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ABSTRACT
The Algorand consensus protocol is interesting both in theory and

in practice. On the theoretical side, to achieve adaptive security, it

introduces the novel idea of player replaceability, where each step of
the protocol is executed by a different randomly selected committee
whose members remain secret until they send their first and only

message. The protocol provides consistency under arbitrary net-

work conditions and liveness under intermittent network partitions.

On the practical side, the protocol is used to secure the Algorand

cryptocurrency, whose total value is approximately $850M at the

time of writing.

The Algorand protocol in use differs substantially from the pro-

tocols described in the published literature on Algorand. Despite

its significance, it lacks a formal analysis. In this work, we describe

and analyze the Algorand consensus protocol as deployed today

in Algorand’s ecosystem. We show that the overall protocol frame-

work is sound by characterizing network conditions and parameter

settings under which the protocol can be proven secure.
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1 INTRODUCTION
The Algorand proof-of-stake consensus protocol used at the heart

of the Algorand blockchain is interesting in theory and in prac-

tice. From a theoretical point of view, the protocol attains security

under adaptive corruption of parties by introducing the novel tech-

nique of player replaceability. Randomly selected committees of
parties are assigned to execute different steps of the protocol, and a

party’s membership on any particular committee is secret until that

party executes the corresponding step by sending a message. The

protocol aims to ensure strong security guarantees in real-world

network conditions: informally, it seeks to provide consistency in

an asynchronous network and liveness given intermittent network

partitions so long as there are sufficiently long periods of synchrony.

From a practical point of view, the Algorand cryptocurrency, whose

total value is roughly 850 million USD at the time of writing, relies

on the protocol for security.

Understanding the security of the Algorand protocol is thus an

important goal. Although analyses of early versions of the Algorand

protocol have previously appeared in the literature [3–5, 9, 10], the

∗
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Algorand protocol in use is very different from all the variants that

have been previously described or analyzed. To the best of our

knowledge, there is no formal analysis of the Algorand protocol

that is actually deployed or anything similar to it (§1.3). Moreover,

even the existing security proofs for earlier versions of the protocol

do not prove all the properties that are claimed. For example, Chen

and Micali [5] give a proof sketch for a simplified version of the

protocol (without player replaceability) in a synchronous network,

but they do not analyze the full version of the protocol in a network

with intermittent partitions.

1.1 Our Contribution
In collaboration and consultation with researchers and engineers

involved in the implementation and deployment of the Algorand

blockchain, and using the technical specification made available by

Algorand [1] as a primary source, we present a formal specification

of the Algorand consensus protocol as deployed.1 We analyze the

protocol in a novel network model intended to accurately capture

concerns of the protocol designers—in particular, recovery from

intermittent network outages.

Our analysis establishes a variety of results regarding the proto-

col’s security. Our positive results include a proof that the overall

protocol framework is sound. We also describe how the parameters

of the protocol (e.g., committee sizes and quorum thresholds) can

be set to achieve any desired level of security.

On the other hand, some quantitative security bounds we obtain

are relatively weak. For instance, we fail to establish a strong se-

curity bound for the protocol’s liveness under partial synchrony.

In particular, although we are able to define a set of good events

that are sufficient for liveness, we fail to prove a meaningful lower

bound on the probability that those good events occur. We leave as

open questions whether our bounds can be improved and whether

the deployed protocol’s parameters should be adjusted to improve

security margins.

1.2 Technical Overview
1.2.1 Overview of the Protocol. In the protocol, various committees

play different roles in reaching agreement. This section focuses on

1
The Algorand ecosystem allows for self-governance, meaning that a sufficiently large

set of parties can decide to enact arbitrary changes to the protocol in the future; our

analysis deals with the protocol as it is deployed at the time of writing.
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the high-level protocol flow. Further details (e.g., how committees

are elected, specific types of committees, etc.) follow in Section 2.3.

To achieve consensus, the parties repeatedly execute a graded-

consensus protocol which we call GC (as in prior work [8, 12, 14]).

GC itself invokes a sub-protocol which we call Vote. In Vote, parties
on a committee vote for a value proposed by a randomly selected

leader. (Honest parties may disagree about the leader if either the

network is asynchronous or the leader is corrupted.) When a party

receives a sufficient number of concurring votes (a “quorum”) on a

proposed value, it terminates Vote.
In the remainder of GC, the parties try to reach agreement on

the output of Vote. Different committees play different roles in this

process. Some committees ensure fast convergence in a partially

synchronous network, and others enable recovery from intermittent

network faults in a “synchronous enough” network. A decision is

reached when parties receive a quorum from any committee.

1.2.2 Challenges. Defining an appropriate model in which to an-

alyze the protocol is challenging. First, the Algorand engineers

designed the protocol with real-world network conditions in mind,

rather than any particular theoretical model. Second, they designed

the protocol to simultaneously achieve different security guarantees

under different network conditions. Thus, we analyze the proto-

col in multiple network models—some of which are not entirely

standard—that we believe best represent the engineers’ intentions.

Since we are analyzing an existing protocol, we lack the freedom

to modify or simplify the protocol in order to facilitate the analysis.

The protocol’s complexity stems from its attempt to achieve security

in multiple different network models simultaneously. Specifically,

its recovery mechanisms try to account for both partial synchrony

and for intermittent network partitions: the protocol seeks to both

guarantee liveness and achieve good efficiency under real-world

network conditions. Managing these competing requirements gives

the protocol two characteristics that complicate analysis and pre-

vent direct application of techniques in prior work:

(1) The protocol has multiple termination paths bywhich parties

can decide on their output. Having multiple paths compli-

cates the proof of consistency; in particular, the path in-

tended to deal with partial synchrony and the one intended

to address an intermittently synchronous network have sub-

tle interactions.

(2) The protocol involves committees of widely varying sizes.

For example, the smallest committee contains 500 parties

in expectation, while the largest has 6000. The goal of the

protocol designers here was to optimize over a trade-off:

smaller committees improve efficiency but are more likely to

contain too many corrupted parties. Thus, committees with

strict consistency requirements are larger than those with

loose consistency (but strict liveness) requirements.

1.2.3 Our Techniques. To prove security of the protocol, we intro-

duce several proof techniques that may be of independent interest.

For modularity, we identify a set of “bad events” and analyze se-

curity of the protocol in the absence of bad events; we then focus

on upper-bounding the probabilities of those bad events. This al-

lows us to cleanly separate a higher-level analysis of the protocol

from lower-level probability calculations. It also enables us to give

concrete bounds on the probabilities of certain security violations.

In analyzing the probabilities of the bad events, we must account

for both adaptive corruptions and adversarially controlled message

delivery. To cope with this complexity, we introduce a combina-

torial game we call the red-blue game. We analyze an adversary’s

maximum possible advantage in that abstract game and then map

the game to particular bad events in the protocol. We remark that

while other works studying consensus also rely on combinatorial

analyses, we are not aware of any such results that apply to a proto-

col with multiple termination paths as in our setting. Our analysis

is also more complex since we need to take into account properties

relating to pairs of committees (of different sizes).

1.3 Related Work
1.3.1 Prior Versions of Algorand. The Algorand protocol was in-

troduced in a series of foundational works [4, 5, 10]. In addition to

player replaceability, the Algorand protocol is generally credited

with pioneering the use of cryptographic sortition, i.e., using veri-
fiable random functions [13] to elect committee members from a

large pool of participants. Following this series, there have been

several subsequent alterations to the Algorand protocol [3, 9].

In this work, we analyze the Algorand protocol as it is currently

deployed, as specified by Algorand Foundation [1]. The deployed

version of the protocol differs from versions considered in prior

work. Some prior work considered earlier versions of the protocol

that used fewer committees than the current version [4, 5, 10];

other work did not consider committees at all but instead assumed

all parties participate [3]. Another feature that distinguishes the

deployed algorithm from versions analyzed in prior work is that it

is designed to achieve security under different network conditions.

This is not fully realized in earlier versions of the protocol.

1.3.2 Adaptive Security for Committee-Based Protocols. Subsequent
work introduced other adaptively secure consensus protocols re-

lying on player replaceability, committees, and/or VRFs [2, 6, 15].

Many of these protocols are simpler than the Algorand protocol

we are analyzing, as they were designed expressly to enable a clean

proof of security; since we are analyzing a protocol that is already

deployed, we do not have that luxury. Thus, the proof techniques

used in any of these prior works are insufficient for our goal.

2 MODEL AND PRELIMINARIES
We let 𝑁 denote the number of parties running the protocol. A

“party” in our context represents a unit of currency (namely, one

microAlgo) staked by a user who wishes to participate in the proto-

col; hence, multiple parties might correspond to a single physical

entity. We assume 𝑁 ≥ 10
12
, which is a conservative lower bound:

from genesis to July 2023, the Algorand system has had 𝑁 ≥ 10
15
.

2.1 Network Model
We consider three network models: an asynchronous model, a mod-

ified partially synchronous model, and a model we call synchronous-
enough. In all of these models, we assume that any pair of parties

can communicate via a point-to-point channel and that a PKI is

in place so that parties agree on each others’ public keys. We also
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assume that each party has a local clock and that parties’ clocks run

at the same rate; however, their clocks need not be synchronized.

The asynchronous model is the standard one: all messages may

be delayed arbitrarily by an adversary, so long as any message sent

by an honest party is eventually delivered.

For the partially synchronous model, we consider the unknown
GST flavor, in which message delays are unbounded until an un-

known global stabilization time GST [7], and after which the net-

work stabilizes andmessages are delivered in a synchronous fashion

with (known) bounded delay. As a strengthening of the usual def-

inition, we assume two delay parameters, with “small” messages

delivered in time 𝛿 and “large” messages delivered in time Λ. (For
our purposes, a message is large if it contains a block and small

otherwise.) As a theoretical weakening of the usual definition, some

of our results require an upper bound on GST. While in theory this

is equivalent to the synchronous model with delay GST + Λ, the
required bound on GST can be on the order of the lifetime of the

universe and so is immaterial in practice.

The “synchronous-enough” model is a new model we introduce

that is intended to capture real-world networks that mostly operate

in a synchronous fashion but may occasionally experience large

delays. Formally, in the (𝛽, Γ, 𝛿,Λ)-synchronous-enough model the

network experiences good intervals and bad intervals. During good

intervals, the network is synchronous; small messages are deliv-

ered within time 𝛿 and large messages are delivered within time Λ.
During bad intervals, the network is asynchronous and messages

can be delayed arbitrarily. However, a bad interval can last for time

at most 𝛽 , and any bad interval must be followed by a good interval

of length at least Γ ≥ Λ. The parameters 𝛽, Γ, 𝛿,Λ are known to

the honest parties, but the honest parties do not know whether the

network is bad or good at any given time. (The adversary, however,

is aware of the state of the network.)

Although one can view this model as a standard synchronous

model with delay bounded by 𝛽 + Λ, working in this model has

the potential to facilitate quantitatively stronger liveness claims

for the top-level SMR protocol. In particular, we imagine 𝛽 to be

on the order of hours or days, in which case standard synchronous

protocols would be extremely slow even if the network is usually

fast. By comparison, the Algorand protocol is slow to terminate

in the worst case (due to its exponential backoff), but when the

network is good for long periods of time, it can terminate executions

of BA in time much less than 𝛽 (see e.g. Lemma A.11).

2.2 Adversary Model
We assume that at most 𝛼 · 𝑁 parties can be adaptively corrupted

by an adversary. (We generally leave 𝛼 as a variable but note that

the Algorand protocol is designed to tolerate 𝛼 = 0.2.) Parties

who are not corrupted are called honest. Once a party is corrupted,

the adversary can freely coordinate its actions for the duration

of the protocol. Since parties represent units of stake rather than

individual users, this is equivalent to assuming that the adversary

controls at most an 𝛼 fraction of the total stake at any time. The

exact distribution of stake across users is irrelevant as long as this

assumption holds.

All the network models we consider prohibit after-the-fact mes-
sage removal: if the adversary corrupts a party 𝑃 after 𝑃 sends a

message, the adversary cannot prevent that message from being

delivered. (This avoids the lower bound of Abraham et al. [2] on

the communication complexity of consensus protocols tolerating

after-the-fact message removal.)

2.3 Committee Election
In the deployed version of the protocol, parties are elected to com-

mittees using verifiable random functions (VRFs). Our analysis

omits the implementation details and instead considers an idealized

committee-election mechanism that randomly and independently

selects committees as needed.

We assume that each party is independently selected to be on the

committee with probability 𝐸/𝑁 , where 𝐸 is a parameter determin-

ing the expected size of the committee. As part of this mechanism,

the party receives a proof of its membership on the committee.

Furthermore, we require that the mechanism does not reveal to

the adversary whether an honest party is on a particular commit-

tee until the party actively proves its membership—this is key to

achieving adaptive security.

