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Abstract. User privacy is becoming increasingly important in our digi-
tal society. Yet, many applications face legal requirements or regulations
that prohibit unconditional anonymity guarantees, e.g., in electronic pay-
ments where surveillance is mandated to investigate suspected crimes.
As a result, many systems have no effective privacy protections at all, or
have backdoors, e.g., stored at the operator side of the system, that can
be used by authorities to disclose a user’s private information (e.g., lawful
interception). The problem with such backdoors is that they also enable
silent mass surveillance within the system. To prevent such misuse, vari-
ous approaches have been suggested which limit possible abuse or ensure
it can be detected. Many works consider auditability of surveillance ac-
tions but do not enforce that traces are left when backdoors are retrieved.
A notable exception which offers retrospective and silent surveillance is
the recent work on misuse-resistant surveillance by Green et al. (EU-
ROCRYPT’21). However, their approach relies on extractable witness
encryption, which is a very strong primitive with no known efficient and
secure implementations.
In this work, we develop a building block for auditable surveillance. In
our protocol, backdoors or escrow secrets of users are protected in mul-
tiple ways: (1) Backdoors are short-term and user-specific; (2) they are
shared between trustworthy parties to avoid a single point of failure; and
(3) backdoor access is given conditionally. Moreover (4) there are au-
dit trails and public statistics for every (granted) backdoor request; and
(5) surveillance remains silent, i.e., users do not know they are surveilled.
Concretely, we present an abstract UC-functionality which can be used
to augment applications with auditable surveillance capabilities. Our re-
alization makes use of threshold encryption to protect user secrets, and
is concretely built in a blockchain context with committee-based YOSO
MPC. As a consequence, the committee can verify that the conditions
for backdoor access are given, e.g., that law enforcement is in possession
of a valid surveillance warrant (via a zero-knowledge proof). Moreover,
access leaves an audit trail on the ledger, which allows an auditor to
retrospectively examine surveillance decisions.
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As a toy example, we present an Auditably Sender-Traceable Encryp-
tion scheme, a PKE scheme where the sender can be deanonymized by
law enforcement. We observe and solve problems posed by retrospec-
tive surveillance via a special non-interactive non-committing encryption
scheme which allows zero-knowledge proofs over message, sender identity
and (escrow) secrets.

Keywords: Anonymity · Auditability · Provable Security · Universal
Composability · UC · YOSO · Protocols.
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1 Introduction

In user-centric application scenarios such as communication services, electronic
payments, internet search engines, etc. there is a strong tension between the
need for user privacy and legal requirements or business interests that entail the
monitoring of a user’s (meta-)data. This tension is also reflected by the recent
European Council Resolution on “Security through encryption and security de-
spite encryption” [21]. On the one hand, there is a strong demand for anonymity
and confidentiality supported by the European General Data Protection Reg-
ulation. On the other hand, scenario-specific laws and regulations such as the
European Council Resolution on the Lawful Interception of Telecommunications
[49] or the EU Directive on Anti-Money Laundering and Countering the Financ-
ing of Terrorism (AML/CFT) [50], to name just a few, make it necessary to
revoke a user’s anonymity or disclose its encrypted transaction data or messages
under certain well-defined circumstances, e.g., when a warrant has been issued
for a suspect.

The security research community has recognized and addressed the necessity
to balance confidentiality/anonymity with accountability. Most proposed solu-
tions follow a variant of the key escrow paradigm [2, 3, 10, 22, 41, 47, 51, 55,
60]. In key escrow systems one or more, typically fixed, trusted authorities (TAs)
aka escrow agents, are equipped with (shares of) a trapdoor key which can be
used to recover encrypted messages, revoke transaction anonymity, etc. However,
this holds the risk that, by corrupting the publicly known TAs, trapdoors can
be silently misused, e.g., for mass surveillance or spying on lawful individuals
of public interest (e.g., politicians, business leaders, celebrities). Due to these
issues, policymakers, security researchers, and practitioners are concerned about
deploying key escrow without further measures to prevent or detect misuse, e.g.,
[1, 35]. Moreover, the lack of transparency concerning the lawful usage of trap-
doors leaves citizens with the subconscious feeling of being under permanent
surveillance.

To make surveillance actions more transparent and accountable, recent work
[32, 24, 52] has discovered the usefulness of distributed ledgers. Here, judges, law
enforcement, and companies publish commitments to information about surveil-
lance measures on the ledger and can provide zero-knowledge proofs that they
behave according to the laws. However, these proposals do not enforce that, in
order to access user trapdoors, evidence must be put onto the ledger first. That
means, a secure and accountable escrow and disclosure of end-to-end encryption
keys is not considered. Hence, trapdoors kept by a company are still at risk of
being covertly misused without leaving any trace.

Very recently, Green et al. propose a misuse-resistant surveillance scheme
[34] which compels law enforcement to leaving a warrant on the ledger in order
to disclose the encrypted communication of a suspect. To this end, the authors
build on extractable witness encryption (EWE) [30], instead of a key escrow
scheme, where the publication of a warrant serves as the key (aka witness) to
decrypt the communication. Unfortunately, it seems implausible that extractable
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witness encryption (for general NP languages) does actually exist [26].5 More-
over, they prove that any protocol secure in their model would already imply
extractable witness encryption (for a highly non-trivial language). The goal of
our system is to combine ledger-based auditability of surveillance actions with
corruption-resilient key escrow mechanisms. Similar to [34], leaving a warrant
on the ledger to access trapdoors is enforced, but without relying on extractable
witness encryption.

Goyal et al. [33] model storing secrets on a blockchain (via secret-sharing
them among members of an evolving committee) and retrieving them under
some condition. If we apply that idea to our scenario, we could secret-share
user-specific trapdoors at committees who only release their shares if they find a
warrant on the ledger requesting their specific shares. Benhamouda et al. [8] also
model storing of a secret on a blockchain, but additionally make committee mem-
bers anonymous until they finished their work to prevent targeted corruption.
Both methods [33, 8] can result in a lot of overhead for the committee who po-
tentially has to manage millions of secrets. To reduce the committee’s workload
during the handover phase, we take this idea and combine it with a key-escrow
approach. Instead of secret-sharing millions of trapdoors on the blockchain, we
only secret-share one item: A secret key for a threshold encryption scheme. The
trapdoors are not secret-shared on the blockchain, but encrypted under a public
key and stored off-chain to reduce blockchain workload. The secret key for that
ciphertext is secret-shared on the blockchain and instead of directly retrieving
a secret from the blockchain, law enforcement can request the decryption of the
ciphertext. To increase security, only a part of the trapdoor is decryptable by
the blockchain committee; the other part is stored offline at the system operator.
Thus, the system remains secure even if the blockchain committee’s majority is
corrupted. See Appendix D for a discussion of important design decisions.

While some other systems [44, 27] only enable prospective surveillance, where
law enforcement must prepare surveillance of each user individually before this
user conducts any transactions, we achieve retrospective surveillance, where law
enforcement can also access transactions that were conducted in the past. We
additionally model this functionality as a building block in the UC framework
and prevent users from learning whether their trapdoor was retrieved or not
(in contrast to [8, 33]). Unlike [34], we achieve retrospective surveillance with-
out implying EWE. Moreover, the efficiency estimate of our application shows
that our system is realizable and scales favorably: The judge is only involved
in granting warrants, law enforcement is only involved when surveilling users
and the work on the blockchain only depends on the number of surveilled users,
not the number of registered users (cf. Section 4.3). We thus present the first
UC-secure proof of concept. Unfortunately, it is not practically efficient due to
large ciphertexts (cf. Section 5.3).

Additionally, we add the possibility to audit the surveillance decisions of law
enforcement. A special party, the auditor, has the power to retrospectively exam-
ine law enforcement’s surveillance decisions and inform the public about possible

5 Even (non-extractable) witness encryption currently has no efficient constructions.
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abuse. Since this party is very powerful, care must be taken as to who takes on
this role; for example, a neutral investigative committee might be suitable.

1.1 Contribution

We formalize an auditable surveillance system as a building block which can be
used to enhance many different (existing) applications with the capability to re-
voke a user’s anonymity or to reveal a user’s transaction data under the condition
that a law enforcement agency has a court-signed warrant that legally empowers
them to do so. Our auditable surveillance system is the first to combine key
escrow with accountability without requiring unlikely assumptions (e.g., EWE)
while scaling well. We accomplish this through the following three contributions.

First and foremost, we provide an abstract ideal functionality for auditable
surveillance, FAS. The functionality FAS serves as a building block which allows
to enhance protocols with auditable surveillance with relative ease. In particular,
this provides a basic target functionality to realize and serves as a separation
between the low-level implementation of the auditability mechanism, and the
high-level decision of adding auditability to protocols, e.g., choosing what data
to make available to law enforcement in anonymous electronic payment systems
with auditable surveillance. We formalize our auditable surveillance system in
the Universal Composability (UC) framework [17, 16], which ensures that the
system’s security and privacy guarantees still hold if the system is run in com-
bination with many different other protocols.

Our second contribution is the protocol ΠAS which UC-realizes FAS. It uses
several cryptographic building blocks like commitments, signatures and zero-
knowledge proofs and is based on an ideal functionality for auditable decryption,
FAD, for managing the secret-shared secret key for the threshold encryption
scheme and answering decryption queries. Our modeling of this building block
achieves auditability of requests for secrets and privacy regarding which secrets
are released. The auditable decryption functionality FAD is also modeled in the
UC framework to enable a flexible use of this building block and we provide
a protocol ΠAD that UC-realizes it. We cast our protocol ΠAD in the YOSO
(You-Only-Speak-Once) model [28] (see Section 4.3 for a brief introduction). In
this model, protocols are executed by roles, where each role is only allowed to
send messages once. Which party is executing a specific role is hidden until it
sends its messages. This prevents targeted corruption of parties that comprise
the current committee, and thus allows for leveraging global honest-majority (for
the set of all nodes operating the blockchain) assumptions for smaller committee
sizes, and achieving security against mobile adaptive adversaries.6

Our third contribution is a (toy) ideal functionality, FASTE, for Auditably
Sender-Traceable Encryption (ASTE). This functionality demonstrates the use-
fulness of FAS as a building block. Effectively, FASTE allows a registered user
to anonymously encrypt a confidential message to another registered user, while

6 Mobile adversaries can adaptively corrupt and uncorrupt parties as long as they do
not exceed a certain threshold of simultaneously corrupted parties.
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ensuring that law enforcement is able to deanonymize the resulting ciphertext.
In our toy example, law enforcement does not learn the message of a ciphertext,
fully separating “content” from “identity”. But it is easy to modify the exam-
ple, so that law enforcement learns any function of message and identity. At
first glance, this may be a trivial application of encryption and zero-knowledge.
However, to attain retrospective surveillance which is somewhat practical, we
need to combine non-interactive non-committing encryption (NINCE) with zero-
knowledge proofs, which is highly non-trivial (cf. Section 1.2).

To summarize our contribution:

1. We identify and define an ideal UC-functionality, called FAS, which acts as a
building block for auditable surveillance systems or more generally auditable
access systems.

2. We realize this functionality in a setting where the deployment of such sys-
tems is of interest (namely, the “blockchain space”). Therein we also specify
a UC-functionality FAD for auditable decryption, which may be of indepen-
dent interest. We stress however, that the realization of FAS is not in any
way restricted to this setting.

3. We demonstrate the applicability of FAS by building FASTE on top of it,
and provide techniques to overcome the challenges posed by retrospective
surveillance namely, techniques for ZK-compatible NINCE in the PROM.

1.2 Overview of Technical Challenges in Building Applications

To be used in an application, the auditable surveillance functionality FAS must
provide a suitable interface. In most applications, users need to be able to prove
that they escrowed a secret, e.g., a secret for the current period in our messenger
application ASTE. A first idea to realize that, is for FAS to provide a digital
signature on user identity, escrowed secret and current period to the user. How-
ever, formulating a usable (let alone zero-knowledge-compatible) UC signature
scheme turns out to be a daunting task, since signatures in UC are riddled with
subtleties [4, 18, 45, 13], and indeed many modeling artifacts occur.

To circumvent such problems, FAS directly provides the possibility for users
to prove statements about their identity uid , their escrowed secret secret , some
validity period vper and other information. Such a proof can show a statement
of interest w.r.t. vper , for a witness which includes (uid , secret), and the proof
ensures that the secret secret for uid is stored for period vper . Overall, this
approach is more general and easier to use.

Our Auditably Sender-Traceable Encryption (ASTE) functionality encapsu-
lates the main challenges encountered with auditable systems:

Privacy: Different information must be hidden from different parties: For FASTE,
message recipients must learn the message, but not the sender’s identity. Law
enforcement must not learn the message, but must learn the sender’s identity.

Soundness (of Surveillance): Despite anonymity of ciphertexts in FASTE, it
must be infeasible to produce ciphertexts in the name of another user.
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Retrospective Surveillance: The surveillance requests of law enforcement es-
sentially behave like adaptive partial corruptions.

The second point (soundness) can make good use of the non-interactive proving
capabilities of FAS, which also greatly helps in achieving the first (privacy). How-
ever, the last point (retrospective surveillance) is surprisingly difficult to achieve,
even with FAS. Indeed, it is a case of the well-known “simulator commitment
problem” [39]: In the ideal execution, the simulator must generate a ciphertext
for an unknown message (due to confidentiality) and an unknown user (due to
anonymity). However, when law enforcement (lawfully) deanonymizes the user’s
identity uid in that ciphertext, it must be correct. In other words, the identity
uid is unknown to the simulator when it generates a ciphertext c (which “com-
mits” to uid). Yet, when law enforcement obtains the escrow secret, all (affected)
ciphertexts must correctly decrypt to the user’s identity uid . If non-interactive
decryption for law enforcement is assumed, then the simulator must retroac-
tively choose the identity uid of c. This asks for a (form of) non-interactive
non-committing encryption (NINCE), which is known to be impossible in the
standard model [48]. Thus, we rely on a NINCE-like construction in the pro-
grammable random oracle model (PROM). However, this entails a well-known
problem, namely, that it is not possible to prove statements about (random) or-
acles with zero-knowledge proofs for NP — NP statements cannot have oracles.
To overcome this, we use a non-trivial construction of NINCE which incorpo-
rates cut-and-choose techniques to obtain black-box proofs for statements over
the NINCE-encrypted values (and even the encryption secret keys). In light of
an apparent necessity for zero-knowledge-compatible NINCE, we consider this
construction as part of our toolkit for basing applications on FAS.

1.3 Related Work

Key escrow. Since the 1990s, many papers, e.g., [41, 60, 51], have been dealing
with different variants of key escrow mechanisms in various domains, where key
material is deposited with one or more trusted parties who can then decrypt
targeted communications or access devices. In particular, key escrow has also
been applied in the scope of e-cash [10] to balance anonymity and accountability.
Also, more recent work follows this paradigm. For instance, in [2] the authors
propose protocols for secure-channel establishment of mobile communications
that offer a session-specific opening mechanism. A session key is escrowed with
n authorities which all need to agree for recovering the session key. The system
comes with some addition of security guarantees, e.g., non-frameability. The
work [55] considers lawful device access while protecting from mass surveillance.
The authors propose the use of self-escrow passcodes which are written to the
device itself and can only be retrieved by means of physical access, e.g., via
dedicated pins.

Accountable access. Some works have tried to extend key escrow with basic
accountability features. We compare ourselves with the most relevant of them
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Paper Lawful-
only1

Retro-
spective2

Silent3 No EWE
needed4

Public
Statistics5

UC-
secure6

Flexible
Framework7

[44], [27] no no yes yes no no no
[22] no yes yes yes no no yes
[11] no yes no yes yes yes no
[47] no yes yes yes yes no partially8

[38] yes yes no yes no no partially8

[34] yes yes yes no yes yes no
Our System yes yes yes yes yes yes yes

1 Whether a warrant is needed for surveillance actions.
2 Whether surveillance is retrospective or only prospective.
3 Whether surveillance is silent, e.g., users are not aware that they are surveilled.
4 Whether the system does not assume the existence of EWE (extractable witness encryption).
5 Whether the system supports public statistics.
6 Whether the system is UC-secure.
7 Whether the work contains a framework that can be used for many different applications.
8 The system support a limited set of applications.

Table 1: Comparison of our system with the most relevant related work on
accountable surveillance systems

in Table 1. A more detailed comparison with [34] can be found in Section 5.4,
after our application ASTE is presented.

In [3] an anonymous yet accountable access control system is proposed. Re-
garding accountability, the user needs to escrow its identity with a TTP which
is revealed by the TTP if some previously agreed condition bound to the ID
using verifiable encryption with labels (where the condition is encoded as label)
is satisfied. Liu et al. [47] propose an accountable escrow system focusing on
encrypted email communication. In their system users escrow their decryption
capability (instead of their private key), essentially by means of a 3-party Diffie-
Hellman key exchange, to trusted custodians. Custodians perform decryptions
upon request by means of their own private keys and are trusted to log each
decryption request to hold the government accountable. Still, the private keys of
custodians can be stolen or they can be corrupted in particular as they are well-
known to government organizations. The works [44] and [27] deal with auditable
tracing techniques in the context of e-cash and cryptocurrencies, respectively.
The underlying idea is to provide a user either with a randomized version of
the authority’s public key, where the corresponding secret key is the revocation
trapdoor, or a completely random key, which is useless for tracing. The user can-
not tell which key it received until later when the authority is enforced to reveal
this. The big disadvantage of their approach is that the authority has to decide
in advance (e.g., at the beginning of each month) which users should be traced.
This could result in practical issues, e.g., when money laundering is suspected,
but the transactions of suspects cannot be traced since tracing was not turned
on for them. In [22] a “mutual accountability layer” is added to systems to make
operators accountable for opening key-escrowed user transactions. However, this
accountability feature only results in the current key escrow committee learning
that some transaction was opened. The lawfulness of opening a transaction is
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not verified and information about opening requests are not persistently and
publicly stored.

Some proposals try to avoid key-escrow and its misuse potential from the
outset. Very recently, a misuse-resistant surveillance scheme with retrospective
exceptional access to end-to-end encrypted user communication has been pro-
posed in [34]. Instead of building on key escrow, users are forced to (additionally)
encrypt their messages with extractable witness encryption [31]. Loosely speak-
ing, witness encryption allows to define a policy under which a ciphertext can be
decrypted. In their scheme, this is the case when a warrant for the correspond-
ing user signed by a judge has been published on a public ledger. The major
disadvantage of their approach is that it is implausible that extractable witness
encryption schemes actually exist [26].

In [38], the authors also abstain from using key escrow. Instead, given a
warrant, a user has to (verifiable) reveal the transactions of interest itself to
the judge. Unfortunately, this prevents silent investigations and leaves a suspect
with the option to deny cooperation.

Several works deal with the collection of auditable logs of surveillance actions.
In [6] the authors propose a distributed auditing system for CALEA-compliant
wiretaps. The idea is to add Encryptor devices to the wiretaps which send en-
crypted audit records to a log. With the help of the log, audit statistics can be
computed from ciphertexts using homomorphic encryption. Kroll et al. in two not
formally published manuscripts [42, 43] propose different systems for accountable
access control to user data. Here, law enforcement needs to interact with a set of
decryption authorities to decrypt user records, for which a single encryption key
is used. Accesses are logged by an auditor party with whom the other parties
need to interact continuously in order to confirm the different protocol steps.
No end-to-end encryption of user data or the revocation of anonymous records
is considered. Also, formal security model and proofs are missing. The work [24]
extending [32] uses ledgers to collect accountable information about surveillance
action and a hierarchical form of MPC to compute aggregate statistics. How-
ever, a secure and accountable escrow and disclosure of user trapdoors is not
considered. In particular, if such trapdoors are kept by a company, they can still
be misused by the company, stolen by an intelligence agency, etc. without leav-
ing any trace on the ledger. The work [52] addresses some of the issues of [24]
like, e.g., that government agencies and companies are trusted to regularly post
(correct) information on the ledger. This is done by introducing an independent
party called Enforcer who serves as the conduit for interactions between them
and ensure compliance. However, for this it is assumed that government agen-
cies and companies do never directly communicate with each other. Moreover,
they do not make use of ledgers to control access to user trapdoors to disclose
end-to-end encrypted communication or revoke anonymous transactions.

Finally, there are number of rather unconventional proposals to impede mass
surveillance. In [7], the authors introduce the concept of translucent cryptogra-
phy which, based on oblivious transfer and without relying on key escrow, allows
law enforcement to access encrypted messages with a certain probability p. In
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[58], a system is proposed where law enforcement needs to provide a hash-based
proof of work in order to recover an encrypted message, intentionally resulting
in a high monetary cost (e.g., $1K-$1M per message). The work [57] considers
exceptional access schemes for unlocking devices such as smartphones. To unlock
a device, law enforcement needs to get approval by a set of custodians and sub-
sequently locate and get physical access to a randomly selected set of delegate
devices to obtain an unlock token. This requires both human and monetary re-
sources of the law enforcement agency. In [56] Scafuro introduces the concept of
break-glass encryption for cloud storage where the confidentiality of encrypted
cloud data can be revoked exactly once for emergency reasons. This “break” is
detectable by the data owner. The author’s construction relies on trusted hard-
ware and is a feasibility result rather than a practical solution. Persiano, Phan
and Yung [53] recently introduce the concept of anamorphic encryption. The
idea behind this is that even an attacker who can dictate the messages sent and
demand the surrender of a decryption key (e.g., a government), cannot prevent
a second, hidden, message from being sent along that only the dedicated recip-
ient can decipher. While this means that one cannot prevent the exchange of
hidden messages despite of surveillance, law enforcement agencies still consider
surveillance as a useful measure as not all criminals have the knowledge or skill
set to exploit this fact or find it convenient.

Storing secrets on a blockchain. There are prior works which model the capa-
bilities of storing secrets and retrieving them under certain conditions thereby
replacing the need for extractable witness encryption by relying on a blockchain.

In the recently published “eWEB” system [33] a dynamic proactive secret
sharing (PSS) scheme with an efficient handover phase is constructed and used
in a black-box way to store and retrieve secrets on a blockchain. Their sys-
tem is secure against an adversary that statically corrupts less than half of the
blockchain nodes. However, the members of the current committee are publicly
known and the identifier of a retrieved secret is revealed to the general pub-
lic. Hence, in our case, a user would learn that law enforcement is exposing its
transactions, which should be prevented.

The system by Benhamouda et al. [8] uses a similar approach. They intro-
duce an evolving-committee PSS scheme instead, where the selection of the next
committee is a part of the secret-sharing scheme itself and the members of the
current committee remain anonymous (to anyone, including the members of the
previous committee) until they finished their work and hand over the role to the
next committee. This enables the system to handle a mobile adversary corrupt-
ing ≈ 29% of blockchain nodes. However, they do not clearly state how their
PSS scheme can be used to retrieve secrets from the blockchain, in particular it
is unclear who learns which secrets are retrieved, whether the current committee
learns this witness and whether the secret is revealed to the public or not.

Our usage of a blockchain has similarities to [33, 8], in particular we also use
the anonymous committees from [8], but we additionally model the system as
a building block in the UC framework, which [33, 8] do not. Also, we prevent
users from learning whether their secret was decrypted or not (in most cases).
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Erwig, Faust and Riahi [23] propose a standalone protocol for threshold de-
cryption in the YOSO model. Our building block for auditable decryption is
similar to their protocol, but augmented to satisfy our auditing needs and for-
malized in the UC-model instead of using game-based security notions.

Brorsson et al. [11] recently published PAPR, an anonymous credential scheme
with a retrospective auditable surveillance feature. PAPR and our work both
model retrospective auditable surveillance with a detailed UC framework, utiliz-
ing techniques such as bulletin boards/blockchains, YOSO, secret-sharing, ZK,
and TPKE. Regarding the committee structure, our system differs from PAPR
as the sets of users and committee member candidates are distinct, while PAPR’s
sets are identical. However, it is worth mentioning that PAPR proposes this sepa-
ration as future work. Notably, our system supports silent anonymity revocation,
whereas anonymity revocation in PAPR is inherently non-silent. Additionally,
we implement different validity periods, allowing law enforcement to revoke a
user’s anonymity only for specific periods, offering a more nuanced approach
compared to PAPR, where revocation affects all credential showings.

2 System Overview

In this section, we provide an overview of our system. We start by introducing
the parties, followed by a high-level description of their interactions. Lastly, we
give a brief discussion of its (intuitively) captured security properties.

2.1 Parties

Our system consists of the following parties:

System Operator: The system operator SO operates the system (e.g., anony-
mous payment system, confidential instant messenger service) that is en-
hanced with auditable surveillance.

Law Enforcement: Law enforcement LE can access a user’s escrowed secrets
if it is in possession of a valid warrant.

Judge: The judge J grants or rejects warrants.
Auditor: The auditor AU can access information about all used warrants.
Users: The set {Ui} of users who want to make use of the application provided.
Nodes: The set {Ni} of nodes that is available to execute assigned roles on the

blockchain (the shareholder committee).

There is one each of system operator, law enforcement, judge and auditor, but
there may be arbitrary many users and blockchain nodes. We consider static
corruption of SO, LE and the users Ui. For the nodes Ni we achieve mobile
adaptive corruption since each role a node can play is cast in the YOSO model
[28] and only sends messages once. J and AU7 are assumed to always be honest.
Apart from the explicitly modeled parties, some portions of our system are
available for everyone, for example reading information from the blockchain.

7 While a corrupt AU would learn all warrants, it is not possible for a corrupt AU to
convince a third party of false claims about those warrants.
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Fig. 1: High Level System Overview. The numbers represent the intended order
of task execution.

2.2 High-Level System Overview

An overview of the tasks the different parties can execute can be found in Fig. 1.
We now describe the intended usage of our system. In the following we focus on a
specific application and instantiation to make the description clearer. We apply
our functionality FAS to an anonymous message transfer service and instantiate
it with the protocols ΠAS and ΠAD that utilize a blockchain.8 Note that of course
different applications and instantiations are possible as well.

To initialize the system, each party generates their respective cryptographic
keys. The public keys of SO, J and AU are posted on the blockchain and available
to everyone. The blockchain selects its first committees and creates a threshold
encryption keypair, whose public key is available to everyone and whose secret
key is secret-shared among the committee members.

Users need to register themselves with SO and create an account to use the
system. Each period (e.g., monthly) the user and SO create together a fresh
escrow secret that could be used to expose the user’s identity in messages sent
during that period. The secret is then secret-shared into two partial secrets: One
part is directly stored at SO9 and the other part (only known to the user) is en-
crypted under the committee’s threshold public key. The ciphertext itself reveals
nothing about the user’s identity, but it is linked to the user’s identity and the
period the secret is valid for with a zero-knowledge (ZK) proof. After depositing
a secret for the current period, the user can use the messenger service during that
period. To use the anonymous messenger application, the sender would prove in

8 The features of a blockchain include publicly viewable and non-editable information
as well as easy committee formation. Alternatively, an append-only bulletin board
can be used. In this case, a committee has to be formed by some other means.

9 Since we use a Blum coin toss to jointly generate the secret, SO knows a share of
the secret anyway.
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zero-knowledge that it has stored a secret for the current period and appended
its identity (but encrypted under its escrow secret for the current period) to the
current message. This proof can be verified by anyone, in particular the receiver
and SO, where the latter can block non-complying messages.

If the law enforcement agency LE has a legitimate interest in disclosing one
or multiple user secrets, it can request a warrant from the judge J. Each warrant
consists of a set of sub-warrants and each sub-warrant states which user should
be surveilled in which period. Additional information is included in each sub-
warrant, for example the name of the court, the reason for surveillance, etc. If
J signs the warrant, LE can get information about each user from SO, i.e., the
partial secret stored by SO and the ciphertexts containing the other part of the
secret. With a signed warrant and the additional information from SO, LE is able
to retrieve the partial secrets for the users and periods in that warrant from the
blockchain. In particular, LE convinces the current committee in zero-knowledge
that it indeed has a warrant signed by J for that set of ciphertexts. Upon verifying
the proof, the committee then decrypts the ciphertexts and reveals the other
partial secrets to LE, who can then reconstruct the users’ full secrets. Given
the (anonymous) message data of the messenger system operator, LE can now
match the previously anonymous messages to users in the warrant (but only for
messages sent during the period specified in the warrant).

To prevent misuse of the system or even mass surveillance, several coun-
termeasures are supported by the system. Firstly, a system-wide policy func-
tion prevents any warrants violating that policy. For example, it may disallow
surveillance of an individual user for more than 12 months (by a single war-
rant). Secondly, LE needs to be in possession of a valid warrant signed by J
to request a secret and the blockchain committee first verifies the validity of
this warrant before decrypting a secret. There exists the risk that the signing
key of the judge may get stolen and an attacker could use the stolen key to
sign a warrant itself and thus retrieve some secrets. We cannot prevent this
entirely (other than suggest that judges secure their secret keys properly), but
have mitigation measures. To retrieve a decrypted secret from the blockchain,
the request needs to publish some information about the respective warrant on
the blockchain, thus leaving visible proof that such a request took place. What
information about each warrant should be publicly available is declared by a
system-wide transparency function. Choosing a suitable transparency function
for the system can be a challenging task since one needs to balance the pub-
lic’s desire for information, the privacy of surveilled users, and LE’s need for
silent surveillance. The transparency function should, for example, never pub-
lish the names of the surveilled individuals. But it may, for example, publish
the number of different users in the warrant, the periods in which the retrieved
secrets are valid and the name of the court that signed the warrant. Assuming
the latter information is published, each court can monitor the blockchain and
upon seeing more warrants signed by its key than they actually signed, they can
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detect key theft and henceforth take appropriate measures.10 Thirdly, assuming
an appropriate transparency function, anyone can get useful information about
all enforced warrants through publicly available statistics. For example, if the
transparency functions reveals the number of different users in the warrant, the
number of currently surveilled users becomes public. If this number suddenly
skyrockets, it is an indication of misuse of power. Fourthly, the auditor AU has
the capability (as it can access the “full” warrant information on the blockchain)
to conduct a detailed investigation of enforced warrants. It may check for any
peculiarities and prove statements about the stored warrants to an arbitrary
entity without revealing any further information. For instance, such a statement
might be that none of the warrants issued within a certain period of time involve
a certain user.

2.3 Security Properties and Trust Assumptions

We now summarize the desired security and privacy properties of our building
block for auditable surveillance in an informal and intuitive manner:

– (Non-colluding11) users are not aware whether LE issued a request to recover
one of their secrets.

– To use the Prove task (cf. Fig. 1) for an application on top, e.g., to prove
some statement involving the user’s identity, the user needs to have escrowed
a secret for the respective period.

– The privacy guarantees of the application on top are only breached if a
warrant was granted. And even in that case, only the users covered by the
warrant have (some of) their data exposed.

– LE can only request secrets for warrants that comply with the system policy.
– After LE requested a decryption by the blockchain, the publicly available

information about the warrant (for statistical purposes) and the information
about the warrant that is only available to AU are permanently stored on
the blockchain and can not be modified or removed afterwards.

– Anyone is able to retrieve publicly available statistics on all enforced war-
rants.

– AU has the capability to provide the general public with provably correct
statistics about the enforced warrants.12

– Even if SO and LE collude, they can not expose any escrowed user secrets.
– Likewise, even if a majority of the blockchain nodes collude, they can not

reconstruct a user’s secret.

10 Our system actually only supports a single non-revocable judge key to keep the model
from being overly complex, but the extension to several different and revocable judge
keys is straightforward.

11 This security property holds for a user colluding with other users and blockchain
nodes but not one colluding with SO or LE.

12 Since AU has access to the full warrants, its statistics can be more detailed than
those the general public can compute. AU could even prove to third parties (e.g., a
parliament) facts about specific warrants without revealing the full warrant.
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We assume the judge J and auditor AU to be honest. Since AU has the power to
read all warrants in the clear, it is a very powerful entity that could potentially
misuse that power. In reality, one could decentralize that trust by having multiple
auditor parties that utilize threshold cryptography or multi-party computation.
Since we trust the jurisdiction, we also model J as an honest party and assume
that it honestly follows the protocol. Warrants that were granted but legally
not justified can be detected upon request to AU. The existence of judge-signed
warrants also ensures that LE can also only request user information from SO
for which it has a signed warrant.

Although SO is corruptible in our system, we implicitly have to trust it in
some aspects: We assume that SO cooperates with other parties and responds to
messages. A SO that ignores messages from other parties could bring the system
to a halt or deny individual users’ participation in the system. Since SO has
a monetary motivation to keep the system running for a long time, we believe
these assumptions to be reasonable. Note that while a corrupt SO cannot send
false data (e.g., pretend that a ciphertext belongs to another honest user), it can
omit some data (e.g., data from colluding corrupt users) when sending it to LE.
This is a general problem that can be discouraged through laws.

As an exemplary application that is enhanced by auditable surveillance,
we consider Auditably Sender-Traceable Encryption (ASTE). This application
achieves (among others) the following core security guarantees:

– Any ciphertext which decrypts successfully (to m 6= ⊥) for an honest user
can be deanonymized by LE.

– Finding ciphertexts which falsely deanonymize to an honest user is infeasible.

– Plaintext and identities remain secret to parties which are not allowed access
to them. That is: Without a warrant, LE learns nothing from a ciphertext.
With a valid warrant, LE can deanonymize the user, but the plaintext re-
mains hidden.

We give LE only the ability to deanonymize instead of reading the message (and
deanonymizing), since corrupted users may use secure encryption to encrypt
their messages anyway. However, by straightforward modifications, LE may learn
any function of the message and the user’s identity.

3 A Formal Model for Auditable Surveillance Systems

In this section we introduce the functionality FAS, our formal model for our
auditable surveillance system, which is independent of the application. We model
our system in the Universal Composability (UC) framework [17, 16]. For a very
brief introduction to UC, see Appendix A.8, and for some writing conventions
see Appendix B.1.

We first introduce some variables that are essential for the functionality in
Table 2. We describe how our auditable surveillance system is modeled in the
UC framework by presenting the ideal functionality FAS in Figs. 2 and 3. Note
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pid The party identifier for the UC framework (e.g., a physical identifier)
uid The (self-chosen) identity of a user
secret The escrowed secret
vper The validity period for a single secret (e.g., the current month)
W A warrant from LE to retrieve (multiple) user secrets with W =

(W1, . . . ,Wv) and Wi = (uid i, vper i,metai)
v number of subwarrants Wi inside a warrant W
meta Meta information about a warrant. Some of it is public information and

some is only meant for the auditor

W pub The information about the warrant that should be known to the public

Table 2: Variables used in FAS

that the functionality implicitly checks the pid of calling parties: If the func-
tionality description states “Input P: (. . .)” for P ∈ {SO, AU, J, LE}, then the
functionality first checks if the calling party has the correct role and ignores the
message if the role does not match. We now also sketch the individual tasks.

System Init and Party Init. These tasks are just for initializing the system
and other parties.

User Registration. To participate in the auditable surveillance system (and
to use the application on top) the user needs to create an account with SO. It
is ensured that each user can only create one account. The user can choose an
unique identity (uid) under which it will be known henceforth.

Store Secret. Each period (e.g., monthly) the user needs to deposit a new
secret. Since FAS is a trustworthy incorruptible entity, we do not need to encrypt
it and directly store the secret inside FAS. FAS first checks that the user is
registered in the system and has not yet stored a secret for the current period.
Then, FAS draws a fresh secret (so the user can not influence what his secret will
be) and stores it in its internal storage. After this task is finished, the user can
now use the application, which is not modeled directly in FAS. For an example
on how to use FAS for Auditably Sender-Traceable Encryption, see Section 5.

Request Warrant. In this task LE can request a warrant from J. The func-
tionality itself first checks if the proposed warrant W complies with the system’s
policy function fp. Then it gives J the opportunity to approve (b = 1) or deny
(b = 0) that warrant. FAS also ensures that each warrant is only processed once
(this ensures that the statistics calculated later will be correct).

Get Secrets. With a granted warrant LE can now retrieve the secrets for
all (uid , vper) pairs inside the warrant. FAS first verifies that the warrant was
approved by J and then outputs all secrets corresponding to that warrant to LE.

Get Statistics. Every party of the system can query this task to enable the
general public to access statistics about the warrants. For every warrant granted
by J the transparency function ft is computed to get the publicly available
information W pub about that warrant. The publicly available information about
each warrant are then returned to the party asking for statistics.
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Functionality FAS

System Parameters:
– ft — Transparency function. Outputs pub-

lic information of a warrant. Interface is
W pub ← ft(W ).

– fp — Policy Function. Checks whether a
given warrant is allowed by system policy.
Interface is {0, 1} ← fp(W ).

– S — Space of secrets
– R — an NP relation for statements about

stored secrets: Contains (stmtR,witR) ∈
R pairs where stmtR is a statement and
witR is a witness for that statement

– System pids: pidSO, pidJ, pidAU

Functionality State:
– LI: List of initialized parties (initially

empty). Contains (pid) entries.
– LU: List of registered users (initially

empty). Contains (pid, uid) pairs.
– LS: List of stored secrets (initially empty).

Contains (uidi, vperi, secreti) entries.
– LW : List of warrants that were requested

by LE from J (initially empty). Entries are
of the form (W , b), where b is a bit that
states whether the warrant was granted or
denied by the judge.

– Lπ : List of proofs (initially empty). Entries
are of the form (stmtR,witR, π, b), where
the bit b states whether the relation is ful-
filled or not.

System Init:
– Input SO & J & AU: (Init, SO/J/AU)
• If this is the first time, this task is in-

voked, do whatever is stated in “Be-
havior”. If this is not the first time this
task is invoked, ignore the messages.

• Ignore all other messages until this task
has been invoked.

– Behavior:
1. Create empty lists LI, LU, LS, LW , and

Lπ
2. Send (Init) to the adversary
3. Add pidSO and pidJ to LI

– Output SO & J & AU: (InitFinished)

Party Init:
– Input some Party P: (PInit)
– Behavior:

1. If pid 6∈ LI, store pid in LI
2. Send (PInit) to the adversary

– Output to P: (PInitFinished)

User Registration:
– Input U: (Register, uid)
– Input SO:

(
Register, uid′

)
– Behavior:

1. As soon as U gave input, send
(Register, pid, uid) to the adversary.

Wait for (Ok) from the adversary and
input from SO before continuing.

2. If uid 6= uid′, abort. (wrong inputs)
3. If (pid, ·) ∈ LU, abort. (User already

registered.)
4. If (·, uid) ∈ LU, abort. (Identity already

taken.)
5. Store (pid, uid) of the user in list of

registered Users LU
6. Store pid in LI

– Output U & SO: (Registered)

Store Secret:
– Input U: (StoreSecret, uid, vper)
– Input SO:

(
StoreSecret, vper ′

)
– Behavior:

1. If SO is corrupted (and U is hon-
est): As soon as U gave input, send
(StoreSecret, vper) to the adversary
and then wait for input from SO

2. If vper 6= vper ′, abort
3. Check if user is registered: If

(pid, uid) /∈ LU, abort.
4. Check if user already registered a secret

for the current validity period: If there
exists an entry (uid, vper , ·) in the list
of stored secrets LS, abort

5. Generate secret: secret
r← S

6. Store (uid, vper , secret) in the list of
stored secrets LS

– Output U: (SecretStored, secret)
– Output SO: (SecretStored, uid)

Request Warrant:
– Input LE: (RequestWarrant,W )
– Behavior:

1. Check if policy function allows that
warrant: If 0 ← fp(W ), abort (War-
rant not allowed by policy function).

– Output J: (RequestWarrant,W )
– Input J: (b)
– Behavior:

1. If there already exists an entry
(W , ·) ∈ LW , abort (Warrant already
processed).

2. If SO is honest: If b = 1, send

(RequestWarrant, ft(W ), |W̃ |, v) to
the adversary and wait for message
(Ok) from the adversary

3. If SO is corrupted: Send
(RequestWarrant,W , b) to the adver-
sary and wait for message (Ok) from
the adversary

4. Append (W , b) to LW
– Output LE: (RequestWarrant, b)

Fig. 2: The ideal functionality FAS
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Functionality FAS (continued)

Get Secrets:
– Input LE: (GetSecrets,W )
– Behavior:

1. Check if warrant was granted by Judge:
If no entry (W , 1) exists in LW , abort.
(Warrant either not requested or not
granted)

2. Parse warrant: (W1, . . . ,Wv) ← W
and (uidi, vperi,metai)←Wi

3. For each i from 1 to v:
(a) Check if secret is stored: Get

secreti for which an entry (uidi,
vperi, secreti) exists in the list of
stored secrets LS. If none exists, set
secreti = ⊥.

4. If LE is honest: Send (GetSecrets) to
the adversary

– Output LE: (GotSecrets, (secret1, . . . ,
secretv))

Get Statistics:
– Input some Party P: (GetStatistics)
– Behavior:

1. Send (GetStatistics) to the adversary
2. Initialize empty list LStats
3. For every (W , b) ∈ LW with b = 1:

(a) Apply transparency function to

warrant: W pub ← ft(W )

(b) Append W pub to LStats
– Output to P: (GotStatistics, LStats)

Audit:
– Input AU: (AuditRequest)
– Behavior:

1. Send (AuditRequest) to the adversary
2. Initialize empty list LAU
3. For every (W , b) ∈ LW with b = 1, ap-

pend W to LAU
– Output to AU: (AuditAnswer, LAU)

Prove:
– Input U: (Prove, stmtR,witR)
– Behavior:

1. Parse (uid, secret,wit′) := witR

2. Parse (vper , stmt′) := stmtR
3. Let pidU be the pid of the party calling

this task
4. If R(stmtR,witR) 6= 1 or (pidU, uid) 6∈

LU or (uid, vper , secret) 6∈ LSecrets, then
abort.

