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Abstract. The differential-linear attack is one of the most effective at-
tacks against ARX ciphers. However, two technical problems are pre-
venting it from being more effective and having more applications: (1)
there is no efficient method to search for good differential-linear approxi-
mations. Existing methods either have many constraints or are currently
inefficient. (2) partitioning technique has great potential to reduce the
time complexity of the key-recovery attack, but there is no general tool
to construct partitions for ARX ciphers. In this work, we step forward
in solving the two problems. First, we propose a novel idea for generat-
ing new good differential-linear approximations from known ones, based
on which new searching algorithms are designed. Second, we propose a
general tool named partition tree, for constructing partitions for ARX
ciphers. Based on these new techniques, we present better attacks for
two ISO/IEC standards, i.e., LEA and Speck. For LEA, we present the
first 17-round distinguisher which is 1 round longer than the previous
best distinguisher. Furthermore, we present the first key recovery at-
tacks on 17-round LEA-128, 18-round LEA-192, and 18-round LEA-256,
which attack 3, 4, and 3 rounds more than the previous best attacks.
For Speck, we find better differential-linear distinguishers for Speck48
and Speck64. The first differential-linear distinguishers for Speck96 and
Speck128 are also presented.

Keywords: Differential-Linear Attack · Partition · LEA · Speck.

1 Introduction

Differential cryptanalysis [11] and linear cryptanalysis [24] are the two best-
known cryptanalysis techniques in symmetric cryptography. The preliminary
step of differential cryptanalysis (respectively, linear cryptanalysis) is to search
for high probability (resp. correlation) differential distinguishers (resp. linear
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distinguishers). In the last decade, a mainstream direction is developing efficient
methods to automatically search for differential or linear distinguishers, such
as the work in [22, 26, 27, 32]. The larger space these methods can search in
a practical time, the more firm our confidence in a cipher’s resistance against
differential or linear cryptanalysis is.

For some block ciphers, within a few rounds, it is easy to find high proba-
bility (resp. correlation) differential distinguishers (resp. linear distinguishers);
however, with the increase in the number of rounds, differential and linear crypt-
analysis simultaneously lose their power. Differential-linear attack is a technique
that combines differential cryptanalysis with linear cryptanalysis such that their
individual power over a small number of rounds can be joined to efficiently attack
more rounds. It is first introduced by Langford and Hellman [20] in 1994 and
has been applied to the security evaluation of various ciphers (e.g., IDEA [17],
Serpent [16], COCUNUT98 [10], and Chaskey [21], etc.).

In differential-linear attacks, a preliminary step is to search for differential-
linear distinguishers (denoted by ∆in → γout) with high correlation. The devel-
opment of automatic searching for differential-linear distinguishers has almost
been at a virtual standstill for the past 20 years. Before 2023, researchers usually
search for differential-linear distinguishers in a three-stage way: (1) experimen-
tally verify short differential-linear distinguishers denoted by ∆m → γm (2)
search short differential distinguishers (denoted by ∆in → ∆m) and linear dis-
tinguishers (denoted by γm → γout), (3) concatenate three short distinguishers
into a long differential-linear distinguisher ∆in → ∆m → γm → γout. Although
there have been many improvements [2, 5, 10, 21] to key recovery attacks based
on differential-linear distinguishers, there is no efficient method to search for
short differential-linear distinguishers ∆m → γm. Thus, in practice, for a differ-
ence ∆m, the search space is severely limited to the case of a linear mask γm of
Hamming weight 1 or 2 [5, 16, 28], which is a long-term pain point since the ex-
tremely limited search space will weaken our confidence in a cipher’s resistance to
differential-linear attacks. In March 2023, using Mixed-Integer Quadratic Con-
straint Programming (MIQCP) and Mixed-Integer Linear Programming (MILP)
techniques, Bellini et al. [6] and Lv et al. [23] both propose an automatic search
method respectively, which is good progress. However, as the authors admit, the
efficiency of their methods is currently not high [6, 23], which is further demon-
strated by the comparison (see Table 9) with our search method proposed in
this paper.

Building symmetric-key primitives with modular additions, rotations, and
XORs is a common practice. The resulting primitives are named ARX ciphers
and their representatives can be found everywhere, including block ciphers (e.g.,
LEA [18] and Speck [3]), stream ciphers (e.g., Salsa20 [7]), MAC algorithms
(e.g., Chaskey [25]), and so on. Differential-linear attack is one of the best at-
tacks against ARX ciphers, such as the work in [4,5,21]. Recently, Beierle et al.
proposed several improvements to the framework of differential-linear attacks
with a special focus on ARX ciphers [4,5]. Among these improvements, building
partitions for complex encryption functions is very helpful to reduce the key bits
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to be guessed. However, except for introducing the final partitions of a special
example, the authors in [4, 5] give no general tools to build partitions for other
encryption functions, which is also a pain point since it hinders researchers from
further applying the partitioning technique to other ARX ciphers.

Contribution. First, we propose a novel idea for searching for good differential-
linear approximations, based on which we design new search algorithms that have
no constraints on the intermediate linear mask and are efficient. We apply the
search algorithms to LEA and Speck, and have found many better distinguishers.
Table 1 summarizes the comparison of distinguishers. For Speck, only the 11-
round differential-linear distinguisher of Speck48 is reported in Table 1, since it is
the best distinguisher so far. Actually, we have found the first differential-linear
distinguishers for 13-round Speck64, 15-round Speck96, and 18-round Speck128,
respectively. Refer to Tables 8 and 9 for more details.

Table 1. The comparison of distinguishers. Cor: correlation, Pr: Probability.