In the Algorand protocol, each honest committee member sends

only a single message on behalf of that committee. This message

serves as both a proof of membership on the committee and a vote

for some decision. We also assume that corruption of an honest

party 𝑃 after 𝑃 proves its membership should not allow the ad-

versary to send any other votes on 𝑃 ’s behalf (as a member of

that committee). This can be achieved, for example, by using for-

ward secure signatures and having party 𝑃 update its secret key

immediately after sending its message as part of the committee.
2

In the rest of the paper, we handle committee membership ab-

stractly, implicitly assuming that parties locally determine when

they are on a committee and that they verify committee member-

ship of other parties when determining validity of votes.

2.4 Security Definitions
The high-level goal of the Algorand protocol is to implement state
machine replication (SMR), by which a group of parties collectively

agree on a sequence of blocks. Algorand achieves SMR using se-

quential executions of a Byzantine agreement (BA) protocol to agree
on one block at a time. For our purposes the syntax of blocks is

irrelevant, and we can consider BA as an interactive protocol that

allows a set of parties, each with some initial input 𝑣𝑖 , to agree

on a common output 𝑣 . The goal is to achieve certain notions of

consistency (also called safety) and liveness. Consistency, roughly,
means all honest parties agree on their output, and liveness means

all honest parties eventually output something. Formally:

Definition 2.1. Let BA be an 𝑁 -party interactive protocol, where

each party 𝑃𝑖 has an input value 𝑣𝑖 and outputs a value 𝑣 ′
𝑖
. We say

that BA is secure if it achieves the following:

• (Consistency) If honest parties 𝑃𝑖 , 𝑃 𝑗 output values 𝑣
′
𝑖
, 𝑣 ′

𝑗
,

respectively, then 𝑣 ′
𝑖
= 𝑣 ′

𝑗
.

• (Liveness) Every honest party eventually terminates with

some output.

2
In the deployed protocol, parties update their keys only after a given iteration, not

after each message they send. This is likely an optimization reflecting the fact that

adaptive corruption in the real world is not instantaneous. In our formal analysis we

assume parties update their keys after each message they send.
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Algorand aims for consistency under arbitrary message delays

(i.e., in an asynchronous network), and liveness assuming either a

partially synchronous or a synchronous-enough network.

The real-world protocol also achieves a notion of external validity,
meaning that only “valid” values are output by honest parties. We

do not explicitly consider this notion since (1) we do not want

to define what “valid” means in the context of the protocol, and

(2) honest parties can achieve external validity by simply ignoring

invalid values.

3 THE ALGORAND PROTOCOL
The Algorand SMR protocol (i.e., blockchain) uses sequential invo-

cations of a core BA protocol to agree on blocks. Consistency of

the blockchain follows readily from consistency of the BA protocol,

and (under mild synchrony assumptions, such as those used here)

liveness for the blockchain follows from liveness of the BA protocol.

We therefore restrict our attention to the core BA protocol.

The pseudocode is presented in a modular form: the top-level

BA protocol consists of iterations of the graded consensus protocol

GC (Algorithm 2). Adopting the term used by the protocol design-

ers, we call these iterations periods. The 𝑝th invocation of GC is

denoted by GC𝑝 . Periods are local rather than global, and honest

parties may be participating in different periods at any given time.

In each period, GC𝑝 in turn calls a dedicated subprotocol Vote𝑝
(Algorithm 3). Each of these building blocks is explained in greater

detail below.

3.1 Committees, Votes, and Quorums
The Algorand protocol defines seven types of committees: propose,
soft, cert, next, late, down, and redo. Each committee serves a dif-

ferent function and has a different (expected) size, given in Table 1.

These committees are resampled in each period, so that the sets of

parties on different committees are independent. For example, the

set of parties in late committee of period 𝑝 = 1 is independent of the

set of parties on the late committee for 𝑝 = 2. Furthermore, there

are 250 independent next committees per period; we include an in-

dex 𝑘 in the subscript to distinguish between them. As a convenient

shorthand, we often refer to these committees by the abbreviations

PV , SV , etc., as shown in Table 1.

Name Notation Expected size Quorum size
𝑝-propose PV𝑝 20 n/a

𝑝-soft-vote SV𝑝 2990 2267

𝑝-cert-vote CV𝑝 1500 1112

𝑝-next𝑘 -vote NV𝑝,𝑘 5000 3838

𝑝-late-vote LV𝑝 500 320

𝑝-redo-vote RV𝑝 2400 1768

𝑝-down-vote DV𝑝 6000 4560

Table 1: Expected sizes and quorum sizes of Algorand com-
mittees.

Committee members send messages in support of proposed val-

ues; we refer to the messages sent by the soft committee as soft-
votes, and likewise for other committees. (The exception is the

propose committee, whose messages we call proposals.) To refer to

a specific period, we may write “𝑝-soft-vote” as shorthand for a

soft-vote sent in period 𝑝 (and so on for the other committees).

Sufficiently many matching votes from members of a particular

committee are called a quorum. Each committee has a quorum size
that determines the number of votes needed to form a quorum

(Table 1). For example, a 𝑝-cert-quorum for 𝑣 consists of 1112 𝑝-cert-
votes on 𝑣 by distinct members of CV𝑝 .

At a high level, each committee plays a unique role in fulfilling

one of two goals. The primary goal is to reach agreement on a

proposed value; failing that, the secondary goal is to advance to

a new period and try again. The propose, soft, and cert commit-

tees are most directly responsible for the primary goal, with the

remaining committees supporting the secondary goal. Specifically,

members of the propose committee propose a value to all parties at

the start of each period. The soft committee votes in favor of pro-

posals they receive. The cert committee “certifies” the decision of

the soft committee, and agreement is reached with a cert-quorum.

If a proposal is not certified before a fixed deadline, the remaining

committees (NV𝑝,𝑘 , LV , DV , and RV) seek to safely initiate

a new period. Informally, each of these committees is responsi-

ble for raising a distinct “flag” related to the status of the current

period, which has different implications for the next attempt. A late-
quorum indicates that a soft-quorum was formed on a proposed

value after the deadline. A redo-quorum indicates that enough

parties support a particular value to warrant keeping it for the

next period, even if there was no soft-quorum for that value. A

down-quorum indicates that the primary path made insufficient

progress. Depending on which “flag” is raised, parties will either

retain a previously proposed value or start from scratch with a new

proposal. The next𝑘 -committees are the most flexible in that each

member can advocate for retrying or starting from scratch as it sees

fit. (To avoid spamming the network, next𝑘 voting takes place in

exponentially-increasing intervals, whereas the other committees

vote almost immediately once the condition they are waiting for is

met.) A party begins the next iteration as soon as it receives any

one of the above quorums.

Intuitively, having multiple “paths” to agreement is beneficial

because the protocol can proceed as soon as any of the paths com-

pletes. However, it also introduces a complication: if more than
one of the paths succeeds, it is critical that each path arrives at the

same result. Carefully accounting for interactions between these

paths—and ensuring consistency for the overall protocol—is one of

the most technically challenging aspects of our analysis.

3.2 Technical Details
The BAprotocol (cf. Algorithm 1) sequentially invokes a sub-protocol

for graded consensus (GC) until a termination condition is satisfied.

Each party 𝑃𝑖 begins the BA protocol holding an input 𝑣𝑖 ≠⊥, which
is (the hash of) a block of transactions.

At the outset of the 𝑝th period, each party 𝑃𝑖 holds an input of

the form (𝑣𝑖 , 𝑣, 𝑏𝑖 ), where 𝑣𝑖 is that party’s original input to the

BA protocol, 𝑣 (informally) represents a value on which partial

agreement may have been reached, and 𝑏𝑖 ∈ {0, 1} represents

the party’s confidence in that partial agreement. (Initially in GC1,

each honest party 𝑃𝑖 uses input (𝑣𝑖 ,⊥, 0).) During execution of the
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Algorithm 1: The Algorand BA protocol, from the perspec-

tive of party 𝑃𝑖 with input 𝑣𝑖 ≠⊥.
1 throughout:
2 on receiving a 𝑝-quorum (𝑝 < 2

64
) for any committee,

forward it to all other parties

3 GC1 (𝑣𝑖 ,⊥, 0)
4 on terminating GC𝑝 with output (𝑣, 𝑔):
5 if 𝑔 = 2 then
6 output 𝑣 and terminate

7 else
8 if 𝑔 = 1 then GC𝑝+1 (𝑣𝑖 , 𝑣, 1);
9 else GC𝑝+1 (𝑣𝑖 ,⊥, 0);

protocol, each party 𝑃𝑖 maintains a local variable 𝑏 that is initialized

to 𝑏𝑖 but is set to 0 if, at any point during execution of GC𝑝 , that

party observes evidence that agreement has not been reached. Each

𝑃𝑖 also maintains a local timer (denoted clock𝑖 ) that is reset to 0 at

the start of GC𝑝 and incremented in sync with its local clock.

In the GC protocol (cf. Algorithm 2), the parties’ primary goal

is to reach agreement on a proposed value; this is the purpose of

the Vote𝑝 subprotocol described in Algorithm 3. If Vote𝑝 fails to

reach agreement in a timely fashion, the parties’ secondary goal is

to collectively move on to the next period to try again.

At the start of Vote𝑝 , each member of PV𝑝 proposes its own

input to all other parties. At time 2𝛿 , each member of SV𝑝 votes

as follows: if 𝑏 = 1, or 𝑃𝑖 has not received any valid 𝑝-proposals,

then 𝑃𝑖 simply 𝑝-soft-votes for 𝑣 . Otherwise, it identifies3 a 𝑝-leader
from among the parties in PV𝑝 from whom it received a proposal,

and it 𝑝-soft-votes for the leader’s proposal. Whenever any party

receives a quorum of 𝑝-soft-votes for some value 𝑣 ′, it outputs 𝑣 ′

and terminates Vote𝑝 . We remark that when Vote𝑝 is run in an

asynchronous network, it may never terminate (for example, if

honest parties start the protocol at very different times) or may

terminate after an unbounded amount of time.

Returning to the execution of GC𝑝 , if a member of CV𝑝 termi-

nates Vote𝑝 with output 𝑣 ′ ≠ ⊥ before time max{4𝛿,Λ}, it 𝑝-cert-
votes for 𝑣 ′. After that, at a sequence of 250 instants (indexed by

𝑘 = 1, . . . , 250) whose separation increases exponentially, members

of NV𝑝,𝑘 vote for different values depending on whether Vote𝑝
has terminated and their current value of 𝑏. Each party sends its

vote at some instant within a fixed “(next-)voting round.” More

precisely, each committee member 𝑃𝑖 sends its next𝑘 -vote at time

𝑇𝑘 + 𝑟 , where 𝑇𝑘 is fixed by the protocol, and 𝑟 is an offset sam-

pled uniformly from the interval [0, 2𝑘𝛿]. (The offset is a heuristic
optimization for avoiding network congestion.) We define a subrou-

tine wakeup to represent this; i.e., when 𝑘 = 1, wakeup(𝑘) returns
max{4𝛿,Λ}; for 2 ≤ 𝑘 ≤ 250, wakeup(𝑘) samples a uniform offset

𝑟 ∈ [0, 2𝑘𝛿] and returns max{4𝛿,Λ} + 2
𝑘𝛿 + 𝑟 .

In parallel to the next𝑘 -vote committees, members of LV𝑝 ,

RV𝑝 , and DV𝑝 also send votes. At regular intervals of time 𝜆𝑓 ,

they check to see if some condition is satisfied. (The delay 𝜆𝑓 is an

3
The precise mechanism by which this is done is irrelevant for our purposes, but we

note that the leader is chosen deterministically based on the proposals received, so

two honest parties who receive the same sets of proposals will identify the same leader.

Honest parties who receive different sets of proposals may identify different leaders.