5. Send urgent request (Prove, stmtR) to
the adversary.

6. Wait for immediate response
(Proof, π) from the adversary

7. Store (stmtR,witR, π, 1) in Lπ
– Output U (immediate): (Proof, stmtR,

witR, π)

Verify:
– Input some party P: (Verify, stmtR, π)
– Behavior:

1. If pid 6∈ LI, abort (Verifier did not ini-
tialize)

2. For (stmtR, π), check if there exists
(stmtR,witR, π, b) ∈ Lπ

3. If entry exists

(a) (Immediately) output (Verification,
stmtR, π, b) to P

4. If entry does not exist

(a) Send urgent request (Verify,
stmtR, π) to the adversary

(b) Wait for immediate response
(witness,witR) from the adversary

(c) Set b← R(stmtR,witR)
(d) Only if SO is honest:

i. Parse (uid, secret,wit′) := witR
ii. Parse (vper , stmt′) := stmtR
iii. If (uid, vper , secret) 6∈ LSecrets,

set b = 0 (User has not stored
a secret)

(e) Store (stmtR,witR, π, b) in Lπ
(f) Prepare the output message

(Verification, stmtR, π, b)

– Output to P (immediate): (Verification,
stmtR, π, b)

Fig. 3: The ideal functionality FAS (continued)

Audit. When AU gets tasked with calculating detailed statistics or with in-
vestigating the case of a specific user, it can call this task. AU is then provided
with all warrants that were approved by J. Since we assume AU to be a trust-
worthy entity (or a group of entities that perform this task in a multi-party
computation) we can provide AU with the warrants in the clear. The actual
execution of AU’s task takes place outside our system, we only provide AU with
the necessary information.

Prove and Verify. The zero-knowledge proof interface is used to build appli-
cations on top of FAS. The Prove task allows a prover to generate a proof π for
a statement stmtR in some NP-relation R, where the witness witR includes the
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user’s identity and escrow secret for the chosen period. The Verify task allows
to check the validity of a proof. As an example, a user may prove that it cor-
rectly encrypted its identity under its escrow secret key. Since we do not limit
our system to a single application, this generic proof/verify interface enables the
flexible use of different applications.

Remark 1. In the description of FAS (c.f. Figs. 2 and 3) there are several mes-
sages of the form “Send (value) to the adversary”. This is due to modeling the
system in the UC framework: In UC, privacy guarantees are modeled by explic-
itly sending all information that an adversary could learn in the real world to
the adversary. Additionally, in UC there exists only a single adversarial party
that can corrupt several other parties. In the real world, this corresponds to the
scenario that all dishonest parties collude and share all the information they
gathered with each other. Consequently, a UC-adversary learns a lot of informa-
tion. However, one should note that in reality dishonest parties learn significantly
less information if they do not cooperate.

4 Realizing the Model

After giving an idealized formalization of the system we want to achieve, we now
elaborate on how to actually build such a system.

4.1 A Protocol ΠAS for Realizing FAS

The functionality FAS represents an ideal version of the system we want to
achieve. Since in practice we do not want to rely on trusted third parties to
perform our calculations for us, we build a protocol ΠAS in the real world
that achieves the same security guarantees as FAS. We later prove that our
constructed protocol ΠAS UC-realizes FAS in the {FAD,FCRS,FBB,GCLOCK}-
hybrid model. As a setup assumption, we use the well-known functionality FCRS

which enables access for all parties to a common reference string (CRS), set up
by a trusted party with a given distribution. We also use an external bulletin
board functionality FBB, where any party can register a single (uid , v) pair asso-
ciated with its identity, where the uids need to be unique. Any party can retrieve
registered values v, which in our case are public encryption keys.

We modularize our realization by outsourcing the auditable decryption of ci-
phertexts to another hybrid functionality FAD, which we describe in Section 4.2.
This hybrid functionality idealizes the primitive of a blockchain with an evolv-
ing set of committees where the committee members are anonymous until they
finished their work. The functionality is parameterized by a (threshold) PKE
scheme and provides everyone with access to a public key under which secrets
can be encrypted. Then, given suitable auditing and authorization information,
decryption of a ciphertext can be requested. In our case this information will
be a judge-signed warrant for that ciphertext. We outsource the auditable de-
cryption for several reasons: 1. A primitive for auditable threshold decryption is
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an interesting building block in itself and to the best of our knowledge no UC
formalization of that primitive exists yet. 2. It simplifies the security analysis
of our system, since we can first assume that the decryption is handled by a
trustworthy party. In a second step we then replace the auditable decryption
functionality FAD with a protocol that realizes it.

Since blockchains with evolving committees generally require some concept
of time (e.g., to ensure that the committee changes daily), the functionality FAD

utilizes a global clock functionality GCLOCK (from [5]) to model time.

We now elaborate on some of the core techniques we use in ΠAS and refer
for the complete description of ΠAS to Appendix B.2 and for the used hybrid
functionalities (except FAD) to Appendix B.1. The hybrid functionality FAD is
briefly discussed in Section 4.2 and in full detail in Appendix B.3.

System Init. SO and J each create a signing keypair. Then SO, J, and AU
initialize the auditable decryption functionality FAD together. The functionality
FAD is then used to provide all parties with access to the needed public keys.

User Registration. Users create a signing keypair (vkU, skU) during registra-
tion. To ensure at most one account per user, we use an idealized bulletin board
FBB, where any party can register a single (uid , vkU) pair associated with its
identity, where the uids need to be unique. Any party can retrieve registered
values.

Store Secret. To store a fresh secret with validity period vper , user and SO
jointly create a fresh secret secret with a Blum coin toss, where each party draws
a partial secret: SO draws sec1 and the user draws sec2 . The full secret is then
secret := sec1 ⊕ sec2 , but only learned by the user. The operator directly stores
the partial secret sec1 (along with the user’s identity uid and the current period
vper). The user encrypts the partial secret sec2 under the public threshold en-
cryption key pk of FAD, sends the resulting ciphertext ct to SO and proves in
zero-knowledge that it calculated all values honestly. SO also stores the cipher-
text ct and provides the user with a (blinded) signature on (uid , vper , secret)
(without learning secret). The user can then utilize this signature in the appli-
cation on top to prove to another party that it indeed stored a secret for that
validity period.

Request Warrant. First, J signs the warrant W proposed by LE to convince
third parties that it indeed has approved the warrant. Since the auditable decryp-
tion functionality FAD needs to know which ciphertexts should be decrypted, we
need J to also sign all ciphertexts ct containing the partial secrets sec2 associated
with the warrant W . Therefore, we additionally include SO in this protocol: LE
sends the signed warrant to SO and asks for the corresponding ciphertexts ct
along with the stored partial secrets sec1 .13 Afterwards, LE provides J with the
ciphertexts ct to get a signature on W̃ , which is the warrant W including the

13 This of course enables SO to guess which users are or will be tracked by LE. But in
practice this could be amended either by SO just sending all its information to LE
or by LE using private information retrieval (PIR) to get just the ciphertexts for the
current warrant without SO learning which ciphertexts were retrieved.
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ciphertexts.14 LE can now utilize the hybrid functionality FAD to request the

decryption of all ciphertexts corresponding to the warrant W̃ .
Get Secrets. After FAD processed the decryption request, LE can retrieve the

partial secrets sec2 for a warrant from FAD. Of course, FAD verified the validity
of all requests and partial secrets for invalid requests can not be retrieved. Then,
LE uses the already stored partial secrets sec1 (obtained from SO) to reconstruct
the full user secrets secret := sec1 ⊕ sec2 for all users in the warrant.

Get Statistics and Audit. Since FAD knows all requested15 warrants, FAD

can directly give the desired information for those tasks.
Prove and Verify. The Prove task is a local task in which the user uses a

NIZKPoK to create the proof π itself. Similarly, the Verify task is also a local
task in which the validity of the statement is verified using the NIZKPoK.

Security. In Appendix E we show that our protocol ΠAS UC-realizes FAS. In
particular, we show the following theorem.

Theorem 1. ΠAS UC-realizes FAS in the {FAD,FCRS,FBB,GCLOCK}-hybrid
model under the assumptions that COM is a (computationally) hiding, (statisti-
cally) binding and (dual-mode) extractable and equivocable commitment scheme,
Σ is a EUF-CMA secure signature scheme, NIZK is a straight-line simulation-
extractable non-interactive zero-knowledge proof system, and TPKE is IND-CPA
secure against all PPT-adversaries A who statically corrupts either (1) a subset
of the users, (2) LE and a subset of the users, (3) SO and a subset of the users,
or (4) SO, LE and a subset of the users.

4.2 Decrypting Secrets with FAD

We now want to briefly describe our ideal auditable decryption functionality
FAD. The formal description can be found in Appendix B.3. To enable protocols
based on the YOSO approach, our functionality makes use of the global clock
functionality GCLOCK and proceeds in rounds, where a round lasts a predefined
amount of time units and decryptions only become available in following rounds.
The functionality is also parameterized by a (threshold) PKE scheme.

Init, Get Tasks and Interaction with GCLOCK. FAD starts by creating an
encryption keypair and registering with the global clock GCLOCK. In ΠAS SO
and J each create a signing keypair and pass their public verification keys to
FAD, where they are stored. There are also tasks to provide the parties in ΠAS

with the public keys of SO, J and the public encryption key of the functionality.
This ensures that both systems use the same keys.

14 Before sending the request to J, LE checks the users’ signatures. Before answering
the request, J checks the (same) signatures as well. Since we assume that J is always
honest, it would be sufficient for only J to check the signatures. But we intentionally
let LE check the signatures first to filter out invalid requests before forwarding them
to J, to reduce J’s workload.

15 Note that these tasks provide the parties with information about all requested war-
rants, independently of whether the secrets were actually retrieved or not.
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Request Decryption and Retrieve Secret. LE can send a signed warrant to FAD

to request decryption of all ciphertexts ct listed in that warrant. FAD checks if
that warrant is valid and then adds the listed ciphertexts ct to a list of pending
decryption requests. To allow our implementation ΠAD to be YOSO, requests
for decryption are only processed during committee handovers. To emulate that
behavior in the ideal world, FAD separates the request of a secret and the actual
retrieval of a secret into two different inquiries by LE, with the requirement that
the committee switches between the two calls.

Role Execute. To emulate the passing of time in the real world and the fact
that YOSO parties can only send a message once, FAD interacts with the clock
GCLOCK: After all honest nodes have activated FAD, it advances the current
time. After the required amount of “time” passes, FAD emulates a committee
handover as follows: FAD handles all pending decryption requests and adds the
decrypted (partial) secrets to a list of processed decryption requests. After this
“committee handover”, the list of processed decryption requests contains all
(partial) secrets that are ready for retrieval by LE.

Get Statistics and Audit. FAD keeps track of all warrants for which LE re-
quested secrets. If AU initiates an investigation, FAD provides it with all valid
warrants. Likewise, FAD can also provide a party asking for statistics with the
outputs of the transparency function for all warrants. Therefore, FAD provides
the same statistics and audit information as FAS.

4.3 A Protocol ΠAD for Realizing FAD

We cast our protocol ΠAD in the YOSO model, which we now introduce briefly.

The YOSO Model. In the YOSO (You-Only-Speak-Once) model introduced by
[28], protocols are run between roles, where each role is only allowed to send
one message and has no lasting state. These roles can then be assigned to actual
machines executing them through some form of role assignment mechanism.
With a way to anonymously receive messages (e.g., by reading ciphertexts stored
on a public blockchain) and a role assignment mechanism that privately assigns
roles, this prevents targeted attack against roles: The identity of a machine
executing a role can only be learned when it sends its message, but at that point
it finished execution and is no longer in possession of any secret state.

This allows both resilience against denial-of-service attacks as well as against
strong adversaries trying to corrupt roles that are part of a protocol execution of
interest. Assuming a large enough pool of machines willing to execute roles, an
attacker able to corrupt any machine of its choosing, but limited in the number
of machines it can corrupt at once, cannot break the security of a protocol even
when run between only a number of roles smaller than the corruption limit.

To achieve this in our protocol, we make use of a blockchain with role assign-
ment functionality FBCRA, which provides a public append-only ledger together
with a mechanism that anonymously selects parties for the next committee by
posting public encryption and verification keys for the individual roles on the
ledger and privately sending the corresponding decryption and signing keys to
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the assigned party. For more details, see Fig. 4. Note that since it is unclear how
to realize the role assignment functionality provided in [28], our functionality
differs from theirs in the following ways:

1. We integrated the global clock GCLOCK.
2. FBCRA only allows assigning roles of the next committee, not roles at an

arbitrary time in the future.
3. The adversary can control a portion of the public keys (and FBCRA does not

get to know the corresponding secret keys).

We deem it plausible that the committee selection protocol from [8] with suitable
corruption thresholds in combination with a suitable blockchain can be used to
implement this,16 although more efficient approaches such as described in [15]
are also possible. We want to stress here that we are in the “near future” setting
of [15], compared to the “far future” setting that would imply witness encryption.
Given that the mechanisms for assigning roles and the criteria by which parties
should be chosen are subject to ongoing research, we believe using FBCRA to
abstract from the details is a suitable approach that allows incorporation of
future research.

Now we give a brief description of ΠAD and refer to Appendix B.4 for further
details. Our instantiation ΠAD UC-realizes FAD in the {FBCRA,FCRS,GCLOCK}-
hybrid model.

Init, Get Tasks and Interaction with GCLOCK. During initialization, AU cre-
ates an encryption keypair and SO, J and AU post their public keys to the
ledger FBCRA. The common reference string is obtained by querying FCRS, the
other Get Tasks are handled by reading from the ledger FBCRA. All honest
nodes N register with the clock GCLOCK upon first activation. Additionally, the
distributed key generation protocol from [23] is run by the first roles assigned
through FBCRA, resulting in a public encryption key pk and a threshold-sharing
of the corresponding decryption key among the first committee.

Request Decryption and Retrieve Secret. To request decryption of cipher-
texts and subsequently receive user secrets, LE needs to be in possession of a
judge-signed warrant listing the relevant ciphertexts ct . To ensure privacy of the
warrant W̃ , instead of simply posting the warrant to FBCRA, LE instead posts

an encryption W enc of the warrant W̃ under AU’s public key, the output W pub

of the transparency function and a NIZK-proof that it knows a valid signature
under J’s public key on W̃ and both W enc and W pub were computed correctly.
Additionally, instead of posting the ciphertexts ct directly, LE re-randomizes
them and also proves in zero-knowledge that the ciphertexts ĉt are indeed re-
randomizations of the ciphertexts ct listed in the warrant. This ensures that the
users under surveillance can not be identified from the ciphertexts. The request
additionally contains a public encryption key of LE under which the responses
from the committee members will be encrypted.

16 Alternatively, a suitable variant of the committee selection protocol from [8] or the
“encryption to the current winner” scheme from [15] are good candidates as well.
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Functionality FBCRA

The functionality is parameterized by an encryption scheme PKE, a signature scheme Σ, a
threshold ε, a maximum delay δPost and a set Machine which is the set of parties allowed to
use it. It has also access to a global clock GCLOCK. Upon receiving any input, FBCRA first
queries GCLOCK and sets tNow to the value returned.
Init: Let Posted be the empty set, let Ordered be the empty sequence.
Post: On input (Post,m) from pid ∈ Machine, add (pid, tNow,m) to the set Posted and

output (Post, pid,m) to the adversary.
Order: On input (Order, pid,m) from the adversary where some (pid, t,m) ∈ Posted and

no
(
pid, t′,m

)
∈ Ordered, append (pid, tNow,m) to Ordered.

Read: On input (Read) from pid ∈ Machine, leak (Read) to the adversary. For each entry
(pid, t,m) ∈ Posted for which no

(
pid, t′,m

)
∈ Ordered and t = tNow − δPost, append

(pid, tNow,m) to Ordered. Then output (Ordered) to pid.
NextCommittee: On input (NextCommittee, R, n, S) from the adversary, with |S| < εn

containing entries of the form (Mi ∈ Machine, (eki, vki)), do the following:
– For i ∈ (1, . . . , |S|):

1. Mark Mi as corrupted
2. Set m = (NextCommittee, R, eki, vki), add (roleassign, tNow,m)a to Posted and

leak m to the adversary
– For i ∈ (|S|+ 1, . . . , n):

1. Sample
(

ekRi , dkRi

)
← PKE.Gen(1λ)

2. Sample
(

vkRi , skRi

)
← Σ.Gen(1λ)

3. Sample a uniformly random MRi
∈ Machine

4. Set m =
(
NextCommittee, R, ekRi , vkRi

)
, add (roleassign, tNow,m) to Posted and

leak m to the adversary
When

(
roleassign, t′,m

)
is later added to Ordered output(

Generate, R, ekRi , dkRi , vkRi , skRi

)
to MRi

for i ∈ (|S|+ 1, . . . , n)

Forward Security: When MR becomes corrupted, output (Generate, R, ekR, dkR, vkR, skR)
to the adversary if (NextCommittee, R, ekR, vkR) /∈ Ordered.

a
roleassign is a special pid used to represent role-assignment messages

Fig. 4: Blockchain with role assignment functionality loosely based on [28]

After the responses have been posted, LE again reads the content of FBCRA,
decrypts all responses using its decryption key, and combines the partial decryp-
tions ct∗ to obtain the secret for each ciphertext ct .

Role Execute. Nodes N read the content of FBCRA at least once per round
(this is ensured by them only sending an update-message to GCLOCK after having
done so). Afterwards, they check if they were assigned a role in the current round.
If this is the case, they proceed as follows by parsing the content of the ledger:

– They gather all required encryption/verification keys for relevant previous
and the next committee

– They gather all messages with key shares of the threshold decryption key
– They gather all requests for decryption

After gathering all relevant messages, they fulfill their role as committee member
of the current round. For all messages gathered from the ledger, they validate the
signature and accompanying proofs and ignore the message if they are invalid.

They gather all resharings of the threshold decryption key that were made by
the previous committee and addressed to the current role and combine them to
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obtain their share ski of the threshold decryption key sk. To enable the committee
in the next round to fulfill their duties as well, they reshare ski again and encrypt
each reshare to a committee member from the next round. This is again done in
the same way as in [23].

For each valid decryption request, a (partial) threshold-decryption of the
ciphertext ĉt is performed using ski. The answer (including the partial decryption
ct∗ and a proof of correct decryption) is encrypted under the public key of LE
contained in the request.

All messages to be sent17 are signed using the role’s signing key. Before send-
ing any message, all state except for the prepared messages is deleted. Finally,
all messages are posted to FBCRA.

Get Statistics and Audit. Obtaining statistics is achieved by reading the con-
tent of FBCRA and gathering all W pub accompanied by valid NIZK-proofs. Simi-
larly, the audit is performed by AU reading the content of FBCRA and decrypting
all W enc accompanied by valid NIZK-proofs.

Security. In Appendix F we show that our protocol ΠAD UC-realizes FAD. In
particular, we show the following theorem.

Theorem 2. If NIZK is a straight-line simulation-extractable non-interactive
zero-knowledge proof system, Σ is an EUF-CMA secure signature scheme, the
PKE scheme used by LE and AU is an IND-CPA secure public key encryp-
tion scheme, the PKE scheme that is a parameter of FBCRA is a RIND-SO
secure public key encryption scheme, and TPKE is an IND-CPA secure, ran-
domizable and binding (t, n)-threshold PKE, then ΠAD UC-realizes FAD in the
{FBCRA,FCRS,GCLOCK}-hybrid model with respect to adversaries A that may
statically corrupt SO and/or LE as well as mobile adaptively corrupt at most a
fraction t

n − ε of nodes N.

Efficiency. Given the need for a suitable incentive for nodes to participate, it is
important to limit the amount of work roles have to do. In our protocol, the work
of roles only depends on the number of decryption requests (which correspond
to the number of users under surveillance in the combined system), but not on
the number of ciphertexts created (which corresponds to the number of regis-
tered users in the combined system). A current bottleneck is the role assignment
process and the communication required to transmit the shared secret key to
the next committee. This is an active area of research and improvements along
the lines of [20, 14, 29] are promising.

5 Application

In this section, we present our (toy) application FASTE for Auditably Sender-
Traceable Encryption. It is intentionally kept very simplistic, and chosen to
exemplify the problems one encounters with creating a system with auditable

17 These include messages to the next committee and decryption answers to LE
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surveillance based on top of FAS. The construction and techniques developed for
FASTE, in particular those used for cut-and-choose-based combination of NINCE
with zero-knowledge, are applicable for many functionalities of interest.

5.1 The Functionality FASTE

We briefly describe the capabilities, i.e., the tasks, offered by FASTE. The full
description is in Appendix C.2. Basically, FASTE offers a public key encryp-
tion scheme to its users, with the tweak that only registered users can generate
ciphertexts c (which honest users accept), and that such ciphertexts can be
deanonymized by an authority (namely LE), holding users accountable. To sim-
plify the definition, given a ciphertext c, the intended receiver learns only the
message, while law enforcement LE learns only the identity of the encryptor
(and nothing about the message). This can be easily modified, cf. Remark 2. To
prevent perpetual user surveillance, “time” is partitioned into validity periods.
Ciphertexts are bound to a period, and honest users only accepts those bound
to the current period. These periods are also the granularity of surveillance of
LE. That is, a warrant specifies which users are under surveillance during which
(past) validity periods.

Setup and Auditability. The tasks System Init, Request Warrant, Get Statis-
tics, and Audit, are inherited from and identical to FAS with minimal changes
to System Init to formally handle update periods (i.e., GCLOCK).

Register, Update, and Next Period. Similar to FAS, a user must first register
to participate in the system, except that the user cannot choose its uid any-
more (as it will become the public encryption key in the protocol). The Next
Period task allows the system operator to advance the current validity period, in
particular, validity periods are not bound to (physical) time. Honest users will
only accept ciphertexts of the current validity period. Hence, when the period
changes, users must execute the Update task (which, intuitively, deposits a new
escrow secret for the current period).

Encrypt Message and Decrypt Ciphertext. These tasks do exactly what one
expects: They encrypt a message to a (registered) user, and decrypt received
ciphertexts. Decryption ensures that the ciphertext is encrypted w.r.t. the cur-
rent validity period. Ciphertexts under past periods are not accepted, otherwise,
a warrant specifying surveillance of a certain user in a certain period would
incorrectly omit (or include) ciphertexts which do not belong to said period.

Prepare Access. Law enforcement prepares the information necessary for ac-
cess to ciphertexts c covered by warrant W . This usually means that LE acquires
the respective escrow secrets associated with W , i.e., it is almost identical to the
Get Secrets task of FAS.

Execute Access. In this task, LE can check whether a ciphertext c was gen-
erated by the user with identity uid during period vper , where LE is supposed
to have previously prepared access for a warrant which affects (uid , vper).
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5.2 The Protocol ΠASTE

To realize FASTE, we build a protocol ΠASTE (whose full description is in Ap-
pendix C.3). Firstly, we work in the {FCRS,FBB,FAS,GCLOCK}-hybrid model.
Thus, we can rely on FAS to take care of the basic requirements for adding au-
ditability, namely, key escrow with auditable access via warrants. Our second key
building block is a significantly tweaked public key encryption scheme, PKEAS.
In the protocol, the user identity uid will be set to a PKEAS public key.

The scheme PKEAS provides the promised deanonymization capabilities. This
is achieved by including a proof of consistency in the ciphertext (which requires
the sender’s uid and escrow secret usk) which demonstrates:

– One ciphertext component encrypts a message m to the receiver (with re-
ceiver public key pkR = uidR).

– Another ciphertext component encrypts the sender uid (i.e., sender’s public
key) under the sender’s escrow secret key usk (to enable deanonymization).

This is proven via the non-interactive proof capabilities provided by FAS, which
additionally ensure that the tuple (uid , usk , vper) is in LSecrets, i.e., it is a stored
user secret. At a first glance, these two properties, combined with any secure pub-
lic key encryption scheme for the receiver, seem to be enough for our purposes.
However, as mentioned in the technical overview (Section 1.2), the simulator-
commitment-problem obstructs a security proof for this direct approach.

The scheme PKEAS. To circumvent the impossibility of non-interactive non-
committing encryption (NINCE) [48], we rely on the (programmable) random
oracle model (PROM). It is trivial to construct public-key and secret-key NINCE
schemes in the PROM, and we let PKENCE and SKENCE be such schemes. Intu-
itively, we use PKENCE to encrypt the message for the receiver, and SKENCE

to encrypt the user’s identity uid under its escrow key usk for LE. We tie the
ciphertexts together with a zero-knowledge proof. Unfortunately, the random
oracle RO has no “code”, so it is impossible to prove (correct) encryption of a
message for PKENCE and SKENCE with the usual (circuit-based) zero-knowledge
proofs. Thus, we use a somewhat elaborate cut-and-choose technique, in order to
connect traditional zero-knowledge proofs for NP with PKENCE and SKENCE.18

Remark 2. For simplicity and concreteness, we only prove knowledge of the tuple
t = (m, uid , usk , vper) in PKEAS, and prove that ciphertext components encrypt
m under the receiver’s key pkR and uid under the escrow key usk (for law
enforcement access). However, it is straightforward to prove any efficient relation
over t. For example, choosing a receiver message function f and law enforcement
message function g, one can encrypt f(t) under pkR (by modifying the shares

18 We note that avoiding a cut-and-choose approach is challenging for provably secure
constructions. There are impossibilities for black-box zero-knowledge proofs, e.g., [54,
46], which we have to avoid. We do so by using a cut-and-choose approach and
additionally constructing the NINCE together with its zero-knowledge proof. (The
positive results in [46] also use this idea.)
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mi,0/1 of m to encrypt shares of f(t) and adapting the proof statements), and
similarly encrypt g(t) under usk (by analogous modifications). In this sense, the
code in Fig. 5 has f(t) = m and g(t) = uid hard-coded for concreteness.

Setup, encryption and ciphertext verification algorithms of PKEAS are given
in Fig. 5; the two latter algorithms depend on a public commitment key ck . Now,
we explain the idea behind the proofs (πcut, πcon) in PKEAS.Enc and PKEAS.Vfy
(see Fig. 5). The values m, uid , usk are first secret-shared, then used in en-
cryptions ctREi,b , ctLEi,b . Moreover, the shares of mi,b, uid i,b, usk i,b along with the
encryption randomness are also committed to in comi,b. The comi,b will be im-
portant for consistency proofs which we explain now. The extractability of πcon

(realized by FAS) allows to recover the committed values in the security proof.
Moreover, πcon ensures that the shares committed in comi,b are consistent with
unique shared values m′, uid ′, usk ′, e.g., m′ = m′i,0 + m′i,1 holds for all i. The
proof πcut is the cut-and-choose part which ensures that enough PKENCE resp.
SKENCE ciphertexts encrypt m′ under pkR resp. uid ′ under usk ′. For this, πcut

forces the encryptor to open a randomly chosen share γi ∈ {0, 1} of ctREi,b , ctREi,b
and comi,b for each i = 1, . . . , `(λ), where the challenge γ = RO(stmt , πcon) is
derived following the Fiat–Shamir paradigm. Note that if both for γi = 0 and
γi = 1 can be opened, then πcon ensures that the value reconstructed from the
shares is m′ (resp. uid ′, usk ′), unless the binding property of COM is broken.
Assuming unconditionally binding COM, the latter cannot happen. Then, by a
standard argument, if less than the majority of ciphertext shares reconstruct m′

(resp. uid ′, usk ′), the probability to succeed in πcut is about 2−`(λ)/2 = 2−λ.
Consequently, if πcon and πcut are accepting, then with overwhelming probabil-
ity, the extracted values m′i,b, which satisfy m′ = m′i,0 + m′i,1, agree with the
decrypted values mi,b which yield mi = mi,0 + mi,1 in the majority of indices
i. Thus, decrypting each ctREi.b , computing mi, and then picking the majority
value m of mi (or ⊥ if none exists) agrees with overwhelming probability with
the extracted value m′ of πcon. Unsurprisingly, PKEAS.DecRE will do just that.

Observe that PKEAS.Vfy enables public verifiability of well-formedness of ci-
phertexts. This verification allows the system operator to check ciphertext valid-
ity and remove any invalid ciphertexts, and it is also the first step of decryption
procedures PKEAS.DecRE and PKEAS.DecLE, which work as follows:

– PKEAS.DecRE decrypts all ctREi,b using skR, reconstructs messagesmi = mi,0+
mi,1, and outputs m if this is the absolute majority of mi, and ⊥ otherwise.

– PKEAS.DecLE uses the escrow secret key usk and exploits the relation usk i,1−γi =
usk − usk i,γi to derive the second secret share usk i,1−γi . With this, it trial-
decrypts the symmetric ciphertext(s) ctLEi,b to recover uid i = uid i,0 + uid i,1,
and outputs uid if this is the absolute majority of uid i and ⊥ otherwise.

The majority decisions in decryption ensure that the extracted values m′ and
uid ′ from πcon coincide with the actual results of decryption. In particular, if
PKEAS.Vfy accepts c, then c will decrypt for the receiver and LE.

Law-enforcement access. To provide access to LE, the Prepare Access task uses
the Get Secrets task of the underlying FAS-hybrid functionality. Thus, LE ob-
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PKEAS.Enc(ck , pkR,m, (skS , usk , uid , vper))

// Prepare cut-and-choose encryption for LE

for i = 1, . . . , `(λ)

mi,0 +mi,1 = m // Additive secret shares

usk i,0 + usk i,1 = usk

uid i,0 + uid i,1 = uid

for b ∈ {0, 1}
ctREi,b = PKENCE.Enc(pkR,mi,b; r

RE
i,b )

ctLEi,b = SKENCE.Enc(usk i,b, uid i,b; r
LE
i,b )

wi,b = (mi,b, usk i,b, uid i,b, r
RE
i,b , r

LE
i,b )

comi,b = COM.Com(ck , wi,b; r
com
i,b )

di,b = (wi,b, r
com
i,b )

// Consistency proof for commitments and ctxts.

stmt = (vper , pkR, (comi,b, ctREi,b , ctLEi,b )i,b)

wit = (σvper , usk , uid , (di,b)i,b)

πcon = NIZKAS.Prove((usk , uid , vper),

stmt ,wit ,RPKEAS) for relation

RPKEAS = {(stmt ,wit) |

(uid , skS) = PKENCE.Gen(1λ; skS)

comi,b = COM.Com(ck , (mi,b, usk i,b,

uid i,b, r
RE
i,b , r

LE
i,b ); rcomi,b ) for all i, b

∀i : m = mi,0 +mi,1

∀i : usk = usk i,0 + usk i,1

∀i : uid = uid i,0 + uid i,1

}
// Cut-and-choose: Query challenge γ

γ = RO(stmt , πcon) ∈ {0, 1}`

πcut = (di,γi)i

π = (πcut, πcon)

return (pkR, (comi,b, ctREi,b , ctLEi,b )i,b, π).

PKEAS.Gen(1λ)

1 : // For simplicity, sk equals the random coins.

2 : (pk, sk)← PKENCE.Gen(1λ; sk)

PKEAS.Vfy(ck , c, vper)

parse c = (pk,

((comi,b, ctREi,b , ctLEi,b )i,b),

((di,γi)i, πcon))

stmt = (vper , pkR,

(comi,b, ctREi,b , ctLEi,b )i,b)

γ = RO(stmt , πcon) ∈ {0, 1}`

if NIZKAS.Verify(stmt , πcon,RPKEAS) = 0

then return 0

// Check cut-and-choose proof

for i = 1, . . . , `(λ)

b = γi

parse di,b = (wi,b, r
com
i,b )

parse wi,b = (mi,b, usk i,b, uid i,b,

rREi,b , r
LE
i,b )

if comi,b = COM.Com(ck , wi,b; r
com
i,b )

or ctREi,b = PKENCE.Enc(pk,mi,b; r
RE
i,b )

or ctLEi,b = SKENCE.Enc(usk i,b, uid i,b; r
LE
i,b )

then return 0

return 1

Fig. 5: Encryption and ciphertext verification subroutines of PKEAS.
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tains escrow secrets usk for all tuples (uid , vper) covered by the warrant W . In
the Execute Access task, the obtained escrow secrets usk for (uid , vper) is used
with PKEAS.DecLE to trial-decrypt a ciphertext c.

5.3 On Efficiency and the Necessity of (NI)NCE

We briefly sketch the apparent necessity of non-interactive (NI) non-committing
encryption (NCE) to efficiently realize FASTE. The core problem appears in the
security proof, where the simulator must generate ciphertexts for users whose
identities are unknown to it. Once a warrant W pertains a user with uid , all
simulated ciphertexts c1, . . . , cn affected by W must correspond to that user.
Thus, the simulator can (and must) not be committed to an identity uid for
a ciphertext, unless these are affected by warrants. If the Execute Access task
is non-interactive, this is very analogous to NINCE, which is impossible with-
out (strong) setup assumptions [48].19 As suitable setups are “black-box”, e.g.,
random oracles, they are incompatible with circuit-based zero-knowledge. Al-
though expensive, cut-and-choose techniques are (to our best knowledge) the
only known approach. Unfortunately, the cut-and-choose proof leads to rela-
tively large ciphertexts. For λ = 128 bits of security, an optimistic estimate
yields at least 1.5MiB for the ciphertexts, without accounting for πcut and πcon,
see Appendix C.6 for details. These proofs allow trade-offs between size and
computational efficiency (e.g., by using SNARKs).

5.4 Comparison with [34]

Green, Kaptchuk, and Laer [34] construct (non-anonymous) messaging with au-
ditable surveillance. They face similar challenges for their protocols, and implic-
itly rely on NINCE in the PROM as well. However, their setting is considerably
simpler: The recipient learns all information contained in the ciphertext, so that
it can simply recompute the encryption to ensure a ciphertext is well-formed.
This approach avoids zero-knowledge proofs, but is quite limited. It can, for
example, not be used as an anonymous messenger, since the receiver needs the
sender’s identity to recompute the ciphertext and verify the correctness of the
message. Thus it cannot be used to realize ASTE. As an additional feature, [34]
suggests to have the system operator remove invalid ciphertexts. This is possible
for ΠASTE, since ciphertext validity is publicly verifiable.20 However, it is not
possible for [34], unless the system operator can read every message, defeating
the purpose of the protocol.

19 Using interactive decryption circumvents the impossibility without strong setups,
but is undesirable in practice.

20 We stress that, although PKEAS as defined in Fig. 5 encrypts only the user identity
and not the message to law enforcement, this can easily be changed to also give the
message to law enforcement. As noted in Remark 2, our approach allows a quite
flexible choice of leakage, not just user identity and/or message.
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While both [34] and we model system security in the UC framework, our
ideal functionalities differ in the following aspects: In our system it can be de-
cided separately for the sender identity and the content of the message whether
the recipient, law enforcement (with a warrant), or both should learn it (cf. Re-
mark 2). In [34] both parties learn both information.21 Also, [34] is limited to the
messaging application scenario, while we also specify an auditable surveillance
functionality FAS that can be used for many applications, e.g., for FASTE.

Compared to us, [34] offers greater flexibility w.r.t. warrants. While our war-
rants are fixed on user (identity, validity period) pairs, in [34] a warrant may
specify a predicate on metadata of a ciphertext and law enforcement can en-
force access when the predicate is true. We explicitly avoid this flexibility, as it
negatively affects efficiency and requires strong(er) cryptographic primitives —
our approach is practically feasible, but [34] is far from it. Recall that [34] uses
extractable witness encryption (EWE) [30] whose existence is implausible [26]
for general NP-relations. While the relation in [34] is specific, it is quite complex,
so even if such EWE existed, its practical efficiency is implausible.

5.5 Other Applications

Offering a zero-knowledge proof interface allows broad use of FAS in applications,
and our techniques to combine PROM-based encryption and zero-knowledge al-
low to overcome the problem of NINCE which naturally appears in most applica-
tions. For example, one may augment an anonymous e-cash or electronic payment
system with auditable surveillance by adding a ciphertext for law-enforcement,
which encrypts the identities of the parties of the transfer and proves that the
encrypted contents (which law enforcement can learn with the escrow secret) are
indeed correct and related to the transaction which was carried out.

6 Limitations and Future Work

In its current form, our building block and its realization are subject to certain
limitations. Realizations of the FBCRA hybrid functionality are still novel and
experimental [8, 14, 20], so the actual guarantees of such a realization may differ
from our assumptions. For PKEAS, ciphertext size is unacceptable in practice.

A realistic protocol must also cover the existence of many judges, law en-
forcement agencies, and auditors. Once the judge (and auditor) are not modeled
as trusted parties anymore, key-revocation mechanisms become absolutely nec-
essary, as otherwise a single key compromise allows a (state-level) adversary
permanent unauthorized surveillance. Although our system ensures that such
unauthorized surveillance will be noticed, it does not prevent it. See also Ap-
pendix D for a more fine-grained discussion of system limitations.

21 While the ideal functionality in [34] technically only supplies some metadata to law
enforcement (during the message sending process) and not the sender’s identity, it
becomes apparent later in the paper that the authors assume the sender’s identity
to be included in the metadata.
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Moreover, to harden security, one should distribute trust over multiple par-
ties, especially for the auditor, for example by using threshold cryptography
or secure multi-party computation. Lastly, it is an interesting question how to
achieve more flexibility w.r.t. warrants, e.g., surveillance based on metadata sim-
ilar to [34], but without resorting to implausible primitives such as EWE.
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A Building Blocks

We now review some of the used building blocks.

A.1 SKE, PKE and NINCE

In this section, we recall secret-key and public-key encryption, and define non-
interactive non-committing encryption and the security notions we require.

Definition 1 (Syntax of PKE and SKE). A public-key encryption (PKE)
scheme PKE consists of a tuple (PKE.Gen,PKE.Enc,PKE.Dec) of PPT algorithms
such that

– PKE.Gen(1λ) outputs a pair of public key pk and secret key sk.
– PKE.Enc(pk,m) takes a public key pk, a message m in the message space
M, and outputs a ciphertext c. The message space may depend on pk, and
we sometimes write Mpk to emphasize this.

– PKE.Dec(sk, c) takes a secret key sk, a ciphertext c, and outputs a message
m ∈M or ⊥.

For PKE schemes in the ROM, PKE.Enc and PKE.Dec (but not PKE.Gen)
additionally get access to (one or more) random oracle(s). A secret-key encryp-
tion (SKE) scheme SKE is defined analogous to PKE, except there is no public
key, i.e. SKE.Gen outputs only sk, and SKE.Enc takes sk as input.

Remark 3. We explicitly forbid key generation algorithms (PKE.Gen and SKE.Gen)
access to the random oracle. This will later allow use to use zero-knowledge proofs
for NP over key generation algorithms.

Definition 2 (Security notions for encryption). We make use of the usual
security notions (in the ROM) for encryption:

– indistinguishability under chosen plaintext attacks (IND-CPA) for PKE and
SKE,

– indistinguishability from randomness under chosen plaintext attacks (IND$-
CPA) for PKE and SKE,

– indistinguishability under chosen ciphertext attacks (IND-CCA) for PKE
and SKE,

– ciphertext integrity (INT-CTXT) for SKE

Definition 3 (Key-committing). Let SKE be a SKE scheme. We say SKE
is (secret-)key-committing, if it is hard to find a tuple (sk1, sk2, c) such that
sk1 6= sk2 but SKE.Dec(sk1, c) 6= ⊥ and SKE.Dec(sk2, c) 6= ⊥.

Let PKE be a perfectly correct PKE scheme. We say PKE is (public-)key-
committing, if it is hard to find a tuple ((pk1, sk1), (pk2, sk2), c) such that (pki, ski) ∈
Supp

(
PKE.Gen(1λ)

)
and pk1 6= pk2 but PKE.Dec(sk1, c) 6= ⊥ and PKE.Dec(sk2, c) 6=

⊥.
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We define a strong form of non-interactive non-committing encryption in
the PROM. Compared to more standard game-based definitions of NINCE (e.g.
[59, 9]), strong NINCE ensures that simulation and explanation of ciphertexts is
possible even for honestly generated public and secret keys. This makes strong
NINCE very easy to use.

Definition 4 (Strong NINCE). Let PKE = (PKE.Gen,PKE.Enc,PKE.Dec)
be a PKE scheme in the programmable random oracle model (PROM). Define
the strong non-interactive non-committing encryption (NINCE) experiment for
PKE with simulator (S,Expln) and adversary A as follows, where all algorithms
(except PKE.Gen) have access to all ROs.

The simulator is split into two separate algorithms, S simulates ciphertexts,
and Expln explains ciphertexts by programming the random oracle.

Exps-nince-real
PKE,S,A (1λ)

(pk, sk)← PKE.Gen(1λ)

// A gets access to encryption oracle.

stateA ← A
PKE.Enc(pk,·)(1λ, pk)

b← A(stateA, sk)

return b

Exps-nince-ideal
PKE,S,A (1λ)

(pk, sk)← PKE.Gen(1λ)

// A gets access to simulation oracle.

stateA ← A
S(1λ,pk,|·|)(pk)

// Let m1, . . . ,mn be the queries of A.

