
© IACR 2023/24. This is the full version of a paper with the same title in the
proceedings of TCC 2023. The version published by Springer-Verlag is available at
doi.org/10.1007/978-3-031-48624-1_2.

On the Multi-User Security of
LWE-based NIKE

Roman Langrehr

ETH Zurich
roman.langrehr@inf.ethz.ch

Abstract
Non-interactive key exchange (NIKE) schemes like the Diffie-Hellman

key exchange are a widespread building block in several cryptographic
protocols. Since the Diffie-Hellman key exchange is not post-quantum
secure, it is important to investigate post-quantum alternatives.

We analyze the security of the LWE-based NIKE by Ding et al. (ePrint
2012) and Peikert (PQCrypt 2014) in a multi-user setting where the same
public key is used to generate shared keys with multiple other users. The
Diffie-Hellman key exchange achieves this security notion. The mentioned
LWE-based NIKE scheme comes with an inherent correctness error (Guo
et al., PKC 2020), and this has significant implications for the multi-user
security, necessitating a closer examination.

Single-user security generically implies multi-user security when all users
generate their keys honestly for NIKE schemes with negligible correctness
error. However, the LWE-based NIKE requires a super-polynomial modulus
to achieve a negligible correctness error, which makes the scheme less
efficient. We show that

• generically, single-user security does not imply multi-user security
when the correctness error is non-negligible, but despite this

• the LWE-based NIKE with polynomial modulus is multi-user secure
for honest users when the number of users is fixed in advance. This
result takes advantage of the leakage-resilience properties of LWE.

We then turn to a stronger model of multi-user security that allows
adversarially generated public keys. For this model, we consider a variant of
the LWE-based NIKE where each public key is equipped with a NIZKPoK
of the secret key. Adding NIZKPoKs is a standard technique for this
stronger model and Hesse et al. (Crypto 2018) showed that this is sufficient
to achieve security in the stronger multi-user security model for perfectly
correct NIKEs (which the LWE-based NIKE is not). We show that

• for certain parameters that include all parameters with polynomial
modulus, the LWE-based NIKE can be efficiently attacked with
adversarially generated public keys, despite the use of NIZKPoKs,
but

• for suitable parameters (that require a super-polynomial modu-
lus), this security notion is achieved by the LWE-based NIKE with
NIZKPoKs.

This stronger security notion has been previously achieved for LWE-based
NIKE only in the QROM, while all our results are in the standard model.

doi.org/10.1007/978-3-031-48624-1_2
https://orcid.org/0000-0002-4083-8073
mailto:roman.langrehr@inf.ethz.ch 
mailto:roman.langrehr@inf.ethz.ch 


1 Introduction
Non-Interactive Key Exchange. Non-interactive key exchange (NIKE)
schemes allow every pair of users to compute a common shared key, that is
hidden to everybody else, using a public-key infrastructure. The first NIKE
scheme was presented in the seminal work by Diffie and Hellman [19]. There,
public keys are group elements gxi of a suitable prime-order group with a fixed
generator g and the corresponding secret key is the discrete log xi. The shared
key for two users with public keys gxi and gxj is Ki,j = gxi·xj and can be
computed using xi as Ki,j = (gxj )xi and similarly with xj as Ki,j = (gxi)xj .
For an outsider who only sees the public keys gxi and gxj , the shared key Ki,j

is indistinguishable from a uniformly random group element by the Decisional
Diffie-Hellman assumption.

The notion of a NIKE was only formalized much later by Cash, Kiltz,
and Shoup [15] and further analyzed by Freire, Hofheinz, Kiltz, and Paterson
[24]. NIKE schemes are a useful building block, especially when minimizing
communication costs, for example, for wireless channels [14] or interactive key
exchange [9]. Another interesting application of NIKE is deniable authentication
[21], and an interesting open problem is whether a NIKE with (non-negligible)
correctness error suffices to achieve deniability.

Although the Diffie-Hellman NIKE is very simple and efficient, it unfortu-
nately is not secure against quantum computers. With the recent breaking [16,
37, 45] of SIDH [31], there are now, to the best of our knowledge, essentially
two NIKE schemes that promise to achieve post-quantum security. The first is
CSIDH [17], which, like SIDH, is based on isogenies, but is not affected by the
attacks on SIDH. The other is the LWE-based NIKE introduced by Ding, Xie,
and Lin [20] and Peikert [41]. This work is about the latter scheme.

NIKE from LWE. In the LWE-based NIKE from [20, 41] there are two
different types of users, which we will call left and right users. A shared key can
be computed only between a left and a right user. This can be easily converted
to a full-fledged NIKE by generating for every user a left and a right key and
deciding, based on some fixed rule, which user uses his left key and which user
uses his right key for the shared key computation.

The users share a common random matrix A ∈ Zn×nq . Now each user samples
a short vector si ∈ Znq (any short distribution with sufficient min-entropy will
do), which will be its secret key, and an error vector ei ∈ Zn whose entries are
sampled according to a discrete Gaussian distribution. For a left user, the public
key is pkL,i = s⊤i A + e⊤i . For a right user, the public key is pkR,i = Asi + ei.
Now, a left user i and a right user j can both compute approximations of s⊤i Asj :
The left user can do so by sampling e′ ∈ Z according to a discrete Gaussian
distribution and computing

s⊤i pkR,j + e′ = s⊤i Asj + s⊤i ej + e′︸ ︷︷ ︸
short

.

Similarly, the right user can sample e′′ ∈ Z according to a discrete Gaussian
distribution and compute

pkL,isj + e′′ = s⊤i Asj + e⊤i sj + e′′︸ ︷︷ ︸
short

.

2



The additional error terms e′ and e′′ are necessary to prove security.1
By rounding these preliminary shared keys to, e.g., one bit, both users can

obtain the same shared key with high probability. When a super-polynomial
modulus-to-noise ratio is used, they will get the same bit with overwhelming
probability, but with a polynomial modulus-to-noise ratio, there will be a non-
negligible probability for not obtaining the same bit. Guo, Kamath, Rosen, and
Sotiraki [27] showed that this is unavoidable for a large class of LWE-based
NIKE schemes, even when multiple LWE samples are used per user.

Since LWE with polynomial modulus-to-noise ratio is more efficient due to
the smaller modulus and is a qualitatively weaker assumption than LWE with
super-polynomial modulus-to-noise ratio (it has better reductions to worst-case
lattice problems [44, 42, 13]), it is still desirable to use a polynomial modulus-to-
noise ratio when a small but non-negligible error probability is tolerable. This is
the case, for example, in scenarios where interaction is possible but costly, such
as [14, 9].

Most of this work focuses on the polynomial modulus-to-noise ratio.

Security models for NIKE. To study the security of a NIKE scheme, [15]
introduced several security notions. We recall three of them which we use in this
work.

The first notion is light security. Here, the adversary gets two public keys
(here, a left public key and a right public key) and has to distinguish the shared
key corresponding to these two public keys from a uniformly random key. This
security notion captures scenarios where each public/secret key pair is used only
for one shared key computation. However, for scalability and ease of use, it is
often desirable to use the same key pair to compute shared keys with many other
users.

The second notion we consider is adaptive HKR (honest key registration)
security. It captures such scenarios, at least when all users generate their keys
honestly. It is defined with a security game where the adversary can make
adaptively the following operations via oracles:

• register a user and obtain their public key
• extract a user’s secret key
• reveal the shared key of a pair of users (the adversary can specify which

user contributes the secret key)
• (once) get challenged by either obtaining a real shared key (as in a reveal

query) or a random shared key
The goal of the adversary is to guess whether he gets real or random shared keys
in the challenge without making any query that makes this trivial (extracting
the secret key of one challenge user or using the reveal oracle on the pair of
challenge users).

The third and strongest security notion is adaptive DKR (dishonest key
registration) security, where the adversary can do the same operations as in
the adaptive HKR security game but additionally it can register users with
adversarially chosen public keys. These users can be used to obtain shared keys

1Using the learning with rounding assumption, the error terms e′ and e′′ could be avoided
to prove “light security” (defined later). However, for the more advanced security notions
considered in this work, rounding alone is not sufficient. Also, for super-polynomial modulus-
to-noise ratio, the rounding can be omitted for light and adaptive HKR security because it has
only negligible probability of changing the shared key.

3



with honest users (e.g., a challenge user) in the reveal oracle. The honest user’s
secret key is used here to compute the shared key.

In [24] it was shown that light security implies adaptive security, but this
reduction requires that the NIKE scheme has a negligible correctness error. The
reduction works by guessing both challenge users and using the public keys
from the light security game as their public keys. Since it does not know the
secret keys of the challenge users, the reduction answers reveal queries with one
challenge user always with the secret key of the other, non-challenge user (here
we rely on the negligible correctness error). The challenge query is answered
with the purported shared key from the light security game. So far, this security
model has been used directly only in the context of tight security (since the
above reduction is not tight) [3, 28, 29], but we think it is also important to
consider this notion for NIKE schemes with non-negligible correctness error, like
the LWE-based construction with polynomial modulus-to-noise ratio.

In [28] it was furthermore shown that any adaptive HKR secure NIKE scheme
with perfect correctness can be made adaptive DKR secure by equipping public
keys with a non-interactive zero-knowledge proof of knowledge (NIZKPoK) of the
secret key. Due to the requirement of perfect correctness, their transformation is
not immediately applicable to the LWE-based NIKE schemes (no matter the
modulus-to-noise ratio).

The original works on LWE-based NIKE only proved light security [20, 41].
A very recent work [25] showed that a variant of the LWE-based NIKE with
super-polynomial modulus is adaptively DKR secure in the (quantum) random
oracle model. Informally speaking, they achieved this by showing that the
NIZKPoK approach of [28] can be applied even to NIKE schemes achieving
only statistical correctness when we can guarantee that the correctness error
is negligible even for adversarially generated public/secret key pairs (possibly
depending on the other public key). They achieve this by adding a random
offset to the unrounded shared keys that is obtained by querying the random
oracle on the public keys and identities of the two users. This approach seems
not to carry over to the standard model and cannot be applied to a polynomial
modulus-to-noise ratio because this would require a polynomial bound on the
number of (Q)ROM queries.

1.1 Our results and open questions.
This work analyzes the security notions achieved by the LWE-based NIKE of
[20, 41], depending on the parameters.

Adaptive HKR security with polynomial modulus-to-noise ratio. A
natural approach to prove adaptive HKR security for the LWE-based NIKE
with polynomial modulus-to-noise ratio would be to generalize the generic result
of [24] to NIKE with non-negligible correctness error. We show that this is
unfortunately impossible. Namely, in Appendix B we give a separation between
light and adaptive HKR security by constructing a NIKE scheme with correctness
error p(λ) ∈ [0, 1], for any efficiently computable function p, which achieves light
security, but has an attacker against adaptive HKR security with advantage
≈ p(λ). This attacker only needs to register one additional user (apart from the
two users for the challenge).

4



Table 1: The security notions achieved by LWE-based NIKE. The highlighted results
are from this work. In the adaptive DKR security column, poly. and super-poly. refer
to the size of noise added to the unrounded shared keys. ✓ means that this security
notion is achieved and ✗ means that there is an attack.

modulus-to-noise ratio light security adaptive HKR security adaptive DKR security
(with NIZKPoK)

polynomial ✓
✓ (bounded)

? (unbounded) ✗

super-polynomial ✓ ✓

✗ poly.
✓ super-poly.

✓ with (Q)ROM [25]

The main result of this work is that, fortunately, for suitable parameters
(that still have a polynomial modulus-to-noise ratio), the LWE-based NIKE
scheme can achieve adaptive HKR security. However, the parameters we need
depend on the number of users N that the adversary registers in the security
game. Thus, we only achieve adaptive HKR security for an (arbitrary) a priori
bounded number of users. We call this N -bounded adaptive HKR security. An
interesting open problem is whether the NIKE can also achieve adaptive HKR
security for an unbounded number of users. We show some barriers that need to
be overcome to prove this.

Adaptive DKR security. We then turn to adaptive DKR security. In
this setting, we consider the NIKE where all public keys are equipped with a
NIZKPoK of the secret key. We first show that when the noise that is added to
the unrounded shared keys is of polynomial size, the scheme is not DKR secure
by providing an attacker. The authors of [25] conjectured that their scheme is
secure without the use of a (Q)ROM. However, the provided attack can break
their scheme in time O(

√
q/Be) (in particular, the attack is independent of the

LWE dimension) if the QROM is omitted and in polynomial time if the rounding
function is additionally slightly changed. Especially since the particularities of
the rounding function are irrelevant in their proof, the attack also shows barriers
to prove DKR security without the QROM for the original rounding function.

We then show that when the noise added to the unrounded shared keys is
super-polynomially larger than the size of the public keys and the size of the
LWE secret, the scheme achieves adaptive DKR secure via the transformation
of [28]. This requires a super-polynomial modulus-to-noise ratio. An interesting
open problem is whether there is a different way to construct a NIKE from LWE
with polynomial modulus-to-noise ratio that achieves adaptive DKR security.

Table 1 summarizes the results of this work.

1.2 Technical overview
We briefly recall the security proof of light security for the LWE-based NIKE. Let
us assume without loss of generality that the challenge shared key is computed
with the left user’s secret key s⋆L. We need to show that s⋆L · pk⋆R looks random
to an adversary that knows the public key of the left user (s⋆L)⊤A + (e⋆L)⊤
and the right user’s public key pk⋆R = As⋆R + e⋆R. The proof proceeds with a

5



two-step hybrid argument. In the first step, pk⋆R is replaced by a uniformly
random value chosen from Znq , which is justified by the LWE assumption (with
n samples). In the next and final step, we switch the left user’s public key
and the challenge shared key to uniformly random. To do this, we need n+ 1
samples b = (s⋆L)⊤(A|v) + (e⋆L)⊤. The reduction uses v as the public key for
the right user and the leftmost n entries of b as the public key for the left user.
The rightmost entry b is then the shared key between these users. Since b is
computationally indistinguishable from a uniformly random vector, light security
follows.

1.2.1 Bounded HKR security for LWE-NIKE.

To prove adaptive HKR security, we first have to make one minor change to the
NIKE scheme. Namely, we need to make the shared key generation algorithm
deterministic, to avoid that the adversary can learn multiple shared keys for the
same pair of users with the same user contributing its secret key. We do this by
adding a key for a pseudorandom function (PRF) to each user’s secret key. In
the shared key algorithm, the randomness is now replaced by the output of the
PRF evaluated on the other user’s identity (or public key).

The reduction then begins by guessing which of the users registered by the
adversary will be used for the challenge query, just as in the generic reduction of
[24]. Without loss of generality we assume again that the challenge shared key is
computed with the left challenge user’s secret key. The difficulty here is that the
secret keys of the challenge users are also used in reveal shared key queries to
reveal the shared key with other users. In [24] these queries are answered using
the other, non-challenge user’s secret key. Here, however, the reduction can not
directly use the other user’s secret key to compute this shared key because it
will differ with noticeable probability.

Trick 1: Using leakage. The first trick we use to be able to answer these
reveal queries is to use leakage about the challenge user’s secret key and noise
to correct for the other user’s secret key being used. Concretely, when the
right challenge user with public key pk⋆R = As⋆R + e⋆R computes the shared key
with another left user with public key pkL = s⊤LA + e⊤L the right user gets as
unrounded shared key

s⊤LAs⋆R + e⊤Ls⋆R + e′

while the left user gets
s⊤LAs⋆R + s⊤Le⋆R + e′′.

where e and e′′ is a noise that is identically distributed in both cases. When the
reduction gets the leakage e⊤Ls⋆R and s⊤Le⋆R, it can use the leakage to compute
the shared key from the right user’s perspective given the shared key from the
left user’s perspective, which the reduction can compute without the right user’s
secret key.

In [13, 10] it is shown that LWE (with short secrets) is hard even given
arbitrary leakage of the secret s, as long as enough min-entropy remains in s.
We use this result to justify the leakage of e⊤Ls⋆R.

Leakage about the error was first considered in [13] under the name extended
LWE. There, the leakage is an inner product of the error with a uniformly
random binary vector. This result is applicable in our setting (when the secret

6



distribution is a binary distribution), but unfortunately it is not clear how to
generalize this result to multiple hints. Thus, we can allow only one user apart
from the challenge users. A later work considered a version with multiple hints
[1], where you get the inner product of the LWE error with a matrix Z, but
that matrix has a special structure that makes their result not applicable to
our problem. Instead, we use a recent result [22] showing that LWE holds even
when several noisy hints about the LWE secret are provided. Concretely, they
show that the LWE holds even given Ze + e′ for a short matrix Z, the LWE
error vector e and some new noise e′ sampled according to a discrete Gaussian
distribution. This works well with our LWE-based NIKE because we already
have a noise term added to the shared keys that can be used for this result.