Algorithm 2: The GC protocol, from the perspective of

party 𝑃𝑖 with input (𝑣𝑖 , 𝑣, 𝑏𝑖 ).
10 𝑏 := 𝑏𝑖 ; set clock𝑖 := 0

11 throughout:
12 On receiving a (𝑝 − 1)-next∗-quorum for ⊥ or a

(𝑝 − 1)-down-quorum for ⊥, set 𝑏 := 0

/* Step 1: */

13 starting at clock𝑖 = 0:
14 Vote𝑝 (𝑣𝑖 , 𝑣)

/* Step 2: */

15 while clock𝑖 ∈ (2𝛿,max{4𝜆,Λ}], if 𝑃𝑖 ∈ CV𝑝 do
16 on terminating Vote𝑝 with output 𝑣 ′ ≠ ⊥:
17 𝑝-cert-vote for 𝑣 ′

/* Step 3: */

18 for 𝑘 ∈ [1..250] do
19 on signal from wakeup(𝑘), if 𝑃𝑖 ∈ NV𝑝,𝑘 :
20 if Vote𝑝 terminated with output 𝑣 ′ ≠ ⊥ then
21 𝑝-next𝑘 -vote for 𝑣

′
; // 3a

22 if 𝑏 = 1 and Vote𝑝 either has not terminated or
terminated with output ⊥ then

23 𝑝-next𝑘 -vote for 𝑣 ; // 3b

24 if 𝑏 = 0 and Vote𝑝 either has not terminated or
terminated with output ⊥ then

25 𝑝-next𝑘 -vote for ⊥; // 3c

/* Step 4: */

26 starting at clock𝑖 = max{4𝛿,Λ}, repeat every 𝜆𝑓 time steps:
27 if 𝑃𝑖 ∈ LV𝑝 and Vote𝑝 terminated with output 𝑣 ′ ≠ ⊥

then
28 𝑝-late-vote for 𝑣 ′; // 4a

29 if 𝑃𝑖 ∈ RV𝑝 , 𝑏 = 1, and Vote𝑝 either has not terminated
or terminated with output ⊥ then

30 𝑝-redo-vote for 𝑣 ; // 4b

31 if 𝑃𝑖 ∈ DV𝑝 , 𝑏 = 0, and 𝑃𝑖 either did not output in
Vote𝑝 or output ⊥ in Vote𝑝 then

32 𝑝-down-vote for ⊥; // 4c

/* Termination conditions: */

33 on receiving one of the following quorums, output the value
and grade indicated and terminate:

34 𝑝′-cert-quorum (𝑝′ < 2
64
) for 𝑣 ′ ≠ ⊥: (𝑣 ′, 2); // T1

35 𝑝-next∗-quorum for 𝑣 ′ ≠ ⊥: (𝑣 ′, 1); // T2

36 𝑝-late-quorum for 𝑣 ′ ≠ ⊥: (𝑣 ′, 1); // T3

37 𝑝-redo-quorum for 𝑣 ′ ≠ ⊥: (𝑣 ′, 1); // T4

38 𝑝-next∗-quorum for ⊥: (⊥, 0); // T5

39 𝑝-down-quorum for ⊥: (⊥, 0); // T6

adjustable parameter; in practice, using a low value for 𝜆𝑓 gives

better latency if the network is fast but adds unnecessary work if

the network is slow.) As with the next𝑘 -vote committees, parties

determine their vote based on whether or not they have observed

Vote𝑝 terminate and their current value of 𝑏.

A party’s output from GC𝑝 includes both a value and a grade.

The protocol has several termination conditions that can be trig-

gered when different quorums of votes have been observed. If
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Algorithm 3: The Vote protocol, from the perspective of

party 𝑃𝑖 with input 𝑣𝑖 ≠⊥.
40 at clock𝑖 = 0:
41 if 𝑃𝑖 ∈ PV𝑝 then
42 If 𝑏 = 0, 𝑝-propose 𝑣𝑖 ; otherwise, 𝑝-propose 𝑣 .
43 at clock𝑖 = 2𝛿 :
44 if 𝑃𝑖 ∈ SV𝑝 then
45 if 𝑏 = 1 or 𝑃𝑖 has not received any valid 𝑝-proposal

then 𝑝-soft-vote for 𝑣 ;
46 else Identify a leader 𝑃ℓ from among the valid

proposals received and 𝑝-soft-vote for the value 𝑣ℓ
proposed by 𝑃ℓ . ;

47 on receiving a 𝑝-soft-quorum for some 𝑣 ′:
48 Output 𝑣 ′ and terminate.

a party receives a 𝑝′-cert-quorum (for any value 𝑝′ < 2
64
, not

necessarily equal to 𝑝) for some value 𝑣 ′, then it outputs 𝑣 ′ with
grade 2; returning to the outer BA protocol, this means that party

will terminate its execution with output 𝑣 ′. A party who receives a

𝑝-next𝑘 -quorum (for any 𝑘), a 𝑝-late-quorum, or a 𝑝-redo-quorum
for some value 𝑣 ′ ≠ ⊥ will output 𝑣 ′ with grade 1. Finally, if a

party receives a 𝑝-next𝑘 -quorum or a 𝑝-down-quorum for ⊥, then
it outputs ⊥ with a grade of 0.

4 GOOD EXECUTIONS
Throughout, we denote by ★V𝐻

𝑝 the set of parties on a committee

★V𝑝 who remain honest until they have sent their message for that

committee and define ★V𝐶
𝑝 = ★V𝑝 \★V𝐻

𝑝 to be the set of parties

on that committee who are corrupted at any point prior to that.

Our security proofs assume certain good events happen during

the course of an execution (and conversely, that certain bad events

do not happen).The first type of good event, denoted with the

prefix A, relates to the number of corrupted parties on a particular

committee. We say a committee is safe if the number of honest

parties on the committee plus twice the number of corrupted parties

on the committee is less than twice the quorum threshold; when a

committee is safe, it is not possible for there to be two conflicting

quorums for that committee. We say a committee is valid if the

number of corrupted parties on the committee is less than the

quorum threshold; note that validity is implied by safety. The A-
events relate to safety and validity of different committees; we

bound the probabilities of such events in Section 6.1.

The second type of event, denoted with the prefixB, relates to the
number of honest parties on a given committee. We say a committee

is live if the number of honest parties on that committee is at least

the quorum threshold. Note that if a committee is not live then the

protocol may become deadlocked even if there are no corrupted

parties at all, and conversely if a committee is live then honest

parties can potentially generate a quorum even if all corrupted

parties on the committee abort. We bound the probabilities of these

events in Section 6.2.

The last type of event, denoted with the prefix C, relates to
inconsistencies between different committees. The bounds for these

events are the most technically challenging; they are analyzed using

our red-blue game in Section 6.4.

Definition 4.1. Define the following events, parameterized by an

iteration 𝑝 ≤ 2
64
:

A.1 |SV𝐻
𝑝 | + 2 · |SV𝐶

𝑝 | < 2 · 2267.

A.2 |CV𝐶
𝑝 | < 1112.

A.3 For all 1 ≤ 𝑘 ≤ 250, |NV𝐶
𝑝,𝑘

| < 3838.

A.4 |LV𝐶
𝑝 | < 320.

A.5 |RV𝐶
𝑝 | < 1768.

A.6 |DV𝐶
𝑝 | < 4560.

B.1 There exists 𝑝′ ∈ {𝑝, . . . , 𝑝 + 60} such that all of the follow-

ing hold:

B.1.1 |PV𝐻
𝑝′ | ≠ 0 and the 𝑝′-leader is honest.

B.1.2 |SV𝐻
𝑝′ | ≥ 2267.

B.1.3 |CV𝐻
𝑝′ | ≥ 1112.

B.2 For all 𝑝′ ∈ {𝑝, . . . , 𝑝 + 60} and 𝑘 ∈ {1, . . . , 235}, there are
distinct 𝑘1, 𝑘2, 𝑘3 ∈ {𝑘, . . . , 𝑘 + 15} with |NV𝐻

𝑝′,𝑘𝑖
| ≥ 3838

for 𝑖 ∈ {1, 2, 3}.
B.3 |LV𝐻

𝑝 | ≥ 320.

B.4 |RV𝐻
𝑝 | ≥ 1768.

B.5 |DV𝐻
𝑝 | ≥ 4570.

C.1 If an honest party receives a 𝑝-cert-quorum for 𝑣 ≠⊥ then,

for all 𝑘 , no honest party receives a 𝑝-next𝑘 -quorum for

𝑣 ′ ≠ 𝑣 .

C.2 If an honest party receives a 𝑝-cert-quorum for 𝑣 ≠⊥ then

no honest party receives a 𝑝-down-quorum for ⊥.
C.3 If an honest party receives a 𝑝-soft-quorum for 𝑣 then,

for all 𝑘 , no honest party receives a 𝑝-next𝑘 -quorum for

𝑣 ′ ∉ {𝑣,⊥}.
C.4 If an honest party receives a 𝑝-soft-quorum for 𝑣 then no

honest party receives a 𝑝-redo-quorum for 𝑣 ′ ≠ 𝑣 .

An execution of the protocol is secure if all events with prefixesA
and C occur for all 𝑝 < 2

64
. A secure execution is intermittently fair

if events B.1 and B.2 occur for all 𝑝 and eventually fair if events B.1,
B.3–B.5 occur for all 𝑝 .

In Section 5, we prove that consistency holds for the Algorand

BA protocol in any secure execution and that liveness holds in any

intermittently fair or eventually fair execution. Following that, we

give bounds on the probabilities that an execution is secure and

intermittently fair, and make partial progress towards a bound on

the probability that an execution is eventually fair.

5 SECURITY ANALYSIS
This section summarizes the results of our security analysis. Infor-

mally, we show:

• In a secure execution, the Algorand protocol satisfies consis-

tency in an asynchronous network.
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• In an eventually fair execution, the Algorand protocol satis-

fies liveness in a partially synchronous network.

• In an intermittently fair execution, the Algorand protocol

satisfies liveness in a synchronous-enough network.

5.1 Consistency
We show that, assuming a secure execution, the Algorand proto-

col satisfies consistency in an asynchronous network. In such a

network, an adversary can prevent quorums from propagating for

arbitrarily long periods of time. As such, parties’ knowledge of

prior votes may be incomplete when they cast their own votes. The

main challenge is to show that despite this, the parties cannot make

inconsistent decisions.

Theorem 5.1 (Consistency). Assume a secure execution of BA
in an asynchronous network. If honest parties 𝑃 , 𝑃 ′ output 𝑣, 𝑣 ′, re-
spectively, then 𝑣 = 𝑣 ′.

The proof is given in Appendix A.1.

5.2 Liveness
We present two liveness results, showing that the protocol makes

progress in either a partially synchronous network or a synchronous-

enough network. The high-level intuition for both results is the

same. First, we show that even if the parties get “stuck” in some

instance of GC𝑝 due to a period of asynchrony, they will become

“unstuck” and advance to a new iteration once the network becomes

synchronous—either after GST (in the partially synchronous model)

or upon entering a good period (in the synchronous-enough model).

Once that happens, the protocol terminates within a small num-

ber of iterations (in expectation). The main difference between the

two results is which committees are used to advance the iteration

of GC. In the partially synchronous model, advancing relies on the

late-, down-, or redo-vote committees. In the synchronous-enough

model, advancing relies on the next𝑘 -vote committees. We present

both results to illustrate how both sets of committees contribute to

liveness under different network conditions.

To state our results we introduce some notation. Recall that

wakeup(𝑘) determines when a party on the 𝑝-next𝑘 -vote commit-

tee tries to vote. We define a related functionwakeupmin (𝑘) indicat-
ing the earliest possible time a party on the 𝑝-next𝑘 -vote committee

can vote. Specifically,

wakeupmin (𝑘) =
{
max{4𝛿,Λ} 𝑘 = 1

max{4𝛿,Λ} + 2
𝑘𝛿 𝑘 ∈ {2, . . . , 250}.

Theorem 5.2. Assume an eventually fair execution of BA in a
partially synchronous network, and GST ≤ wakeupmin (230). Then
all honest parties terminate BA by time GST + 60 · Δ + 4𝛿 , where
Δ = max{4𝛿,Λ} + 5𝛿 + 5𝜆𝑓 .

Theorem 5.3. Assume an intermittently fair execution of BA in a
(𝛽, Γ, 𝛿,Λ)-synchronous enough network, let

𝑇 ∗ = wakeupmin (log2 (𝛽 −max{4𝛿,Λ)})/𝛿 + 16)
+ 60 · (wakeupmin (16) + 𝛿) + 6𝛿,

and assume Γ ≥ 𝑇 ∗. If the network becomes good at time 𝑇 , then all
honest parties terminate BA by time 𝑇 +𝑇 ∗.

Proofs of the above are given in Appendix A.2.

6 PROBABILITY BOUNDS
In Section 5, we proved security of the Algorand protocol assuming

certain “good” events occur. We now prove lower bounds for the

probabilities of those events under any adversary who can adap-

tively corrupt parties during execution of the protocol. Intuitively,

the protocol is designed so that an adaptive adversary only learns

information about whether an honest party is on some committee

once it is too late for that information to be useful for the adver-

sary. For example, the adversary can learn that some party 𝑃 is

on a committee when it sees 𝑃 send a vote, but at that point 𝑃

has already deleted the key signing the vote and so corruption of

that party will not allow the adversary to send a conflicting vote.

Alternately, the adversary may learn that some honest party 𝑃 ′ is
not on some committee by inferring that 𝑃 ′ would have already

voted if it were eligible to do so, but—since committee membership

is decided independently for each party—this does not help the

adversary determine which other parties are on that committee.

The reader can find code which computes the bounds in this

paper at https://github.com/fabrice102/analyzing-algorand.