// Let stateS be the state of S

Expln(stateS , sk,m1, . . . ,mn) // Program RO

b← A(stateA, sk)

return b

The advantage Advs-nince
PKE,S,Expln,A(λ) is defined as∣∣∣Pr

[
Exps-nince-real

PKE,S,A (λ) = 1
]
− Pr

[
Exps-nince-ideal

PKE,S,A (λ) = 1
]∣∣∣.

We say PKE is a strongly secure NINCE scheme (in the ROM), if there exist
PPT algorithms S,Expln such that every PPT adversary has negligible advantage.

We define strong NINCE for SKE schemes analogously, except that pk is not
given to A and S.

A.2 Instantiations of NINCE

We construct a public-key NINCE scheme PKENCE with message space {0, 1}poly(λ)

from any secure PKE scheme with superpolynomial and uniformly sampleable
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message space M, randomness space R, and three independent random oracles
ROI : {0, 1}∗ → {0, 1}λ, ROM : M → {0, 1}poly(λ), and ROR : M → R. Recall
that any number of random oracles can be obtained from a single random oracle
RO : {0, 1}∗ → {0, 1}λ by domain separation, e.g. by using ROI(x) = RO(0, x),
ROM (x) = RO(1, x), ROR(x) = RO(2, x).22 Moreover, we make the simplifying
assumption, that the secret key sk contains the public key pk, and thus decryp-
tion can use pk. Any PKE scheme is trivially modified to satisfy this property
without affecting its security.

PKENCE.Gen(1λ)

(pk, sk)← PKE.Gen(1λ)

PKENCE.Enc(pk,m)

esk ←M // ephemeral secret

c1 = PKE.Enc(pk, esk ;ROR(esk))

c2 = ROM (esk)⊕m
t = ROI(pk, esk , c1, c2,m)

return (c1, c2, t)

PKENCE.Dec(sk, c)

parse (c1, c2, t) = c

esk ← PKE.Dec(sk, c1;ROR(esk))

m = ROM (esk)⊕ c2
t′ = ROI(pk, esk , c1, c2,m)

if t = t′ return m

else return ⊥

PKENCE.Sim(pk)

esk ←M
c1 = PKE.Enc(pk, esk ;ROR(esk))

c2
r← {0, 1}poly(λ)

t← {0, 1}λ

return (c1, c2, t)

PKENCE.Expln(sk, c,m)

parse (c1, c2, t) = c

esk ← PKE.Dec(sk, c1) // 6= ⊥

program ROM (esk) := c2 ⊕m
program ROI(pk, esk , c1, c2,m) := t

The construction of PKENCE above is essentially a variant of the Fujisaki–Okamoto
transformation [25, 37] to achieve CCA secure key-encapsulation, plus stretching
the key through ROM and using it as a one-time pad and using a tag t to ensure
integrity of the message. Moreover, the tag t is also serves as a key-commitment.
By programming the one-time pad, any message can be “explained” later, en-
suring the strong NINCE-security of the scheme.

Lemma 1. Let PKE be an IND-CPA-secure and perfectly correct PKE scheme.
Then the NINCE scheme PKENCE = (PKENCE.Gen,PKENCE.Enc,PKENCE.Dec,
PKENCE.Sim,PKENCE.Expln) defined in Appendix A.2 is IND-CCA-secure, strong
NINCE-secure, and perfectly correct.

The proof is standard.

22 Additional transformations are necessary if R,M 6= {0, 1}λ or poly(λ) 6= λ. We omit
these standard details.
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Proof (Proof sketch). Perfect correctness is evident. Strong NINCE can be ar-
gued as follows: For a ciphertext with ephemeral key esk in c1, either the
adversary never queries ROM and ROI with esk , in which case programming
in PKENCE.Expln works, or it was queried before. Since sk is only available to
PKENCE.Expln, but not PKENCE.Sim, it is straightforward to obtain an IND-CPA
adversary from a NINCE-adversary by testing whether a queried esk ′ for ROM
and ROI decrypt the IND-CPA challenge message correctly. Thus, the proba-
bility that esk from (any) simulated ciphertext was previously queried by the
adversary is negligible, since PKE is IND-CPA-secure.

IND-CCA-security follows from standard arguments, as PKENCE is only a
variant of the Fujisaki–Okamoto transformation [25, 37].

Key-committment of PKENCE follows immediately from the tag t in the ci-
phertext, because it is a hash over pk. Thus, a ciphertext which decrypts to
m 6= ⊥ for two keys induces a tag-collision. However, random oracles are colli-
sion resistant, thus this happens with negligible probability.

For a secret-key NINCE construction, we basically replace the public key by a
secret key and the ephemeral key by a nonce, which yields a standard PRF-based
authenticated encryption scheme. The message space is again {0, 1}poly(λ).

SKENCE.Gen(1λ)

sk← {0, 1}λ

SKENCE.Enc(sk,m)

N ← {0, 1}2λ // Nonce

c′ = ROM (sk, N)⊕m
t = ROI(sk, N, c

′,m)

return (N, c′, t)

SKENCE.Dec(sk, c)

parse (N, c′, t) = c

m = ROM (sk, N)⊕ c′

t′ = ROI(sk, N, c
′,m)

if t = t′ return m

else return ⊥

SKENCE.Sim()

N ← {0, 1}2λ

c′
r← {0, 1}poly(λ)

t← {0, 1}λ

return (N, c′, t)

SKENCE.Expln(sk, c,m)

parse (N, c′, t) = c

program ROM (esk) := c′ ⊕m
program ROI(sk, N, c

′,m) := t

Lemma 2. The NINCE scheme SKENCE = (SKENCE.Gen,SKENCE.Enc,SKENCE.Dec,
SKENCE.Sim,SKENCE.Expln) defined above is IND-CCA-secure, strong NINCE-
secure, and perfectly correct. Moreover, SKENCE is key-committing.

Proof (Proof sketch). By standard arguments, SKENCE is actually a authenti-
cated encryption scheme, so in particular IND-CCA secure. Similar to PKENCE,
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it’s not hard to see that simulation works. Indeed, since the security of the
scheme is information-theoretic (as it relies solely on random oracles), this is
even simpler to prove.

Key-committment of SKENCE follows immediately from the tag t in the ci-
phertext, because it is a hash over sk. Thus, a ciphertext which decrypts to
m 6= ⊥ for two keys induces a tag-collision. However, random oracles are colli-
sion resistant, thus this happens with negligible probability.

A.3 Threshold PKE

Definition 5 (Syntax of Threshold PKE). A (t, n)-threshold PKE (TPKE)
scheme TPKE consists of a tuple (TPKE.Gen,TPKE.Enc,TPKE.Dec,TPKE.TDec,
TPKE.ShareVer,TPKE.Combine,TPKE.Sk2Pk) of PPT algorithms such that

– TPKE.Gen(1λ) outputs a public key pk, secret key sk and sets {vki}i∈[n] of

verification keys and {ski}i∈[n] of secret key shares.

– TPKE.Enc(pk,m) takes a public key pk, a message m in the message space
M, and outputs a ciphertext ct.

– TPKE.Dec(sk, ct) takes a secret key sk, a ciphertext ct and outputs a message
m ∈M.

– TPKE.TDec(ski, ct) takes a secret key share ski, a ciphertext ct, and outputs
a decryption share ct i.

– TPKE.ShareVer(ct , vki, ct i) takes a ciphertext ct, a verification key vki and
a decryption share ct i, and outputs either 1 or 0. If the output is 1, ct i is
called a valid decryption share.

– TPKE.Combine(ct , T ) takes a ciphertext ct and a set of valid decryption
shares T such that |T | = t+ 1, and outputs a message m ∈M.

– TPKE.Sk2Pk(sk) takes a secret key sk (or a secret key share ski) as input and
outputs the corresponding public key pk (or the corresponding verification key
vki)

We require correctness, i.e. the following two conditions to hold for all (pk, {vki}i∈[n], {ski}i∈[n])←
TPKE.Gen(1λ):

1. ∀m ∈ M, ct ← TPKE.Enc(pk,m), i ∈ [n] it holds that TPKE.ShareVer(ct ,
vki,TPKE.TDec(ski, ct)) = 1.

2. ∀m ∈ M, ct ← TPKE.Enc(pk,m) and any set T := (ct1, . . . , ct t+1) of valid
decryption shares ct i ← TPKE.TDec(ski, ct) for t + 1 distinct secret key
shares ski: TPKE.Combine(ct , T ) = m = TPKE.Dec(sk, ct)

In particular, in the ideal world we make use of TPKE.Dec as a shorthand for
TPKE.TDec plus TPKE.Combine.

A TPKE scheme is called simulatable if addinionaly an efficient simulation
algorithm TPKE.SimTDec(pk, ct ,m, {ctk}k∈B:|B|≤t) exists that takes a public key,
ciphertext, target message and up to t decryption shares of corrupted parties as
input and outputs decryption shares {ct i}i∈[n]\B for the honest parties that cause
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TPKE.Combine to output the desired message m and for which TPKE.ShareVer
outputs 1.

A TPKE scheme is called re-randomizable if it also has a PPT algorithm
TPKE.Rand such that ∀(pk, {vki}i∈[n], {ski}i∈[n])← TPKE.Gen(1λ):

– TPKE.Rand(ct) takes a ciphertext ct, and outputs a new ciphertext ct ′.

– ∀m ∈M : TPKE.Rand(TPKE.Enc(pk,m)) ≈ TPKE.Enc(pk,m)

A TPKE scheme is called binding if it holds that ∀PPTA : Pr[(sk, sk′, ct)←
A(1λ) : TPKE.Sk2Pk(sk) = TPKE.Sk2Pk(sk′)∧TPKE.Dec(sk, ct) 6= TPKE.Dec(sk′, ct)] 6=
negl(λ)

IND-CPA security for a TPKE scheme is defined as usual, except that the
adversary can choose up to t key shares to receive.

A.4 Selective Opening Security

We recall receiver selective opening security from Hazay et al. [36].

Definition 6 (RIND-SO Security). A PKE scheme PKE is called RIND-SO
secure if for all PPT adversaries A and all efficiently resamplable distributions
D we have that

AdvRIND−SO
PKE (A, λ) :=

∣∣∣∣PrExpRIND−SO
PKE (A, λ)− 1

2

∣∣∣∣ ≤ negl(λ)

ExpRIND−SO
PKE (A, λ)

1 : b← {0, 1}

2 : (pk, sk) := (pki, ski)(PKE.Gen(1λ))i∈[n]

3 : m := (mi)i∈[n] ← D
4 : c := (ci)i∈[n] ← (PKE.Enc(pk,mi))i∈[n]

5 : state ← AC(·)(c)
6 : m′ ← ResampleD(mI)

7 : m∗ = m if b = 0, else m∗ = m′

8 : b′ ← A(m∗, state)

9 : return b = b′

Corruption Oracle C(i)

1 : if i /∈ [n]return ⊥
2 : I := I ∪ {i}
3 : return ski

Fig. 6: Experiment for receiver selective opening security.
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A.5 Digital Signature Scheme

We use a correct and EUF-CMA-secure signature scheme Σ.

Definition 7 (Syntax of Digital Signatures). A digital signature scheme
Σ = (Σ.Gen, Σ.Sign, Σ.Vfy) consists of the following algorithms:

– Σ.Gen(1λ) is a PPT algorithm, which takes 1λ as input and outputs a keypair
(vk, sk).

– Σ.Sign(sk,m) is a PPT algorithm, which takes the signing key sk and a
message m as input and outputs a signature σ.

– Σ.Vfy(vk,m, σ) is a deterministic polynomial-time algorithm, which takes as
input a verification key vk, a message m and a signature σ. It returns either
0 or 1.
(Intuitively, returning 1 means that σ is valid signature for message m under
verification key vk. Returning 0 means it is invalid.)

Σ is correct if for all λ, (vk, sk)← Σ.Gen(1λ), m ∈M, and σ ← Σ.Sign(sk,m)
it holds that

1 = Σ.Vfy(vk,m, σ).

A.6 Commitment Scheme

We use a correct, (computationally) hiding, (statistically) binding, extractable
and equivocable commitment scheme COM.

Definition 8 (Syntax Commitment Scheme). A (non-interactive) com-
mitment scheme COM := (COM.Setup,COM.Com,COM.Open) consists of the
following three algorithms:

– COM.Setup is a PPT algorithm, which takes 1λ as input and outputs public
parameters crscom.

– COM.Com is a PPT algorithm, which takes as input parameters crscom and
a message m ∈M and outputs a commitment comm to m and some decom-
mitment value decomm.

– COM.Open is a deterministic polynomial-time algorithm, which takes as in-
put parameters crscom, a commitment comm, a decommitment value decomm

and a message m. It returns either 0 or 1.

COM is correct if for all λ, crscom ← COM.Setup(1λ), m ∈ M, and (comm,
decomm)← COM.Com(crscom,m) it holds that

1 = COM.Open(crscom, comm, decomm,m).

An extractable commitment scheme has the following additional algorithms:

– (crsextcom, td
ext
com)← COM.SetupExt(1λ)

– m← COM.Extract(tdext
com, comm)

An equivocable commitment scheme has the following additional algorithms:
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– (crseqcom, td
eq
com)← COM.SetupEquiv(1λ)

– (c̃om, eq)← COM.SimCom(tdeq
com)

– decomm ← COM.Equiv(tdeq
com,m, eq)

Definition 9 (Equivocal Commitment scheme). A commitment scheme
is equivocal if there exist PPT algorithms COM.SetupEquiv, COM.SimCom and
COM.Equiv such that for all PPT adversaries A we have that the advantage
defined by ∣∣∣∣ Pr

[
1← A(crscom)

∣∣ crscom ← COM.Setup(1λ)
]

−Pr
[

1← A(crseqcom)
∣∣ (crseqcom, tdeq

com)← COM.SetupEquiv(1λ)
]
∣∣∣∣

is negligible in λ and we have that the advantage defined by∣∣∣∣∣∣∣∣∣∣
Pr

1← A (crseqcom, td
eq
com,

m, c, d)

∣∣∣∣∣∣
(crseqcom, td

eq
com)← COM.SetupEquiv(1λ),

m←M,
(comm, decomm)← COM.Com(crseqcom,m)



−Pr

1← A (crseqcom, td
eq
com,

m, c̃om, decomm)

∣∣∣∣∣∣∣∣
(crseqcom, td

eq
com)← COM.SetupEquiv(1λ),

(c̃om, eq)← COM.SimCom(tdeq
com),

m←M,
decomm ← COM.Equiv(tdeq

com,m, eq)



∣∣∣∣∣∣∣∣∣∣
is zero.

Definition 10 (Extractable Commitment Scheme). A commitment scheme
is extractable if there exist PPT algorithms COM.SetupExt and COM.Extract
such that for all PPT adversaries A we have that the advantage defined by∣∣∣∣ Pr

[
1← A(crscom)

∣∣ crscom ← COM.Setup(1λ)
]

−Pr
[

1← A(crsextcom)
∣∣ (crsextcom, td

ext
com)← COM.SetupExt(1λ)

]
∣∣∣∣

is negligible in λ and we have that the advantage defined by

Pr

COM.Extract(tdext
com, comm)

6=
m

∣∣∣∣∣∣∣∣
(crsextcom, td

ext
com)← COM.SetupExt(1λ),
c← A(crsextcom),
∃!m ∈ M, r :

c← COM.Com(crsextcom,m; r)


is zero.

A.7 Zero-Knowledge Proof System

We define non-interactive zero-knowledge proofs of knowledge (NIZKPoK) in the
common reference string (CRS) model. Our target security will be straight-line
simulation-extractability.

Definition 11. A non-interactive proof system NIZK for NP-relation R is a
tuple (NIZK.Setup,NIZK.Prove,NIZK.Verify) of PPT algorithms, where

– NIZK.Setup(1λ) outputs (crs, td), where crs is the CRS and td is a trapdoor.
– NIZK.Prove(crs, stmt ,wit) generates a proof π given (stmt ,wit) ∈ R.
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– NIZK.Verify(crs, stmt , π) verifies a proof π for statement stmt and outputs 0
or 1.

It is a NIZKPoK if additionally there are algorithms NIZK.Sim and NIZK.Ext
with

– NIZK.Sim(td , stmt) outputs a proof π.
– NIZK.Ext(td , stmt , π) outputs a witness wit with (stmt ,wit) ∈ R or ⊥.

Note that we sometimes explicitly add the relation R as input to the algorithms
to make it clear for which relation the NIZPoK is.

Definition 12. Let NIZK be a NIZKPoK for NP-relation R. We define the
straight-line simulation-extractability game as follows: Let A be an adversary.

1. Setup (crs, td)← NIZK.Setup(1λ).
2. Run A(1λ, crs), where A is given oracle access to oracle (stmt , π) 7→ NIZK.Ext(td ,

stmt , π) and either
– (stmt ,wit) 7→ NIZK.Prove(crs, stmt ,wit), or
– (stmt ,wit) 7→ NIZK.Sim(td , stmt),

with the choice made uniformly at random. Let LExt be the list of queries
with outputs (stmt , π,wit) to NIZK.Ext, and LProve be the list of queries with
outputs (stmt ,wit , π) to NIZK.Prove or NIZK.Sim.

3. Eventually, A outputs a guess b, where b = 0 (resp. b = 1) indicates that it
interacted with NIZK.Prove (reps. NIZK.Sim).

4. A wins the game if:
– A never queried (stmt , π) if π was previously returned from a query to

NIZK.Prove (or NIZK.Sim) with statement stmt. (I.e., A may not triv-
ially distinguish simulated proofs from real proofs.)

– For any (stmt ,wit , π) ∈ QExt, we have wit = ⊥, but NIZK.Verify(crs,
stmt , π) = 1. (I.e., extraction failed for an accepting proof.)

– A guessed b correctly.

We say that NIZK is straight-line simulation-extractable, if for any PPT
adversary, the probability that it wins the straight-line simulation-extractability
game is negligible.

Note that weaker notions of simulation-extractability exist, which are not
straight-line. But there are simple and efficient transformations to ensure straight-
line extractability (e.g., by adding an encryption of the witness under a public
key of a PKE which is put into the crs (and proving consistency as part of the
relation)).

A.8 Introduction to the UC Framework

The Universal Composability (UC) framework [17, 16] is a model to analyze cryp-
tographic protocols which offers strong security guarantees. Security is proven
by showing that two different worlds are indistinguishable from one another.
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In the ideal world an incorruptible entity – the ideal functionality F – exists.
Every party just sends their private input to the functionality, the functionality
honestly computes the output based on the inputs from the parties and sends
the output back to all the parties.

In the real world, no such functionality exists. Instead, the (mutually distrust-
ful) parties themselves execute a protocol Π that computes the same function.

Informally said, the protocol Π is as secure as the ideal functionality F if
no PPT-machine (called the environment Z) can distinguish between the two
worlds. One then says that Π UC-realizes F .

B Full System Model

In the following, we provide our full system model, apart from the auditable
surveillance functionality FAS which was already presented in Section 3. We
start with some preliminary remarks in Appendix B.1. Then we present the
protocol ΠAS that realizes FAS in Appendix B.2. We continue by presenting the
auditable decryption functionality FAD in Appendix B.3 and the protocol ΠAD

realizing it in Appendix B.4.

B.1 Preliminary UC Remarks

We use several functionalities as hybrid functionalities in our system. In
particular, we use a global clock functionality (see Fig. 7) to model time, a
random oracle functionality (see Fig. 8), a CRS functionality (see Fig. 9) and a
bulletin board functionality (see Fig. 10).

We also use the following conventions when describing the functionalities
FAS, FAD and FASTE:

– As usual, we assume authenticated channels between all parties.
– We omit (sub)session identifiers, written sid (resp. ssid), which are used to

identify separate protocol instances (resp. separate instances of tasks in a
protocol instance). Adding sids and ssids is straightforward.

– When we write “Input P: (. . .)” for P ∈ {SO, AU, J, LE}, the functionality
first checks that the party calling the functionality has indeed that role.23 If
that is not the case, the functionality ignores the message.

– The first task that has to be called is the Init task. If any parties send any
other messages to each functionality before the Init task has been completed,
those messages are ignored.

– We use delayed output to some party P as a short-hand notation for the
following protocol: Send (Output,TaskName,P) to the adversary and wait
for message (Allow,TaskName,P) from the adversary. Then send (value)
to P.

23 The functionality can do that because it knows the party identifiers (pids) of all
parties in the system
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Global Functionality GCLOCK

The functionality manages the set P of registered identities, i.e., parties P =
(pid , sid). It also manages the set F of functionalities (together with their session
identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid . For each identity P :=
(pid , sid) ∈ P it manages a variable dP . For each pair (F , sid) ∈ F it manages a
variable dF,sid (all integer variables are initially 0).
Synchronization:
– Upon receiving (Clock-Update, sidC) from some party P ∈ P set dP := 1;

execute Round-Update and forward (Clock-Update, sidC , P ) to A
– Upon receiving (Clock-Update, sidC) from some functionality F in a session

sid such that (F , sid) ∈ F set dF,sid := 1, execute Round-Update and return
(Clock-Update, sidC ,F) to this instance of F .

– Upon receiving (Clock-Read, sidC) from any participant (including the en-
vironment on behalf of a party, the adversary, or any ideal—shared or local—
functionality) return (Clock-Read, sidC , τsid) to the requestor (where sid is
the session id of the calling instance).

Party Management:
– Upon receiving (Register, sidC) from some party Pi (or from A on behalf of

a corrupted Pi), set P = P ∪ {Pi}. Return (Register, sidC , Pi) to the caller.
– Upon receiving (De-Register, sidC) from some party Pi ∈ P, the functionality

updates P := P \ {Pi} and returns (De-Register, sidC , Pi) to Pi.
– Upon receiving (Is-Registered, sidC) from some party Pi, return

(Register, sidC , b) to the caller, where the bit b is 1 if and only if
Pi ∈ P.

– Upon receiving (Get-Registered, sidC) from A, the functionality returns the
response (Get-Registered, sidC ,P) to A.

– Upon receiving (Register, sidC) from a functionality F (with session-id sid),
update F := F ∪ {(F , sid)}.

– Upon receiving (De-Register, sidC) from a functionality F (with session-id
sid), update F := F \ {(F , sid)}.

– Upon receiving (Get-Registered-F, sidC) from A, return
(Get-Registered-F, sidC , F ) to A

Procedure Round-Update: For each session sid do: If dF,sid = 1 for all F ∈ F
and dP = 1 for all honest parties P = (·, sid) ∈ P, then set τsid := τsid + 1 and
reset dF,sid := 0 and dP := 0 for all parties P = (·, sid) ∈ P.

Fig. 7: The global clock functionality from [5]
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Functionality FRO

The functionality models a random oracle RO : X → Y. Initially LRO = ∅.
Hash: Upon receiving (Hash,m) from party P : If m 6∈ X abort. If ∃(m,h′) ∈

LRO, let h = h′; else pick uniformly at random h
r← Y, store (m,h) in LRO. Send

(HashConfirm,m, h) to P .

Fig. 8: Random oracle functionality from [12]

Functionality FCRS

FCRS proceeds as follows, when parameterized by a distribution D.
1. When activated for the first time on input (value, sid), choose d ← D and

send d back to the activating party. In each other activation return the valued
d to the activating party.

Fig. 9: The Common Reference String functionality from [19]

Functionality FBB

The functionality models a bulletin-board. Any party can register a single (uid , v)
pair associated with its identity, where the uids need to be unique. Any party can
retrieve registered values. Initially LBB = ∅.
Register: Upon receiving (Register, uid , v) from party P , send

(Register, uid , v) to the adversary. Upon receiving (Ok) from the ad-
versary, if there is no record (P, ·, ·) ∈ LBB and no record (·, uid , ·) ∈ LBB record
the pair (P, uid , v). Otherwise, do nothing.

Retrieve by Identity: Upon receiving (Retrieve, Pi) from party Pj (includ-
ing the adversary), generate public delayed output (Retrieve, Pi, uid , v) to Pj
where (uid , v) is such that (Pi, uid , v) ∈ LBB or (⊥,⊥) if no entry is recorded
in LBB.

Retrieve by UID: Upon receiving (Retrieve, uid) from party Pj (including
the adversary), generate public delayed output (Retrieve, Pi, uid , v) to Pj
where (Pi, v) is such that (Pi, uid , v) ∈ LBB or (⊥,⊥) if no entry is recorded in
LBB.

Fig. 10: Bulletin Board functionality, adapted from [40]

48



– When we write “Output P: (value)”, this is a shorthand for “generate de-
layed output (value) to party P”.

– If, in contrast, we write “immediately output (value) to P”, the message is
directly sent to party P without notifying the adversary.

– We use notion of “urgent request”/“immediate response” from [13], as well
as responsive environments, to model that the adversary can not make any
other calls to functionalities or hybrid functionalities before sending a re-
sponse to the current request. By UC-realization, we mean realization w.r.t.
to responsive environments.

– The notation “Send (value) to the adversary” is also a shorthand for “Send
(value) to the adversary and wait for message (Ok) from the adversary
before continuing”

B.2 The Protocol ΠAS

Details of the relation RASss

wit := (secret , sec2 , decomsec, decomsec2 , r)
stmt := (sec1 , comsec, comsec2 , pk, ct , crscom)

RASss = {(stmt ,wit) |

– secret = sec1 ⊕ sec2
– COM.Open(crscom, comsec, decomsec, secret) = 1
– COM.Open(crscom, comsec2 , decomsec2 , sec2 ) = 1
– ct = TPKE.Enc(pk, sec2 ; r)

}

Fig. 11: ZK-Relation RASss

In ΠAS, we use the following NP relations for zero-knowledge proofs:

– Relation RASss (see Fig. 11) is used in Store Secret by a user to prove to the
system operator that they honestly encrypted the partial secret sec2

– Relation RASzk (see Fig. 12) is the NP relation used in the Prove and Verify
tasks to prove some statement about a user’s identity, secret and the current
period

We now give the complete description of the protocol ΠAS that UC-realizes the
auditable surveillance functionality FAS.
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Details of the relation RASzk

wit := (uid , secret ,wit ′, σss, comuid, decomuid, comsec,
decomsec, comvper, decomvper)

stmt := (vper , stmt ′, vkSO, crscom)

RASzk = {(stmt ,wit) |

– Σ.Vfy(vkSO, (comuid, comsec, comvper), σss) = 1
– COM.Open(crscom, comuid, decomuid, uid) = 1
– COM.Open(crscom, comsec, decomsec, secret) = 1
– COM.Open(crscom, comvper, decomvper, vper) = 1
– witR = (uid , secret ,wit ′)
– stmtR = (vper , stmt ′)
– R(stmtR,witR) = 1

}

Fig. 12: ZK-Relation RASzk

ΠAS

System Parameters:
– ft — Transparency function. Gets a preliminary warrant W as input and

outputs what should be publicly known about that warrant. Interface is
W pub ← ft(W ).

– fp — Policy Function. Checks whether a given warrant is allowed by
system policy. Interface is {0, 1} ← fp(W ).

– n — Number of committee members
– S — Space from which the secrets are drawn
– Signature scheme Σ = (Σ.Gen, Σ.Sign, Σ.Vfy), where all algorithms are

PPT and Σ.Vfy is deterministic.
– Commitment scheme COM = (COM.Setup,COM.Com,COM.Open), where

all algorithms are PPT and COM.Open is deterministic.
– Threshold Public Key Encryption scheme TPKE = (TPKE.Gen,TPKE.Enc,

TPKE.Dec,TPKE.TDec,TPKE.ShareVer,TPKE.Combine,TPKE.Rand,TPKE.Sk2Pk),
where all are PPT and TPKE.Dec, TPKE.TDec, TPKE.ShareVer, TPKE.Combine
and TPKE.Sk2Pk are deterministic.

– Public Key Encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec),
where all are PPT and PKE.Dec is deterministic.

– Non-interactive Zero-Knowledge scheme NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify), where all are PPT and NIZK.Verify is deterministic.

– R — an NP relation. (The code threats R as a binary function.)
– Relations RASss (see Fig. 11), and RASzk (see Fig. 12)
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– System pids: pidSO, pidJ, pidAU

States of the Parties:
– Each user stores:
• CRS: crs = (crsAS

zk , crscom)
• SO public key vkSO (to verify signatures from SO)
• Public threshold encryption key pk
• Own signing keypair: (vkU, skU)
• Registration data: (uid , comuid, decomuid, σreg)
• List of own secrets. Entries are of the form (secret , comsec, decomsec,

vper , comvper, decomvper, σss)
– LE stores:
• List of warrants. Entries are of the form (W , b, W̃ , σ

W̃
)

• List of ciphertexts requested for decryption. Entries are of the form
(uid i, vper i, ct i, sec1 ,i)

– J stores:
• Signature keypair (vkJ, skJ) (to sign warrants)
• CRS crscom

• List of already processed preliminary warrants. Entries are of the form
(W , b)

• List of already processed enhanced warrants. Entries are of the form
(W̃ , σ

W̃
)

– SO stores:
• CRS: crs = (crsAS

zk , crscom)
• Public verification key of the judge: vkJ

• Public threshold encryption key pk
• Signature keypair (vkSO, skSO). Messages are either of the form comuid

or of the form (comuid, comsec, comvper)
• List of registered users. Entries are of the form (uid , comuid, decomuid,
σreg, vkU)

• List of stored partial secrets. Entries are of the form (uid , vper , ct , σU,
sec1 , comsec1 , decomsec1 , σsec1 )

System Setup (FCRS):
– crsAS

zk ← NIZK.Setup(1λ)
– crscom ← COM.Setup(1λ)¸
– Return

(
crsAS

zk , crscom

)
System Init:
– Input SO: (Init,SO)
– Input J: (Init,J)
– Input AU: (Init,AU)
– Note:
• If this is the first time, this task is invoked, do whatever is stated in

“Behavior”.
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• If this is not the first time this task is invoked, ignore the messages.
• Ignore all other messages until this task has been invoked.
• If the parties invoking the task do not have te pids (pidSO, pidJ,

pidAU), ignore the messages.
– Behavior:

1. SO: Create signing keypair (vkSO, skSO)← Σ.Gen(1λ) and store it
2. J: Create signing keypair (vkJ, skJ)← Σ.Gen(1λ) and store it
3. Initialize FAD:

SO → FAD: (Init,SO, vkSO)
FAD → SO: (InitFinished)
J → FAD: (Init,J, vkJ)
FAD → J: (InitFinished)
AU → FAD: (Init,AU)
FAD → AU: (InitFinished)

4. SO: Get CRS and keys
SO → FCRS: (value)
FCRS → SO:

(
crsAS

zk , crscom

)
SO → FAD: (GetPK)
FAD → SO: (GotPK, pk)
SO → FAD: (GetSKeys)
FAD → SO: (GotSKeys, vkSO, vkJ)

5. SO: Store crs = (crsAS
zk , crscom), pk and vkJ

6. J: Get CRS
J → FCRS: (value)
FCRS → J:

(
crsAS

zk , crscom

)
7. J: Store crs = (crscom)

– Output SO: (InitFinished)
– Output J: (InitFinished)
– Output AU: (InitFinished)

Party Init:
– Input some Party P: (PInit)
– Behavior P:

1. Get CRS and keys
P → FCRS: (value)
FCRS → P:

(
crsAS

zk , crscom

)
P → FAD: (GetSKeys)
FAD → P: (GotSKeys, vkSO, vkJ)
P → FAD: (GetPK)
FAD → P: (GotPK, pk)

2. Store crs = (crsAS
zk , crscom) and (pk, vkJ, vkSO)

– Output to P: (PInitFinished)

User Registration:
– Input U: (Register, uid)

52



– Input SO:
(
Register, uid ′

)
– Behavior:

1. U: If no keypair is stored yet, generate keypair (vkU, skU)← Σ.Gen(1λ)
and store it

2. U: Send (uid) to SO
3. SO: If uid 6= uid ′, abort (wrong inputs)
4. SO: If there is already an entry (uid , ·, ·, ·) in the list of registered users,

abort (User already successfully registered.)
5. SO: Send (uid ok) to U
6. U → FBB: (Register, uid , vkU)
7. U: Check if registration was successful:

U → FBB: (Retrieve, uid)
FBB → U: (Retrieve, pidU

∗, uid , vk∗U)
8. U: If pidU

∗ 6= pidU or vk∗U 6= vkU, abort (UID already taken by some-
one else)

9. U: Send (Ok) to SO
10. SO → FBB: (Retrieve, uid)
FBB → SO: (Retrieve, pidU

∗, uid , vk∗U)
11. SO: If pidU

∗ 6= pidU, abort (UID already taken by another user)
12. SO: Set vkU := vk∗U.
13. SO: Commit-and-Sign uid :

(comuid, decomuid) = COM.Com(crscom, uid) and σreg = Σ.Sign(skSO,
comuid)

14. SO: Send (σreg, comuid, decomuid) to U
15. U: Get public key of SO:

U → FAD: (GetSKeys)
FAD → U: (GotSKeys, vkSO, vkJ)

16. U: Store vkSO

17. U: Get CRS:
U → FCRS: (value)
FCRS → U:

(
crsAS

zk , crscom

)
18. U: Store crs = (crsAS

zk , crscom)
19. U: Get public key of TPKE

U → FAD: (GetPK)
FAD → U: (GotPK, pk)

20. U: Store pk
21. U: Verify commitment and signature: If COM.Open(crscom, comuid,

decomuid, uid) = 0 or Σ.Vfy(vkSO, σreg, comuid) = 0, abort.
22. U: Store (uid , comuid, decomuid, σreg)
23. SO: Store (uid , comuid, decomuid, σreg, vkU)

– Output U: (Registered)
– Output SO: (Registered)

Store Secret:
– Input U: (StoreSecret, uid , vper)
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– Input SO: (StoreSecret, vper ′)
– Behavior:

1. U: Draw part of secret : sec2
r← S

2. U: Commit on sec2 : (comsec2 , decomsec2 )← COM.Com(crscom, sec2 )
3. U: Commit on vper : (comvper, decomvper)← COM.Com(crscom, vper)
4. U: Send (uid , σreg, comuid, decomuid, comsec2 , comvper, decomvper) to SO
5. SO: Verify comvper: If COM.Open(crscom, comvper, decomvper, vper ′) =

0, abort.
6. SO: If (uid , comuid, decomuid, σreg, ·) is not in the list of registered

Users, abort.
7. SO: If there already exists an entry (uid , vper , ·, ·) in the list of stored

secrets, abort (user already registered a secret for the current validity
period).

8. SO: Draw part of secret : sec1
r← S

9. SO: Send (sec1 ) to U
10. U: Compute secret as secret := sec1 ⊕ sec2 (⊕ can be XOR or +, but

it must hold that secret ∈ S).
11. U: Commit on secret : (comsec, decomsec)← COM.Com(crscom, secret)
12. U: Commit and sign sec1 : (comsec1 , decomsec1 ) ← COM.Com(crscom,

sec1 ) and σsec1 ← Σ.Sign(skU, comsec1 )
13. U: Encrypt secret: ct ← TPKE.Enc(pk, sec2 ; r) for fresh randomness r
14. U: Sign ciphertext: σU ← Σ.Sign(skU, (ct , uid , vper))
15. U: Assemble ZK-Witness witss := (secret , sec2 , decomsec, decomsec2 , r)
16. U: Assemble ZK-Statement: stmtss := (sec1 , comsec, comsec2 , pk, ct ,

crscom)
17. U: Compute Proof: πss ← NIZK.Prove(crsAS

zk , stmtss,witss,RASss )
18. U: Send (ct , comsec, πss, σU, σsec1 , comsec1 , decomsec1 ) to SO
19. SO: Assemble ZK-Statement: stmtss := (sec1 , comsec, comsec2 , pk, ct ,

crscom)
20. SO: Verify Proof: If NIZK.Verify(crsAS

zk , stmtss, πss,RASss ) = 0, abort.
21. SO: For uid , retrieve entry (uid , ·, ·, ·, vkU) from list of registered users.
22. SO: Verify Commitment: If COM.Open(crscom, comsec1 , decomsec1 , sec1 ) =

0, abort.
23. SO: Verify Signatures: IfΣ.Vfy(vkU, (ct , uid , vper), σU) = 0 orΣ.Vfy(vkU,

comsec1 , σsec1 ) = 0, abort.
24. SO: σss = Σ.Sign(skSO, (comuid, comsec, comvper ))
25. SO: Send (σss) to U
26. U: Verify signature: If Σ.Vfy(vkSO, (comuid, comsec, comvper), σss) = 0,

abort.
27. U: Store (secret , comsec, decomsec, vper , comvper, decomvper, σss)
28. SO: Store (uid , vper , ct , σU, sec1 , comsec1 , decomsec1 , σsec1 )

– Output U: (SecretStored, secret)
– Output SO: (SecretStored, uid)
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Request Warrant:
– Input LE: (RequestWarrant,W )
– Behavior:

1. LE: Send message (W ) to J
2. J: Check if policy function allows that warrant: If 0 ← fp(W ), abort

the protocol (Warrant not allowed by policy function).
– Output J: (RequestWarrant,W )
– Input J: (b)
– Behavior:

1. J: If b = 0, set σW = ⊥. Else, set σW = Σ.Sign(skJ,W )
2. J: Store (W , b) in list of already requested preliminary warrants
3. J: Send (b, σW ) to LE
4. LE: Store (W , b,⊥,⊥) in list of warrants
5. LE: If b = 0, skip the next steps and directly go to output
6. LE → FAD: (GetSKeys)
FAD → LE: (GotSKeys, vkSO, vkJ)

7. LE: Verify Signature: If Σ.Vfy(vkJ,W , σW ) = 0, abort.
8. LE: Send (W , σW ) to SO
9. SO: Verify Signature: If Σ.Vfy(vkJ,W , σW ) = 0, abort.

10. SO: Parse preliminary warrant: (W1, . . . ,Wv) ← W and (uid i, vper i,
metai)←Wi

11. SO: For each (uid i, vper i, ·) entry in W , retrieve the matching (uid i,
vper i, ct i, σU,i, sec1 ,i , comsec1 ,i, decomsec1 ,i, σsec1 ,i) entry from internal
storage. If none exists, abort (User has not Stored a Secret)

12. SO: Build enhanced warrant W̃ by adding ct i to each Wi

13. SO: Send (W̃ , {σU,i, sec1 ,i , comsec1 ,i, decomsec1 ,i, σsec1 ,i}i∈{1,...,v}) to LE

14. LE: Parse enhanced warrant: (W̃1, . . . , W̃v) ← W̃ and (uid i, vper i,

metai, ct i)← W̃i

15. LE: Build preliminary warrant W ′ out of W̃ by deleting ct i from each
W̃i

16. LE: If W ′ 6= W , abort. (SO sent wrong W̃ )
17. LE: For i from 1 to v:
• LE → FBB: (Retrieve, uid i)
FBB → LE:

(
Retrieve, uid i, vkU,i

)
• Check signatures: IfΣ.Vfy(vkU,i, (ct i, uid i, vper i), σU,i) = 0 orΣ.Vfy(vkU,i,
comsec1 ,i, σsec1 ,i) = 0, abort
• Check commitment: If COM.Open(crscom, comsec1 ,i, decomsec1 ,i, sec1 ,i) =

0, abort.
18. LE: Send (W̃ , {σU,i, sec1 ,i , comsec1 ,i, decomsec1 ,i, σsec1 ,i}i∈{1,...,v}) to J

19. J: Build preliminary warrant W ′′ out of W̃ by deleting ct i from each
W̃i

20. J: If there is no entry (W ′′, 1) in the list of already processed prelimi-
nary warrants, abort.
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21. J: Check if (W̃ , ·) is already in list of stored enhanced warrants. If yes,
abort (Warrant already processed).

22. J: Parse enhanced warrant: (W̃1, . . . , W̃v)← W̃ and (uid i, vper i,metai,

ct i)← W̃i

23. J: For i from 1 to v:
• J → FBB: (Retrieve, uid i)
FBB → J:

(
Retrieve, uid i, vkU,i

)
• Check signatures: IfΣ.Vfy(vkU,i, (ct i, uid i, vper i), σU,i) = 0 orΣ.Vfy(vkU,i,

comsec1 ,i, σsec1 ,i) = 0, abort
• Check commitment: If COM.Open(crscom, comsec1 ,i, decomsec1 ,i, sec1 ,i) =

0, abort.
24. J: Sign enhanced warrant: σ

W̃
= Σ.Sign(skJ, W̃ )

25. J: Store (W̃ , σ
W̃

) in list of stored enhanced warrants

26. J: Send
(
σ
W̃

)
to LE

27. LE: Update the entry (W , b,⊥,⊥) in the list of warrants to (W , b, W̃ ,
σ
W̃

)

28. LE → FAD:
(
Request, W̃ , σ

W̃

)
FAD → LE: (Request)

29. LE: Store each (uid i, vper i, ct i, sec1 ,i) pair for i ∈ {1, . . . , v}
– Output LE: (RequestWarrant, b)

Get Secrets:
– Input LE: (GetSecrets,W )
– Behavior LE:

1. Retrieve the entry (W , 1, W̃ , σ
W̃

) from the list of warrants. If none
exists, abort (warrant not requested or not granted)

2. Retrieve all (uid i, vper i, ct i) tuples from W̃
3. For all (uid i, vper i, ct i), retrieve the corresponding entry (uid i, vper i,

ct i, σU,i, sec1 ,i , comsec1,i , decomsec1,i , σsec1 ,i) from the list of stored par-
tial secrets

4. LE → FAD: (Retrieve)

FAD → LE:
(
Retrieve, LReady

Requests

)
5. For each (uid i, vper i, ct i, sec1 ,i):

(a) Search for an entry (ctj , sec2 ,j ) in LReady
Requests where ct i = ctj .

