
Reframing and Extending the Random Probing Expandibility to
Make Probing-Secure Compilers Tolerate a Constant Noise

Giuseppe Manzoni
Independent Researcher

giuseppe.manzoni@zelya.org

October 10, 2024

Abstract

In the context of circuits leaking the internal state due to hardware side-channels, the p-random
probing model has an adversary who can see the value of each wire with probability p. In this model,
for a fixed p, it is possible to reach an arbitrary security by ‘expanding’ a stateless circuit via iterated
compilation, reaching a security of 2−κ with a polynomial size in κ.

An artifact of the existing proofs of the expansion is that the worst security is assumed for the
input circuit. This means that a pre-compiled input circuit loses all the security guarantees of the first
compilation. We reframe the expansion, and we prove it as a security reduction from the compiled circuit
to the original one. Additionally, we extend it to support a broader range of encodings, and arbitrary
probabilistic gates with an arbitrary number of inputs and outputs.

This allows us to prove the following statement: Given a stateless circuit on a field with characteristic
ρ, and given a d-probing secure compiler for some integer d, we can produce a circuit with security 2−d

against any adversary that sees all wires with a constant SD-noise of 2−7.41/ρ, at the cost of an additional
size factor O(log(d)3).

1 Introduction
Even when a cryptographic algorithm is secure against classical black-box attacks, its implementation could
still be vulnerable to side-channel attacks, which make use of some physical leakage (e.g. the running time
[Koc96], the power consumption [KJJ99], the electromagnetic radiation [QS01]).

Many types of physical leakage can be modeled using the noisy leakage models [CJRR99, PR13, DDF19,
PGMP19]. In particular, we will focus on the noisy models with the following leakage: for every wire
with a value x with distribution X, the adversary can see any leakage f(x), such that the distribution
X and the conditional distribution1 X|f(X) are closer than some δ using some metric M (for example,
the Euclidean norm in [PR13, PGMP19], the statistical distance in [DDF19, PGMP19, GPRV21], and the
Average Relative Error in [PGMP19]). Of those metrics, we will focus the most2 on the statistical distance
because it corresponds to the intuitive concept of the indistinguishability [MT10] between the distributions
X and X|f(X).

As the noisy models tend to be hard to handle when writing proofs, other models have been introduced,
like the p-random probing model [ISW03, DDF19, BCP+20] in which each wire leaks the exact value with
a given probability p. While this model does not describe any physical attack, it is equivalent to the noisy
model. In particular, a compiler that tolerates a leakage of p in the random-probing model is guaranteed to
tolerate a noise with leakage of p/|K| in the noisy model.

In general, when we have calculated the security of a circuit for some given noisy leakage δ, we may find
that its guaranteed security is lacking. In this case we can ‘compile’ it: transform the circuit into a new
one that carries out the same function. Usually a compiler will substitute every gate with a small circuit or
‘gadget’, every wire with n wires or ‘shares’, and every value will be ‘masked’ or ‘encoded’ so that the values
in the shares together reveal the original value. This operation usually allows to increase the security at the

1For more on this notation and concept see [PR13, DDF19, PGMP19].
2For the other metrics the difference is a single factor, see footnote 5.

1

https://orcid.org/0009-0007-6339-7139
mailto:giuseppe.manzoni@zelya.org

cost of having a bigger circuit, but this is not guaranteed: if the noise δ associated with the circuit is not
enough, then compiling the circuit will only lead to a lower security. For this reason, the ideal compiler is
able to guarantee the security of the output circuit for the highest possible tolerated leakage, and with the
lowest possible circuit size increase.

The existing literature considers a sequence of compilers with increasing security, and it analyzes the
size complexity of the compilation as the security increases. The ideal sequence of compilers tolerates a
constant noise (the highest possible) regardless of the required security. The first solution to this problem
used expander graphs [Ajt11] and it was followed by a similar compiler sequence [ADF16] which simplified
the first and improved it using geometric codes. Then next solution used an expansion strategy of compilers
using multi-party computation protocols [AIS18], which had a tolerated leakage in the random probing model
of 2−26 and complexity of O

(
κ8.2

)
[BCP+20].

The next improvement [BCP+20] tolerated a leakage of 2−7.97 with a complexity of O
(
κ7.5

)
, and did

this by introducing the Random Probing Expandability (RPE) property. This expansion works in two steps:
first compile a set of gadgets with themselves to obtain bigger and more secure gadgets. This process is
repeated until the wanted security level is reached. Lastly, the resulting gadgets are used to compile the
input circuit.

This approach was then refined [BRT21] by providing gadgets that reach the limits of what is possible
using the RPE property, reaching a better tolerated leakage of 2−7.5 and lower complexity O

(
κ3.9

)
. The

same paper also provides a generic compiler sequence, so that the compiler sequence made with gadgets with
n shares has a complexity of O(κe(n)) with e(n) := log(3n2−2n)

log(⌊(n+1)/2⌋) , creating a tradeoff between complexity and
tolerated leakage. We note that thanks to the expansion, the number of shares of the gadgets is unrelated
to the desired security of the final circuit.

A successive article [BRTV21] extended the random probing expansion by allowing a different compiler
at different stages of the expansion, and this allows them to solve the tradeoff.3

While this research happened, most of the research focused on the t-probing model, where the attacker
can place at most t probes, and obtain the exact value contained in those wires. There have been various
papers reducing the security of one of the noisy models to that of the probing model. Some [PR13] did so
by using refresh gates that do not leak the internal computation. Successive research [DDF19] provided a
compiler sequence that given a circuit c and a number of shares n, it produces an output circuit that is both
⌊(n− 1)/2⌋-probing secure and has a security of ∥c∥ e−n/12 for a noise of Θ(1/(n · |K|)), where ∥c∥ is the
circuit size.

There have been improvements to this reduction [PGMP19] to extend it to different metrics, and after
we first archived our paper, a new result [BDF24] showed that the 1/|K| factor can be removed at the cost
of a noisy leakage that is around the square of the random probing leakage.

1.1 Our Contributions
Our main contribution is to provide a transformation from the probing model to the noisy model such that
the resulting circuit tolerates a constant noise. More specifically, if the characteristic of the circuit’s field is
ρ, then regardless of the desired security guarantee, of the order of the field, or of circuit’s size, the resulting
circuit will tolerate a SD-noise of 2−7.41/ρ which is the state-of-the-art for compilers of circuits with a small
characteristic. E.g., for the AES encryption, which works in F28 , the tolerated noisy leakage is 2−8.41, but our
approach applies to all kinds of circuits. The cost of this transformation is a cube-logarithmic size increase.

At the core of our paper is the introduction of the Random Probing Reducibility (RPR) property, which
reduces the security of a compiled circuit to the security of the original one. In particular, if a compiler is
f -RPR, its output circuits guarantee the same security for a leakage p as their input circuit does for the
leakage f(p). In the useful case of f(p) < p, the output circuit guarantees the same security when exposed
to a higher leakage.

From the RPR property and from knowing how many gates are used by each gadget, we show how to
calculate the tolerated leakage and the exponent of the polylog size increase.

3Due to its relevance with our results, we must note that [BRTV21] contains a mistake in its Lemma 9, as the order of the
compilers is inverted. In its proof it has an ‘i.e.’ that does not hold. The core reason (using our notation) is that given two families
of gadgets I,O, we have that CCO ◦ CCI = CCCCO◦I , which holds due to the associativity of the operation of substituting
the leaf of a tree with a sub-tree (i.e. a gate of a circuit with a gadget). Instead that ‘i.e.’ states CCO ◦ CCI = CCCCI◦O.

2

We solve the question of how to calculate the new property RPR by using the existing RPE property,
and we do this by extending the RPE to allow it to cover any kind of gates and gadgets and a much wider
range of encodings. This allows us to consider any v⃗-linear encoding, but more importantly, it allows us to
use the field-extension encoding that we need to output a circuit over Fp from a circuit over Fpm , which we
need to reduce the 1/pm factor in the tolerated noisy leakage to a 1/p factor. We show that contrary to
what one may expect,4 this transformation should be done first, before the expansion compilation.

In addition, we also show how to calculate the tolerated leakage and the exponent of the polylog size
increase directly from the RPE in a way that mirrors [BCP+20]’s results. The difference is that their
formalization can not consider any security guarantee for its input circuits, e.g. the probing security. If this
guarantee is present, we transform their polynomial size increase into a polylogarithmic one, with the same
exponent.

2 Circuit and Security
In this section we will give a definition for what we mean with circuit, compiler and compiler sequence, and
we will also report the definition of the various security notions and adversarial models, and the relevant
reductions and relationships between them. Lastly, we use those notions to define the main properties of
compiler sequences, and we state the main theorem to calculate their asymptotic size increase.

2.1 Basic Notation and Probabilistic Function
We will use x⃗ for a vector, x̆ or X for a set, x for a random variable. For functions, these notstions describe
their codomain. Similarly to [BCP+20], we will use [m] := Z ∩ [1,m] as the set of indices for a tuple of
m values, and we define x⃗|Ĭ as the operation that keeps the elements of x⃗ that have the indices in Ĭ while
replacing with ⊥ the elements of x⃗ whose indices are not in Ĭ.

