variable x is denoted by Var[x].

Write At for the transpose of any matrix A. A lattice L is a discrete additive subgroup
in a Euclidean space. When the space is Rm, and if it is generated by (the columns of)
B ∈ Rm×d, we also write L (B) = {Bx|x ∈ Zd}. If B has full column rank, then we call B
a basis and d the rank of L . When the ambient space is equipped with a norm || · ||, the
volume of L is vol(L ) = det(BtB)1/2 = |det(B)| for any basis B.

2.1 Cyclotomic fields

Let m be a positive integer, and d = ϕ(m) be the degree of the m-th cyclotomic polynomial
Φm (ϕ is the Euler totient function). Let ζ to be a m-th primitive root of 1. Then for a
fixed m, K := Q(ζ) is the cyclotomic field associated with Φm, and its ring of algebraic
integers is R := Z[ζ]. The field automorphism induced by ζ 7→ ζ−1 = ζ̄ corresponds to
the complex conjugation, and we write f∗ the image of f ∈ K under this automorphism.
We have K ≃ Q[x]/(Φm(x)) and R ≃ Z[x]/(Φm(x)), and both are contained in KR :=

K ⊗ R = R[x]/(Φm(x)). Each f =
∑d−1
i=0 fiζ

i ∈ KR can be identified with its coefficient
vector (f0, · · · , fd−1) ∈ Rd. The complex conjugation operation extends naturally to KR,
and K +

R is the subspace of elements satisfying f∗ = f .
The cyclotomic field K comes with d complex field embeddings φi : K → C that

maps f seen as a polynomial to its evaluations at ζk where gcd(k,m) = 1. This defines
the so-called canonical embedding φ(f) := (φ1(f), . . . , φd(f)). It extends straightforwardly
to KR and identifies it to the space H = {v ∈ Cd : vi = vd/2+i, 1 ⩽ i ⩽ d/2}. Note that
φ(fg) = (φi(f)φi(g))0<i⩽d. When needed, this embedding extends entry-wise to vectors or
matrices over KR. We let K ++

R be the subset of K +
R which have all positive coordinates

in the canonical embedding. We have a partial ordering over K +
R by f ≻ g if and only if

f − g ∈ K ++
R . The algebra KR is also equipped with a norm NK (x) =

∏
i φ(x), which

extends the standard field norm.
The next technical lemma is useful in our analyses, and is obtained by elementary trigono-

metric identities.

Lemma 1. Let ζ = exp(iθ) with θ = 2kπ
m and gcd(k,m) = 1 be a m-th primitive root of the

unity, and d = ϕ(m). Let S(θ) =
∑d−1
j=0 ζ

2j. We have S(θ) = sin(θd)
sin θ eiθ(d−1) and

ReS(θ) =
1

2
+

sin((2d− 1)θ)

2 sin θ
and ImS(θ) =

sin(dθ) sin((d− 1)θ)

sin θ
.

Remark 1. If m is a power of 2 then 2d = m so we always have S(θ) = 0.

2.2 NTRU lattices

This work deals with free R-modules of rank 2 in K 2, or in other words, groups of the
form M = Rx + Ry where x = (x1, x2),y = (y1, y2) span K 2. Given f, g ∈ R such that
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f is invertible modulo some prime q ∈ Z, we let h = f−1g mod q. The NTRU module
determined by h is LNTRU = {(u, v) ∈ R2 : uh − v = 0 mod q}. Two bases of this free
module are of particular interest:

Bh =

[
1 0
h q

]
and Bf,g =

[
f F
g G

]
,

where F,G ∈ R are such that fG − gF = q and (F,G) should be relatively small. This
module is usually seen as a lattice of volume qd in R2d in the coefficient embedding.

We equip the ambient space K 2
R with the inner product ⟨x,y⟩K = x∗1y1 + x∗2y2. The

well-known Gram-Schmidt orthogonalization procedure for a pair of linearly independent
vectors b1,b2 ∈ K 2 is defined as

b̃1 := b1, b̃2 := b2 −
⟨b1,b2⟩K
⟨b1,b1⟩K

· b̃1.

One readily checks that ⟨b̃1, b̃2⟩ = 0. The Gram-Schmidt matrix with columns b̃1, b̃2 is de-
noted by B̃ and we have det B̃ = detB. We also let |B|K = max(||φ(⟨b̃1, b̃1⟩)||∞, ||φ(⟨b̃2, b̃2⟩)||∞)1/2.

Lemma 2. Let Bf,g be a basis of an NTRU module and b1 = (f, g). We have √
q ⩽ |Bf,g|K

and

|Bf,g|2K = max

(
||φ(⟨b1,b1⟩K )||∞,

∥∥∥∥ q2

φ(⟨b1,b1⟩K )

∥∥∥∥
∞

)
.

2.3 Gaussian and chi-squared distributions

For µ ∈ R and σ > 0 we let N (µ, σ2) be the normal distribution of mean µ and standard
deviation σ, that is, the continuous distribution over R with density proportional to exp

(
−

(x−µ)2/(2σ2)
)
. In higher dimensions, for Σ a positive definite matrix and a vector µ ∈ Rk,

we let N (µ,Σ) be the normal distribution of density proportional to exp
(
− 1

2 (x−µ)tΣ−1(x−
µ)
)
.
Let T ∼ N (µ, σ2Ik) be a k-dimensional spherical normal random vector. The ran-

dom variable ∥T∥2 follows a non central chi-squared distribution of degree k, non-centrality
c := ∥µ∥2 and scaling σ2, denoted by χ2(k, σ2; c). Its expectation, variance and cumulative
distribution function are described by the following classical result.
Lemma 3. Let U be a random variable distributed as χ2(k, σ2; c). We have E[U ] = σ2k+ c
and Var[U ] = 2σ2(σ2k + 2c). For 0 ⩽ a < b, we have P[a ⩽ U ⩽ b] = Qk/2(

√
c/σ,

√
a/σ)−

Qk/2(
√
c/σ,

√
b/σ), where Qk/2 is the Marcum Q-function of order k/2.

Moreover, the Marcum Q-function Qm of integer order m satisfies the following inequalities.

Lemma 4 ([SA00, AT01]). For integer m and u, v ⩾ 0, the following inequalities hold:

Qm(u, v) ⩾ 1− 1

2
e−(u−v)2/2 if u ⩾ v;

Qm(u, v) ⩽ e−(v−u)2/2 ·
(
1 +

(v/u)m−1 − 1

π · (1− u/v)

)
if u ⩽ v.

We also note that the independent sum of a χ2(k, σ2; c) variable and a χ2(k′, σ2; c′) variable,
for the same scaling σ2, follows a χ2(k + k′, σ2; c+ c′) distribution.

In the general case where T ∼ N (µ,Σ), let λi > 0 be the eigenvalues of the positive
definite symmetric matrix Σ. If P is an orthogonal matrix that diagonalizes Σ, let ν =
(ν1, . . . , νk) := Pµ. Then ∥T∥2 ∼ χ2(1, λ1; ν

2
1) + · · · + χ2(1, λk; ν

2
k). This distribution is

called the weighted sum of k independent non central chi-squared variables. There is no
known closed form for its cumulative distribution function, but there exist tools to evaluate
it numerically (e.g., the Python package chi2comb).
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Algorithm 1: Signing

Input: A message m, a trapdoor Bf,g, a standard deviation parameter σ
Result: the first component s0 of s = (s0, s1) ∈ R2 such that c− s has a distribution

close to DLNTRU,c,σ.
1 r ←$ {0, 1}320
2 c← (0,H(m||r))
3 v← Sample(Bf,g, c, σ)
4 (s0, s1)← c− v
5 return s0

Algorithm 2: Verification

Input: A message m, a salt r, s0 ∈ R, a public key h and a threshold β
Result: Accept or reject

1 s1 ← H(m||r) + s0h mod q
2 if ∥(s0, s1)∥ > β then
3 Reject.
4 end if
5 Accept.

3 New trapdoor algorithms for hybrid sampling

3.1 Hash-then-sign over lattices in a nutshell

The rationale behind this design is that a signature corresponds to a short Gaussian vector
in a lattice LNTRU centered at the hash of a (salted) message. On the one hand, these
vectors can only be generated efficiently with the knowledge of a trapdoor Bf,g, that is, a
basis with good quality for a given sampling method. On the other hand, verifying amounts
to checking lattice membership and that the vector is indeed shorter than a threshold. For
the sake of completeness, we recap this design in the form of high-level, generic algorithms
KeyGen, Sign, Verify corresponding to the current efficient instantiations.

In Algorithm 1, the procedure Sample differs from Falcon to Mitaka. The former
relies on the FFO sampler (a Fast-Fourier-like version of the GPV sampler [GPV08], while
the latter prefers the simpler hybrid sampler of Ducas-Prest [DP15]. Lattice membership
is implicitly checked at the first step of Algorithm 2. We finish the section with a high-
level description of KeyGen in Algorithm 3. Its purpose is to generate a pair (h,Bf,g) where
Bf,g should have a good quality with respect to the selected instantiation of Sample. For
simplicity, we omit in its description the additional secret data related to the sampler. The
procedure GoodPair, our focus in this work, outputs (f, g) ∈ R2 with the guarantee that
the basis Bf,g output by NTRUSolve will have quality α or better for the choice of Sample.

3.2 NTRU trapdoors in Falcon and Mitaka

With respect to Prest’s hybrid sampler, an NTRU trapdoor Bf,g has a quality α defined as

α = |Bf,g|K /
√
q, (1)

where we recall that |Bf,g|2K = max
(
∥φ(ff∗ + gg∗)∥∞,

∥∥ q2

φ(ff∗+gg∗)
∥∥
∞

)
. The quality with

respect to the Klein–GPV sampler admits a similar expression.
In hash-and-sign signatures, security against forgery attacks is driven by the standard

deviation of the sampler, which is essentially α√q. As the smaller the value of α, the harder
forgery becomes, the goal of KeyGen in schemes such as DLP [DLP14], Falcon [PFH+22]
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Algorithm 3: Generic NTRU Trapdoor generator

Input: A degree d, a modulus q, a target quality α
Result: a public key h ∈ R and the trapdoor Bf,g

1 (f, g)← GoodPair(d, q, α)
2 Bf,g ← NTRUSolve(f, g, q)
3 h← gf−1 mod q
4 return (h,Bf,g).

and Mitaka [EFG+22] is to construct in reasonable time bases Bf,g with α as small as
possible (and in particular, smaller than a given threshold related to the acceptance radius
of signature verification). In other words, the goal is to instantiate efficiently the procedure
GoodPair.