This allows us to show security for any number of users N , as long as this
number is fixed in advance (before selecting the concrete parameters for the
scheme). The drawback of this approach is that we have to increase the noise
size and therefore the correctness error (if the modulus stays fixed) to support
a larger number of users. Concretely, the noise in the shared key grows with
O(
√
N) and there is an inherent barrier to do better than this: Note that our

reduction so far has not taken advantage of the rounding (the rounding is done
only to achieve correctness). Thus, the reduction would still work when the
adversary gets access to the unrounded shared keys in the reveal shared key
queries. In this experiment, the adversary can query a shared key between a
non-challenge user and a challenge user once with the challenge user’s secret key
and once with the other user’s secret key and thus learn their difference

e⊤Ls⋆R − s⊤Le⋆R + e′ − e′′.

The adversary can do this for many users to obtain a system of noisy linear
equations of the secret (s⋆R|e⋆R). Importantly, unlike in LWE, in these equations
all components are so small that, with overwhelming probability, these equations
hold over the integers Z and not only in Zq. Such systems of equations can be
solved efficiently, given only logarithmically more equations than information-
theoretically necessary to determine the secret [6]. This lower bound matches
our result asymptotically (up to the logarithmic factor).

Trick 2: Make use of the rounding. We next present how we can bypass
the above barrier by using the rounding function in the security proof. The
high-level idea for this is very simple: When an unrounded shared key is far
enough away from a rounding boundary, the reduction can ensure that the
rounded shared key is the same, regardless of which user’s secret key is used for
the computation. In this way, the reduction does not need the leakage terms in
many cases. See Figure 1 for an illustration.

Realizing this idea is delicate because it is crucial that the leakage about the
LWE secret is independent of the LWE matrix A. Even with just one bit of
leakage about s which depends on A, we could break LWE.2 However, whether
an unrounded shared key is close to a rounding boundary or not clearly depends
on A.

2The leakage bit can be the most significant bit of the first entry of s⊤A. This is very likely
to agree with the most significant bit of the first entry of s⊤A + e⊤ since e is short, but only
agrees with probability 1/2 with the most significant bit of a uniformly random vector.

7



BK

0 1q − 1

K1

K2

Figure 1: Illustration of Trick 2. Here, the unrounded shared keys are rounded to
one bit. The rounding boundaries are at 0 and (q − 1)/2. BK denotes the maximum
value by which the unrounded shared keys of one pair of users can differ. When an
unrounded shared key is outside the red area, such as K1, it does not matter which
user’s secret key is used to compute the shared key, because the rounded result will be
the same. However, if the shared key lies in the red zone, such as K2, it can make a
difference which secret key is used.

We exploit that the leakage about the error vectors, in contrast to the LWE
secret, can depend on A. Concretely, the result of [22] shows that for suitable
parameters

(e1,Ze1 + e2) ≈s (e′ + f1, f2),

where Z is any short matrix, e′ is a noise term with a distribution suitable for the
LWE assumption, e1 is distributed as the noise we add to the public keys, and
e2 is distributed as the noise we add to the unrounded shared keys. The vectors
f1 and f2 are correlated, but independent of e′. They can be efficiently sampled
given Z (and the parameters for the noise terms). This can be used to reduce
the hardness of LWE with error leakage to the hardness of plain LWE as follows:
Given an LWE instance (A,b) where b is uniformly random or b = s⊤A + e⊤
where e has the same distribution as e′ from the statement above. The reduction
can now compute a matrix Z (possibly dependent on A and b) and use it to
sample (f1, f2). The new LWE challenge is (A,b + f⊤1 ) with leakage f2. Note
that b + f⊤1 is uniformly random if b was uniformly random, or an LWE sample
(with higher noise) if b was an LWE sample.

We next explain how we use this to switch the right challenge key from real
to random with less leakage. The switch for the left challenge key and shared
key works analogously. For this reduction, we use a parameter k that determines
the leakage sizes. If k is at least super-logarithmic in the security parameter,
the number of users N can be increased by increasing the modulus linearly.

The reduction starts by sampling k error vectors eL,1, . . . , eL,k for public
keys. These are used to define the leakage function for the LWE secret. This
is then sent to the leakage resilient LWE challenger to get the LWE instance
(A,b) with leakage about the secret s⋆R (namely e⊤L,is⋆R for all i ∈ [k]). The
public key for the right challenge user will be b + f⊤1 , but the reduction does not
know f1 at this point, because it would have to specify the error leakage matrix

8



Z before. However, f1 will be short, and we can use b as an approximation of
the right challenge user’s public key. The reduction then samples for all left
non-challenge users the secret key sL and computes s⊤Lb. If this is close to a
rounding barrier, the reduction has to use the leakage to simulate a reveal query
between this user and the challenge user. In this case, the reduction uses one
of the pre-sampled error vectors eL,i for this user and adds the secret sL of
this user (as a row vector) to the error leakage matrix Z. If this case occurs
more than k times, the reduction aborts. If s⊤Lb is far from a rounding barrier,
the reduction samples a fresh error vector e for this user. When this has been
done for all users, the matrix Z is complete and the reduction can now sample
(f1, f2). It then uses b + f1 as a public key for the right challenge user. The error
leakage f2, together with the leakage about the LWE secret obtained before, can
be used as in Trick 1 to simulate unrounded shared keys that are supposed to
be computed with the right challenge user’s secret key by using the left user’s
secret key instead and correcting the error that occurred by this change for a
part of the left non-challenge users. For the other non-challenge users we have
the guarantee that the error that occurred by this change disappears by the
rounding operation.

Since the security proof here relies crucially on the rounding operation, it is
important that only the output of the rounding function is used in subsequent
protocols. Therefore, the key reconciliation mechanism of [20, 41], a protocol
that can correct the LWE-NIKE correctness error simply by interactively sending
one bit, cannot be used here directly. But we show that this protocol can, in
fact, be used by using the two least significant bits of the rounding result. That
is, by rounding to three bits, we can get a one-bit shared key along with the
necessary auxiliary information for the interactive reconciliation procedure.

Limitations for unbound adaptive HKR security. At the end of the de-
scription of Trick 1, we showed that an adversary can learn noisy linear equations
about a challenge user’s secret key by taking the differences of unrounded shared
keys computed with the challenge user’s secret key and the other user’s secret key.
This attack can still be applied when the adversary gets only the rounded shared
keys, but now the adversary will learn a certain interval where the inner product
(s⋆R|e⋆R)ai lies for several short vectors ai. This can be turned into an integer
linear program (ILP) where (s⋆R|e⋆R) is one solution. In all our results, we use
parameters such that the solution space of this ILP is still exponentially large,
and thus the ILP is not useful. However, if the number of users is unbounded,
the adversary can obtain enough inequalities for the ILP to (likely) have a unique
solution. Since ILP is an NP-complete problem, this does not immediately yield
an efficient attack. But it seems that this makes proving security difficult and
requires new techniques.

1.2.2 DKR insecurity of LWE-NIKE with NIZKPoK.

We then analyze the security of the LWE NIKE in the DKR security model. We
show how to turn the above attack idea with the ILP into an efficient attack
with dishonest key registration queries. With dishonest key registrations, the
adversary can essentially control the vectors ai. In particular, the adversary
can make all ai unit vectors, so that this 2n dimensional ILP can be solved by
solving 2n 1-dimensional ILPs, which can be done efficiently.

9



The difficulty herewith is to ensure that the ILP has one unique solution.
Essentially, we show that this attack works as long as the noise added to the
shared keys is of polynomial size, capturing all (useful) parameter settings for
polynomial modulus-to-noise ratio and some parameters for super-polynomial
modulus-to-noise ratio.

1.2.3 DKR security by smudging.

We show that despite the above attack, the LWE NIKE is DKR secure when
the noise added to the unrounded shared keys is super-polynomially larger than
the size of the public keys and the size of the LWE secret, because it “smudges”
the problematic terms e⊤Ls⋆R and s⊤Le⋆R. Thus, the distribution of the shared key
is now statistically independent of which user’s secret key was used, even if one
key pair is adversarially generated. This is sufficient to reduce adaptive DKR
security to adaptive HKR security by equipping public keys with NIZKPoKs, as
in [28].

1.2.4 Ring LWE.

All our results generalize to the ring and module LWE setting. Therefore, we
present our results in the technical part with module LWE, which contains
unstructured LWE (LWE in Zq) and ring LWE as special cases.

1.3 Roadmap
In Section 2 we recall the basic definitions and results of previous work. In
Section 2.4, we also included a brief survey of papers on the leakage resilience
of unstructured, ring, and module LWE. The separation of light and adaptive
HKR security for NIKE with non-negligible correctness error is postponed to
Appendix B. In Section 3 we prove bounded adaptive HKR security for the
LWE-based NIKE with polynomial modulus-to-noise ratio. In Appendix A.1
we describe an attacker against DKR security (in the presence of NIZKPoKs)
when the noise added to the unrounded shared keys is of polynomial size. In
Appendix A.1 we prove DKR security with NIZKPoKs when this noise is of
super-polynomial size. In Appendix C we list all changes that have been made
to the ePrint version of this work.

2 Preliminaries
We use N0 for the set of natural numbers with zero and N+ for the set of natural
numbers without zero. For strings a, b we use a||b to denote the concatenation
of a and b.

We use x $← S to denote the process of sampling an element x from a set S
uniformly at random. For a probability distribution D, we write x← D to denote
that the random variable x is distributed according to D. For a (probabilistic)
algorithm A we write x← A(b) to denote the random variable x outputted by A
on input b. When we want to make the random coins used for sampling explicit,
we write x $←r S, x←r D, or x←r A(b) where r is a string of sufficiently many
(uniformly random) bits.

10



Definition 2.1 (Statistical distance). The statistical distance between two
random variables X and Y is defined as

SD(X,Y ) := 1
2
∑
x

|Pr[X = x]− Pr[Y = x]|.

2.1 Linear algebra
Every real matrix M ∈ Rn×m can be written as M = UDV⊤ where U ∈ Rn×n,
V ∈ Rm×m is a orthogonal matrix and D ∈ Rn×m is an upper diagonal matrix
(singular value decomposition). The entries of D are called the singular values of
M and we denote the smallest singular value by σmin(M) and the largest singular
value by σmax(M). The largest singular value σmax(M) is equal to the Euclidean
spectral norm ∥M∥2 := max∥x∥2=1∥Ax∥2.

If Σ ∈ Rn×n is a symmetric positive-definite matrix, its singular value
decomposition is of the form Σ = UDU⊤ where U ∈ Rn×n is an orthogonal
matrix and D ∈ Rn×n is a diagonal matrix. Let

√
D ∈ Rn×n be the matrix

obtained by applying the square root function component-wise to all entries of
D. With this, we define

√
Σ = U

√
DU⊤.

We will use the following bound for the largest singular value of a short
matrix.

Lemma 2.2 Let M ∈ [−B,B]n×m for B > 0. Then σmax(M) ≤ B
√
n.

Proof.
σmax(M) = ∥M∥2 = max

∥x∥2=1
∥Ax∥2 ≤ B

√
n

The last step uses the fact that Ax is an n-dimensional vector with entries in
[−B,B].

2.2 Discrete Gaussian distribution
Let Σ ∈ Rn×n be a symmetric positive-definite matrix. Then the Gaussian
function on Rn is defined as ρ√Σ(x) := exp(−πx⊤Σ−1x). The function extends
to sets in the usual way. That is, for any countable set A ⊆ Rn, ρ√Σ(A) :=∑

x∈A ρ
√

Σ(x).
Moreover, for every countable set A ⊆ Rn and any x ∈ A, the discrete Gaus-

sian function is defined by ρA,√Σ(x) := ρ√
Σ(x)

ρ√
Σ(A) and we denote the corresponding

discrete Gaussian distribution as DA,√Σ.
If Σ = σ2 · In, where In is the n× n identity matrix, we denote the Gaussian

function by ρσ, the discrete Gaussian function by ρA,σ and the discrete Gaussian
distribution by DA,σ for short.

2.3 Lattices
A lattice Λ ⊆ Rn is a set of all integer linear combinations of a set of k linear
independent vectors of Rn, the basis of Λ. We call k the rank of the lattice. The
dual of a lattice Λ is Λ∗ := {w ∈ Rn | ∀v ∈ Λ : ⟨v,w⟩ ∈ Z}

In this work, we will be dealing with lattices of the form Rn where R is a ring
that becomes a lattice through a fixed embedding (injective ring homomorphism3)

3 Here, Rd is a ring with component-wise addition and multiplication.

11



ψ : R → Rd. We extend ψ componentwise to vectors and matrices overR. In this
work, we will always implicitly assume that rings come with such an embedding.
Typically, R will be Z[ζ] where ζ is an element of order ℓ (i.e., an ℓ-th root
of unity), the ring of algebraic integers of the cyclotomic number field Q(ζ).
The minimal polynomial of ζ has degree d := ϕ(ℓ) (where ϕ is Euler’s totient
function) and we will also call this the degree of the ring.

For this ring, we will use the canonical embedding that is defined as follows:
Every number field Q(ζ) of degree d has d embeddings in C denoted by σi :
Q(ζ)→ C, each of them sending ζ to one of the d primitive ℓ-th roots of unity
in C. For a suitable ordering of these embeddings and suitable s1, s2 ∈ N0
satisfying d = s1 + 2s2 we get that the following is a ring-homomorphism called
the canonical embedding:

σ : Q(ζ)→ H := {(x1, . . . , xd) ∈ Rs1 × Cs2 | ∀i ∈ [s2] : xs1+i = xs1+s2+i}
x 7→ (σ1(x), . . . , σd(x))

There exists an inner product space isomorphism Θ : H → Rd. With this we get
the embedding ψ := (Θ ◦ σ) Z[ζ].

The embedding also induces a norm on the ring elements r ∈ Rn: For
p ∈ N+ ∪ {∞} we define∥r∥p := ∥ψ(r)∥p. Defining the norm via the canonical
embedding, instead of the coefficient embedding, avoids having to deal with a
ring-expansion factors [36].

For a symmetric positive-definite matrix Σ ∈ Rdn×dn we write DRn,
√

Σ for
the distribution that samples r ∈ Rn with probability ρψ(R)n,

√
Σ(ψ(r)).

For q ∈ N+ we write Rq := R/qR.
We recall the definition of the smoothing parameter for lattices.

Definition 2.3 ([40]). Let Λ be a lattice, and ε > 0. Then ηε(Λ) := min{s >
0 | ρ1/s(Λ∗ \ {0}) ≤ ε}.

For an invertible matrix M ∈ Rn×n and a lattice Λ ⊆ Rn, we write M ≥ ηε(Λ)
iff 1 ≥ ηε(ΛM−1).

We use the following tail-bound for (possibly non-spherical) discrete Gaussian
distributions.

Lemma 2.4 For any k > 1, n ∈ N+ and any symmetric positive definite matrix
Σ ∈ Rn×n

Pr
z←DZn,

√
Σ

[∥z∥2 > k
√
σmax(Σ)n/2π] < knen(1−k2)/2.

The proof follows the outline of the proof of [34, Lemma 4.4 (3)].

Proof. We apply [5, Lemma 1.5], that for all lattices Λ ∈ Rn and any c ≥ 1/
√

2π∑
z∈Λ,∥z∥2>c

√
n

exp(−π∥z∥2
2) <

(
c
√

2πee−πc
2
)n∑

z∈Λ

e−π∥z∥
2
2 ,

to the lattice Λ =
√

Σ−1
Zn to get the following:∑

z∈
√

Σ−1Zn,z⊤z>c2n

exp(−πz⊤z) <
(
c
√

2πee−πc
2
)n ∑

z∈
√

Σ−1Zn

e−πz⊤z.

12



Now we substitute x :=
√

Σz to get∑
x∈Zn,x⊤Σ−1x>c2n

exp(−πx⊤Σ−1x) <
(
c
√

2πee−πc
2
)n ∑

x∈Zn

e−πx⊤Σ−1x. (1)

Next we use x⊤σmax(Σ)−1Inx = x⊤σmin(Σ−1)Inx ≤ x⊤Σ−1x to get∑
x∈Zn,x⊤σmax(Σ)−1Inx>c2n

exp(−πx⊤Σ−1x) ≤
∑

x∈Zn,x⊤Σ−1x>c2n

exp(−πx⊤Σ−1x)

(1)
<
(
c
√

2πee−πc
2
)n ∑

x∈Zn

e−πx⊤Σ−1x

which can be rearranged to∑
x∈Zn,x⊤x>c2σmax(Σ)n

ρZn,
√

Σ(x) <
(
c
√

2πee−πc
2
)n

= (c
√

2π)ne(1/2−πc2)n.

The lemma follows by setting c = k/
√

2π.

2.4 (Module) learning with errors
We will use the module learning with errors problem (M-LWE) in this work.
This includes the interesting special cases of unstructured LWE and ring LWE
(R-LWE).