As we are working with circuits, the most natural definition of ‘probabilistic function’ is one that returns
a new random variable at each invocation, like executing a probabilistic circuit and obtaining a different
value each time. As this is not a function, we formally define with ‘probabilistic function’ f : Ĭ → Ŏ some
deterministic function (here f to differentiate) with domain Ĭ and codomain the probability distributions
over Ŏ. When we define f(x) := . . . we define the f(x) that calculates the distribution of that expression,
and whenever we use f(x) we mean ← f(x), which is an anonymous random variable with distribution f(x),
independent from all the random variables defined before it and used only there. The intuitive description
of ‘a function that returns a new random variable at each invocation’ holds as long as the expression in
definition of f(x) := . . . has no correlation with any random variable defined outside it, which will always
be the case.

2.2 Circuit Type
We can parameterize the type of a circuit based on the values it operates on, and the gates it can contain.

Definition 1. We define a circuit type as the tuple (S,G):

• A finite set S with the values that the circuit operates on. |S| ≥ 2.

• A finite enumeration G of the description of the gates:

– A deterministic function Si × Sr → So (where i, r, o depend on the gate and are respectively the
inputs, randoms, and outputs used by it).

– A probability distributions over Sr that describes the required randoms.

– A boolean value: if the gate’s i inputs and r randoms either all leak (fully leakable gate) or none
leak (leakless gate).

Given a circuit c ∈ CS,G , we will use the following functions describe c’s behavior. For a more formal
definition see subsection B.1.

4E.g. [BRTV21] claims would lead one to believe the inverse, see footnote 3.

3

Gate: Function Random Variable Which Leakage
Addition [a, b], [] 7→ [a+ b] [] Fully leakable
Subtraction [a, b], [] 7→ [a− b] [] Fully leakable
Copy [a], [] 7→ [a, a] [] Fully leakable
Multiplication [a, b], [] 7→ [a · b] [] Fully leakable
Random [], [r] 7→ [r] ← Fq Leakless
Constant-c [], [] 7→ [c] [] Leakless

Table 1: Description of the gates of Cstd,q.

• ⃗Rndsc() ∈ Sr; to calculate the randomness needed by the circuit.

• c⃗outs : Si × Sr → So; to calculate the outputs from the inputs and randoms.

• c⃗wires : Si × Sr → Sw; to calculate the inputs and randoms of every fully-leakable gate in c, which are
the leakable internal wires of c. We call a circuit leakless if c⃗wires(·, ·) = [] as it has no leakable wires.

• ˘Leakingc : [0, 1] → P ([w]), where P (·) denotes the power set; to map the leakage probability of a
single wire to the set of the wires that are leaking.

• ⃗Gates(c) ∈ N|G|; to describe how many gates of a given type are in c.

For simplicity and compactness, we define the following intuitive definitions:

• c⃗all(x⃗, r⃗) := c⃗wires(x⃗, r⃗) ∥ c⃗outs(x⃗, r⃗), where a⃗ ∥ b⃗ concatenates a⃗ and b⃗.

• c⃗outs(x⃗) := c⃗outs(x⃗, ⃗Rndsc()).

• c⃗wires(x⃗) := c⃗wires(x⃗, ⃗Rndsc()).

• c⃗all(x⃗) := c⃗all(x⃗, ⃗Rndsc()).

• ∥c∥ :=
∥∥∥ ⃗Gates(c)

∥∥∥
1
; the total number of gates in c, where ∥·∥1 is a p-norm.

To give a concrete example, we define the standard circuit type Cstd,q := CFq,Gstd
as the circuit type over the

field of order q and with the standard gates (Table 1).

2.3 Encoding
All the circuits we consider will have an associated encoding.

Definition 2. We define an encoding E as a pair of:

• A probabilistic function to obtain a new encoding E.E⃗nc : Dℓ → Sℓ′out with Dℓ ⊆ Sℓin for some tuples
(ℓ, ℓ′). Given a set Ŭ ⊆ Dℓ, we write with E.E⃗nc[Ŭ] the set of the valid encodings of the elements of
Ŭ .

• A deterministic function to decode E.D⃗ec : E.E⃗nc[Dℓ]→ Dℓ that maps each valid encoding to the value
it represents, and it must be such that E.D⃗ec ◦ E.E⃗nc is the identity function.

We can also define the composition of encodings, which is also an encoding: Given a pair of encodings
C,D then we denote with C ◦D as (C ◦D).E⃗nc := C.E⃗nc ◦D.E⃗nc, (C ◦D).D⃗ec := D.D⃗ec ◦ C.D⃗ec.

Definition 3. An n-shares encoding is one that has ℓ′=nℓ for all ℓ∈N, has Dℓ :=Sℓin, and is compatible
with the concatenation of vectors: E.E⃗nc(⃗a ∥ b⃗) d

= E.E⃗nc(⃗a) ∥ E.E⃗nc(⃗b) and if the number of elements of
a⃗, b⃗ is a multiple of n, E.D⃗ec(⃗a ∥ b⃗) = E.D⃗ec(⃗a) ∥ E.D⃗ec(⃗b).

We now need to report two properties already known in the literature:

4

Definition 4. We will say that a probabilistic function f⃗ : Siin → Soout can be simulated from the input
elements Ĭ ⊆ [i] (written Ĭ

sim−→ f⃗) if there is a probabilistic function ⃗Sim such that for all x⃗ ∈ Siin we have
that f⃗(x⃗) d

= ⃗Sim(x⃗|Ĭ) where d
= compares the probability distributions.

Definition 5. Given a probabilistic function f⃗ : Siin → Soout we will indicate with D̆ep[⃗f] its dependency

function: the minimal function D̆ep : P ([o])→ P ([i]) such that for all Ŏ ⊆ [o], D̆ep(Ŏ)
sim−→ f⃗ |Ŏ.

Note that the dependency function always exists, is unique, and is monotone non-strictly increasing.
We can now define the strength of an encoding, which is the property necessary for the expansion to

work, and it describes how much security a compilation with this encoding can provide.

Definition 6. Given an n-shares encoding, it has encoding strength k, with k ∈ N ∩ [0, n) if:

• The values of ≤ k shares provide no information on the decoded value: for all Ĭ ⊆ [n] with |Ĭ| ≤ k,
D̆ep[E.E⃗nc](Ĭ) = ∅.

• From the value of k shares and their decoded value is possible to uniquely reconstruct the value of the
missing shares so that their decoding matches the decoded value.

An immediate implication is that the dependency function of the encoding is fully determined if an
encoding has strength:

Lemma 1. Given an n-shares encoding E with strength k, then for all Ĭ ⊆ [n] we have that D̆ep[E.E⃗nc](Ĭ) = ∅

iff |Ĭ| ≤ k (and D̆ep[E.E⃗nc](Ĭ) = [1] iff |Ĭ| > k).

To give some concrete exmples, in this paper we use the following encodings:

• We define the additive encoding for some finite field K as the n-shares encoding with Sin,Sout := K,
such that for all x⃗ ∈ Kn, D⃗ec(x⃗) :=

∑
i x⃗i and with the encoding function that selects an encoding

uniformly between the possible ones. It has encoding strength of n− 1.

• We define the P -field-extension encoding for some irreducible polynomial P ∈ Fq[x] with degree
m ≥ 2 and for some q power of a prime, as the m-shares encoding with Sin := Fqm , Sout := Fq, and the
following deterministic encoding: as Fqm can be constructed from Fq using P , each value of Fqm can
be seen as a polynomial of Fq[x] with degree < m, and so we define E⃗nc as the function that outputs
the array of coefficients of the input value, and D⃗ec its inverse. This has encoding strength 0.

The traditional definition of ‘correct implementation’ is not suitable for probabilistic gates or probabilistic
sub-circuits, and so it is not compatible with our proofs. For this reason we provide the following, and more
general, definition:

Definition 7. Given two circuits v, c and an n-shares encoding E we say that c is a correct implementa-
tion of v for E (or that v is the virtual circuit of c for E) if there is an encoding R for the randoms such
that:

• The encoding R transforms the random distribution of the virtual circuit into the distribution of the
implemented circuit ⃗Rndsc()

d
= R.E⃗nc(⃗Rndsv())

• For all inputs x⃗ ∈ E.E⃗nc[Si] and all possible random values of the implemented circuit r⃗ ∈ ˘supp[⃗Rndsc()],
we have that:

v⃗outs(E.D⃗ec(x⃗), R.D⃗ec(r⃗)) = E.D⃗ec(c⃗outs(x⃗, r⃗)) (1)

This correctness implies that v⃗outs ◦E.D⃗ec
d
= E.D⃗ec ◦ c⃗outs, and for deterministic gates this correctness

is equivalent to the more common v⃗outs ◦ E.D⃗ec = E.D⃗ec ◦ c⃗outs. Moreover, the property ‘a is a correct
implementation of b’ is transitive, and is preserved by the composition in parallel and in series as long as
both implementation and virtual circuit are composed in the same way.

5

2.4 Circuit Compiler
Definition 8. We can then define a circuit compiler as a pair of an encoding E from Sin to Sout and a
compilation function CC : CSin,Gin → CSout,Gout such that for all circuits c ∈ CSin,Gin , the circuit CC(c) is a
correct implementation of c using E.

From this definition and from the transitiveness of being a correct implementation quickly follows that
given a circuit c with an encoding D, and given a compiler (E,CC), the circuit CC(c) has the encoding
E ◦D.