(b) If one exists, set secret i := sec1 ,i ⊕ sec2 ,j .
(c) If none exists, set secret i := ⊥.

– Output LE: (GotSecrets, (secret1, . . . , secretv))

Get Statistics:
– Input some Party P: (GetStatistics)
– Behavior P:

1. P → FAD: (GetStatistics)
FAD → P: (GotStatistics, LStats)
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– Output to P: (GotStatistics, LStats)

Audit:
– Input AU: (AuditRequest)
– Behavior AU:

1. If the party invoking this task has not the pid pidAU, then abort.
2. AU → FAD: (AuditRequest)
FAD → AU: (AuditAnswer, LWarrants)

3. Build LAU out of LWarrants by deleting ct i from each Wi

– Output AU: (AuditAnswer, LAU)

Prove:
– Input U: (Prove, stmtR,witR)
– Behavior U:

1. Parse (uid , secret ,wit ′) := witR
2. Parse (vper , stmt ′) := stmtR
3. If R(stmtR,witR) 6= 1, abort
4. For uid , if there is no registration data (uid , comuid, decomuid, ·) stored,

abort (User not registered)
5. For (secret , vper), if there is no entry (secret , comsec, decomsec, vper ,

comvper, decomvper, σss) in the internal list of encrypted secrets, abort
(User has not encrypted a secret for the period)

6. Assemble witness: wit := (uid , secret ,wit ′, σss, comuid, decomuid, comsec,
decomsec, comvper, decomvper)

7. Assemble statement: stmt := (vper , stmt ′, vkSO, crscom)
8. Compute proof: π ← NIZK.Prove(crsAS

zk , stmt ,wit ,RASzk )
– Output U: (Proof, stmtR,witR, π)

Verify:
– Input some party P: (Verify, stmtR, π)
– Behavior P:

1. If the values crsAS
zk , crscom, vkSO are not stored internally, abort.

2. Parse (vper , stmt ′) := stmtR
3. Assemble statement: stmt := (vper , stmt ′, vkSO, crscom)
4. Verify proof: b← NIZK.Verify(crsAS

zk , stmt , π,RASzk )
– Output to P: (Verification, stmtR, π, b)

B.3 The Functionality FAD

We now give the complete description of the secret storing functionality FAD.

FAD

System Parameters:
– tcom — Number of clock ticks between committee handovers
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– ft — Transparency function. Gets a warrant W as input and outputs
what should be publicly known about that warrant. Interface is W pub ←
ft(W ).

– Signature scheme Σ = (Σ.Gen, Σ.Sign, Σ.Vfy), where all are PPT and
Σ.Vfy is deterministic.

– Threshold Public Key Encryption scheme TPKE = (TPKE.Gen,TPKE.Enc,
TPKE.Dec,TPKE.TDec,TPKE.ShareVer,TPKE.Combine,TPKE.Rand,TPKE.Sk2Pk),
where all are PPT and TPKE.Dec, TPKE.TDec, TPKE.ShareVer, TPKE.Combine
and TPKE.Sk2Pk are deterministic.

– Public Key Encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec),
where all are PPT and PKE.Dec is deterministic.

– Non-interactive Zero-Knowledge scheme NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify), where all are PPT and NIZK.Verify is deterministic.

– System pids: pidSO, pidJ, pidAU

The functionality has access to a global clock GCLOCK.

Functionality State:
– tlast: Time of last committee handover.
– (pk, sk): Keypair for TPKE
– crs: Common reference string for NIZK
– LWarrants: List of Warrants on the blockchain. Entries are of the form W̃ .
– LRequests: List of Requests for decryption not yet ready for retrieval.

– LReady
Requests: Lists of Requests for decryption ready to be retrieved.

– vkSO: Public signing key of SO. Not needed in this functionality, it only
exists so parties in ΠAS can get it.

– vkJ: Public signing key of J. Used to verify warrant signatures and so
parties in ΠAS can get it.

– {dpid}, pid ∈ {Ni}: Flag whether the node pid has called ExecuteRole
since the last clock tick.

Init
Note: for each party only execute this task once. Ignore messages other than
(Init) or (GetCRS) until SO, J and AU each have called this task.
– Input SO: (Init,SO, vkSO)
– Behavior:

1. Send (Register) to GCLOCK

2. Set cnum := 0
3. Generate encryption key pair: (pk, sk, {vki}, {ski}) ← TPKE.Gen(1λ)

and store (pk, sk)
4. Set tlast := 0
5. Send (Init,SO, vkSO, pk) to A
6. Store vkSO

– Output SO: (InitFinished)
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– Input J: (Init,J, vkJ)
– Behavior:

1. Send (Init,J, vkJ) to A
2. Store vkJ

– Output J: (InitFinished)

– Input AU: (Init,AU)
– Behavior:

1. Send (Init,AU) to A
– Output AU: (InitFinished)

Get Public Key:
– Input some Party P: (GetPK)
– Behavior:

1. Send (GetPK) to the adversary
2. Retrieve (pk, sk) := (pk, sk)

– Output P: (GotPK, pk)

Get System Keys:
– Input some Party P: (GetSKeys)
– Behavior:

1. Send (GetSKeys) to the adversary
2. Retrieve vkSO and vkJ

– Output P: (GotSKeys, vkSO, vkJ)

Request Decryption:

– Input LE:
(
Request, W̃ , σ

W̃

)
– Behavior:

1. Check Warrant Signature: b← Σ.Vfy(vkJ, W̃ , σ
W̃

)
2. If b = 0, abort (Warrant not valid)

3. Parse warrant:
(

W̃1, . . . , W̃v

)
← W̃ and (uid i, vper i,metai, ct i) ←

W̃i

4. For each i, store ct i in list of requests LRequests

5. Send (Request, pid , ft(W ), |W̃ |, v) to the adversary, where pid is the
id of the calling party

6. When the adversary allows to deliver output, store W̃ in List of War-
rants LWarrants

– Output LE: (Request)

Retrieve Secret:
– Input LE: (Retrieve)
– Behavior:

1. If LE is honest, send (Retrieve) to the adversary

2. If LE is corrupted, send
(
Retrieve, LPending

Requests

)
to the adversary
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– Output LE:
(
Retrieve, LReady

Requests

)
Get Statistics:
– Input some Party P: (GetStatistics)
– Behavior:

1. Send (GetStatistics) to the adversary
2. Initialize empty list LStats

3. Retrieve list of Warrants LWarrants, entries are of the form W̃

4. For each W̃ ∈ LWarrants: Build W from W̃ , calculate W pub ← ft(W )
and append W pub to LStats

– Output P (immediately): (GotStatistics, LStats)

Audit:
– Input AU: (AuditRequest)
– Behavior:

1. If the party invoking this task has not the pid pidAU, then abort.
2. Send (AuditRequest) to the adversary
3. Retrieve list of Warrants LWarrants

– Output AU (immediately): (AuditAnswer, LWarrants)

RoleExecute:
– Input N: (ExecuteRole)
– Behavior:

1. Send (ExecuteRole, pidN ) to the adversary
2. Set dN := 1
3. If for all honest nodes Ni dNi = 1, execute ClockTick

– Output N: (ExecuteRole)

Handling corruptions:
– Upon receiving a message (corrupt, pid) for pid ∈ {Ni}

1. Mark Ni as corrupted
2. If as a result of this operation for all remaining honest nodes Ni dNi =

1, execute ClockTick

ClockTick:
1. Reset dpid := 0 for all nodes
2. Send (Clock-Update, sid) to GCLOCK

3. Send (Clock-Read, sid) to GCLOCK and receive (Clock-Read, sid , tNow)
4. If tlast + tcom ≤ tNow execute Handover.

Handover:
1. Set LReady

Requests := LReady
Requests

⋃
LPending

Requests and clear LPending
Requests

2. For each entry ct iinLRequests:
(a) secret i ← TPKE.Dec(sk, ct i)

(b) Add (ct i, secret i) to LPending
Requests

3. Clear LRequests

4. Set time of last handover: tlast := tNow
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B.4 The Protocol ΠAD

Details of the relation RADW

wit := (W̃ , r, σW̃ , {ct i, ri}i∈[v])
stmt := (ekAU, vkJ,W

enc,W pub,
{

ĉt i
}

)

RADW = {(stmt ,wit) |
– W enc = PKE.Enc(ekAU, W̃ ; r)
– W pub = ft(W )

– Σ.Vfy(vkJ, W̃ , σW̃ )

– W is W̃ but without the ciphertexts
– For each i ∈ [v]:
• ĉt i ← TPKE.Rand(ct i; ri)

}

Fig. 13: ZK-Relation RADW

In ΠAD, we use the following NP relations for zero-knowledge proofs:

– Relation RADW (see Fig. 13) is used in Request Secrets by law enforcement to
prove that they possess a warrant signed by the judge and correctly evaluated
the transparency function

– Relations RADKG1 and RADKG2 (see Fig. 14) are used during initial key genera-
tion to ensure the resulting keypair is generated properly

– RelationRADKS (see Fig. 15) is used during each committee handover to ensure
correct resharing of the secret key

– Relation RADDec (see Fig. 16) is used when answering decryption requests to
prove correct partial decryption

We now give the complete description of the protocol ΠAD that UC-realizes the
auditable decryption functionality FAD.
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Details of the relation RADKG1

wit := (ski, {rj}j∈[n], F )

stmt := (pki,
{

ctj , ekRj

}
j∈[n]

)

RADKG1 = {(stmt ,wit) |
– F is a degree t polynomial
– For each j ∈ [n]:
• ctj ← PKE.Enc(ekRj , F (j); rj)

}

Details of the relation RADKG2

wit := (ski, {rj}j∈[n], dkR, F )

stmt := (pki,
{

ctk
}
k∈[t+1]

,
{

ctj , ekRj

}
j∈[n]

, ekR)

RADKG2 = {(stmt ,wit) |
– PKE.Sk2Pk(dkR) = ekR
– ski =

∑t+1
k=1 PKE.Dec(dkR, ctk)

– TPKE.Sk2Pk(ski) = pki
– F is a degree t polynomial with F (0) = ski
– For each j ∈ [n]:
• ctj ← PKE.Enc(ekRj , F (j); rj)

}

Fig. 14: ZK-Relations RADKG1 and RADKG2
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Details of the relation RADKS

wit := (dkR, ski, {rj}j∈[n], F,G)

stmt := (ekR,
{

ctk
}
k∈[t+1]

,
{

ctj , ekRj

}
j∈[n]

, pki)

RADKS = {(stmt ,wit) |
– PKE.Sk2Pk(dkR) = ekR
– TPKE.Sk2Pk(ski) = pki
– G and F are both degree t polynomials
– G(i) = F (0) = ski
– For each k ∈ [t+ 1]:
• shk ← PKE.Dec(dkR, ctk)

– G is obtained by interpolating sh1, . . . , sht+1

– For each j ∈ [n]:
• ctj ← PKE.Enc(ekRj , G(j); rj)

}

Fig. 15: ZK-Relation RADKS

Details of the relation RADDec

wit := (ski)
stmt := (vki, ct , ct∗)

RADDec = {(stmt ,wit) |
– TPKE.Sk2Pk(ski) = vki
– ct∗ ← TPKE.TDec(ski, ct)
}

Fig. 16: ZK-Relation RADDec
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ΠAD

Building Blocks:
– NIZK proof system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)

System Parameters:
– n — Number of committee members
– tcom — Number of clock ticks between committee handovers
– ft — Transparency function. Gets a preliminary warrant W as input and

outputs what should be publicly known about that warrant. Interface is
W pub ← ft(W ).

– Signature scheme Σ = (Σ.Gen, Σ.Sign, Σ.Vfy), where all algorithms are
PPT and Σ.Vfy is deterministic.

– Threshold Public Key Encryption scheme TPKE = (TPKE.Gen,TPKE.Enc,
TPKE.Dec,TPKE.TDec,TPKE.ShareVer,TPKE.Combine,TPKE.Rand,TPKE.Sk2Pk),
where all algorithms are PPT and TPKE.Dec, TPKE.TDec, TPKE.ShareVer,
TPKE.Combine and TPKE.Sk2Pk are deterministic.

– Public Key Encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec),
where all are PPT and PKE.Dec is deterministic.

– Non-interactive Zero-Knowledge scheme NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify), where all are PPT and NIZK.Verify is deterministic.

– ZK-Relations RADW (see Fig. 13), RADKG1,RADKG2 (see Fig. 14), RADKS (see
Fig. 15) and RADDec (see Fig. 16).

– System pids: pidSO, pidJ, pidAU, pidLE

State of the Parties:
– LE stores:
• (ekLE, skLE)

– AU stores:
• (ekAU, skAU)

System Setup (FCRS):
– crsSSzk ← NIZK.Setup(1λ)
– Return crsSSzk

Init:
– Note:
• Each of SO, J, AU only executes the following the first time this input

is received and ignores all further inputs of this form.
• Each of SO, J, AU ignores all other inputs and messages until this has

been executed.

– Input SO: (Init,SO, vkSO)
– Behavior SO:

1. Send (Post, (OperatorKey, vkSO)) to FBCRA

– Output SO: (InitFinished)
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– Input J: (Init,J, vkJ)
– Behavior J:

1. Send (Post, (JudgeKey, vkJ)) to FBCRA

– Output J: (InitFinished)

– Input AU: (Init,AU)
– Behavior AU:

1. Generate (ekAU, skAU)← PKE.Gen(1λ)
2. Send (Post, (AuditorKey, ekAU)) to FBCRA

3. Store (ekAU, skAU)
– Output AU: (InitFinished)

Get Public Key:
– Input some Party P: (GetPK)
– Behavior:

1. Send (Read) to FBCRA and receive (Ordered)
2. For each role Ri in the first key generation committee do the following:

(a) Find (roleassign, t, (Generate, Ri, ekR, vkR)) in Ordered and
retrieve vkR

(b) Find (R,msg , σ) with msg := (KeyGen1,
(
{ctj}j∈[n], πKG

)
) in

Ordered
(c) Check Σ.Vfy(vkR,msg , σ) = 1, otherwise ignore this role
(d) Assemble ZK-Statement:

stmtKG := (pki,
{

ctj , ekRj

}
j∈[n]

)

(e) Check NIZK.Verify(crsSSzk , stmtKG , πKG,RADKG1) = 1, otherwise ig-
nore this role

(f) Add {ctj}j∈[n] to LctQual

3. Sort LctQual lexicographically
4. For each role Ri in the second key generation committee do the fol-

lowing:
(a) Find (roleassign, t, (Generate, Ri, ekR, vkR)) in Ordered and

retrieve ekR, vkR
(b) Find (R,msg , σ) with msg := (KeyGen2,

(
pki, {ctj}j∈[n], πKG

)
)

in Ordered
(c) Check Σ.Vfy(vkR,msg , σ) = 1, otherwise ignore this role
(d) Retrieve the first t + 1 ciphertexts ct1

i , . . . , ct t+1
i for this role from

LctQual as
{

ctk
}
k∈[t+1]

(e) Assemble ZK-Statement:
stmtKG := (pki,

{
ctk
}
k∈[t+1]

, {ct i}i∈[n], ekR)

(f) Check NIZK.Verify(crsSSzk , stmtKG , πKG,RADKG2) = 1, otherwise ig-
nore this role

(g) Add pki to LQual

5. Sort LQual lexicographically
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6. Reconstruct pk via Lagrange-interpolation from the first t+ 1 entries
in LQual

– Output P: (GotPK, pk)

Get System Keys:
– Input some Party P: (GetSKeys)
– Behavior P:

1. Send (Read) to FBCRA and receive (Ordered)
2. Find (pidSO, t1, (OperatorKey, vkSO)) in Ordered, otherwise abort
3. Find (pidJ, t2, (JudgeKey, vkJ)) in Ordered, otherwise abort

– Output P: (GotSKeys, vkSO, vkJ)

Request Decryption:

– Input LE:
(
Request, W̃ , σ

W̃

)
– Behavior LE:

1. Initialize empty list LCommitteePK

2. If skLE = ⊥ run (ekLE, skLE)← PKE.Gen(1λ)
3. Send (Read) to FBCRA and receive (Ordered)
4. Find (pidJ, t2, (JudgeKey, vkJ)) in Ordered, otherwise abort
5. Find (pidAU, t3, (AuditorKey, ekAU)) in Ordered, otherwise abort

6. Build preliminary warrant W out of W̃ by deleting the ciphertext
from each entry.

7. Compute transparency function of warrant: W pub ← ft(W )

8. Encrypt warrant to the auditor: W enc ← PKE.Enc(ekAU, W̃ ; r) with
randomness r

r← R
9. Parse warrant:

(
W̃1, . . . , W̃v

)
← W̃ and (uid i, vper i,metai, ct i) ←

W̃i

10. For each i ∈ [v], re-randomize ĉt i ← TPKE.Rand(ct i; ri)

11. Assemble ZK-Witness: wit
W̃

:= (W̃ , r, σ
W̃
, {ct i, ri}i∈[v])

12. Assemble ZK-Statement:
stmt

W̃
:= (ekAU, vkJ,W

enc,W pub, {ĉt i}i∈[v])
13. Compute Proof:

π
W̃
← NIZK.Prove(crsSSzk , stmt

W̃
,wit

W̃
,RADW )

14. Send
(
Post, (Request,W pub,W enc, {ĉt i}i∈[v], πW̃ , ekLE)

)
to FBCRA

– Output LE: (Request)

Retrieve Secret:
– Input LE: (Retrieve)
– Behavior of LE:

1. Send (Read) to FBCRA and receive (Ordered)
2. For each entry (pid , t, R, (Request, C), σ) in Ordered:

(a) Find (roleassign, t, R, ekR, vkR) in Ordered
(b) Verify Σ.Vfy(vkR, (Request, C), σ), otherwise ignore this entry
(c) Find (pid , t, R,msg , σ′) with msg := (KeyShare, (vki, {ctk}, πKS))

in Ordered
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(d) Verify Σ.Vfy(vkR,msg , σ′), otherwise ignore this entry
(e) Verify πKS , otherwise ignore this entry
(f) Decrypt (ct , ct∗, πDec)← PKE.Dec(skLE, C)
(g) Assemble ZK-Statement:

stmtDec := (vk, ct , ct∗)
(h) Verify NIZK.Verify(crsSSzk , stmtDec , πDec,RADDec), otherwise ignore this

entry
(i) Add ct∗ to LctQual

3. Sort all lists LctQual lexicographically
4. For each list LctQual:

(a) retrieve the first t+1 values ct∗k from LctQual, ignore this list if |LctQual| <
t+ 1

(b) Obtain decryption secret ← TPKE.Combine({ct∗k}k∈[t+1], ct)

(c) Add (ct , secret) to LReady
Requests

– Output LE:
(
Retrieve, LReady

Requests

)
Get Statistics:
– Input some Party P: (GetStatistics)
– Behavior P:

1. Initialize empty list LStats

2. Send (Read) to FBCRA and receive (Ordered)
3. Find (pidJ, t2, (JudgeKey, vkJ)) in Ordered, otherwise abort
4. Find (pidAU, t3, (AuditorKey, ekAU)) in Ordered, otherwise abort
5. For each entry (pid , t, (id ,W pub,W enc, π

W̃
)):

(a) Assemble ZK-Statement: stmt
W̃

:= (ekAU, vkJ,W
enc,W pub)

(b) Verify Proof:
b← NIZK.Verify(crsSSzk , stmt

W̃
, π

W̃
)

(c) If b = 1 and W pub /∈ LStats, store W pub in LStats

– Output P: (GotStatistics, LStats)

Audit:
– Input AU: (AuditRequest)
– Behavior AU:

1. Initialize empty list LWarrants

2. Retrieve stored (ekAU, skAU)
3. Send (Read) to FBCRA and receive (Ordered)
4. Find (pidJ, t2, (JudgeKey, vkJ)) in Ordered, otherwise abort
5. For each entry (pid , t, (id ,W pub,W enc, π

W̃
)) in Ordered:

(a) Assemble ZK-Statement:
stmt

W̃
:= (ekAU, vkJ,W

enc,W pub)
(b) Verify Proof: If NIZK.Verify(crsSSzk , stmt

W̃
, π

W̃
) = 0, skip the fol-

lowing steps and proceed to next entry
(c) Decrypt W enc: W̃ ← PKE.Dec(skAU,W

enc)

(d) If W̃ /∈ LWarrants, store W̃ in LWarrants
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– Output AU: (AuditAnswer, LWarrants)

Behavior of Nodes:
– Upon being activated for the first time, send (Register) to GCLOCK.
– Upon receiving a message (Generate, R, ekR, dkR, vkR, skR) from FBCRA,

store (R, ekR, dkR, vkR, skR) in LRoles.
– Upon receiving input (ExecuteRole):

1. Send (Clock-Read) to GCLOCK and receive (tNow).

2. Set cnum :=
⌊
tNow

tcom

⌋
.

3. Send (Read) to FBCRA and receive (Ordered).
4. Find (pidJ, t, (JudgeKey, vkJ)) in Ordered, otherwise abort
5. Find (pidAU, t, (AuditorKey, ekAU)) in Ordered, otherwise abort
6. For each role in LRoles, check if it should be executed this round, if yes

execute it.
7. After having executed all roles for this round, send (Clock-Update)

to GCLOCK.
– Executing Role KeyGen1:

1. Retrieve skR associated with this role Ri from LRoles

2. Initialize empty list LCommitteePK
next

3. For each role Rj in the next committee
(a) Find (roleassign, t, (Generate, Rj , ekRj , vkRj )) in Ordered

(b) Insert ekRj into LCommitteePK
next

4. Generate key share: si ← Zp
5. Share secret key: choose a random degree t polynomial F (x) = a0 +
a1 ∗ x+ a2 ∗ x2 + . . .+ at ∗ xt with F (0) = si

6. For each role Rj in the next committee:
(a) Set shj := F (j)
(b) Generate ciphertext ctj ← PKE.Enc(ekRj , shj ; rj)

7. Assemble ZK-Witness: witKG := (si, {rj}j∈[n], F )

8. Assemble ZK-Statement:
stmtKG := (

{
ctj , ekRj

}
j∈[n]

)

9. Compute Proof:
πKG ← NIZK.Prove(crsSSzk , stmtKG ,witKG ,RADKG1)

10. Prepare message: msg := (KeyGen1,
(
{ctj}j∈[n], πKG

)
)

11. Sign message: σ ← Σ.Sign(skR,msg)
12. Remove the entry for this role from LRoles

13. Delete all state except msg , σ
14. Send (Post, (Ri,msg , σ)) to FBCRA

– Executing Role KeyGen2:
1. Retrieve skR associated with this role Ri from LRoles

2. Initialize empty lists LCommitteePK
next, LCommitteePK

current, LCommitteeVK

3. For each role Rj in the next committee
(a) Find (roleassign, t, (Generate, Rj , ekRj , vkRj )) in Ordered
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(b) Insert ekRj into LCommitteePK
next

4. For each role Rj in the current committee
(a) Find (roleassign, t, (Generate, Rj , ekR, vkR)) in Ordered
(b) Insert ekR into LCommitteePK

current

5. For each role Rj in the previous committee:
(a) Find (roleassign, t, (Generate, Rj , ekRj , vkRj )) in Ordered
(b) Insert vkRj into LCommitteeVK

6. For each entry (pid , t, (Rj , (KeyGen1,
(
{ctj}j∈[n], πKG

)
), σ)) in Ordered

(a) Retrieve vkRj from LCommitteeVK

(b) Check if Σ.Vfy(vkR, (KeyGen1,
(
{ctj}j∈[n], πKG

)
), σ) = 1, other-

wise skip this entry.
(c) Assemble ZK-Statement:

stmtKG := (
{

ctj , ekRj

}
j∈[n]

)

(d) If NIZK.Verify(crsSSzk , stmtKG , πKG,RADKG1) 6= 1 skip this entry
(e) Add ct i to LQual (the one addressed to the currently executing role)

7. Sort LQual lexicographically

8. Obtain the first t+ 1 entries ct1
i , . . . , ct t+1

i from LQual

9. Decrypt ctki as shk ← PKE.Dec(dkR, ctki )

10. Set ski =
∑t+1
k=1 shk and pki = TPKE.Sk2Pk(ski)

11. Share secret key: choose a random degree t polynomial F (x) = a0 +
a1 ∗ x+ a2 ∗ x2 + . . .+ at ∗ xt with F (0) = ski

12. For each role Rj in the next committee:
(a) Set shj := F (j)
(b) Generate ciphertext ctj ← PKE.Enc(ekRj , shj ; rj)

13. Assemble ZK-Witness: witKG := (ski, {rj}j∈[n], dkR, F )

14. Assemble ZK-Statement:
stmtKG := (pki,

{
ctk
}
k∈[t+1]

,
{

ctj , ekRj

}
j∈[n]

, ekR)

15. Compute Proof:
πKG ← NIZK.Prove(crsSSzk , stmtKG ,witKG ,RADKG2)

16. Prepare message: msg := (KeyGen2,
(
pki, {ctj}j∈[n], πKG

)
)

17. Sign message: σ ← Σ.Sign(skR,msg)
18. Remove the entry for this role from LRoles

19. Delete all state except msg , σ
20. Send (Post, (Ri,msg , σ)) to FBCRA

– Executing Role Handover:
1. Retrieve dkR, skR associated with this role Ri from LRoles

2. Initialize empty lists LCommitteePK
next, LCommitteePK

current, LCommitteeVK,
LShares and LRequests

3. For each role Rj in the next committee
(a) Find (roleassign, t, (Generate, Rj , ekR, vkR)) in Ordered
(b) Insert ekR into LCommitteePK

next
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4. For each role Rj in the current committee
(a) Find (roleassign, t, (Generate, Rj , ekR, vkR)) in Ordered
(b) Insert ekR into LCommitteePK

current

5. For each role Rj in the previous two committees:
(a) Find (roleassign, t, (Generate, Rj , ekRj , vkRj )) in Ordered
(b) Insert vkRj into LCommitteeVK

6. For each entry (pid , t, (Rj ,msg , σ)) with msg := (KeyShare, (vki, {ctj}, πKG))
for the previous committee in Ordered

(a) Retrieve vkRj from LCommitteeVK

(b) Check Σ.Vfy(vkR,msg , σ) = 1, otherwise ignore this message
(c) Assemble ZK-Statement:

stmtKS := (vki,
{

ctj , ekRj

}
j∈[n]

)

(d) Check NIZK.Verify(crsSSzk , stmtKS , πKS ,RADKS) = 1, otherwise ignore
this message

(e) Add {ctj}j∈[n] to LctQual

7. Sort LctQual lexicographically
8. For each entry (pid , t, (Rj ,msg , σ)) with msg := (KeyShare, (vki, {ctk}, πKS))

for the current committee in Ordered:
(a) Retrieve vkRj from LCommitteeVK

(b) Check if Σ.Vfy(vkRj , (KeyShare,msg , σ) = 1, otherwise skip this
entry.

(c) Retrieve from LctQual from the first t+ 1 entries the ciphertext ctj for
Rj each, as LKCom := {ct1

j , . . . , ctnj }
(d) Assemble ZK-Statement:

stmtKS := (pkj , {ctk}k∈[n], LKCom)

(e) Check if NIZK.Verify(crsSSzk , stmtKS , πKS ,RADKS) = 1, otherwise skip
this entry.

(f) Add ct i (the one addressed to the currently executing role) to LQual

9. Sort LQual lexicographically
10. Reconstruct and reshare secret key share:

(a) Obtain the first t+ 1 entries ct1
i , . . . , ct t+1

i from LQual

(b) Decrypt ctki as shk ← PKE.Dec(dkR, ctki )
(c) Lagrange-interpolate G(x) from sh1, . . . , sht+1 to obtain secret key

share ski := G(i) and set vki = TPKE.Sk2Pk(ski)
(d) Choose a random degree t polynomial F (x) = a0 +a1 ∗x+a2 ∗x2 +

. . .+ at ∗ xt with F (0) = ski
(e) For each role Rj in the next committee:

i. Generate ciphertext ctj ← PKE.Enc(ekRj , F (j); rj)
(f) Assemble ZK-Witness:

witKS := (dkR, ski, {rj}j∈[n], F,G)

(g) Assemble ZK-Statement:

stmtKS := (ekR,
{

ctki
}
k∈[t+1]

,
{

ctj , ekRj

}
j∈[n]

, vki)
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(h) Compute Proof:
πKS ← NIZK.Prove(crsSSzk , stmtKS ,witKS ,RADKS)

(i) Add msg := (KeyShare,
(
vki, {ctj}j∈[n], πKS

)
) to LM

11. For each entry (pid , t, (Request,W pub,W enc, {ĉt i}i∈[v], πW̃ , ekLE))
in Ordered

(a) Assemble ZK-Statement:
stmt

W̃
:= (ekAU, vkJ,W

enc,W pub, {ĉt i}i∈[v])
(b) If NIZK.Verify(crsSSzk , stmt

W̃
, π

W̃
,RADW ) 6= 1, abort

(c) For each i ∈ [v]:
i. Store (ekLE, ĉt i) in LRequests

12. For each entry (ekLE, ct) in LRequests,
(a) Partially decrypt ct to ct∗ ← TPKE.TDec(ski, ct)
(b) Assemble ZK-Witness:

witDec := (ski)
(c) Assemble ZK-Statement:

stmtDec := (vki, ct , ct∗)
(d) Compute Proof:

πDec ← NIZK.Prove(crsSSzk , stmtDec ,witDec ,RADDec)
(e) Encrypt answer: msg ← PKE.Enc(ekLE, (ct , ct∗, πDec))
(f) Add (Request,msg) to LM

13. For each entry (msg) in LM

(a) Generate signature σ ← Σ.Sign(skR,msg)
(b) Update msg := (Ri,msg , σ)

14. Remove the entry for this role from LRoles

15. Delete all state except for LM

16. For each entry (msg) in LM

(a) Send (Post,msg) to FBCRA

C Auditably Sender-Traceable Encryption (ASTE)

In this section, we give the full description of the Auditably Sender-Traceable
Encryption Transfer ideal functionality FASTE and the protocol ΠASTE.

C.1 Overview

The Auditably Sender-Traceable Message Transfer (ASTE) functionality FASTE

is a toy example with a two-fold purpose. Firstly, it demonstrates the applica-
bility of FAS. Secondly, the techniques for using zero-knowledge together with
PROM-based NINCE can be used in other settings. Together, this “toy exam-
ple” provides a simple yet general explanation for how to build applications on
top of FAS.

The FASTE functionality is similar to a PKE. It allows users (participants
in the auditable surveillance system) to encrypt confidential messages to each
other, by simply encrypting a message to the recipient. Note that FASTE does not
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model a secure channel but only provides (CCA-secure) encryption. In particular,
if the ciphertext are sent in an anonymous way, the recipient does not learn the
identity of the sender. This allows to implement, for example, an anonymous
confidential feedback channel. Clearly, this is also possible with a standard PKE
scheme. However, unlike in a standard PKE scheme, FASTE guarantees that
an identity of a system participant is attached to every ciphertext. On the one
hand, the recipient only learns the message m, and is unable to deanonymize
the party which generated the ciphertext. On the other hand, law enforcement
learns nothing about the message m, but is able to deanonymize ciphertexts. The
construction can be extended to leak also the message m to law enforcement, or,
indeed, leak any a efficient function f of sender identity, recipient identity and
message m.

To prevent perpetual surveillance of a user, the system operates in “validity
periods”. When the period changes, all users must run an update (i.e. refresh
their key material) to continue to use the system. As a result, law enforcement
must specify which user should be surveilled in which period. As in FAS, statis-
tics about the surveillance are published and an audit trail is accessible for the
auditor.

On a more technical level, FASTE is very similar to FAS. It does not offer
store secret, but instead has update, which refreshes the user’s escrow secret
key to the current validity period (if necessary). Moreover, instead of get se-
crets, law enforcement can use prepare access which, given a valid warrant
W is a preparation step (intuitively, the escrow secrets are learnt). By running
execute access on ciphertext c of a user U with uid uid which is surveilled
for period vper , law-enforcement learns whether c belongs to (uid , vper), thus
deanonymizing the subject of surveillance U during period vper . Finally, users
can use the encryption scheme via encrypt messages and decrypt cipher-
text.

The protocol ΠASTE reflects the close relation of FASTE to FAS: Indeed, ex-
cept for the tasks encrypt message, decrypt message and execute data,
ΠASTE can delegate most of the work to FAS, and only needs to do a little book-
keeping and consistency checks. For example, in update, a fresh escrow secret
is obtained by running store secret. To implement encryption with trapdoor
access, ΠASTE relies on a special “encryption scheme” PKEAS where:

– PKEAS.Gen generates a long-term public key pk which is also used as the
user identity uid .

– PKEAS.Enc relies on two strong primitives:

• It uses non-interactive non-committing encryption (NINCE) in the pro-
grammable ROM (PROM). This allows to deal with the “adaptive cor-
ruption” of user secret keys (of some period) due to surveillance by law
enforcement. As discussed in Section 5.3, it is likely that NINCE is re-
quired to instantiate FASTE, unless one allows highly interactive and/or
high communication during execute access. As it is well-known that
NINCE is impossible in the standard model [48], relying on the PROM
is both natural and necessary.
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• It uses the NIZK proofs provided by FAS. All ciphertexts carry a con-
sistency proof which is checked by an honest recipient. In particular,
if PKEAS.DecRE(crs, sk, c, vper) 6= ⊥, then the consistency proof holds.
Moreover, if the consistency proof holds, then PKEAS.DecLE(crs, usk , c,
vper) returns uid which correctly deanonymizes the user (with secret key
sk). Importantly, the consistency proof also demonstrates possession of
the (long-term) secret key sk to pk, thus it is impossible to send messages
in the name of another (honest) user.

– There are two decryption methods: The recipient uses PKEAS.DecRE to de-
crypt the message m. Law enforcement uses PKEAS.DecLE to deanonymize
the user, i.e. it tests if the ciphertext belongs to an identity uid .

To model the validity period, FASTE (and consequently ΠASTE) rely on the
global clock functionality GCLOCK.

C.2 Auditably Sender-Traceable Encryption

In this section, we formally define the ideal functionality for Auditably Sender-
Traceable Encryption and discuss certain design choices. For the writing con-
ventions used see Appendix B.1.

FASTE

System Parameters:
– ft, fp: Transparency and policy function as in FAS.
– poly(λ)uid : length of uid .
– leak(m, uid , vper): Leakage to adversary when a message is sent, usually

leak(m, uid , vper) = (|m|, vper).
– System pids: pidSO, pidJ, pidAU, pidLE

Functionality State:
– LI: Identical to FAS. (List of initialized parties (initially empty). Contains

(pid) entries.)
– LU: Identical to FAS. (List of registered users (initially empty). Contains

(pid , uid) pairs.)
– Luvper: List of tuples (uid , vper) to keep track of which users have updated

in which periods. (Initially empty.)
– Lmsgs: List of all messages sent by honest users of FASTE. Contains tuples

of the form (c,m, uid , uvper).
– LW : Identical to FAS.
– LW-cached: List of (uid i, vper i) tuples tracking access rights of LE. (Initially

empty.)
– ureg i ∈ {0, 1} is 1 if user Ui received output of registration. Else 0.
– uvper i: (Most recent) validity period for which user Ui has registered (all

initialized to ⊥).
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Init:
– This task is identical to Init in FAS, except that (Init, P ) is leaked to

the adversary when party P inputs (Init, P ):
– FASTE sends (Register, sid) to GCLOCK.

Party Init:
– This task is identical to Party Init in FAS.

User Registration:
– Input Ui: (Register)
– Input SO: (Register)
– Note: Ui will abort any other task (except Party Init) unless ureg i = 1.

1. As soon as Ui gave input, send (Register,Ui) to the adversary. Wait
for (Register,Ui, uid i) from the adversary.

2. If (·, uid i) ∈ LU abort.
3. Store (Ui, uid i) in LU.
4. SO: Generate delayed output to (Registered, uid i).
5. U: Generate delayed output to (Registered, uid i), and when deliv-

ered, set ureg i = 1.

Next Period:
– Input SO: (NextPeriod)
– Behavior: FASTE sends (Clock-Update, sidC) to GCLOCK.

Update:
– Input Ui: (Update)
– Input SO: ∅
– Behavior:
• FASTE queries (Clock-Read, sidC) to GCLOCK and receives response

(Clock-Read, sidC , vper).
• If uvper i = vper , immediately output (UpdateDone, vper) to Ui. Else

continue.
• Send (Update,Ui, vper) to the adversary and wait for (Ok) from the

adversary.
• FASTE queries (Clock-Read, sidC) to GCLOCK and receives response

(Clock-Read, sidC , vper ′).
• If vper 6= vper′ abort this task.
• Generate delayed output (UpdateDone, vper) to SO.
• Generate delayed output (UpdateDone, vper) to Ui, and, when de-

livered, set uvper i := vper and add (Ui, uvper i) to Luvper.

Encrypt message:
– Input Ui: (Encrypt,Uj ,m)
– Behavior:

1. Copy uvper i and use this copy in the rest of this task. (Protect against
concurrent calls to update.)

2. If uvper i = ⊥, abort.
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3. If Uj is corrupted, let m′ = m, else let m′ = ⊥.
4. If (uid i, uvper i) ∈ LW-cached, let uid ′ = uid , else let uid ′ = ⊥.
5. Send (Encrypt,Uj , leak(m, uid i, uvper i),m

′, uid ′) to the adversary.
6. Once (Ciphertext,Uj , c) is received from the adversary, add (c,m, uid i,

uvper i) to Lmsgs.
7. Generate immediate output (Ciphertext, c) to Ui.

Decrypt Ciphertext:
– Input Uj : (Decrypt, c)
– Behavior:

1. If (c, ·, ·, ·) /∈ Lmsgs then
• Send urgent request (SimInjectMsg, c) to the adversary and wait

for immediate response (InjectMsg, c,m, vper).
• Run inject message for input (InjectMsg, c,m, vper).

2. Find (c,m, uid , uvper) in Lmsgs and let m = ⊥ if no entry was found.
3. FASTE sends (Clock-Read, sidC) to GCLOCK and receives response

(Clock-Read, sidC , vper).
4. If uvper 6= vper let m = ⊥.
5. Generate immediate output (Plaintext,m) to Uj .

Inject Message:
– Note: This is an auxiliary “task”. It is only available as a subroutine

within other tasks.
– Input: (InjectMsg, c,m, uid , vper)

1. If (m, uid , vper) = (⊥,⊥,⊥), skip the rest.
2. If ∃U: (U, uid) ∈ LU and U is not corrupted, abort.
3. If SO is honest and (uid , vper) /∈ Luvper, abort.
4. Store (c,m, uid , vper) in Lmsgs.

Request Warrant:
– This task is identical to Request Warrant in FAS.

Prepare Access:
– Input LE: (AccessPrep, W )
– Behavior:

1. Send (AccessLeak) to the adversary.
2. If no entry (W , 1) exists in LW , abort. (Warrant not granted)
3. For all (uid ′, vper ′) ∈ W , if (uid ′, vper ′) ∈ Luvper store (uid ′, vper ′) ∈

LW-cached.
4. Generate delayed output (AccessPrepDone) for LE.

Execute Access:
– Input LE: (AccessExec, c, (uid , vper))
– Behavior:

1. If (uid , vper) /∈ LW-cached, return ⊥.
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2. If (c, ·, ·, ·) /∈ Lmsgs then:
(a) Send urgent request (SimAccessInject, c) to the adversary and

wait for immediate response (InjectMsg, c,m, uid , vper).
(b) Run inject message for input (InjectMsg, c,m, uid , vper).

3. If there exist m′, uid ′, vper ′ such that (c,m′, uid ′, vper ′) ∈ Lmsgs and

uid = uid ′, then set uid ′ = uid , else uid ′ = ⊥.
4. Output (AccessExecDone, uid ′) immediately.

Get Statistics:
– This task is identical to Get Statistics in FAS.

Audit:
– This task is identical to Audit in FAS.

Remark 4 (Handling of leakage). We handle leakages in encrypt message and
prepare access in two different ways: In encrypt message, we added an
explicit leak of m resp. uid to the adversary, if the receiver Uj is corrupted
resp. the sender Ui in the period uvper i under surveillance. This simplifies the
simulator description, but is not strictly necessary:

– To learn the message m, the simulator could call decrypt ciphertext on
behalf of Uj

– To learn the uid if the sender is under surveillance, the simulator may trial-
decrypt the ciphertexts c w.r.t. all tuples (uidk, uvperk) ∈ LW-cached for honest
users Uk.

Indeed, in prepare access, we do not add an explicit leak of all affected cipher-
texts, and let simulator use the trial-decryption strategy.

Remark 5 (Law-enforcement access). The interface and behavior of law enforce-
ment’s data access requires some clarifications.