An important observation regarding NTRU trapdoors is that the knowledge of the first
basis vector (f, g) alone is sufficient to determine the quality of the whole basis (see for ex-
ample Lemma 2 for Mitaka). As a result, to test if a vector (f, g) can be completed into a
trapdoor Bf,g reaching the desired quality threshold, it is not necessary to compute the sec-
ond vector (F,G), which is a notoriously costly operation, even accounting for optimizations
such as [PP19].

In DLP, Falcon and Mitaka, GoodPair is a trial-and-error routine, generating many
potential candidate first vectors (f, g) and testing whether they satisfy the required quality
threshold. The candidates themselves are generated as discrete Gaussian vectors in R2 with
the correct expected length. In that way, Falcon reaches quality α = 1.17 with respect
to its FFO-based sampler (that admits the same quality metric as Klein–GPV). Doing
this directly for the hybrid sampler, as discussed in [Pre15], only achieves quality ≳ 3 in
dimension 512, and even larger in higher dimensions. As a result, the Mitaka paper has
to introduce randomness recycling and other techniques on top of this general approach in
order to increase the number of candidates and improve the achievable quality; with those
improvements, Mitaka reaches α = 2.04 in dimension 512 (which translates to 20 fewer
bits of security compared to Falcon, and is thus unfortunately not sufficient to reach NIST
security level I).

3.3 Antrag: annular NTRU trapdoor generation

The main contribution of this paper is a novel instantiation of GoodPair for the hybrid
sampler, resulting in a NTRU trapdoor generation algorithm achieving much better quality
than Mitaka, while reaching the same security NIST levels as Falcon.

Fig. 1. (|z|, |w|) is sampled uniformly in the annulus A+(r,R).
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Algorithm 4: Candidate pairs from uniform annulus sampling

Input: 0 < r < R, the radii of A+(r,R)
Result: z, z′ ∈ C such that

(
|z|, |z′|

)
is uniformly distributed in A+(r,R)

1 u←↩ U
(
[r2, R2]

)
2 ρ←

√
u

3 θ ←↩ U
(
[0, π/2]

)
4 (x, y)←

(
ρ cos θ, ρ sin θ

)
/* (x, y)←↩ U

(
A+(r,R)

)
*/

5 ω, ω′ ←↩ U
(
[0, 2π]

)
6 (z, z′)←

(
x · eiω, y · eiω

′
)

7 return (z, z′)

The intuition behind our new approach stems from the following observation. For a fixed
α ⩾ 1, requiring a trapdoor Bf,g to satisfy |Bf,g|K ⩽ α

√
q is equivalent to enforcing that

for all 1 ⩽ i ⩽ d, we have
q

α2
⩽ |φi(f)|2 + |φi(g)|2 ⩽ α2q, (2)

(where we recall that the φi(f) are the embeddings of f in C, and similarly for g). Equiv-
alently, this means that for all i, the pair

(
|φi(f)|, |φi(g)|

)
belongs to the arc of annulus

A+
α := A+

(√
q/α, α

√
q
)
.

It is thus natural to try and sample f and g from their embeddings (i.e., in the Fourier
domain), by picking the pairs

(
φi(f), φi(g)

)
as uniform random pairs of complex numbers

such that satisfying the condition that the pair of their magnitudes belongs to A+
α : in other

words, pick (xi, yi) uniformly at random in A+
α and then sample φi(f) and φi(g) as uniform

complex numbers of magnitudes xi and yi respectively. Note that only d/2 pairs are needed,
as the remaining ones are determined by conjugation.

Moreover, sampling uniformly in an annulus (or, as in our case, an arc of annulus) in
polar coordinates (ρ, θ) is easy: it suffices to sample the angle θ and the square ρ2 of the
radial coordinate uniformly in their respective ranges. This is because the area element in
polar coordinates is ρ dρ dθ = 1

2d(ρ
2) dθ. This gives rise to Algorithm 4 for sampling the

pairs of embeddings.
However, one soon realizes that the real polynomials f̃ , g̃ corresponding to the embed-

dings generated by the Algorithm 4 (via the inverse Fourier transform φ−1) do not always
have integer coefficients, and hence do not generally correspond to ring elements. In general,
they are elements of the R-algebra KR.

In order to obtain actual ring elements, a natural solution is to round those real poly-
nomials f̃ , g̃ coefficient-wise. This yields f = ⌊f̃⌉ and g = ⌊g̃⌉ in R, which are potential
candidates for a trapdoor. It turns out, however, that if one starts from f̃ , g̃ uniform with
their embeddings of magnitude in A+

α , the resulting rounded ring elements are very unlikely
to also have their embeddings of magnitude in that arc of annulus. Thus, they do not typi-
cally give rise to a trapdoor of the desired quality. This is because rounding adds an additive
term (essentially uniformly distributed in [−1/2, 1/2)) to each coefficient, which translates
to an additive “error” on each embedding, making it unlikely that the embeddings all remain
in the desired domain.

A straightforward workaround is to compensate this decoding error by sampling the
embeddings of f̃ , g̃ from a narrower annulus A+(r,R) for some radii r,R such that √

q/α <
r < R < α

√
q. This yields Algorithm 5, which is our proposed Antrag trapdoor generation

algorithm.

Remark 2. One could consider carrying out the decoding to the ring differently, for example
by sampling discrete Gaussians f and g in R centered at f̃ and g̃ respectively. The resulting
algorithm would be simpler to analyze in some ways, and might be seen as better behaved
in a certain sense, but it does have a major drawback: it introduces a much larger decoding
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Algorithm 5: Antrag trapdoor generation

Input: The degree d, the modulus q, a target quality α, and starting radii r,R such that√
q/α < r < R < α

√
q.

Result: f, g ∈ R2 such that q
α2 ⩽ |φi(f)|2 + |φi(g)|2 ⩽ α2q for all i.

1 repeat
2 for 1 ⩽ i ⩽ d/2 do
3 using Algorithm 4, sample (zi, wi) ∈ C2 uniformly such that(

|zi|, |wi|
)
∈ A+(r,R).

4 end for
5 f̃ ← φ−1(z1, . . . , zd/2) ∈ KR
6 g̃ ← φ−1(w1, . . . , wd/2) ∈ KR

7 f ← ⌊f̃⌉
8 g ← ⌊g̃⌉
9 until

(
|φi(f)|, |φi(g)|

)
∈ A+

(√
q/α, α

√
q
)

for all i = 1, . . . , d/2
10 return (f, g)

error (on the order of the smoothing parameter ηε(Z) of Z on each coefficient, instead of
the standard deviation 1/

√
12 of the uniform distribution in [−1/2, 1/2), so about 4 times

larger). As a result, in this work, we focus on the rounding approach.

3.4 On the distribution of embeddings

We have mentioned above that taking the magnitudes of the embeddings of f̃ and g̃ in A+
α

was very unlikely to result in f and g of the required quality α after rounding, but that
the probability increased greatly when choosing f̃ and g̃ with embedding magnitudes in a
narrower arc of annulus A+(r,R). We choose the bounds r and R as complementary convex
combinations of α√q and √

q/α; in other words, we set:

r =
1− ξ

2
α
√
q +

1 + ξ

2
·
√
q

α
and R =

1 + ξ

2
α
√
q +

1− ξ

2
·
√
q

α
(3)

for some constant ξ ∈ (0, 1), so that A+(r,R) corresponds to the middle ξ-fraction of A+
α .

We will later specifically choose ξ = 1/3 (i.e., A+(r,R) as the “middle third” of A+
α ) to fix

ideas, and because it yields the following expression for r and R with minimal coefficient
height:

r =
(1
3
α+

2

3
· 1
α

)√
q and R =

(2
3
α+

1

3
· 1
α

)√
q.

In this section, we would like to provide a model allowing us to quantify the claim
that sampling f̃ and g̃ in this A+(r,R) increases success probability. To that end, write
e = (ef , eg) =

(
f − f̃ , g− g̃

)
∈ K 2

R for the error term introduced by rounding. We would like
to control the distribution of the embeddings of ef and eg in order to estimate the likelihood
that the condition

(
|φi(f)|, |φi(g)|

)
will be satisfied for all i.

In the polynomial basis, we write ef =
∑d−1
j=0 e

(j)
f xj and similarly for eg. Heuristically,

we expect the coefficients e(j)f and e
(j)
g to behave essentially like independent uniform ran-

dom variables in [−1/2, 1/2).9 This is well-supported by experiments (see Fig. 4(a) in Ap-
pendix C).

9 This is equivalent to saying that the distribution of f̃ and g̃ is uniform modulo R in KR, which
should indeed happen as soon as we have sufficient width (i.e., if we exceed a regularity metric
analogous to the smoothing parameters for Gaussians).
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Now consider a single embedding φθ, and recall that we are interested in an a priori
arbitrary cyclotomic base ring, so that φθ is defined by the evaluation at some primitive
m-th root of unity ζ = eiθ. We therefore have:

φθ(ef ) = xθ + iyθ with xθ =

d−1∑
j=0

e
(j)
f cos(jθ) and yθ =

d−1∑
j=0

e
(j)
f sin(jθ).

This expresses the real and imaginary parts xθ, yθ of φθ(ef ) as the sum of d independent
random variables, with d relatively large, so by the central limit theorem, φθ(ef ) should
essentially behave10 like a normal random variable in C, essentially determined by its ex-
pectation and covariance.