Like for the encodings, given the two circuit compilers O, I such that the input circuit type of O matches
the output circuit type of I, we can define the compiler O ◦ I with (O ◦ I).E := O.E ◦ I.E and (O ◦ I).CC :=
O.CC ◦ I.CC. This is a circuit compiler as the correctness property is transitive.

Definition 9. Like in [BCP+20], we define the circuit complexity matrix of a compiler C (if it exists)
as the matrix MC such that for all circuits c, ⃗Gates(C(c)) = MC · ⃗Gates(c).

It is immediate that given two compilers O, I then MO◦I = MOMI .

Definition 10. Given an encoding E with shares from Sin to Sout, we can then define the gadgets G⃗ as
the tuple of |Gin| circuits of type CSout,Gout

, such that for all g ∈ [|Gin|], G⃗g is a correct implementation of g
using E.

Given the gadgets G⃗ with encoding E we define the function CCG⃗ that substitutes every gate g with
the circuit G⃗g. Then the tuple C := (E,CCG⃗) is a compiler. The circuit complexity matrix of this compiler
exists, and if G⃗ has ℓ elements we have:

MC =
[

⃗Gates(G⃗1) ⃗Gates(G⃗2) · · · ⃗Gates(G⃗ℓ)
]

(2)

2.5 Security

Circuit Probing
Model

Random Probing
Model

Noisy
Model

2−t-secure
against a

f−1(t+1
2ew

)/q′

-noisy
adversary

2−t-secure
against a
f−1(t+1

2ew
)

-random
probing

adversary

(f−1(t+1
2ew

), 2−t)
-SRPS

(t+1
2ew

, 2−t)
-SRPS

t-probing
secure

X(c)

c

Apply
X

Definition
of f -RPR

[DDF19]

Lemma 13

Lemma 14

Figure 1: The properties of a t-probing secure circuit c : Cstd,q with w = Θ
(
t2
)

wires, and of the result of
compiling it with a compiler X : Cstd,q → Cstd,q′ that is f -RPR.

To define the security of a circuit we first describe the adversaries from [DDF19, PGMP19]:

Definition 11. Given a δ ∈ [0, 1] we define a δ-noisy adversary on Sℓ a machine A that plays the following
game against an oracle that knows x⃗ ∈ Sℓ:

1. A specifies a sequence of ℓ functions Noise such that every Noisei is δ-noisy, where a function f
is δ-noisy if the statistical distance between uniform distribution X and the conditional distribution
X|f(X) is ≤ δ. See [PGMP19] for more on what they call δ-SD-noisy functions.

2. A receives Noise1(x⃗1) ∥ . . . ∥ Noiseℓ(x⃗ℓ) and outputs some value ⃗outA(x⃗).

Definition 12. Given a p ∈ [0, 1] we define a p-random probing adversary on Sℓ a machine A that
plays the following game against an oracle that knows x⃗ ∈ Sℓ:

6

1. A specifies a sequence p⃗ ∈ [0, p]ℓ.

2. A receives (f1 ∥ . . . ∥ fℓ)(x⃗) and outputs some value ⃗outA(x⃗), where fi(x) returns x with probability
p⃗i, and it returns ⊥ with probability 1− p⃗i.

Definition 13. Given a t ∈ N we define a t-probing adversary on Sℓ a machine A that plays the following
game against an oracle that knows x⃗ ∈ Sℓ:

1. A specifies a set of at most t wires: W̆ ⊆ [ℓ] :
∣∣∣W̆ ∣∣∣ ≤ t.

2. A receives x⃗|W̆ and outputs some value ⃗outA(x⃗).

Thanks to the existing literature we know that for each δ-noisy adversary there is an equivalent (δ · |S|)-
random probing adversary [DDF19].

Definition 14. Given a circuit c with encoding E such that the original circuit was defined over Sorig and
with i inputs, and given ε ∈ [0, 1] we will say that c is ε-secure against a given type of adversary if for
every adversary A of that type, there is a random variable ⃗Sim such that for all x⃗ ∈ Siorig,

SD
[

⃗Sim; ⃗outA(⃗cwires(E.E⃗nc(x⃗)))
]
≤ ε (3)

It is immediate that if a circuit is ε-secure against p-random probing adversaries, then it is ε-secure
against p

|S| -noisy adversaries.5

We now report the definition of Random Probing Security from [BCP+20]. While it was not explicit in
that paper, it is easy to prove that ‘c is (p, ε)-RPS’ is equivalent to ‘c is ε-secure against a p-random probing
adversary’.

Definition 15. A circuit c is (p, ε)-RPS (Random Probing Secure) if there is a ⃗Sim such that for all
x⃗ ∈ Siorig,

SD
[

⃗Sim; c⃗wires(E.E⃗nc(x⃗))| ˘Leakingc(p)

]
≤ ε (4)

To be able to define the RPR so that we can calculate it using the existing RPE, we introduce a stronger
notion that we will call Strong RPS.

Definition 16. Given a circuit c ∈ CS,G with encoding E, we will say that c is (p, ε)-SRPS (Strong Random
Probing Security) with p, ε ∈ [0, 1] if the probability that the leakage depends on any unmasked inputs is ≤ ε:

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](

˘Leakingc(p)) ̸= ∅
]
≤ ε (5)

If a circuit is (p, ε)-SRPS, then it is (p, ε)-RPS (see Lemma 13). Additionally, we can rise the ε and lower
the p and the circuit remain SRPS, and every circuit with w > 0 internal wires is (ε/w, ε)-SRPS for every
ε ∈ [0, 1]. We also want to note the similarity between our definition of the SRPS and the t-probing security
(which is equivalent to the 0-security against a t-probing adversary):

Definition 17. Given a circuit c with encoding E, we will say that c is t-probing secure if ≤ t wires reveal
no information on the inputs:

∀W̆ :
∣∣∣W̆ ∣∣∣ ≤ t. D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅ (6)

In particular we have the following reduction: if a circuit c with w wires is t-probing secure, then it is
(t+1
2ew , 2−t)-SRPS where e is the mathematical constant, see Lemma 14. If we apply this to the result of the

most classic compilers for the t-probing model (which have a circuit size increase of Θ
(
t2
)

e.g. [ISW03]) the
compiled circuits are (1/Θ(t), 2−t)-SRPS.

Definition 18. We will say that a compiler (E,CC) : Cin → Cout is f-RPR (Random Probing Reducible)
with f : [0, 1]→ [0, 1] a continuous monotone non-strictly increasing function, if for all circuits c ∈ Cin and
for all p, ε ∈ [0, 1] we have that ‘c is (f(p), ε)-SRPS’ implies ‘CC(c) is (p, ε)-SRPS’.

5 This 1/|S| is present throughout the paper, and is only for the SD metric. For the ARE or RE metric it is absent, which
means that the field-extension compiler provides no visible advantage. For the EN metric the opposite is true [PGMP19].

7

We note that the f -RPR is preserved if f(·) is increased. We now report an immediate lemma that proves
the composition shown in Figure 2.

Lemma 2. Given the circuit types Cin, Cmid, Cout, given the compiler I : Cin → Cmid that is fI-RPR and
given a compiler O : Cmid → Cout that is fO-RPR, then O ◦ I is (fI ◦ fO)-RPR.

Corollary 1. By induction with Lemma 2 we obtain that a sequence of compilers C such that Ci is fi-RPR,
then Cn ◦ . . . ◦ C1 is (f1 ◦ . . . ◦ fn)-RPR.

ε

ε

ε

ε

p

p′

p′′

p′′′

c′′′

c′′

c′

c

hardware circuit’s security
according to the SRPS
implied by the RPR

virtual circuit’s security
according to the given

SRPS of the input circuit

hardware
circuit’s
leakage

virtual
circuit’s
leakage

output circuit

input circuit

abstractioncompilation

X1

X2

X3 f3

f2

f1 RPR

RPR

RPR

Figure 2: Visual description of the compilation’s security; each compiler Xi is fi-RPR.

2.6 Compiler Sequences
Definition 19. A compiler sequence is an infinite sequence S of circuit compilers Sj :Cin→Cout with
the circuit types Cin, Cout independent of j.

For example, the classical expansion [BCP+20] describes the expansion as the compiler sequence Si := Ci

which uses the compiler C in every step of the expansion.
The following properties of compiler sequences are a generalization of the properties of gadgets and

compilers found in [BCP+20] so that we can be apply them to any compiler sequence. See subsection 3.4
and Figure 4 for more details on their relationship.

Definition 20. We say that P is a tolerated leakage for a compiler sequence S if there is a sequence f
such that Sj is fj-RPR and fm(P)→ 0.

In other words, the more the parameter m is increased, the more the leakage of the virtual circuit goes
to 0, and this happens for all p ≤ P due to the monotonicity of all f .

Definition 21. We say that λ is a size amplification order of a compiler sequence C if the increase in
circuit size is ∥MCm∥1 = O (λm).

Definition 22. We say that d > 1 is a security amplification order for a compiler sequence C and a
tolerated leakage P if log2 fm(P) = Ω (dm) where f is the same as the one in the definition of P .

From those two amplification orders we can derive how fast the expansion reaches the target leakage rate,
this is similar to the exponent of [BCP+20]:

Definition 23. We call e := log λ
log d an expansion exponent for a compiler sequence C and a tolerated

leakage P , where λ is a size amplification order for C and d is an security amplification order for C and P .