1. The access task is split into prepare access and execute access. This
corresponds to the idea of first publishing (a redacted version of) the warrant
and obtaining some escrow secrets (usually interactively), and then using
these escrow secrets to identify (and decrypt) affected ciphertexts. Indeed,
execute access is an offline procedure in our modelling, since the adversary
cannot delay its output in any way.24

2. In real-world implementations, in particular in ΠASTE, honestly generated
ciphertexts of corrupted parties which are never received by honest parties
can still be decrypted be LE. To model this, FASTE leaks a non-honest
ciphertext (in (SimAccessInject, c′)) in execute access, and then runs
inject message to inject a suitable tuple into Lmsgs, if necessary. Observe

24 Relaxing the model to online access is possible, but depending on its exact nature,
can incur additional leakage (e.g. information about the used warrant, ciphertext
size, etc.) and allows to delay the output. On the other hand, it may circumvent the
necessity of strong (setup) assumptions, like the PROM, see Section 5.3.
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that even messages encrypted to public keys which are not registered in
the system exists may still decrypt for LE. Thus, inject message does
not require a recipient.25 This modelling artefact leaks some information
of the supposedly offline decryption queries to the ideal adversary, but any
c ∈ Lmsgs (in particular, ciphertexts en- or decrypted by honest users) is
accessed “silently”.

3. Intuitively, a warrant W = {(uid i, vper i,metai)}i empowers law enforce-
ment to extract information from any valid ciphertexts corresponding to
some (uid i, vper i) in W . Validity of ciphertext makes no sense in the ideal
functionality, but, intuitively, any ciphertext which a decrypt ciphertext
or inject message “accepts”, i.e. which ends up in Lmsgs is valid.

4. The metadata in a warrant does not affect the possibility of law-enforcement
access, and is meant only for the judge, the auditor and public statistics.

Remark 6 (System integrity). The honesty of the system operator SO plays a
central role in the system’s integrity. A corrupted SO can circumvent any re-
striction w.r.t. registration, and consequently thwart deanonymization. This is
inherited from FAS, because the NIZK provided by FAS does not ensure that
user secrets have been deposited in case of malicious parties (cooperating with
SO). Note however, that in the real world, SO would violate the law or con-
tractual obligation by such actions, and is therefore strongly incentivized to not
misbehave.

C.3 The Protocol ΠASTE

In this section, we define the protocol for realizing FASTE. The high-level idea
is the following:

Setup As setup, a CRS (via FCRS) for a commitment key, a modified bulletin
board (FBB) to find public keys of parties and allow basic synchronization,
and the auditable surveillance functionatlity FAS are used. Moreover, the
global clock GCLOCK also models the advancing validity periods. (The clock
is “controlled” solely by SO in our protocol, while all parties read the time.)

Passthrough tasks Except perhaps for some smaller adaptation, Init, Party
Init, RequestWarrant, Get Statistics and Audit basically pass their
inputs through to the FAS hybrid functionality.

Next Period SO simply advances the clock. (SO registered with GCLOCK dur-
ing Init.)

User Registration In this task, the user generates a keypair through (pk, sk)←
PKEAS.Gen(1λ). The public key pk is also the uid . The user tries to register
its uid with FBB. Note that after registration, the user retrieves its own uid ,

25 It can be enforced that only ciphertexts to public keys which are in the system are
valid (and therefore decryptable). For example, by only accepting publics key which
are signed by SO, and adapting the protocol accordingly. Since corrupt user can use
secure communication anyway, there is no clear benefit to this, and therefore FASTE

(and ΠASTE) does not enforce it.
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to check whether the registration succeeded.26 (FBB does not respond (with
success or failure) to registration queries, so this is the only way to be sure.)

Update The user Ui first retrieves the current period vper , and then sends an
update request to SO. SO retrieves the current period itself (so that neither
party can cheat the other w.r.t. the period), and they both engage in store
secret from FAS. The resulting secret is the user’s escrow secret usk i and
remembers the period in uvper i := vper .

Encrypt Message This is merely an application of PKEAS.Enc.
Decrypt Ciphertext The receiver first retrieves the current time vper , and

then decrypts the ciphertext via PKEAS.DecLE(crs, skj , c, vper). Using the
current time ensures the surveillability of any received messages in the re-
spective validity periods.

Prepare Access This is effectively a pass-through to get secrets in FAS. After
receiving (GotSecrets, . . .), LE stores these escrow secrets (in LW-cached)
for later use.

Execute Access LE uses a stored escrow secret (uid , vper , usk) from LW-cached

to check via PKEAS.DecLE(usk , c, vper) whether a ciphertext c decrypts to uid
when trying (usk , vper). If so, the sender uid was deanonymized, otherwise
it returns ⊥.

The encryption subroutine PKEAS is described in Section 5.2. It is formally
described in Appendix C.4

ΠASTE

The protocol ΠASTE uses hybrid functionalities FCRS, FBB, FAS, FRO, and
global functionality GCLOCK.
System Parameters
– ft, fp: Transparency and policy function as in FAS.
– System pids: pidSO, pidJ, pidAU, pidLE

Hybrid functionalities
– FCRS: The distribution of FCRS is crsASTE = crscom, where crscom ←

COM.Setup(1λ).
– FAS: The secret key space S of FAS is defined as the user secret key space

SKENCE.K, where SKENCE is the scheme used in PKEAS. The relation R
is set to RPKEAS or some NP-complete relation. Other system parameters
of FAS are set as in ΠAS above.

– FBB, FRO, GCLOCK have no parameterization.

States of the Parties:
– User, SO and LE: Cache crs from FCRS.

26 For simplicity, the user will never generate another keypair, and thus, be unable to
register if the adversary decides to be “rushing” and register some user with the same
uid before. This attack can be repeated even if the user generates a fresh keypair.
Also, the user which “stole” the identity (and hence public key) cannot create valid
ciphertexts, because this requires knowledge of the corresponding secret key.
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– User Ui:
• User long-term key: (pki, ski), where uid i = pki is the user identify.
• User secret (with period): (usk i, uvper i), where usk i is the current user

secret, and vper i the current user validity period.
• ureg i ∈ {0, 1} indicating whether Ui completed registration (initially

0).
• Public-key caches: uid j = pkj (once retrieved from FBB).

– LE: Cache LW-cached with entries (uid i, uvper i, usk i).
– SO, J and AU only need to interact with FAS.

Init:
– Input SO: (Init,SO)
– Input J: (Init,J)
– Input AU: (Init,AU)
– Note: For all parties:
• This task can only be invoked once.
• Ignore all other messages until this task has finished.

– Behavior
1. SO: Send (Register) to GCLOCK.
2. SO: Send (value) to FCRS and cache the result as crs.
3. SO: Send (Init,SO) to FAS.
4. P ∈ {J,AU}: Send (Init, P ) to FAS.
5. SO, J,AU: Upon receiving (InitFinished), output (InitFinished).

Party Init:
– This is merely a proxy to Party Init from FAS.

User Registration:
– Input Ui: (Register)
– Input SO: (Register)
– Note: Until ureg i = 1, Ui aborts all other tasks (except Party Init) and

ignores their messages.
– Behavior:

1. Ui: Send (value) to FCRS and cache the result as crs.
2. Ui: If pki 6= ⊥, let uid i = pki and skip to step 4.
3. Compute and store (pki, ski)← PKEAS.Gen(1λ).
4. Ui: Let uid i = pki.
5. Ui: Send (Register, uid i, uid i) to FBB.
6. Ui: Send (Retrieve, uid) to FBB. If the response is not (Retrieve,Ui,

uid , uid), abort. (uid was taken.)
7. Ui: Send (Ready) to SO.
8. Ui: Send (Register, uid i) to FAS.
9. SO: Upon receiving (Ready) from Ui, send (Retrieve,Ui) to FBB

and receive (Retrieve,Ui, uid i, uid ′i). If uid i 6= uid ′i, abort.
10. SO: Call FAS with input (Register, uid i).
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11. SO: Receive and propagate output (Registered, uid) (or propagate
an abort) from FAS.

12. Ui: Receive output (Registered) (or propagate an abort) from FAS.
13. Ui: Set ureg i := 1 and output (Registered).

Next Period:
– Input SO: (NextPeriod)
– Behavior: SO sends (Clock-Update) to GCLOCK.

Update:
– Input Ui: (Update)
– Input SO: ∅
– Behavior:

1. Ui: Query (Clock-Read) to GCLOCK and receive (Clock-Read, vper).
2. Ui: If uvper = vper , Ui output (UpdateDone, vper). Else continue.
3. Ui: Send (Update, uid i, vper) to SO.
4. Ui: Send (StoreSecret, uid i, vper) to FAS.
5. SO: Upon receiving (Update, uid , vper) from Ui:
6. SO: Query (Clock-Read) to GCLOCK and receive (Clock-Read, vper ′).

If vper ′ 6= vper , abort.
7. SO: Send (StoreSecret, vper) to FAS.
8. Ui: Upon receiving (SecretStored, usk ′i), update (usk i, uvper i) :=

(usk ′i, vper).
9. Ui: Generate output (UpdateDone, vper).

10. SO: Upon receiving (SecretStored, uid i), generate output (UpdateDone, vper).

Encrypt Message:
– Input Ui: (Encrypt,Uj ,m)
– Behavior:

1. Locally copy (usk i, uvper i) and use this copy.
2. If uvper i = ⊥, abort.
3. If pkj is not cached, send (Retrieve,Uj) to FBB and later receive

(Retrieve,Uj , uid j , uid ′j). If uid j 6= uid ′j or uid = ⊥, abort. Else
cache pkj = uid j .

4. c← PKEAS.Enc(crs, pkj ,m, (ski, usk i, uid i, uvper i))
5. Output (Ciphertext, c).

Decrypt Ciphertext:
– Input Uj : (Decrypt, c)
– Behavior:

1. Send (Clock-Read) to GCLOCK and receive (Clock-Read, vper).
2. Computem = PKEAS.DecRE(crs, skj , c, vper) and output (Plaintext,m).

Request Warrant:
– This is merely a proxy to Request Warrant from FAS.

Prepare Access:
– Input LE: (AccessPrep,W )
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– Behavior:
1. Parse W = (W1, . . . ,Wv) and Wi = (uid i, vper i,metai).
2. Send (GetSecrets,W ) to FAS and receive response (GotSecrets,

(usk1, . . . , uskv)) (or an abort happens). For i = 1, . . . , v, if usk i 6= ⊥
add (uid i, vper i, usk i) to LW-cached.

3. Output (AccessPrepDone)

Execute Access:
– Input LE: (AccessExec, c, (uid , vper))
– Behavior:

1. Find usk with (uid , vper , usk) in LW-cached. If none found, abort.
2. Let uid ′ = PKEAS.DecLE(crs, usk i, c). (Note that uid ′ may be ⊥.)
3. Output (AccessExecDone, uid ′).

Get Statistics:
– This is merely a proxy to Get Statistics from FAS.

Audit:
– This is merely a proxy to Audit from FAS.

In Appendix G we show the following theorem.

Theorem 3. Suppose Σ′ is a EUF-CMA-secure signature scheme, COM is a
statistically binding and computationally hiding commitment scheme, PKENCE is
a strong NINCE PKE scheme and IND-CCA secure and key-committing, SKENCE

is a strong NINCE SKE scheme and IND-CCA secure and key-committing.
Moreover, suppose all schemes are perfectly correct. Let leak(m, uid , uvper) =
(|m|, uvper) as the system parameter in FASTE, and let fp, ft be policy and trans-
parency functions. Then ΠASTE UC-realizes FASTE in the {FCRS,FBB,FAS,
GCLOCK}-hybrid model.

C.4 Definition of Algorithms for PKEAS

In this section, we define the subroutines which implement the encryption scheme
used in ΠASTE, called PKEAS. To simplify presentation, we use a notation where
PKEAS is given (oracle) access to both a random oracle (RO) and an “anony-
mously identity-bound” non-interactive zero-knowledge (NIZK) proofs system.
Both will be realized by hybrid functionalities in ΠASTE. Namely, as ΠASTE is in
the {FCRS,FBB,FAS,GCLOCK}-hybrid model, FRO will be used to implement the
random oracle(s), and FAS provides the “anonymously identity-bound” NIZK
prove and verify interface. For simplicity, we simply write RO(x) for a random or-
acle query (instead of “send (Hash, x) to FRO, receive (HashConfirm,m, x)”),
and likewise, we write NIZKAS for the “anonymously identity-bound” NIZK,
i.e. run π ← NIZKAS.Prove((usk , uid , uvper), stmt ,wit) for a prove request, and
NIZKAS.Verify(vper , stmt , π) for a verification request. See Remark 7 for the full
specification of the shorthand notation.

Remark 7 (Shorthand notation in PKEAS). We write RO(m) for the protocol:
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1. Send (Hash,m) to FRO.
2. Immediately receive (HashConfirm,m, h) and output h.

For NIZKAS, statement resp. witness have the form stmtR = (vper , stmt) resp.
witR = (uid , usk ,wit). We add an explicit witness relation R to statement and
verify as a short-hand to indicate that, if necessary, an (NP-)reduction is used
for witness and statement to prove relation R (if it does not coincide with the
relation used in FAS). We write NIZKAS.Prove((usk , uid , vper), stmtR,wit ,R) for
the protocol:

1. Let stmtR = (vper , stmt) and witR = (uid , usk ,wit). (If necessary, apply
(NP-)reduction.)

2. Send (Prove, stmtR,witR) to FAS.
3. Immediately receive (Proof, stmtR,witR, π) and output π.

We write NIZKAS.Verify(stmtR, π,R) for the protocol:

1. Send (Verify, stmtR) to FAS. (If necessary, apply (NP-)reduction.)
2. Immediately receive (Verification, stmtR, π, b) and output b.

We also write NIZKAS.Sim(stmtR,R) for the proof simulation subroutine in the
FAS-hybrid model. This means:

1. The simulator sends (Prove, stmtR) to the (dummy) adversary (i.e. the
environment).

2. The simulator immediately receives (Proof, π) and the subroutine outputs
π.

Note that the (dummy) adversary (i.e. the environment) must immediately an-
swer the proof-string request (Prove, stmtR), this request contains no infor-
mation on witR, and the immediate response (Proof, π) must be an accepting
proof. Thus, exactly corresponds to simulation of proofs. Moreover, from the
adversary’s perspective, the ideal NIZK in the (hybrid) FAS-functionality al-
ways verifies the relation w.r.t. a witness. Thus, the resulting (idealized) NIZK
has the properties of a straight-line simulation-extractable NIZK. We write
NIZKAS.Ext(stmtR, π) for the witness to (stmtR, π) (assuming NIZKAS.Verify(stmtR, π) =
1).

Construction 1. The construction of PKEAS is given as pseudocode for the al-
gorithms PKEAS.Gen, PKEAS.Enc, PKEAS.DecRE, PKEAS.DecLE, PKEAS.Sim, PKEAS.ExplnRE,
PKEAS.ExplnLE. We let `(λ) = 2λ. The relation RPKEAS for the NIZK proofs is
stated once in PKEAS.Enc. The message space is {0, 1}polymsg(λ).27 The space
SKENCE.K is {0, 1}poly(λ) for some poly. The space UID is {0, 1}poly(λ) for some
poly; in our case, UID is the same as public keys to PKENCE (i.e. public keys to

27 In principle, the message space may be {0, 1}∗, however, then all building blocks
(in particular additive secret sharing, commitments, and statement and witness size
in the zero-knowledge proof) would have to deal with varying message length. For
simplicity, we therefore fix the length.

82



PKEAS), which is w.l.o.g. {0, 1}poly(λ) for some poly. We assume that these spaces
are groups with group operation denoted “+” (so that we can use additive secret
sharing); for example, by viewing {0, 1}n as Zn or using XOR.

Remark 8. While it is possible to optimize the construction of PKEAS in many
ways, we are not aware of any technique to avoid the rather costly cut-and-
choose steps. Therefore, instead of optimizing for size or efficiency, we have
optimized PKEAS for clarity. The ciphertext size can, presumably, be reduced
by a (small) constant factor without compromising security. Also for simplicity,
PKEAS includes the recipients public key in a ciphertext, as this allows to define
and use PKEAS.Vfy independent of the receiver’s key.

Remark 9. While we do not make this explicit in the description of PKEAS,
we assume that PKEAS and its subroutines SKENCE, PKENCE use independent
random oracles ROPKEAS

, ROSKENCE
and ROPKENCE

. This is achieved by the usual
domain separation techniques. In the specification of PKEAS, we will write RO
for ROPKEAS

and assume ROPKEAS
: {0, 1}∗ → {0, 1}`(λ) to keep visual noise low.

Remark 10. Key generation for PKEAS, i.e. PKEAS.Gen(1λ), is independent of the
(global) commitment key ck and the ROM. This complies with our requirements
for encryption schemes (and allows proving statements about PKEAS.Gen with
zero-knowledge proofs for NP).

PKEAS.Gen(1λ)

1 : // For simplicity, sk equals the random coins.

2 : (pk, sk)← PKENCE.Gen(1λ; sk)
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PKEAS.Enc(ck , pkR,m, (skS , usk , uid , vper))

1 : // Prepare cut-and-choose encryption for LE

2 : for i = 1, . . . , `(λ)

3 : mi,0 +mi,1 = m // Additive secret shares

4 : usk i,0 + usk i,1 = usk

5 : uid i,0 + uid i,1 = uid

6 : for b ∈ {0, 1}
7 : ctREi,b = PKENCE.Enc(pkR,mi,b; r

RE
i,b )

8 : ctLEi,b = SKENCE.Enc(usk i,b, uid i,b; r
LE
i,b )

9 : wi,b = (mi,b, usk i,b, uid i,b, r
RE
i,b , r

LE
i,b )

10 : comi,b = COM.Com(ck , wi,b; r
com
i,b )

11 : di,b = (wi,b, r
com
i,b )

12 : // Consistency proof for commitments and ctxts.

13 : stmt = (vper , pkR, (comi,b, ctREi,b , ctLEi,b )i,b)

14 : wit = (usk , uid , (di,b)i,b)

15 : πcon = NIZKAS.Prove((usk , uid , vper),

16 : stmt ,wit ,RPKEAS) for relation

17 : RPKEAS = {(stmt ,wit) |
18 : (uid , skS) = PKENCE.Gen(1λ; skS)

19 : comi,b = COM.Com(ck , (mi,b, usk i,b, uid i,b,

20 : rREi,b , r
LE
i,b ); rcomi,b ) for all i, b

21 : ∀i : m = mi,0 +mi,1

22 : ∀i : usk = usk i,0 + usk i,1

23 : ∀i : uid = uid i,0 + uid i,1

24 : }
25 : // Cut-and-choose: Query challenge γ

26 : γ = RO(stmt , πcon) ∈ {0, 1}`

27 : πcut = (di,γi)i

28 : π = (πcut, πcon)

29 : return (pkR, (comi,b, ctREi,b , ctLEi,b )i,b, π).

PKEAS.Vfy(ck , c, vper)

1 : parse c = (pk, ((comi,b, ctREi,b , ctLEi,b )i,b),

2 : ((di,γi)i, πcon))

3 : stmt = (vper , pkR, (comi,b, ctREi,b , ctLEi,b )i,b)

4 : γ = RO(stmt , πcon) ∈ {0, 1}`

5 : if NIZKAS.Verify(stmt , πcon,RPKEAS) = 0 then

6 : return 0

7 : // Check cut-and-choose proof

8 : for i = 1, . . . , `(λ)

9 : b = γi

10 : parse di,b = (wi,b, r
com
i,b )

11 : parse wi,b = (mi,b, usk i,b, uid i,b, r
RE
i,b , r

LE
i,b )

12 : check comi,b == COM.Com(ck , wi,b; r
com
i,b )

13 : check ctREi,b == PKENCE.Enc(pk,mi,b; r
RE
i,b )

14 : check ctLEi,b == SKENCE.Enc(usk i,b, uid i,b; r
LE
i,b )

15 : return 0 if any check fails

16 : return 1
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PKEAS.DecRE(ck , sk, c, vper)

1 : if PKEAS.Vfy(ck , c, vper) = 0 then return ⊥

2 : parse c = (pk, (comi,b, ctREi,b , ctLEi,b )i,b, ((di,γi)i, πcon))

3 : if pk does not belong to sk then return ⊥

4 : stmt = (vper , pkR, (comi,b, ctREi,b , ctLEi,b )i,b)

5 : // Reconstruct m from secret-shares

6 : for i = 1, . . . , `(λ)

7 : for b ∈ {0, 1}
8 : mi,b = PKENCE.Dec(sk, ctREi,b )

9 : mi = mi,0 +mi,1 // mi := ⊥ if one share is ⊥

10 : if m is absolute majority of mi then

11 : return m

12 : else return ⊥

PKEAS.DecLE(ck , usk , c, vper)

1 : if PKEAS.Vfy(ck , c, vper) = 0 then return ⊥

2 : parse c = (pk, (comi,b, ctREi,b , ctLEi,b )i,b, ((di,γi)i, πcon))

3 : stmt = (vper , pkR, (comi,b, ctREi,b , ctLEi,b )i,b)

4 : γ = RO(stmt , πcon) ∈ {0, 1}`

5 : // PKEAS.Vfy(ck , c, vper) 6= ⊥ ensures NIZKAS.Verify(stmt, πcon,RPKEAS) = 1.

6 : // Extract possible uid from cut-and-choose proof

7 : for i = 1, . . . , `(λ)

8 : b = γi

9 : parse di,b = (wi,b, r
com
i,b )

10 : parse wi,b = (mi,b, usk i,b, uid i,b, r
RE
i,b , r

LE
i,b )

11 : usk i,1−b = usk i,b + usk

12 : uid i,1−b = SKENCE.Dec(usk i,1−b, ctLEi,1−b)

13 : uid i = uid i,0 + uid i,1 // ⊥ if one is ⊥

14 : if uid is absolute majority of uid i then

15 : return uid

16 : else return ⊥
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PKEAS.Sim(ck , pk, vper)

1 : // Prepare cut-and-choose encryption

2 : for i = 1, . . . , `(λ)

3 : mi,0,mi,1
r← {0, 1}polymsg // Simulate random shares

4 : usk i,0, usk i,1
r← SKENCE.K

5 : uid i,0, uid i,1
r← UID

6 : for b ∈ {0, 1} di,b = (wi,b, r
com
i,b )

7 : wi,b = (mi,b, usk i,b, uid i,b, r
RE
i,b , r

LE
i,b )

8 : comi,b = COM.Com(ck , wi,b; r
com
i,b )

9 : comi,b = COM.Com(ck , (usk i,b, uid i,b); r
com
i,b )

10 : ctREi,b = PKENCE.Sim(1λ, pk) // Simulate encryptions

11 : ctLEi,b = SKENCE.Sim(1λ)

12 : // Non-interactively compute challenge γ

13 : stmt = (vper , pkR, (comi,b, ctREi,b , ctLEi,b )i,b)

14 : γ = RO(stmt , πcon) ∈ {0, 1}`

15 : // Simulate the consistency proof.

16 : πcon = NIZKAS.Sim(stmt ,RPKEAS)

17 : πcut = (di,γi)i

18 : return (pk, ((comi,b, ct i,b)i,b, ctR, (πcut, πcon)).

PKEAS.ExplnRE(ck , sk, c,m, vper)

1 : parse c = (pk, ((comi,b, ctREi,b , ctLEi,b )i,b), ((di,γi)i, πcon))

2 : γ = RO(vper , pk, (comi,b, ctREi,b , ctLEi,b )i,b)

3 : // Explain all unopened ct
RE
i,b

4 : for i = 1, . . . , `(λ)

5 : b = 1− γi
6 : PKENCE.Expln(sk, ctREi,b ,m−mi,b)

PKEAS.ExplnLE(ck , usk , c, uid , vper)

1 : parse c = (pk, ((comi,b, ctREi,b , ctLEi,b )i,b), ((di,γi)i, πcon))

2 : γ = RO(vper , pk, (comi,b, ctREi,b , ctLEi,b )i,b)

3 : // Explain all unopened ct
LE
i,b

4 : for i = 1, . . . , `(λ)

5 : b = 1− γi
6 : SKENCE.Expln(usk − usk i,b, ctLEi,b , uid − uid1,b)
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C.5 On Efficiency and the Necessity of (NI)NCE

One may argue that, due to the use of the cut-and-choose zero-knowledge proof
of knowledge in PKEAS, it is unnecessarily or impractically inefficient. However,
as noted before, this is a consequence of factors which seem impossible (or at
least, very hard) to avoid.

NINCE In a nutshell, NINCE-secure SKE (or PKE) allows to simulate an arbi-
trary number of ciphertexts without knowledge of the encrypted message, and
upon a “corruption” query, output a secret key which correctly decrypts all sim-
ulated ciphertexts. By an information-theoretic argument, NINCE is impossible
in the plain model, and even in the non-programmable random oracle model [48]
(NPROM). Thus, in this context, a programmable ROM is not an excessively
strong assumption. For NCE, encryption and decryption is allowed to be inter-
active, and there are simple constructions in the plain model (assuming secure
erasure).

NINCE and FASTE and FAS Since we do not consider adaptive corruption,
there is no immediate relation between FASTE and NINCE. However, there is an
informal connection which suggests that implementing FASTE based on FAS re-
quires similar assumptions and techniques as NINCE. Namely, if FAS is used to
store escrow keys, and non-interactive encryption and decryption algorithms are
used, as is done in ΠASTE, then the request of the escrow keys behaves very sim-
ilar to adaptive corruption of the key. In particular, this suggests that realizing
FASTE with a non-interactive implementation of Execute Access is impossible
without strong setups (like the PROM). As such setups are “black-box”, combin-
ing them with zero-knowledge is non-trivial. Although expensive, cut-and-choose
techniques are (to the best of our knowledge) the only known approach.

Avoiding NINCE in the PROM As noted above, avoiding PROM-based NINCE
and cut-and-choose constructions seems hard. Except, by an interactive protocol
for the Execute Access task; however, this is undesirable in practice.

C.6 Efficiency estimate of PKEAS

As the efficiency of ASTE is depends mostly on PKEAS, we give a rough estimate
here, which clarifies the rough order of magnitude.

Clearly, we require 2`(λ) encryptions with PKENCE and SKENCE, where `(λ) =
2λ is the minimal choice for λ bits of security.28 With space-efficient public key
encryption schemes based on DLOG, the size of public key encryptions is two

28 If k of the cut-and-choose ciphertexts are “bad”, e.g., don’t share the message m
extracted from πcon, then the probability to get a bad challenge, failing to detect the
inconsistency, is 2−k. We need k ≥ `(λ)/2 (i.e., the majority of shares is bad) for
decryption of PKEAS to fail/be inconsistent with πcon. For λ bits of security, we thus
impose 2−(`(λ)−`(λ)/2) = 2−`(λ)/2 ≤ 2−λ, hence `(λ) ≥ 2λ. With this, about 2λ tries
are required to get a constant success chance.
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group elements of size 2λ each. For secret key encryptions, the size is (at least)
plaintext length, which is at least 2λ bits for uid (as a PKE public key). This
means at least 4λ · 4λ bits for public key (resp. 4λ · 2λ secret key) ciphertexts,
so at least 24λ2 bits for the ciphertexts in the cut-and-choose setting alone. For
λ = 128, this means 24 · 216 bits are a lower bound on the size, and using, e.g.,
DDH-based public key encryption schemes, at least 8λ group exponentiations
are required.

For the cut-and-choose proof, there are many options and trade-offs. Our
definition of PKEAS is optimized for clarity, and thus we chose to make separate
comi,b. However, succinct commitments with succinct proofs of opening are an
option as well. Similarly, the proof system for πcon can be succinct. This is
roughly a trade-off between size and computational efficiency of the sender. For
the receiver, depending on the chosen proof system, a larger or smaller amount
of computation is incurred. Thus, it is not straightforward to find a suitable
estimate here.

We give rough estimates of (lower) bounds for λ = 128 per encryption (i.e.
run of PKEAS.Enc):

– At least 1536kiB are required per ciphertext.

– For succinct (and efficient) zero-knowledge proofs and commitments, the
total size should be around 1536kiB to 2MiB, depending on the chosen proof
systems, but the computational overhead is likely rather large (say 10×—
1000×) for current proof systems.

– For practically efficient (but large) zero-knowledge proofs based onΣ-protocols
and ElGamal commitments:

• At least additionally 8λ group exponentiations are required for comput-
ing commitments and the same amount for the proofs.29 This leads to
at least 24λ overall, roughly 3000 for λ = 128.

• Ciphertext size increases by at least 4λ · 4λ for the commitments and
twice that for proofs. Total ciphertext size is at least (24 + 16 + 32)λ2,
which is more than 4.5MiB for λ = 128.

Overall, PKEAS encryption is not unusably inefficient nor are the ciphertexts
unusably large. But even our (very) optimistic lower bounds show that the costs
incurred by the cut-and-choose proof seem to make the scheme rather costly.
This leaves open the question for a truly practical PKEAS alternative (which
presumably requires new techniques for zero-knowledge-compatible NINCE).

29 This is a very optimistic assumption. Many approaches may incur a far larger over-
head if secret key and message spaces of encryption schemes are unfavorable for stan-
dard Σ-protocol-based zero-knowledge proofs. Handling via (NP-)reductions would
inflating proof size and computational costs. Techniques for small overhead exist in
special groups, e.g., given bilinear maps, but the resulting group elements are larger
than (our assumed) 2λ bits.
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D Discussion of Design Decisions

In this section we want to elaborate on some decisions made during the design
of the whole system.

A first question would be why we used the threshold crypto approach (secret-
sharing a single decryption key and encrypting the user’s escrow secrets with
the corresponding public key) instead of directly secret-sharing the user escrow
secrets with the blockchain committee. Since there is more literature related to
the secret-sharing approach (e.g., [33, 8]) this approach might seem more natural
at first glance. But a big drawback of this approach is scalability. Since there very
well may be millions of escrow secrets (one for each user and validity period),
the workload for the committee is immense since they need to hand-over all
those secrets. While there has been effort to speed up the hand-over process
[20], the workload for the committee remains high. This raises the question on
how to incentivize parties to apply for a committee position, which is an entirely
different research direction.

One idea to reduce the workload for committee members would be to not
have one committee that handles all secrets, but multiple committees that each
handle one (or a constant number of) secrets. While this reduces the workload per
committee member, it significantly increases the number of nodes needed for all
the committees. If not enough nodes are available to fill the millions of committee
member positions, some nodes will have to apply for multiple committees –
and thus their workload increases again. Despite the glaring disadvantage of
workload, the multiple-committee approach has one advantage: if an attacker
were to succeed in corrupting the majority of one of the committees, only the
secrets of that committee would be at risk, not all secrets.

With our threshold crypto approach, the committee only stores one item
(the decryption key), so the hand-over phase should be more efficient than the
secret-sharing approach.

One disadvantage of our current approach is that if an attacker manages
to compromise a majority of the blockchain committee, it can reconstruct the
threshold decryption key. If that attacker then also colludes (or is) the system
operator, the attacker would be able to compute all escrowed user secrets. To
prevent that, the threshold encryption keypair would need to be changed pe-
riodically, which would lead to a significant efficiency decrease. Also, then the
question arises how law enforcement would be able to receive decrypted user
secrets that were encrypted with a previous threshold key. The committee could
keep copies of all previous keypairs to be able to decrypt ciphertexts created dur-
ing previous key epochs. This would lead to a forward secure but not backward
secure system.

Another question is why we put a lot of trust on the system operator. As
explained in Section 2.3 we implicitly have to trust SO in some aspects, although
SO is modeled as corruptible in our system. In particular, we assume that SO
honestly stores the partial secrets and ciphertexts and releases them upon LE’s
request because if SO cheats at this step, we can only detect it but not prevent
it. We believe this assumption to be reasonable since, to earn revenue, SO has
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an intrinsic motivation to keep the system running for a long time. However,
it would be possible to remove that trust assumption. The user could encrypt
the ciphertext containing the escrow secret again, this time under LE’s public
encryption key. The resulting ciphertext would then directly be sent to and
stored by LE. While this approach removes some trust from SO, it has two
disadvantages: 1. LE is now directly involved in every Store Secret task and thus
possibly in millions of interactions each validity period (e.g., month). 2. This
directly limits the role of LE to be played by a single party (or multiple parties
sharing a single encryption keypair). In our system we wanted to minimize the
involvement of LE (in our system LE’s workload only scales with the number of
surveilled users, not with the number of existing users) and to keep the possibility
open to expand the system to multiple law enforcement agencies (each with their
own key pair). For these two reasons, we decided to put the additional trust in
SO.

This second reason is also the reason why there is no fixed LE keypair in our
system (neither in FAS nor in FAD): We wanted the system to be easily expand-
able to multiple LE keys. Therefore, every time LE requests the decryption of
a partial secret on the blockchain, it can specify a public key under which the
result will be encrypted. When the role of LE is played by multiple parties, each
party can specify its own key pair there.

Having the idea of multiple LE parties in mind, the question arises why we
limit our system to a single auditor party with a single and fixed encryption key
pair. Would it not be preferable to be able to selectively determine a different
auditor for each warrant request? We deliberately chose to stick to a single
auditor key pair to keep the system from being overly complex. Nonetheless, the
system is designed in a way so that it is easy to extend it to multiple auditor
parties (for example, there might be a separate AU party for each LE party).

A note on GDPR’s “right to be forgotten”. We also consider user rights, such as
the “right to be forgotten” (Article 17 of the European General Data Protection
Regulation (GDPR)), which enables users to request the deletion of all their
personal data. Publicly accessible within our system are only ciphertexts that
are stored on the blockchain and thus cannot simply be deleted, as blockchains
are write-only. There are two types of ciphertexts.

Firstly, there are ciphertexts containing a secret-share of the user’s escrow
secret. The other secret-share of this secret is held by the system operator, who
has the ability to delete its share upon receiving a deletion request from the user.
Without the system operator’s share, it is not possible to reconstruct the user’s
escrow secret.

Secondly, court orders encrypted under the auditor’s key are stored on the
blockchain. To avoid granting infinite access to these orders, our system can be
expanded to incorporate annually rotating auditor keys. Then, upon the expi-
ration of the retention obligation, the auditor’s decryption key for the warrants
pertaining to that specific year can simply be deleted.
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The concept of deleting an encryption key instead of deleting the ciphertext
is commonly known as “crypto-shredding”. This approach is widespread in the
IT security community, e.g., in HDDs, SSDs, file systems and databases.

E Security Proof: ΠAS UC-realizes FAS

Here we prove that the protocol ΠAS from Appendix B.2 UC-realizes the func-
tionality FAS from Section 3. In particular, we prove the following theorem.

Theorem 1. ΠAS UC-realizes FAS in the {FAD,FCRS,FBB,GCLOCK}-hybrid
model under the assumptions that COM is a (computationally) hiding, (statisti-
cally) binding and (dual-mode) extractable and equivocable commitment scheme,
Σ is a EUF-CMA secure signature scheme, NIZK is a straight-line simulation-
extractable non-interactive zero-knowledge proof system, and TPKE is IND-CPA
secure against all PPT-adversaries A who statically corrupts either (1) a subset
of the users, (2) LE and a subset of the users, (3) SO and a subset of the users,
or (4) SO, LE and a subset of the users.

To simplify the security proof a bit, we split it into two cases, depending on
whether SO is honest or corrupted. We call the first and second corruption sce-
nario (where SO is honest) System Security and the third and fourth corruption
scenario (where SO is corrupted) User Security and prove them separately.

E.1 System Security

In the System Security case, we handle the following corruptions:

– U can be statically corrupted, so some U are corrupted and some U are
honest.

– SO is honest here
– LE can be statically corrupted
– J and AU are always honest

We now first describe a simulator S for those corruptions and then proceed to
prove the security. The simulator uses the following writing conventions:

– If FAS wants to deliver outputs to honest parties, delay them until the sim-
ulator explicitly allows them.

– Deny any other calls until the System Init task has been successfully com-
pleted

– Hybrid functionalities FCRS and FBB are simulated honestly. We assume
in the following that whenever calls to those functionalities are made, S
simulates them honestly.

– Hybrid functionality FAD is mostly simulated honestly, except the tasks Re-
quest Decryption, Get Statistics and Handover (for details see the paragraph
“simulation of FAD”)

The simulator S for System Security is defined as follows.
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Simulator for System Security

State of the Simulator

– Setup
• TPKE keypair: (pk, sk)
• SO Signing keypair: (vkSO, skSO)
• J Signing keypair: (vkJ, skJ)
• Common reference strings (crsAS

zk , crscom)
• Trapdoor tdext

com for extracting commitments
• Trapdorr tdNIZK for simulating and extracting NIZKs

– Lsys−sec
Registered with (uid , σreg, comuid, decomuid) entries for corrupted users.

Filled in the task User Registration. This is the same list that SO keeps
in ΠAS.

– Lsys−sec
HonestU with (pid , uid , vkU, skU) entries for honest users. Filled in the

task User Registration.
– Lsys−sec

StoreSecret with (uid , vper , secret , sec1 , comsec1 , decomsec1 , σsec1 , sec2 , ct , σU)
entries for corrupted users. Filled during StoreSecret.

– If LE is corrupted:
• The list Lsys−sec

Warrants with (W , 1, W̃ , σ
W̃

) entries. Stored in Request War-
rant (like J in ΠAS)

• The list Lsys−sec
HonestSecrets stores (uid i, vper i, sec1 ,i) entries for honest users.

Filled during Request Warrant and used in FAD.RequestDecryption
• The list Lsys−sec

ReqNotReady temporarily stores (ct i, sec2 ,i) entries for hon-
est users. Filled during the simulation of FAD.RequestDecryption and
cleared during the simulation of FAD.Handover.

– If LE is honest:
• The lists LWarrants, LRequests, L

Ready
Requests and LStats in FAD are not used. In-

stead, manage a separate list for statistics: Lsys−sec
Stats with ft(W ) entries.

This list is filled during RequestWarrant.
– List for simulation of FBB: LBB (initially empty).

System Setup (FCRS):

– (crsAS
zk , tdNIZK)← NIZK.Setup(1λ)

– (crscom, td
ext
com)← COM.SetupExt(1λ)

– Store all generated values

System Setup (FBB):

– Create empty list LBB.
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System Setup (FAD):

– Execute this during the System Init task
– Create signing keypair for SO: (vkSO, skSO)← Σ.Gen(1λ) and store it
– Create signing keypair for J: (vkJ, skJ)← Σ.Gen(1λ) and store it
– Honestly simulate the Init task of FAD with the generated public keys as

inputs. Store all generated variables and lists. Leak all necessary infor-
mation to the adversary.

System Setup (FAS):

– Choose the same system parameters for FAS as ΠAS

Simulation of FCRS

Corrupt P can issue calls to FCRS whenever they want, not just at the
intended points in the protocol. We specify here once how all calls from P
to FCRS to all tasks are handled and ignore calls to FCRS for most tasks in
the following.

S answers all calls honestly.

Simulation of FBB

Corrupted U can issue calls to FBB whenever they want, not just at the
intended points in the protocol. We specify here once how all calls from P
to FBB to all tasks are handled and ignore calls to FBB in the following.

S answers all calls honestly.

Simulation of FAD

Corrupt P can issue calls to FAD whenever they want, not just at the in-
tended points in the protocol. We specify here once how all calls from P to
FAD to all tasks are handled and ignore calls to FAD for most tasks in the
following.

S simulates FAD honestly (including taking track of all internal lists and
leaking information to the adversary), except for the following tasks:

– Request Decryption

1. Retrieve
(
Request, W̃ , σ

W̃

)
as input from LE

2. Check Warrant Signature: b← Σ.Vfy(vkJ, W̃ , σ
W̃

)
3. If b = 0, abort (Warrant not valid)

4. Find the entry (W , 1, W̃ , σ
W̃

) ∈ Lsys−sec
Warrants containing W̃ . If none exists,

abort (warrant not granted)
5. Call FAS in the name of LE with input (GetSecrets,W ) and get

output (GotSecrets, (secret1, . . . , secretv)) for LE

6. Parse enhanced warrant: (W̃1, . . . , W̃v) ← W̃ and (uid i, vper i,metai,

ct i)← W̃i
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7. For each i from 1 to v:
(a) Check if there is an entry (·, uid i, ·, ·) ∈ Lsys−sec

HonestU. If yes (case: user is
honest) go to step 7b, if not (case: user is corrupted) go to step 7f.

(b) For uid i, retrieve (uid i, vper i, sec1 ,i) from Lsys−sec
HonestSecrets

(c) Compute sec2 ,i such that sec1 ,i ⊕ sec2 ,i = secret i
(d) Add (ct i, sec2 ,i) to Lsys−sec

ReqNotReady

(e) Then go to step 8
(f) Append ct i to LRequests of FAD

(g) Then go to step 8

8. Send (Request, pidLE, ft(W ), |W̃ |, v) to A
9. When A allows to deliver output, store W̃ in list of warrants LWarrants

of FAD

10. Output (Request) to LE
– Get Statistics
• If LE is corrupted:̧

1. Simulate task honestly
• If LE is honest:

1. Send (GetStatistics) to the adversary
2. Output (GotStatistics, Lsys−sec

Stats )
– Handover

Simulate honestly, but additionally execute the following steps at the end:
• For each item (ct i, sec2 ,i) in Lsys−sec

ReqNotReady, append (ct i, sec2 ,i) to LPending
Requests

• Clear Lsys−sec
ReqNotReady

System Init (honest SO, honest J, honest AU)

1. Upon receiving the leak (Init) from FAS

(a) Initialize FAD as described above
(b) Allow FAS to deliver output to all parties

Party Init (honest P)

1. Upon receiving the leak (PInit) from FAS

(a) Send (GetSKeys) and (GetPK) to the adversary
(b) Allow FAS to deliver output to all parties

Party Init (corrupted P)
This is handled by simulation of FAD.