Definition 2.5 (M-LWE assumption with leakage). The (R, n,m, q,S, E ,L)-
LWE assumption for a ring R of degree d, n,m, q ∈ N+, the secret distribution
S on Rnq and the error distribution E on Rmq and an (efficiently decidable) set of
allowed (efficiently computable) leakage functions L states that for every PPT
adversary A = (A1,A2),

Advlwe
R,n,m,q,S,E,L(A) := Pr[A2(A, s⊤A + e⊤, st, ℓ)−A2(A, z, st, ℓ)]

is negligible in d · n, where the probability is taken over A ← Rn×mq , s ← S,
e ← E , (st, f) ← A1(1λ), and the internal randomness of A2 for ℓ := f(s) if
f ∈ L and ℓ := ε otherwise.

In this paper, we require that the error distribution is a discrete Gaussian
distribution (E = DRn,Σ). To build a NIKE scheme, we also require that S
outputs only short vectors, e.g., binary or discrete Gaussian vectors.

Unstructured LWE. The case of d = 1, that is, where, without loss of
generality, R = Z, is called (unstructured) LWE and was introduced by [44].

For standard LWE, where S is the uniform distribution on Znq , Regev [44]
showed that for n growing polynomially in the security parameter and E = DZn

q ,σ

with σ > max{2
√
n, q/2nc} for a constant c ∈ (0, 1) the hardness of LWE can be

reduced quantumly to hard worst-case lattice problems, namely approximating
the decision version of the shortest vector problem (GapSVP) and the shortest
independent vector problem (SIVP) within Õ(n2nc). Later works also gave
classical reductions for q ≥ 2n/2 consisting of small primes [42] and polynomial
moduli [13].

13



This gives strong indication that the LWE assumption holds for both poly-
nomial and super-polynomial modulus(q)-to-noise(σ) ratios, while the former is
preferable because it has qualitatively better reductions to lattice problems and
arithmetic with polynomial moduli is more efficient than for super-polynomial
moduli.

The work [2] first showed the hardness of LWE with a short secret distribution,
namely a discrete Gaussian distribution, as used for the error, can be reduced to
standard LWE. The work [26] then showed that the LWE with binary secret and
leakage about the secret (as long as enough min-entropy remains in the secret) is
implied by standard LWE in the super-polynomial modulus-to-noise ratio regime.
The follow-ups [13, 39] showed that LWE with a polynomial modulus-to-noise
ratio and a binary secret (and leakage in [13]) is implied by LWE with uniform
secrets. Finally, the work [10] showed the hardness of LWE with “noise lossy”
distributions, which include all short distributions with enough min-entropy,
with a reduction to standard LWE. The result can be easily extended to capture
also leakage about the secret as long as enough min-entropy remains in the
secret. In particular, their result holds even with polynomial modulus-to-noise
ratio. The reductions of both [26] and [10] are not dimension-preserving. The
work [18] presents a framework for incorporating (noisy) linear leakage about
the LWE secret (and error) into attacks on LWE.

Ring LWE. Ring LWE refers to the special case where n = 1. The problem
was introduced in [36, 35] to improve the concrete efficiency of LWE-based
schemes.

The work [11] analyzed the hardness of the search variant for ring LWE for
entropic secret distributions, and again their result can easily be extended to the
leakage setting. They show the hardness of search ring LWE for entropic secret
distributions based on the Decisional Small Polynomial Ratio (DSPR) problem.
Their result requires that the min-entropy of the secret distributions is at least
d log(γpoly(d)) + ω(log λ), where γ is the standard deviation of the Gaussian
distribution used in the DSPR problem. This excludes the use of binary secrets
but can be satisfied by somewhat short distributions that are sufficient for our
purposes. Their result also requires a certain non-degeneracy property that is
proven only for power-of-two cyclotomic rings, but they conjecture that it holds
for the ring of algebraic integer over all number fields.

Unfortunately, our NIKE construction relies on the hardness of the decisional
(ring) LWE problem, so this result cannot be directly applied here.4 The result
of [33], which we describe in the next paragraph, implies a hardness result for
decisional entropic ring LWE.

Many hardness results for ring LWE naturally require the non-spherical
discrete Gaussian error distributions [36, 35, 43, 11] and converting to spherical
Gaussians comes at a price [43]. Thus in this work we present our results for
possibly non-spherical discrete Gaussians.

Module LWE. Module LWE was introduced in [12, 32] to interpolate between
ring and module LWE.

4There exist search-to-decision reductions for (ring/module) LWE, but those reductions do
not preserve the secret distributions and thus cannot be applied in the leaky/entropic secret
regime.

14



For module LWE, there are two hardness results for entropic secret distribu-
tions (which again can easily be restated as results about leakage resilience). The
first result [33] comes in a flavor similar to [10]: They show hardness of module
LWE for all short secret distributions with enough min-entropy, including binary
distributions, via a reduction to module LWE that is not dimension-preserving.

The second result [7] comes in the flavor of [11]: They show hardness of the
search variant (thus, this result is not directly applicable for our construction)
of module LWE for secret distributions with enough min-entropy (again, the
entropy requirement here excludes binary distributions but can be satisfied by
somewhat short distributions) with a dimension-preserving reduction to the
module NTRU.

2.5 Noisy hints
We recall (a special case of) a theorem of [22] showing that noisy hints about
the LWE error can be simulated, for suitable parameters, without knowing the
error (at the cost of increasing the error size).

Lemma 2.6 ([22, Theorem 2, simplified]). Let R be a ring of degree d, m,
k ∈ N+, Z ∈ Rk×m and ε > 0. Let Σ0 ∈ Rdm×dm,T0 ∈ Rdk×dk and s, t ≥ 2

√
2

such that √
Σ0 ≥ ηε(Rm),

√
T0 ≥ ηε(Rk), and

t2σmin(T0) ≥ (s2 + 1)(s2 + 2)
s2 σmax(Σ0)σmax(ψ(Z))2.

Then, for Σ := (s2 + 1)Σ0, T := (t2 + 1)T0, and Σ := s2/4 ·Σ0 there exists
an efficiently sampable distribution F on Rm ×Rk such that for e1 ← DRm,

√
Σ,

e2 ← DRk,
√

T, e← D
Rm,
√

Σ
, and (f1, f2)← F we have

SD((e1,Ze1 + e2), (e + f1, f2)) ≤ 22ε

2.6 Non-interactive key exchange (NIKE)
For the purpose of this paper, we introduce the notion of an asymmetric NIKE.
In contrast to a standard NIKE, this distinguishes between “left” and “right”
users. A shared key can be computed only between a left and a right user.
This is more convenient to work with in the LWE setting, where left and right
keys are computed differently. An asymmetric NIKE implies a standard NIKE
as introduced in [15] by generating for every user a left and a right key and
deciding based on a canonical rule (e.g., based on the lexicographic order of their
identities) which user takes the left role and which user takes the right role in
the shared key computation. All security notions considered in this work carry
over to their standard NIKE counterparts under this transformation.

Definition 2.7 (NIKE). An asymmetric NIKE scheme with identity space IDS
and shared key space K (with |IDS|, |K| ≥ 2) consists of the following five PPT
algorithms:

• Setup inputs the unary encoded security parameter 1λ and samples public
parameters pp,

15



• KeyGenL inputs the parameters pp and an identity idL ∈ IDS and samples
a left key pair (pkL, skL) ∈ LPK × LSK,

• KeyGenR inputs the parameters pp and an identity idR ∈ IDS and samples
a right key pair (pkR, skR) ∈ RPK ×RSK,

• SharedKeyL inputs the parameters pp, an identity idR with its corresponding
right public key pkR and another identity idL with its corresponding left
secret key skL and outputs a shared key K or the failure symbol ⊥.

• SharedKeyR inputs the parameters pp, an identity idL with its correspond-
ing left public key pkL and another identity idR with its corresponding
right secret key skR and outputs a shared key K or the failure symbol ⊥.

The standard definition of NIKE is obtained by requiring KeyGenL = KeyGenR
and SharedKeyL = SharedKeyR.

Definition 2.8 (Correctness). We say that a NIKE NIKE = (Setup,KeyGenL,
KeyGenR,SharedKeyL,SharedKeyR) for identity space IDS has correctness error
εcorr, if for all λ ∈ N+ and all idL, idR ∈ IDS with idL ̸= idR for

• pp← Setup(1λ),
• (pkL, skL)← KeyGenL(pp, idL),
• (pkR, skR)← KeyGenR(pp, idR),
• KL ← SharedKeyL(pp, idR, pkR, idL, skL), and
• KR ← SharedKeyR(pp, idL, pkL, idR, skR)

Pr[KL = KR ̸= ⊥] ≥ 1− εcorr(λ),
where the probability is taken over the randomness used to sample pp, (pkL, skL),
(pkR, skR), KL and KR.

A NIKE is statistically correct if εcorr is negligible and perfectly correct iff
εcorr = 0.

In this work, we consider three variants of security for NIKE. The weakest
notion is light security. Here, the adversary can register only two users id⋆L, id

⋆
R

and use them for the challenge. This security notion captures scenarios where
each public key is used only to compute a single shared key.

The next stronger notion is adaptive HKR (honest key registration) security,
which allows an adversary to adaptively register an arbitrary number of users,
corrupt users, and reveal shared keys between two users. For simplicity we
still allow only one challenge query, but the more realistic notion with multiple
challenge queries is implied by the single-challenge notion via a standard hybrid
argument. This notion captures multi-user scenarios where a public key can be
used to generate shared keys with many other users. However, it assumes that
all users generate their public and secret key honestly.

The more realistic and stronger notion is adaptive DKR (dishonest key
registration), which additionally allows the adversary to reveal shared keys
between honest users and public keys of his choice.

Definition 2.9 (Security). An asymmetric NIKE NIKE is lightly, (N–user)
adaptively HKR, or DKR secure if for all PPT adversaries A

AdvA,xxx
NIKE,I(λ) := 2|Pr[Expxxx

A,NIKE(λ)⇒ 1]− 1/2|

is negligible for xxx = light, xxx = N-user-adaptive-HKR, xxx = adaptive-HKR or
xxx = adaptive-DKR, respectively. The games Expxxx

A,NIKE are defined in Figure 2
and Table 2.

16



Explight/(N-user-)adaptive-HKR/adaptive-DKR
A,NIKE (λ):

pp← Setup(1λ)
QextrL := ∅; QextrR := ∅
Qrev := ∅; Qtest := ∅
lpks : IDS 99K LPK
rpks : IDS 99K RPK
lsks : IDS 99K LSK
rsks : IDS 99K RSK
b $← {0, 1}
b⋆ ← A(pp)
if Qrev ∩ Qtest = ∅ ∧ ∄(id1,
id2) ∈ Qtest : id1 ∈ QextrL ∨ id2 ∈ QextrR
then
return b

?= b⋆
else
return b′ $← {0, 1}

OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
(pkL, skL)← KeyGenL(pp, idL)
lpks(idL) := pkL; lsks(idL) := skL
return pkL

OregHR(idR∈ IDS):
if rpks(idR) ̸= ⊥ then return ⊥
(pkR, skR)← KeyGenR(pp, idR)
rpks(idR) := pkR; rsks(idR) := skR
return pkR

OextrL(idL ∈ IDS):
if lsks(idL) ̸= ⊥ then
QextrL := QextrL ∪ {idL}
return lsks(idL)

else return ⊥

OextrR(idR ∈ IDS):
if rsks(idR) ̸= ⊥ then
QextrR := QextrR ∪ {idR}
return rsks(idR)

else return ⊥

OregDL(idL ∈ IDS, pkL ∈ PK):
if lpks(idL) ̸= ⊥ then return ⊥
lpks(idL) := pkL
return OK

OregDR(idR ∈ IDS, pkR ∈ PK):
if rpks(idR) ̸= ⊥ then return ⊥
rpks(idR) := pkR
return OK

OrevL(idR ∈ IDS, idL ∈ IDS):
if rpks(idR) ̸= ⊥ ∧ lsks(idL) ̸= ⊥ then
Qrev := Qrev ∪ {(idL, idR)}
pkR := rpks(idR); skL := lsks(idL)
ret. SharedKeyL(pp, idR, pkR, idL, skL)

else return ⊥
OrevR(idL ∈ IDS, idR ∈ IDS):
if lpks(idL) ̸= ⊥ ∧ rsks(idR) ̸= ⊥ then
Qrev := Qrev ∪ {(idL, idR)}
pkL := lpks(idL); skR := rsks(idR)
ret. SharedKeyR(pp, idL, pkL, idR, skR)

else return ⊥
OtestL(id⋆R ∈ IDS, id⋆L ∈ IDS):
if rsks(id⋆R) ̸= ⊥ ∧ lsks(id⋆L) ̸= ⊥ then
Qtest := Qtest ∪ {(id⋆L, id⋆R)}
pk⋆R := rpks(id⋆R); sk⋆L := lsks(id⋆L)
K⋆

0 ← SharedKeyL(pp, id⋆R, pk⋆R, id
⋆
L,

sk⋆L)
K⋆

1
$← K

return K⋆
b

else return ⊥
OtestR(id⋆L ∈ IDS, id⋆R ∈ IDS):
if lsks(id⋆L) ̸= ⊥ ∧ rsks(id⋆R) ̸= ⊥ then
Qtest := Qtest ∪ {(id⋆L, id⋆R)}
pk⋆L := lpks(id⋆L); sk⋆R := rsks(id⋆R)
K⋆

0 ← SharedKeyR(pp, id⋆L, pk⋆L, id
⋆
R,

sk⋆R)
K⋆

1
$← K

return K⋆
b

else return ⊥

Figure 2: Experiment for light, N–user adaptive HKR, and adaptive DKR secu-
rity of an asymmetric NIKE scheme NIKE = (Setup, KeyGenL, KeyGenR, SharedKeyL,
SharedKeyR) with identity space IDS. LPK and RPK denote the left and right public
key spaces, and LSK and RSK denote the left and right secret key spaces, respectively.
The adversary A has access to the oracles as indicated in Table 2. The partial maps
lpks, rpks, lsks, and rsks are initially totally undefined.

17



Table 2: The following table indicates how often the adversary is allowed to query
each of the oracles in the light, (N–user) adaptive HKR, and adaptive DKR security
game. The symbol “∞” stands for arbitrary many allowed queries. In all games, a
OtestL or a OtestR query is allowed.

OregHL OregHR OextrL OextrR OregDL OregDR OrevL OrevL OtestL OtestR

light 1 1 0 0 0 0 0 0 1
N–user adpt. HKR N N ∞ ∞ 0 0 ∞ ∞ 1
adaptive HKR ∞ ∞ ∞ ∞ 0 0 ∞ ∞ 1
adaptive DKR ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1

2.7 Pseudorandom function (PRF)
Definition 2.10 (PRF). A PRF for domain D and range E consists of two PPT
algorithms

• Gen(1λ) inputs the unary encoded security parameter and outputs a PRF
key k and

• PRF(k, x) inputs a a PRF key k and x ∈ D and outputs y ∈ E .

Definition 2.11 (Pseudorandomness of PRFs). A PRF is pseudorandom if for
every PPT adversary A

Advprf
A,PRF(λ) := | Pr

k←Gen(1λ)
[APRF(k,·)(1λ) = 1]− Pr

RF $←ED
[ARF(·)(1λ) = 1]|.

Here, ED denotes the set of all functions from D to E .

3 Security for multiple users
In this section, we present an LWE-based NIKE that achieves N–user adaptive
HKR security for any polynomial number of users N . The price for a higher
number of users is either an increase in the correctness error or an increase
in the modulus (without increasing the absolute error size). Compared to the
LWE-based NIKEs in previous works, the only difference in this construction
is that we make the SharedKey algorithm deterministic by generating all the
randomness used for the shared key generation with a PRF whose seed is stored
in the user’s secret key. This is necessary to avoid duplicated shared key queries
for the same (ordered) pair of users. Alternatively, a user could keep a state of
all already generated shared keys.

The NIKE scheme is shown in Figure 3. It requires a PRF PRF = (GenPRF,
PRF) with domain D = IDS and range {0, 1}α+ρ where α is the number
of random bits required for sampling from discrete Gaussian DR,√T and ρ

determines the shared key space (see below). The LWE secret distribution S
can be any short distribution on Rn. Let Bs > 0 be a bound on the size of S,
i.e., for all s in the range of S we have ∥s∥∞ < Bs. We also put the following
mild requirement on the distribution S: For all N ∈ N+ (growing polynomial in
the security parameter), s, s1, . . . , sN ← S, A ← Rn×nq , and u1, . . . , uN ← Rq
we have

SD((s⊤As1, . . . , s⊤AsN ), (u1, . . . , uN )) ≤ εlohl(λ) (2)

18



Setup(1λ):
A $← Rn×nq

return pp := A

KeyGenL(pp, idL):
sL ← S; eL ← DRn,

√
Σ

pkL := s⊤LA + e⊤L
kPRF ← GenPRF(1λ)
skL := (sL, kPRF)
return (pkL, skL)

KeyGenR(pp, idR):
sR ← S; eR ← DRn,

√
Σ

pkR := AsR + eR
kPRF ← GenPRF(1λ)
skR := (sR, kPRF)
return (pkR, skR)

SharedKeyL(pp, idR, pkR, idL, skL):
parse skL =: (sL, kPRF)
r||β := PRF(kPRF, idR)
e′ ←r DR,√T
return Roundβ(s⊤LpkR + e′)

SharedKeyR(pp, idL, pkL, idR, skR):
parse skR =: (sR, kPRF)
r||β := PRF(kPRF, idL)
e′ ←r DR,√T
return Roundβ(pkLsR + e′)

Figure 3: The LWE based NIKE we consider in this section. It is identical to previous
works except for the use of a PRF.

for a negligible function εlohl. This is true for any distribution S with sufficient
min-entropy if R = Z and q is prime by the left-over hash lemma [30] with the
following argument. Assuming one coefficient of s is in R×q (which happens with
overwhelming probability when s has polynomial min-entropy and q is prime),
the row vector s⊤A is uniformly random. We can then use the left-over hash
lemma to argue that all s⊤Asi are uniformly random, because the row-vector
s⊤A extracts the entropy of each si. If q is super-polynomial, for cyclotomic
rings R a ring version of the left-over hash lemma [38],[8, Lemma 7] can be
applied to argue similarly for suitable distributions. We sketch in Section 3.2
how we can replace this assumption with a computational argument that works
for any ring R and q, as long as the LWE assumption holds.