We now consider a circuit parameterized in its security level, and we analyze its asymptotic size when
we compile it to reach a constant tolerated leakage.

Theorem 1. Given a compiler sequence S : Cin → Cout with tolerated leakage P and expansion exponent e,
given a parametric circuit cκ ∈ Cin that is (2−p(κ), 2−κ)-SRPS for some p : (0,∞)→ (0,∞); then there is a
function n : (0,∞)→ N such that the compiled circuit c′κ := Sn(κ)(cκ) satisfies the following properties:

• For all κ > 0, the circuit c′κ is (P, 2−κ)-SRPS.

• As κ→∞, ∥c′κ∥ = O (∥cκ∥ p(κ)e).

8

The proof of this theorem is in subsection A.3, and it has the following immediate corollary that can be
proven like in Figure 3.

Corollary 2. Given a compiler sequence S : Cmid → Cout with tolerated leakage P and expansion exponent e,
given a compiler sequence I : Cin → Cmid where It is a t-probing secure compiler with polynomial complexity,
and given a circuit c ∈ Cin; then there is a function n : N→ N such that the compiled circuit c′t := Sn(t)(It(c))
satisfies the following properties:

• For all t > 0, the circuit c′t is 2−t-secure against a P/|Kout|-noisy adversary.

• As t→∞, ∥c′t∥ = O (∥It(c)∥ log(t)e).

In other words, with a polylograrithmic size increase, any t-probing secure compiler can be made to create
circuits 2−t-secure against a δ-noisy adversary, where δ and the exponent of the logarithm are indepent from
the circuit being compiled.

Circuit Size Probing
Model

Random Probing
Model

Noisy
Model

2−t-secure
against a
P
q′ -noisy

adversary

2−t-secure
against a
P -random
probing

adversary

(P, 2−t)
-SRPS

(t+1
2ew

, 2−t)
-SRPS

t-probing
secure

w ·Θ(log(t)e)

w = Θ
(
t2
)

Θ(1)

Sn(t)(It(c))

It(c)

c

Apply
Sn(t)

Apply
It

Theorem 1
Theorem 1 [DDF19]

Lemma 14

Lemma 13

Figure 3: Visual representation of Corollary 2 and its proof.

3 Calculating Those Properties from the RPE.
In order to provide the aforementioned results, we need show how to calculate the RPR from the RPE
property, so that we can reuse the existing results and tools [BCP+20, BRT21]. In contrast to those papers,
we aim to provide a full generic proof for all kind of gates, gadgets, and encodings. To this end, we introduce
the Extended RPE property (ERPE) and we show three things: the RPE of [BCP+20] implies the ERPE, if
all the gadgets of a compiler are (t, f)-ERPE, the compiler is f -RPR (Theorem 2), and that for the optimal
t described in [BRT21], the ERPE allows us to approximately halven the number of random gates in the
random gadget.

After this, we consider the classic expansion, and we show how to calculate the security amplification
order, the size amplification order and the tolerated leakage from the existing properties [BCP+20] which
we also show in Figure 4.

3.1 RPE
The RPE property from [BCP+20] analyzes an n-shares gadget G of a gate g by creating a parallel between
the j-th input/output of g and the relative group of shares ˘sharesj of G.

For compactness, instead of providing multiple definitions like [BCP+20], we provide a single definition
valid for any number of inputs and outputs. Also, as their SimG

1 returns two results, we split it in the two
functions O′ and I, while their SimG

2 is implicit in the notion of simulatability. Lastly, for our proof we need
to add three requirements on the f of the (·, f)-RPE: continuity, monotonicity, and f : [0, 1]→ [0, 1]. Those
are fulfilled by [BCP+20]’s tool VRAPS.

9

Gadget

Compiler

Compiler
Sequence

t-RPE-amplif. order
is di : fi(p) = Θ

(
pdi

) t-RPE-tolerated leakage
is Pi : p≤Pi =⇒ fi(p)<p

(t, fi)-RPE

(t, fi)-ERPE

circuit complexity
matrix with

eigenvalues λi

f -RPR with
f := maxi fi

size amplif. order
is λ := maxi λi

security amplif. order
is d := mini di

expansion exponent
is e := log λ

log d

tolerated leakage
is mini Pi

Definition 26 Definition 25

Def. 22
Def. 20

Definition 23 Definition 23

Definition 21
Lemma 6

Lemma 4

Theorem 2
Lemma 8

Lemma 7

Figure 4: The relationships between the various properties for the classical expansion, and how to calculate
everything from [BCP+20]’s RPE and circuit complexity matrix.

Definition 24. Given a gadget G ∈ CSout,Gout
(with w internal wires) a correct implementation for a fully-

leakable deterministic gate g ∈ CSin,Gin
(with i inputs and o outputs) using the n-shares additive encoding E,

and given a monotone and continuous function f : [0, 1] → [0, 1], we say that G is (t, f)-RPE (Random
Probing Expandability) with t ∈ N ∩ [0, n− 1] if there are:

• a function Ŏ′ for the outputs that the simulation is actually providing;

• a function Ĭ for the input dependencies of the simulation;

such that for all subsets of output wires Ŏ ⊆ [n · o],

1 For every subset of the internal wires W̆ ⊆ [w] of the gadget, we have that,6 Ĭ(Ŏ, W̆)
sim−→ G⃗all(·)|W̆ ∥ Ŏ′(Ŏ,W̆).

2 We define the input failure events F̆ (Ŏ, W̆) ⊆ [i] which happen if the simulation needs more than t

shares for a given input. More formally, j ∈ F̆ (Ŏ, W̆) if and only if
∣∣∣Ĭ(Ŏ, W̆) ∩ ˘sharesj

∣∣∣ > t. Then

for every leakage probability p ∈ [0, 1], we have that F̆ (Ŏ, ˘LeakingG(p))
d
= ˘Leakingg(f(p)).

3 For all subsets of internal wires W̆ ⊆ [w], for every output wire j ∈ [o] of the gate, if
∣∣∣Ŏ ∩ ˘sharesj

∣∣∣ ≤ t

then Ŏ′(Ŏ, W̆) ∩ ˘sharesj = Ŏ ∩ ˘sharesj, otherwise
∣∣∣Ŏ′(Ŏ, W̆) ∩ ˘sharesj

∣∣∣ = n− 1.

We define the following two properties roughly equivalent to those from [BCP+20] and which can also
be calculated with a tool like VRAPS. The differences are purely formal and they are needed for the proofs.

Definition 25. We say that P is a t-RPE-tolerated leakage of some gadget G if there is an f such that
G is (t, f)-RPE, and for all p ∈ (0, P] we have that f(p) < p, which means that compiling with G improves
the security of the circuit.

Definition 26. We say that d is a t-RPE-amplification order of some gadget G if there is an f such
that G is (t, f)-RPE, and f(p) = Θ

(
pd
)
.

6We use the operator for the concatenation of vectors also for set of indices. Given ăj ⊆ [ℓj], ă1 ∥ ă2 := ă1 ∪{i+ ℓ1 : i ∈ ă2}

10

3.2 From the RPE to the ERPE
To show the rationale behind the ERPE and to better explain it, we first provide two intermediate extensions
of the RPE, and both are valid expandibility proerties.

To do so, we begin with defining the codomain of Ŏ′(Ŏ, ·) for some Ŏ, and we extended this to support
any encoding with strength. We first define it for a single output:

Definition 27. Given an n-shares encoding with strength k < n, and a t ∈ N ∩ [0, k], we say that a given ˘̆s

is a set of t-possible alternative combinations of shares if ˘̆s is either the set of all combinations that
have exactly k shares (i.e. c̆ ∈ ˘̆s ⇐⇒ c̆ ⊆ [n] ∧ |c̆| = k) or a set with a single element c̆ for some c̆ ⊆ [n]
with ≤ t shares.

This means that for single-output gates, for every Ŏ there is a set ˘̆s of t-possible alternative combinations
of shares such that the codomain of Ŏ′(Ŏ, ·) is ˘̆s. More concretely, if |Ŏ| ≤ t then ˘̆s = {Ŏ}, otherwise ˘̆s is
independent from Ŏ and it contains all the combinations with k shares.

Definition 28. We say that a given ˘̆s is a set of t-possible alternative combinations of ℓ inputs (or
outputs) if ˘̆s = ˘̆s1 ∥ . . . ∥ ˘̆sℓ where ˘̆sj are all sets of t-possible alternative combinations of shares, and where
· ∥ · operator for sets of sets of indices is the cartesian product, except that each pair does not create a tuple
but they are concatenated using the · ∥ · operator for sets of indices.

Now we can now rewrite the RPE with ‘for all subsets of output wires Ŏ ⊆ [n · o]’ substituted with ‘for
all sets ˘̆o of t-possible alternative combinations of o outputs’ and the third point of the RPE replaced by
‘Ŏ′(˘̆o, ·) has codomain ˘̆o’. This new definition is equivalent to that of the RPE when we consider gadgets
with the additive encoding, but it also works with any other encoding with strength.

Then we need to relax the second point of the RPE, or more specifically that F̆ (˘̆o, ˘LeakingG(p))
d
=

˘Leakingg(f(p)). To do this, we define the following:

Definition 29. Given two discrete random variables a,b, we say a
d
≤ b iff for all monotone non-strictly

increasing predicates7 P we have that Pr[P (a)]≤ Pr[P (b)].