6.1 Safety/Validity Failures
Recall that a committee is safe if the number of honest parties on

the committee plus twice the number of corrupted parties on the

committee is less than twice the quorum threshold, and it is valid if

the number of corrupted parties on the committee is less than the

quorum threshold. We show that soft-vote committees are safe and

all other committees (except PV) are valid, with high probability.

To prove our bounds, we use the fact that an adaptive adversary

has no advantage over a static adversary in terms of increasing

| ★V𝐶
𝑝 | (with an idealized committee-election mechanism). This

follows because an adaptive adversary learns any information about

whether some honest party 𝑃 is in ★V𝑝 in only two cases: when 𝑃

sends a vote (in which case it is too late for the adversary to gain any

advantage from corrupting 𝑃 ), and when the adversary learns that

𝑃 is not in★V𝑝 (in which case corrupting 𝑃 is irrelevant). Thus, the

bounds in this section can be derived from standard concentration

inequalities using the bound on the fraction of corrupted parties.

Theorem 6.1. Assume 𝑁 ≥ 10
12. For an adaptive adversary cor-

rupting at most 20% of the parties, events A.1–A.6 all occur in any
given iteration except with probability at most 2−128.

The proof is in Appendix A.3.

6.2 Liveness Failures
Recall a committee is live if the number of honest parties on the

committee is at least the quorum size. As in the previous section,

an adaptive adversary has no advantage relative to a static adver-

sary and we can bound the probabilities of liveness failures using

standard concentration bounds.

Theorem 6.2. Assume 𝑁 ≥ 10
12. For an adaptive adversary cor-

rupting at most 20% of the parties, in any given iteration we have:
• Event B.1 occurs except with probability at most 2−135.
• Event B.2 occurs except with probability at most 2−94.
• Event B.3 occurs except with probability at most 2−16.
• Event B.4 occurs except with probability at most 2−12.
• Event B.5 occurs except with probability at most 2−12.

https://github.com/fabrice102/analyzing-algorand
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The proof is in Appendix A.4.

6.3 The Red-Blue Game
In preparation for the last set of bounds, we introduce a combinato-

rial gamewe call the red-blue game. Intuitively, the game is designed

to model an adversary attacking a simple protocol with only two

committees (red and blue). The adversary’s goal is to trick the hon-

est committee members into making two contradictory decisions.

This becomes our basis for analyzing interactions between commit-

tees in the real protocol, specifically for bounding events C.1–C.4.
For now, we describe and analyze the game abstractly; Section 6.4

formally relates the game to the real protocol.

In the red-blue game, an adversary A interacts with two com-

mittees of different types, called red and blue. The adversary’s goal
is to convince the red committee to make one decision (call this

“decision 𝐴”) and the blue committee to make a contradictory de-

cision (call this “decision 𝐵”). The adversary can influence honest

parties’ decisions by controlling which messages they receive (e.g.,

by forwarding a quorum for a certain value). It can also adaptively

corrupt parties. However, the adversary cannot know whether a

specific party 𝑃 is on the red or blue committee until it corrupts 𝑃

or 𝑃 reacts in some way to a received message. Therefore, each time

the adversary attempts to convince a red node to vote for decision

𝐴, it might inadvertantly cause a blue node to vote for decision 𝐴,

which is counterproductive to its goal. (Parties will not vote more

than once, so if the adversary causes a party to vote for the “wrong”

decision, that party effectively becomes useless to the adversary.)

Fix parameters for the total number of parties 𝑁 , expected num-

ber of red and blue parties 𝐸𝑟 , 𝐸𝑏 ≤ 𝑁 , and red and blue thresholds

𝑇𝑟 ,𝑇𝑏 , with 1 ≤ 𝑇𝑟 < 𝐸𝑟 and 1 ≤ 𝑇𝑏 < 𝐸𝑏 . Also, fix an upper bound

on the fraction of corruptions 𝛼 ∈ [0, 1], and define the number of

corruptions 𝑓 = 𝛼 · 𝑁 . The adversary is adaptive and can corrupt

parties during the game (described below).

At the beginning of the game, vectors v𝑟 , v𝑏 ∈ {0, 1}𝑁 are sam-

pled, where each entry of v𝑟 (resp., v𝑏 ) is independently set to 1

with probability 𝑝𝑟 (resp., 𝑝𝑏 ) and is set to 0 otherwise. Variables

score𝑟 , score𝑏 are initialized to 0. The adversary’s ability to interact

with the corrupted and honest parties is represented by a set of

allowed queries, which have the following syntax and behavior:

(1) On red query (𝑟, 𝑖) with 1 ≤ 𝑖 ≤ 𝑁 , the adversary is given

v𝑟 [𝑖], which is also added to score𝑟 .
(2) On blue query (𝑏, 𝑖) with 1 ≤ 𝑖 ≤ 𝑁 , the adversary is given

v𝑏 [𝑖], which is also added to score𝑏 .
(3) On corrupt query (corrupt, 𝑖), for 1 ≤ 𝑖 ≤ 𝑁 , there are three

cases:

• If A had previously queried (𝑟, 𝑖) it is given v𝑏 [𝑖], which
is also added to score𝑏 .

• If A had previously queried (𝑏, 𝑖) it is given v𝑟 [𝑖], which
is also added to score𝑟 .

• Otherwise, A is given v𝑟 [𝑖] and v𝑏 [𝑖], which are added

to score𝑟 and score𝑏 , respectively.

There are three restrictions on the behavior of A: (1) A may make

at most 𝑓 corrupt queries overall, (2) for a given 𝑖 , no additional

queries can be made after a corrupt query, and (3) A cannot make

both a red query and a blue query for a given 𝑖 . (Figure 1 illustrates

the allowed sequences of queries on an index 𝑖 .) The game ends

(corrupt, 𝑖)

(corrupt, 𝑖)

(corrupt, 𝑖)

(𝑟, 𝑖)

(𝑏, 𝑖)
𝐶𝐵

𝐶𝑅

𝑈

𝐶

𝐵

𝑅

Figure 1: Allowed combinations of queries for a given index 𝑖,
represented as state transitions. The adversary can issue at
most 𝑓 corrupt queries during a single game.

when there are no more legal queries for A to make. A wins if
score𝑟 ≥ 𝑇𝑟 and score𝑏 ≥ 𝑇𝑏 at the end of the game.

Lemma 6.3. Let 𝛾 def

=
𝑇𝑟
𝐸𝑟

+ 𝑇𝑏
𝐸𝑏

and assume 1 + 𝛼 ≤ 𝛾 . Let 𝛿 def

=

(1 +𝛼)/𝛾 ≤ 1. ThenA wins the above game with probability at most

min

𝑡≥0
𝑒𝑡 (1+𝛼 )−𝑇𝑟 ln(1+𝑡/𝐸𝑟 )−𝑇𝑏 ln(1+𝑡/𝐸𝑏 ) . (1)

Proof. Let 𝑝𝑟 = 𝐸𝑟 /𝑁 , 𝑝𝑏 = 𝐸𝑏/𝑁 , and 𝑓 = 𝛼 · 𝑁 . We describe

a modified version of the game that does not change the winning

probability of the adversary. Now, at the beginning of the game

we sample vectors V𝑟 ,V𝑏 ∈ {0, 1}𝑁 , where each entry of V𝑟 (resp.,
V𝑏 ) is independently set to 1 with probability 𝑝𝑟 (resp., 𝑝𝑏 ). We

initialize ctr𝑟 , ctr𝑏 to 0 and answer oracle queries of A as follows:

(1) On query (𝑟, 𝑖), increment ctr𝑟 . The adversary is givenV𝑟 [ctr𝑟 ],
which is also added to score𝑟 .

(2) On query (𝑏, 𝑖), increment ctr𝑏 . The adversary is givenV𝑏 [ctr𝑏 ],
which is also added to score𝑏 .

(3) On query (corrupt, 𝑖), there are three cases:
• If A had previously queried (𝑟, 𝑖), increment ctr𝑏 . The
adversary is given V𝑏 [ctr𝑏 ], which is also added to score𝑏 .

• If A had previously queried (𝑏, 𝑖), increment ctr𝑟 . The
adversary is given V𝑟 [ctr𝑟 ], which is also added to score𝑟 .

• Otherwise, increment ctr𝑟 and ctr𝑏 . The adversary is given
V𝑟 [ctr𝑟 ] and V𝑏 [ctr𝑏 ], which are added to score𝑟 and

score𝑏 , respectively.

The restrictions on A are the same as in the original game. Since

the distribution on A’s view in this modified game is identical to

the distribution in the original game (as there is a one-to-one cor-

respondence between vectors v𝑟 , v𝑏 and “permuted” vectors V𝑟 ,V𝑏
that lead to the same view), A’s winning probability is unchanged.

In the remainder of the proof we analyze the modified game only.

For a given instance of the game, defined by specific values

for V𝑟 and V𝑏 , let 𝑖𝑟 (resp., 𝑖𝑏 ) be the smallest value such that∑𝑖𝑟
𝑖=1

𝑉𝑟 [𝑖] = 𝑇𝑟 (resp.,
∑𝑖𝑏
𝑖=1

𝑉𝑏 [𝑖] = 𝑇𝑏 ). (If no such value exists, the

adversary loses automatically.) Note that A can only possibly win

a given instance of the game if 𝑖𝑟 + 𝑖𝑏 ≤ 𝑁 + 𝑓 . This follows sinceA
wins the game only if, at the end of the game, ctr𝑟 ≥ 𝑖𝑟 and ctr𝑏 ≥ 𝑖𝑏 .

But it is clear from the rules of the game that ctr𝑟 , ctr𝑏 ≤ 𝑁 and

ctr𝑟 + ctr𝑏 ≤ 2𝑓 + (𝑁 − 𝑓 ) = 𝑁 + 𝑓 .

Letting 𝐼𝑟 , 𝐼𝑏 be random variables corresponding to 𝑖𝑟 , 𝑖𝑏 , we can

thus compute an upper bound on the winning probability of any
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adversary by bounding the probability (over the choice of V𝑟 ,V𝑏 )
that 𝐼𝑟 + 𝐼𝑏 ≤ 𝑁 + 𝑓 . Note that 𝐼𝑟 is the sum of𝑇𝑟 geometric random

variables, each with parameter 𝑝𝑟 , and 𝐼𝑏 is the sum of𝑇𝑏 geometric

random variables, each with parameter 𝑝𝑏 ; the expectation of 𝐼𝑟 is

𝑇𝑟 /𝑝𝑟 = 𝑁 ·𝑇𝑟 /𝐸𝑟 , and similarly E[𝐼𝑏 ] = 𝑁 ·𝑇𝑏/𝐸𝑏 .
Define 𝜇 = E[𝐼𝑟 + 𝐼𝑏 ] = 𝛾 · 𝑁 . We want to bound

𝜀
def

= Pr[A wins] ≤ Pr[𝐼𝑟 + 𝐼𝑏 ≤ 𝑁 + 𝑓 ] = Pr[𝐼𝑟 + 𝐼𝑏 ≤ 𝛿𝜇] .
Following the proof of [11, Theorem 3.1] up to Equation (3.4), we

get:

ln 𝜀 ≤ 𝑡𝛿𝜇 −𝑇𝑟 ln(1 + 𝑡/𝑝𝑟 ) −𝑇𝑏 ln(1 + 𝑡/𝑝𝑏 ),
for any 𝑡 ≥ 0. Rescaling 𝑡 by a factor of 𝑁 concludes the proof. □

6.4 Inconsistency Failures
We now use the red-blue game to prove lower bounds on theC-type
events.

A critical feature of the protocol (and hence the game) is that

the adversary does not know the identities of honest committee

members in advance. If the adversary did know the identities of

committee members, it could easily bias the probability of C-type
events. For example, say the adversary learned the identities of

honest parties in SV and CV . It is then trivial for the adversary to

prevent event C.1 from occurring: it simply delivers a soft-quorum
to all the honest members of CV , while delaying all messages to

the honest members of NV𝑝,𝑘 until after they have next𝑘 -voted
for ⊥.

Theorem 6.4. For an adaptive adversary corrupting at most 20%
of the parties, events C.1–C.4 all occur in any given iteration except
with probability at most 2−120.

Proof. We prove the bound for C.1; the other items follow by

an identical argument.

Fix some iteration 𝑝 and an index 𝑘 . An attacker A can only

possibly obtain a 𝑝-cert-vote for some value 𝑣 ≠⊥ from an honest

party 𝑃𝑖 ∈ CV𝑝 who outputs 𝑣 in Vote𝑝 by local time 4𝜆, or from a

corrupted party 𝑃𝑖 ∈ CV𝑝 . Similarly, A can only possibly obtain a

𝑝-next𝑘 -vote for a value 𝑣
′ ≠ 𝑣 from an honest party 𝑃𝑖 ∈ NV𝑝,𝑘

who did not output 𝑣 in Vote𝑝 by local time 4𝜆, or from a corrupted

party 𝑃𝑖 ∈ NV𝑝,𝑘 .