In this NIKE, the shared key is obtained by rounding a ring element. When
two users compute their shared key, they will get close (but rarely identical)
unrounded shared keys. The purpose of the rounding procedure is to obtain a
shared key that agrees with high probability, but in this work it will also play an
important role in the security reduction. Let d′ ≤ d be a parameter controlling
the size of the shared key.5 To define the rounding function (for β ∈ {0, 1}ρ), let

5With ring/module LWE it might be desirable to use a higher ring degree than the number
of bits needed for the shared key.

19



q′ be the unique integer with q′ ∈ [q − 2ρ + 1, q] and 2q | q′. Then we define

Roundβ : Rq → ({0, 1}ρ)d
′

r 7→ (roundβ(x1), . . . , roundβ(xd′)) where x = ψ(r)
roundβ : {0, . . . , q − 1} → {0, 1}ρ

x 7→

{
x div q′

2ρ if x < q′

β otherwise

where the coefficients of Rq (under the fixed embedding ψ) are interpreted as
integers in {0, . . . , q}. This definition of the rounding function satisfies two
properties that are important for the NIKE construction:

• For uniformly random input r ∈ Rq and uniformly random β, Roundβ(r)
is uniformly random in ({0, 1}ρ)d.

• “Close” inputs lead as often as possible to the same output.
The latter property is analyzed more formally in the correctness theorem for
this NIKE.

Theorem 3.1 (Correctness). The NIKE scheme presented in Figure 3 has
correctness error

εcorr(λ) ≤ 2ρd′(4nBs
√
ndσmax(Σ)/π + 4

√
(n+ 1)dσmax(T)/2π + 1)

q

+ 2
√

2nde−nd/2 + 2
√
n+ 1de−nd/2 + εlohl(λ) + Advprf

A,PRF(λ).

Proof. For this analysis we assume that the randomness used in the shared
key generation algorithm is truly random and not generated with a PRF. This
changes the correctness error at most by Advprf

A,PRF(λ).
Let A $← Rn×nq , sL, sR ← S; eL, eR ← DRn,

√
Σ, and e′L, e

′
R ← DR,√T.

When a user with left public key s⊤LA + e⊤L and a user with right public key
pkR := AsR + eR compute the shared key between them, the unrounded keys
are

rL := s⊤L (AsR + eR) + e′L and rR := (s⊤LA + e⊤L )sR + e′R

and thus the ∞-norm of their difference is

∥rL − rR∥∞ = ∥s⊤LeR + e′L − e⊤LsR − e′R∥∞
≤ n · ∥sL∥∞ · ∥eR∥∞ + ∥e′L∥∞ + n · ∥eL∥∞ · ∥sR∥∞ + ∥e′R∥∞.
≤ n · ∥sL∥∞ · ∥eR∥2 + ∥e′L∥2 + n · ∥eL∥2 · ∥sR∥∞ + ∥e′R∥2.

(∗)
≤ 2nBs

√
2ndσmax(Σ)/2π + 2

√
(n+ 1)dσmax(T)/2π =: BK .

where the inequality marked with (∗) holds with probability at least 2
√

2nde−nd/2+
2
√
n+ 1de−nd/2 (which is negligible in nd) by applying Lemma 2.4 with k =

√
2

to bound ∥eR∥2 and ∥eL∥2 and applying the same lemma with k =
√
n+ 1 to

bound ∥e′L∥2 and ∥e′R∥2.
For each of the d′ coefficients the roundβ procedure splits the set {0, . . . , q−1}

into 2ρ intervals and rounds two values to the same bits if they lie inside the
same interval. A correctness error can only occur if the unrounded shared key of
the left user is within distance BK from an interval boundary or greater than

20



or equal to q′ (in which case the rounding function returns the random value
β). Since s⊤LAsR and thus also the unrounded shared key is εlohl(λ) close to
uniformly random by Equation (2), this can happen at most with probability
2ρd′(2BK + 1)/q + εlohl(λ).

Combining these results proves the theorem.

In the security analysis, we introduce another parameter k that controls the
number of users N such that the NIKE is still N–user adaptive HKR secure.
We can always have N = k + 1 many users, but by increasing the modulus
(i.e., decreasing the correctness error), we can allow more users. Increasing the
parameter k also increases the leakage about the LWE secret (and thus ultimately
nd) as well as the noise and thus the correctness error. For the N–user adaptive
HKR secure of the NIKE we have the following requirements on the parameters:

• ε > 0 is negligible.
• The matrices Σ ∈ Rnd×nd, T ∈ Rd×d, and Σ ∈ Rnd×nd meet the require-

ments of Lemma 2.6 for every hint matrix Z ∈ Rk×nq with ∥Z∥∞ ≤ Bs.
That is, there exist s, t ∈ R with

– s, t ≥ 2
√

2
–
√

Σ0 ≥ ηε(Rn) and
√

T0 ≥ ηε(Rk)
– t2σmin(T0) ≥ (s2+1)(s2+2)

s2 σmax(Σ0)B2
sk (using Lemma 2.2)

• The (R, n, n+ 1, q,S,D
Rn+1

q ,

√
Σ̂
,L)-LWE assumption holds for

L =
{
f : Rnq → Rkq

s 7→ Ys

∣∣∣∣∣ Y ∈ Rk×nq

}
and Σ̂ =

(
Σ 0
0 T

)
∈ R(n+1)d×(n+1)d.

• k ≥ N − 1 or k ∈ Ω((µ+ 1) · superlog(λ)) for a super-logarithmic function
superlog and for

µ :=
(N − 1)2ρd′(4nBs

√
ndσmax(Σ)

π + 2
√

(n+1)dσmax(T)
2π ) + 1)

q
≤ Nεcorr(λ).

Theorem 3.2 (Security). The NIKE NIKE in Figure 3 is N–user adaptive
HKR secure if all the requirements mentioned for the above parameters are
satisfied. More precisely, for every PPT adversary A against the N–user adaptive
HKR security of NIKE there exist PPT adversaries B, C (with approximately the
same run time) such that

AdvN-user-adaptive-HKR
A,NIKE (λ) ≤ 4N2

(
Advlwe

R,n,n+1,q,S,D
Rn+1

q ,

√
Σ̂
,L(B) + Advprf

C,PRF(λ)

+ 22ε+
{

0 if k ≥ N − 1
(∗) otherwise

)

(∗) = N(2
√

2nde−nd/2 + 2
√
n+ 1de−nd/2) + εlohl(λ) + exp(−k

2/µ− 2k + 1/µ
1 + k/µ

).

Proof. We prove security in a weaker model where the adversary has to specify
the index of the OregHL and the OregHR before making any queries and otherwise
proceeds as the N–user adaptive HKR security game. Security in this model

21



implies N–user adaptive HKR security via a standard guessing argument with a
security loss of N2.

We also assume that the adversary makes a OtestL query and not a OtestR
query. By switching “left” and “right” in the proof, we can get a proof that
works for a OtestR query, and by guessing which of the two cases occurs, we get
a proof for the real N–user adaptive HKR security with loss 2.

The proof proceeds via a hybrid argument with the following games:
• G0 is the real N–user adaptive HKR security game with the restrictions

mentioned above.
• G1 proceeds as G0, but for both challenge users a truly random function

(computed on the fly) is used instead of the PRF to generate the randomness
in the SharedKeyL and SharedKeyR algorithm. We will use RFL for the
random function replacing the PRF with the left challenge user’s secret
key and RFR for the random function replacing the PRF with the right
challenge user’s secret key. In the following, we will use RFL(id) and
RFR(id) to denote the first part of the output of the random function that
is used to generate the random coins for the discrete Gaussian sampling
algorithm, and RFL(id) and RFR(id) for the second part that is used for
the rounding function. The differences from game G0 are also shown in
Figure 4.

• G2 changes conceptually how the unrounded shared keys in OrevR queries
with the right challenge user are computed: Let pk⋆R := As⋆R + e⋆R be
the right challenge user’s public key. In an OrevR query with the right
challenge user and a left user id with public key pkL = s⊤LA + e⊤L and
e′ ←RFR(id) DR,√T the shared key is computed as

s⊤Lpk⋆R − s⊤Le⋆R + e⊤Ls⋆R + e′.

For conceptual simplicity, the reduction here stores the error vectors for
each user. The differences from game G1 are also shown in Figure 5.

• In G3 the right challenge user’s public key pk⋆R is replaced by a uniformly
random value. In that game there is still a secret key and an error vector
sampled for the right challenge user to answer OrevR as in G2, but this secret
key and error vector are independent of the public key. The differences
from game G2 are also shown in Figure 6.

• G4 makes changes analogous to G2 to the computation of the unrounded
shared keys in OrevL queries with the left challenge user. Let pk⋆L :=
(s⋆L)⊤A+(e⋆L)⊤ be the left challenge user’s public key. In a OrevL query with
the left challenge user and a right user id with public key pkR = AsR + eR
and e′ ←RFL(id) DR,√T the shared key is computed as

pk⋆LsR − (e⋆L)⊤sR + (s⋆L)⊤eR + e′.

The differences from game G3 are also shown in Figure 7.
• In G5 the left challenge user’s public key is uniformly random. Similarly

to G3, there is still an independent secret key and error vector generated
to answer OrevL queries as in G4. Furthermore, in this hybrid, the OtestL
query will always be answered with a uniform random key. Differences
from game G4 are also shown in Figure 8.

22



G0

OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
sL ← S; eL ← DRn,

√
Σ

pkL := s⊤LA + e⊤L
kPRF ← GenPRF(1λ)
skL := (sL, kPRF)
lpks(idL) := pkL; lsks(idL) := skL
return pkL

OregHR(idR∈ IDS):
if rpks(idR) ̸= ⊥ then return ⊥
sR ← S; eR ← DRn,

√
Σ

pkR := AsR + eR
kPRF ← GenPRF(1λ)
skR := (sR, kPRF)
rpks(idR) := pkR; rsks(idR) := skR
return pkR

SharedKeyL(pp, idR, pkR, idL, skL):
parse skL =: (sL, kPRF)
r||β := PRF(kPRF, idR)
e′ ←r DR,√T
return Roundβ(s⊤LpkR + e′)

SharedKeyR(pp, idL, pkL, idR, skR):
parse skR =: (sR, kPRF)
r||β := PRF(kPRF, idL)
e′ ←r DR,√T
return Roundβ(pkLsR + e′)

G1

During setup: iL := 0; iR := 0

OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
sL ← S; eL ← DRn,

√
Σ

pkL := s⊤LA + e⊤L
if iL = i⋆L then

id⋆L := idL; kPRF := ⊥
else
kPRF ← GenPRF(1λ)

skL := (sL, kPRF)
lpks(idL) := pkL; lsks(idL) := skL
return pkL
OregHR(idR∈ IDS):
iR ← iR + 1
if rpks(idR) ̸= ⊥ then return ⊥
sR ← S; eR ← DRn,

√
Σ

pkR := AsR + eR
if iR = i⋆R then

id⋆R := idR; kPRF := ⊥
else
kPRF ← GenPRF(1λ)

skR := (sR, kPRF)
rpks(idR) := pkR; rsks(idR) := skR
return pkR
SharedKeyL(pp, idR, pkR, idL, skL):
parse skL =: (sL, kPRF)
if idL = id⋆L then
r := RFL(idR); β := RFL(idR)

else
r||β := PRF(kPRF, idR)
e′ ←r DR,√T
return Roundβ(s⊤LpkR + e′)

SharedKeyR(pp, idL, pkL, idR, skR):
parse skR =: (sR, kPRF)
if idR = id⋆R then
r := RFR(idL); β := RFR(idL)

else
r||β := PRF(kPRF, idL)
e′ ←r DR,√T
return Roundβ(pkLsR + e′)

Figure 4: Difference between the games G0 and G1. Changes are highlighted in
gray. The variables i⋆

L and i⋆
R denote the index of the left and right challenge users,

respectively, which the adversary has to specify at the beginning. The SharedKeyL
algorithm is used in OrevL and OtestL oracles, and the SharedKeyR algorithm is used in
OrevR and OtestR oracles. The oracles OextrL and OextrR are identical in both games.

23



G1

OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
sL ← S; eL ← DRn,

√
Σ

pkL := s⊤LA + e⊤L
if iL = i⋆L then
id⋆L := idL
kPRF := ⊥

else
kPRF ← GenPRF(1λ)

skL := (sL, kPRF)
lpks(idL) := pkL; lsks(idL) := skL
return pkL

OregHR(idR∈ IDS):
iR ← iR + 1
if rpks(idR) ̸= ⊥ then return ⊥
sR ← S; eR ← DRn,

√
Σ

pkR := AsR + eR
if iR = i⋆R then
id⋆R := idR
kPRF := ⊥

else
kPRF ← GenPRF(1λ)

skR := (sR, kPRF)
rpks(idR) := pkR; rsks(idR) := skR
return pkR

OrevR(idL ∈ IDS, idR ∈ IDS):
if lpks(idL) ̸= ⊥ ∧ rsks(idR) ̸= ⊥
then
Qrev := Qrev ∪ {(idL, idR)}
pkL := lpks(idL); skR := rsks(idR)
parse skR =: (sR, kPRF)
if idR = id⋆R then
r := RFR(idL); β := RFR(idL)

else
r||β := PRF(kPRF, idL)
e′ ←r DR,√T
return Roundβ(pkLsR + e′)

else return ⊥

G2

During setup:
les : IDS 99K Znq ; res : IDS 99K Znq
OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
sL ← S; eL ← DRn,

√
Σ

pkL := s⊤LA + e⊤L
if iL = i⋆L then
id⋆L := idL; kPRF := ⊥

else
kPRF ← GenPRF(1λ)

skL := (sL, kPRF); les(idL) := eL
lpks(idL) := pkL; lsks(idL) := skL
return pkL
OregHR(idR∈ IDS):
iR ← iR + 1
if rpks(idR) ̸= ⊥ then return ⊥
sR ← S; eR ← DRn,

√
Σ

pkR := AsR + eR
if iR = i⋆R then
id⋆R := idR; kPRF := ⊥

else
kPRF ← GenPRF(1λ)

skR := (sR, kPRF); res(idR) := eR
rpks(idR) := pkR; rsks(idR) := skR
return pkR
OrevR(idL ∈ IDS, idR ∈ IDS):
if lpks(idL) ̸= ⊥ ∧ rsks(idR) ̸= ⊥ then
Qrev := Qrev ∪ {(idL, idR)}
pkL := lpks(idL); skR := rsks(idR)
parse skR =: (sR, kPRF)
if idR = id⋆R then

pkR := rpks(idR); skL := lsks(idL)
parse skL =: (sL, kPRF)
eL := les(idL); eR := res(idR)
r := RFR(idL); β := RFR(idL)
e′ ←r DR,√T

ret. Roundβ(s⊤LpkR − s⊤LeR +
e⊤LsR + e′)

else
r||β := PRF(kPRF, idL)
e′ ←r DR,√T
return Roundβ(pkLsR + e′)

else return ⊥

Figure 5: Difference between the games G1 and G2. Changes are highlighted in gray.
Oracles that are identical in both games are omitted.

24



G2

OregHR(idR∈ IDS):
iR ← iR + 1
if rpks(idR) ̸= ⊥ then return ⊥
sR ← S; eR ← DRn,

√
Σ

pkR := AsR + eR
if iR = i⋆R then
id⋆R := idR
kPRF := ⊥

else
kPRF ← GenPRF(1λ)

skR := (sR, kPRF); res(idR) := eR
rpks(idR) := pkR; rsks(idR) := skR
return pkR

G3

OregHR(idR∈ IDS):
iR ← iR + 1
if rpks(idR) ̸= ⊥ then return ⊥
sR ← S; eR ← DRn,

√
Σ

if iR = i⋆R then
pkR $← Znq

id⋆R := idR
kPRF := ⊥

else
pkR := AsR + eR
kPRF ← GenPRF(1λ)

skR := (sR, kPRF); res(idR) := eR
rpks(idR) := pkR; rsks(idR) := skR
return pkR

Figure 6: Difference between the games G2 and G3. Changes are highlighted in gray.
Oracles that are identical in both games are omitted.