This is a partial order for the equivalence relation d
=, and it is such that ˘Leakingc(p)

d
≤ ˘Leakingc(p

′)
for any leakage probabilities p ≤ p′ and any circuit c. This can be quickly proven from the following lemma:

Lemma 3. Given v⃗, u⃗, V⃗, U⃗ pairwise independent such that v⃗
d
≤ V⃗ and u⃗

d
≤ U⃗ then v⃗ ∥ u⃗

d
≤ V⃗ ∥ U⃗.

We can now generalize the RPE’s ‘F̆ (˘̆o, ˘LeakingG(p))
d
= ˘Leakingg(f(p))’ by substituting the ‘ d=’ with a

‘
d
≤’, and by also requiring that ‘F̆ (˘̆o, ˘LeakingG(p))

d
= F̆ ({∅}, ˘LeakingG(p)) to ensure that the distribution

of the failing events is independent from ˘̆o.
Lastly, to make the ERPE support probabilistic gates, we need to generalize the simulatability property

to allow simulation from a function instead of from a set of inputs:

Definition 30. A probabilistic function f : Sin → Sout can be simulated using some probabilistic function
g with domain Sin if there is a probabilistic function Sim such that for all x ∈ Sin we have that f(x)

d
=

Sim(g(x)).

To say that f can be simulated using g, we could write that g sim−→ f , or that for all x ∈ Sin, g(x)
sim−→ f(x).

We want to note that the existing simulatability property Ĭ
sim−→ f⃗ is equivalent to (x⃗ 7→ x⃗|Ĭ)

sim−→ f⃗ .
Putting this all together we obtain the ERPE:

Definition 31. Given a generic circuit c ∈ CSout,Gout
(with w internal wires) a correct implementation of a

circuit v ∈ CSin,Gin (with i inputs, o outputs) using the n-shares encoding E with strength k and the encoding
of the randoms R, given a continuous and monotone function f : [0, 1]→ [0, 1], and a t ∈ [0, k] ∩ N, we say
that c is (t, f)-ERPE (Extended Random Probing Expandability) of v if there is:

• a function Ŏc for the outputs actually being simulated;
7We use true > false so that if P is monotone increasing, so is x 7→ Pr[P (x)].

11

• a function ˘̆ic for the dependency to a set of t-possible alternative combinations of i inputs required for
the simulation;

• a function W̆ ′
c for the dependencies on the wires of v;

such that for all sets ˘̆o of t-possible alternative combinations of o outputs,

1. For every subset of the internal wires W̆ ⊆ [w], for all the possible inputs actually provided Ĭ ∈ ˘̆ic(˘̆o, W̆),
the outputs actually simulated Ŏc(˘̆o, W̆ , Ĭ) and the wires W̆ can be simulated from the inputs Ĭ and
virtual wires W̆ ′

c(
˘̆o, W̆). More formally, for all inputs x⃗ ∈ E.E⃗nc[Siin] and for all the virtual randoms

with probability greater than zero r⃗′ ∈ ˘supp[⃗Rndsv()],

x⃗|Ĭ ∥ v⃗wires(E.D⃗ec(x⃗), r⃗′)|W̆ ′
c(

˘̆o,W̆)

sim−→ c⃗all(x⃗, R.E⃗nc(r⃗′))|W̆ ∥ Ŏc(˘̆o,W̆ ,Ĭ) (7)

2. For all leakage rates p ∈ [0, 1], W̆ ′
c({∅}, ˘Leakingc(p))

d
≤ ˘Leakingv(f(p)) and W̆ ′

c(
˘̆o, ˘Leakingc(p))

d
=

W̆ ′
c({∅}, ˘Leakingc(p)).

3. For every subset of the internal wires W̆ ⊆ [w], for all the possible inputs actually provided Ĭ ∈ ˘̆ic(˘̆o, W̆),
the outputs actually simulated must be Ŏc(˘̆o, W̆ , Ĭ) ∈ ˘̆o.

It is possible to see how the second and third points of the ERPE are very close to the second and third
point of the RPE extended earlier in this section. The difference in the second point is that the RPE uses
only failure events of the inputs, while the ERPE uses the set of virtual leaking wires, which includes all the
internal wires of v, including those that are not inputs.

The ERPE has two more differences compared to the RPE. The first is that the input dependency
function no longer returns all the inputs necessary for the simulation, but some of the information must be
taken from the virtual wires. E.G. I can not contain all the shares of a wire. Also, notice how the simulation
must work for all possible combinations of inputs present in the set of t-possible alternatives. This is because
when circuits are combined in series, the chosen combination is decided by the input circuit, and the output
circuit needs to be able to work with all t-possible combinations.

Lastly, we have the most obvious difference, which is the randoms. The encoding of the randoms was
already used in the definition of correct implementation to create a link between the randoms of the virtual
circuit and that of the implementation, and here it is used in the same way.

To conclude, we have the following immediate proposition, which can be proven by restricting the ERPE
to the gadgets considered by the RPE, and by following the previous explanations:

Lemma 4. The (t, f)-RPE implies the (t, f)-ERPE.

Lastly, note that the (t, f)-ERPE is preserved by increasing f (as long as f remains continuous, monotone,

etc). This can be shown using the aformentioned properties of
d
≤ and ˘Leakingc(·).

3.3 Obtaining the RPR
We will now enunciate the main theorem for the expansion, its proof is in subsection B.2.

Theorem 2. Given the gadgets G⃗ for an n-shares encoding E with strength, such that for all input gates g
the gadget G⃗g is (t, f)-ERPE of g, then the compiler (E,CCG⃗) is f -RPR.

The random gadget with n randoms from [BCP+20, BRT21] is not RPE, but with the ERPE we have
the immediate and more general lemma:

Lemma 5. For the n-shares additive encoding, given a t ∈ [0, n− 1]∩N, we consider the gadget obtained by
a parallel of n gagets, of which > t are random gates and the remaining are constant-0 gates. This gadget is
(t, f)-ERPE for the random gate, for any continuous monotone f : [0, 1]→ [0, 1].

With this we can define the compiler sequences from [BCP+20]:

12

Definition 32. We call a classic compiler, a compiler Cstd,q → Cstd,q with additive encoding such that its
random gadget is made of a parallel of n random gates, and such that its constant-c gadgets are made by a
parallel of n constant gates.

With this we can obtain the following result that links our paper with [BCP+20]. This result can be
derived from the last two propositions, that the f -ERPE is preserved by rising f , and Theorem 2:

Theorem 3. Given a classic compiler such that its addition, subtractions, copy, multiplicaion gadgets are
respectively (t,fadd)-RPE, (t,fsub)-RPE, (t,fcopy)-RPE, (t,fmul)-RPE, then that compiler is f -RPR with
f := maxi fi.

3.4 Classic Expansion
As we are using a different formalization, in this section we will analyze the classical expansion strategy
[BCP+20, BRT21], and we show that we can calculate the size amplification order, security amplification
order and tolerated leakage from the properties of their gadgets in a way that mirrors existing results.

Lemma 6. Given a compiler sequence Cn := Xn, with diagonalizable circuit complexity matrices MX , then
the highest module of any eigenvalue of MX is a size amplification order.

Lemma 7. Given a compiler sequence Cm := Xm such that X is a classic compiler, given a t such that the
addition, multiplication, copy, subtraction gates have a t-RPE-tolerated leakage of respectively Padd, Pmul,
Pcopy, Psub, then P := mini Pi is a tolerated leakage for C.

Lemma 8. Given a compiler sequence Cm := Xm such that X is a classic compiler, given a t such that the
addition, multiplication, copy, subtraction gates have a t-RPE-amplification order of respectively dadd, dmul,
dcopy, dsub, then d := mini di is a security amplification order for C for any valid tolerated leakage.

4 Building the Main Compiler Sequence
In this section we will provide the compiler sequence which can be used to compile the output of a t-probing
secure compiler (over a field with characteristic ρ) to make it tolerate a constant noise of 2−7.41/ρ with a
cube-logarithmic size increase. To do that we first need to define one compiler and a few properties of the
composition of compiler sequences.

4.1 Field-Extension Compiler
First we analyze two common types of gates for encodings with strength 0:

Lemma 9. Any leakless implementation of a leakless gate for a strength-0 encoding is (0,f)-ERPE for any
continuous and monotone function f : [0,1]→ [0,1].

Lemma 10. Given a gadget G (with w internal wires) for the fully-leakable deterministic gate g (with i
inputs) that is correct for an n-shares encoding E with strength 0, then G is (0, f)-ERPE, with f(x) :=
min{1, (w · x)1/i}.

We can now present a simple field-extension compiler, which is f -RPR with f(p) = Θ
(
kp1/2

)
, and the

1-norm of its circuit complexity matrix is Θ
(
k2

)
.

Compiler 1. We define the field-extension compiler as a compiler Cstd,qk → Cstd,q with k shares, with the
field-extension encoding, which creates an extension field Fqk from a field Fq for some prime q by using some
irreducible polynomial P ∈ Fq[x] with degree k > 0.

This extension compiler follows the usual way to build a field of order qk from one of order q using the
same irreducible polynomial P . The biggest gadget is the multiplication, which is quadratic in k.

13

4.2 Composition of Compiler Sequences
Before providing the main compiler sequence, we will first analyze how composing compiler sequences alters
their properties.