User Registration (honest U, honest SO)

1. Upon receiving the leak (Register, pid , uid) from FAS

(a) Send (Ok) to FAS
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2. When FAS wants to deliver output¸
(a) Generate keypair for the user: (vkU, skU)← Σ.Gen(1λ)
(b) Store (pid , uid , vkU, skU) in list of honest users Lsys−sec

HonestU

(c) Honestly simulate Register and Retrieve calls to FBB including
leaks to the adversary

(d) Send (GetSKeys) and (GetPK) to the adversary
(e) Allow FAS to deliver output

User Registration (corrupted U, honest SO)

1. Upon receiving the message (uid) from U with pid pidU
′

(a) If there exists an entry (uid , ·, ·, ·) in Lsys−sec
Registered, let S abort in the name

of SO (User already successfully registered)
(b) Call FAS in the name of U with (Register, uid) under the pid pidU

′.
i. After receiving

(
Register, pidU

′, uid
)

from FAS, send (Ok) to FAS

ii. If FAS aborts, S aborts as well.
2. Upon receiving output (Registered) from FAS to U

(a) Note that receiving this output implies that uid = uid ′, where uid ′ is
the secret SO input.

(b) Report message (uid ok) from SO to U
3. Upon receiving (Ok) from U to SO

(a) Honestly simulate call (Retrieve, uid) to FBB including leaks to the
adversary

(b) Receive answer (Retrieve, pidU
∗, uid , vk∗U) from FBB. If pidU

∗ 6=
pidU

′, abort (UID already taken by another user or not registered).
(c) (comuid, decomuid) = COM.Com(crscom, uid)
(d) σreg = Σ.Sign(skSO, comuid)
(e) Store (uid , σreg, comuid, decomuid) in Lsys−sec

Registered

(f) Report message (σreg, comuid, decomuid) from SO to U
(g) Allow FAS to deliver output to SO

Store Secret (honest U, honest SO)
Nothing to do, since FAS.StoreSecret does not leak anything,ΠAS.StoreSecret
has no calls to subfunctionalities and all involved parties are honest.

Store Secret (corrupted U, honest SO)

1. Upon receiving (uid , σreg, comuid, decomuid, comsec2 , comvper, decomvper) from
U to SO:

(a) Extract Commitment comvper to get vper : vper ← COM.Extract(tdext
com,

comvper)
(b) Call FAS with input (StoreSecret, uid , vper) in the name of U
(c) If FAS aborts, let S abort as well (in the name of SO)
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2. Upon receiving (SecretStored, secret) as output from FAS to U
(a) Extract Commitment comsec2 to get sec2 : sec2 ← COM.Extract(tdext

com,
comsec2 )

(b) Calculate sec1 such that secret = sec1 ⊕ sec2 ∈ S
(c) Report message (sec1 ) from SO to U

3. Upon receiving (ct , comsec, πss, σU, σsec1 , comsec1 , decomsec1 ) from U to
SO:

(a) Compute signature σss = Σ.Sign(skSO, (comuid, comsec, comvper ))
(b) Report message (σss) from SO to U
(c) Store (uid , vper , secret , sec1 , comsec1 , decomsec1 , σsec1 , sec2 , ct , σU) in Lsys−sec

StoreSecret

(d) Allow FAS to deliver output to SO

Request Warrant (corrupted LE, honest J, honest SO)

1. Upon receiving the message (W ) from LE to J
(a) Call FAS in the name of LE with input (RequestWarrant,W )
(b) Allow FAS to deliver output to J

2. Case 1: If then FAS delivers the output (RequestWarrant, 0) to LE:
(a) Report message (0,⊥) from J to LE

Note that this concluded the simulation for this task in this case

3. Case 2: If then FAS leaks
(
RequestWarrant, ft(W ), |W̃ |, v

)
:

(a) Set b := 1
(b) Set σW = Σ.Sign(skJ,W )
(c) Store (W , b,⊥,⊥) in Lsys−sec

Warrants

(d) Report message (b, σW ) from J to LE
4. Upon receiving the message (W , σ′W ) from LE to SO

(a) Verify Signature: If σW 6= σ′W , abort in the name of SO
(b) Parse warrant: (W1, . . . ,Wv)←W and (uid i, vper i,metai)←Wi

(c) Create empty lists Lsys−sec
C and Lsys−sec

MsgReqW

(d) For each i from 1 to v:
i. Check if there is an entry (·, uid i, ·, ·) ∈ Lsys−sec

HonestU. If yes (case: user is
honest) go to step 4(d)ii, if not (case: user is corrupted) go to step
4(d)x

ii. Fake ciphertext ct i ← TPKE.Enc(pk, 0) and append ct i to Lsys−sec
C

iii. For uid i, retrieve entry (pid i, uid i, vkU, skU) ∈ Lsys−sec
HonestU.

iv. Create signature σU,i ← Σ.Sign(skU, (ct i, uid i, vper i))
v. Draw random sec1 ,i

r← S and commit to it: (comsec1,i , decomsec1,i )←
COM.Com(crscom, sec1 ,i)

vi. Create signature σsec1 ,i ← Σ.Sign(skU, comsec1,i )

vii. Append (σU,i, sec1 ,i , comsec1,i , decomsec1,i , σsec1 ,i) to Lsys−sec
MsgReqW

viii. Append (uid i, vper i, sec1 ,i) to Lsys−sec
HonestSecrets

ix. Then go to step 4e
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x. For uid i retrieve the entry (uid i, vper i, secret i, sec1 ,i , comsec1,i , decomsec1,i ,

σsec1 ,i, sec2 ,i , ct i, σU,i) from Lsys−sec
StoreSecret. If none exists, abort in the

name of SO (User has not stored a secret)
xi. Append ct i to Lsys−sec

C and (σU,i, sec1 ,i , comsec1,i , decomsec1,i , σsec1 ,i)

to Lsys−sec
MsgReqW

xii. Then go to step 4e
(e) Build enhanced warrant W̃ by adding ct i (from Lsys−sec

C ) to each Wi

(f) Report message (W̃ , Lsys−sec
MsgReqW) from SO to LE

5. Upon receiving the message (W̃ , {σU,i, sec1 ,i , comsec1,i , decomsec1,i , σsec1 ,i}i∈{1,...,v})
from LE to J

(a) Build W out of W̃ by deleting ct i from each W̃i

(b) If there is no entry (W , 1,⊥,⊥) in Lsys−sec
Warrants, abort in the name of J

(c) Parse enhanced warrant: (W̃1, . . . , W̃v)← W̃ and (uid i, vper i,metai, ct i)←
W̃i

(d) For i from 1 to v:
– For uid i, retrieve entry (pidU,iuid i, vkU,i) ∈ LBB

– Check signatures: IfΣ.Vfy(vkU,i, (ct i, uid , vper i), σU,i) = 0 orΣ.Vfy(vkU,i,
comsec1 ,i, σsec1 ,i) = 0, abort in the name of J

– Check commitment: If COM.Open(crscom, comsec1 ,i, decomsec1 ,i, sec1 ,i) =
0, abort in the name of J

(e) Sign enhanced warrant: σ
W̃

= Σ.Sign(skJ, W̃ )

(f) Change the entry (W , 1,⊥,⊥) in Lsys−sec
Warrants to (W , 1, W̃ , σ

W̃
)

(g) Report message
(
σ
W̃

)
from J to LE

6. When the adversary allows FAD to deliver output in FAD.RequestDecryption
(a) Finish simulation of FAD.RequestDecryption
(b) Send (Ok) to FAS

(c) Receive output (WarrantAnswer, b) from FAS

Request Warrant (honest LE, honest J, honest SO)

1. Upon being notified that FAS wants to deliver output to J, allow the
output

2. Upon receiving the leak
(
RequestWarrant, ft(W ), |W̃ |, v

)
from FAS:

(a) Send (Request, pidLE, ft(W ), |W̃ |, v) to A
3. When A allows to deliver output in FAD.RequestDecryption

(a) Store ft(W ) in Lsys−sec
Stats for managing statistics in FAD

(b) Send (Ok) to FAS

(c) Allow FAS to deliver output to LE
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Get Secrets (corrupted LE)
This is handled by simulation of FAD.

Get Secrets (honest LE)

1. Upon receiving the leak (GetSecrets) from FAS

(a) Leak (Retrieve) to A
(b) Allow FAS to deliver output

Get Statistics (corrupted P)
This is handled by simulation of FAD.

Get Statistics (honest P)

1. Upon receiving the leak (GetStatistics) from FAS

(a) Send (GetStatistics) to A and wait for okay from A
(b) Allow FAS to deliver output

Audit (honest AU)

1. Upon receiving the leak (AuditRequest) from FAS

(a) Send (AuditRequest) to A and wait for okay from A
(b) Allow FAS to deliver output

Prove (corrupted U)
Nothing to do since this is a completely local task.

Prove (honest U)

1. Upon receiving the message (Prove, stmtR) from FAS

(a) Simulate proof: π ← NIZK.Sim(tdNIZK, stmtR,RASzk )
(b) Send (Proof, π) to FAS

Verify (corrupted P)
Nothing to do since this is a completely local task.

Verify (honest P)

1. Upon receiving the message (Verify, stmtR, π) from FAS

(a) Extract Witness: witR ← NIZK.Ext(tdNIZK, stmtR, π,RASzk )
(b) Send (witness,witR) to FAS

We now prove the following theorem:

Theorem 5 (System Security). ΠAS UC-realizes FAS in the {FAD,FCRS,
FBB,GCLOCK}-hybrid model under the assumptions that

– COM is a (computationally) hiding, (statistically) binding and extractable
commitment scheme

– Σ is a EUF-CMA secure signature scheme
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– NIZK is a straight-line simulation-extractable non-interactive zero-knowledge
proof system

– TPKE is IND-CPA secure

against all PPT-adversaries A who statically corrupts one of the following sets

1. a subset of the users
2. LE and a subset of the users

To prove Theorem 5, we proceed in a series of games, where F i+1
AS behaves the

same as F iAS except for the stated changes and Si+1 behaves the same as Si
except for the stated changes.

Game 0. Game 0 is equivalent to the real experiment. That is,

H0 := Exp
ΠAS

FAD,FCRS,FBB,GCLOCK,S0,Z

with S0 being the dummy adversary. This means that all parties execute the
real protocol.

Game 1. In this game, the simulator S1 takes control over FCRS, FBB and
FAD, but executes them honestly. Additionally, F1

AS is introduced, and all honest
parties are replaced by dummy parties that forward their inputs to F1

AS and when
receiving output from F1

AS forward it to the environment. F1
AS, upon receiving

any message from a dummy party forwards it to the simulator S1 and asks it
for output. S1 executes the real protocol for all honest parties (using the inputs
received from F1

AS) and instructs F1
AS to deliver the resulting outputs. Note that

S1 simulates FBB like S does.
Proof Sketch: Game 0 ≈ Game 1.

S1 executes the same code as the real parties on the same inputs (that have
been forwarded by F1

AS). Thus, Game 0 and Game 1 are identical from the
environment’s view.

Game 2. In this game, S2 generates the common reference string for the
commitment scheme with an extraction trapdoor tdext

com as (crscom, td
ext
com) ←

COM.SetupExt(1λ). S2 also generates the common reference string for the non-
interactive proof system with a trapdoor for simulating and extracting proofs,
i.e., (crsAS

zk , tdNIZK)← NIZK.Setup(1λ). Thus, S2 simulates FCRS the same way
S does.

Proof Sketch: Game 1 ≈ Game 2.
Indistinguishability follows from the extractability of COM and the simulation-
extractability of NIZK.

Game 3. During setup of FAD, S3 is asked for the keypairs for SO, J and
AU. S3 generates the keypairs honestly and stores them.

Proof Sketch: Game 2 ≈ Game 3.
S3 runs the same key generation algorithm as the real protocol does for honest
parties, therefore Z’s view remains unchanged.

Game 4. S4 keeps track of additional information. For each honest U, it
stores (uid , vper , sec1 ) in the list Lsys−sec

HonestSecrets at the end of the Store Secret task.
For each corrupted U, it stores (uid , vper ,⊥, sec1 , comsec1 , decomsec1 , σsec1 , sec2 ,
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ct , σU) in the list Lsys−sec
StoreSecret at the end of the Store Secret task. Note that nor-

mally instead of ⊥ the user’s secret should be stored in the list. But at this point
we do not know the secret yet.

Proof Sketch: Game 3 ≈ Game 4.
S4 only keeps track of more information (that the honest parties acquire during
the real protocol), nothing to distinguish for Z.

Game 5. In this game, F5
AS additionally handles the tasks System Init and

Party Init the same way FAS does, and S5 handles these task the same way S
does.

Proof Sketch: Game 4 ≈ Game 5.
Since SO, J and AU are honest, the games are identical for the System Init task.
Party Init for honest Parties: Z’s view remains identical, since S5 only needs to
leak (GetSKeys) and (GetPK) to A to emulate the call to FAD.
Party Init for corrupted Parties: Only the simulation of hybrid functionalities
needs to be handled, which are already simulated honestly.

Game 6. In this game, F6
AS additionally handles the Audit task the same

way FAS does, and S6 handles this task the same way S does. Note that since
the auditor AU is assumed to be honest, simulation only requires a simulated
(AuditRequest) to FBCRA.

Proof Sketch: Game 5 ≈ Game 6.
Since AU is honest, these games are identical.

Game 7. In this game, F7
AS additionally handles the User Registration task

the same way FAS does, and S7 handles this task the same way S does.

Proof Sketch: Game 6 ≈ Game 7.
For honest U: Z’s view remains identical, since S7 only needs to leak (GetSKeys)
and (GetPK) to A to emulate the calls to FAD and to honestly emulate the
calls to FBB. Note that additionally some information about honest users (pid ,
uid and keys) are stored in a designated list Lsys−sec

HonestU.
For corrupted U: Since S essentially simulates SO in the User Registration task
honestly, the hybrids are indistinguishable for Z. Note that S keeps track of the
list of registered users like SO does in ΠAS.

Game 8. If LE is honest, F8
AS additionally handles the Request Warrant task

the same way FAS does for honest LE, and S8 handles this task the same way
S does for honest LE. Additionally, S8 simulates FAD as S does for the Get
Statistics task in FAD. Note that if LE is corrupted, this game changes nothing.

Proof Sketch: Game 7 ≈ Game 8.

F8
AS sends

(
RequestWarrant, ft(W ), |W̃ |, v

)
to S8. S8 then simulates the

execution of FAD.RequestDecryption by sending (Request, pidLE, ft(W ), |W̃ |,
v) to A, which yields an indistinguishable execution of the Request Warrant
task. But now the Get Statistics task has to be adapted as well, since we now
do not store a warrant in LWarrants (since we do not actually know the warrant).
This is fixed by directly storing ft(W ) in a separate list Lsys−sec

Stats during Request
Warrant and using this list in FAD.GetStatistics to return the same statistics
as the real game does. The task FAD.GetStatistics now behaves like S does,
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since there we only changed the behavior for honest LE and the task is executed
honestly for corrupted LE.

Game 9. If LE is corrupted, F9
AS additionally handles the Request Warrant

task the same way FAS does for corrupted LE, and S9 handles this task the same
way S does for corrupted LE. Additionally, S9 simulates FAD as S does for the
Request Decryption and Handover tasks in FAD. Note that if LE is honest, this
game changes nothing. Also note that now S9 simulates FAD as S does (for
every task and every corruption scenario).

Proof Sketch: Game 8 ≈ Game 9.
S9 receives the necessary information from LE to call F9

AS with the correct
input. After receiving output from F9

AS, S9 mostly executes the real protocol
for J and SO. For corrupted users, the information needed to send the correct
messages can be extracted from the list Lsys−sec

StoreSecret that was filled during Store
Secret (for corrupted users). For honest users, the strategy is a bit different, since
the list Lsys−sec

StoreSecret has no entries for honest users. For honest users, S9 creates
a fake ciphertext (by encrypting 0) and then honestly creates the remainder of
the information needed to send the correct messages. Since TPKE is IND-CPA-
secure, this change can not be detected. If the signature scheme Σ is EUF-CMA-
secure and the commitment scheme COM is binding, S9 aborts in the same cases
as SO/J would do in ΠAS. Note that S9 stores the granted warrants in Lsys−sec

Warrants

during the Request Warrant task.
Now, the simulation of FAD.RequestDecryption needs to be handled as well.
Since Σ is EUF-CMA-secure, S9 aborts in the same cases as the real FAD would.
S9 has access to the list Lsys−sec

Warrants that is filled during Request Warrant (which

needs to be called before this task). Using Lsys−sec
Warrants, S9 can call FAS with the

correct inputs and gets the corresponding outputs. Next, the secrets need to
be prepared for retrieval. Here we again need to distinguish between secrets of
honest and corrupted users. For corrupted users, we already know the correct
ciphertext (from the input of this task) and we can just append the ciphertext
to LRequests of FAD like an honest FAD. The remainder of the secret retrieval
(for corrupted users) is then handled by the honest simulation of FAD. For
honest users, we retrieve the entry (uid , vper , sec1 ) from Lsys−sec

HonestSecrets and use
the output of F9

AS to calculate the secret sec2 (in the clear) that needs to be
retrieved. We then store this secret sec2 directly to a special list Lsys−sec

ReqNotReady.
Then the FAD.Handover task has to be adapted as well. It now additionally

moves all entries from Lsys−sec
ReqNotReady to LPending

Requests. This ensures that now for honest
users the correct secrets can be retrieved as well. Note that for honest users,
the ciphertext encrypting the user’s secret in Store Secret is not used during
retrieval anymore.

Game 10. In this game, F10
AS additionally handles the tasks Get Secrets and

Get Statistics the same way FAS does, and S10 handles this task the same way
S does.

Proof Sketch: Game 9 ≈ Game 10.
Get Secrets: For honest LE, Z’s view remains identical, since S10 only needs to
leak (Retrieve) to A to emulate the FAD.RetrieveSecret task. For corrupted
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LE, only the simulation of FAD.RetrieveSecret needs to be handled, which is
already simulated like the final simulator does and returns the correct value.
Get Statistics: For an honest party sending that message, S10 only needs to send
(GetStatistics) to A. For a corrupted party, this game is identical to Game 9
since this task is already handled by the simulation of FAD.

Game 11. In this game, F11
AS additionally handles the Store Secret task the

same way FAS does, and S11 handles this task the same way S does.
Proof Sketch: Game 10 ≈ Game 11.

For corrupted U: S11 can obtain the required inputs to call F11
AS from the mes-

sage (uid , σreg, comuid, decomuid, comsec2 , comvper, decomvper) from U by extract-
ing vper from comvper. Since COM is extractable, this is possible with overwhelm-
ing probability and allows S11 to call F11

AS with the correct input. Using the out-
put (SecretStored, secret) of F11

AS and by extracting sec2 from comsec2 (which
is again possible with overwhelming probability since COM is extractable), S11

can calculate the correct sec1 and then honestly execute the remainder of the
protocol for SO.
For honest U: nothing to do in this case.

Game 12. In this game, F12
AS additionally handles the Prove and Verify tasks

the same way FAS does, and S12 handles this task the same way S does.
Proof Sketch: Game 11 ≈ Game 12.

Since NIZK is a simulation extractable zero-knowledge proof system, Z can not
distinguish between the outputs it gets from F12

AS and the outputs it gets from
FAS.

Note that S12 equals the final simulator S. Since we showed that Game i is
indistinguishable from Game i + 1 for i ∈ {0, . . . , 11}, it follows that Game 0
(the real protocol) is indistinguishable from Game 12 (ideal execution) and thus
Theorem 5 follows. �

E.2 User Security

In the User Security case, we handle the following corruptions:

– U can be statically corrupted, so some U are corrupted and some U are
honest.

– SO is corrupted here (static corruption)
– LE can be corrupted here (static corruption)
– J and AU are always honest

We now first describe a simulator S for those corruptions and then proceed to
prove the security. The simulator uses the following writing conventions:

– If FAS wants to deliver outputs to honest parties, delay them until the sim-
ulator explicitly allows them.

– Deny any other calls until the System Init task has been successfully com-
pleted

– Hybrid functionalities FCRS, FBB are simulated honestly. We assume in the
following that whenever calls to those functionalities are made, S simulates
them honestly.
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– Hybrid functionality FAD is mostly simulated honestly, except the tasks
Request Decryption and Handover (for details see the paragraph “simulation
of FAD”)

The simulator S for System Security is defined as follows.

Simulator for User Security

State of the Simulator

– Setup:
• TPKE keypair: (pk, sk)
• Verification key of SO: vkSO

• J Signing keypair: (vkJ, skJ)
• Common reference strings (crsAS

zk , crseq
com)

• Trapdoor tdNIZK for simulating and extracting proofs
• Trapdoor tdeq

com for equivocating commitments
– Stored in User Registration:
• Luser−sec

Registered with (pidU, uid , comuid, decomuid, σreg, vkU, skU) entries. Note
that only honest users are in that list.

– Stored in Request Warrant:
• (W , b) — list of already requested preliminary warrants

• (W̃ , σ
W̃

) — list of stored enhanced warrants
– Stored for simulation of FAD:
• Luser−sec

Secrets with (uid , vper , sec1 , ct) entries. Entries are stored in AS.StoreSecret
(for honest U) and used in FAD.RequestSecret.

• Only for corrupted LE: The list Luser−sec
ReqNotReady temporarily stores (ct i, sec2 ,i)

entries (for honest U). Filled during the simulation of FAD.RequestDecryption
and cleared during the simulation of FAD.Handover.

• Everything else that is stored inside FAD

– List for simulation of FBB:
• LBB (initially empty). Entries are of the form (pidU, uid , vkU)

System Setup (FCRS):

– (crsAS
zk , tdNIZK)← NIZK.Setup(1λ)

– (crseq
com, td

eq
com)← COM.SetupEquiv(1λ)

– Store all values

System Setup (FBB):

– Create empty list LBB.

System Setup (FAD):

– See simulation of Init-Task
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System Setup (FAS):

– Choose the same system parameters for FAS as ΠAS

Simulation of FCRS

Corrupted P can issue calls to FCRS whenever they want, not just at the
intended points in the protocol. We specify here once how all calls from P
to FCRS to all tasks are handled and ignore calls to FCRS for most tasks in
the following.

S answers all calls honestly.

Simulation of FBB

Corrupted P can issue calls to FBB whenever they want, not just at the
intended points in the protocol. We specify here once how all calls from P
to FBB to all tasks are handled and ignore calls to FBB in the following.

S answers all calls honestly.

Simulation of FAD

Corrupted P can issue calls to FAD whenever they wants, not just at the
intended points in the protocol. We specify here once how all calls from P
to FAD to all tasks are handled and ignore calls to FAD for most tasks in
the following.

S simulates FAD honestly (including taking track of all internal lists and
leaking information to the adversary), except for the following tasks:

– Request Decryption

1. Receive
(
Request, W̃ , σ

W̃

)
as input from LE

2. Check Warrant Signature: b← Σ.Vfy(vkJ, W̃ , σ
W̃

)
3. If b = 0, abort (Warrant not valid)

4. Build preliminary warrant W out of W̃ by deleting ctj from each W̃j

5. Call FAS in the name of LE with input (GetSecrets,W )
6. If FAS aborts, S lets FAD abort as well (Warrant either not requested

or not granted)
7. Receive output (GotSecrets, (secret1, . . . , secretv)) from FAS to LE

8. Parse warrant:
(

W̃1, . . . , W̃v

)
← W̃ and (uid i, vper i,metai, ct i) ←

W̃i

9. For i from 1 to v:
(a) Check if there is an entry (uid i, vper i, ·, ct i) in Luser−sec

Secrets . If yes (case:
user is honest) go to step 9b, if not (case: user is corrupted) go to
step 9f.
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(b) Retrieve the entry (uid i, vper i, ·, ct i) from Luser−sec
Secrets .

(c) Compute sec2 ,i such that sec1 ,i ⊕ sec2 ,i = secret i
(d) Add (ct i, sec2 ,i) to Luser−sec

ReqNotReady

(e) Then go to step 10
(f) Append ct i to LRequests of FAD

(g) Then go to step 10

10. Send (Request, pidLE, ft(W ), |W̃ |, v) to A
11. When A allows to deliver output, store W̃ in list of warrants LWarrants

of FAD

12. Give output (Request) to LE
– Handover

Simulate honestly, but additionally execute the following steps at the end:
• For each item (ct i, sec2 ,i) in Luser−sec

ReqNotReady, append (ct i, sec2 ,i) to LPending
Requests

of FAD

• Clear Luser−sec
ReqNotReady

System Init (corrupted SO, honest J, honest AU):

1. Upon receiving (Init,SO, vkSO) from SO to FAD

(a) Create signing keypair for J: (vkJ, skJ)← Σ.Gen(1λ) and store it
(b) Store vkSO

(c) Honestly simulate the Init-Task of FAD with the following inputs:
J → FAD: (Init,J, vkJ)
AU → FAD: (Init,AU)
SO → FAD: (Init,SO, vkSO)

(d) During simulation of the Init-Task, store all generated variables and
lists and leak all necessary information to the adversary.

(e) Call FAS in the name of SO with input (Init,SO)
2. Upon receiving output (InitFinished) from FAS to SO

(a) Report message (InitFinished) from FAD to SO
(b) Send (GetSKeys) and (GetPK) to the adversary
(c) Allow FAS to deliver output to all honest parties

Party Init (honest P)

1. Upon receiving the leak (PInit) from FAS

(a) Send (GetSKeys) and (GetPK) to the adversary
(b) Allow FAS to deliver output to all parties
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Party Init (corrupted P)
This is handled by simulation of FAD.

User Registration (honest U, corrupted SO):

1. Upon receiving the leak (Register, pid , uid) from FAS

(a) Report message (uid) from U to SO
2. Upon receiving the message (uid ok) from SO to U

(a) Call FAS in the name of SO with input (Register, uid) and send
(Ok) to FAS

(b) If FAS aborts, let S abort as well (User already registered or UID
already taken)

(c) Generate keypair for U: (vkU, skU)← Σ.Gen(1λ)
(d) Honestly simulate U’s Register and Retrieve calls to FBB with the

correct inputs
(e) When FAS wants to deliver output to U, delay it and report message

(Ok) from U to SO
3. Upon receiving the message (σreg, comuid, decomuid) from SO to U

(a) Send (GetSKeys) and (GetPK) to the adversary
(b) Verify Commitment: If COM.Open(crscom, comuid, decomuid, uid) = 0,

abort.
(c) Verify Signature: If Σ.Vfy(vkSO, σreg, comuid) = 0, abort.
(d) Store (pidU, uid , comuid, decomuid, σreg, vkU, skU) in Luser−sec

Registered

(e) Allow FAS to deliver output to U

User Registration (corrupted U, corrupted SO):
This is handled by simulation of FAD.

Store Secret (honest U, corrupted SO):

1. Upon receiving the leak (StoreSecret, vper) from FAS

(a) Call FAS in the name of SO with input (StoreSecret, vper)
(b) If FAS aborts, abort as well (Either wrong validity period or user is

not registered yet or user has already stored a secret for the current
validity period)

(c) Retrieve output (SecretStored, uid) from FAS to SO, but delay
output to U

(d) For uid , retrieve entry (pidU, uid , comuid, decomuid, σreg, vkU, skU) from
Luser−sec

Registered

(e) Create fake commitment on sec2 : ( ˜comsec2 , eq2)← COM.SimCom(tdeq
com)

(f) Create real commitment on vper : (comvper, decomvper)← COM.Com(crseq
com,

vper)
(g) Report message (uid , σreg, comuid, decomuid, ˜comsec2 , comvper, decomvper)

from U to SO
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2. Upon receiving the message (sec1 ) from SO to U
(a) Create fake commitment on secret : (c̃omsec, eqs)← COM.SimCom(tdeq

com)
(b) Fake ciphertext ct ← TPKE.Enc(pk, 0)
(c) Honestly commit and sign sec1 : (comsec1 , decomsec1 )← COM.Com(crscom,

sec1 ) and σsec1 ← Σ.Sign(skU, comsec1 )
(d) Create signature σU ← Σ.Sign(skU, (ct , uid , vper))
(e) stmtss := (sec1 , c̃omsec, ˜comsec2 , pk, ct , crscom)
(f) Fake proof: π̃ss ← NIZK.Sim(tdNIZK, stmtss,RASss )
(g) Report message (ct , comsec, πss, σU, σsec1 , comsec1 , decomsec1 ) from U

to SO
3. Upon receiving the message (σss) from SO to U

(a) Verify signature: If Σ.Vfy(vkSO, (comuid, c̃omsec, comvper), σss) = 0, let
S abort in the name of U

(b) Store (uid , vper , sec1 , ct) in Luser−sec
Secrets

(c) Allow FAS to deliver output to U

Store Secret (corrupted U, corrupted SO):
Nothing to do, since ΠAS.StoreSecret has no calls to subfunctionalities and
all involved parties are corrupted.

Request Warrant (corrupted LE, honest J, corrupted SO):

1. Upon receiving the message (W ) from LE to J
(a) Call FAS in the name of LE with input (RequestWarrant,W )
(b) Allow FAS to deliver output to J

2. Upon receiving the message (RequestWarrant,W , b) from FAS:
(a) If b = 0, set σW = ⊥. Else, set σW = Σ.Sign(skJ,W )
(b) Store (W , b) in list of already requested preliminary warrants
(c) Report message (b, σW ) from J to LE

3. Upon receiving the message (W̃ , {σU,i, sec1 ,i , comsec1 ,i, decomsec1 ,i, σsec1 ,i}i∈{1,...,v})
from LE to J

(a) Build preliminary warrant W ′′ out of W̃ by deleting ct i from each W̃i

(b) If there is no entry (W ′′, 1) in the list of already processed preliminary
warrants, abort in the name of J

(c) Check if (W̃ , ·) is already in list of stored enhanced warrants. If yes,
abort in the name of J (Warrant already processed).

(d) Parse enhanced warrant: (W̃1, . . . , W̃v)← W̃ and (uid i, vper i,metai, ct i)←
W̃i

(e) For i from 1 to v:
– For uid i, honestly simulate a call to FBB in the name of J with

(Retrieve, uid i) and get answer (Retrieve, pidU,i, uid i, vkU,i)
– Check signatures: IfΣ.Vfy(vkU,i, (ct i, uid i, vper i), σU,i) = 0 orΣ.Vfy(vkU,i,

comsec1 ,i, σsec1 ,i) = 0, abort in the name of J
– Check commitment: If COM.Open(crscom, comsec1 ,i, decomsec1 ,i, sec1 ,i) =

0, abort in the name of J
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(f) Sign enhanced warrant: σ
W̃

= Σ.Sign(skJ, W̃ )

(g) Store (W̃ , σ
W̃

) in list of stored enhanced warrants

(h) Report message
(
σ
W̃

)
from J to LE

4. When the adversary allows FAD to deliver output in FAD.RequestDecryption
(a) Finish simulation of FAD.RequestDecryption (like described above)
(b) Send (Ok) to FAS

(c) Receive output (WarrantAnswer, b) from FAS

Request Warrant (honest LE, honest J, corrupted SO):

1. Upon FAS asking to deliver output to J, allow the output
2. Upon receiving the leak (RequestWarrant,W , b) from FAS

(a) If b = 0, set σW = ⊥. Else, set σW = Σ.Sign(skJ,W )
(b) Store (W , b) in list of already requested preliminary warrants
(c) If b = 0, directly go to step 4b
(d) Send (GetSKeys) to the adversary
(e) Report message (W , σW ) from LE to SO

3. Upon receiving the message (W̃ , {σU,i, sec1 ,i , comsec1 ,i, decomsec1 ,i, σsec1 ,i}i∈{1,...,v})
from SO to LE

(a) Parse enhanced warrant: (W̃1, . . . , W̃v) ← W̃ and (uid i, vper i,metai,

ct i)← W̃i

(b) Build preliminary warrant W ′ out of W̃ by deleting ct i from each W̃i

(c) If W ′ 6= W , abort in the name of LE. (SO sent wrong W̃ )
(d) For i from 1 to v:

i. For uid i, honestly simulate a call to FBB in the name of LE with
(Retrieve, uid i) and get answer (Retrieve, pidU,i, uid i, vkU,i)

ii. Check signatures: IfΣ.Vfy(vkU,i, (ct i, uid i, vper i), σU,i) = 0 orΣ.Vfy(vkU,i,
comsec1 ,i, σsec1 ,i) = 0, abort in the name of LE

iii. Check commitment: If COM.Open(crscom, comsec1 ,i, decomsec1 ,i, sec1 ,i) =
0, abort in the name of LE

iv. For uid i, honestly simulate a call to FBB in the name of J with
(Retrieve, uid i)

(e) Sign enhanced warrant: σ
W̃

= Σ.Sign(skJ, W̃ )

(f) Store (W̃ , σ
W̃

) in list of stored enhanced warrants
(g) Simulate call to FAD.RequestDecryption by sending (Request, pidLE,

ft(W ), |W̃ |, v) to A
4. When the adversary allows FAD to deliver output in FAD.RequestDecryption

(a) Store W̃ in list of warrants LWarrants of FAD

(b) Send (Ok) to FAS

(c) Allow FAS to deliver output to LE
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Get Secrets (honest LE):

1. Upon receiving the leak (GetSecrets) from FAS

(a) Leak (Retrieve) to A
(b) Allow FAS to deliver output

Get Secrets (corrupted LE):
This is handled by simulation of FAD.

Get Statistics (honest P):

1. Upon receiving the leak (GetStatistics) from FAS

(a) Leak (GetStatistics) to A and wait for okay from A
(b) Allow FAS to deliver output

Get Statistics (corrupted P):
This is handled by simulation of FAD.

Audit (honest AU):

1. Upon receiving the leak (AuditRequest) from FAS

(a) Leak (AuditRequest) to A and wait for okay from A
(b) Allow FAS to deliver output

Prove (corrupted U)
Nothing to do since this is a completely local task.

Prove (honest U)

1. Upon receiving the message (Prove, stmtR) from FAS

(a) Simulate proof: π ← NIZK.Sim(tdNIZK, stmtR,RASzk )
(b) Send (Proof, π) to FAS

Verify (corrupted P)
Nothing to do since this is a completely local task.

Verify (honest P)

1. Upon receiving the message (Verify, stmtR, π) from FAS

(a) Extract Witness: witR ← NIZK.Ext(tdNIZK, stmtR, π,RASzk )
(b) Send (witness,witR) to FAS

We now prove the following theorem:

Theorem 6 (User Security). ΠAS UC-realizes FAS in the {FAD,FCRS,FBB,
GCLOCK}-hybrid model under the assumptions that

– COM is a (computationally) hiding, (statistically) binding and equivocal com-
mitment scheme

– Σ is a EUF-CMA secure signature scheme

109



– NIZK is a straight-line simulation-extractable non-interactive zero-knowledge
proof system

– TPKE is IND-CPA secure

against all PPT-adversaries A who statically corrupts one of the following sets

1. SO and a subset of the users
2. SO, LE and a subset of the users

To prove Theorem 6, we proceed in a series of games, where F i+1
AS behaves the

same as F iAS except for the stated changes and Si+1 behaves the same as Si
except for the stated changes.

Game 0. Game 0 is equivalent to the real experiment. That is,

H0 := Exp
ΠAS

FAD,FCRS,FBB,GCLOCK,S0,Z

with S0 being the dummy adversary. This means that all parties execute the
real protocol.

Game 1. In this game, the simulator S1 takes control over FCRS, FBB and
FAD, but executes them honestly. Additionally, F1

AS is introduced, and all honest
parties are replaced by dummy parties that forward their inputs to F1

AS and when
receiving output from F1

AS forward it to the environment. F1
AS, upon receiving

any message from a dummy party forwards it to the simulator S1 and asks it
for output. S1 executes the real protocol for all honest parties (using the inputs
received from F1

AS) and instructs F1
AS to deliver the resulting outputs. Note that

S1 simulates FBB and FCRS like S does.
Proof Sketch: Game 0 ≈ Game 1.

S1 executes the same code as the real parties on the same inputs (that have
been forwarded by F1

AS). Thus, Game 0 and Game 1 are identical from the
environments view.

Game 2. In this game, S2 generates the common reference string for the
commitment scheme with an equivocation trapdoor tdeq

com as (crscom, td
eq
com)←

COM.SetupExt(1λ). S2 also generates the common reference string for the non-
interactive proof system with a trapdoor for simulating and extracting proofs,
i.e., (crsAS

zk , tdNIZK)← NIZK.Setup(1λ). Thus, S2 simulates FCRS the same way
S does.

Proof Sketch: Game 1 ≈ Game 2.
Indistinguishability follows from the equivocality of COM and the simulation-
extractability of NIZK.

Game 3. During setup of FAD, S3 is asked for the keypairs for J and AU. S3

generates the keypairs honestly and stores them.
Proof Sketch: Game 2 ≈ Game 3.

S3 runs the same key generation algorithm as the real protocol does for honest
parties, therefore Z’s view remains unchanged.

Game 4. S4 keeps track of additional information. For J it stores a list of
(W , b) elements and a list of (W̃ , σ

W̃
) elements in the Request Warrant task.

For each honest U, it stores (pidU, uid , comuid, decomuid, σreg, vkU, skU) in the
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list Luser−sec
Registered at the end of the User Registration task and (uid , vper , sec1 , ct) in

the list Luser−sec
Secrets at the end of the Store Secret task.

Proof Sketch: Game 3 ≈ Game 4.
S4 only keeps track of more information (that the honest parties acquire during
the real protocol), nothing to distinguish for Z.

Game 5. In this game, F5
AS additionally handles the tasks System Init and

Party Init the same way FAS does, and S5 handles these task the same way S
does.

Proof Sketch: Game 4 ≈ Game 5.
S5 simulates the System Init task honestly, therefore Zs view remains un-
changed.
Party Init for honest Parties: Zs view remains identical, since S5 only needs to
leak (GetSKeys) and (GetPK) to A to emulate the call to FAD.
Party Init for corrupted Parties: Only the simulation of hybrid functionalities
needs to be handled, which are already simulated honestly.

Game 6. In this game, F6
AS additionally handles the Audit task the same

way FAS does, and S6 handles this task the same way S does. Note that since
the auditor AU is assumed to be honest, simulation only requires a simulated
(AuditRequest) to FBCRA.

Proof Sketch: Game 5 ≈ Game 6.
Since AU is honest, these games are identical.

Game 7. In this game, F7
AS additionally handles the User Registration task

the same way FAS does, and S7 handles this task the same way S does.

Proof Sketch: Game 6 ≈ Game 7.
For honest U, S7 learns the uid the environment has chosen for the user and
can thus invoke FAS with the correct input. Apart from that, S7 plays the role
of the user honestly. If the signature scheme Σ is EUF-CMA-secure and the
commitment scheme COM is binding, S7 aborts in the same cases as U would
do in ΠAS.
For corrupted U, this game is identical to Game 6 since this task is already
handled by the simulation of FAD.

Game 8. If LE is honest, F8
AS additionally handles the Request Warrant task

the same way FAS does for honest LE, and S8 handles this task the same way
S does for honest LE. Note that if LE is corrupted, this game changes nothing.

Proof Sketch: Game 7 ≈ Game 8.
S8 essentially simulates the real protocol for honest parties (only the call to FAD

is simulated instead of executed honestly), therefore Z can not distinguish those
games. The simulated call to FAD is indistinguishable since S8 leaks the correct
information to the adversary. Note that if the signature scheme Σ is EUF-CMA-
secure and the commitment scheme COM is binding, S8 aborts in the same cases
as LE or J would do in ΠAS.

Game 9. If LE is corrupted, F9
AS additionally handles the Request Warrant

task the same way FAS does for corrupted LE, and S9 handles this task the same
way S does for corrupted LE. Additionally, S9 simulates FAD as S does for the
Request Decryption and Handover tasks in FAD. Note that if LE is honest, this
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game changes nothing. Also note that now S9 simulates FAD as S does (for
every task and every corruption scenario).

Proof Sketch: Game 8 ≈ Game 9.
In Request Warrant, S9 receives the necessary information from LE to call F9

AS

with the correct input. After receiving output from F9
AS, S9 essentially executes

the real protocol for J and SO. Now, the simulation of FAD.RequestDecryption
needs to be handled as well. Since Σ is EUF-CMA-secure, S9 aborts in the same
cases as the real FAD would. S9 can call F9

AS with the correct inputs and gets
the corresponding outputs. Next, the secrets need to be prepared for retrieval.
Here we need to distinguish between secrets of honest and corrupted users. For
corrupted users, we already know the correct ciphertext (from the input of this
task) and we can just append the ciphertext to LRequests of FAD like an honest
FAD. The remainder of the secret retrieval (for corrupted users) is then handled
by the honest simulation of FAD. For honest users, we retrieve the entry (uid ,
vper , sec1 , ct) from Luser−sec

Secrets and use the output of F9
AS to calculate the secret

sec2 (in the clear) that needs to be retrieved. We then store this secret directly
to a special list Luser−sec

ReqNotReady. Then, the FAD.Handover task has to be adapted

as well. It now additionally moves all entries from Luser−sec
ReqNotReady to LPending

Requests. This
ensures that now for honest users the correct secrets can be retrieved as well.
Note that for honest users, the ciphertext encrypting the user’s secret in Store
Secret is not used during retrieval anymore.

Game 10. In this game, F10
AS additionally handles the tasks Get Secrets and

Get Statistics the same way FAS does, and S10 handles these tasks the same
way S does.