G3

OrevL(idR ∈ IDS, idL ∈ IDS):
if rpks(idR) ̸= ⊥ ∧ lsks(idL) ̸= ⊥
then
Qrev := Qrev ∪ {(idL, idR)}
pkR := rpks(idR); skL := lsks(idL)
parse skL =: (sL, kPRF)
if idL = id⋆L then
r := RFL(idR); β := RFL(idR)

else
r||β := PRF(kPRF, idR)
e′ ←r DR,√T
return Roundβ(s⊤LpkR + e′)

else return ⊥

G4

OrevL(idR ∈ IDS, idL ∈ IDS):
if rpks(idR) ̸= ⊥ ∧ lsks(idL) ̸= ⊥ then
Qrev := Qrev ∪ {(idL, idR)}
pkR := rpks(idR); skL := lsks(idL)
parse skL =: (sL, kPRF)
if idL = id⋆L then

pkL := lpks(idL); skR := rsks(idR)
parse skR =: (sR, kPRF)
eL := les(idL); eR := res(idR)
r := RFL(idR); β := RFL(idR)
e′ ←r DR,√T

ret. Roundβ(pkLsR − e⊤LsR +
s⊤LeR + e′)

else
r||β := PRF(kPRF, idR)
e′ ←r DR,√T
return Roundβ(s⊤LpkR + e′)

else return ⊥

Figure 7: Difference between the games G3 and G4. Changes are highlighted in gray.
Oracles that are identical in both games are omitted.

25



G4

OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
sL ← S; eL ← DRn,

√
Σ

pkL := s⊤LA + e⊤L
if iL = i⋆L then
id⋆L := idL; kPRF := ⊥

else
kPRF ← GenPRF(1λ)

skL := (sL, kPRF)
lpks(idL) := pkL; lsks(idL) := skL
les(idL) := eL
return pkL

OtestL():
if rsks(id⋆R) ̸= ⊥∧ lsks(id⋆L) ̸= ⊥ then
Qtest := Qtest ∪ {(id⋆L, id⋆R)}
pk⋆R := rpks(id⋆R); sk⋆L := lsks(id⋆L)
parse sk⋆L =: (sL, kPRF)
r := RFL(id⋆R); β := RFL(id⋆R)
e′ ←r DR,√T
K⋆

0 := Roundβ(s⊤Lpk⋆R + e′)
K⋆

1
$← Zq

return K⋆
b

else return ⊥

G5

OregHL(idL∈ IDS):
if lpks(idL) ̸= ⊥ then return ⊥
sL ← S; eL ← DRn,

√
Σ

if iL = i⋆L then
pkL ← Znq

id⋆L := idL; kPRF := ⊥
else
pkL := s⊤LA + e⊤L
kPRF ← GenPRF(1λ)

skL := (sL, kPRF)
lpks(idL) := pkL; lsks(idL) := skL
les(idL) := eL
return pkL

OtestL():
if rsks(id⋆R) ̸= ⊥∧ lsks(id⋆L) ̸= ⊥ then
Qtest := Qtest ∪ {(id⋆L, id⋆R)}
K⋆

0
$← Zq

K⋆
1

$← Zq
return K⋆

b

else return ⊥

Figure 8: Difference between the games G4 and G5. Changes are highlighted in gray.
Oracles that are identical in both games are omitted.

26



Lemma 3.3 (G0 ⇝ G1). For every PPT adversary A there exists a PPT
adversary C with ∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ 2Advprf
C,PRF(λ)

Proof. Since the left and right challenge user may not be corrupted, their PRF
key is never exposed. Thus, an adversary who is able to distinguish G0 and G1
can be reduced straightforwardly to an adversary breaking at least one of the
two instances of the PRF security game.

Lemma 3.4 (G1 ⇝ G2).

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1]

Proof. The games G1 and G2 are identical. Let pk⋆R := As⋆R + e⋆R be the right
challenge user’s public key. In a OrevR query with a left user id with public key
pkL = s⊤LA + e⊤L and e′ ←RFR(id) DR,√T the shared key is computed in G2 as

s⊤Lpk⋆R − s⊤Le⋆R + e⊤Ls⋆R + e′ = s⊤L (As⋆R + e⋆R)− s⊤Le⋆R + e⊤Ls⋆R + e′

= s⊤LAs⋆R + e⊤Ls⋆R + e′ = pkLs⋆R + e′

which matches how this shared key is computed in G1.

Lemma 3.5 (G2 ⇝ G3). For every PPT adversary A there exists a PPT
adversary B with∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ Advlwe
R,n,n,q,S,D

Rn,

√
Σ
,L(B) + 22ε

+
{

0 if k ≥ N − 1
(∗) otherwise

(∗) = N(2
√

2nde−nd/2 + 2
√
n+ 1de−nd/2) + εlohl(λ) + exp(−k

2/µ− 2k + 1/µ
1 + k/µ

)

Proof. We build a reduction for this game transition as follows: the reduc-
tion samples in the beginning eL,1, . . . , eL,k ← DRn,

√
Σ and defines f(s) :=

(eL,1| · · · |eL,k)⊤s. It then sends f to the (R, n, n, q,S,DRn,
√

Σ,L)-LWE chal-
lenger to get back (A,b, ℓ) where b = (s⋆R)⊤A + (e⋆R)⊤ for s⋆R ← S and
e⋆R ← DRn,

√
Σ or b $← Rnq and ℓ = f(s⋆R).

The reduction sends pp := A⊤ to the adversary. The reduction then pre-
generates N − 1 public/secret key pairs for the left non-challenge user as follows.
Initially, it sets i := 1. Now it samples N − 1 times sL ← S.

Case A: If any coefficient under the canonical embedding of b · sL is within
distance

2nBs
√

2ndσmax(Σ)/2π +
√

(n+ 1)dσmax(T)/2π =: Bdz

of an interval boundary of the rounding function or larger than or equal to q′
(we will refer to this as the danger zone), the reduction sets sL,i := sL and stores
for this user as public key pkL,i := s⊤L,iA + e⊤L,i and sL,i as secret key i ≤ k.
If i > k, the reduction aborts. Each time case A has occurred, the reduction
increments finally i by 1.

27



Case B: If b · sL is outside the danger zone, the reduction proceeds normally
to generate the key, that is, it samples eL ← DRn,

√
Σ and stores s⊤LA + e⊤L as

public key and sL as secret key.
For all left users with a case B public key, no correctness error with the

right challenge user will occur (with overwhelming probability). For those users
with a case A public key, a correctness error might occur, but the reduction can
detect this knowing s⊤Le⋆R and e⊤Ls⋆R. The latter term is known to the reduction
by the leakage. If k ≥ N − 1, the reduction can pick case A for all key pairs
for simplicity. We next describe the steps the reduction takes to also learn the
former term.

Let Z := (sL,1| · · · |sL,k)⊤ (if less than k left user have a case A public key,
set sL,i = 0 for the remaining indices i ≤ k). Now let F be the distribution from
Lemma 2.6 when using this lemma with

√
Σ for the distribution of e1,

√
T for

the distribution of e2 and
√

Σ for the distribution of e and Z as the hint matrix.
The reduction then samples (f1, f2)← F .

In the registration query for the right challenge user, the reduction returns
b⊤ + f1 as public key. For each left user registration query, except for the left
challenge user, the reduction returns one of the pre-generated left public keys.
The registration queries for the right non-challenge user and the left challenge
user, as well as all OextrL and OextrR queries are answered honestly.

When the reduction performs a OrevR with the right challenge user and a left
user with a case B public/secret key, the reduction returns

Round0(s⊤Lpk⋆R).

where s⊤L is the left user’s secret key. When the left user idL is the i-th user with
a case A public/secret key, the reduction returns

RoundRFR(idL)(s
⊤
Lpk⋆R − (f2)i + ℓi).

All other OrevR, all OrevL, and the OtestL query do not need the right challenge
user’s secret key and are answered honestly by the reduction.

Analysis. Left users with a case A public/secret key pair have an unrounded
shared key with the right challenge user outside of the danger zone, i.e., a cor-
rectness error can occur at most with the negligible probability 2

√
2nde−nd/2 +

2
√
n+ 1de−nd/2 and thus, with overwhelming probability, the shared key com-

puted by the reduction is identical to the shared key as computed in G2 or G3.
For left users with a case B public/secret key, observe that (f2)i = s⊤L (e⋆R+f1)−e′
is distributed as DR,√T with probability at least 1 − 22ε by Lemma 2.6 and
ℓi = e⊤Ls⋆R. Thus, when the reduction does not abort, it simulates the game G2
if it receives a real LWE challenge and G3 if it receives a random LWE challenge.

If k ≥ N − 1, the reduction never aborts. Otherwise, we use that the
probability that a left user has an unrounded shared key in the danger zone with
the right challenge user is at most p := 2ρd′(2Bdz + 1)q and this is independent
for each left user except with probability εlohl(λ) by Equation (2). Let X be the
random variable denoting the number of case A left users. Then the expected
value of X is µ := (N−1)/p. With the Chernoff bound for Bernoulli distributions,

28



we get the following bound on the probability that X exceeds k:

Pr[X ≥ k] ≤ exp(− (k/µ− 1)2µ

1 + k/µ
) = exp(−k

2/µ− 2k + 1/µ
1 + k/µ

) (3)

which is negligible if k ∈ Ω((µ+ 1) · superlog(λ)) for a super-logarithmic function
superlog.

Lemma 3.6 (G3 ⇝ G4).

Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1]

The proof is is analogous to Lemma 3.4, just with the roles of left and right
swapped.

Lemma 3.7 (G4 ⇝ G5). For every PPT adversary A there exists a PPT
adversary B with∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ Advlwe
R,n,n+1,q,S,D

Rn+1
q ,

√
Σ̂
,L(A) + 22ε

+
{

0 if k ≥ N − 1
(∗) otherwise

(∗) = N(2
√

2nde−nd/2 + 2
√
n+ 1de−nd/2) + εlohl(λ) + exp(−k

2/µ− 2k + 1/µ
1 + k/µ

)

The reduction for this transition is in large parts similar to the proof for
Lemma 3.5. Here, we describe only the differences in detail.

Proof. The reduction sends a function f distributed as in Lemma 3.5 to the
(R, n, n + 1, q,S,DRn,

√
Σ,L)-LWE challenger to get back (A,b, ℓ) where b =

(s⋆L)⊤A + (e⋆L)⊤ for s⋆L ← S and e⋆L ← DRn,
√

Σ or b $← Rnq and ℓ = f(s⋆L). Let
A ∈ Rn×nq be the top n× n matrix of A and let A ∈ R1×n

q be the bottom row
of A. Similarly, let b ∈ Rnq be the top n entries of b and b ∈ Rq the last entry
of b.

The reduction sends pp := A to the adversary. The reduction then pre-
generates N − 1 public/secret key pairs for the right non-challenge user as in
Lemma 3.5, except for using b instead of b and thereby generates the matrix
Z ∈ Rn×nq whose row vectors are the LWE secrets of right (non-challenge) users
whose unrounded shared key with the left challenge user lies in the danger zone.
It uses this matrix to obtain the distribution F from Lemma 2.6. The reduction
then samples (f1, f2)← F .

The reduction uses A⊤ as the public key for the right challenge user id⋆R
and b + f1 as the public key for the left challenge user. The public keys for left
non-challenge users are generated honestly and the right non-challenge users the
pre-generated keys are used. All OextrL and OextrR queries are answered honestly.
All OrevR queries and those OrevL queries that do not involve the left challenge
user are answered as in G4. The OrevL with the left challenge user are answered
using the right user’s secret key and potentially using the leakage ℓ about the
left challenge user’s secret and the hints f2 about the left challenge user’s error
to correct for the other secret key being used, analogously to Lemma 3.5.

29



For the challenge shared key, the reduction returns Roundβ(b) where β =
RFL(id⋆R).

The reduction analysis is identical to the one for Lemma 3.5, except for the
challenge query. For that, observe that if the reduction received a real LWE
challenge, then b = (s⋆L)⊤A⊤ + (e⋆L)⊤ where (e⋆L)⊤ is the last entry of e⋆L which
is distributed as DR,√T. The reduction simulates G4 in this case. If the reduction
received a random LWE challenge, then b is uniformly random and, since β is
uniformly random, too, the output of Roundβ(b) is uniformly random. Thus,
the reduction simulates G5 in this case.

Lemma 3.8 (Adv. in G5).

Pr[GA5 ⇒ 1] = 1/2

Proof. In G5, the adversary’s view is independent of the challenge bit, and
therefore every adversary will win the game with probability exactly 1/2.

Combining Lemmata 3.3 – 3.8 completes the proof of Theorem 3.2.

3.1 Reconciliation
In [20, 41] a protocol is shown that can correct potential errors in the shared key
resulting from the LWE-based NIKE interactively by sending 1 bit. We show
that this approach also works on already rounded keys, which becomes necessary
in our work, since rounding is essential for the security proof. This “uses up”
the two least significant bits of the shared key, so for a one bit shared key we
now need to round it to three bits.

We require for the reconciliation mechanism that 2ρ | q (to avoid the case
where the shared key is just (pseudo)random) and ρ ≥ 3. Let K12 and K21 be
the rounded shared keys of a pair of users id1 and id2, where K12 was computed
with the secret key of id1 and K21 was computed with the secret key of id2. The
idea is that K12 and K21, interpreted as numbers in Z2ρ , can differ at most
by 1 for suitable noise sizes. Either of the users can now send the second least
significant bit of his shared key as a signal to the other user. If this matches the
second least significant bit of his shared key, the first ρ− 2 bits of their shared
key are identical as well. Otherwise, the signal-receiving user looks at the least
significant bit. If this is 1, he obtains the same shared key as the other user
by adding 1 to his shared key. On the other hand, if this bit is 0, he has to
subtract 1 from his shared key. In all cases, the user can then use the ρ− 2 most
significant bits as the shared key.

3.2 Avoiding the left over hash Lemma.
For some reasonable choices of the ring R and secret distribution S the as-
sumption in Equation (2) might not hold. For example, when n = 1 and
Rq = Zq[X]/(Xd + 1) for a prime q and Xd + 1 splits into linear factors (this
setting is frequently used, because it allows for efficient multiplication with the
NTT transform in the ring), a random ring element a $← Rq lies in a prime ideal
p (which is in this case an ideal generated by one of the linear factors of Xd + 1)
with probability Pra $←Rq

[a ∈ p] = 1/q. However, the product of two uniformly
random ring elements lies in that ideal with Prs $←Rq,a

$←Rq
[sa ∈ p] = 2/q− 1/q2,

30



which differs from probability for a uniformly random element by a non-negligible
amount, if q is polynomial. Now assuming that a sample from S has a similar
probability of being in the ideal p, a ring element sa for s← S and a $← Rq is
not statistically close to a uniformly random ring element and thus we cannot
argue Equation (2) with a ring-version of the left-over hash lemma.

Equation (2) is used in the proofs of Theorem 3.1 (correctness) and Lemma 3.5.
We now sketch how to argue these two results with similar bounds using the
LWE assumption instead of Equation (2). In both cases we need to bound the
probability that a coefficient of an unrounded shared key is within distance
BK from a rounding boundary. A uniformly random value satisfies this with
probability 2ρd′(2BK + 1)/q and thus with Equation (2) we get the upper bound
2ρd′(2BK + 1)/q + εlohl(λ) for the probability of this event.

Here, we argue that the probability that the probability that a coefficient of
an unrounded real shared key is within distance BK from a rounding boundary
is close to the probability for the same event of a random shared key. Therefore
consider the adversary A against the LWE assumption (without any hints) that
inputs a (R, n, n, q,S,DRn,

√
Σ, ∅)-LWE challenge (A, pkL) and samples sR ← S,

e′ ← DR,√T, and returns 1 iff a coefficient of pkLsR + e′ is within distance
BK from a rounding boundary. Note that pkLsR + e′ is distributed like a real
shared key if pkL is a real LWE sample. The advantage of this adversary is the
difference in the probability that a coefficient of a real unrounded shared key is
within distance BK from a rounding boundary versus the same probability for a
sample of the form zsR + e′ for z $← Rnq , sR ← S and e′ ← DR,√T.

Now consider the adversary B that gets as input a (R, n, 1, q,S,DR,√T, ∅)-
LWE challenge (A, k) and returns 1 iff a coefficient of k is within distance BK
from a rounding boundary. The advantage of this adversary is the difference in
the probability that a coefficient of a sample of the form zsR + e′ for z $← Rnq ,
sR ← S and e′ ← DR,√T is within distance BK from a rounding boundary
versus the same probability for a uniformly random element.