We can thus map an adversary A attacking the protocol to an

adversaryA′
in the red-blue game as follows. Let 𝑁 be the number

of parties, let 𝐸𝑟 = 1500,𝑇𝑟 = 1112 be the expected size and quorum

threshold for CV , and let 𝐸𝑏 = 5000, 𝑇𝑏 = 3838 be the expected

size and quorum threshold for NV𝑝,𝑘 . Take 𝛼 = 0.2, and note that

1 + 𝛼 ≤ 𝑇𝑟 /𝐸𝑟 +𝑇𝑏/𝐸𝑏 . Vector v𝑟 (resp., v𝑏 ) indicates which parties

are in CV𝑝 (resp., NV𝑝,𝑘 ). If A delivers messages to a party 𝑃𝑖

that would cause 𝑃𝑖 to output
4 𝑣 in Vote𝑝 by local time 4𝜆, thenA′

makes oracle query (𝑟, 𝑖). If A causes 𝑃𝑖 to not output 𝑣 in Vote𝑝
(whether by delaying messages or by delivering messages that

would cause 𝑃𝑖 to output 𝑣
′ ≠ 𝑣), thenA′

makes oracle query (𝑏, 𝑖).
If A corrupts 𝑃𝑖 , then A′

makes query (corrupt, 𝑖). Note that A′

makes at most 𝛼 · 𝑁 corrupt queries and never queries both (𝑟, 𝑖)
and (𝑏, 𝑖) for the same 𝑖 . (Indeed, it is not possible forA to cause 𝑃𝑖
to output 𝑣 in Vote𝑝 and then subsequently cause 𝑃𝑖 to not output 𝑣

4
It is not hard to see that the optimal strategy for A is to use some fixed 𝑣 and that

the value of 𝑣 is irrelevant.

in Vote𝑝 , or vice versa.) Finally, if A obtains a 𝑝-cert-quorum for

𝑣 ≠⊥ and a 𝑝-next𝑘 -quorum for 𝑣 ′ ≠ 𝑣 then A′
wins the red-blue

game.

It thus follows from Lemma 6.3 (using SageMath to approximate

the minimum) that if an honest party receives a 𝑝-cert-quorum
for 𝑣 ≠⊥ then no honest party receives a 𝑝-next𝑘 -quorum for 𝑣 ′ ≠
𝑣 except with probability at most 2

−128
. Taking a union bound

over all 𝑘 implies that event C.1 occurs except with probability at

most 250 · 2−128 ≤ 2
−120

. The remaining events can be bounded

similarly, showing that event C.2 occurs except with probability at

most 2
−128

, event C.3 occurs except with probability at most 250 ·
2
−222 ≤ 2

−214
, and event C.4 occurs except with probability at

most 2
−129

. Taking a union bound over the probabilities that any

of the four events fails to occur completes the proof. □

6.5 Summary
By applying a union bound over the appropriate events whose prob-

abilities were analyzed in the previous sections, we can compute

upper bounds on the probabilities that a given execution of BA fails

to be secure or intermittently fair.

Corollary 6.5. A given execution of the Algorand BA protocol is
secure except with probability at most 2−55 and intermittently fair
except with probability at most 2−29.

Proof. Combining Theorems 6.1 and 6.4, we see that an execu-

tion of GC is secure except with probability 2
−120 + 2

−128 < 2
−119

.

Similarly, using Theorem 6.2, we see that an execution of GC is

intermittently fair except with probability 2
−135 + 2

−94 < 2
−93

.

Taking a union bound over all 𝑝 < 2
64

gives the stated bounds. □

Meanwhile, our lower bounds on the probabilities of Events B.3-
B.5 are not sufficiently tight to yield a meaningful bound via a

similar union bound (even over a much smaller number of itera-

tions). Tightening these bounds without modifying the expected

committee sizes for LV , RV , and DV is an open question; in the

meantime, one could increase the expected committee sizes (and

quorum thresholds) for LV , RV , and DV until the lower bounds

for Events B.3-B.5 are large enough for the union bound to yield

an acceptable bound.
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A DEFERRED PROOFS
A.1 Proof of Consistency

Lemma A.1. If event A.1 occurs in iteration 𝑝 and honest parties
𝑃𝑖 , 𝑃 𝑗 terminate Vote𝑝 with output 𝑣𝑖 , 𝑣 𝑗 , respectively, then 𝑣𝑖 = 𝑣 𝑗 .

Proof. Since 𝑃𝑖 output 𝑣𝑖 from Vote𝑝 , it must have received at

least 2267 𝑝-soft-votes on 𝑣𝑖 ; thus, at least 2267 − |SV𝐶
𝑝 | parties

in SV𝐻
𝑝 sent 𝑝-soft-votes for 𝑣𝑖 . Similarly, at least 2267 − |SV𝐶

𝑝 |
parties in SV𝐻

𝑝 sent 𝑝-soft-votes for 𝑣 𝑗 . Since each party in SV𝐻
𝑝

sends a 𝑝-soft-vote for at most one value, 𝑣𝑖 ≠ 𝑣 𝑗 would imply

|SV𝐻
𝑝 | ≥ 2 · (2267− |SV𝐶

𝑝 |) = 4534− 2 · |SV𝐶
𝑝 |, contradicting the

occurrence of event A.1. □

We now consider an iteration of GC𝑝 .

Lemma A.2. Let 𝑃 be an honest party, and consider the following
events: (E1) 𝑃 receives a 𝑝-soft-quorum for 𝑣 ; (E2) 𝑃 terminates Vote𝑝
with output 𝑣 ; (E3) 𝑃 sends a 𝑝-cert-vote for 𝑣 . Then E3⇒ E2 ⇒ E1.

Proof. Inspecting the protocol description, we see that an hon-

est party who terminates Vote𝑝 with output 𝑣 must have received

a quorum of 𝑝-soft-votes for 𝑣 (so E2⇒ E1), and an honest party

who sends a 𝑝-cert-vote for 𝑣 must have terminated Vote𝑝 with

output 𝑣 (so E3⇒ E2). □

Note that E1 does not imply E2 (as 𝑃 might receive a 𝑝-soft-
quorum for 𝑣 after it has already terminated GC𝑝 ), nor does E2

imply E3 (since 𝑃 might terminate Vote𝑝 with output 𝑣 ≠ ⊥ too

late to send a 𝑝-cert-vote).

Corollary A.3. In a secure execution, if an honest party termi-
nates Vote𝑝 with output 𝑣 or sends a 𝑝-cert-vote for 𝑣 , then no honest
party receives a 𝑝-next𝑘 -quorum (for any 𝑘) or a 𝑝-redo-quorum
for 𝑣 ′ ≠ 𝑣 .

Proof. This follows from the preceding lemma and the fact that

events C.3 and C.4 occur. □

Lemma A.4. Assume events A.3, A.6, C.1, and C.2 occur in some
execution. If an honest party receives a 𝑝-cert-quorum for 𝑣 , then:

(1) For 𝑝′ ≥ 𝑝 and all 𝑘 , no honest party receives a 𝑝′-next𝑘 -
quorum for ⊥ or a 𝑝′-down-quorum for ⊥.

(2) For 𝑝′ ≥ 𝑝 , if an honest party terminates GC𝑝′ it does so with
grade at least 1.

(3) For 𝑝′ > 𝑝 , no honest party ever sets 𝑏 to 0 in GC𝑝′ .

Proof. We prove the lemma by induction on 𝑝′. When 𝑝′ = 𝑝 ,

the first claim follows directly from the occurrence of events C.1
and C.2, and the second claim immediately follows from the first.

For the inductive step, fix 𝑝′ > 𝑝 and assume the first two claims

hold for 𝑝′ − 1. Then any honest party who runs GC𝑝′ does so

using an input of the form (𝑣𝑖 , 𝑣 ′ ≠⊥, 1) and never sets 𝑏 = 0 during

execution of GC𝑝′ (thus proving the third claim). Therefore, no

honest party will run steps 3c or 4c in an execution of GC𝑝′ , and

any honest party who runs step 3b in an execution of GC𝑝′ does so

with 𝑣 ′ ≠⊥. In other words, no honest party 𝑝′-next𝑘 -votes for ⊥
(for any 𝑘) or 𝑝′-down-votes for ⊥. Since events A.3 and A.6 occur,

there are not enough corrupted parties to form a 𝑝′-next𝑘 -quorum
(for any 𝑘) or a 𝑝′-down-quorum on their own and so the first and

second claims hold. □

Lemma A.5. Assume event A.1 occurs in some iteration 𝑝 . If there
exists 𝑣 ≠ ⊥ such that every honest party who runs GC𝑝 uses input
of the form (★, 𝑣, 1), and no honest party sets 𝑏 = 0 while running
GC𝑝 , then for any honest party who terminates Vote𝑝 with output 𝑣 ′

it holds that 𝑣 ′ = 𝑣 ≠ ⊥.

Proof. If an honest party output 𝑣 ′ from Vote𝑝 , it must have

received a 𝑝-soft-quorum on 𝑣 ′. Occurrence of event A.1 then im-

plies that some honest party 𝑝-soft-voted for 𝑣 ′. Since every honest
party who runsGC𝑝 uses input (★, 𝑣, 1) and never sets 𝑏 = 0 during

execution of GC𝑝 , it follows that any 𝑝-soft-vote sent by an honest

party is for 𝑣 . Thus 𝑣 ′ = 𝑣 . □

Lemma A.6. In a secure execution, if an honest party receives a
𝑝-cert-quorum for 𝑣 , then for all 𝑝′ > 𝑝 any honest party who runs
GC𝑝′ does so with input (★, 𝑣, 1).

Proof. Lemma A.4 already shows that for all 𝑝′ > 𝑝 no honest

party terminates GC𝑝′−1 with grade 0. So any honest party who

runs GC𝑝′ does so with input of the form (★,★, 1). We prove by

induction that the input is of the form (★, 𝑣, 1).
The base case is when 𝑝′ = 𝑝 + 1. Suppose an honest party 𝑃

runs GC𝑝+1 using input (★, 𝑣 ′, 1). This implies 𝑃 terminated GC𝑝

with output (𝑣 ′, 1) via termination condition T2, T3, or T4. In each

case, we show 𝑣 ′ = 𝑣 .

• If 𝑃 output (𝑣 ′, 1) from GC𝑝 due to condition T2, then for

some 𝑘 it must have received a 𝑝-next𝑘 -quorum for 𝑣 ′. Oc-
currence of event C.1 implies 𝑣 ′ = 𝑣 .
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• If 𝑃 output (𝑣 ′, 1) fromGC𝑝 due to condition T3, it must have

received a 𝑝-late-quorum for 𝑣 ′. Occurrence of event A.4
implies that some honest party must have sent a 𝑝-late-
vote for 𝑣 ′, and hence must have output 𝑣 ′ from Vote𝑝 . Be-
cause there is a 𝑝-cert-quorum for 𝑣 , however, the fact that

event A.2 occurred implies that some honest party must

have 𝑝-cert-voted for 𝑣 and thus must have output 𝑣 from

Vote𝑝 . Lemma A.1 implies 𝑣 ′ = 𝑣 .

• If 𝑃 output (𝑣 ′, 1) from GC𝑝 due to condition T4, it must

have received a 𝑝-redo-quorum for 𝑣 ′. Because there is a

𝑝-cert-quorum for 𝑣 , occurrence of event A.2 implies that

some honest party must have 𝑝-cert-voted for 𝑣 and hence

(by Corollary A.3) 𝑣 ′ = 𝑣 .

For the inductive step, assume any honest party who runs GC𝑝′

does so with input of the form (★, 𝑣, 1); we show this also holds

for GC𝑝′+1. By Lemma A.4, any honest party who runs GC𝑝′+1
must have terminated GC𝑝′ with output (𝑣 ′, 1) via termination

condition T2, T3, or T4. As before, we show 𝑣 ′ = 𝑣 in each case.

• If 𝑃 output (𝑣 ′, 1) from GC𝑝′ due to condition T2, then for

some 𝑘 it must have received a 𝑝′-next𝑘 -quorum for 𝑣 ′. Oc-
currence of eventA.3 implies that some honest party 𝑃 must

have 𝑝′-next𝑘 -voted for 𝑣
′
. Since all honest parties hold𝑏 = 1

during execution of GC𝑝′ (cf. Lemma A.4), 𝑃 must have 𝑝′-
next𝑘 -voted for 𝑣

′
in step 3a or 3b. If it 𝑝′-next𝑘 -voted for 𝑣

′

in step 3a, then Lemma A.5 implies 𝑣 ′ = 𝑣 . If 𝑃 instead 𝑝′-
next𝑘 -voted for 𝑣

′
in step 3b, then 𝑣 ′ is its original input and

so again 𝑣 ′ = 𝑣 .