Now since e(j)f has mean 0 and variance 1/12 for all j, we obtain that E[xθ] = E[yθ] = 0.
Therefore, the pair (xθ, yθ) has mean 0, and its covariance matrix is easily expressed as
follows:

Σθ =
d

24
I2 + E(θ) where E(θ) =

1

24

[
ReS(θ) ImS(θ)
ImS(θ) −ReS(θ)

]
.

Note that Σθ has eigenvalues λθ+ = d+|S(θ)|
24 and λθ− = d−|S(θ)|

24 . We thus expect that φθ(ef )
follows the normal distribution N (0, Σθ), and the same argument applies to φθ(eg) as well.
Moreover, heuristically, those two normal distributions should be independent (this is again
well-verified in practice: see Fig. 4(b)), therefore, we can write

(φθ(ef ), φθ(eg)) ∼ N
(
0,

(
Σθ 0
0 Σθ

))
(4)

This leads us to model the distribution of the embeddings of secret keys as follows.

Heuristic 1. Let (f, g) ∈ K 2 a pair output by Algorithm 5, corresponding to (f̃ , g̃) ∈ K 2
R

obtained from the executions of Algorithm 4. For the embedding φθ corresponding to the
primitive root of unity eiθ,

(
φθ(f), φθ(g)

)
is distributed as(

φθ(f), φθ(g)
)
∼ N

( (
φθ(f̃), φθ(g̃)

)
, I2 ⊗Σθ

)
.

Moreover, the pairs (φθ(f), φθ(g)) as φθ ranges through all the embeddings of K are inde-
pendently distributed.

Note that this heuristic considers the pair (φθ(f), φθ(g)), which is actually supported
on dense but countable subgroup of C2, as following a continuous distribution. This has
the merit of allowing an analysis while being an accurate representation of the situation
according to our experiments.

Under this heuristic we can express the expected length of the embeddings of secret keys
and related elements, which will be useful in the security analysis. The proof is provided in
Appendix A.

Proposition 1 (Heuristic). Keeping the notation of Algorithm 5, let (f, g) be a random
variable following the distribution of its output. Let θ be an argument of a primitive m-th
root of unity, and let φθ be the corresponding embedding. Then:

E
[
|φθ(f)|2 + |φθ(g)|2

]
=
d

6
+
r2 +R2

2
.

Let ∥ · ∥θ be the norm induced by the quadratic form Σθ. Then we also have:

E
[
|φθ(f)|4 + |φθ(g)|4

]
=

5

8
(R4 + r4) +R2r2 +

d

12
(R2 + r2) +

d2

36
+ T (θ),

where T (θ) := |S(θ)|2/72 + 4 · E
[
∥φθ(f̃)∥2θ + ∥φθ(g̃)∥2θ

]
.

10 This can in fact be made rigorous with the Berry–Esseen theorem.
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4 Success probability and security analysis

In this section, we first concentrate on the case of a power-of-two cyclotomic base ring, in
which, under Heuristic 1, all the embeddings of f and g are simply modeled as independent
and identically distributed isotropic normal variates, which simplifies the analysis somewhat.
In this context, we analyze the success probability of Algorithm 5 as well as the security of
the resulting scheme, which lets us derive concrete parameters.

At the end of the section, we also briefly describe how the analysis extends to the more
general setting of cyclotomic rings with conductor m = 2kpℓ, with further details provided
in Appendix B.

4.1 Success probability over power-of-two cyclotomics

Suppose that K is a cyclotomic field of conductor a power of two, and let (f̃ , g̃) ∈ K 2
R and

(f, g) ∈ R2 be generated as in Steps 5–6 and Steps 7–8 of Algorithm 5 respectively.
We first fix one embedding φθ : K → C of K , and try to determine the probability

with which the test of Step 10 of Algorithm 5 is satisfied with respect to that particular
embedding. In other words, we want to estimate the probability that:

q/α2 ⩽ |φθ(f)|2 + |φθ(g)|2 ⩽ α2q. (5)

Now, according to Heuristic 1, the pair
(
φθ(f), φθ(g)

)
∈ C2 follows a normal distribution cen-

tered at
(
φθ(f̃), φθ(g̃)

)
of scalar covariance d

24I4 (since over power-of-two cyclotomic fields,
E(θ) = 0 for all θ). Therefore, for fixed (f̃ , g̃) and following the definitions of Section 2.3,
the squared norm: ∥∥(φθ(f), φθ(g))∥2 = |φθ(f)|2 + |φθ(g)|2

follows a non central chi-squared distribution χ2(4, σ2; c) of degree 4, non-centrality c =
|φθ(f̃)|2 + |φθ(g̃)|2 and scaling σ2 = d/24. In particular, the probability that condition (5)
does not depend on the exact position of the pair

(
φθ(f̃), φθ(g̃)

)
, but only on its squared

norm c, or equivalently on:

β :=
1√
q

∥∥(φθ(f̃), φθ(g̃))∥.
We denote the probability that condition (5) is satisfied for a certain value β by psucc(β).
According to Lemma 3, the probability psucc(β) can be expressed in terms of the Marcum
Q-function Q2 as follows:

psucc(β) = Q2(τβ, τ/α)−Q2(τβ, τα) where τ =

√
24q

d
.

Based on this result, we will first provide a simple but loose lower bound of the success
probability of Algorithm 5, and then derive a more complicated but tight estimate that we
can use for numerical estimates and parameter selection.

Bounding the success probability below. According to Lemma 4, the following bounds on the
Marcum Q function hold for any 1/α ⩽ β ⩽ α:

Q2(τβ, τ/α) ⩾ 1− 1

2
exp

(
− τ2

2
(β − 1/α)2

)
Q2(τβ, τα) ⩽

(
1 +

α/β

π

)
exp

(
− τ2

2
(α− β)2

)
from which it follows that:

psucc(β) ⩾ 1− 1

2
uτ (β − 1/α)−

(
1 +

α/β

π

)
uτ (α− β) where uτ (x) = exp

(
− τ2

2
x2

)
. (6)
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We write β = (α+ 1/α)/2 + t(α− 1/α)/2 for some t ∈ (−1, 1). Recall furthermore from
Eq. (3) that we have set:

r√
q
= (α+ 1/α)/2− ξ(α− 1/α)/2 and

R√
q
= (α+ 1/α)/2 + ξ(α− 1/α)/2

so that t actually varies in [−ξ, ξ]. In particular, we have:

α

β
⩽
α

r
=

α
1−ξ
2 α+ 1+ξ

2
1
α

=
2

1− ξ
· 1

1 + 1+ξ
1−ξ

1
α2

⩽
2

1− ξ
.

Thus, inequality (6) becomes:

psucc(β) ⩾ 1− 1

2
uτ

(
(1− t)δ

)
−

(
1 +

2/π

1− ξ

)
uτ

(
(1 + t)δ)

)
for δ =

α− 1/α

2
.

Since uτ is a decreasing function, both uτ
(
(1− t)δ

)
and uτ

(
(1 + t)δ

)
are bounded above by

uτ
(
(1− ξ)δ

)
, so that:

psucc(β) ⩾ 1−Kξuτ
(
(1− ξ)δ

)
with Kξ =

3

2
+

2/π

1− ξ

holds for all β ∈ [r/
√
q,R/

√
q].

As a result, the overall success probability psucc-one for a single embedding (which is the
probability that condition (5) holds when the starting embedding pair

(
|φθ(f̃)|, |φθ(g̃)|

)
is

sampled uniformly in A+(r,R)) is similarly lower bounded as:

psucc-one ⩾ 1−Kξuτ
(
(1− ξ)δ

)
(7)

and under our independence heuristic, the success probability psucc-all for all d/2 embeddings
at the same time satisfies:

psucc-all ⩾
(
1−Kξuτ

(
(1− ξ)δ

))d/2
.

To reach an overall success probability of 1/M (i.e., M repetitions on average), it therefore
suffices to have:

d

2
log

(
1−Kξuτ

(
(1− ξ)δ

))
⩾ − logM.

Using the usual first order approximation log(1 − x) ≈ −x, this yields d
2Kξuτ

(
(1 − ξ)δ

)
≲

logM , or equivalently:
α− 1/α

2
≳

d

12(1− ξ)2q
log

Kξd

2 logM
.

This shows that a quality α is achievable (with repetition rate up to M) as long as:

α ⩾
√
A+

√
1 +A where A =

d

12(1− ξ)2q
log

Kξd

2 logM
. (8)

In particular, we see that, as long as q = Ω(d log d), quality measures α = O(1) are achievable
with any constant repetition rate. This is similar to Falcon and unlike Mitaka [EFG+21,
Appendix C] and the original approach for the Peikert and hybrid samplers [Pre15], where
α increases as a power function of the dimension independently of q.

As discussed in the previous section, we choose ξ = 1/3 to fix ideas, so that the starting
annulus becomes the “middle third” of the target annulus (we will see below that this choice is
very safe). Condition (8) above with M = 4 and q = 12289 shows that one can reach quality
at least α = 1.24 in dimension 512 and α = 1.38 in dimension 1024 with this modulus q and
repetition rate up to 4. This is already much better than the quality parameters achievable
by Mitaka, but since we have used loose inequalities throughout, these are actually rough
lower bounds.
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More precise expression of success probability. For concrete parameter selection, and also to
test the validity of our heuristic assumptions, it is useful to write down the exact expression
of success probability according to our model.

Recall that the success probability psucc-one for a single embedding is the probability
that condition (5) holds when the starting embedding pair

(
|φθ(f̃)|, |φθ(g̃)|

)
is sampled

uniformly in A+(r,R). In other words, psucc-one is the expected value of psucc(β) for β2

uniformly distributed in [r2/q,R2/q]. Therefore:

psucc-one =
q

R2 − r2

∫ R2/q

r2/q

psucc(
√
B) dB =

2q

R2 − r2

∫ R/
√
q

r/
√
q

psucc(β)β dβ.