Combining these two results, we get the upper bound 2ρd′(2BK + 1)/q +
Advlwe

R,n,n,q,S,DRn,
√

Σ,∅
(A) + Advlwe

R,n,1,q,S,DR,
√

T,∅
(B) for the probability that a co-

efficient of an unrounded shared key is within distance BK from a rounding bound-
ary. Thus, Theorem 3.1 still holds if we replace εlohl(λ) with Advlwe

R,n,n,q,S,DRn,
√

Σ,∅
(A)+

Advlwe
R,n,1,q,S,DR,

√
T,∅

(B).
For Lemma 3.5, we need the same argument but with N − 1 right-hand side

users instead of just one. Therefore B gets as input a (R, n,N, q,S,DR,√T, ∅)-
LWE challenge and both adversaries A and B output 1 iff there are more than k
shared keys with a coefficient within distance BK from a rounding boundary.
We then get that Lemma 3.5 and therefore also Theorem 3.2 still hold if we
replace εlohl(λ) with Advlwe

R,n,n,q,S,DRn,
√

Σ,∅
(A) + Advlwe

R,n,N,q,S,DR,
√

T,∅
(B).

Acknowledgments. I would like to thank my supervisor Dennis Hofheinz for
feedback on my ideas and an early draft of this paper. I also want to thank the
reviewers of TCC 2023 for their suggestions.

31



References
[1] Shweta Agrawal, Benoît Libert, and Damien Stehlé. “Fully Secure Functional Encryption

for Inner Products, from Standard Assumptions”. In: CRYPTO 2016, Part III. vol. 9816.
LNCS. Aug. 2016, pp. 333–362. doi: 10.1007/978-3-662-53015-3_12.

[2] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast Crypto-
graphic Primitives and Circular-Secure Encryption Based on Hard Learning Prob-
lems”. In: CRYPTO 2009. Vol. 5677. LNCS. Aug. 2009, pp. 595–618. doi:
10.1007/978-3-642-03356-8_35.

[3] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. “On the Impossibility of
Tight Cryptographic Reductions”. In: EUROCRYPT 2016, Part II. vol. 9666. LNCS.
May 2016, pp. 273–304. doi: 10.1007/978-3-662-49896-5_10.

[4] Shi Bai, Steven D. Galbraith, Liangze Li, and Daniel Sheffield. “Improved Combinatorial
Algorithms for the Inhomogeneous Short Integer Solution Problem”. In: Journal of
Cryptology 32.1 (Jan. 2019), pp. 35–83. doi: 10.1007/s00145-018-9304-1.

[5] Wojciech Banaszczyk. “New bounds in some transference theorems in the geometry of
numbers.” In: Mathematische Annalen 296.4 (1993), pp. 625–636.

[6] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and Mehdi
Tibouchi. “LWE Without Modular Reduction and Improved Side-Channel Attacks
Against BLISS”. in: ASIACRYPT 2018, Part I. vol. 11272. LNCS. Dec. 2018, pp. 494–
524. doi: 10.1007/978-3-030-03326-2_17.

[7] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen.
“Entropic Hardness of Module-LWE from Module-NTRU”. in: INDOCRYPT 2022.
Vol. 13774. LNCS. Dec. 2022, pp. 78–99. doi: 10.1007/978-3-031-22912-1_4.

[8] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen.
“Towards Classical Hardness of Module-LWE: The Linear Rank Case”. In: ASI-
ACRYPT 2020, Part II. vol. 12492. LNCS. Dec. 2020, pp. 289–317. doi: 10.1007/
978-3-030-64834-3_10.

[9] Colin Boyd, Wenbo Mao, and Kenneth G. Paterson. “Key Agreement Using Statically
Keyed Authenticators”. In: ACNS 04International Conference on Applied Cryptography
and Network Security. Vol. 3089. LNCS. June 2004, pp. 248–262. doi: 10.1007/
978-3-540-24852-1_18.

[10] Zvika Brakerski and Nico Döttling. “Hardness of LWE on General Entropic Distribu-
tions”. In: EUROCRYPT 2020, Part II. vol. 12106. LNCS. May 2020, pp. 551–575.
doi: 10.1007/978-3-030-45724-2_19.

[11] Zvika Brakerski and Nico Döttling. “Lossiness and Entropic Hardness for Ring-
LWE”. in: TCC 2020, Part I. vol. 12550. LNCS. Nov. 2020, pp. 1–27. doi:
10.1007/978-3-030-64375-1_1.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homomor-
phic encryption without bootstrapping”. In: ITCS 2012. Jan. 2012, pp. 309–325. doi:
10.1145/2090236.2090262.

[13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
“Classical hardness of learning with errors”. In: 45th ACM STOC. June 2013, pp. 575–
584. doi: 10.1145/2488608.2488680.

[14] Cagatay Capar, Dennis Goeckel, Kenneth G. Paterson, Elizabeth A. Quaglia, Don
Towsley, and Murtaza Zafer. “Signal-flow-based analysis of wireless security protocols”.
In: Inf. Comput. 226 (2013), pp. 37–56. doi: 10.1016/j.ic.2013.03.004.

[15] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman Problem and
Applications”. In: EUROCRYPT 2008. Vol. 4965. LNCS. Apr. 2008, pp. 127–145. doi:
10.1007/978-3-540-78967-3_8.

[16] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on SIDH”.
in: EUROCRYPT 2023, Part V. vol. 14008. LNCS. Apr. 2023, pp. 423–447. doi:
10.1007/978-3-031-30589-4_15.

[17] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: ASI-
ACRYPT 2018, Part III. vol. 11274. LNCS. Dec. 2018, pp. 395–427. doi: 10.1007/
978-3-030-03332-3_15.

32

https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/s00145-018-9304-1
https://doi.org/10.1007/978-3-030-03326-2_17
https://doi.org/10.1007/978-3-031-22912-1_4
https://doi.org/10.1007/978-3-030-64834-3_10
https://doi.org/10.1007/978-3-030-64834-3_10
https://doi.org/10.1007/978-3-540-24852-1_18
https://doi.org/10.1007/978-3-540-24852-1_18
https://doi.org/10.1007/978-3-030-45724-2_19
https://doi.org/10.1007/978-3-030-64375-1_1
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1016/j.ic.2013.03.004
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15


[18] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. “LWE with Side
Information: Attacks and Concrete Security Estimation”. In: CRYPTO 2020, Part II.
vol. 12171. LNCS. Aug. 2020, pp. 329–358. doi: 10.1007/978-3-030-56880-1_12.

[19] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”. In: IEEE
Transactions on Information Theory 22.6 (1976), pp. 644–654. doi: 10.1109/TIT.1976.
1055638.

[20] Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably Secure Key Exchange
Scheme Based on the Learning with Errors Problem. Cryptology ePrint Archive, Report
2012/688. 2012. url: https://eprint.iacr.org/2012/688.

[21] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. “Composability and
On-Line Deniability of Authentication”. In: TCC 2009. Vol. 5444. LNCS. Mar. 2009,
pp. 146–162. doi: 10.1007/978-3-642-00457-5_10.

[22] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta,
and Ahmadreza Rahimi. “Efficient Laconic Cryptography from Learning with Errors”.
In: EUROCRYPT 2023, Part III. vol. 14006. LNCS. Apr. 2023, pp. 417–446. doi:
10.1007/978-3-031-30620-4_14.

[23] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. “On
the Non-malleability of the Fiat-Shamir Transform”. In: INDOCRYPT 2012. Vol. 7668.
LNCS. Dec. 2012, pp. 60–79. doi: 10.1007/978-3-642-34931-7_5.

[24] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. “Non-
Interactive Key Exchange”. In: PKC 2013. Vol. 7778. LNCS. 2013, pp. 254–271. doi:
10.1007/978-3-642-36362-7_17.

[25] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter Schwabe.
Swoosh: Practical Lattice-Based Non-Interactive Key Exchange. Cryptology ePrint
Archive, Report 2023/271. 2023. url: https://eprint.iacr.org/2023/271.

[26] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. “Ro-
bustness of the Learning with Errors Assumption”. In: Innovations in Computer Science
- ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings. 2010,
pp. 230–240.

[27] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. “Limits on the Efficiency
of (Ring) LWE Based Non-interactive Key Exchange”. In: PKC 2020, Part I. vol. 12110.
LNCS. May 2020, pp. 374–395. doi: 10.1007/978-3-030-45374-9_13.

[28] Julia Hesse, Dennis Hofheinz, and Lisa Kohl. “On Tightly Secure Non-Interactive Key
Exchange”. In: CRYPTO 2018, Part II. vol. 10992. LNCS. Aug. 2018, pp. 65–94. doi:
10.1007/978-3-319-96881-0_3.

[29] Julia Hesse, Dennis Hofheinz, Lisa Kohl, and Roman Langrehr. “Towards Tight Adaptive
Security of Non-interactive Key Exchange”. In: TCC 2021, Part III. vol. 13044. LNCS.
Nov. 2021, pp. 286–316. doi: 10.1007/978-3-030-90456-2_10.

[30] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “Pseudo-random Generation
from one-way functions (Extended Abstracts)”. In: 21st ACM STOC. May 1989, pp. 12–
24. doi: 10.1145/73007.73009.

[31] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems from Super-
singular Elliptic Curve Isogenies”. In: Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011. 2011, pp. 19–34. doi: 10.1007/978-3-642-25405-5_2.

[32] Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions for module
lattices”. In: DCC 75.3 (2015), pp. 565–599. doi: 10.1007/s10623-014-9938-4.

[33] Hao Lin, Mingqiang Wang, Jincheng Zhuang, and Yang Wang. Hardness of Module-LWE
and Ring-LWE on General Entropic Distributions. Cryptology ePrint Archive, Report
2020/1238. 2020. url: https://eprint.iacr.org/2020/1238.

[34] Vadim Lyubashevsky. “Lattice Signatures without Trapdoors”. In: EUROCRYPT 2012.
Vol. 7237. LNCS. Apr. 2012, pp. 738–755. doi: 10.1007/978-3-642-29011-4_43.

[35] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “A Toolkit for Ring-LWE
Cryptography”. In: EUROCRYPT 2013. Vol. 7881. LNCS. May 2013, pp. 35–54. doi:
10.1007/978-3-642-38348-9_3.

33

https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-031-30620-4_14
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-36362-7_17
https://eprint.iacr.org/2023/271
https://doi.org/10.1007/978-3-030-45374-9_13
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-030-90456-2_10
https://doi.org/10.1145/73007.73009
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/s10623-014-9938-4
https://eprint.iacr.org/2020/1238
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-38348-9_3


[36] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and Learning
with Errors over Rings”. In: EUROCRYPT 2010. Vol. 6110. LNCS. 2010, pp. 1–23.
doi: 10.1007/978-3-642-13190-5_1.

[37] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin
Wesolowski. “A Direct Key Recovery Attack on SIDH”. in: EUROCRYPT 2023, Part V.
vol. 14008. LNCS. Apr. 2023, pp. 448–471. doi: 10.1007/978-3-031-30589-4_16.

[38] Daniele Micciancio. “Generalized Compact Knapsacks, Cyclic Lattices, and Efficient
One-Way Functions”. In: Comput. Complex. 16.4 (2007), pp. 365–411. doi: 10.1007/
s00037-007-0234-9.

[39] Daniele Micciancio. “On the Hardness of Learning With Errors with Binary Secrets”.
In: Theory of Computing 14.1 (2018), pp. 1–17.

[40] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reductions Based
on Gaussian Measures”. In: 45th FOCS. Oct. 2004, pp. 372–381. doi: 10.1109/FOCS.
2004.72.

[41] Chris Peikert. “Lattice Cryptography for the Internet”. In: Post-Quantum Cryptography
- 6th International Workshop, PQCrypto 2014. Oct. 2014, pp. 197–219. doi: 10.1007/
978-3-319-11659-4_12.

[42] Chris Peikert. “Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract”. In: 41st ACM STOC. 2009, pp. 333–342. doi: 10.1145/1536414.
1536461.

[43] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. “Pseudorandomness of
ring-LWE for any ring and modulus”. In: 49th ACM STOC. June 2017, pp. 461–473.
doi: 10.1145/3055399.3055489.

[44] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptography”.
In: 37th ACM STOC. May 2005, pp. 84–93. doi: 10.1145/1060590.1060603.

[45] Damien Robert. “Breaking SIDH in Polynomial Time”. In: EUROCRYPT 2023, Part V.
vol. 14008. LNCS. Apr. 2023, pp. 472–503. doi: 10.1007/978-3-031-30589-4_17.

34

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/s00037-007-0234-9
https://doi.org/10.1007/s00037-007-0234-9
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-031-30589-4_17


A (In)security against dishonest user
In this section, we analyze for which parameters the LWE-based NIKE achieves
adaptive DKR security through the transformation of [28] where every public
key is equipped with a NIZKPoK of the secret key. The work of [28] contains
a proof that this transformation yields an adaptively DKR-secure NIKE when
the underlying NIKE achieves adaptive HKR security and is perfectly correct.
We analyze for which parameters this transformation yields an adaptively DKR
secure NIKE for the LWE-based NIKE, despite the LWE-based NIKE being not
perfectly correct.

We recall the definition of NIZKPoKs.

Definition A.1 A NIZK for a NP-relation R with associated language L :=
{x | ∃w : (x,w) ∈ R} consists of the following four PPT algorithms:

• GenNIZK inputs the unary encoded security parameter and outputs at
common reference string crs with a trapdoor td.

• Prove inputs crs and a statement witness pair (x,w) ∈ R, and outputs a
proof π.

• Ver inputs crs, a statement x, and a proof π and outputs a bit that indicates
a valid or invalid proof.

• Sim inputs crs with the corresponding trapdoor td and a statement x and
outputs a proof π.

We require the following properties from the NIZK:

Definition A.2 (Completeness). A NIZK NIZK = (GenNIZK,Prove,Ver,Sim) is
correct if for all λ ∈ N+ and all (x,w) ∈ R we have for

• (crs, td)← GenNIZK(1λ)
• π ← Prove(crs, (x,w))

Pr[Ver(crs, x, π) = 1] ≥ 1− negl(λ)

for a negligible function negl, where the probability is taken over the randomness
used to sample (crs, td) and π and (if applicable) the randomness of Ver.

Definition A.3 (Zero-knowledge). A NIZK NIZK = (GenNIZK,Prove,Ver,Sim)
is zero-knowledge if for all λ ∈ N+ and all PPT adversaries A we have

Advzk
A,NIZK(λ) :=

∣∣∣∣Pr[Expzk
A,NIZK(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for a negligible function negl where the experiment is defined in Figure 9.

The following definition of a proof of knowledge in the presence of simulated
proofs is from [28]. It is stronger than the standard proof of knowledge property,
where the adversary has no access to simulated proofs.

Definition A.4 (Proof of knowledge). A non-interactive zero-knowledge proof
of knowledge (NIZKPoK) in the presence of simulated proofs consists of PPT
algorithms GenNIZK,Prove,Ver,Sim,Extr where

• (GenNIZK,Prove,Ver,Sim) is a NIZK
• Extr inputs crs with the corresponding trapdoor td and a statement x with

a proof Prove and outputs a witness w.

35



Expzk
A,NIZK=(GenNIZK,Prove,Ver,Sim)(λ):

(crs, td)← GenNIZK(1λ)
b $← {0, 1}
b′ ← AOprove(·,·)(1λ, crs)
return b

?= b′

Oprove(x,w):
if (x,w) /∈ R then return ⊥
if b = 0 then
return Prove(crs, (x,w))

else
return Prove(crs, td, x)

Figure 9: The zero-knowledge experiment for a NIZK.

Exppok
A,NIZKPoK=(GenNIZK,Prove,Ver,Sim,Extr)(λ):

(crs, td)← GenNIZK(1λ)
Qsim := ∅
(x⋆, π⋆)← AOsim(·),Oextr(·,·)(1λ, crs)
w⋆ ← Extr(crs, td, x⋆, π⋆)
if Ver(crs, x⋆, π⋆) = 1 ∧ (x⋆, w⋆) /∈ R ∧
x⋆ /∈ Qsim then
return 1

else
return 0

Osim(x):
Qsim := Qsim ∪ {x}
return Prove(crs, td, x)

Oextr(x, π):
if x ∈ Qsim then
return ⊥

else
return Extr(crs, td, x, π)

Figure 10: The proof of knowledge in the presence of simulated proofs experiment.

We also require that for all λ ∈ N+ and all PPT adversaries A we have

Advpok
A,NIZKPoK(λ) := Pr[Exppok

A,NIZKPoK(λ) = 1] ≤ negl(λ)

for a negligible function negl where the experiment is defined in Figure 10.

We now recall the transformation of [28], but adapted to the asymmetric
NIKE notion with left and right users that we use in this paper. For this, we
need two instances of the NIZKPoK for relations RL, and RR such that for

• pp← Setup(1λ)
• (pkL, skL)← KeyGenL(pp, idL)
• (pkR, skR)← KeyGenR(pp, idR)

with overwhelming probability ((pp, idL, pkL), skL) ∈ RL and ((pp, idR, pkR),
skR) ∈ RR holds.