Proof Sketch: Game 9 ≈ Game 10.
For a corrupted party calling those tasks, this game is identical to Game 9 since
those tasks are already handled by the simulation of FAD. For honest parties,
S10 only needs to leak the same messages to the adversary as FAD would do.
All the information S10 needs for that are provided by leaks from FAS.

Game 11. In this game, F11
AS additionally handles the Store Secret task the

same way FAS does, and S11 handles this task the same way S does.

Proof Sketch: Game 10 ≈ Game 11.
For corrupted U: nothing to do in this case.
For honest U: With the message (StoreSecret, vper) S11 is able to invoke F11

AS

with the correct inputs for SO. Instead of computing real commitments on sec2
and secret , S11 computes equivocal commitments on them. Since COM is hiding
and equivocable, Z can not differentiate between the real and the simulated
commitments. Also, S11 simulates the proof πss instead of computing a real
proof for honest users. Due to the zero-knowledge property of NIZK, Z can not
detect this. S11 also creates a fake ciphertext (by encrypting 0) which is not
detected by Z since TPKE is IND-CPA-secure and we do not use this ciphertext
during retrieval anymore. Apart from these changes, S11 simulates the role of
the user honestly.

Game 12. In this game, F12
AS additionally handles the Prove and Verify tasks

the same way FAS does, and S12 handles this task the same way S does.
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Proof Sketch: Game 11 ≈ Game 12.
For corrupted parties invoking this task, there is nothing to do for S12, since
both tasks are local tasks. So let us assume the calling parties are honest in the
following. Since NIZK is a simulation extractable zero-knowledge proof system,
Z can not distinguish between the outputs it gets from F12

AS and the outputs
it gets from FAS. Note that in the FAS.Verify task, it may be the case that no
corresponding entry exists in LSecrets. But since SO is corrupted, the additional
check in FAS.Verify that involves LSecrets is skipped and the correct output is
given.

Note that S12 equals the final simulator S. Since we showed that Game i is
indistinguishable from Game i + 1 for i ∈ {0, . . . , 11}, it follows that Game 0
(the real protocol) is indistinguishable from Game 12 (ideal execution) and thus
Theorem 6 follows. �

Proof (Proof of Theorem 1). The theorem is directly implied by Theorem 5 and
Theorem 6. �

F Security Proof: ΠAD UC/YOSO-realizes FAD

Here we prove that the protocol ΠAD from Appendix B.4 UC-realizes the func-
tionality FAD from Appendix B.3 in the YOSO model. In particular, we prove
the following theorem:

Theorem 2. If NIZK is a straight-line simulation-extractable non-interactive
zero-knowledge proof system, Σ is an EUF-CMA secure signature scheme, the
PKE scheme used by LE and AU is an IND-CPA secure public key encryp-
tion scheme, the PKE scheme that is a parameter of FBCRA is a RIND-SO
secure public key encryption scheme, and TPKE is an IND-CPA secure, ran-
domizable and binding (t, n)-threshold PKE, then ΠAD UC-realizes FAD in the
{FBCRA,FCRS,GCLOCK}-hybrid model with respect to adversaries A that may
statically corrupt SO and/or LE as well as mobile adaptively corrupt at most a
fraction t

n − ε of nodes N.

First, note that ΠAD is YOSO when considering SO, LE, J and AU as in-
put/output roles: Nodes Ni only send one (batch of) outgoing message(s) and do
not retain state after doing so. Thus, we can simplify our corruption treatment
in the following security proof to static corruptions.

We first describe the simulator S and then proceed to prove indistinguisha-
bility between the real and ideal worlds. Again, we use the convention that when
FAD wants to deliver output to an honest party, the adversary is notified about
this (including the relevant task name, but not the other output) and output is
only delivered after the adversary allows to do so.

The Simulator S is defined as follows.

Simulator S

State of the Simulator
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– Setup
• SO verification key vkSO

• J verification key vkJ

• AU encryption keypair (ekAU, skAU)
• Functionality public key pk
• Common reference string crsSSzk

• Trapdoor td for extracting and simulating zero-knowledge proofs
– Lists to keep track of simulation
• LC to store (C,nym) pairs (where C ← PKE.Enc(ek,nym))
• LSecrets to store shares of retrieved secrets
• LCommitteePK

i: List of public keys of the committee with number i. En-
tries are of the form (ekj).

• LCommittee
i: List of keys for the committee with number i. Entries are

of the form (ekj , dkj , vkj , skj).
• For each committee a set H of honest roles, a set B of corrupted roles

and a set SH of corruptible roles.
– State of FBCRA:
• Set Posted, initialized to ∅
• Sequence Ordered, initialized to ()

Simulation of FCRS

A corrupted party P can issue calls to FCRS whenever it wants. Since sim-
ulation of FCRS is straightforward, we specify here once how all calls from
corrupted P to FCRS are handled and omit calls to FCRS in the following
description of the simulator.

– Upon receiving (value) from corrupted P to FCRS:
1. If this is the first time such a message is received:

(a) Generate and store (crsSSzk , td)← NIZK.Setup()
2. Report message crsSSzk from FCRS to P

Simulation of FBCRA

– Upon receiving (Post), (Order) or (Read) from corrupted P simulate
FBCRA honestly

– Upon receiving (NextCommittee, R, n, S) with |S| < εn containing en-
tries of the form (Mi ∈Machine, (eki, vki)) from the adversary
1. Let j be the id of the next committte. If LCommittee

j 6= ∅, ignore this
message.

2. Otherwise, send (Clock-Read) to GCLOCK and receive tNow

• For i ∈ (1, . . . , |S|):
(a) Mark Mi as corrupted
(b) Add (Ri, (ekRi ,⊥, vkRi ,⊥)) to LCommittee

j

(c) Setm = (NextCommittee, R, eki, vki), add (roleassign, tNow,
m) to Posted and send m to the adversary on behalf of FBCRA
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• For i ∈ (|S|+ 1, . . . , n):
(a) Sample

(
ekRi , dkRi

)
← PKE.Gen(1λ)

(b) Sample
(
vkRi , skRi

)
← Σ.Gen(1λ)

(c) Add (Ri, (ekRi , dkRi , vkRi , skRi)) to LCommittee
j

(d) Set m =
(
NextCommittee, R, ekRi , vkRi

)
, add (roleassign,

tNow,m) to Posted and send m to the adversary on behalf of
FBCRA

Init (honest SO)

– Upon receiving (Init,SO, vkSO, pk) from FAD

1. Store pk as the functionality public key
2. Send (Clock-Read) to GCLOCK and receive tNow

3. Set m := (OperatorKey, vkSO)
4. Add (pidSO, tNow,m) to Posted and send (Post, pidSO,m) to A on

behalf of FBCRA

5. Allow FAD to deliver output

Init (corrupted SO)

– Upon receiving (Post,OperatorKey, vkSO) from SO to FBCRA

1. Send (Clock-Read) to GCLOCK and receive tNow

2. Set m := (OperatorKey, vkSO)
3. Add (pidSO, tNow,m) to Posted and send (Post, pidSO,m) to A on

behalf of FBCRA

4. Send (Init,SO, vkSO) to FAD on behalf of SO
5. Upon receiving (Init,SO, vkSO, pk) from FAD, store pk and allow FAD

to deliver output

Init (honest J)

– Upon receiving (Init,J, vkJ) from FAD

1. Send (Clock-Read) to GCLOCK and receive tNow

2. Set m := (JudgeKey, vkJ)
3. Add (pidJ, tNow,m) to Posted and send (Post, pidJ,m) to A on

behalf of FBCRA

4. Allow FAD to deliver output
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Init (honest AU)

– Upon receiving (Init,AU) from FAD

1. Send (Clock-Read) to GCLOCK and receive tNow

2. Generate (ekAU, skAU)← PKE.Gen(1λ) and store (ekAU, skAU)
3. Set m := (AuditorKey, ekAU)
4. Add (pidAU, tNow,m) to Posted and send (Post, pidAU,m) to A on

behalf of FBCRA

5. Allow FAD to deliver output

Get Public Key (honest P)

– Upon receiving (GetPK) from FAD

1. Send (Read) to A on behalf of FBCRA

2. Allow FAD to deliver output

Get Public Key (corrupted P)

– This is handled by simulation of key generation roles and FBCRA

Get System Keys (honest P)

– Upon receiving (GetSKeys) from FAD

1. Send (Read) to A on behalf of FBCRA

2. Allow FAD to deliver output

Get System Keys (corrupted P)

– This is handled by simulation of FBCRA

Request Decryption (honest LE)

– Upon receiving (Request, pid ,W pub, len, v) from FAD

1. Send (Clock-Read) to GCLOCK and receive tNow

2. If skLE = ⊥ set (ekLE, skLE)← PKE.Gen(1λ)
3. Send (Read) to A on behalf of FBCRA

4. Generate W enc ← PKE.Enc(ekAU, 0
len)

5. For i = 1, . . . , v do:
(a) ct i ← TPKE.Enc(pk, 0)

6. stmt
W̃

:= (ekAU, vkJ,W
enc,W pub, {ct i}i∈[v])

7. π
W̃
← NIZK.Sim(crsSSzk , stmt

W̃
, td)

8. Set msg := (Request,W pub,W enc, {ct i}i∈[v], πW̃ , ekLE), add (pid ,
tNow,msg) to Posted and send (Post, pid ,msg) to A on behalf of
FBCRA

9. Allow FAD to deliver output
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Request Decryption (corrupted LE)

– Upon receiving
(
Post, (Request,W pub,W enc, {ct i}i∈[v], πW̃ , ekLE)

)
from

LE to FBCRA

1. stmt
W̃

:= (ekAU, vkJ,W
enc,W pub, {ct i}i∈[v])

2. If NIZK.Verify(crsSSzk , stmt , π
W̃

) 6= 1 ignore this message

3. Otherwise, extract wit
W̃

:= (W̃ , r, σ
W̃
, {ct i, ri}i∈[v])← NIZK.Ext(crs,

π
W̃
, td)

4. Send
(
Request, W̃ , σ

W̃

)
to FAD on behalf of LE

Retrieve Secret (honest LE)

– Upon receiving (Retrieve) from FAD

1. Send (Read) to A on behalf of FBCRA

2. Allow FAD to deliver output

Retrieve Secret (corrupted LE)

– This is handled during simulation of handover and FBCRA

Get Statistics (honest P)

– Upon receiving (GetStatistics) from FAD

1. Send (Read) to A on behalf of FBCRA

2. Allow FAD to deliver output

Get Statistics (corrupted P)

– This is handled by simulation of FBCRA

Auditor Audit (honest AU)

– Upon receiving (AuditRequest) from FAD

1. Send (Read) to A
2. Allow FAD to deliver output

RoleExecute (honest N) For each committee, after FBCRA delivered all
secret keys, the simulator fills the three sets H,B,SH as follows:

– All roles that are already corrupted are assigned to B
– t− |B| random roles that are not corrupted are assigned to SH
– The remaining roles are assigned to H
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It holds that SH
⋂
B = ∅ and H

⋂
(SH

⋃
B) = ∅ and H

⋃
SH

⋃
B contains

all roles of that committee. Whenever the adversary corrupts a party that is
assigned a role in H and has not executed yet, the simulator picks a random
role Ri ∈ SH instead, sets SH := SH\{Ri}, B := B

⋃
{Ri} and returns the

state of role Ri instead (which consists of that roles secret keys). When the
adversary corrupts a party that is assigned a role R in SH, the simulator
sets SH := SH \ {R}, B := B

⋃
{R} and returns the state of that role.

– Upon receiving (ExecuteRole, pidN ) from FAD

1. Send (Read) to A on behalf of FBCRA

2. Send (Clock-Read) to GCLOCK and receive tNow

3. If tlast + tcom ≤ tNow execute PrepareExecution
4. If this node is scheduled to execute a role Ri this round, execute the

respective task KeyGen1, KeyGen2 or Handover below.
– PrepareExecution

1. Set tlast = tNow

2. Initialize empty lists LCommitteePK and LCommitteeVK

3. For each role Rj in the next committee
(a) Find (roleassign, t, (Generate, Rj , ekR, vkR)) in Ordered
(b) Insert ekR into Lnext

CommitteePK

4. For each role Rj in the current committee
(a) Find (roleassign, t, (Generate, Rj , ekR, vkR)) in Ordered
(b) Insert ekR into LCommitteePK

5. For each role Rj in the previous two committees
(a) Find (roleassign, t, (Generate, Rj , ekR, vkR)) in Ordered
(b) Insert vkR into LCommitteeVK

6. Assign the roles of the current committee to H,SH,B as described
above

7. If KeyGen1 has been executed, but KeyGen2 not, do the following:

(a) For each entry (pid , t, (Rj , (KeyGen1,
(
{ctj}j∈[n], πKG

)
), σ)) in Ordered

i. Retrieve vkRj from LCommitteeVK

ii. Check if Σ.Vfy(vkR, (KeyGen1,
(
{ctj}j∈[n], πKG

)
), σ) = 1, oth-

erwise skip this entry.
iii. Assemble ZK-Statement:

stmtKG := (
{

ctj , ekRj

}
j∈[n]

)

iv. If NIZK.Verify(crsSSzk , stmtKG , πKG,RADKG1) 6= 1 skip this entry
v. Add ct i to LQual (the one addressed to the currently executing

role)
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(b) Sort LQual lexicographically
(c) For each of the first t+ 1 entries in LQual do the following:

i. Decrypt the ciphertexts for all roles in H (by assumption of n >
2t + 1 this results in at least t + 1 shares) and use the resulting
shares to interpolate all t+ 1 polynomials G1, . . . , Gt+1

ii. For each role Rj ∈ SH
⋃
B compute skj :=

∑t+1
k=1Gk(j) and

pkj := TPKE.Sk2Pk(skj)

iii. For each role Rj ∈ H set pkj := pkλj,0 ·
∏
k∈SH

⋃
B pk

λj,k
k , where

λi,j are appropriate Lagrange coefficients.
8. If key generation already finished, do the following:

(a) For each entry (pid , t, (Rj ,msg , σ)) with msg := (KeyShare, (vki,
{ctj}, πKG)) for the previous committee in Ordered
i. Retrieve vkRj from LCommitteeVK

ii. Check Σ.Vfy(vkR,msg , σ) = 1, otherwise ignore this message
iii. Assemble ZK-Statement:

stmtKS := (vki,
{

ctj , ekRj

}
j∈[n]

)

iv. Check NIZK.Verify(crsSSzk , stmtKS , πKS ,RADKS) = 1, otherwise ig-
nore this message

v. Add {ctj}j∈[n] to LctQual

(b) Sort LctQual lexicographically
(c) For each entry (pid , t, (Rj ,msg , σ)) with msg := (KeyShare, (vki,
{ctk}, πKS)) for the current committee in Ordered:
i. Retrieve vkRj from LCommitteeVK

ii. Check if Σ.Vfy(vkRj , (KeyShare,msg , σ) = 1, otherwise skip
this entry.

iii. Retrieve from LctQual from the first t+ 1 entries the ciphertext ctj
for Rj each, as LKCom := {ct1

j , . . . , ctnj }
iv. Assemble ZK-Statement:

stmtKS := (pkj , {ctk}k∈[n], LKCom)

v. Check if NIZK.Verify(crsSSzk , stmtKS , πKS ,RADKS) = 1, otherwise
skip this entry.

vi. Add ct i (the one addressed to the currently executing role) to
LQual

(d) Sort LQual lexicographically
(e) For each of the first t+ 1 entries in LQual do the following:

i. Decrypt the ciphertexts for all roles in H (by assumption of n >
2t + 1 this results in at least t + 1 shares) and use the resulting
shares to interpolate all t+ 1 polynomials G1, . . . , Gt+1

ii. For each role Rj ∈ SH
⋃
B compute skj :=

∑t+1
k=1Gk(j) and

vkj := TPKE.Sk2Pk(skj)

iii. For each role Rj ∈ H set vkj := pkλj,0 ·
∏
k∈SH

⋃
B pk

λj,k
k , where

λi,j are appropriate Lagrange coefficients.
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(f) For each entry (pid , t, (Request,W pub,W enc, {ĉt i}i∈[v], πW̃ , ekLE))
in Ordered
i. Assemble ZK-Statement:

stmt
W̃

:= (ekAU, vkJ,W
enc,W pub, {ĉt i}i∈[v])

ii. If NIZK.Verify(crsSSzk , stmt
W̃
, π

W̃
,RADW ) 6= 1, ignore this message

iii. For each i ∈ [v]:
A. Store (ekLE, ct i,⊥) in LRequests

(g) If LE is corrupted:

i. Send (Retrieve) to FAD and receive
(
Retrieve, LPending

Requests

)
ii. For each entry (ekLE, ct i,⊥) in LRequests:

A. Find (ct i, secret i) in LPending
Requests

B. For each role Rj in SH
⋃
B, compute ĉt

j

i ← TPKE.TDec(skj ,
ct i), where skj was computed earlier

C. Run
{

ĉt
k

i

}
k∈H
← TPKE.SimTDec(pk, ct i, secret i,

{
ĉt
j

i

}
i∈(SH

⋃
B)

)

D. Update the entry in LRequests to (ekLE, ct i,
{

ĉt
k

i

}
k∈H

)

– KeyGen1
1. Retrieve the respective dkR, skR
2. Generate key share: si ← Zp
3. Share secret key: choose a random degree t polynomial F (x) = a0 +
a1 ∗ x+ a2 ∗ x2 + . . .+ at ∗ xt with F (0) = si

4. For each role Rj in the next committee:
(a) Set shj := F (j)
(b) Generate ciphertext ctj ← PKE.Enc(ekRj , shj ; rj)

5. Assemble ZK-Witness: witKG := (si, {rj}j∈[n], F )

6. Assemble ZK-Statement:
stmtKG := (

{
ctj , ekRj

}
j∈[n]

)

7. Compute Proof:
πKG ← NIZK.Prove(crsSSzk , stmtKG ,witKG ,RADKG1)

8. Prepare message: msg := (KeyGen1,
(
{ctj}j∈[n], πKG

)
)

9. Sign message: σ ← Σ.Sign(skR,msg)
10. Add (pid , tNow, (Ri,msg , σ)) to Posted and send (Post, pid , (Ri,msg ,

σ)) to A on behalf of FBCRA

– KeyGen2
1. If Ri ∈ SH execute this role honestly
2. Otherwise (Ri ∈ H) do the following:

(a) Choose random degree-t polynomial F (x)
(b) For each role Rj in the next committee:

i. Set shj := F (j)
ii. Generate ciphertext ctj ← PKE.Enc(ekRj , shj ; rj)
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(c) Retrieve pki computed during preparation
(d) Assemble ZK-Statement:

stmtKG := (pki,
{

ctk
}
k∈[t+1]

,
{

ctj , ekRj

}
j∈[n]

, ekR)

(e) Simulate Proof:
πKG ← NIZK.Sim(crsSSzk , stmtKG , td ,RADKG2)

(f) Prepare message: msg := (KeyGen2,
(
pki, {ctj}j∈[n], πKG

)
)

(g) Sign message: σ ← Σ.Sign(skR,msg)
(h) Add (pid , tNow, (Ri,msg , σ)) to Posted and send (Post, pid , (Ri,

msg , σ)) to A on behalf of FBCRA

– Handover
1. If Ri ∈ SH execute this role honestly
2. Otherwise (Ri ∈ H) do the following:

(a) Reshare secret key share:
i. Retrieve vki and the first t + 1 entries of LctQual as

{
ctki
}
k∈[t+1]

computed during preparation
ii. Choose a random degree t polynomial F (x) = a0 + a1 ∗ x+ a2 ∗

x2 + . . .+ at ∗ xt
iii. For each role Rj in the next committee:

A. Generate ciphertext ctj ← PKE.Enc(ekRj , F (j); rj)
iv. Assemble ZK-Statement:

stmtKS := (ekR,
{

ctki
}
k∈[t+1]

,
{

ctj , ekRj

}
j∈[n]

, vki)

v. Simulate Proof:
πKS ← NIZK.Sim(crsSSzk , stmtKS , td ,RADKS)

vi. Add msg := (KeyShare,
(
vki, {ctj}j∈[n], πKS

)
) to LM

(b) For each entry (ekLE, ct , LDecryptions) in LRequests,
• If LE is honest:

i. Partially decrypt ct to ct∗ ← TPKE.TDec(ski, ct)
ii. Assemble ZK-Statement:

stmtDec := (vki, ct , ct∗)
iii. Simulate Proof:

πDec ← NIZK.Sim(crsSSzk , stmtDec , td ,RADDec)
iv. Generate response ciphertext: msg ← PKE.Enc(ekLE, (0

|ct|,
0|ct

∗|, 0|πDec|))
v. Add (Request,msg) to LM

• If LE is corrupted:
i. Retrieve ct∗ for this role from LDecryptions

ii. Assemble ZK-Statement:
stmtDec := (vki, ct , ct∗)

iii. Simulate Proof:
πDec ← NIZK.Sim(crsSSzk , stmtDec , td ,RADDec)

iv. Encrypt answer: msg ← PKE.Enc(ekLE, (ct , ct∗, πDec))
v. Add (Request,msg) to LM
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(c) For each entry (msg) in LM

i. Generate signature σ ← Σ.Sign(skR,msg)
ii. Update msg := (Ri,msg , σ)

(d) Remove the entry for this role from LRoles

(e) Delete all state except for LM

(f) For each entry (msg) in LM

i. Send (Post,msg) to FBCRA

RoleExecute (corrupted N)

– This is handled by simulation of FBCRA

To prove Theorem 2, we proceed in a series of games, where F i+1
AD behaves

the same as F iAD except for the stated changes and Si+1 behaves the same as
Si except for the stated changes.

Game 0. Hybrid 0 is equivalent to the real experiment. That is,

H0 := Exp
ΠAD

FCRS,FBCRA,GCLOCK,S0,Z

with S0 being the dummy adversary. This means that all parties execute the
real protocol.

Game 1. In this game, the simulator S1 takes control over FCRS and FBCRA,
but executes them honestly. Additionally, F1

AD is introduced, and all honest
parties are replaced by dummy parties that forward their inputs to F1

AD and
when receiving output from F1

AD forward it to the environment. F1
AD, upon

receiving any message from a dummy party forwards it to the simulator S1 and
asks it for output. S1 executes the real protocol for all honest parties (using the
inputs received from F1

AD) and instructs F1
AD to deliver the resulting outputs.

Proof Sketch: Game 0 ≈ Game 1.
S1 executes the same code as the real parties on the same inputs (that have
been forwarded by F1

AD). Thus, Game 0 and Game 1 are identical from the
environments view.

Game 2. In this game, S2 generates the common reference string for the
zero-knowledge proof system with an extraction and simulation trapdoor td as
(crsSSzk , td)← NIZK.Setup(1λ).

Proof Sketch: Game 1 ≈ Game 2.
Indistinguishability follows from the simulation extractability of NIZK.

Game 3. In this game, F3
AD now handles (Init, . . .) messages the same way

FAD does, except that during SO init it also sends the generated secret key sk to
S3, and S3 handles this task the same way S does, except that it also stores the
received secret key sk. Note that S3 still chooses the outputs for (GetPK) and
can thus still return the public encryption key pk′ generated during the protocol.

Proof Sketch: Game 2 ≈ Game 3.
If SO is honest, S3 receives the message (Init,SO, vkSO, pk) from F3

AD and can
thus perfectly simulate the real protocol for this task. If SO is corrupted, S3

can wait for a message (Post,OperatorKey, vkSO) from SO to FBCRA and then
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send (Init,SO, vkSO) to F3
AD on behalf of SO. Since both J and AU are assumed

to be honest, S3 receives the respective messages from F3
AD and can perfectly

simulate the real protocol for the respective task.
Game 4. In this game, F4

AD now handles (GetSKeys) the same way FAD

does, and S4 handles this task the same way S does.
Proof Sketch: Game 3 ≈ Game 4.

For corrupted parties, this is perfectly simulated by executing FBCRA. For honest
parties, F4

AD outputs the keys if they are available via FBCRA. Thus, these games
are statistically indistinguishable.

Game 5. In this game, after simulation of FBCRA resulted in all secret keys
for the next committee being delivered, S5 fills the three setsH,B,SH as follows:

– All roles that are already corrupted are assigned to B
– t− |B| random roles that are not corrupted are assigned to SH
– The remaining roles are assigned to H

It holds that SH
⋂
B = ∅ and H

⋂
(SH

⋃
B) = ∅ and H

⋃
SH

⋃
B contains all

roles of that committee.
Proof Sketch: Game 4 ≈ Game 5.

This change is only syntactical.
Game 6. In this game, whenever the adversary corrupts a party that is as-

signed a role in H and has not executed yet, the simulator picks a random role
Ri ∈ SH instead, sets SH := SH \ {Ri}, B := B

⋃
{Ri} and returns the state of

role Ri instead (which consists of that roles secret keys). When the adversary cor-
rupts a party that is assigned a role R in SH, the simulator sets SH := SH\{R},
B := B

⋃
{R} and returns the state of that role.

Proof Sketch: Game 5 ≈ Game 6.
Since all roles in a committee have the same description, and the assignment of
a role to a node only becomes visible after it executed, these games are indistin-
guishable.

Game 7. In this game, the simulator uses the shares of uncorrupted roles
to reconstruct the secret key sk′ associated with the public encryption key pk′

generated during the key generation protocol. Additionally, S7 performs the
steps listed under PrepareExecution in S, except that in step 8g) instead
of querying FAD for decrypted secrets it uses sk′ to decrypt ciphertexts ct i to
secret i.

Proof Sketch: Game 6 ≈ Game 7.
This change only affects the internal view of the simulator.

Game 8. This is the same as the previous game, except that during Key-
Gen2 and Handover the simulation trapdoor td is used to generate the zero-
knowledge proofs.

Proof Sketch: Game 7 ≈ Game 8.
Indistinguishability follows from the zero-knowledge property of NIZK

Game 9. In this game, if LE is corrupted, then when processing requests for
decryption while executing roles in H, S9 uses ĉt computed during Prepare-
Execution instead of executing TPKE.TDec. (This corresponds to step 2b), LE
corrupted in S)
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Proof Sketch: Game 8 ≈ Game 9.
If LE is honest, these two games are the same. Otherwise, ĉt has been com-
puted to ensure that TPKE.Combine outputs the correct plaintext. Since honest
roles delete all internal state before sending their message, these two games are
indistinguishable.

Game 10. In this game, if LE is honest, then when processing requests for
decryption while executing roles in H, S10 encrypts (the appropriate amount of)
zeroes instead. (This corresponds to step 2b), LE honest in S)

Proof Sketch: Game 9 ≈ Game 10.
If LE is corrupted, these two games are the same. Otherwise, indistinguishability
follows from IND-CPA security of PKE.

Game 11. In this game, S11 simulates the distributed key generation protocol
to output pk (received from F11

AD during SO Init) as resulting public encryption
key. This is achieved by following the steps listed under KeyGen2 and Han-
dover in S. Additionally, sk (received from F11

AD during SO Init) is used during
PrepareExecution to decrypt ciphertexts. F11

AD now handles (ExecuteRole)
messages the same way FAD does.

Proof Sketch: Game 10 ≈ Game 11.
Since by assumption at most t roles in each committee are corrupted, the shares
received by corrupted roles are statistically close to those in Game 10. Since hon-
est parties delete all internal state before sending their message, corrupting them
after they executed does not reveal anything. Thus, only ciphertexts addressed
to uncorrupted roles differentiate these two games, and RIND-SO security of
PKE ensures Indistinguishability.

Game 12. In this game, F12
AD now handles (GetPK) the same way FAD does,

and S12 handles this task the same way S does.

Proof Sketch: Game 11 ≈ Game 12.
Since the previous games already ensured that the same public key pk is used in
both F12

AD and the protocol simulation, these two games are perfectly indistin-
guishable.

Game 13. In this game, when receiving
(
Request, W̃ , σ

W̃

)
messages, F13

AD

checks if the signature is valid. If the signature is valid, it forwards
(
Request, W̃

)
to S13 (but not the signature σ

W̃
!), otherwise it ignores the message. S13 follows

the protocol honestly except for the NIZK proof, where it uses the simulation
trapdoor to generate π

W̃
← NIZK.Sim(crsSSzk , stmt

W̃
, td ,RADW ) without knowing

the witness.

Proof Sketch: Game 12 ≈ Game 13.
If LE is corrupted, these two games are identical. If LE is honest, then indistin-
guishability follows from zero-knowledge of NIZK.

Game 14. In this game, when receiving (Post, (Request,W pub,W enc, {ct i}i∈[v],
π
W̃
, ekLE)) from LE to FBCRA, if the zero-knowledge proof verifies, S14 uses the

trapdoor td to extract a witness and aborts the simulation of this fails.

Proof Sketch: Game 13 ≈ Game 14.
This game only differs from Game 13 if the abort happens. Due to the simulation
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extractability of NIZK, this only happens with negligible probability, and thus
the games are indistinguishable.

Game 15. In this game, when receiving (Post, (Request,W pub,W enc, {ct i}i∈[v],

π
W̃
, ekLE)) from LE to FBCRA, S15 sends

(
Request, W̃ , σ

W̃

)
to F15

AD in the

name of LE. F15
AD now fills the lists LWarrants, LRequests the same way FAD does,

and as a consequence also fills the lists LPending
Requests and LReady

Requests during Handover.

Proof Sketch: Game 14 ≈ Game 15.
This only affects the internal view of F15

AD, but no output depends on that view
(yet). Thus, these games are perfectly indistinguishable.

Game 16. In this game, F16
AD handles (Retrieve) messages the same way as

FAD, and S16 handles this task the same way as S.

Proof Sketch: Game 15 ≈ Game 16.
If LE is corrupted, this changes nothing. If LE is honest, the list LReady

Requests has
been correctly filled in Game 15. Since by assumption, at least t+1 roles in each
committee are not corrupted, every ciphertext that FAD decrypts also results in
at least t + 1 decryption shares in the real protocol. As such, the same set of
decryptions is output in both games and indistinguishability follows.

Game 17. This game is the same as Game 16 except that F17
AD now stores W̃

in LWarrants when S17 instructs it to deliver output while handling (Request)
messages.

Proof Sketch: Game 16 ≈ Game 17.
This change is only syntactical.

Game 18. In this game, F18
AD additionally handles (AuditRequest) mes-

sages the same way FAD does, and S18 handles this task the same way S does.
Note that since the auditor AU is assumed to be honest, simulation only requires
a simulated (Read) to FBCRA.

Proof Sketch: Game 17 ≈ Game 18.
If LE is honest, these games are identical, since S17 generated entries in Ordered
with valid proofs for exactly the warrants that F18

AD has in LWarrants, and sim-
ulation of AU is perfect. If LE is corrupted, then these games are also iden-
tical: In Game 17 AU outputs exactly those warrants stored in Ordered for
which the zero-knowledge proof is valid. For exactly those warrants, S18 sends
(Request, . . .) messages to F18

AD, resulting in them being in LWarrants. Thus, AU
outputs the same set of warrants in Game 18 as in Game 17.

Game 19. This game is the same as Game 18 except that S19 computes

W enc ← PKE(ekAU, 0
|W̃ |) instead of encrypting W̃ .

Proof Sketch: Game 18 ≈ Game 19.
If LE is corrupted, these two games are again identical. If LE is honest, indis-
tinguishability follows directly from the IND-CPA security of PKE.

Game 20. In this game, F20
AD no longer sends the secret decryption key sk

to S20 during Init. Instead of using sk to decrypt ciphertexts during Prepa-
reExecute handling, S20 now queries F20

AD for the decryption as described in
S.
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Proof Sketch: Game 19 ≈ Game 20.
The only place sk was used was to decrypt ciphertexts in step 8g) of Prepare-
Execute. Thus, if LE is honest, these games are the same. If LE is corrupted,
these two games only differ if there is an entry (ekLE, ct i,⊥) in LRequests for which

no matching entry (ct i, secret i) exists in LPending
Requests returned by F20

AD. This can not
be the case: Only ciphertexts ct i corresponding to valid zero-knowledge proofs
are inserted into LRequests. But for each valid zero-knowledge proof, the extracted

warrant (and thus all listed ciphertexts) was send as input to F20
AD, and thus a

valid decryption is returned. Therefore, these games are indistinguishable.
Game 21. In this game, F21

AD handles (Request) messages the same way as
FAD, and S21 handles this task the same way as S.

Proof Sketch: Game 20 ≈ Game 21.
For corrupted LE, this changes nothing. For honest LE, S21 no longer receives W̃
but only ft(W ), |W̃ |, v, i.e. the output of the transparency function, the length

of the warrant and the number of listed ciphertexts. W̃ was used to compute the
transparency function and obtain the listed ciphertexts before, since encryption
of the warrant was already replaced by an encryption of zeroes in Game 19. Since
the output of the transparency function was passed by F21

AD, the only missing
thing are the listed ciphertexts, which the simulator replaces by ciphertexts of
zeroes. By assumption, at most t roles in each committee are corrupted, and
up to t decryption shares obtained by the environment in this way reveal no
information about the plaintexts. Note that the decryption of these ciphertexts
has not been used by S21 since Game 10, except for parties in SH, for which it
is ensured that there are at most t parties in SH

⋃
B. Thus, indistinguishability

follows from IND-CPA security of TPKE.
Game 22. In this game, F22

AD additionally handles (GetStatistics) messages
the same way FAD does, and S22 handles this task the same way S does.

Proof Sketch: Game 21 ≈ Game 22.
These games are identical for the same reason as above, the set of warrants in
Ordered with valid proofs is the same as the set of warrants in F18

AD

Note that Game 22 is the same as the ideal world. Since we showed that
Game i is indistinguishable from Game i + 1 for i ∈ {0, . . . , 21}, it follows that
Game 0 (the real protocol) is indistinguishable from Game 22 (ideal execution)
and thus Theorem 2 follows. �

G Security Proof: ΠASTE UC-realizes FASTE

In this section, we prove that the protocol ΠASTE from Appendix C.3 UC-realizes
the functionality FASTE from Appendix C.2.

G.1 Simulator

In this section, we describe the inner workings of the simulator for ΠASTE. Apart
from message sending and law enforcement access, most other tasks are trivial
to simulate. They are basically taken care of by FAS, due to ΠASTE working
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the FAS-hybrid model, and the simulator merely implements the bookkeeping
of FAS. To simplify the description of the simulator, we assume w.l.o.g. that we
deal with the dummy adversary.

We use the phrase “the simulator executes the honest protocol” for some
party P to express, that the simulator follows the instructions of party P hon-
estly, while at the same time honestly emulating the hybrid functionalities and
the adversary (if necessary, e.g. to see when a (delayed) message arrives).

Simulator overview The simulation of most tasks is easy since FAS together
with PKEAS do all the hard work. Indeed, Init. Party Init, Next Period, User
Registration, Update, Request Warrant, Get Statistics and Audit are
handled by running the real protocol essentially unmodified. The interesting
cases are Encrypt Message, Decrypt Ciphertext, Prepare Access and
Execute Access. For these cases, ciphertexts of honest users must be simulated,
and ciphertexts of corrupted users must be extracted (in particular, the uid).
This is handled by PKEAS. We implicitly use that the simulator can program
FRO and simulate and extract NIZK proofs of FAS.

Notation We use the notation introduced for PKEAS, see Remark 7. Like FASTE

(andΠASTE), S internally uses lists, e.g. Luvper, Lmsgs, LW , LW-cached, and variables
ureg i, usk i, uid i, and so on. To distinguish the variables of FASTE and S, if not
clear from the context, we write FASTE.Luvper for FASTE. Variables without extra
specification (e.g. Luvper) belong to the simulator.

High level simulation strategy The simulator keeps its “shadow copies” or lists
and variables of FASTE in perfect synchronization with those of FASTE, to the
extent possible. Clearly, Lmsgs cannot equal FASTE.Lmsgs, since S cannot know
all messages or uids in Lmsgs; hence they are filled in with placeholders (for
simplicity, ⊥). These placeholders are later, if necessary, filled in, e.g. if due to
surveillance of a user the uids to ciphertexts become known.

Most simulation steps are quite straightforward, thanks to FAS which pro-
vides a powerful and easy-to-use basis. The steps where simulation requires most
care (besides ensuring synchronization of variables with FASTE) are the tasks
involving PKEAS, which are encrypt message, decrypt ciphertext, prepare
access and execute access. We give a high-level overview.

In encrypt message, the simulator generates ciphertexts for honest par-
ties by running PKEAS.Sim, i.e. these ciphertexts have no message m or uid
associated with them (yet), and thus in Lmsgs the respective components are set
to ⊥ (whereas in FASTE.Lmsgs, m and uid are filled in). In case m or uid is
leaked to S (because the receiver is corrupted or Ui is under surveillance), S
runs PKEAS.ExplnRE or PKEAS.ExplnLE to ensure consistency under decryption,
and also updates the entry in Lmsgs. When an honest user decrypts a cipher-
text c which is part of FASTE.Lmsgs, S learns nothing (and does nothing). If
(c, ·, ·, ·) /∈ FASTE.Lmsgs, then FASTE requests (SimInjectMsg, c) of S. To re-
spond, S extract the NIZK to learn (m, uid i) from c.
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For simulating prepare access, the main difficulty is to ensure that for cor-
rupted LE the ciphertext contents of surveillable ciphertexts are always correct.
To this end, all affected ciphertexts are first identified (via execute access) and
their uids are explained (via PKEAS.ExplnLE). The simulation of execute access
for (honest) LE need only answer inject message queries for ciphertexts not
in FASTE.Lmsgs. Again, the contents of the ciphertext are obtained by extracting
the NIZK consistency proof.

The detailed description of S follows. We will consider the simulation strategy
task-by-task, and treat different corruption cases separately. This is possible since
we assume static corruption, and since the simulation is otherwise indifferent of
the corruption pattern. Moreover, we take care of any messages (of relevance)
to the hybrid functionality FAS during the description of the simulator, as each
message is uniquely associated with a single task.

Setup of (hybrid) functionalities Unless noted otherwise, the simulator em-
ulates queries to hybrid functionalities honestly. Of course, the simulator exploits
its control by programming the functionalities to some extent (e.g. simulation
for NIZKAS, programming FRO) and exploiting their extractability (i.e. S learns
every query to a hybrid functionality). We are explicit about any deviations from
honest emulation.

Trivially simulatable tasks In all these tasks, S does the necessary book-
keeping so all lists remain synchronized with FASTE. Otherwise, simulation is
trivial.

Party Init The simulation is trivial, since this task is identical to party init in
FAS and the protocol merely proxies to FAS.

Request Warrant The simulation is trivial, since this task is identical to request
warrant in FAS and the protocol merely proxies to FAS.

Get statistics The simulation is trivial, since this task is identical to get statis-
tics in FAS and the protocol merely proxies to FAS.

Audit The simulation is trivial, since this task is identical to audit in FAS and
the protocol merely proxies to FAS.

Next Period For honest SO, the simulator does nothing. In fact, FASTE (and
GCLOCK) do not explicitly notify the adversary of this task, so this is only indi-
rectly observable (by reading the clock). For corrupted SO, the simulator sends
(NextPeriod) to FASTE whenever SO intends to send (Clock-Update) to
GCLOCK and SO is currently registered with GCLOCK. (Note that the registra-
tion state can be checked by sending (Is-Registered, sidC) to GCLOCK.)
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Init Upon receiving (Init, P ) for P ∈ {J,AU} from FASTE, S executes the
honest protocol for P (i.e. sends (Init) to FAS and forwards the output, once it
is delivered). Since J and AU are assumed uncorruptable, this completes their
simulation.

For honest SO: Upon receiving (Init,SO), the simulator executes the honest
protocol for SO.

For corrupted SO: When S receives (Init,SO) in place of FAS from SO, it
sends (Init,SO) to FASTE on behalf of SO. When the simulated FAS would de-
liver output (InitFinished) to AU (resp. J), S allows the output of (InitFinished)
for FASTE to AU (resp. J).

User Registration We consider the corruption cases separately. Note that an
honest user first writes to FBB and then checks if the write to FBB was successful.
This ensures that it only continues the protocol if FBB contains the correct
entry.Also note that the leaks to the dummy adversary (as part of simulating
FAS) are straightforward to simulate in all cases. If U is honest, the uid is chosen
by the simulator.

Case 1: Honest Ui and honest SO Upon receiving (Register,Ui) from FASTE,
the simulator essentially honestly executes the protocol on behalf of both parties,
with following additional steps:

1. Let (pki, ski) be the keypair generated for Ui. When S on behalf of FBB

emulates a response (Retrieve,Ui, uid i, uid i) to Ui, i.e. once Ui knows it
has secured its unique uid i on FBB, S sends (Register,Ui, uid i) to FASTE

(i.e. registers Ui with that uid i, as uid i is now locked).
2. Sim also emulates FAS honestly. (The necessary inputs and leakage are

trivially known to S.)
3. When a simulated party (i.e. Ui or SO) generates output in the protocol, S

allows FASTE to deliver this party’s output. When S allows FASTE to deliver
output to Ui, it sets ureg i := 1.

Case 2: Honest Ui and corrupted SO Upon receiving (Register,Ui) from
FASTE, the simulator essentially honestly executes the protocol on behalf of
Ui, with the same (additional) steps in Items 1 and 2 and30 3 as in Case 1.

Moreover, when S (in place of FAS) receives (Register, uid) from SO, it
sends (Register) to FASTE on behalf of SO.