Lemma 11. Given a compiler sequence C and given a compiler I that is f -RPR for some f(x) = xΩ(1) as
x → 0, then {Cn ◦ I}∞n=1, when meaningful, has all the tolerated leakage, security amplification order, size
amplification order and expansion exponent of C.

Lemma 12. Given a compiler sequence I and a compiler sequence O (with respectively a security amplifi-
cation order of dI , dO for a tolerated leakage of PI , PO) then there is a k such that8 {Ok ◦ In}∞n=1 has a
security amplification order of dI relative to a tolerated leakage of PO.

In other words, it is the last compilers that define the tolerated leakage, so they should be the last
trasformation applied to a circuit.

4.3 Main Compiler Sequence
We define the main compiler sequence of this article as follows:

Compiler Sequence 1. For every q that is a power of a prime, and given a fixed m ∈ N, we define
Xt := Hm ◦Ct ◦E, where H is the [BRT21]’s 3-shares compiler with a refresh at the input of this compiler’s
copy gadget (it has a tolerated leakage of 2−7.41) E is the field-extension compiler we described, C is the
parametric compiler from [BRT21] instantiated with 21 shares (it has a expansion exponent of 3).

The value of m represents how many expansions of the high-tolerance compiler H are necessary to make
the virtual leakage applied to C lower than H’s tolerated leakage. Otherwise the expansion of C would
worsen the security as t increases.

We do not provide the value for m given q because this compiler sequence is only meant to be indicative
and to show the asymptotical results. Any real implementation should not use an output sequence made of
m identical compilers H; instead it should gradually shift the tolerated leakage/expansion exponent tradeoff
to minimize the concrete complexity [BRTV21]. It should also use a better field-extension compiler.

Finally, we provide the last theorem to obtain our main result, which is immediate from the properties
described until now:

Theorem 4. For every prime power q there is an m ∈ N such that X has expansion exponent 3 relative to
a tolerated leakage 2−7.41.

5 Conclusions
In this paper we have provided a more general and formalized framework to handle the random probing
model and the expansion strategy, and we have shown a useful result that could not be obtained with the
existing formalization.

By combining Theorem 4 and Corollary 2 we show how given a parametric circuit ct which is t-probing
secure, we can transform it into a circuit that is 2−t secure against a 2−7.41-noisy adversry for a O

(
log(t)3

)
size increase.

Lastly, we hope the generic nature of our definitions and proofs and the new capabilites that our formal-
ization introduces will help ease future research in the random probing model.

A From Probing Security to Constant Noise
We will prove the lemmas and theorems that are needed for the Corollary 2, which shows that with a
polylograrithmic size increase, any t-probing secure compiler can be made to create circuits 2−t-secure
against a δ-noisy adversary for some constant δ.

8[BRTV21] says {On ◦ Ik}∞n=1 instead of {Ok ◦ In}∞n=1, see footnote 3.

14

A.1 Lemma 13
Lemma 13 (SRPS to RPS). If a circuit is (p, ε)-SRPS, then it is (p, ε)-RPS.

Proof. If a circuit c with n-share encoding E with n · i inputs and original field Sorig is (p, ε)-SRPS then we
have the following:9

1− ε

≤
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
Pr

[
D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅

]
=
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
Is
[
D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅

]
=
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
Is
[
∃ ⃗Sim.∀x⃗ ∈ Siorig. ⃗Sim|W̆

d
= c⃗wires(E.E⃗nc(x⃗))|W̆

]
=
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
max
⃗Sim

min
x⃗∈Siorig

Is
[

⃗Sim|W̆
d
= c⃗wires(E.E⃗nc(x⃗))|W̆

]
≤max

⃗Sim′
min

x⃗∈Siorig

∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
Is
[

⃗Sim′(W̆)|W̆
d
= c⃗wires(E.E⃗nc(x⃗))|W̆

]
This means that there is a ⃗Sim′ such that for every x⃗ ∈ Siorig,

1− ε ≤
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
Is
[

⃗Sim′(W̆)|W̆
d
= c⃗wires(E.E⃗nc(x⃗))|W̆

]
Let us analyze this inequality:

ε≥
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
Is
[
¬(⃗Sim′(W̆)|W̆

d
= c⃗wires(E.E⃗nc(x⃗))|W̆)

]
≥
∑
W̆

Pr
[
W̆ = ˘Leakingc(p)

]
SD

[
⃗Sim(W̆)|W̆ ; c⃗wires(E.E⃗nc(x⃗))|W̆

]

Let us define L̆ := ˘Leakingc(p) and ⃗Sim′(W̆) := ⃗Sim(W̆)|W̆ . Then,

=
∑
W̆

Pr
[
W̆ = L̆

]
SD

[
⃗Sim′(W̆); c⃗wires(E.E⃗nc(x⃗))|W̆

]
=
∑
W̆

Pr
[
W̆ = L̆

]1
2

∑
y⃗

∣∣∣Pr[⃗Sim′(W̆)= y⃗
]
−Pr

[⃗
cwires(E.E⃗nc(x⃗))|W̆ = y⃗

]∣∣∣
=
1

2

∑
y⃗

∑
W̆

Pr
[
W̆ = L̆

]∣∣∣Pr[⃗Sim′(W̆)= y⃗
]
−Pr

[⃗
cwires(E.E⃗nc(x⃗))|W̆ = y⃗

]∣∣∣
=
1

2

∑
y⃗

∣∣∣Pr[⃗Sim′(L̆) = y⃗
]
− Pr

[⃗
cwires(E.E⃗nc(x⃗))|L̆ = y⃗

]∣∣∣
=SD

[
⃗Sim′(˘Leakingc(p)); c⃗wires(E.E⃗nc(x⃗))| ˘Leakingc(p)

]
This immediately implies the definition of ‘c is (p, ε)-RPS’.

A.2 Lemma 14
As we need to obtain the SRPS property from the probing security, we can not use the result from [DDF19],
which instead obtains the weaker property of security in the random probing model. For this reason we
prove the following proposition:

9We define Is[A] := Pr[A] but limited to deterministic statements.

15

Lemma 14. If a circuit c with w wires is t-probing secure, then it is (t+1
2ew , 2−t)-SRPS where e is the

mathematical constant.

Proof. We can prove this with the following passages:

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](

˘Leakingc(p)) ̸= ∅
]

=
∑

W̆⊆[w]

Pr
[
W̆ = ˘Leakingc(p)

]
Is
[
D̆ep[⃗cwires◦E.E⃗nc](W̆) ̸= ∅

]

By definition of ‘secure in the t-probing model’, |W̆ | ≤ t guarantees no dependency. We also use Stirling’s
approximation, which is also a lower bound.

≤
∑

W̆⊆[w]

|W̆ |>t

p|W̆ | ≤
w∑

l:=t+1

(
w

l

)
pl ≤

w∑
l:=t+1

wl

l!
pl ≤

w∑
l:=t+1

(pw)l√
2πl(l

e)
l
≤

w∑
l:=t+1

(
epw

t+ 1
)l

The thesis quickly follows by choosing p := t+1
2ew .

A.3 Theorem 1
Theorem 1: Given a compiler sequence S : Cin → Cout with tolerated leakage P and expansion exponent
e, given a parametric circuit cκ ∈ Cin that is (2−p(κ), 2−κ)-SRPS for some p : (0,∞)→ (0,∞); then there is
a function n : (0,∞)→ N such that the compiled circuit c′κ := Sn(κ)(cκ) satisfies the following properties:

• For all κ > 0, the circuit c′κ is (P, 2−κ)-SRPS.

• As κ→∞, ∥c′κ∥ = O (∥cκ∥ p(κ)e).

Proof. Let us call d the security amplification order and λ the size amplification order that lead to the
expansion exponent e. Then from the definition of d, there is a sequence of functions f such that Sm is
fm-RPR and log2 fm(P) = Ω (dm) as m→∞. In other words there is a b > 0 such that:

lim inf
m→∞

|log2 fm(P)|
dm

= 2b (8)

This means that there is an n′ such that for every m ≥ n′ we have that fm(P) ≤ 2−bdm

. We can now
choose n(κ) := max{n′, logd

p(κ)
b }, and it is easy to proove that fn(κ)(P) ≤ 2−p(κ). This means that as cκ is

(2−p(κ), 2−κ)-SRPS, then it is also (fn(κ)(P), 2−κ)-SRPS. We can then apply the definition of RPR to ‘Sn(κ)

is fn(κ)-RPR’ to obtain that c′κ is (P, 2−κ)-SRPS, which satisfies point 1 of the theorem.
Then by definition of size amplification order, the definition of circuit complexity matrix, of circuit size

and of p-norm, ∥c′κ∥ = O
(
∥cκ∥ λn(κ)

)
. Also, as n(κ) = log p(κ)

log d +Θ(1) then λn(κ) = Θ(p(κ)e). Putting them
together we obtain that ∥c′κ∥ = O (∥cκ∥ p(κ)e) which proves the second point of the theorem.

B Expansion
In this appendix we will prove our main theorem for the expansion: Theorem 2. To do this we first need to
give a concrete definition of what is a circuit.

B.1 Definition of Circuit
We believe the best way to describe the type of circuits we consider is the following, as it simplifies our
proofs:

Definition 33. We will define a circuit c ∈ CS,G as either:

• An index of a gate in G.

16

• Parallel composition of two smaller circuits c := c′ ∥ c′′.