Carrying out the change of variables β = (α + 1/α)/2 + t(α − 1/α)/2 and plugging in the
expression of psucc(β) in terms of Q2, we finally get:

psucc-one =
1

2ξ

∫ ξ

−ξ
F (α, t) ·

(
1 + t

α− 1
α

α+ 1
α

)
dt

where

F (α, t) = Q2

(
τ
(α+ 1

α

2
+ t

α− 1
α

2

)
, τ/α

)
−Q2

(
τ
(α+ 1

α

2
+ t

α− 1
α

2

)
, τα

)
,

and 1/M = psucc-all = p
d/2
succ-one. This makes it easy to solve numerically for α in order to

reach a certain repetition rate. Again for q = 12289, we find that we reach repetition rate
M = 4 for α ≈ 1.143 in dimension d = 512, and for α ≈ 1.229 for d = 1024. For q = 3329,
the same repetition rate is reached for α ≈ 1.290 for d = 512 and α ≈ 1.478 for d = 1024.
Moreover, this allows us to confirm that our model very closely matches experiments, as
demonstrated on Fig. 2.

4.2 Security analysis for power-of-two cyclotomics

In order to assess the concrete security of the resulting signature scheme, we proceed using
the usual cryptanalytic methodology of estimating the complexity of the best attacks against
key recovery attacks on the one hand, and signature forgery on the other. In the hash-and-
sign paradigm, the security of the forgery is a function of the standard deviation of the lattice
Gaussian sampler used in the signature function, which itself depends on the quality α of
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Fig. 2. Base 2 logarithm of the repetition rate M of Algorithm 5 as a function of α, for d ∈
{512, 1024} and q ∈ {12289, 3329}. The continuous lines are obtained based on our model, and the
triangle data points are measured by simulations (averaging 100 iterations of the algorithm for each
data point).
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the trapdoor. A first straightforward observation is that, since our work has only modified
which trapdoors are used for signing, and not how they are used in signing, our modifications
cannot have a negative impact on the resilience against forgery. On the contrary, we have
shown how to increase the trapdoor quality, and therefore our new approach increases the
security against forging attackers. As such our focus will now be the resilience to key recovery
attacks.

In Section 4.2.1, we go through a short review of the general lattice reduction approach
for key recovery, which is the current best attack when no additional information is provided
to the attacker (seeing as combinatorial or hybrid attacks are irrelevant in our setting, with
dense, non-ternary keys). Nevertheless, by changing the sampling of the good trapdoors, we
might have restricted to a possibly smaller set of secret keys, or to a possibly much more
geometrically constrained set of keys. Indeed, all their complex embeddings must lie in a
publicly described annulus, so an adversary could use this additional information to gather
more power for an attack.

In Section 4.2.2 we present a new approach exploiting this additional geometric infor-
mation. It is reminiscent of the subfield attacks [ABD16, CJL16], however here we stop
the descent in the subfields at the totally real subfield K + (the set of elements satisfying
f = f∗). Indeed, this subfield encodes the length information of the pair (f, g) in the ele-
ments (ff∗, gg∗) and its collection of embeddings. In the extreme (unlikely) case where the
annulus would be a circle, an adversary would know this element exactly, and could use the
Gentry-Szydlo attack [GS02] to recover f or g. Our situation could be summed-up as an
“approximate” Gentry-Szydlo attack, where too much proximity of all the embeddings to a
known circle could be exploited by an attacker through lattice reduction.

Our trapdoor generator could output keys with embeddings that would all be close to
some circle, and we call these temporarily potentially weak keys. Our analysis will show that
these potentially weak keys are in fact not so weak, or in other words, that we have some
freedom for parametrization with respect to the available space (α− α−1)

√
q. This ensures

a good success rate for Antrag. Ultimately, the attack will use lattice reduction but on a
different lattice than in the direct, standard key-recovery context, and will try to recover
(ff∗, gg∗).

For the context of Section 4.2.2, we need the expected length of (f, g) and (ff∗, gg∗).
These two properties are gathered in the next result. The proof, a direct application of
Proposition 1, is provided in Appendix A.

Corollary 1. With the notation of Algorithm 5, let (f, g) be a random variable following
the distribution of its output. Then we have E[∥(f, g)∥2] = d

6 +
R2+r2

2 and E[∥(ff∗, gg∗)∥2] =
5
8 (R

4 + r4) +R2r2 + d
6 (R

2 + r2) + d2

36 .

4.2.1 Classical attack against NTRU keys. The key recovery in this context consists
in constructing the algebraic lattice over R spanned by the vectors (0, q) and (1, h) (i.e. the
public basis attached to the NTRU key) and retrieving the lattice vector s = (f, g) among
all possible lattice vectors of norm bounded by ∥s∥ (or a functionally equivalent vector,
for instance (µ · f, µ · g) for any unit µ of the ring of integer of the number field). From
Corollary 1 we obtain E[∥s∥2] ⩽ qA, where A = d

6q +
1
9

(
5α2

2 + 5
α2 + 4

)
. Since the attack is

easier when the key to recover is longer, we take the value qA acting as E[∥s∥2]. In order
to avoid enumerating and testing all integer vectors in the sphere of radius √

qS, which
would contain a large number of vectors under the Gaussian heuristic11, namely around(
qA
q

)d
= Ad, we make use of the projection trick (see also [PFH+, EFG+22, ETWY22]).

This technique involves reducing the public basis with some lattice reduction algorithm,
11 The Gaussian heuristic predicts the number of vectors of length at most ℓ in a random lattice Γ

of volume V to be a vΓ (ℓ)/V + o(1) for large enough ℓ, where vΓ (ℓ) is the volume of the sphere
of radius ℓ for the measure induced by the inner product on Γ .
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and seeking for the projection of the secret key onto the lattice spanned by the few last
Gram-Schmidt vectors of this reduced basis. If we find the projection of the secret key, we
can retrieve the full key by using the Babai nearest plane algorithm to lift it to a lattice
vector of the desired norm.

More precisely we proceed as follows. Set β to be the block size parameter of the DBKZ
algorithm [MW16] and start by reducing the public basis with this latter algorithm. Call
[b1, . . . ,b2d] the resulting vectors. Then if we can recover the projection of the secret key
onto P, the orthogonal space to span(b1, . . . ,b2d−β−1), then we can retrieve in polynomial
time the full key by Babai nearest plane algorithm to lift it to a lattice vector of the desired
norm. Hence it suffices to be able find the projection of the secret key among the shortest
vector of the lattice generated by the last β vectors projected onto P. Classically, sieving on
this projected lattice will recover all vectors of norm smaller than

√
4
3ℓ, where ℓ is the norm

of the 2d− β-th Gram-Schmidt vector b̃2d−β of the reduced basis.
The expected length of the projection is usually estimated under the Geometric Series

Assumption (GSA). Instantiated on NTRU lattices, it states that the Gram-Schmidt vectors
of the basis outputted by DBKZ with block-size β satisfy the relations (see Cor 2. of [MW16]):

∥b̃i∥ = δ
2(d−i)+1
β

√
q where δβ =

(
(πβ)1/β · β

2πe

) 1
2(β−1)

.

Therefore, we expect that ℓ = δ
−2(d−β)+1
β

√
q ≈ √

q ·
(

β
2πe

)1− d
β−1

. Moreover, assuming that
s behaves as a random vector, and using the GSA to bound the norm of the Gram-Schmidt
vectors [b̃1, . . . , b̃2d−β ], the (squared) norm of its projection over P concentrates around
β
2d · E

[
∥s∥2

]
= Aqβ

2d . Hence, we will retrieve the projection among the sieved vectors if
Aqβ
2d ⩽ 4

3ℓ
2, that is if the following condition is fulfilled:

A ⩽
8d

3β
δ
4(β−d)+2
β . (9)

Remark 3. On the use of the GSA. In order to make a more accurate assessment of potential
attacks, numerical models of the profile of the Gram-Schmidt length derived from simulations
of the behavior of (D)BKZ can be utilized instead of relying solely on the Gaussian heuristic
approximation (GSA). While this section focuses on using the GSA for the purpose of
simplifying the formulae and presenting the information in a clear manner, it is important to
note that predictive models that generate a “Z-shaped” profile are employed in the estimation
scripts.

On the size of the enumeration window. In the previous description we only considered the
space P, orthogonal to span (b1, . . . , b2d−β−1). It is natural to want to extend its dimension,
and choose the optimal one. It appears that for the specific parameters of our work, this
optimization would only result in a difference of less than a single bit of security. Besides,
on the one hand, by using the exact block size beta we can extract the vectors we need
to sieve for free from the preliminary run of DBKZ, avoiding the need for an additional
sieving pass. On the other hand, using a larger dimension for the additional sieving pass
adds a non-negligible cost. Note that this is a consequence of the Core-SVP methodology,
which we discuss in more details in Section 4.3 which ignores the polynomial overhead cost
of (D)BKZ.

4.2.2 Towards a subfield attack. Given the knowledge of the relative norm M =
ff∗ + gg∗, the structure of NTRU keys allows an attacker to determine both ff∗ and
gg∗. Note that (ff∗, gg∗) is in the NTRU lattice of hh∗ over the totally real subfield K +,
meaning that ff∗ · hh∗ ≡ gg∗ (mod q). Thus, we deduce that gg∗ = Mhh∗

1+hh∗ mod q and
fg∗ = Mh∗

1+hh∗ mod q over R — a step we refer to as “algebra”. As observed in [FKT+20], since
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f and g are chosen to be co-prime, the attacker can recover a Z-basis of the principal ideal (g)
in addition to gg∗ through a greatest common divisor computation between the ideals (fg∗)
and (gg∗). The attacker can finally retrieve g modulo units through the application of either
the Gentry-Szydlo algorithm for power-of-two cyclotomic number fields or its extension for
arbitrary cyclotomics, as demonstrated in the attack of Espitau et al. in [EFGT17].