In the transformed NIKE, both crs are generated in Setup and become part
of pp. Left public keys come with a NIZKPoK for RL, and right public keys with
a NIZKPoK RR. The NIZKPoKs are verified in the SharedKeyL and SharedKeyR
algorithm and if they do not verify, the algorithm outputs ⊥. Otherwise, it
proceeds as before. The formal transformation is shown in Figure 11.

For the LWE-based NIKE we use the following relations. Let Bs, Be ∈ N+ be
such that with overwhelming probability ∥s∥∞ ≤ Bs for s← S and ∥e∥∞ ≤ Be
for e ← E := DRn,

√
Σ. For our transformation to adaptive DKR security, we

36



Setup′(1λ):
pp← Setup(1λ)
crsL ← GenNIZK,L(1λ)
crsR ← GenNIZK,R(1λ)
return pp′ := (pp, crsL, crsR)

KeyGenL′(pp′, idL):
parse pp′ =: (pp, crsL, crsR)
(pkL, skL)← KeyGenL(pp, idL)
πL := ProveL(crsL, ((pp, id, pkL),
skL))
return (pk′L := (pkL, πL), skL)

KeyGenR′(pp′, idR):
parse pp′ =: (pp, crsL, crsR)
(pkR, skR)← KeyGenL(pp, idL)
πR := ProveR(crsR, ((pp, id, pkR),
skR))
return (pk′R := (pkR, πR), skR)

SharedKeyL′(pp′, idR, pk′R, idL, skL):
parse pp′ =: (pp, crsL, crsR)
parse pk′R =: (pkR, πR)
if VerR(crsR, (pp, idR, pkR), πR) ?= 1
then
return SharedKeyL(pp, idR, pkR, idL,
skL)

else
return ⊥

SharedKeyR′(pp′, idL, pk′L, idR, skR):
parse pp′ =: (pp, crsL, crsR)
parse pk′L =: (pkL, πL)
if VerL(crsL, (pp, idL, pkL), πL) ?= 1
then
return SharedKeyR(pp, idL, pkL, idR,
skR)

else
return ⊥

Figure 11: The transformation of a NIKE NIKE = (Setup, KeyGenL, KeyGenR,
SharedKeyL, SharedKeyR), that is required to satisfy distribution correctness adap-
tive HKR security, to a NIKE NIKE′ = (Setup′, KeyGenL′, KeyGenR′, SharedKeyL′,
SharedKeyR′) that satisfies adaptive DKR security. The transformation requires a
NIZKPoK NIZKPoKL = (GenNIZK,L, ProveL, VerL, SimL, ExtrL) for RL and a NIZKPoK
NIZKPoKR = (GenNIZK,R, ProveR, VerR, SimR, ExtrR) for RR.

need two NIZKPoKs for the relations

RL := {((A, id, pkL), sL) | ∥sL∥∞ ≤ Bs ∧ ∥pkL − s⊤LA∥∞ ≤ Be}
RR := {((A, id, pkR), sR) | ∥sR∥∞ ≤ Bs ∧ ∥pkR −AsR∥∞ ≤ Be}.

In this section, we analyze the LWE-based NIKE with different choices for
the LWE secret distribution S, the LWE noise distribution E and the shared
key noise distribution E ′. For simplicity, we omit the pseudo-random function
used to generate the randomness of the shared key generation algorithm in this
section. The result of applying the transformation of Figure 11 to this NIKE is
shown in Figure 12.

QANIZKPoK. We can allow the NIZKPoKs to depend on the public param-
eters of the underlying NIKE, but we still need one simulator that works for
all public parameters. This notion is captured by a quasi-adaptive NIZKPoK
(QANIZKPoK) and allows for more efficient instantiations over groups. Thus, it
is used in [28]. We are not aware of any such results for LWE-based constructions
and thus ignore this optimization.

On the use of identities. To achieve DKR security, it is important that
public keys depend on the users’ identities, because otherwise there is a simple

37



Setup(1λ):
A $← Rn×nq

return pp := A

KeyGenL(pp, idL):
sL ← S; eL ← E
pkL := s⊤LA + e⊤L
return (pkL, skL = sL)

KeyGenR(pp, idR):
sR ← S; eR ← E
pkR := AsR + eR
return (pkR, skR = sR)

SharedKeyL(pp, idR, pkR, idL, skL):
β $← 0, 1ρ
e′ $← E ′
return Roundβ(sk⊤LpkR + ψ−1(e′))

SharedKeyR(pp, idL, pkL, idR, skR):
β $← 0, 1ρ
e′ $← E ′
return Roundβ(pkLskR + ψ−1(e′))

Figure 12: The LWE based NIKE we consider in this section.

replay attack against the adaptive DKR security: In this case, an attacker can
register the public key of a challenge user as the public key of another dishonest
user. The security game now allows the attacker to get the shared key between
the other challenge user and the dishonest user, even though this key will be
identical to the challenge users’ shared key. However, for adaptive HKR secure
NIKE schemes, the public keys do not have to depend on the identities (and
in most schemes in the adaptive HKR model they do not). Therefore, it is
crucial that identities are part of the statement in our NIZKPoKs. For the
standard proof of knowledge property (without simulated proofs), it would not
offer any additional security guarantees to add the identities to the statement
when the underlying public keys (and therefore the truth of the statement) are
independent of the identity. However, for the proof of knowledge in the presence
of simulated proofs property, adding the identities guarantees that an adversary
cannot alter a proof for an identity id to a proof for another identity id′ (with
the same public key). In concrete proof systems, the identity can be used as a
tag (e.g., in [28]) or by hashing the statement (which includes the identity) in
Fiat-Shamir based constructions [23].

A.1 Insecurity for polynomial shared key noise
We present an attacker against the adaptive DKR security of LWE-based NIKE
in Figure 12 that is able to extract secret keys of other users (and thus win
the DKR security game) if the size of the noise added to the shared keys is of
polynomial size. For simplicity, we present the attack for the ring R = Z, but it
can be easily generalized to other rings.

We first present a simplified attack that works when no noise is added to the
shared keys and the secret keys are binary. We also assume a slightly different
rounding function that will round all values slightly larger or equal to zero to
the shared key 0ρ and all values slightly smaller or equal to q − 1 to the shared
key 1ρ.

To extract the secret key of a left user with secret key skL = sL the adversary

38



will perform several queries, each extracting one bit of the secret key. To extract
the i-th bit, the adversary registers a dishonest right user with the public key
pkR = −ei where ei is the i-th unit vector. The adversary honestly computes
the corresponding NIZKPoK with skR = 0. This clearly is a valid secret key
for the public key. It then asks for the shared key of this dishonest user with
the left user to attack. The unrounded shared key here is simply the i-th entry
of si. From this, the adversary learns Roundβ(si), which is 0ρ if si = 0 and
1ρ if si = 1. Therefore, with n dishonest key registrations, the adversary can
completely extract one user’s secret key.

Larger entries in the LWE secret. Next, we describe how to generalize this
attack to any LWE secrets with ∥s∥∞ ≤ Be, that is, LWE secrets that are not
larger than the maximum allowed noise for the public keys. We further assume
for the attack that the first entry of s is 1 with noticeable probability, which is
satisfied by all natural choices of the LWE secret distribution. The particular
choice of 1 is not important; the attack can be generalized to any (small) value
with a noticeable probability.

To extract the i-th entry of s for i ≥ 2, the adversary now proceeds iteratively
while keeping track of an interval I ⊆ Zq that contains si. Initially, this interval
is [−Bs, Bs]. In each round, the adversary will use one reveal shared key query
with a dishonest user to half the size of this interval by a binary search. Therefore,
let p ∈ I be from the middle of the interval, that is, |{x ∈ I | x < p}| = |{x ∈
I | x ≥ p}|+ δ for δ ∈ {0, 1}. To find out whether si ≥ p or not, the attacker
registers a dishonest right user with public key p · e1 + ei (and uses the secret
key skR = 0 for the NIZKPoK) and asks for the left challenge user’s shared key
with this user. When s1 = 1, we learn from this query whether p+ si ≥ 0 or not.

With this attack, we can recover the entire secret key of one challenge user
with O(n log(Bs)) dishonest key registrations with noticeable probability. The
attack can be extended to settings where ∥s∥∞ < Be does not hold, by guessing
that the first entry of s is a larger value than 1 or possibly guessing a constant
number of values (e.g., s1 = 1, s2 = Be, s3 = B2

e).

In the presence of noise. When noise is added to the shared keys, we have
to make some more modifications to the attack. Concretely, let Be′ be a bound
on the noise added to the shared keys. The first modification is to replace the
dishonest public keys p · e1 + ei with (p+ ⌊Be/2⌋) · e1 +Be · ei. This separates
the shared keys resulting from different values of si. When BK ≤ ⌊Be/2⌋, this
change already suffices for a successful attack.

If the noise added to the shared keys is larger than this, we have to add a
safety margin to the interval boundaries. From a query as described above, we
can still learn whether p + si ≥ −(BK − ⌊Be/2⌋) or p + si ≤ (BK − ⌊Be/2⌋).
This can still be used to shrink the size of the interval until it reaches size
≈ 2BK −Be. After this point, the attacker has to perform several queries with
the same dishonest public key per halving of the interval size.

Therefore, let p′ ∈ Z∩ [−BK , BK ] be such that Prx←E′ [x ≥ p′]−Prx←E′ [x ≥
p′ + 1] is non-negligible, where E ′ is the distribution of the noise added to
the unrounded shared keys. By the pigeonhole principle, there exists one p′
where this difference of probabilities is at least 1/2BK , which is non-negligible
when BK is polynomial. Now we change the public keys the adversary uses to

39



(p+ p′ − 1 + ⌊Be/2⌋) · e1 +Be · ei. With each such public key, the shared key
with the challenge user being 0ρ is more likely by 1/poly(Bs) for a polynomial
poly if p+ si ≥ 0 than if p+ si < 0. With a polynomial number of such queries,
the attacker can learn whether p + si ≥ 0 or p + si < 0 with overwhelming
probability.

Different rounding functions. The attack can also be generalized (with
some caveats) to any rounding function with the property that there exists some
v ∈ Zq such that all values slightly larger than or equal to v are rounded to
one shared key, while values slightly smaller than v are rounded to a different
shared key. This captures the rounding function suggested by [25]. The attack
presented so far works only for v = 0.

The attack for v ̸= 0 begins by computing short vectors s′ and e′ such that
pkL · s′ + e′ = −v, where pkL is the left public key whose secret key we try to
extract. When such vectors are known, the attack proceeds as before, except
that it adds s′ and e′ as offsets to the secret and error of all dishonest keys it
registers. These offsets shift the shared key with the user to attack by −v, so the
rounded shared keys are identical to the shared keys one would obtain without
the offset and a rounding function with v = 0.

Finding such vectors s′ and e′ is an (approximate) modular subset sum
problem. A naive algorithm to solve the (approximate) modular subset sum
problem is to sample short s′ until |pkL · s′ − v| ≤ Be/2 where Be is the bound
on the error size. (The division by 2 is to ensure that we still have some room
for the error vectors required for the attack). This takes time O(q/Be). With a
meet-in-the-middle approach, the runtime can be reduced to O(

√
q/Be). There

are better algorithms for the (approximate) modular subset sum/ISIS problems,
such as the CPW algorithm [4], but unfortunately the CPW algorithm does not
have a rigorous run-time analysis.

For a polynomial modulus-to-noise ratio, this leads to a polynomial-time
attack. For a super-polynomial modulus-to-noise ratio, the attack runs in super-
polynomial time. However, we consider it still relevant because the modular
subset sum problem is potentially much easier to solve than breaking the LWE
instance. Most importantly, the modular subset sum can only become easier
when we increase the dimension n (because we can always reduce the dimension
by fixing some entries in s′ to be 0, as long as a short solution still exists) and
increasing the dimension n is usually the main tool to increase the hardness of
the LWE problem.

In summary, we can get an efficient attacker against the adaptive DKR
security of essentially all variants of the LWE-based NIKE when a polynomial
modulus is used and some variants with a super-polynomial modulus (as long as
the correctness error is not overwhelming).

A.2 DKR security for LWE-based NIKE
In this section, we show that super-polynomially large noise added to the shared
keys can not only prevent the above attack, we can actually prove security very
easily when the noise is large enough to smudge the inner product of an LWE
secret and error vector. The drawback of this approach is that it requires a
super-polynomial modulus-to-noise ratio.

40



Comparison with Swoosh. The Swoosh paper [25] takes an entirely different
approach to make the LWE-based NIKE adaptively DKR secure. Namely, they
add an offset to the unrounded shared keys before rounding them. This offset is
the output of a (Q)ROM query on the identities and public keys of the pair of
users. In this way, both users can compute this offset, but it is still unpredictable
during generation of the public and secret key pair. Due to this offset, the NIKE
achieves semi-malicious correctness, which informally means that the NIKE has
negligible correctness error even for maliciously generated keys. This allows a
reduction to change which user’s secret key is used in a shared key generation
even for maliciously generated users. Together with NIZKPoKs, this is sufficient
for adaptive DKR security. Unfortunately, this idea seems to be difficult to
realize in the standard model.

Instead, we show that a weaker correctness notion, which we call distribution
correctness, suffices to achieve DKR security. Informally, it means that (even
for maliciously generated keys), the distribution of the shared key, where the
probability is taken over the randomness used in the shared key generation
algorithm, does not depend on which user’s secret key is used.
Definition A.5 (Distribution correctness). A NIKE satisfies distribution cor-
rectness with respect to key relations RL and RR if for all λ ∈ N+, all pp in
the range of Setup, all idL, idR ∈ IDS, all ((pp, idL, pkL), skL) ∈ RL and all
((pp, idR, pkR), skR) ∈ RR we have

SD(SharedKeyL(pp, idR, pkR, idL, skL),SharedKeyR(pp, idL, pkL, idR, skR))
≤ 1− εdist(λ)

for a negligible function εdist, where the probability is taken over the randomness
of the SharedKeyL and SharedKeyR algorithm. We call εdist the distribution
correctness error.

This definition implies the usual correctness with a negligible correctness error
when SharedKeyL and SharedKeyR are deterministic, but it can capture NIKE
schemes without statistical correctness when SharedKeyL and SharedKeyR are
probabilistic. For example, the trivial NIKE where SharedKeyL and SharedKeyR
output uniformly random shared keys achieves perfect distribution correctness de-
spite having a large correctness error. Note that we can always make SharedKeyL
and SharedKeyR deterministic in the end by generating the randomness with a
PRF, where each user has its own key for the PRF stored in its secret key, as
we did in Section 3. However, here it is not essential for these algorithms to be
deterministic.

A.2.1 Distribution correctness of the LWE-based NIKE.

We recall the smudging lemma.
Lemma A.6 (Smudging Lemma). Let B1(λ), B2(λ) ∈ N+ be positive integers
depending on the security parameter. Then for

• e1
$← Z ∩ [−B1, B1] and

• e2
$← Z ∩ [−B2, B2],

SD(e2, e1 + e2) = B2
1 +B1

B2
,

which is negligible if B2 is super-polynomially larger than B1.

41



Let Bs, Be, RL and RR be as described in the beginning of the section. We
use the smudging lemma to show that the NIKE shown in Figure 12 satisfies
distribution correctness if E ′ is the uniform distribution on Zd ∩ [−BK , BK ]d
and BK is super-polynomial in Bs and Be. Let us call this NIKE NIKEsmudge.

Theorem A.7 The NIKE NIKEsmudge satisfies distribution correctness with

εdist(λ) = (BsBe +BsBe

BK

Proof. Let pkL = s⊤LA + e⊤L , pkR = As⊤R + eR and idL, idR ∈ IDS such that
((A, idL, pkL), sL) ∈ RL and ((A, idR, pkR), sR) ∈ RR. Then

s⊤LpkR = s⊤LAsR + s⊤LeR and
pkLsR = s⊤LAsR + e⊤LsR.

Since
∥s⊤LeR∥∞, ∥e⊤LsR∥∞ ≤ BsBe

and BK is of super-polynomial size in Bs and Be, by Lemma A.6

SD(s⊤LpkR + e′, pkLsR + e′′) ≤ (BsBe)2 +BsBe

BK
,

where the probability is taken over e′, e′′ $← [−BK , BK ].

Light security of NIKEsmudge (if the parameters are suitable for the hardness
of LWE) follows by the proof of [20, 41], which we also sketched in Section 1.2.

Theorem A.8 For every PPT adversary A against the light security of NIKEsmudge
there exists a PPT adversary B against LWE with

Advlight
A,NIKEsmudge

(λ) ≤ 2Advlwe
R,n,n+1,q,S,E′,⊥(A),

where E is a distribution that outputs a vector whose first dn components are
distributed as NIKEsmudge and the last d components are sampled uniformly at
random from [−BK , BK ].