• If 𝑃 output (𝑣 ′, 1) from GC𝑝′ due to condition T3, it must

have received a𝑝′-late-quorum for 𝑣 ′. Occurrence of eventA.4
implies some honest party must have sent a 𝑝′-late-vote
for 𝑣 ′ in step 4a. Lemma A.5 implies 𝑣 ′ = 𝑣 .

• If 𝑃 output (𝑣 ′, 1) from GC𝑝′ due to condition T4, it must

have received a𝑝′-redo-quorum for 𝑣 ′. Occurrence of eventA.5
implies that some honest partymust have sent a 𝑝′-redo-vote
for 𝑣 ′. Since 𝑣 ′ is that party’s original input, we have 𝑣 ′ = 𝑣 .

This concludes the proof. □

Lemma A.7. In a secure execution, if honest parties receive a 𝑝-
cert-quorum for 𝑣 ≠ ⊥ and a 𝑝′-cert-quorum for 𝑣 ′ ≠ ⊥, then 𝑣 = 𝑣 ′.

Proof. Occurrence of event A.2 implies that some honest party

𝑃 must have 𝑝-cert-voted for 𝑣 , and some honest party 𝑃 ′ must have

𝑝′-cert-voted for 𝑣 ′. Lemma A.2 shows that 𝑃 must have terminated

Vote𝑝 with output 𝑣 , and 𝑃 ′ must have terminated Vote𝑝′ with

output 𝑣 ′. If 𝑝 = 𝑝′, Lemma A.1 implies 𝑣 = 𝑣 ′. Otherwise, suppose
𝑝′ > 𝑝 . Lemma A.2 shows that 𝑃 ′ must have received a 𝑝′-soft-
quorum for 𝑣 ′. Occurrence of event A.1 implies that some honest

party must have 𝑝′-soft-voted for 𝑣 ′. But Lemma A.6 shows that

any honest party that runs GC𝑝′ does so with input of the form

(★, 𝑣, 1), and moreover never sets 𝑏 equal to 0 during execution

of GC𝑝′ . This means that 𝑣 ′ = 𝑣 . □

Theorem 5.1 (Consistency). Assume a secure execution of BA
in an asynchronous network. If honest parties 𝑃 , 𝑃 ′ output 𝑣, 𝑣 ′, re-
spectively, then 𝑣 = 𝑣 ′.

Proof. 𝑃 must have received a 𝑝-cert-quorum (for some 𝑝) for 𝑣 ;

likewise, 𝑃 ′ must have received a 𝑝′-cert-quorum (for some 𝑝′)
for 𝑣 ′. Lemma A.7 implies 𝑣 = 𝑣 ′. □

A.2 Proofs of Liveness
We continue by proving several lemmas that will be useful in prov-

ing both of our main results.

Lemma A.8. Consider any secure execution. For all 𝑝 , if there is a
value 𝑣 such that every honest party who runsGC𝑝 uses input of form
(★,⊥, 0) or (★, 𝑣, 1), then any honest parties who terminateGC𝑝 with
grade 𝑔 = 1 output the same value 𝑣𝑝 ≠⊥.

Proof. We first claim that if an honest party 𝑃 terminates GC𝑝

with output (𝑣𝑝 , 1) then either (1) some honest party output 𝑣𝑝
from Vote𝑝 or (2) some honest party received a 𝑝-next𝑘 -quorum
(for some 𝑘) or a 𝑝-redo-quorum for 𝑣𝑝 , and 𝑣𝑝 = 𝑣 . To see this,

note that 𝑃 must have terminated due to condition T2, T3, or T4. If

it terminated via T2, it must have received a 𝑝-next𝑘 -quorum (for

some 𝑘) on 𝑣𝑝 . By validity of NV𝑝,𝑘 (cf. event A.3), some honest

party 𝑃 ′ must have 𝑝-next𝑘 -voted for 𝑣𝑝 . Consider the sub-cases:

(1) If 𝑃 ′ sent a 𝑝-next𝑘 -vote for 𝑣𝑝 in step 3a, then 𝑃 ′ output 𝑣𝑝
from Vote𝑝 , as desired.

(2) If 𝑃 ′ sent a 𝑝-next𝑘 -vote for 𝑣𝑝 in step 3b, then by our

lemma’s assumption 𝑣𝑝 ∈ {𝑣,⊥}. 𝑣𝑝 ≠⊥, so 𝑣𝑝 = 𝑣 .

(3) 𝑃 ′ did not 𝑝-next𝑘 -vote for 𝑣𝑝 in step 3c since 𝑣𝑝 ≠⊥.
The case where 𝑃 terminated via T3 is like the second sub-case

above. Namely, if 𝑃 terminated via T3, then it must have received

a 𝑝-late-quorum for 𝑣𝑝 . By validity of LV𝑝 (cf. event A.4), some

honest party 𝑃 ′ must have 𝑝-late-voted for 𝑣𝑝 . This implies that 𝑃 ′

output 𝑣𝑝 from Vote𝑝 .
The case where 𝑃 terminated via T4 is like the first sub-case

above. Namely, if 𝑃 terminated via T4, then it must have received a 𝑝-

redo-quorum on 𝑣𝑝 . By validity ofRV𝑝 (cf. eventA.5), some honest

party must have 𝑝-redo-voted on 𝑣𝑝 . But then the assumption of the

lemma implies that 𝑣𝑝 ∈ {𝑣,⊥}. Since 𝑣𝑝 ≠⊥, we must have 𝑣𝑝 = 𝑣 .

Now, suppose honest parties 𝑃𝑖 , 𝑃 𝑗 terminate GC𝑝 with output

(𝑣𝑖 , 1) and (𝑣 𝑗 , 1), respectively, and apply the above claim to 𝑣𝑖
and 𝑣 𝑗 . If honest parties output 𝑣𝑖 , 𝑣 𝑗 fromVote𝑝 , LemmaA.1 implies

𝑣𝑖 = 𝑣 𝑗 . If an honest party output 𝑣𝑖 from Vote𝑝 and there is a 𝑝-

next𝑘 -quorum or 𝑝-redo-quorum on 𝑣 𝑗 (or vice versa), Corollary A.3

implies 𝑣𝑖 = 𝑣 𝑗 . Finally, if 𝑣𝑖 = 𝑣 and 𝑣 𝑗 = 𝑣 then 𝑣𝑖 = 𝑣 𝑗 . □

Corollary A.9. Consider any secure execution. Then for all 𝑝
there is a value 𝑣𝑝 such that every honest party who terminates GC𝑝

with grade 𝑔 = 1 outputs 𝑣𝑝 , and every honest party who runs GC𝑝+1
with input (★, 𝑣, 1) has 𝑣 = 𝑣𝑝 .

Proof. We prove this by induction on 𝑝 . All honest parties who

run GC1 use input (★,⊥, 0), so when 𝑝 = 1 the claim follows

from Lemma A.8. For the inductive step, assume the claim holds

for GC𝑝−1. Then there is a value 𝑣𝑝−1 such that all honest parties

who terminate GC𝑝−1 with grade 𝑔 < 2 output either (𝑣𝑝−1, 1) or
(★, 0). Consequently, any honest party who runs GC𝑝 uses input

of the form (★,⊥, 0) or (★, 𝑣𝑝−1, 1), and so the claim again follows

from Lemma A.8. □
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Lemma A.10. Consider any secure execution. Suppose the network
is good from time 𝑇 to time 𝑇 + 𝛿 . Then:

• If some honest party 𝑃 outputs 𝑣 from Vote𝑝 by time 𝑇 , then
by time 𝑇 + 𝛿 each honest party either outputs 𝑣 from Vote𝑝 ,
advances to GC𝑝+1, or terminates BA.

• If some honest party 𝑃 holds 𝑏 = 0 in GC𝑝 by time 𝑇 , then
by time 𝑇 + 𝛿 every honest party either holds 𝑏 = 0 in GC𝑝 ,
advances to GC𝑝+1, or terminates BA.

Proof. First note that because the network is good in the given

interval, every honest party starts runningGC𝑝 by time𝑇 +𝛿 . (This
follows since, by time 𝑇 , honest party 𝑃 must have seen quorums

allowing it to terminate𝐺𝐶1, . . . ,GC𝑝−1; hence 𝑃 forwards those

quorums to all other parties by time𝑇 , and they are delivered to all

honest parties by time 𝑇 + 𝛿 .)

If 𝑃 outputs 𝑣 from Vote𝑝 by time 𝑇 , then it sends a 𝑝-soft-
quorum for 𝑣 to all other parties by time 𝑇 that is delivered by

time 𝑇 + 𝛿 . If 𝑃 ′ is some other honest party, there are three cases:

(1) 𝑃 ′ is still running Vote𝑝 at time𝑇 +𝛿 ; (2) 𝑃 ′ has already output a
value from Vote𝑝 by time 𝑇 + 𝛿 ; or (3) 𝑃 ′ terminated Vote𝑝 by time

𝑇 + 𝛿 without outputting anything. In the first case, 𝑃 ′ outputs 𝑣
from Vote𝑝 after receiving the 𝑝-soft-quorum from 𝑃 . In the second

case, consistency of Vote𝑝 (cf. Lemma A.1) implies that 𝑃 ′ already
output 𝑣 from Vote𝑝 . The third case only occurs if 𝑃 ′ has already
advanced to GC𝑝+1 or terminated BA. This proves the first claim.

For the second claim, regardless of whether 𝑃 began running

GC𝑝 with 𝑏 = 0 or whether it set 𝑏 = 0 during execution of GC𝑝 ,

it must have received a (𝑝 − 1)-next𝑘 -quorum for ⊥ or a (𝑝 − 1)-
down-quorum for ⊥ by time 𝑇 that it forwards to all other parties;

hence all other parties receive the appropriate quorum by time𝑇 +𝛿 .
So if some honest party 𝑃 ′ is still running GC𝑝 at time 𝑇 + 𝛿 it will

also set 𝑏 = 0 (if it does not already hold 𝑏 = 0); otherwise, 𝑃 ′ must

have already advanced to GC𝑝+1 or have terminated BA. □

We say all honest parties begin running GC𝑝 together at time 𝑇 if

every honest party begins runningGC𝑝 at some time in the interval

[𝑇,𝑇 + 𝛿]. When 𝑝 is irrelevant, we simply say that honest parties

begin running 𝐺𝐶 together at time 𝑇 .

Lemma A.11. Suppose that during GC𝑝 , event B.1 occurs. Assume
all honest parties begin running GC𝑝 together at time𝑇 , and that the
network is good from time 𝑇 to time 𝑇 + 5𝛿 . Then all honest parties
terminate BA by time 𝑇 + 5𝛿 .

Proof. First note that if some honest party 𝑃 terminates BA

before time𝑇 + 4𝛿 , then all honest parties will do so by time𝑇 + 5𝛿

(since 𝑃 will forward the relevant cert-quorum to all other parties)

and we are done. So, assume no honest party terminates BA before

time 𝑇 + 4𝛿 . Since no honest party also sends a 𝑝-next-, 𝑝-late-, 𝑝-
redo-, or 𝑝-down-vote before time𝑇 + 4𝛿 , and all those committees

are valid, every honest party is still running GC𝑝 at time 𝑇 + 4𝛿 .

Since event B.1.1 happens, the honest leader sends a 𝑝-proposal

for some value 𝑣ℓ by time 𝑇 + 𝛿 , which is delivered to all honest

parties by time 𝑇 + 2𝛿 . At that time, all honest parties’ local clocks

(within GC𝑝 ) are at time at most 2𝛿 , so all honest 𝑃𝑖 ∈ SV𝑝 will

send a 𝑝-soft-vote for either the leader’s value 𝑣ℓ (if 𝑏 = 0) or its

own value 𝑣𝑖 (if 𝑏 = 1) by time 𝑇 + 3𝛿 .

Moreover, all these votes are for the same value. If the leader

holds 𝑏 = 0 at the time it sends its proposal, then Lemma A.10

shows that all honest parties hold 𝑏 = 0 by time 𝑇 + 2𝛿 ; since that

is the earliest time any honest party can vote, all honest parties

send a 𝑝-soft-vote for the leader’s value. Otherwise, the leader must

have used input (★, 𝑣ℓ , 1) to GC𝑝 , and Corollary A.9 shows that

any honest party who also holds 𝑏 = 1 at the time they send a

𝑝-soft-vote will vote for 𝑣ℓ .
Thus, using the fact that SV𝑝 is live (cf. event B.1.2), by time

𝑇 + 4𝛿 each honest party receives a 𝑝-soft-quorum for 𝑣ℓ and so

terminates Vote𝑝 with output 𝑣ℓ by that time. (Lemma A.1 implies

that no honest party can terminate Vote𝑝 with a different output.)