Now if the attacker does not know the value of M exactly, but has a fairly good approx-
imation of it, the preliminary “algebra” can be replaced by lattice reduction. Indeed, write
ff∗ + gg∗ = qN +E for a known12 N and a small E, so that (ff∗, gg∗, E) is a rather short
solution of the linear system {

HX − Y = 0 mod q,

X + Y − E = qN,
(10)

where H = hh∗. More precisely, this value would not correspond to an element of the ring R,
but solving such a system amounts to finding a short vector inside the coset (0, 0, qN) +L
(considered inside the extended NTRU lattice in (K +)3 corresponding to {(u, v, w)|uH = v
(mod q)}). A (row) basis of the lattice L corresponding to (10) is given by:

L =

(
1 H H + 1
0 q q

)
.

and the most efficient known algorithms to solve this problem are essentially variations
of lattice reduction and decoding (see for instance [EK20]), and amount in estimating the
hardness of retrieving a vector of a given norm inside L . We now give the details to find lower
bound on the parameters of the key generation algorithm to make such attacks infeasible.

Distribution of the relative norm vector. We now want to estimate the expected length of
(ff∗, gg∗, E). By Corollary 1, we know already E[∥ff∗, gg∗∥2]. To determine the remaining
term E[∥E∥2], we must select a convenient value for qN . For this, fix an embedding φθ, and
let (F,G) = (φθ(ff

∗), φθ(gg
∗)) and (F̃ , G̃) = (|φθ(f̃)|2, |φθ(g̃)|2) as in Proposition 1, so that

E[F + G] = d
6 + R2+r2

2 . Since each embedding of ff∗ + gg∗ averages around this (public!)
value, we conveniently choose it for qN . From ff∗+ gg∗− qN = E and the definition of the
variance, we obtain E[∥E∥2] = Var[F +G]. The law of total variance with Lemmas 3 and 5
and the fact that F̃ + G̃ is uniform in [r2, R2] yield

E[∥E∥2] = Var

[
d

6
+ F̃ + G̃

]
+ E

[
d

12

(
d

6
+ 2F̃ + 2G̃

)]
=

(R2 − r2)2

12
+

d

12
(R2 + r2) +

d2

72
.

For convenience in the next paragraphs, we write E[∥ff∗, gg∗∥2] = 2q2x and E[∥E∥2] = q2y,
then:

x · q2 =
5

16
(R4 + r4) +

1

2
(R · r)2 + d

12
(R2 + r2) +

d2

72
,

y · q2 =
1

12

(
R2 − r2

)2
+

d

12

(
R2 + r2

)
+
d2

72
.

Mounting the lattice attack. In order to find a short solution for the system in Equation
(10), it is known that ∥ff∗∥2 and ∥gg∗∥2 approximate to xq2 and ∥E∥2 concentrates to
yq2. This results in the vector (ff∗, gg∗, E) being unbalanced with the first two coefficients
being significantly larger than the third one. To address this issue, we can utilize a technique
similar to the rescaling approach proposed in [BG14, ETWY22].
12 A typical “known” N would be the radius of a well-chosen circle inside the annulus. This value

would not correspond to a ring element in general, but one can reduce to this case in a similar
way as SIS and ISIS relate.
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It has been observed that in the estimation procedure outlined in Section 4.2.1, the ratio
of the length of the secret vector to the normalized volume of the lattice is the only relevant
quantity. As such, we can run the same attack under any quadratic twist of the norm of the
lattice, by replacing the ℓ2 norm with any quadratic form of determinant 1, and selecting
the one that minimizes the desired ratio. By following the proof technique in [ETWY22], we
can restrict ourselves to quadratic forms corresponding to diagonal matrices.

Therefore, to view the corresponding lattice problem in a more suitable manner, we want
to analyze it under the twisted (Euclidean) norm encoded by the Gram matrix (clearly of
determinant 1) Gη = diag(η, η, 1/η2) with for η =

(
y
x

) 1
3 . Then under this new norm ∥ · ∥η,

we find that:

E
[
∥(ff∗, gg∗, E)∥2η

]
= ηE

[
∥ff∗∥2

]
+ ηE

[
∥gg∗∥2

]
+

E
[
∥E∥2

]
η2

= 3q2
(
x2y

) 1
3 .

Under this norm the lattice L has K +-volume:

det(LGηL
T ) =

∣∣∣∣∣
[
ηH2 + η + (H+1)2

η2 ηHq + (H+1)q
η2

ηHq + (H+1)q
η2 ηq2 + q2

η2

]∣∣∣∣∣ = q2
(
η2 +

2

η

)
,

giving a lattice of normalized volume being √
q(η2 + 2

η )
1
4 as of K +-rank 2. The attack is

then similar as the one in Section 4.2.1 but where we want to recover a vector of squared
norm 3q2(x2y)

1
3 in a Z-lattice13 of normalized (squared) volume 2q(η2+ 1

η )
1
2 of rank 2d2 = d,

yielding a condition of the form:

β

d
3q2

(
x2y

) 1
3 ⩽ 2q

(
η2 +

2

η

) 1
2

δ
2(2β−d+1)
β (11)

simplifying into:

q ⩽
2d

3β

√
y + 2x

x2y
δ
2(2β−d+1)
β .

4.2.3 Further optimizations. Beyond the projection trick and the rescaling, we can
apply a final standard optimization to this lattice reduction part as there is an unbalance
between the size of the secret vector we want to recover and the normalized volume of the
lattice. Instead of working with the full lattice coming from the descent of L over Z, we
can instead consider the lattice spanned by a subset of the vectors of the public basis and
perform the decoding within this sublattice. The only interesting subset seems to consists in
forgetting the k ⩽ d

2 first vectors (dropping the so-called q-vectors would not be beneficial
as it would actually sparsify the lattice, making the attack worst). Doing so, the rank is
of course reduced by k, at the cost of working with a lattice with covolume proportionally
q

k
2(d−k) bigger. The condition of (11) updates into14:

β(d− k)

(d− k)d
3q2

(
x2y

) 1
3 ⩽ 2q

n
2n−2k

(
η2 +

2

η

) 1
2

δ
2(2β−d+k+1)
β ,

for all k ∈
{
0, . . . , d2

}
, which in turn simplifies to:

q ⩽ min
0⩽k⩽n

2

(
2d

3β

√
y + 2x

x2y
δ
2(2β−d+1)
β

) 2n−2k
n−2k

. (12)

13 The factor 2 accounting here for the normalized discriminant of the totally real subfield.
14 This assumes the coefficients of s are balanced, which is a reasonable assumption after the rescal-

ing by η.
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The right-hand-side term increases as y becomes smaller making the attack easier and
easier, recovering the intuition presented that knowing exactly the value of ff∗+ gg∗) leads
to a complete key recovery in polynomial time. However, because of the rounding to the ring
of integer this term cannot be 0: it converges to a term which is greater than d2

72 +
dq
6 . Thus,

the condition is never satisfied for cryptographically relevant parameters.

Remark 4 (On other subfield type attacks and related). We can also approach the problem
as solving a noisy-ring SIS instance (namely (1 + H)F = N + E (mod q)) or as solving
a NTRU instance with a hint, in the spirit of [DDGR20]). In both cases, we are in fine
decoding a lattice point at distance ∥E∥ inside a lattice of normalized volume comparable
to q. Up to some minor unessential constants, all three approaches give comparable results.

It is tempting to go further and try projection to other subfields, but the ratio secret
size to normalized volume is increasing, worsening the attack. It indicates that we shall only
focus on the plain NTRU and on the totally real subfield.

Conclusion of our security analysis We presented two attacks on the distribution of the keys:
the classical attack by reducing directly to an SVP instance form the (public) NTRU lattice
and a more involved one which involves descending the problem to the totally real subfield
and making use of the fact that the relative norm is somewhat close to a known integer. After
careful optimization, it appears that this latter attack is never relevant in practice. Thus,
the parameter selection only deals with the former attack, using the standard methodology,
as we explain below.

4.3 Practical security assessment

This analysis translates into concrete bit-security estimates following the methodology of
NewHope [ADPS16] (so-called “core-SVP methodology”). In this model [BDGL16], the
bit complexity of lattice sieving (which is asymptotically the best SVP oracle) is taken as
⌊0.292β⌋ in the classical setting and ⌊0.259β⌋ in the quantum setting in dimension β. Using
the analysis presented, we can tailor the radius α of the final annulus to match the desired
security level (NIST-I and NIST-V). The size of the signature is then derived similarly as
in [ETWY22].

4.4 Extension to more general cyclotomic rings

As discussed at the beginning of this section, the analysis so far has concentrated on base
fields K that are cyclotomic with power-of-two conductor for the sake of simplicity, but it
extends with relatively few changes to a more general setting. Specifically, in Appendix B,
we show that both the success probability estimates and the security analysis carry over to
cyclotomic conductors of the form m = 2ℓpk for some odd prime p. This setting encompasses
in particular the case of 3-smooth conductors m = 2ℓ3k for which parameters are proposed
in the Mitaka paper [EFG+22] (and for which we also propose parameters below), and
provides plenty of leeway to reach essentially any desired security level.15

While the analysis in this more general setting closely mimics the one presented so far,
we briefly highlight the ways in which it does differ. The key change is that, for these
conductors, the covariance matrix in Heuristic 1 is no longer scalar, making the estimation
of the meaningful quantities more subtle. We give a high-level description of the situation
here, referring to Appendix B for details.

First, for the success probability of Algorithm 5, the conditional distribution of the
embeddings of (f, g) becomes the sum of two non-central χ2 distributions with different
15 One could in principle generalize the analysis even further (e.g., to arbitrary cyclotomic conduc-

tors), but this would introduce additional technicalities (such as the need to replace the power
basis by the so-called powerful basis in order to obtain a well-behaved matrix for the canonical
embedding), and would really be of theoretical interest at best.
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scaling parameters, each corresponding to the eigenvalues λθ+, λθ− of Σθ. This complicates the
analysis somewhat, but counterparts to the results of Section 4.1 can still be obtained, either
through numerical computations or by upper and lower bounding Σθ by scalar matrices
independent of θ. See in particular Fig. 3.