• Serial composition of two smaller circuits c := co ◦ ci, as long as the number of inputs of co matches
that of the outputs of ci.

• The identity circuit, which outputs its single input.

• The swap circuit, which swaps its two inputs.

Given a circuit c ∈ CS,G , we can now give the formal definitions of the functions described in subsection 2.2:

• If c is the g-th gate, then c⃗outs is the function that defines the gate. If it is leakless then c⃗wires(x⃗, r⃗) :=

[] otherwise c⃗wires(x⃗, r⃗) := x⃗ ∥ r⃗, ⃗Rndsc() draws a value from the probability distribution in the
description of the gate. Also, ⃗Gates(c)g := 1 and ⃗Gates(c)̸=g := 0⃗. Lastly, given v := ˘Leakingc(p), all
the events j ∈ v have intependent probability p.

• If c is an identity circuit, then c⃗outs([a]) = [a], ⃗Rndsc() := [], ⃗Gates(c) := 0⃗. c⃗wires(x⃗, r⃗) := [],
˘Leakingc(p) := ∅.

• If c is a swap circuit, then c⃗outs([a, b]) = [b, a], ⃗Rndsc() := [], ⃗Gates(c) := 0⃗. c⃗wires(x⃗, r⃗) := [],
˘Leakingc(p) := ∅.

• If c is a parallel c′ ∥ c′′, then ⃗Rndsc() := ⃗Rndsc′() ∥ ⃗Rndsc′′(), ⃗Gates(c) := ⃗Gates(c′) + ⃗Gates(c′′),
˘Leakingc(p) :=

˘Leakingc′(p) ∥ ˘Leakingc′′(p), and

c⃗outs(x⃗′ ∥ x⃗′′, r⃗′ ∥ r⃗′′) := c⃗′outs(x⃗′, r⃗′) ∥ c⃗′′outs(x⃗′′, r⃗′′)

c⃗wires(x⃗′ ∥ x⃗′′, r⃗′ ∥ r⃗′′) := c⃗′wires(x⃗′, r⃗′) ∥ c⃗′′wires(x⃗′′, r⃗′′)

• If c is a series o ◦ i, then ⃗Rndsc() := ⃗Rndsi() ∥ ⃗Rndso(), ⃗Gates(c) := ⃗Gates(i) + ⃗Gates(o),
˘Leakingc(p) :=

˘Leakingi(p) ∥ ˘Leakingo(p), and

c⃗outs(x⃗, r⃗i ∥ r⃗o) := o⃗outs(⃗iouts(x⃗, r⃗i), r⃗o)

c⃗wires(x⃗, r⃗i ∥ r⃗o) := i⃗wires(x⃗, r⃗i) ∥ o⃗wires(⃗iouts(x⃗, r⃗i), r⃗o)

B.2 Theorem 2
Theorem 2: Given the gadgets G⃗ correct for an n-shares encoding E, and such that for all gates g ∈ Gin
the gadget G⃗g is (t, f)-ERPE of g, then the compiler (E,CCG⃗) is f -RPR.

Proof. This proof is divided in two parts. First we prove by induction over the definition of circuit that all
compiled circuits are (t, f)-ERPE. Then we show that if this property holds then the compiler is f -RPR.
We break this proof into the following lemmas.

Lemma 15. Any correct and leakless n-shares implementation G of the identity circuit and of the swap
circuit for an encoding with strength k is (t, f)-ERPE for any t ∈ [0, k] ∩ N and for any monotone and
continuous f : [0, 1]→ [0, 1].

Proof. It follows immediately from applying the definition of ERPE.

Lemma 16. Given a compiler (E,CCb) and two circuits v1, v2 such that c1 := CCb(v1) is (t, f)-ERPE of
v1 and c2 := CCb(v2) is (t, f)-ERPE of v2, then c1 ∥ c2 is (t, f)-ERPE of v1 ∥ v2.

Proof. We will call c = c1 ∥ c2, v = v1 ∥ v2, and we prove that c is (t, f)-ERPE of v by using the definition.
In particular, we choose:

Ŏc(˘̆o1 ∥ ˘̆o2, W̆1 ∥ W̆2, Ĭ ′1 ∥ Ĭ ′2) := Ŏc1(
˘̆o1, W̆1, Ĭ ′1) ∥ Ŏc2(

˘̆o2, W̆2, Ĭ ′2)

˘̆ic(˘̆o1 ∥ ˘̆o2, W̆1 ∥ W̆2) :=
˘̆ic1(

˘̆o1, W̆1) ∥ ˘̆ic2(
˘̆o2, W̆2)

W̆ ′
c(

˘̆o1 ∥ ˘̆o2, W̆1 ∥ W̆2) := W̆ ′
c1(

˘̆o1, W̆1) ∥ W̆ ′
c2(

˘̆o2, W̆2)

17

The three properties of the ERPE can be proven by subsituting all the definitions with their values, and
then use the respective property of the sub-circuits. The only thing worth notice is that property 2 requires
Lemma 3.

Lemma 17. Given a compiler (E,CCb) and two circuits c′i, c
′
o such that ci := CCb(c

′
i) is (t, f)-ERPE of c′i

and co := CCb(c
′
o) is (t, f)-ERPE of c′o, then co ◦ ci is (t, f)-ERPE of c′o ◦ c′i.

Proof. We will call c := co ◦ ci, c′ := c′o ◦ c′i, and we prove that c is (t, f)-ERPE of c′ by using the definition.
In particular, we choose:

Ŏc(˘̆o, W̆i ∥ W̆o, Ĭ) := Ŏco(
˘̆o, W̆o, Ŏci(

˘̆ico(
˘̆o, W̆o), W̆i, Ĭ))

˘̆ic(˘̆o, W̆i ∥ W̆o) :=
˘̆ici(

˘̆ico(
˘̆o, W̆o), W̆i)

W̆ ′
c(
˘̆o, W̆i ∥ W̆o) := W̆ ′

ci(
˘̆ico(

˘̆o, W̆o), W̆i) ∥ W̆ ′
co(

˘̆o, W̆o)

Then it is immediate that ˘̆ic(·, ·) is a set of t-possible alternative combinations of ic inputs. We can now
prove the three properties of the definition of ERPE: for all sets ˘̆o of t-possible alternative combinations of
o outputs,

1 For every W̆i ⊆ [wi], W̆o ⊆ [wo], we define ˘̆m := ˘̆ico(
˘̆o, W̆o),

˘̆i := ˘̆ici(
˘̆m, W̆i)

For every Ĭ ∈ ˘̆i we define M̆ := Ŏci(
˘̆m, W̆i, Ĭ) and Ŏ := Ŏco(

˘̆o, W̆o, M̆)

For every r⃗′i ∈ ˘supp[⃗Rndsc′i()], we define r⃗i = Rci .E⃗nc(r⃗′i)).

For every r⃗′o ∈ ˘supp[⃗Rndsc′o()] we define r⃗o = Rco .E⃗nc(r⃗′o)).

For every x⃗ ∈ E.E⃗nc[Siin] we define x⃗′ := E.D⃗ec(x⃗) and

y⃗ := ⃗(ci)outs(x⃗, r⃗i) z⃗ := ⃗(co)outs(y⃗, r⃗o)

y⃗′ := ⃗(c′i)outs(x⃗
′, r⃗′i) z⃗′ := ⃗(c′o)outs(y⃗

′, r⃗′o)

w⃗i := ⃗(ci)wires(x⃗, r⃗i) w⃗o := ⃗(co)wires(y⃗, r⃗o)

w⃗′
i :=

⃗(c′i)wires(x⃗
′, r⃗′i) w⃗′

o := ⃗(c′o)wires(y⃗
′, r⃗′o)

We need to prove:

x⃗Ĭ ∥ w⃗′
i|W̆ ′

ci
(˘̆m,W̆i)

∥ w⃗′
o|W̆ ′

co
(˘̆o,W̆o)

sim−→ w⃗i|W̆i
∥ w⃗o|W̆o

∥ z⃗|Ŏ (9)

We can use the property 1 of the ERPE of ci and we obtain:

x⃗Ĭ ∥ w⃗′
i|W̆ ′

ci
(˘̆m,W̆i)

sim−→ y⃗|M̆ ∥ w⃗i|Wi
(10)

Using the property 3 of the ERPE of ci we have that M̆ ∈ ˘̆m. Using the definition of correctness, we
obtain that y⃗′ = E.D⃗ec(y⃗). Together, those allow us to use the property 3 of the ERPE of co, and we
obtain:

y⃗M̆ ∥ w⃗′
o|W̆ ′

co
(˘̆o,W̆o)

sim−→ z⃗Ŏ ∥ w⃗o|W̆o
(11)

Combining (10) and (11) we obtain the required (9).