Case 3: Corrupted Ui and honest SO Upon receiving (Ready) from Ui, the sim-
ulator essentially honestly executes the protocol on behalf of SO, with following
additional step: After simulating a response (Retrieve,Ui, uid , uid ′) of FBB for
the query made by SO in this protocol run, if uid ′ = uid , S sends (Register,
Ui, uid) to FASTE. (At this point, uid i for Ui is locked.)

30 Since SO is corrupted (and of its output has no effect in FASTE), we can immediately
allow it or delay it forever without affecting the simulation.
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All other steps are simulated as in the actual protocol. Once S (in place of
FAS) delivers output (Registered) to Ui, set ureg i := 1. As in step 3 above,
once SO would generate (accepting) output, S allows FASTE to deliver output
to SO.

Case 4: Corrupted U and corrupted SO There is nothing to do for the simulator.

Update We consider the corruption cases separately. Note that for honest Ui, if
uvper i equals the current time, both the real and the ideal protocol immediately
finish without any visible (network) interaction. So there is nothing to simulate
(and it’s perfectly simulated). As noted before, S also keeps track of (a simulated)
uvper i for corrupted users.

Note that for honest users, update sends (Update,Ui, vper) to S and uid i
is known (through FBB), thus, S can simulate the leaks to the environment in
store secret of FAS trivially.

Case 1: Honest U and honest SO Upon receiving leakage (Update,Ui, vper),
the simulator acts as follows:

– S acts for Ui resp. SO exactly as in the protocol.
– When Ui (resp. SO) send (StoreSecret, uid i, uvper i) (resp. (StoreSecret,

uvper i)) to FAS (whichever sends first), send (Ok) to FASTE.
– S runs the remaining protocol and allows FASTE to deliver output once a

simulated party generates output. Note that, when delivering output for Ui,
S also sets uvper i := vper , where vper is the agreed upon period.

– As noted above, the leakage (StoreSecret, vper) from FAS to the dummy
adversary is trivial to honestly simulate.

Case 2: Honest U and corrupted SO Upon receiving leakage (Update,Ui, vper),
the simulator honestly executes the protocol on behalf of Ui.

31 Note again that,
when S would generate protocol output for Ui, it allows FASTE to deliver output
and sets uvper i := vper , where vper is the agreed upon period. (Observe that
S implements FAS, and thus learns the inputs of SO to FAS (if any). Thus
simulating possible aborts is straightforward.)

Case 3: Corrupted U and honest SO Upon receiving (Update, uid , vper) by Ui

on behalf of SO, the simulator honestly executes the protocol in the name of
SO. Suppose SO calls (the simulated) FAS with (StoreSecret, vper). Once
output (SecretStored, ·) is delivered to Ui by S in the name of FAS. Then
set uvper i := vper .

Case 4: Corrupted U and corrupted SO There is nothing to do for the simulator.

31 Note that the (dummy) adversary now receives (StoreSecret, uvper i) from the
simulated FAS. But as noted, S can trivially simulate the leakage.
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Encrypt Message For encryption, we only need to consider honest users.
When an honest user Ui invokes FASTE with (Encrypt,Uj ,m), then S re-
ceives leakage (Encrypt,Uj , (|m|, uvper),m′, uid ′) from FASTE. (Recall that
leak(m, uid , uvper) = (|m|, uvper) in Theorem 3, and that m′ = ⊥ if the receiver
Uj is honest and m′ = m otherwise.) Then S proceeds as follows:

1. Emulate the real protocol up to the computation of c. (In particular, wait
(if necessary) until the (dummy) adversary allows output (Retrieve, . . .)
of FBB.)

2. Simulate the ciphertext c by running PKEAS.Sim(crs, pkj , uvper i).
3. If m′ 6= ⊥, then Uj is corrupted and S immediately runs PKEAS.ExplnRE(crs,

pkj , c,m, uvper i) on the simulated ciphertext. (In this case m′ = m, i.e. S
learns m.)

4. If uid ′ 6= ⊥, then (uid i, uvper i) ∈ LW-cached and S runs PKEAS.ExplnLE(crs,
usk i, c, uid i, uvper i) immediately on the simulated ciphertext. (In this case,
uid ′ = uid i, i.e. S learns Ui)

5. Store (c,m′, uid ′, uvper i) in Lmsgs.
6. Send (Ciphertext,Uj , c) to FASTE.

Extract-and-inject ciphertext c In the tasks decrypt ciphertext, prepare
access and execute access, the ideal functionality FASTE may send an urgent
query (SimInjectMsg, c) or (SimAccessInject, c) to the adversary to make
sense of some ciphertext which is not (yet) contained in Lmsgs. The simulator
handles the query as follows:

1. If the NIZK proof π of consistency of c is not accepting, then S sends
(InjectMsg, c,⊥,⊥,⊥) to FASTE (and skips the rest).

2. S extracts the NIZK proof πcon (from c) to obtain (m, uid). Since the NIZK
of FASTE is ideal, extraction always succeeds.

3. Add (c,m, uid , uvper) to Lmsgs.
4. Send (InjectMsg, c,m, uid , uvper) to FASTE.

Decrypt Ciphertext For decryption, we only need to consider honest users.
Moreover, if (c, ·, ·, ·) ∈ Lmsgs, then S learns nothing about the call, as it is
local and immediately finishes. (The simulation — doing nothing — is perfect.)
Thus, S only handles the case where (c, ·, ·, ·) 6∈ Lmsgs. Namely, when S receives
(SimInjectMsg, c), then S acts as follows:

1. Let m′ = PKEAS.DecRE(crs, skj , c, vper).
2. If m′ = ⊥, send (InjectMsg,⊥,⊥,⊥) to FASTE.
3. Else, run extract-and-inject ciphertext c (as defined above).

For future reference, note that whenever S adds (c,m, uid i, uvper i) to Lmsgs,
it is ensured that FASTE adds it to FASTE.Lmsgs as well. If SO is corrupted,
this is trivial. If SO is honest, (uid , uvper) ∈ Luvper is checked during the inject
message task in FASTE, and this check will succeed, since for (uid , vper) /∈ Luvper

it is impossible to generate a (fake) NIZK proof (and thus ciphertext c associated
with fake (uid , vper)).

131



Prepare Access We consider simulation of honest and corrupt LE separately.
The main difference is, that honest LE only fills LW-cached at this step, so the
simulator has not much to do. On the other, hand, a corrupted LE learns
(uid i, vper i, usk i) tuples covered by the warrant. The simulator must now use
PKEAS.ExplnLE to fix the uids in the simulated ciphertexts.

Honest LE Upon receiving (AccessLeak) from FASTE, S simulates ΠASTE

for LE by simulating FAS on input (GetSecrets,W ) (for unknown W =
{Wi}vi=1 with Wi = (uid i, vper i,metai)). Note that get secrets (only) leaks
(GetSecrets) to the adversary, and then allows the adversary to delay the
output. If FASTE aborts, S instructs FAS to abort. Once the adversary allows
to deliver output, S allows FASTE to deliver output.

Corrupted LE Upon receiving (GetSecrets,W ) from LE (in place of FAS), S
proceeds as follows: Let W = {(uid i, vper i,metai)}vi=1. Send (AccessPrep,W )
to FASTE on behalf of LE. If FASTE aborts, S instructs FAS to abort. Else, receive
(AccessLeak). Before sending (GotSecrets, . . .) to LE, do the following:

Allow FASTE the output of (AccessPrepDone) (to simulated LE, i.e. S).
This ensures that execute access now decrypts all ciphertexts affected by W .
Now, S can run a trial-decryption process and explain all affected ciphertexts.
For each (uid j , vper j , ·) ∈W :

– If (uid j , vper j) ∈ Luvper, add (uid j , vper j) to LW-cached. Else, skip to next
(uid , vper) pair.

– For each ciphertext with undefined uid , i.e. for all (c,m,⊥, vper) ∈ Lmsgs, S
sends (AccessExec, c, (uid i, vper i)) to FASTE, and immediately32 receives
(AccessExecDone, uid) from FASTE. If uid 6= ⊥, then
• If there is no honest Ui with (Ui, uid) ∈ LU and ureg i = 1 then abort the

entire simulation with output inconsistent. Else we have uid i = uid .
• Explain c via PKEAS.ExplnLE(crs, usk i, c, uid i, vper i).
• Update (c,m,⊥, vper) to (c,m, uid , vper) in Lmsgs.

After this, S continues to simulate FAS honestly. Note that at this point, any
simulated ciphertext which would be accessible with warrant W has its uid
explained, and thus decrypts correctly.

Execute Access Since execute access is a completely local task, there is nothing
to do for corrupted LE. For honest LE the situation is very similar to decrypt
ciphertext. The only side-effect observed by the simulator are message injection
requests (SimAccessInject, c). These are handled as follows:

1. Let uid = PKEAS.DecLE(crs, skj , c, vper).
2. If uid = ⊥, send (InjectMsg,⊥,⊥,⊥) to FASTE.
3. Else, run extract-and-inject ciphertext c (as defined above).

32 There will never be a (SimAccessInject, c) request, since c was simulated, thus
(c,m, uid , vper) ∈ FASTE.Lmsgs,
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G.2 Simulator overview

Simulator S

The simulator has access to the global functionality GCLOCK. It implements
the hybrid functionalities FCRS, FBB, FAS, FRO.

Simulation of FCRS S simulates FCRS honestly.

Simulation of FBB S simulates FBB honestly, but it observes (adversarial)
messages.

Simulation of FRO S simulates FRO honestly, but it also programs FRO

and observes (adversarial) queries. Programmability and extractability of
FRO are used as part of the NINCE encryption subroutines, namely SKENCE

in PKEAS.

Simulation of FAS S simulates FAS honestly, but observes (adversarial)
messages.

States of the Parties:

– User, SO and LE: Cache crs from FCRS.
– User Ui:
• User long-term key: (pki, ski), where uid i = pki is the user identify.
• User secret (with period): (usk i, uvper i), where usk i is the current user

secret, and vper i the current user validity period.
• ureg i ∈ {0, 1} indicating whether Ui completed registration (initially

0).
• Public-key caches: uid j = pkj (once retrieved from FBB).

– LE: Cache LW-cached with entries (uid i, uvper i, usk i).
– SO, J and AU only need to interact with FAS.

Init:

– This is merely a proxy to Init from FAS. For concreteness, we specify
this proxy simulation, but leave other proxies to the reader.

Init (honest J or AU):

1. Upon receiving (Init, P ) for P ∈ {J,AU} from FASTE, leak (Init, P ) in
place of FAS to the adversary.

2. When the adversary allows delivery of output (InitFinished) to P , allow
FASTE delivery of (InitFinished) to P .
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Init (honest SO or corrupt SO):

1. Upon receiving (Init,SO) from FASTE, leak (Init,SO) in place of FAS

to the adversary.
2. When the adversary allows delivery of output (InitFinished) to SO,

allow FASTE delivery of (InitFinished) to SO.

Init (corrupt SO):

1. Upon receiving (Init,SO) from SO in place of FAS, leak (Init,SO) in
place of FAS to the adversary.

2. When the adversary allows delivery of output (InitFinished) to SO,
allow FASTE delivery of (InitFinished) to SO.

Party Init:

– This is merely a proxy to Party Init from FAS (analogous to Init).

User Registration (Honest Ui and honest SO):

– Upon receiving (Register,Ui) from FASTE, S emulates ΠASTE for Ui:
1. Send (value) to FCRS and cache the result as crs.
2. Generate and store (pki, ski)← PKEAS.Gen(1λ) (unless already stored).
3. Send (Register, uid i, uid i) to FBB.
4. Send (Retrieve, uid) to FBB and abort if the (eventually delivered)

response is not (Retrieve,Ui, uid , uid).
5. Send (Ready) to SO.
6. Send (Register, uid i) to FAS.
7. Send (Retrieve, uid) to FBB.
8. Upon output (Registered) from FAS to Ui, set ureg i := 1. Moreover,
S allows FASTE output for Ui.

– For SO, S emulates ΠASTE as well:
1. Upon receiving (Ready) from Ui, send (Retrieve,Ui) to FBB and

receive (Retrieve,Ui, uid i, uid ′i). If uid i 6= uid ′i, abort.
2. Call FAS with input (Register, uid i).
3. Upon output (Registered, uid) from FAS to SO, S allows FASTE

output for SO.

User Registration (Honest Ui and corrupted SO):

– For honest Ui, the honest simulation is unchanged.
– For SO, S acts as follows:

1. Upon receiving (Register, uid i) on behalf of FAS, S sends (Register)
in place of SO (for this session) to FASTE.

2. Upon output (Registered, uid) from FAS to SO, S allows FASTE

output for SO.
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User Registration (Corrupted Ui and honest SO):

– For honest SO, S executes the honest simulation of SO with following
change:
1. Upon receiving (Read) from Ui, S sends (Register) to FASTE on

behalf of Ui.
2. S receives (Register,Ui) from FASTE, but delays its response, until:
3. After delivering (Retrieve,Ui, uid , uid ′) to the simulated SO on be-

half of (the simulated) FBB and if uid = uid ′, then S sends (Register,
Ui, uid ′) to FASTE. Moreover, S allows output of (Registered, uid i)
to Ui and sets its simulated ureg i := 1, completing the registration of
Ui.

User Registration (Corrupted Ui and honest SO):

– There is nothing to do for S.

Next Period:

– There is nothing to do for S.

Update (Honest Ui and honest SO):

– Upon receiving (Update,Ui, vper) from FASTE, S emulates ΠASTE for
Ui:
1. Query (Clock-Read) to GCLOCK and receive (Clock-Read, vper).
2. If uvper = vper , Ui output (UpdateDone, vper). Else continue.
3. Send (Update, uid i, vper) to SO.
4. Send (StoreSecret, uid i, vper) to (the simulated) FAS.
5. Upon receiving (SecretStored, usk ′i), and update (usk i, uvper i) :=

(usk ′i, vper). Moreover, S allows output of (UpdateDone, vper) by
SO to FASTE.

– For SO, S emulates ΠASTE as well:
1. Upon receiving (Update, uid , vper) from Ui:
2. Query (Clock-Read) to GCLOCK and receive (Clock-Read, vper ′).

If vper ′ 6= vper , abort.
3. Send (StoreSecret, vper) to FAS.
4. Upon receiving (SecretStored, uid i), the simulator S allows output

of (UpdateDone, vper) to SO by FASTE.
– S observes the behaviour of the FAS calls (in this session) and acts as

follows:
• When Ui (respectively SO) send (StoreSecret, uid i, uvper i) (respec-

tively (StoreSecret, uvper i)) to FAS (whichever sends first), send
(Ok) to FASTE.
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Update (Honest Ui and corrupt SO):

– Simulation for honest Ui is unchanged.
– For corrupt SO, no additional special handling required. (Note that FASTE

still receives (Ok) from the simulator S once (simulated) Ui or SO send
(StoreSecret, uvper i) for this session to FAS.)

Update (Corrupt Ui and honest SO):

– Simulation for honest SO is unchanged.
– For corrupt Ui, no special handling is required. (Note again that FASTE

still receives (Ok) from the simulator S once Ui or (simulated) SO send
(StoreSecret, uid i, uvper i) or (StoreSecret, uvper i) for this session
to FAS.)

Update (Corrupt Ui and honest SO):

– There is nothing to do for S.

Encrypt Message (Honest Ui):

– Upon receiving (Ciphertext,Uj , leak,m
′, uid ′), emulate the honest en-

cryption, but with simulated ciphertexts. First, proceed as honest Ui:
1. Locally copy (usk i, uvper i) and use this copy.
2. If uvper i = ⊥, abort.
3. If pkj is not cached, send (Retrieve,Uj) to (the simulated) FBB and

later receive (Retrieve,Uj , uid j , uid ′j). If uid j 6= uid ′j or uid = ⊥,
abort. Else cache pkj = uid j .

– Now, simulate the ciphertext and keep S.Lmsgs up-to-date.
4. Simulate the ciphertext c as c← PKEAS.Sim(crs, pkj , uvper i).
5. If m′ 6= ⊥, then Uj is corrupted and the simulator S immediately runs

PKEAS.ExplnRE(crs, pkj , c,m, uvper i) on the simulated ciphertext. (In
this case m′ = m, i.e. S learns m.)

6. If uid ′ 6= ⊥, then (uid i, uvper i) ∈ LW-cached and S immediately runs
PKEAS.ExplnLE(crs, usk i, c, uid i, uvper i) on the simulated ciphertext.
(In this case, uid ′ = uid i, i.e. S learns Ui)

7. Store (c,m′, uid ′, uvper i) in Lmsgs.
8. Send (Ciphertext,Uj , c) to FASTE.

– Note that S programs FRO during the PKEAS simulation and explanation
steps.

Decrypt Ciphertext (Honest Ui):

– This is handled as part of Simulator Injected Messages.
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Simulator Injected Messages:

– Upon receiving (SimInjectMsg, c) or (SimAccessInject, c) from FASTE:
1. If the NIZK proof π of consistency of c does not verify, then S sends

(InjectMsg, c,⊥,⊥,⊥) to FASTE (and skips the rest).
2. S verifies extracts the NIZK proof πcon (from c) to obtain (m, uid).

Since the NIZK of FASTE is ideal, extraction always succeeds.
3. Add (c,m, uid , uvper) to S.Lmsgs.
4. Send (InjectMsg, c,m, uid , uvper) to FASTE.

Request Warrant:

– This is merely a proxy to Request Warrant from FAS.

Prepare Access (Honest LE):

– Upon receiving (AccessLeak):
1. Simulate sending (GetSecrets,W ) to FAS, that is, send (GetSecrets)

to the adversary on behalf of FAS.

Prepare Access (Corrupted LE):

– Upon receiving (GetSecrets,W ) from LE in place of FAS:
1. Send (AccessPrep,W ) to FASTE on behalf of LE.
2. If FASTE aborts, S lets (its simulation of) FAS to abort as well.
3. Receive and ignore (AccessLeak) from FASTE.
4. Allow FASTE the output of (AccessPrepDone) (to LE).
5. Retrocatively explain all affected ciphertext using PKEAS.ExplnLE and

the Execute Access task of FASTE, as defined in Appendix G.1.

Execute Access:

– This is handled as part of Simulator Injected Messages.

Get Statistics:

– This is merely a proxy to Get Statistics from FAS.

Audit:

– This is merely a proxy to Audit from FAS.

G.3 Proof of Theorem 3 (Sketch)

In this section, we sketch the proof for Theorem 3, which we state here again.

Theorem 3. Suppose Σ′ is a EUF-CMA-secure signature scheme, COM is a
statistically binding and computationally hiding commitment scheme, PKENCE is
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a strong NINCE PKE scheme and IND-CCA secure and key-committing, SKENCE

is a strong NINCE SKE scheme and IND-CCA secure and key-committing.
Moreover, suppose all schemes are perfectly correct. Let leak(m, uid , uvper) =
(|m|, uvper) as the system parameter in FASTE, and let fp, ft be policy and trans-
parency functions. Then ΠASTE UC-realizes FASTE in the {FCRS,FBB,FAS,
GCLOCK}-hybrid model.

We prove that the real protocol execution and the simulation are indistin-
guishable using several game hops, starting with the real protocol. We do book-
keeping with the same variables as the simulator and FASTE use. To refer to
a variable of FASTE, we write, for example, FASTE.Lmsgs, to distinguish it from
other variables maintained by the simulator. For a variable v which is kept by
honest parties, or by the simulator in the name of honest and corrupted par-
ties or hybrid functionalities, we simply write v, e.g. ureg i or uvper i for (honest
or corrupt) user Ui; seldom, we write FAS.LU to emphasize that the variable
is part of the (simulated) hybrid functionality FAS. We introduce also certain
invariants, which are useful to see that S uses FASTE correctly. Moreover, we
will gradually ensure that lists and variables of S and FASTE “coincide” (to the
extent possible).

Game 0. This is the real protocol execution.
Game 1. We introduce the simulator’s additional variables, namely the

lists LU, Luvper, Lmsgs, etc., but also the variables ureg i, uvper i (and ski, usk i,
etc.) both for honest parties and corrupted parties. They are initialized as in
FASTE. To gradually turn the real world into the simulation, we imagine access
to the functionality FASTE (for now, simulated by the game itself). Moreover,
we treat honest parties like dummy parties, since we can freely see their input
to subroutines, and completely modify the behaviour of subroutines, so as to
gradually replace the real protocol by interaction with FASTE and S.

This change is only conceptual.
Game 2 (Simulate Init). For Init, we replace P ∈ {AU, J} by dummy

parties which interact with FASTE instead of the protocol. In turn we simulate
their protocol messages with the simulator. For honest SO, we do the same. For
corrupted SO, we also apply the simulation strategy (to correctly interact for
FASTE).

Since simulation and real protocol are effectively equivalent (namely, up to
some protocol steps, they are just calls to FAS and GCLOCK), these changes are
only conceptual.

Game 3 (Simulate Party Init). We let honest parties call FASTE instead of
running the protocol for party init, run the simulator for this task. Since, sim-
ulation is trivial, it is perfectly indistinguishable. Now, the lists LI and FASTE.LI

evidently always coincide.
Game 4 (Simulate user registration). We let honest parties call FASTE

instead of running the protocol for user registration, and run the simulator
for this task. We track the variable ureg i exactly as in the simulation. Moreover,
we link these with respective user registration task of the imagined FASTE.
Concretely, the following 4 cases affect ureg i:
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– Case 1 (Honest Ui and honest SO): S runs the protocol for Ui and SO. It
sets ureg i = 1 when the real protocol outputs (Registered) to Ui.

– Case 2 (Honest Ui and corrupted SO): S runs the protocol for Ui. It sets
ureg i = 1 when the real protocol outputs (Registered) to Ui.

– Case 3 (Corrupted Ui and honest SO): S runs the protocol for SO. It sets
ureg i = 1 after FAS outputs (Registered) to Ui.

– Case 4 (Corrupted Ui and SO): The corrupted parties act unchanged.

By definition of S, we could in all cases simply execute S with FASTE to simu-
late the real protocol. Indeed, S allows to deliver (Registered) to Ui and SO
(immediately) after the real protocol generates output (Registered).

All in all, we may assume the simulation strategy is applied to the user
registration task. We see that ureg i and FASTE.ureg i always coincide. The
change is only conceptual.

Game 5 (Simulate update). We let honest parties call FASTE instead of
running the protocol for update, and run the simulator for this task. Now, we
track uvper i and Luvper. Moreover, we link these with respective update task of
the imagined FASTE. As in Game 4, we consider 4 cases of corruption, which
affect how the variables uvper i and Luvper are changed. Let vper be the agreed
upon vper (which is the response of GCLOCK to the honest party (or parties)).

– Case 1 (Honest Ui and honest SO): When the real protocol generates output
(UpdateDone, vper) to Ui, set uvper i = vper and add (uid i, uvper i) to
Luvper.

– Case 2 (Honest Ui and corrupted SO): Run the protocol for Ui. When the
real protocol outputs (UpdateDone, vper) to Ui, set uvper i = vper and
add (uid i, uvper i) to Luvper.

– Case 3 (Corrupted Ui and honest SO): Run the protocol for SO. When FAS

outputs (SecretStored, usk) to Ui, set uvper i = vper and add (uid i, uvper i)
to Luvper.

– Case 4 (Corrupted Ui and SO): Let the corrupt parties act unchanged.

As in Game 4, by definition of S, we could in all cases simply execute S with
FASTE to simulate the real protocol. Indeed, S allows deliver output to Ui and/or
SO right after the real protocol generates output.

The change is indistinguishable. We see that uvper i (resp. Luvper) and FASTE.uvper i
(resp. FASTE.Luvper) always coincide.

Game 6 (Simulate (but immediately explain) honest ciphertexts). In this
game, we replace the computation of honest ciphertexts by simulations, using
PKEAS.Sim, but immediately explain their contents using PKEAS.ExplnRE and
PKEAS.ExplnLE afterwards. Thus, these ciphertexts still correctly decrypt given
the secret keys. To keep track of simulated ciphertexts, the game adds c to Lctsim.

This change is indistinguishable by a straightforward reduction to straight-
line simulation-extractability of NIZKAS, and strong NINCE of PKEAS (or rather,
strong NINCE of PKENCE and SKENCE).

Game 7 (Consistency of ciphertexts proofs and decryptions). In this game,
we ensure that any non-simulated ciphertexts c which did not decrypt to ⊥ by an
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honest user Uj or honest LE has a consistent NIZK proof. For any c /∈ Lctsim and
which is part of honest party’s ciphertext verification or decryption run (either
PKEAS.Vfy, or PKEAS.DecRE or PKEAS.DecLE) with period vper , we add following
abort to the game: Assemble the statement stmtc for c w.r.t. validity period vper ;
let π be the proof (contained in c). Let NIZKAS.Ext(td , stmtc, π) = wit be the
extracted witness, which contains user secret usk , user id uid , and message m:

Invariant 1 (Consistency of PKEAS.DecRE): If PKEAS.DecRE(crs, sk`, c, vper) 6=
m, abort with output inconsistent. (Here honest U` decrypts.)

Invariant 2 (Consistency of PKEAS.DecLE): If PKEAS.DecLE(crs, usk , c, vper) 6=
uid , abort with output inconsistent. (Here honest LE decrypts.)

Lemma 3. Let c = (pk, . . .) be a ciphertext which was not generated in the name
of an honest user, i.e. c /∈ Lctsim. Let stmtc be the assembled statement for c w.r.t.
validity period vper and proof π. Then probability that PKEAS.Vfy(crs, c, vper) =
1, but the extracted witness NIZKAS.Ext(td , stmtc, π) = wit contains user se-
cret usk, user id uid or message m with PKEAS.DecRE(crs, sk, c, vper) 6= m or
PKEAS.DecLE(crs, usk , c, vper) 6= uid is negligible.

By Lemma 3, the probability that Game 7 outputs inconsistent (which is
the only visible change that is made) is negligible. Thus, this change is indistin-
guishable.

Proof (Proof sketch for Lemma 3). By assumption, the commitment scheme
COM is statistically binding. Thus, with overwhelming probability the commit-
ment key ck , is perfectly binding, and every commitment contains unique values.
We will assume this in the following. Moreover, we show the claim for LE, i.e.
PKEAS.DecLE(crs, usk , c) 6= uid . The claim for PKEAS.DecRE(crs, sk, c) 6= m fol-
lows analogously.

Let c = (pk, (comi,b, ctREi,b , ctLEi,b )i,b, ((di,γi)i, πcon)), and stmt = (vper , pk,

(comi,b, ctREi,b , ctLEi,b )i,b). and γ = RO(stmt , πcon).
First, note that using NIZKAS.Ext(stmt , π), we can extract m, uid , usk from

π. This is possible, since c was not simulated (i.e. c /∈ Lctsim), and a failure
of extraction would break straight-line simulation-extractability (which holds
information-theoretically in FAS). Let wi,b = (mi,b, usk i,b, uid i,b, r

RE
i,b , r

LE
i,b ) be

the unique values contained in comi,b. Thus, with overwhelming probability we
extract a witness and uid = uid i,0 + uid i,1 resp. usk = usk i,0 + usk i,1 holds for
all i = 1, . . . , `(λ).

Now check (by recomputing) whether SKENCE(usk i,b, uid i,b; r
LE
i,b ) = ct i,b for

all i ∈ {1, . . . , `}, b ∈ {0, 1}. Suppose that for k choices of i, at least one share
does not satisfy the check, i.e. SKENCE(usk i,b, uid i,b; r

LE
i,b ) 6= ct i,b. Then with

probability at most 2−k, the challenge γ = RO(stmt , πcon) ∈ {0, 1}` avoids all
of them. Thus, with probability 1 − 2−k, the cut-and-choose instance will be
rejected, and hence the probability that a cut-and-choose instance with k ≤
`(λ)/2 inconsistent indices is not rejected is at most 2−d`(λ)/2e. Consequently,
if at most Q(λ) queries to the random oracle are made (by all parties), the
probability that a bad cut-and-choose instance, where only a minority of indices
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i have consistent shares, is not rejected is at most Q(λ) · 2d−`(λ)/2e = negl(λ) for
polynomial Q. Finally, note that by correctness of SKENCE, for any index i for
which the ciphertexts ctLEi,b are consistent, the decryption ctLEi,b with usk i,b yields
the encrypted (and extracted) message uid i,b. Thus, LE can correctly decrypt
whenever k > `(λ)/2.

Game 8 (Ciphertexts as unique handles for honest users.). In this game,
we introduce following additional abort:

Invariant 3 (Uniqueness of c): For any c ∈ Lctsim, there is only one entry
(c,m, uid , uvper) in Lmsgs. More precisely, upon any call to PKEAS.Vfy (e.g.,
as part of PKEAS.DecLE or PKEAS.DecRE) succeeds for another uvper ′ 6= uvper
or output another m or uid than the one contained in Lmsgs, abort with
inconsistent.

The uniqueness of c allows c to serve as a unique identifier, which connects in-
complete entries (c, ∗, ∗, uvper) in Lmsgs with complete entries (c,m, uid , uvper)
in FASTE.Lmsgs. This will later be useful, to ensure that Lmsgs and FASTE.Lmsgs

coincide for honest ciphertexts, up to unknown m and/or uid for simulated ci-
phertexts, and prevent any other entry for ciphertext c in Lmsgs and FASTE.Lmsgs.

We sketch the proof: Let c ∈ Lctsim. Observe that honestly generated and
simulated ciphertexts have high entropy, thus, the probability that a collision
occurs is negligible for honest generation or simulation. Firstly, suppose that
c ∈ Lctsim and PKEAS.Vfy accepts for two periods uvper 6= uvper ′. Since the as-
sociated statements stmt 6= stmt ′ are also inequal, by simulation-extractability
(and since only one proof was simulated), we can extract the witness. How-
ever, the probability that this happens is negligible, as it is easily reduced to
some hardness assumption, e.g. the hiding property of the commitment scheme
used in PKEAS cut-and-choose. Thus, the accepting uvper is unique, as claimed.
Secondly, we show that m and uid are fixed for c. If c were to decrypt via
PKEAS.DecRE under more than one user’s sk, or via PKEAS.DecLE under more
than one usk , then the key-committing property of PKENCE or SKENCE would
be broken. Thus, this also happens with negligible probability. As decryption
is deterministic, c decrypts under (at most) one key uniquely to m resp. uid .
Overall, c uniquely identifies (m, uid , uvper) as claimed.

Game 9 (Consistency checks on uid (for honest Ui)). We add additional
checks to those of Game 10. Roughly, the game aborts if an honest user’s usk
is extracted from any ciphertext.33 More precisely, let (c,m, uid , vper , usk) be
(part of) the (extracted) information during verification or decryption of c w.r.t.
period vper , then the game runs following check:

Invariant 4: If PKEAS.Vfy(crs, c, vper) = 1 and PKEAS.DecLE(crs, usk , c, vper) =
uid and (U, uid) ∈ LU for honest U, then abort with inconsistent. (Recall
that c /∈ Lctsim.)

33 Note that extraction is never used on ciphertexts in Lctsim. Hence, such a ciphertext
would “frame” an honest user.
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The probability that such an abort happens is negligible, as it can be reduced
to the IND-CCA security of PKENCE and key-committing of SKENCE. More con-
cretely, if this happens for some user Ui, then (from the extracted NIZK proof)
the user’s long term secret key skj is recovered, since the NIZK proves (in particu-

lar) knowledge of sk with (uid , sk) = PKEAS.Gen(1λ; sk). Moreover, since SKENCE

is key-committing, it is hard to find usk 6= usk ′ with PKEAS.DecLE(crs, usk ′, c, vper) 6=
⊥.

Game 10 (Consistency checks on uid for honest SO). We add additional
checks to those of Game 7 if SO is honest. Namely, after (successful) extraction,
add the following invariants, where (c,m, uid , vper) is (part of) the (extracted)
information during verification or decryption of c w.r.t. period vper :

Invariant 5 (Period consistency): In the above situation, if (uid , vper) /∈
Luvper, abort with invalidperiod. (If SO is honest, an update in period
vper is required to produce valid ciphertexts w.r.t. vper .)

Invariant 6 (Registration consistency): In the above situation, if (·, uid) /∈
LU, abort with invalidperiod. (If SO is honest, a user must be registered
to produce any valid ciphertexts.)

These invariants are immediately implied by the guarantees of NIZKAS, or
rather, the guarantees of the Verify task of FAS. Indeed, as long as SO is honest,
Verify checks invariant 5 and returns 0 if it is not satisfied. Moreover, for honest
SO, invariant 5 immediately implies invariant 6, since unregistered users cannot
have completed update (in any period).

Game 11 (Almost simulate encrypt message). In this game, we use the
simulation to handle encrypt message for an honest user Ui. However, as in
Game 6, all ciphertext are still explained immediately after their simulation. Ob-
serve that the respective tuples are added to the lists Lmsgs (resp. FASTE.Lmsgs),
are exactly as they would be by S (resp. FASTE). (But not everything related
to Lmsgs is handled as in (or by) FASTE. This will take some more steps.)

This change is merely conceptual and thus perfectly indistinguishable.
Game 12 (Simulate decrypt message). In this game, we use the simu-

lation to handle decrypt message for an honest user Uj . The lists Lmsgs and
FASTE.Lmsgs remain synchronized.

This change is perfectly indistinguishable. Indeed, only if the ciphertext
which Uj decrypts is not part of FASTE.Lmsgs, will there be any change, namely,
the (SimInjectMsg, c) request. We argue indistinguishability as follows:

Honest SO: In this case, invariants 1–6 ensure that simulation and real pro-
tocol are indistinguishable. More concretely: By invariants 1–4, we already
verify whether PKEAS.DecLE and extracted NIZK proof agree on c (and abort
the entire game otherwise). Thus, the only possible difference would be if in-
ject message fails to inject since the provided (c,m, uid , vper) fails the check
that (uid , vper) ∈ Luvper or uid belong to an honest user. This is excluded by
invariants 5–6 Thus, there is no change in behaviour.

Corrupted SO: In this case, invariants 1–4 still ensure that simulation can
find proper inputs to the request (SimInjectMsg, c). Invariants 5 and 6 do
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not apply for corrupted SO, but the inject message subroutine does not
enforce them in this case either, it only checks that uid does not belong to
an honest user, which is still ensured by invariant 4.

Game 13 (Simulating request warrant and switching to FASTE.LW ). In
this game, we simulate the request warrant task in FASTE, and switch all
uses of LW (of the hybrid functionality FAS) to uses of FASTE.LW . This works
without any problem, since the request warrant task of FASTE is merely a
proxy to the task of FAS. Thus, corrupted parties are handled as usual. For
honest parties, we switch their interface to FASTE and plug in the simulation
(exactly as in Game 2). Clearly, LW and FASTE.LW always coincide. Moreover,
the change is perfectly indistinguishable.

Game 14 (Simulate get statistics). Since get statistics in FASTE is
merely a proxy to FAS, simulation is trivial and perfectly indistinguishable,
since we have replaced the use of LW with FASTE.LW globally (in Game 13).

Game 15 (Simulate audit). Since audit in FASTE is merely a proxy to
FAS, simulation is trivial and perfectly indistinguishable, since we have replaced
the use of LW with FASTE.LW globally (in Game 13).

Game 16 (Almost simulate prepare access). In this game, we use the
simulator for prepare access, except that still all ciphertext are fully explained
to begin with (by Game 6). Observe that, since Luvper and FASTE.Luvper coincide
by Game 5, also LW-cached and FASTE.LW-cached coincide.

This change is indistinguishable. To see this, we distinguish two cases:

Honest LE In this case, the simulation is perfect and only requires a little book-
keeping between FASTE and the (simulated) FAS.

Corrupted LE The simulation acts whenever it receives (GetSecrets,W ) in
place of FAS. Namely, the simulator sends (AccessPrep,W ) to FASTE on
behalf of LE, and receives (AccessLeak) or FASTE aborts (in which case S
causes FAS to abort). Recall that simulation must ensure that LW-cached and
FASTE.LW-cached coincide, and the above strategy ensures exactly that. Before
(GotSecrets, . . .) would be delivered to LE, S does the following: S allows
FASTE to deliver output. Now, the simulator runs execute access on all sim-
ulated ciphertexts in Lmsgs (i.e. the subset Lctsim) with all possible (uid i, vper i)
where (uid i, vper i, ·) ∈W . If a ciphertext c is deanonymized with (uid , vper), S
runs PKEAS.ExplnLE(crs, usk , c, uid , vper) and updates (c,m, uid , vper) in Lmsgs.

Observe that, in the current game, the calls to PKEAS.ExplnLE do nothing,
because all (honest) ciphertexts are already explained, cf. Game 6. However, this
will change in future games, hence it is important to explain all yet unexplained
ciphertexts during simulation of execute access. Also observe that, with this
game’s changes, LW-cached and FASTE.LW-cached always coincide. This change is
perfectly indistinguishable and only conceptual.

Game 17 (Simulate execute access). In this game, we use the simulation
to handle execute access. The lists Lmsgs and FASTE.Lmsgs continue to always
coincide after this change.

143



This change is perfectly indistinguishable. Indeed, it is only bookkeeping.
This is only relevant for honest LE. For (AccessExec, c, (uid , vper)), the check
(uid , vper) ∈ LW-cached and (uid , vper) ∈ FASTE.LW-cached are identical, since
LW-cached and FASTE.LW-cached coincide (by Game 16). The task is local, except
if c /∈ Lmsgs, thus it suffices to argue that an occurrence of (InjectMsg, c) does
not result in a difference between the output of the protocol execute access
and the output of FASTE. This is almost identical to the argument for decrypt
message in Game 12 (for corrupted SO). Indeed, by invariants 1–4, no difference
will occur (or the game would have aborted).

Remark 11. At this point, the game handles all lists, in particular Lmsgs and
FASTE.Lmsgs, exactly as S (resp. FASTE). The only difference compared to a full
simulation is the ciphertext handling in encrypt message and prepare access.
For encrypt message, Game 11 still uses PKEAS.ExplnRE and PKEAS.ExplnLE

immediately after simulating a ciphertext, and this has not been removed. For
prepare access, Game 16, the call to PKEAS.ExplnLE is skipped (as all ciphertext
are already explained). We complete the simulation of these task in the following
steps.

Game 18 (Simulate honest ciphertext uids). In this game, we complete the
simulation of prepare access. Instead of running PKEAS.ExplnLE on a honestly
generated ciphertexts immediately after their simulation (in encrypt message),
it is run only when necessary.

This change is indistinguishable. To see this, consider two cases:

– Case 1 (Honest LE). There is no difference in this case.
– Case 2 (Corrupt LE). Whenever FAS releases secrets due to a warrant, the

game programs all (not yet programmed) affected honest ciphertexts, as
introduced in Game 16. Whether an honest ciphertext is affected can be seen
from FASTE.Lmsgs directly, but since S has no access to FASTE.Lmsgs, it uses
the roundabout way of repeatedly running trial calls to execute access until
all possible cases are exhausted. Moreover, the case of (SimAccessInject, c)
is handled correctly. Furthermore, fresh honest encryptions during encrypt
message are always explained immediately by S if they lie in a surveilled
epoch, i.e. if (uid i, uvper i) ∈ LW-cached.

The indistinguishability in Case 2 reduces to strong NINCE-security of PKEAS.
The last remaining difference in ciphertext handling is addressed next.
Game 19 (Simulate honest ciphertext m). In this game, we complete the

simulation of encrypt message. Instead running PKEAS.ExplnRE on a honestly
generated ciphertexts immediately after their simulation, it is run only when
necessary. That is, it is run only when the receiver is corrupted.

This change indistinguishable, as it reduces to the strong NINCE-security of
PKEAS.

Game 20 (Tying up loose ends). At this point, the game handles everything
pertaining ciphertexts (in particular filling the list Lmsgs) by simply running
S. In other words, the simulator is used everywhere in the game. The only
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required change to remove superfluous aborts (such as inconsistent), which
never occur in S. Since the probability of these aborts is negligible, this change
is indistinguishable. Altogether, this proves our claimed indistinguishability of
real execution (Game 0) and ideal execution (Game 20).

Remark 12 (Overview of invariants in terms of FASTE). Besides invariants 1–6
introduced in the games, one can also view invariants in terms of the variables
kept for the simulator and for FASTE. Over the course of several games, it is
ensured step by step that these “invariants” hold.

– ureg i and FASTE.ureg i always coincide.
– uvper i (resp. Luvper) and FASTE.uvper i (resp. FASTE.Luvper) always coincide.
– ureg i = 0 =⇒ Luvper contains no uid i, assuming honest SO. (Without

registration, users cannot run update.)
– (uid i, vper) /∈ Luvper =⇒ no messages in Lmsgs from Ui in period vper ,

assuming honest SO. (Users can only encrypt in periods for which they have
run update.)

– If Ui is not corrupted, then no extracted (thus non-simulated) ciphertexts
has the uid of a an honest user.

– c is a unique identifier in Lmsgs for “honest” ciphertexts.

– If (c,m′, uid ′, vper) ∈ Lmsgs then ∃m, uid , vper : (c,m, uid , vper) ∈ Lmsgs where

m′ = m (resp. uid ′ = uid) or m′ = ⊥ (resp. uid ′ = ⊥).
– Any simulated ciphertext c is explained only when necessary, i.e. corruption

of receiver or corrupted LE and surveillance of the user in the respective
period of c (once usk ’s are “released” via the (simulated) hybrid functionality
FAS).
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