Second, regarding the security analysis with respect to key recovery attacks, the length
of the secret keys is also impacted by the additional error term T (θ) in Proposition 1.
Qualitatively speaking, the behavior in the case m = 2ℓpk is however quite close to the
power-of-two case, since for most embeddings, |S(θ)| =

∣∣ sin(dθ)
sin θ

∣∣ is small compared to d: only
a handful of embeddings have a phase θ close to a multiple of π. We use the worst of these
embeddings to bound from above the magnitude of T (θ), and find that even this pessimistic
estimate only has negligible impact on the security level. Lastly, while we could rely on the
identity d∥x∥2 = ∥φ(x)∥2 in the power-of-two case, this is not true anymore for general
conductors; we rely on upper bounds instead. Nevertheless, the geometry of the power basis
for 3-smooth conductors remains quite good, acting at worst as an additional

√
2 factor.

5 Antrag in practice

5.1 Optimization and parameter selection

In [ETWY22] new techniques to compress lattice-based hash-then-sign schemes were pre-
sented. Theoretically, they can all be applied to Antrag’s signatures as well. One of these
technique is a fine-tuned encoding approach for discrete Gaussian vectors, and is oblivious
to the actual structure of the secret keys — we thus consider it done by default when esti-
mating the bit size of signatures. The two other techniques are choosing a smaller modulus
q than the popular choice q = 12289 on the one hand, and elliptical sampling on the other
hand. They have more impact on the key generation step, and although they were shown
somewhat equivalent when applied to scheme such as Falcon or Mitaka, the situation is
different for Antrag.

We first discuss smaller moduli. From our analysis in Section 3 and Section 4, the an-
nulus where candidate pairs are sampled becomes relatively smaller as q decreases, which
noticeably impacts the success probability of Algorithm 5. To keep a small rejection rate
in practice, we are led to decrease the quality of the key pairs, or in other words, to use a
larger parameter α. Fortunately, it was pointed out in [ETWY22] that there is a range for
such smaller q where, at fixed dimension, the key recovery becomes harder. This actually
means that reducing q and increasing α does not necessarily translate to a substantially
lower security level. We note however that q cannot be chosen arbitrarily small, as attacks
exist for very small q.

The situation for elliptical sampling is less attractive for the following reason. Candidates
should now be sampled in well-chosen elliptic annuli rather than circular ones. We can easily
sample continuously uniformly in such annuli, but when carrying out the decoding back to
the ring (e.g., by coefficient-wise rounding), we still incur an error term on embeddings that
behaves like an isotropic normal distribution of standard deviation Ω(

√
q). After the addition

of the error term, embeddings sampled more towards the direction of the major axis of the
ellipse are more likely than in a spherical case to end up in the target elliptical annulus,
but embeddings sampled in the direction of the minor axis have much lower probability
of success, and this has a much greater effect on overall success probability, constraining
the choice of the quality parameter α. In the end, we find that rather than using elliptical
sampling in our setting with a certain skewing factor γ, it is essentially just as effective to
reduce the modulus q by the same factor γ instead (which additionally has the advantage
of reducing public key size). As a result, we omit the detailed analysis of this less attractive
approach.

We present our parameter selection in Table 2 for power-of-two cyclotomics, and Table 3
for the 3-smooth case. For all parameter sets, we set the quality α with two decimal places



23

Table 2. Practical parameter selection, power-of-two case

q = 12289 q = 3329

d 512 1024 512 1024

Quality α 1.15 1.23 1.23 1.48
Repetition rate M 3 4 4 4
Bit security (C/Q) 124/113 264/240 121/110 265/240
Verification key size (bytes) 896 1792 768 1536
Signature size (bytes) 646 1260 591 1176

Table 3. Practical parameter selection for Antrag, 3-smooth conductor case.

(a) Modulus q = 12289

d 648 768 864 972

Quality α 1.17 1.19 1.21 1.22
Repetition rate M 4 3 3 4
Bit security (C/Q) 166/151 196/178 222/201 251/227
Verification key size (bytes) 1134 1344 1512 1701
Signature size (bytes) 808 952 1069 1200

(b) Various moduli. For d = 768, 864, 972, the right column shows moduli of [EFG+22].

d = 648 d = 768 d = 864 d = 972

Modulus q 3889 9721 3329 18433 3727 10369 4373 17497

Quality α 1.32 1.19 1.39 1.16 1.40 1.23 1.40 1.18
Expected repetitions 4 4 4 3 4 3 4 4
Bit security (C/Q) 159/144 164/149 192/174 195/177 220/200 222/201 254/230 250/227
Verification key size (bytes) 972 1134 1152 1440 1296 1512 1580 1823
Signature size (bytes) 747 796 883 977 1000 1058 1133 1225

in such a way as to reach a repetition rate M of around 3 to 4. For the moduli, we give both
the choices of q found in the literature as well as smaller candidates that also have close
to optimal splitting in the ambient ring, should one wish to rely on NTT multiplication to
slightly speed up verification.

5.2 Implementation results

We have implemented our trapdoor generation algorithm Antrag as well as the resulting
complete signature scheme in portable C based on the source codes of Falcon and Mitaka.
The code is publicly available on GitHub [Tib23].

Since the signature scheme arising from Antrag is essentially identical to Mitaka for
signing and verification, we largely reuse the code of Mitaka for those parts. Key generation
consists of the original algorithm presented in this paper to generate the first basis vector
(f, g), along with code to solve the NTRU equation in order to deduce (F,G), for which
we basically reuse the code of Falcon, which follows the techniques presented in [PP19].
The Fast Fourier transform and the resulting code for ring arithmetic are similarly borrowed
from Falcon.

We note that, since the C code of Mitaka itself did not include a key generation algo-
rithm (only precomputed fixed keys obtained using separate Python scripts), our implemen-
tation constitutes, to the best of our knowledge, the first full C implementation of a hybrid
sampler-based signature.

In view of the simplicity of our trapdoor generation, the code is fairly straightforward. In
particular, since the floating point uniform distributions we generate for the absolute values
of the embeddings are bounded away from zero, there is no subtlety related to precision
loss for values close to zero (this is unlike the Box–Muller algorithm used in signing, for



24

Table 4. Performance comparison with Falcon and Mitaka.

Falcon [PFH+22] Mitaka [EFG+22] This paper

d 512 1024 512 1024 512 1024

Quality α 1.17 1.17 2.04 2.33 1.15 1.23
Classical sec. 123 284 102 233 124 264
Key size (bytes) 896 1792 896 1792 896 1792
Sig. size (bytes) 666 1280 713 1405 646 1260

keygen speed (Mcycles) — — — — 9.5 33.2
keygen speed (ms) 4.2 12.4 1657* 6214* 3.5 12.3
sign speed (kcycles) — — 299 584 298 586
sign speed (µs) 184 371 111 217 111 218
verif speed (kcycles) — — 20 41 20 40
verif speed (µs) 18 36 8 16 8 15

* Timings for the optimized SageMath implementation (excluding NTRU-
Solve), since no C implementation exists.

which we reuse Mitaka’s code that behaves properly in that respect). The only trick worth
mentioning is a check in the generation of (f, g) which rejects early the pairs such that the
cyclotomic integer prime above 2 divides both f and g (this is a necessary condition for the
later computation of F and G to succeed, so it saves some time to test it early).

As explained above, dimension 512 and 1024 are supported, and our GoodPair algorithm
naturally extends to other conductors such as the 3-smooth cyclotomics considered in Mi-
taka to reach intermediate dimensions, as well as the signing and verification procedure.
However, suitably optimized FFT code is needed for those intermediate rings, and more
importantly, the NTRUSolve code of [PP19] needs to be adapted as well, in the spirit of,
e.g., [LS19]. Neither of those steps are difficult in principle, but they represent a significant
engineering effort left as future work.

A performance comparison with Falcon and Mitaka is provided in Table 4, using the
same modulus q = 12289 for consistency. Compilation is carried out with gcc 13.2.1 with
-O3 -march=native optimizations enabled. Timings are collected on a single core of an
AMD Ryzen 7 PRO 6860Z @ 2.7 GHz laptop with hyperthreading and frequency scaling
disabled. Cycle counts are not provided for Falcon, since the Falcon benchmarking tool
only measures clock time.

As noted previously, the Mitaka C implementation does not include a key generation
procedure. For reference, we provide the timings for the numpy-based SageMath implementa-
tion of the Mitaka key generation procedure instead, not including the cost of NTRUSolve,
so that only the highly optimized GoodPair code is accounted for. As expected from the fact
that Mitaka needs to explore a search space of millions of key candidates, the timings are
orders of magnitude worse than Falcon and Antrag.

The running time of our key generation is close to that of Falcon. Signing speeds are
basically identical to Mitaka since we mostly reuse that code (up to very minor optimiza-
tions). Verification is consistent across all three schemes.
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A Additional proofs

Lemma 5. Let (z, z′) be distributed according to the output of Algorithm 4. Then, the pair
s =

(
|z|2, |z′|2

)
has the following covariance:

Cov(s) =
1

16

(
R4 + r4 − 1

3 (R
4 + 4R2r2 + r4)

− 1
3 (R

4 + 4R2r2 + r4) R4 + r4

)
and its expectation is:

E[s] =
(R2 + r2

2
,
R2 + r2

2

)
.

Proof. Using the notation of Algorithm 4, the magnitudes |z|2 and |z′|2 satisfy:

|z|2 = ρ2 cos2 θ = u · cos2 θ and |z′|2 = ρ2 sin2 θ = u · sin2 θ

where u = ρ2 is uniformly distributed in [r2, R2] and θ is uniformly distributed in [0, π/2]
independently of u. Now let v = |z|2 + |z′|2 and w = |z|2 − |z′|2. We thus have:

v = u ·
(
cos2 θ + sin2 θ

)
= u and w = u ·

(
cos2 θ − sin2 θ

)
= u · cos(2θ).