2 We need to prove two things. The first one is that W̆ ′
c(
˘̆o, ˘Leakingc′(p))

d
= W̆ ′

c({∅}, ˘Leakingc′(p)). We
will prove this by showing that for every ˘̆o,

W̆ ′
c(
˘̆o, ˘Leakingc(p))

d
=W̆ ′

ci({∅}, ˘Leakingci(p))∥W̆ ′
co({∅}, ˘Leakingco(p)) (12)

18

For every w̆′
i, w̆

′
o, let L̆o := ˘Leakingco(p), then

Pr
[
W̆ ′

c(
˘̆o, ˘Leakingc(p)) = w̆′

i ∥ w̆′
o

]
=Pr

[
W̆ ′

ci(
˘̆ic′o(

˘̆o, L̆o), ˘Leakingci(p)) ∥ W̆ ′
co(

˘̆o, L̆o) = w̆′
i ∥ w̆′

o

]
=
∑
L̆o

Pr
[
W̆ ′

ci(
˘̆ico(

˘̆o,L̆o), ˘Leakingci(p))= w̆′
i ∧ W̆ ′

co(
˘̆o, L̆o)= w̆′

o ∧ L̆o= L̆o

]
=
∑
L̆o

Pr
[
W̆ ′

ci(
˘̆ico(

˘̆o,L̆o), ˘Leakingci(p))= w̆′
i

]
Pr

[
W̆ ′

co(
˘̆o,L̆o)= w̆′

o ∧ L̆o= L̆o

]
For the property 2 of the ERPE of ci

=
∑
L̆o

Pr
[
W̆ ′

ci({∅}, ˘Leakingci(p)) = w̆′
i

]
Pr

[
W̆ ′

co(
˘̆o, L̆o) = w̆′

o ∧ L̆o = Lo

]
=Pr

[
W̆ ′

ci({∅}, ˘Leakingci(p)) = w̆′
i

]∑
L̆o

Pr
[
W̆ ′

co(
˘̆o, L̆o) = w̆′

o ∧ L̆o = Lo

]
=Pr

[
W̆ ′

ci({∅}, ˘Leakingci(p)) = w̆′
i

]
Pr

[
W̆ ′

co(
˘̆o, L̆o) = w̆′

o

]
=Pr

[
W̆ ′

ci({∅}, ˘Leakingci(p)) = w̆′
i

]
Pr

[
W̆ ′

co(
˘̆o, ˘Leakingc′o

(p)) = w̆′
o

]
For the property 2 of the ERPE of co

=Pr
[
W̆ ′

ci({∅}, ˘Leakingci(p)) = w̆′
i

]
Pr

[
W̆ ′

co({∅}, ˘Leakingco(p)) = w̆′
o

]
=Pr

[
W̆ ′

ci(∅, ˘Leakingci(p)) ∥ W̆ ′
co(∅, ˘Leakingco(p)) = w̆′

i ∥ w̆′
o

]
The second thing we need to prove is that for all leakage rates p ∈ [0, 1],

W̆ ′
c({∅}, ˘Leakingc(p))

d
≤ ˘Leakingc(e(p)) (13)

This is immediate, by using (12), Lemma 3, and the property 2 of the ERPE of co and ci.

3 Is immediate by using property 3 of the sub-circuits.

Lemma 18. Given a circuit v with a n-shares encoding V (with w internal wires), the compiled circuit
c (with encoding C := E ◦ V , i inputs, o outputs) that is (t, f)-ERPE of v, and given Ĭc,W̆ ′

c,Ŏc from the
definition of ERPE, then:

∀W̆ ⊆ [w]. D̆ep[⃗cwires◦C.E⃗nc](W̆) ⊆ D̆ep[v⃗wires◦V.E⃗nc](W̆
′
c({∅}, W̆)) (14)

Proof. We know from the item 3 of the ERPE with ˘̆o := {∅}, that for all Ĭ ∈ ˘̆ic({∅}, W̆), for all x⃗ ∈ E.E⃗nc[Siin]
and for all r⃗′ ∈ ˘supp[⃗Rndsv()],

x⃗Ĭ ∥ v⃗wires(E.D⃗ec(x⃗), r⃗′)|W̆ ′
c({∅},W̆)

sim−→ c⃗wires(x⃗, R.E⃗nc(r⃗′))|W̆ (15)

As this is true for all r⃗′ ∈ ˘supp[⃗Rndsv()], we can assign r⃗′ := ⃗Rndsv(), and ∀y⃗ ∈ Siin we can choose
x⃗ := E.E⃗nc(y⃗) and obtain:

E.E⃗nc(y⃗)|Ĭ ∥ v⃗wires(y⃗)|W̆ ′
c({∅},W̆)

sim−→ c⃗wires(E.E⃗nc(y⃗))|W̆ (16)

As E has strength k, we have that D̆ep[E.E⃗nc](Ĭ) = ∅. As v has encoding V ,

(v⃗wires ◦ V.E⃗nc)|W̆ ′
c(∅,W̆)

sim−→ (⃗cwires ◦ C.E⃗nc)|W̆ (17)

The thesis follows from the dependency function being minimal.

19

Lemma 19. Given a compiler (E,CC) such that for all circuits v ∈ Cin the compiled circuit CC(v) is
(t, f)-ERPE of v, then (E,CC) is f -RPR.

Proof. Let us call V the encoding of v, C := E ◦ V the encoding of c := CC(v), and let us use W̆ ′
c from the

definition of ERPE. To say that (E,CC) is f -RPR is to say that given a circuit v, if v is (f(p), ε)-SRPS,
then c is (p, ε)-SRPS.

So we know by hypothesis that:

Pr
[
D̆ep[v⃗wires◦V.E⃗nc](

˘Leakingv(f(p))) ̸= ∅
]
≤ ε (18)

The item 2 of the ERPE says that W̆ ′
c({∅}, ˘Leakingc(p))

d
≤ ˘Leakingv(f(p)) and as W̆ 7→ D̆ep[v⃗wires◦V.E⃗nc](W̆) ̸=

∅ is monotone, we can apply the definition of
d
≤ and obtain:

Pr
[
D̆ep[v⃗wires◦V.E⃗nc](W̆

′
c({∅}, ˘Leakingc(p))) ̸= ∅

]
≤ ε (19)

The thesis that c is (p, ε)-SRPS follows from using Lemma 18.

References
[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with

O(1/ log(n)) leakage rate. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 586–615, Vienna, Austria, May 8–12, 2016. Springer, Berlin, Heidelberg, Germany.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part III, volume 10993 of Lecture Notes in Computer Science, pages 427–455, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Cham, Switzerland.

[Ajt11] Miklos Ajtai. Secure computation with information leaking to an adversary. In Proceedings of
the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, page 715–724,
New York, NY, USA, 2011. Association for Computing Machinery.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rahman
Taleb. Random probing security: Verification, composition, expansion and new constructions. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part I, volume 12170 of Lecture Notes in Computer Science, pages 339–368, Santa Barbara, CA,
USA, August 17–21, 2020. Springer, Cham, Switzerland.

[BDF24] Gianluca Brian, Stefan Dziembowski, and Sebastian Faust. From random probing to noisy
leakages without field-size dependence. In Marc Joye and Gregor Leander, editors, Advances in
Cryptology – EUROCRYPT 2024, Part IV, volume 14654 of Lecture Notes in Computer Science,
pages 345–374, Zurich, Switzerland, May 26–30, 2024. Springer, Cham, Switzerland.

[BRT21] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power of expansion: More
efficient constructions in the random probing model. In Anne Canteaut and François-Xavier
Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part II, volume 12697 of Lec-
ture Notes in Computer Science, pages 313–343, Zagreb, Croatia, October 17–21, 2021. Springer,
Cham, Switzerland.

[BRTV21] Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud. Dynamic random
probing expansion with quasi linear asymptotic complexity. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part II, volume 13091 of Lecture
Notes in Computer Science, pages 157–188, Singapore, December 6–10, 2021. Springer, Cham,
Switzerland.

20

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound ap-
proaches to counteract power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryp-
tology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412, Santa
Barbara, CA, USA, August 15–19, 1999. Springer, Berlin, Heidelberg, Germany.

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From
probing attacks to noisy leakage. Journal of Cryptology, 32(1):151–177, January 2019.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud. Probing security
through input-output separation and revisited quasilinear masking. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2021(3):599–640, 2021.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481, Santa Barbara, CA, USA, August 17–21, 2003.
Springer, Berlin, Heidelberg, Germany.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J.
Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Com-
puter Science, pages 388–397, Santa Barbara, CA, USA, August 15–19, 1999. Springer, Berlin,
Heidelberg, Germany.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture
Notes in Computer Science, pages 104–113, Santa Barbara, CA, USA, August 18–22, 1996.
Springer, Berlin, Heidelberg, Germany.

[MT10] Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational indistinguishability:
Security amplification for arbitrarily weak PRGs with optimal stretch. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in
Computer Science, pages 237–254, Zurich, Switzerland, February 9–11, 2010. Springer, Berlin,
Heidelberg, Germany.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue. Unifying leakage
models on a Rényi day. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages
683–712, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Cham, Switzerland.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security
proof. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EU-
ROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 142–159, Athens,
Greece, May 26–30, 2013. Springer, Berlin, Heidelberg, Germany.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In Isabelle Attali and Thomas Jensen, editors, Smart Card
Programming and Security, pages 200–210, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

21

	Introduction
	Our Contributions

	Circuit and Security
	Basic Notation and Probabilistic Function
	Circuit Type
	Encoding
	Circuit Compiler
	Security
	Compiler Sequences

	Calculating Those Properties from the RPE.
	RPE
	From the RPE to the ERPE
	Obtaining the RPR
	Classic Expansion

	Building the Main Compiler Sequence
	Field-Extension Compiler
	Composition of Compiler Sequences
	Main Compiler Sequence

	Conclusions
	From Probing Security to Constant Noise
	??
	??
	??

	Expansion
	Definition of Circuit
	??