It is straightforward to generalize the transformation of [24] from light to
adaptive security to NIKEs with distribution correctness.

Theorem A.9 If NIKE is distribution correct (for any relations RL and RR)
and is lightly secure, it is also adaptive HKR secure. Concretely, let εdist be the
distribution correctness error of NIKE. Then for every PPT adversary A against
the adaptive HKR security of NIKE, there exists a PPT adversary B against the
light adaptive security of NIKE with

Advadaptive-HKR
A,NIKE (λ) ≤ N2Advlight

B,NIKE(λ) + qrevεdist(λ),

where N is the maximum number of OregHL and OregHR and qrev the maximum
number of OrevL and OrevR queries of A

The proof is a straightforward adaptation of [24]. We recall it here for the
sake of completeness.

42



Proof. The reduction forwards pp and guesses the index of the OregHL and OregHR
queries in which the users used for the OtestL or OtestR query are registered. With
probability 1/N2, both guesses will be correct. In these registration queries, the
reduction embeds the left and right public keys obtained from the light security
game. All other registration queries are answered with honestly generated public
keys. This also enables the reduction to answer all other queries, except for OrevL
queries with the left challenge user and OrevR queries with the right challenge
user. The reduction answers these OrevL by using the SharedKeyR algorithm with
the secret key of the right, non-challenge user and similarly these OrevR by using
the SharedKeyL algorithm with the secret key of the left, non-challenge user.
This changes the output distribution of these queries at most by εdist(λ).

A.2.2 Transformation with NIZKPoK.

Next, we show that applying the transformation of [28] to an adaptive HKR
secure NIKE with distribution correctness yields an adaptive DKR secure NIKE.

Theorem A.10 Let NIKE′ be a NIKE obtained by applying the transformation of
Figure 11 to a NIKE NIKE that is distribution correct with respect to the relations
RL and RR, and to the NIZKPoKs NIZKPoKL, NIZKPoKR for the relations
RL, and RR. Then, if NIKE is adaptively HKR secure, NIKE′ is adaptively
DKR secure. Concretely, for every PPT adversary A against the adaptive DKR
security of NIKE′ there exist PPT adversaries B, C1, C2, D1, and D2 against the
adaptive HKR security of NIKE such that

Advadaptive-DKR
A,NIKE′ (λ) ≤ Advadaptive-HKR

B,NIKE (λ) + Advzk
C1,NIZKPoKL

(λ)

+ Advzk
C2,NIZKPoKR

(λ) + Advpok
D1,NIZKPoKL

(λ) + Advpok
D2,NIZKPoKR

(λ) + qrevεdist(λ),

where qrev is the number of A’s OrevL and OrevR queries and εdist is the distribution
correctness error of NIKE.

The changes we make to the proof of [28] are straightforward, but we recall
it here for the sake of completeness.

Proof. The proof proceeds with a hybrid argument with the following games:
• G0 is the real adaptive DKR security game.
• In G1, the NIZKPoK in the public key of all honestly registered users is

simulated with the Sim algorithm.
• In G2, the game checks when the adversary registers a dishonest user id

with public key (pk, π) whether VerL/R(crs, (pp, id, pk), π). If this returns
1, it extracts the witness with the ExtrL/R algorithm. If the witness is not
valid, that is, ((pp, id, pk), sk) /∈ RL/R for sk← ExtrL/R(crs, td, (pp, id, pk),
Prove), the adversary wins.

• In G3, the reduction computes all OrevL and OrevR queries where one user is
dishonest, and the dishonest user’s public key contained a valid NIZKPoK,
with the secret key of the dishonest user that it obtained with Extr.

Lemma A.11 (G0 ⇝ G1). For every PPT adversary A there exist PPT adver-
saries C1, C2 such that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ Advzk
C1,NIZKPoKL

(λ) + Advzk
C2,NIZKPoKR

(λ)

43



Proof. We first switch to an intermediate hybrid in which the NIZKPoKs of
all honestly registered left users are simulated with Sim with a straightforward
reduction to the zero-knowledge property of NIZKPoKL.

Lemma A.12 (G1 ⇝ G2). For every PPT adversary A there exist PPT adver-
saries D1, D2 such that∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ Advpok
D1,NIZKPoKL

(λ) + Advpok
D2,NIZKPoKR

(λ).

Proof. The games G1 and G2 are identical, except that in G2 there is an additional
way for the adversary to win, namely by registering a user with a public key on
whose proof the extraction procedure fails. We show that whenever that happens,
a reduction can win the proof of knowledge in the presence of simulated proofs
game of NIZKPoKL or NIZKPoKR, depending on whether that was a registration
query for a left or right user.

The reduction generates all simulated proofs with the Osim oracle of the game
in Figure 10. Whenever the adversary registers a dishonest user id with public
key (pk, π) and VerL/R(crs, (pp, id, pk), π) outputs 1, the reduction uses the Oextr
oracle to extract the corresponding secret key sk. If ((pp, id, pk), sk) /∈ RL/R, the
reduction outputs ((pp, id, pk), π) to win the proof of knowledge in the presence
of simulated proofs game. Since the identity of a dishonestly registered user has
to be different from every honest identity, it is guaranteed that the statement
(pp, id, pk) differs from every statement sent to the Osim oracle.

Lemma A.13 (G2 ⇝ G3).∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]
∣∣ ≤ qrevεdist(λ)

Proof. In all OrevL and OrevR with one dishonest user, in G2 the honest user’s
secret key is used to compute the shared key, while in G3 the dishonest user’s
secret key (obtained via NIZKPoK extraction) is used if that user was registered
with a valid NIZKPoK. Otherwise, the shared key is ⊥ anyway. The distribution
correctness property guarantees that these shared keys have statistical distance
at most εdist(λ).

Lemma A.14 (G3). For every PPT adversary A there exists a PPT adversary
B with

Pr[GA3 ⇒ 1] ≤ Advadaptive-HKR
B,NIKE (λ).

Proof. The reduction forwards all queries to the adaptive HKR security game of
the underlying NIKE, discarding the NIZKPoKs from all public keys with two
exceptions: The reduction handles all OregDL and OregDR queries itself as in G3.
It also handles all OrevL and OrevR with one dishonest user as in G3. It can do so
because it only needs the public key of the honestly registered user here.

By combining Lemmata A.11–A.14 we obtain the proof of Theorem A.10.

B Separation between light and adaptive secu-
rity

In this section, we show a separation between light and (3–user) adaptive
security for NIKE schemes with non-negligible correctness error. The separation

44



Exppr-cpa
A,PKE=(Gen,Enc,Dec)(λ):

(pk, sk)← Gen(1λ)
b $← {0, 1}
b′ ← AChal(·)(pk)
return b

?= b′

Chal(msg⋆): //only one query
ct⋆0 ← Enc(pk,msg⋆)
ct⋆1 $← C
return ct⋆b

Figure 13: Security game for PR-CPA security of a PKE scheme.

assumes a perfectly correct6 and lightly secure NIKE and a public key encryption
scheme (PKE) with pseudorandomness against chosen-plaintext attacks (PR-CPA
security). For convenience, in this section we use the usual definition of a NIKE
where there is no distinction between “left”and “right” users. Concretely, we
show that, with these building blocks, we can build for any efficiently computable
function p : N→ [0, 1] a NIKE with correctness error p(λ) that is lightly secure
but can be attacked in the 3–user adaptive security setting with advantage
≈ p(λ). Thus, there cannot exist a generic transformation from light to adaptive
security for NIKEs with a non-negligible correctness error. This is in contrast to
the setting with a negligible correctness error [24].

B.1 Preliminaries
Definition B.1 (PKE). A public key encryption (PKE) scheme PKE for message
space M with ciphertext space C consists of the following three probabilistic
algorithms:

• Gen(1λ) inputs an unary encoded security parameter λ and outputs a
public and secret key pair (pk, sk),

• Enc(pk,msg) inputs a public key pk and a message msg ∈M and outputs
a ciphertext ct ∈ C,

• Dec(sk, ct) inputs a secret key sk and a ciphertext ct ∈ C and outputs a
message msg ∈M or ⊥ (indicating a failure).

For correctness we also require that for every msg ∈M, we have

|Pr[Dec(sk, ct) = msg | (pk, sk)← Gen(1λ), ct← Enc(pk,msg)]| ≥ 1− negl(λ).

We also require that, given only the public key, one can efficiently sample
uniformly from C. Note that C can be larger than the range of Enc(pk, ·).

Definition B.2 (PR-CPA security). A PKE scheme PKE is pseudorandom
against chosen-plaintext attacks (PR-CPA) secure if for all PPT adversaries A

Advpr-cpa
A,PKE(λ) := 2|Pr[Expxxx

A,NIKE(λ)⇒ 1]− 1/2|

is negligible. The game pr-cpa is defined in Figure 13.

B.2 Construction
For our separation result we need a NIKE NIKE with shared key space K and
secret key space SK and a PR-CPA secure PKE with message space M⊇ SK

6Statistical correctness would also suffice.

45



Setup′(1λ):
return Setup(1λ)

KeyGen′(pp, id):
(pkNIKE, skNIKE)← KeyGen(pp, id)
(pkPKE, skPKE)← Gen(1λ)
return (pk := (pkNIKE,, pkPKE,), sk :=
(skNIKE,, skPKE,))

SharedKey′(pp, id1, pk1, id2, sk2):
parse pk1 =: (pkNIKE,1, pkPKE,1)
parse sk2 =: (skNIKE,2, skPKE,2)
with probability p(λ)

return Enc(pkPKE,1, skNIKE,2) //case
A

else
return SharedKey(pp, id1,
pkNIKE,1, id2, skNIKE,2) //case B

Figure 14: The NIKE′ = (Setup′, KeyGen′, SharedKey′) construction for the separation
result. NIKE = (Setup, KeyGen, SharedKey) is a perfectly correct and lightly secure
NIKE and PKE = (Gen, Enc, Dec) is a PR-CPA secure PKE. The function p : N → [0, 1]
can be any efficiently computable function and determines the correctness error.

and ciphertext space C = K. The former can always be achieved by concatenating
multiple ciphertexts to enlarge the message space. The latter can be achieved
by truncating or expanding the shared keys with a pseudorandom generator, if
the shared key space is super-polynomially large. If this is not the case, we can
combine multiple instances of the NIKE scheme to get another NIKE scheme
with super-polynomially large shared key space. The construction is shown in
Figure 14.

Theorem B.3 (Correctness). If the underlying NIKE NIKE is perfectly correct,
then the NIKE NIKE′ from Figure 14 has correctness error at most 2p(λ)−p(λ)2.

Proof. If two users compute the shared key for them, each of them will end up in
case B in the SharedKey′ algorithm with probability 1− p(λ). With probability
(1− p(λ))2 = 1− 2p(λ) + p(λ)2 this will happen for both users, and thus they
obtain the same shared key by the perfect correctness of the underlying NIKE
NIKE.

Theorem B.4 (Light security). If the underlying NIKE NIKE is lightly secure
and the PKE PKE is PR–CPA secure, the NIKE NIKE′ is lightly secure. More
precisely, for every PPT adversary A against the light security of NIKE′ there
exist PPT adversaries B and C, each with almost the same run time as A, such
that

Advlight
A,NIKE′(λ) ≤ Advlight

B,NIKE(λ) + 2Advpr-cpa
C,PKE(λ)

Proof. The proof proceeds via a hybrid argument. The game G0 is the real light
security game for NIKE′. In the game G1, the adversary gets in its only Otest
query, when case A occurs, a uniformly random ciphertext from the ciphertext
space.

Lemma B.5 (G0 ⇝ G1). For every PPT adversary A there exists a PPT
adversary C such that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ 2Advpr-cpa
C,PKE(λ).

46



Proof. The reduction guesses in the beginning which of the two registration
queries is for the users whose secret key is used in the Otest query. We will call
this user the second user and the user whose public key is used in the Otest query
the first user (matching the argument order of the SharedKey algorithm). This
guess will be correct with probability 1/2.

For the first user, the reduction returns the public key from the PR-CPA
game instead of generating it itself as the PKE component of its public key.
Note that in the games G0 and G1 the secret keys for PKE are never used. All
other key components are generated as in G0. When in the Otest query case
A occurs, the reduction sends the NIKE secret key of the second user to the
PR-CPA challenge oracle and uses the resulting ciphertext to answer the Otest
query.

If b = 0 was used in the PR-CPA security game, the reduction simulates G0
and if b = 1 was used in the PR-CPA game, the reduction simulates G1. Thus,
an adversary capable of distinguishing these two games could be used to win the
PR-CPA game for PKE.

Lemma B.6 (G1). For every PPT adversary A there exists a PPT adversary B
such that

Pr[GA1 ⇒ 1] ≤ Advlight
B,NIKE(λ).

Proof. The reduction forwards both OregH queries from the game G1 to the light
security game of the underlying NIKE NIKE and returns the resulting public
keys together with a self-generated public key for PKE.

In the Otest query, the reduction returns with probability p(λ) a uniformly
random ciphertext (which is also a uniformly random shared key), simulating
case A. In this case, the adversary’s view is independent of b and thus has
advantage 0. The reduction outputs a random guess for the light security game
of NIKE in this case.

In the remaining case, the reduction forwards the test query as the test
query for light security game of NIKE and forwards the result, simulating case B.
The reduction outputs whatever the adversary outputs and thus wins the light
security game for NIKE when the adversary wins G1.

The proof of Theorem B.4 follows by combining Lemmata B.5 and B.6.

Theorem B.7 (Adaptive HKR insecurity). There exists a PPT adversary
A against the 3–user adaptive HKR security of the NIKE NIKE′ (assuming
|IDS| ≥ 3) with advantage

Adv3-user-adaptive-HKR
A,NIKE′ (λ) = 2p(λ)− p(λ)2 − 1

|K|
,

where K is the shared key space of NIKE′. Note that by construction this is
exponentially large.

Proof. The adversary A proceeds as shown in Figure 15.
We analyze the success probability of the adversary A.
If b = 1, K⋆ is a uniformly random value, independent of all values returned

in the other oracles and pp. Therefore, with probability 1− 1/|K|, the adversary
will output 1 and win the game.

47



AOregH,Oextr,Orev,Otest(pp):
Pick distinct id1, id2, id3 ∈ IDS
pk1 := (pkNIKE,1, pkPKE,1)← OregH(id1)
pk2 := (pkNIKE,2, pkPKE,2)← OregH(id2)
pk3 := (pkNIKE,3, pkPKE,3)← OregH(id3)
sk3 := (skNIKE,3, skPKE,3)← Oextr(id3)
K31 ← Orev(id3, id1) //secret key of user id1 is used
K32 ← Orev(id3, id2) //secret key of user id2 is used
K⋆ ← Otest(id1, id2)
if SharedKey(pp, id2, pk2, id1,Dec(skPKE,3,K31)) ?= K⋆ ∨ SharedKey(pp, id1,

pk1, id2,Dec(skPKE,3,K32)) ?= K⋆ then
return 0 //guess “real” scenario

else
return 1 //guess “random” scenario

Figure 15: The adversary A breaking the 3–user adaptive HKR security of the NIKE
NIKE′.

If b = 0, with probability 2p(λ)− p(λ)2 at least one of the two Orev queries
will return a “case A” shared key, i.e., the shared key is a ciphertext of the first
or second user’s secret key. By the correctness of PKE, the adversary returns “0”
in this case and wins the game. In the remaining case, the adversary loses the
game.

This leads to the following advantage of A:

Adv3-user-adaptive-HKR
A,NIKE′ (λ) = 2

(
1
2 ·
(
2p(λ)− p(λ)2)+ 1

2 ·
(

1− 1
|K|

)
− 1

2

)
= 2p(λ)− p(λ)2 − 1

|K|

C History of changes
Version 2 (2024-10-19):

• Added Section 3.2 and more details on the usage of the left-over hash
Lemma. I would like to thank Phillip Gajland for making me aware that
the assumption in Equation (2) is problematic for some settings.

• Added a missing d′ factor to the correctness and security bounds of the
result in Section 3.

• Removed the ring expansion factor. Since this work only considers the
canonical embedding, it is not needed.

• Fixed some typos.

48


	Introduction
	Our results and open questions.
	Technical overview
	Bounded HKR security for LWE-NIKE.
	DKR insecurity of LWE-NIKE with NIZKPoK.
	DKR security by smudging.
	Ring LWE.

	Roadmap

	Preliminaries
	Linear algebra
	Discrete Gaussian distribution
	Lattices
	(Module) learning with errors
	Noisy hints
	Non-interactive key exchange (NIKE)
	Pseudorandom function (PRF)

	Security for multiple users
	Reconciliation
	Avoiding the left over hash Lemma.

	(In)security against dishonest user
	Insecurity for polynomial shared key noise
	DKR security for LWE-based NIKE
	Distribution correctness of the LWE-based NIKE.
	Transformation with NIZKPoK.


	Separation between light and adaptive security
	Preliminaries
	Construction

	History of changes