As a result, v is uniform in [r2, R2], and in particular:

E[v] =
R2 + r2

2
and Var[v] =

(R2 − r2)2

12
.

Since u and θ are independently distributed, we also have:

E[w] = E[u] · E[cos(2θ)] = 0 and E[vw] = E[u2] · E[cos(2θ)] = 0

since the mean of cos over [0, π] vanishes. Finally:

Var[w] = E[w2] = E[u2] · E[cos2(2θ)] =
(
Var[v] + E[v]2

)
· E

[1 + cos(4θ)

2

]
=

(R2 − r2)2 + 3(R2 + r2)2

12
·
(1
2
+ 0

)
=

4R4 + 4R2r2 + 4r4

24
.

As a result, the covariance D = Cov(v, w) satisfies:

D = diag
( (R2 − r2)2

12
,
R4 +R2r2 + r4

6

)
.
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To conclude, we observe that the pair s is given by:

s =
1

2

(
v + w
v − w

)
= T

(
v
w

)
where T =

(
1/2 1/2
1/2 −1/2

)
.

The claimed value for the expectation of s follows directly, and its covariance satisfies
Cov(s) = TDT t, which yields the claimed result. ⊓⊔

Proof (of Proposition 1). Let us write (F,G) = (φθ(ff
∗), φθ(gg

∗)) and (F̃ , G̃) = (|φθ(f̃)|2, |φθ(g̃)|2).
Denote λ+ > λ− the eigenvalues of Σθ. Let finally Q be the orthogonal matrix such
that Q(I2 ⊗ Σθ)Q

t = diag(λ+, λ+, λ−, λ−). Write Q(φθ(f), φθ(g)) = (x, y) ∈ R4 and
Q(φθ(f̃), φθ(g̃)) = (x̃, ỹ). By Heuristic 1, the variableX = ∥x∥2 is distributed as χ2(2, λ+; X̃)
where X̃ = ∥x̃∥2, so from the law of total expectation and Lemma 3, we have E[X] =
2λ+ + E[X̃]. Similarly, Y = ∥y∥2 is distributed as χ2(2, λ−; Ỹ ) and we obtain its expected
value in a similar manner. Because Q is orthogonal, we can write

E[F +G] = E[X] + E[Y ] = 2 · TrΣθ + E
[
F̃ + G̃

]
.

From Algorithm 4, the variable F̃ + G̃ is uniformly distributed in [r2, R2]. The first claim
follows.

Next, let P be the orthogonal matrix such that P tΣθP = diag(λ+, λ−). Our goal is to
calculate

E[∥F,G∥2] = Tr(Cov(F,G)) +
∥∥E[(F,G)]∥∥2,

and we will proceed term by term, reducing the situation to F̃ , G̃. Writing Pφ(f̃) = (x̃f , ỹf ),
we see from Heuristic 1 that F is the sum of two independent non-central chi-squared
distributions, namely F ∼ χ2(1, λ+; x̃

2
f ) + χ2(1, λ−; ỹ

2
f ). Then by Lemma 3, the conditional

expectation and variance of F express as

E[F |F̃ ] = TrΣθ + F̃ ,

Var[F |F̃ ] = 2 · (TrΣ2
θ − 2 detΣθ) + 4 · ∥φθ(f̃)∥2θ,

and the situation is analogous for G with respect to Pφθ(g̃). On the one hand, the law of
total expectation then gives us E[F ] = TrΣθ + E[F̃ ] and similarly for E[G], from which we
get ∥∥E[(F,G)]∥∥2 = 2 · TrΣ2

θ + 2 · TrΣθ · E[F̃ + G̃] +
∥∥E[(F̃ , G̃)]∥∥2. (13)

On the other hand, the law of total covariance yields Var[F ] = Var[F̃ ]+2(TrΣ2
θ−2 detΣθ)+

4 · E
[
∥φθ(f̃)∥2θ

]
with a similar expression for Var[G]. We deduce

Tr(Cov(F,G)) = Tr(Cov(F̃ , G̃)) + 4 · (TrΣ2
θ − 2 detΣθ) + 4 ·E

[
∥φθ(f̃)∥2θ + ∥φθ(g̃)∥2θ

]
. (14)

The second claim follows by combining Equations (13) and (14) with the expression of Σθ
and Lemma 5, as well as that F̃ + G̃ is uniformly distributed in [r2, R2]. ⊓⊔

Proof (of Corollary 1). Recall that φθ(ff∗) = |φθ(f)|2 for any argument θ of a cyclotomic
root, and that S(θ) = 0 in the power-of-two case. Moreover, we have T (θ) = d

12 (R
2 + r2)

in Proposition 1 for such rings. The claimed expressions follow from the identity d ∥x∥2 =
∥φ(x)∥2 and our assumption that all embeddings behave independently. ⊓⊔

Proof (of Corollary 2). Let V be the linear transformation such that φ(f, g) = V (f, g), we
want to know the square of its smallest singular value. With [SSS20, Lemma 2.1 and 2.2],
the eigenvalues of V ∗V are those of the Vandermonde for the prime case scaled by d

p−1 .
Combining with e.g. [LPR13, Lemma 4.3] for the prime case, we obtain that the spectrum
(without multiplicity) of V ∗V is {m2 , d

p−1} if m is even and {m, d
p−1} is odd. This means that

we have ∥x∥2 ⩽ p−1
d ∥φ(x)∥2 for all x ∈ K . The inequalities now follow from Proposition 1,

Lemma 7 and the properties of the expectation. ⊓⊔
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B Analysis over cyclotomic fields of conductor m = 2ℓpk

As mentioned in Section 4.4, the analysis in the general case of cyclotomic base rings of
conductor m = 2ℓpk is slightly more involved, although it proceeds in a largely similar way
at the power-of-two cyclotomic case.

For the success probability of Algorithm 5, the squared length of a pair of (fixed) embed-
dings now follows a sum of two non-central χ2 distributions of degree 2 and distinct scaling
in general. The cumulative distribution function of such a law does not admit a simple
expression in terms of classically defined special functions, so giving a manageable analytic
expression of the success probability in that case is difficult. One can however provide a loose
lower bound of success probability analogous to Eq. (7). This is done by overestimating the
probability of the embedding falling outside of the outer circle of the target annulus or inside
of the inner circle using the more pessimistic eigenvalue of Σθ in each case, thus reducing
the estimate to the analysis of a single non-central χ2 distribution of degree 4 again. This
makes it possible to prove that one can achieve α = O(1) in this setting as well as long as
q = Ω(d log d).

Since such a result is of little concrete interest in practice, however, we omit the details
of that analysis, and instead observe that the description above of the distribution of the
squared length of the pair of embedding is in fact sufficient to carry out precise numerical
computations of the success probability, analogous to the results presented at the end of
Section 4.1. This lets us analyze the behavior of the success probability as a function of α
for all parameters of interest.

For the security against key recovery attacks, the situation is made simpler by Proposi-
tion 1 and the fact that we can accept giving more power to an attacker (or equivalently,
overestimate lengths related to secret keys) as long as it does not significantly impact our
security level. We find that pessimistic overestimates of all of the quantities involved do not
in fact result in a meaningful security loss, so that the security analysis is mostly unchanged
in this setting.

B.1 Success probability

We start with some notation to describe the necessary quantities. For some fixed embedding
φθ, let X = (φθ(f), φθ(g)). Conditioned on x̃ := (φθ(f̃), φθ(g̃)), we have Xx̃ ∼ N (x̃, I2⊗Σθ)
from Heuristic 1. Now, Σθ has two distinct eigenvalues λθ+ and λθ−. Let Q ∈ R4×4 be the
orthogonal matrix such that I2 ⊗ Σθ = QtΛQ, where Λ := diag(λθ+, λ

θ
+, λ

θ
−, λ

θ
−). Then the

variable QX ∈ R4 is distributed as N (Qx̃, Λ). Writing Qx̃ = (ν+, ν−) with ν+, ν− ∈ R2

satisfying that ∥ν+∥2 + ∥ν−∥2 = ∥x̃∥2 or rather ∥ν+∥2 + ∥ν−∥2 = β2q (since β = ∥x̃∥/√q as
defined in Section 4.1). Thanks to Q being orthogonal and Λ being diagonal, we have

∥Xx̃∥2 ∼ χ2(2, λθ+; ∥ν+∥2) + χ2(2, λθ−; ∥ν−∥2). (15)

Lastly, let z := ∥ν+∥2/(β2q) ∈ [0, 1], then ∥ν−∥2/(β2q) = 1− z. We rewrite (15) as

1

q
∥Xx̃∥2 ∼ χ2

(
2,
λθ+
q
;β2z

)
+ χ2

(
2,
λθ−
q
;β2(1− z)

)
, where

λθ±
q

=
d±

∣∣ sin(dθ)
sin θ

∣∣
24q

. (16)

Let pθsucc(z, β) be the probability that Xx̃ satisfying the condition (5) given the value of
(z, β), meaning that 1/α2 ⩽ ∥Xx̃∥2/q ⩽ α2. This probability is therefore:

pθsucc(z, β) = Fz,β(α
2)− Fz,β(1/α

2)

for Fz,β the cumulative distribution function of the combination of non-central χ2 distribu-
tion from (16), which can be computed numerically, e.g., by the Python package chi2comb.
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Let furthermore f be the probability density function of the random variable z. Then, re-
calling that β2q is uniformly distributed in [r2, R2], the success probability pθsucc-one for the
embedding φθ is expressed as

pθsucc-one =
1

R2 − r2

∫ R2

r2

(∫ 1

0

pθsucc(z, β)f(z) dz

)
d(β2q)

=
2q

R2 − r2

∫ R/
√
q

r/
√
q

β

∫ 1

0

pθsucc(z, β)f(z) dz dβ

=
1

2ξ

∫ ξ

−ξ

(
µ+ δt

) ∫ 1

0

pθsucc(z, µ+ δt)f(z) dz dt,

with µ = α+1/α
2 , δ = α−1/α

2 and β = µ+δt as in Section 4.1. Accordingly, under our heuristic
assumption that the embeddings are independently distributed, the success rate psucc-all for
all d/2 embeddings is psucc-all =

∏
θ p

θ
succ, and the repetition rate M is M = p−1

succ-all. All of
these values can thus be evaluated numerically provided that we find the PDF f(z) of the
random variable z. It is given by the following lemma.