This means that each honest party in CV𝑝 will send a 𝑝-cert-vote
for 𝑣 by time 𝑇 + 4𝛿 . Since CV is live (cf. event B.1.3), by time

𝑇 + 5𝛿 every honest party receives a quorum of 𝑝-cert-votes and
terminates BA. □

A.2.1 Liveness under partial synchrony. It is useful to define a func-
tion Timer(·, ·) characterizing the timing of late-, redo-, and down-
votes. Given a time𝑇 and a number 𝑐 , Timer(𝑇, 𝑐) is an upper bound
on the time when all honest parties will advance toGC𝑝+𝑐 , where 𝑝
is the highest iteration that any party is in at time 𝑇 . Roughly, this

quantity depends on how quickly a late-, redo-, or down-quorum
forms in each new iteration, which in turn depends on when the

parties first send these votes. Unlike next𝑘 -votes, which follow an

exponential backoff, these votes occur at fixed intervals. The exact

timing depends on several protocol parameters: the network delay

parameters 𝛿,Λ (set by the model), and the “fast recovery” protocol

parameter 𝜆𝑓 . Formally:

Timer(𝑇, 𝑐) = 𝑇 + 𝑐 · (max{4𝛿,Λ} + 5𝛿 + 5𝜆𝑓 ).
With this notation in hand, we can begin our analysis, starting

with an upper bound on the time to advance through a single

execution of graded consensus.

Lemma A.12. Assume an eventually-fair execution, and that the
network is good from time 𝑇 to time Timer(𝑇, 1). Then either all
honest parties begin running a new iteration of𝐺𝐶 together at some
time 𝑇 ′ ≤ Timer(𝑇, 1) − 𝛿 or all honest parties terminate BA by
time Timer(𝑇, 1).

Proof. Let 𝑝 be maximal such that some honest party is running

GC𝑝 at time 𝑇 . The lemma holds if we can show that by time

𝑇0 = Timer(𝑇, 1) − 𝛿 some honest party terminates GC𝑝 , or that by

time Timer(𝑇, 1) all honest parties terminate GC𝑝 . Since all honest

parties start runningGC𝑝 by time𝑇 +𝛿 , that means we may assume

all honest parties are still running GC𝑝 at time 𝑇0. Consider three

possibilities:

Case 1: By time𝑇1 = 𝑇0−2𝛿−2𝜆𝑓 , somehonest party terminates
Vote𝑝 with output 𝑣 ≠ ⊥. By Lemma A.10, all honest parties

terminate Vote𝑝 with output 𝑣 by time𝑇1 + 𝛿 ≥ 𝑇 + 𝛿 +max{4𝛿,Λ}.
Each honest party on the 𝑝-late-vote committee will therefore send

a 𝑝-late-vote for 𝑣 by time𝑇1 + 𝛿 + 2𝜆𝑓 = 𝑇0 − 𝛿 , and liveness of the

𝑝-late-vote committee (cf. event B.3) then implies that all honest

parties receive a 𝑝-late-quorum for 𝑣 by time𝑇0. Thus, every honest

party terminates GC𝑝 by time 𝑇0 = Timer(𝑇, 1) − 𝛿 .

Case 2: Case 1 does not hold, but some honest party has
𝑏 = 0 by time 𝑇2 = 𝑇1 − 𝛿 − 2𝜆𝑓 . Lemma A.10 shows that by
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time 𝑇2 + 𝛿 ≥ 𝑇 + 𝛿 + max{4𝛿,Λ} all honest parties have 𝑏 = 0.

Each honest party on the 𝑝-down-vote committee will thus send

a 𝑝-down-vote for ⊥ by time 𝑇2 + 𝛿 + 2𝜆𝑓 = 𝑇1; liveness of the 𝑝-

down-vote committee (cf. event B.5) implies that all honest parties

receive a 𝑝-down-quorum for ⊥ by time 𝑇1 + 𝛿 ≤ 𝑇0. Thus, every

honest party terminates GC𝑝 by time 𝑇0 = Timer(𝑇, 1) − 𝛿 .

Case 3: Both the above do not hold. In this case all honest

parties on the 𝑝-redo-vote committee send a 𝑝-redo-vote by time

𝑇 + 𝛿 +max{4𝛿,Λ} + 𝜆𝑓 ≤ 𝑇2; Corollary A.9 shows that all those

votes are on the same value 𝑣 (since all honest parties hold 𝑏 = 1

and hence used input (★, 𝑣, 1) to GC𝑝 ). Liveness of the 𝑝-redo-vote
committee (cf. event B.4) implies that all honest parties receive

a 𝑝-redo-quorum by time 𝑇2 + 𝛿 ≤ 𝑇0. Thus, every honest party

terminates GC𝑝 by time 𝑇0 = Timer(𝑇, 1) − 𝛿 . □

Corollary A.13. Fix 𝑇 ≥ GST, let 𝑝 be the highest iteration any
honest party is running at time𝑇 , and let 𝑐 > 0. In an eventually-fair
execution, by time Timer(𝑇, 𝑐) either all honest parties terminate BA,
or all honest parties begin running iteration 𝑝 + 𝑐 of 𝐺𝐶 together, .

Proof. This follows by induction on 𝑐 , with the base case follow-

ing directly from Lemma A.12 and the inductive case by recursive

application of the lemma. □

Theorem 5.2. Assume an eventually fair execution of BA in a
partially synchronous network, and GST ≤ wakeupmin (230). Then
all honest parties terminate BA by time GST + 60 · Δ + 4𝛿 , where
Δ = max{4𝛿,Λ} + 5𝛿 + 5𝜆𝑓 .

Proof. By Lemma A.13, either all honest parties terminate the

BA protocol by time Timer(GST, 60) (in which case we are done) or

begin running GC𝑝+60 together by time Timer(GST, 60) − 𝛿 . In the

latter case, Lemma A.11 shows that honest parties terminate BA by

time Timer(GST, 60) + 4𝛿 . □

A.2.2 Liveness in the synchronous-enough model. We use the fol-

lowing notation related to voting rounds and timers: if an honest

party 𝑃𝑖 is runningGC𝑝 andwakeupmin (𝑘) ≤ clock𝑖 < wakeupmin (𝑘 + 1),
we say 𝑃𝑖 is “in voting round (𝑝, 𝑘)” (or just “in voting round 𝑘”

when 𝑝 is clear from context). We define a natural notion of com-

parison for voting rounds, so that (𝑝, 𝑘) ≤ (𝑝′, 𝑘′) if either 𝑝 = 𝑝′

and 𝑘 ≤ 𝑘′, or 𝑝 < 𝑝′. In the same vein, at any time 𝑇 , we refer to

the maximum (resp., minimum) voting round of any honest party

as the highest (resp., lowest) voting round at time 𝑇 .
We first state a useful lemma showing that parties who take the

same branch in Step 3 must vote for the same value:

Lemma A.14. In an execution of GC𝑝 , honest parties 𝑃𝑖 , 𝑃 𝑗 ∈
NV𝑝,𝑘 that run the same branch (a, b, or c) of Step 3 also vote for
the same value.

Proof. If 𝑃𝑖 , 𝑃 𝑗 are in (a), the claim follows from Lemma A.1. If

they are in (b), it follows from Lemma A.9. Finally, if they are in (c),

both parties vote for ⊥. □

Lemma A.15. Consider a intermittently-fair execution, and assume
the network is synchronous-enough. Suppose the network becomes
good at time 𝑇 , and let (𝑝, 𝑘) be the highest voting round of any
honest party at time 𝑇 − 𝛿 . While the network remains good, for any
𝑝 ≤ 𝑝′ ≤ 𝑝 + 60 and 3 ≤ 𝑟 ≤ 15, all honest parties begin a strictly

higher iteration or terminate BA by time𝑇 +wakeupmin (𝑘 + 𝑟 + 1)+𝛿 .
Moreover, while the network is good, all honest parties begin running
new iterations together.

Proof. If some honest party advances to a new iteration or

terminates BA, then all honest parties will terminate within time

𝛿 of the network becoming good, so consider a point in time such

that no honest party has yet advanced or terminated BA.

By time𝑇 +𝛿 , either all honest parties are running GC𝑝 , or some

honest party is running a higher iteration. In the latter case, all

honest parties catch up within time 𝛿 , and we are done. Otherwise,

all honest parties are still running GC𝑝 .

We have an intermittently-fair execution, so event B.2 occurs,

and consider some 𝑘3 > 𝑘2 > 𝑘1 ≥ 𝑘 for which 𝑘3 ≤ 𝑘 + 15 and

|NV𝐻
𝑝,𝑘ℓ

| ≥ 3838 for all ℓ ∈ {1, 2, 3}. By definition, GC𝑝 begins

after time 𝑇 + 𝛿 . Furthermore, by Lemma A.10, if any honest party

has seen Vote𝑝 output a value 𝑣 ′ or has set 𝑏 = 0, all honest parties

have done the same by time 𝑇 + 𝛿 . Thus, if the adversary does

nothing, or if all honest parties are in branch (a) and will not switch,

then all honest members of the committee will be in the same

branch of Step 3 at the time they vote; by Lemma A.14, they will all

vote for the same value. In this case, a quorum forms and parties

will advance within time 𝛿 of the end of the voting round.

The other case is that the adversary causes at least one honest

party to switch to either branch (a) or (c) prior to voting. It is still

possible for a quorum to form in voting round 𝑘1 even if parties

take different branches, but for simplicity assume no quorum forms

and we proceed to voting round 𝑘2. Consider three subcases.

(1) If all honest parties are in (a) by the start of voting round

𝑘2, the adversary can no longer disrupt agreement, so we

advance.

(2) If all honest parties are in (c) when they vote, they advance.

(3) If the parties are split across (a) and (c) when they vote in

round 𝑘2, assume for simplicity that no quorum forms in

round 𝑘2. Since 𝑘3 > 𝑘2, by the start of round 𝑘3, all honest

parties are in (a) and the adversary has no way to disrupt

agreement, so the case proceeds as before.

Thus, for any 3 ≤ 𝑟 ≤ 15, the honest parties advance by 𝑇 +
wakeupmin (𝑘 + 𝑟 + 1)+𝛿 (i.e., within 𝛿 of the end of round𝑘+𝑟 ). □

If we consider all such values 𝑝′ ∈ {𝑝, . . . 𝑝 + 60}, we obtain the

following corollary:

Corollary A.16. Suppose there is a time 𝑇 such that all honest
parties start running iteration 𝑝 of 𝐺𝐶 during the interval [𝑇,𝑇 + 𝛿].
For any 3 ≤ 𝑟 ≤ 15, if the network remains good from time 𝑇 − 𝛿

until at least time𝑇 +𝐿 · (wakeupmin (𝑟 + 1) +𝛿) (with 𝐿 ≤ 60), then
parties advance to at least iteration 𝑝 + 𝐿 (or terminate BA) within
that time.

We now have all of the machinery needed to prove liveness in

the synchronous-enough model (Theorem 5.3).

Proof. Let (𝑝, 𝑘) denote the highest voting round at time 𝑇 − 𝛿 .

The network has been bad for at most time 𝛽 , so the largest timer

any honest party has is 𝛽 . This implies𝑘 ≤ log
2
(𝛽−max{4𝛿,Λ)})/𝛿 .

Lemma A.15 implies that, taking 𝑟 = 15, the honest parties begin

a new iteration GC𝑝 together within time that is no more than

wakeupmin (log2 (𝛽 −max{4𝛿,Λ)})/𝛿 + 16) + 𝛿 .
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Since we are in an intermittently-fair execution, there is an iter-

ation GC𝑝′ with 𝑝 ≤ 𝑝′ ≤ 𝑝 + 60 where the conditions listed

in event B.1 have occurred. By Lemma A.11, all parties termi-

nate 5𝛿 after this iteration GC𝑝′ begins. The latest point at which

this happens (if we have not already terminated) must be 𝑇 +
(wakeupmin (log2 (𝛽 −max{4𝛿,Λ)})/𝛿 + 16)+𝛿)+60·(wakeupmin (16)+
𝛿) by Corollary A.16 using 𝐿 = 60 and 𝑟 = 15; this follows since the

network is good for all this time (i.e., it is less than 𝑇 + Γ). □

A.3 Proof of Theorem 6.1
We begin by stating several probability lemmas we rely on.

Definition A.17. Consider two random variables 𝑋 and 𝑋 ′
. We

say that 𝑋 dominates 𝑋 ′
if and only if for any 𝑡 ∈ R it holds that

Pr[𝑋 ≥ 𝑡] ≥ Pr[𝑋 ′ ≥ 𝑡].

Let 𝑛 be a positive integer and 0 ≤ 𝑝 ≤ 1. It is well known that

when 𝜆 = 𝑛𝑝 is held constant and 𝑛 is large enough, a Binomial ran-

dom variable of parameter (𝑛, 𝑝) can be approximated by a Poisson

random variable of parameter 𝜆, hence the following lemma.