Lemma 6. The probability density function f of the random variable z defined above is
given by:

f(z) =
8

π3
K(z)K(1− z),

where K is the complete elliptic integral of the first kind (with the parameter notation, not
the elliptic modulus notation):

K(m) =

∫ π/2

0

dt√
1−m sin2 t

.

Proof. The embeddings φθ(f̃) and φθ(g̃) are sampled by independently sampling ρ2 = β2q
uniform in [r2, R2], a uniform in [0, π/2] and ω, ω′ uniform in [0, 2π] and letting:

x̃ =
(
φθ(f̃), φθ(g̃)

)
=

(
ρ cos(a)eiω, ρ sin(a)eiω

′) ∈ C2.

Moreover, Σθ is diagonalized as Rt · diag(λθ+, λθ−) ·R for some rotation matrix R (acting on
C by multiplication by eiψ, say). Then:

R · φθ(f̃) = ρ cos(a)ei(ω+ψ) and R · φθ(g̃) = ρ sin(a)ei(ω
′+ψ).

It follows that, as a vector in R4:

Qx̃ =
(
ρ cos(a) cos(ω + ψ), ρ sin(a) cos(ω′ + ψ), ρ cos(a) sin(ω + ψ), ρ sin(a) sin(ω′ + ψ)

)
,

as the first two components correspond to the eigenvalue λθ+. In particular:

∥ν+∥2 =
∥∥(ρ cos(a) cos(ω + ψ), ρ sin(a) cos(ω′ + ψ)

)∥∥2
= ρ2

[
cos2 a · cos2(ω + ψ) + sin2 a · cos2(ω′ + ψ)

]
,

z =
∥ν+∥2
ρ2

= cos2 a · cos2(ω + ψ) + sin2 a · cos2(ω′ + ψ).

Now ω + ψ and ω′ + ψ are independent and uniformly distributed modulo 2π, and since,
moreover, cos2 is even and π-periodic, we see that the distribution of z is the distribution
of cos2 a · cos2 b+ sin2 a · cos2 c for independent uniform random variables a, b, c ∈ [0, π/2].

Let u = cos2 a, v = cos2 b and w = cos2 c. These are independent and uniformly dis-
tributed random variables with values in [0, 1], whose common probability density function
h is given by:

h(u) =
d

du
Pr[cos2 a ⩽ u] =

d

du
Pr[a ⩾ arccos

√
u] =

d

du

(
1− 2

π
arccos

√
u
)
=

1/π√
u
√
1− u

.
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The density gv,w of z = uv + (1 − u)w conditioned on fixed values v, w, where we assume
without loss of generality that v > w, is then given by:

gv,w(z) =
d

dz
Pr[(v − w)u− w ⩽ z] =

d

dz
Pr

[
u ⩽

z − w

v − w

]
=

d

dz
H
(z − w

v − w

)
=

1

v − w
h
(z − w

v − w

)
=

1/π√
v − z

√
z − w

for all z ∈ (w, v), where H denotes the CDF of u (i.e., the antiderivative of h vanishing at
0). Overall, it follows that the density f of z (without conditioning) satisfies:

f(z) = 2

∫∫
0⩽w<z<w⩽1

gv,w(z)h(v)h(w) dv dw

=
2

π3

∫ z

0

dw√
w
√
z − w

√
1− w

∫ 1

z

dv√
v
√
v − w

√
1− v

by Fubini (note that we can indeed take the integral over the domain 0 ⩽ w < z < v ⩽ 1
since for fixed v, w the density vanishes for z not between v and w, and the two cases v > w
and v < w are clearly equivalent by symmetry, hence the factor 2). In this last formula, the
integral in w is readily seen to be equal to 2K(z) by the change of variables w = z sin2 t, and
the integral in v takes the same form as the first one by the change of variables v 7→ 1− v.
This concludes the proof. ⊓⊔

We can numerically confirm that this approach correctly models the repetition rate
observed in practice for non-power of two cyclotomic fields, as shown in Fig. 3.

B.2 Security analysis

We want to understand the expected values of both ∥f, g∥2 and ∥ff∗, gg∗∥2. Qualitatively
speaking, the behavior in the case m = 2ℓpk is in fact quite close to the power-of-two case,
since for most embeddings, |S(θ)| =

∣∣ sin(dθ)
sin θ

∣∣ is small compared to d: sin θ is bounded away
from zero except possibly for just a handful of embeddings with θ close to a multiple of π.
For those few embeddings, success probability tends to become slightly worse. Nevertheless,
even in the worst case, we have:

S(θ) =
sin(2π/3)

sin(2π/3d)
≈

√
3/2

2π/3d
=

3
√
3

4π
d ≈ 0.413d.

We shall see shortly that the quantity ∥f, g∥2 is not difficult to estimate for the con-
ductors we are interested in, although exact formulas cannot be obtained. For the quantity
∥ff∗, gg∗∥2, compared to the power-of-two case, we now have the additional term depending
on the embedding considered, namely

T (θ) =
|S(θ)|2
72

+ 4 · E
[
∥φθ(f̃)∥2θ + ∥φθ(g̃)∥2θ

]
as seen in Proposition 1. The next result gives a clean (yet not tight) estimate.

Lemma 7. We have T (θ) ⩽ d2

288 + d
4 (R

2 + r2).

Proof. From the observations above, we have |S(θ)| ⩽ d
2 , and hence d + |S(θ)| ⩽ 3

2d. By
Lemma 5 and the monotonicity of expectation, we obtain E

[
∥φθ(f̃)∥2θ + ∥φθ(g̃)∥2θ

]
⩽ λθ+ ·

(R2 + r2). The inequality follows using λθ+ = d+|S(θ)|
24 . ⊓⊔
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On the one hand, the quantity T (θ) is involved in the attack over the relative subfield K ++,
and therefore has to be compared to the normalized volume of the corresponding relative
lattice, which is of the order of q2. Recall that R2, r2 are both of the order of q, and observe
in the next result that (ff∗, gg∗) is on the other hand of the order of magnitude of q2. As
claimed, this pessimistic estimate on T (θ) should therefore have a limited negative impact
on the attack.

Corollary 2 (of Proposition 1, heuristic). Let K be a cyclotomic field of conductor
m = 2ℓpk with p odd and ℓ ⩾ 0, k ⩾ 1. With the notation of Algorithm 5, let (f, g) be a
random variable following the distribution of its output. Then we have

E[∥f, g∥2] ⩽ (p− 1)

(
d

6
+
R2 + r2

2

)
,

E[∥ff∗, gg∗∥2] ⩽ (p− 1)

(
5

8
(R4 + r4) +R2r2 +

d

3
(R2 + r2) +

d2

32

)
.

The proof of this corollary is a straightforward norm computation and is provided in Ap-
pendix A.

With these estimates in mind, we can carry out the same analysis as in Section 4.2.2,
replacing the expected values by their pessimistic upper bound. Keeping the notation of
that section, the last ingredient is to express E[∥E∥2], where E = ff∗ + gg∗ − qN for some
carefully chosen qN . We will follow the same roadmap as in the power-of-two case. From
Proposition 1, we note that the average embedding of ff∗+gg∗ does not depend on the phase
θ, and we let qN = E[φθ(ff∗) + φθ(gg

∗)] = d
6 + R2+r2

2 . Following the proof of Corollary 2
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Fig. 3. Base 2 logarithm of the repetition rate M of Algorithm 5 as a function of α, for d ∈
{648, 768, 864, 972}, q = 12289 and ξ = 1

3
. The continuous lines are obtained based on our model,

and the triangle data points are measured by simulations (averaging 100 iterations of the algorithm
for each data point).
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and using also the definition of the variance, we then obtain

E
[
∥E∥2

]
⩽ (p− 1) ·max

θ
Var

[
φθ(ff

∗) + φθ(gg
∗)
]
.

For a fixed embedding φθ, the law of total variance and the calculations done in Proposition 1
give Var

[
φθ(ff

∗) + φθ(gg
∗)
]
= (R2−r2)2

12 + d2

72 + T (θ). Lemma 7 then yields

E
[
∥E∥2

]
⩽ (p− 1) ·

(
(R2 − r2)2

12
+
d

4
(R2 + r2) +

5d2

288

)
.

C Experimental data

This appendix collects data aimed at justifying the heuristics of Section 3, in the form of
the following figures.

Figure 4 shows that the embeddings of the error ef and eg do behave as independent and
uniform in [−1/2, 1/2). We additionally confirm this graphical observation of the uniformity
and independence using statistical χ2 tests. Multiple experiments of goodness of fit (with
bin size 20 and 1500 samples each) and independence (with bin size 400 and 1500 samples
each) yield expectedly random-looking p-values, consistently above 0.05.

Figure 5 shows that the error magnitude on an embedding has the expected distribu-
tion (namely, a scaled χ(4)) in the power-of-two cyclotomic case, and Fig. 6 illustrates the
situation of 3-smooth base fields, again showing that experimental results match our model.

(a)
(
e
(21)
f , e

(50)
f

)
(b)

(
e
(101)
f , e

(3)
g

)

Fig. 4. Empirical joint distributions of two randomly coefficients of ef (resp. a randomly chosen
coefficient of ef and another of eg). The data is collected from 1500 samples (f, g) of degree d = 512.
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Fig. 5. Statistical density of ∥φi(e)∥ in case m = 1024, d = 512 (1500 samples).
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Fig. 6. Statistical density of ∥φi(e)∥ in case m = 1944, d = 648 (1500 samples).
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