Lemma A.18. Let 𝑛 ∈ N and 0 ≤ 𝑝 ≤ 1. Let 𝑋 be a Binomial
random variable of parameters (𝑛, 𝑝), and let 𝑋 ′ be a Poisson random
variable of parameter 𝜆′ ≥ 𝑛𝑝 + 𝑝 . Then 𝑋 ′ dominates 𝑋 .

Proof. By [16, Example 4.2.5], a Poisson random variable of

parameter 𝜆′ dominates a Poisson variable of parameter 𝜆′′ ≤ 𝜆′.
So we just need to prove the lemma for 𝜆′ = 𝑛𝑝 + 𝑝 .

Let𝑚 = 𝑛+1.𝑋 is a Binomial random variable of parameters (𝑚−
1, 𝜆′/𝑚). Using [16, Example 4.2.8], we have that 𝑋 ′

dominates 𝑋 .

□

We are ready for a lemma which will be useful for establishing a

committee’s safety.

Lemma A.19. Let 𝑡, 𝑛𝑌 , 𝑛𝑍 be three positive integers and set 𝑛 =

𝑛𝑌 + 𝑛𝑍 . Let 𝑋1, . . . , 𝑋𝑛 be independent Bernoulli random variables
of parameter 𝑝 . Let 𝑌 ′ and 𝑍 ′ be Poisson variables of parameters
𝜆′
𝑌
≥ 𝑝𝑛𝑌 + 𝑝 and 𝜆′

𝑍
≥ 𝑝𝑛𝑍 + 𝑝 , respectively. Then:

Pr

[
𝑛𝑌∑︁
𝑖=1

2𝑋𝑖 +
𝑛∑︁

𝑖=𝑛𝑌 +1
𝑋𝑖 ≥ 𝑡

]
≤ Pr[2𝑌 ′ + 𝑍 ′ ≥ 𝑡] . (2)

Proof. Let 𝑌 =
∑𝑛𝑌
𝑖=1

𝑋𝑖 and 𝑍 =
∑𝑛
𝑖=𝑛𝑌 +1 𝑋𝑖 . Those random

variables are independent Binomial randomial variables of parame-

ters (𝑛𝑌 , 𝑝) and (𝑛𝑍 , 𝑝) respectively.
Lemma A.18 shows that 𝑌 , 𝑍 are dominated by 𝑌 ′

, 𝑍 ′
, respec-

tively. Using [16, Theorem 4.2.3] concludes the proof. □

To show a committee’s safety, we rely on computer approxima-

tion: we use the fact we can choose the parameters of the lemma

so that the right hand side of eq. (2) does not depend on 𝑁 (as long

as 𝑁 ≥ 10
12
).

We next record the following result for establishing a commit-

tee’s validity, which follows easily from a standard Chernoff bound:

Lemma A.20. Assume there are 𝑁 parties, at most 𝛼 · 𝑁 of whom
are corrupted, and that each party is selected to be on some com-
mittee with independent probability 𝐸/𝑁 . Then the probability that
there are (1 + 𝜖)𝛼𝐸 or more corrupted parties on the committee is at
most 𝑒−𝜖

2𝛼𝐸/(2+𝜖 ) .

If 𝑄 is a quorum threshold, 𝑝 = 𝐸/𝑁 is a probability of selec-

tion, and 𝛼 is a fraction of corrupted parties, then the corrupted

parties do not form a quorum except with probability at most

𝑒−(𝛼𝐸−𝑄 )2/(𝛼𝐸+𝑄 ) . Note that this loose bound is sufficient for us.

The individual Chernoff bounds for Theorem 6.1 are written out

below; the theorem follows from a union bound.

(1) A soft-vote committee’s expected size is 𝐸 = 2990. Let 𝑛𝑌 =

𝛼𝐸, 𝑛𝑍 = (1 − 𝛼)𝐸, and 𝑛 = 𝑛𝑌 + 𝑛𝑍 = 𝐸. Let 𝑝 = 𝐸/𝑁 , the

probability that each party is selected. Let 𝑡 = 2 · 2267. Let
𝜆′
𝑌

= 𝛼𝐸 + 𝐸/1012 and 𝜆′
𝑍

= (1 − 𝛼)𝐸 + 𝐸/1012. We apply

lemma A.19 with the parameters above and get:

Pr[|SV𝐻
𝑝 | + 2|SV𝐶

𝑝 | ≥ 2 · 2267] ≤ Pr[2𝑌 ′ + 𝑍 ′ ≥ 𝑡],

where 𝑌 ′
, 𝑍 ′

are independent Poison random variables of

parameters 𝜆′
𝑌
, 𝜆′

𝑍
, respectively, which as stated above do not

depend on 𝑁 . Using SageMath, we get that the probability

that |SV𝐻
𝑝 | + 2|SV𝐶

𝑝 | ≥ 2 · 2267 is at most 2
−128.2

.

(2) A cert-vote committee’s expected size is𝐸 = 1500. By LemmaA.20,

the probability that |CV𝐶
𝑝 | ≥ 1112 is at most 2

−673
.

(3) A next𝑘 -vote committee’s expected size is𝐸 = 5000. LemmaA.20

shows that |NV𝐶
𝑝,𝑘

| ≥ 3838 for any fixed 𝑘 with probabil-

ity at most 2
−2401

. Applying a union bound over 𝑘 gives

250 · 2−2401 ≤ 2
−2393

.

(4) A late-vote committee’s expected size is𝐸 = 500. By LemmaA.20,

the probability that |LV𝐶
𝑝 | ≥ 320 is at most 2

−166
.

(5) A redo-vote committee’s expected size is 𝐸 = 2400. By

Lemma A.20, the probability that |RV𝐶
𝑝 | ≥ 1768 is at most

2
−1064

.

(6) A down-vote committee’s expected size is 𝐸 = 6000. By

Lemma A.20, the probability that |DV𝐶
𝑝 | ≥ 4560 is at most

2
−2827

.

A.4 Proof of Theorem 6.2
Lemma A.21. Let 𝑋 be a Binomial random variable of parameters

(𝑛, 𝑝) with 𝑝 = 𝜆/𝑛. Let 𝑌 be a Poisson random variable of parameter
𝜆. Then for any 𝑡 ≤ 𝜆:

Pr[𝑋 ≤ 𝑡] ≤ Pr[𝑌 ≤ 𝑡] · 𝑒 (2𝜆𝑡+𝑡 )/(2𝑛) .

When 𝑛 is large enough 𝑒 (𝑡
2+𝑡 )/(2𝑛)

is essentially 1. The reason

this lemma is useful is that Pr[𝑌 ≤ 𝑡] is independent of 𝑛 and thus

we will be able to bound Pr[𝑋 ≤ 𝑡] easily for any large enough 𝑛,

by estimating Pr[𝑌 ≤ 𝑡].

Proof. We have:

Pr[𝑋 ≤ 𝑡] =

𝑡∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

=

𝑡∑︁
𝑘=0

𝜆𝑘

𝑘!

(
𝑘−1∏
𝑖=0

(1 − 𝑖/𝑛)
)
(1 − 𝜆/𝑛)𝑛−𝑘 .
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Since ln(1 + 𝑥) ≤ 𝑥 , we have:

ln

((
𝑘−1∏
𝑖=0

(1 − 𝑖/𝑛)
)
(1 − 𝜆/𝑛)𝑛−𝑘

)
=

𝑘−1∑︁
𝑖=0

ln(1 − 𝑖/𝑛) + (𝑛 − 𝑘) ln(1 − 𝜆/𝑛)

≤ −
𝑘−1∑︁
𝑖=0

𝑖/𝑛 − (𝑛 − 𝑘)𝜆/𝑛

= − (𝑘 − 1)𝑘
2𝑛

− 𝜆 + 𝑘𝜆

𝑛

= −𝜆 + (2𝜆 − 𝑘 + 1) · 𝑘
2𝑛

≤ −𝜆 + 2𝜆𝑡 + 𝑡

2𝑛
,

where the last inequality comes from 0 ≤ 𝑘 ≤ 𝑡 ≤ 𝜆.

Therefore, we have:

Pr[𝑋 ≤ 𝑡] ≤
𝑡∑︁

𝑘=0

𝜆𝑘

𝑘!
𝑒−𝜆 · 𝑒 (2𝜆𝑡+𝑡 )/(2𝑛) ,

which concludes the proof. □

Using Lemma A.21 with 𝑡 = 𝑇 − 1 and 𝑛 = (1 − 𝛼)𝑁 gives:

Lemma A.22. Assume 𝑁 ≥ 10
12, at most 𝛼 · 𝑁 of whom are

corrupted, and that committees are formed by choosing each party
to be on the committee with independent probability 𝐸/𝑁 . Then the
probability that the committee includes fewer than 𝑇 honest parties
is at most Pr[𝑌 ≤ 𝑇 − 1] · 𝑒 (2𝜆 (𝑇−1)+𝑇−1)/(2(1−𝛼 )1012 ) , where 𝑌 is
a Poisson random variable of parameter 𝜆 = 𝐸.

The next theorem follows immediately from the above and esti-

mating Pr[𝑌 ≤ 𝑇 − 1] using SageMath.

Theorem A.23. Assume 𝑁 ≥ 10
12. For an adaptive adversary

corrupting at most 20% of the parties, the following hold for any 𝑝 :
• The probability that |PV𝐻

𝑝 | < 1 is at most 2−23.
• The probability that |SV𝐻

𝑝 | < 2267 is at most 2−7.7.
• The probability that |CV𝐻

𝑝 | < 1112 is at most 2−7.7.
• For any 𝑘 , the probability that |NV𝐻

𝑝,𝑘
| < 3838 is at most

2
−7.7.

• The probability that |LV𝐻
𝑝 | < 320 is at most 2−16.

• The probability that |RV𝐻
𝑝 | < 1768 is at most 2−12.2.

• The probability that |DV𝐻
𝑝 | < 4560 is at most 2−12.1.

Theorem A.23 takes care of all of the type-B events but B.1
and B.2; we address these by combining the bounds seen so far.

Corollary A.24. Consider some 𝑝 , and let 𝑐 ∈ N and 𝑁 ≥ 10
12.

• Except with probability at most 2−2.25𝑐 , ∃𝑝′ ∈ {𝑝, . . . , 𝑝 + 𝑐}
such that all of the following hold:
– |PV𝑝′ | > 0 and the 𝑝-leader is honest.
– |SV𝐻

𝑝′ | ≥ 2267.

– |CV𝐻
𝑝′ | ≥ 1112.

• Fix integers 𝑘 ∈ [1..235], 𝑐′ ≥ 0 s.t. 𝑘 + 𝑐′ ≤ 250. Except
with probability at most 𝑐 · ∑2

𝑖=0

(𝑐′+1
𝑖

)
2
−7.7(𝑐′+1−𝑖 ) · (1 −

2
−7.7)𝑖 , there exist distinct𝑘1, 𝑘2, 𝑘3 ∈ {𝑘, . . . , 𝑘+𝑐′}, such that
|NV𝐻

𝑝′,𝑘ℓ
| ≥ 3838 for all 𝑝′ ∈ {𝑝, . . . , 𝑝 + 𝑐} and ℓ ∈ {1, 2, 3}.

Proof. For the first part, we want to compute an upper bound

on the probability that in a sequence of 𝑐 iterations, there is no

iteration where three good events all occur. The probability that an

honest party is the leader in some iteration 𝑝 is at least (1−𝛼) times

the probability that |PV𝑝′ | > 0, i.e., at least (1 − 𝛼) (1 − 2
−14.42).

The probabilities for the other two events were computed above.

Taking a union bound, the probability that any of the three events

fails to occur in a particular iteration is at most 𝜌 := 1 − (1 −
𝛼) (1 − 2

−14.42) + 2
−4.76 + 2

−4.78 < 2
−2.25

, and so the probability

that at least one of the three good events does not occur in every

𝑝′ ∈ {𝑝, . . . , 𝑝 + 𝑐} is at most 2
−2.25𝑐

.

For the second part, we seek the probability that for nomore than

two distinct 𝑘 ∈ {𝑘, . . . , 𝑘 + 𝑐′}, |NV𝐻
𝑝′,𝑘

| < 3838. This is simply

the probability of at most 2 failures over 𝑐′ + 1 Bernoulli trials

(representing committees) parameterized by a failure probability

|NV𝐻
𝑝′,𝑘

| < 3838, which is 2
−7.7

by Theorem A.23. Taking a union

bound over all 𝑐 of these events gives the desired expression. □

By setting 𝑐 = 60 and 𝑐′ = 15, this allows us to conclude our

proof of Theorem 6.2.

Theorem A.25. Assume 𝑁 ≥ 10
12. For any iteration 𝑝 and an

adaptive adversary corrupting at most 20% of the parties:
• The probability that event B.1 does not hold is 2−135.2.
• The probability that event B.2 does not hold is 2−94.7.
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