Cipher Type Round Cor / Pr Source

LEA

Differential 13 Pr = 2−123.79 [30]

Impossible Differential 10 Pr = 0 [18]

Boomerang 16 Pr = 2−117.1114 [19]

Differential-Linear 17 Cor = −2−59.04 This Paper

Speck48

Differential 11 Pr = 2−44.31 [30]

Differential-Linear 11 Cor = −2−17.55 [23]

Differential-Linear 11 Cor = −2−17.40 This Paper

Second, we propose a general tool named partition tree for building partitions
for ARX encryption functions. Using this tool, we build dynamic partitions for
parallel modular additions, based on which best key recovery attacks on round
reduced LEA are obtained. Table 2 summarizes the key recovery attacks. The
designers claim that the secure number of rounds is 17 for LEA-128, 18 for
LEA-192, and 19 for LEA-256 [18].

Note that the 17-round key recovery attack as shown in Table 2 is based on
the attack framework introduced in [4,5], and the 18-round key recovery attack
is obtained by using the classical attack framework summarized in [12]. Due to
the limitation in the differential part, we can only attack 17-round LEA using
the attack framework in [4, 5].
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Table 2. Key recovery attacks on round-reduced LEA. R.A.: Rounds Attacked, T.R.:
Total Rounds, D.T.: Distinguisher Type, CP: Chosen-Plaintexts.

Variant R.A. / T.R. D.T. Time Data (CP) Reference

LEA-128
14/24 Differential 2124.79 2124.79 [30]

17/24 Differential-Linear 282.9 270.9 This Paper

LEA-192

14/28 Differential 2124.79 2124.79 [30]

17/28 Differential-Linear 282.9 270.9 This Paper

18/28 Differential-Linear 2189.63 2126.63 This Paper

LEA-256

15/32 Differential 2252.79 2124.79 [30]

17/32 Differential-Linear 282.9 270.9 This Paper

18/32 Differential-Linear 2189.63 2126.63 This Paper

2 Preliminaries

Given a set S ⊆ Fn2 and a Boolean function f : Fn2 → F2, we define the correlation

Corx∈S [f(x)] :=
1

|S|
∑
x∈S

(−1)f(x). (1)

We denote the XOR operation by ⊕, the j-th unit vector of a binary vector
space by [j], and the sum of unit vectors [j1]⊕ [j2]⊕ · · · ⊕ [jt] by [j1, j2, · · · , jt].
Given a vector x ∈ Fn2 , x[j] denotes the j-th bit of x. For x, λ ∈ Fn2 , we define
the inner product by 〈λ, x〉 = ⊕n−1

j=0 λ[j]x[j].

2.1 Differential-Linear Distinguisher

Fig.1 shows the latest structure of differential-linear distinguishers [2]. The cipher
E is divided into three sub-ciphers E1, Em, and E2, such that E = E2 ◦Em ◦E1.
A differential distinguisher and a linear distinguisher are applied to E1 and E2

successively.

Fig. 1. The latest structure of differential-linear distinguishers.
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Assume that the differential ∆in
E1−−→ ∆m holds with probability p, the linear

approximation γm
E2−−→ γout has correlation q, and the experimental correlation

of the middle part ∆m
Em−−→ γm is r, i.e.,

Prx∈Fn2 [E1(x)⊕ E1(x⊕∆in) = ∆m] = p,

Corx∈Fn2 [〈γm, x〉 ⊕ 〈γout, E2(x)〉] = q,

Corx∈S [〈γm, Em(x)〉 ⊕ 〈γm, Em(x⊕∆m)〉] = r,

(2)

where S denotes the set of samples over which the correlation is computed 1.

Then the total correlation of the differential-linear distinguisher ∆in
E−→ γout is

estimated as

Corx∈Fn2 [〈γout, E(x)〉 ⊕ 〈γout, E(x⊕∆in)〉] = prq2. (3)

Therefore, by preparing εp−2r−2q−4 pairs of chosen plaintexts (x, x⊕∆in), where
ε is a small non-negative constant, one can distinguish the cipher from a pseu-
dorandom permutation.

Recently, Beierle et al. proposed a technique to reduce the complexity [5].
The high-level idea of the technique is as follows. Denote the set of all right

pairs for the differential ∆in
E1−−→ ∆m by X . To amplify the correlation of the

distinguisher ∆in
E1−−→ γout, we choose εr−2q−4 right pairs in the set X to observe

its correlation. To efficiently get the right pairs, we exploit the structure of the set
X . Concretely, the set X might have a special structure, such that for any x ∈ X ,
one can obtain a set X = {(x⊕ u, x⊕ u⊕∆in)|u ∈ U}, where U is a subspace,
such that all elements in X are the right pairs for the differential ∆in → ∆m.
For a differential whose set of right pairs has such a special structure, once one
right pair is obtained, one can generate a set of 2dimU right pairs for free. To find
such subspace U for a differential, one can use the concept of the differential’s
neutral bits [9]. In particular, we require 2dimU > εr−2q−4. For some differentials
for which obtaining a large enough U is difficult, one might use a probabilistic
approach related to the concept of probabilistic neutral bits [1]. Assume that
the probability that a randomly generated input x belongs to X is p. Then the
complexity of the distinguisher is εp−1r−2q−4.

2.2 Partitioning Technique for Key Recovery

The partitioning technique is first proposed by Biham and Carmeli [8] to am-
plify the bias of a linear approximation of addition. It is then improved and
used by Gaëtan in differential-linear attacks and helps improve data complex-
ity significantly [21]. Recently, Beierle et al. not only further propose improved

1 When Em involves round keys, the correlation r is estimated using N samples and M
random keys, i.e., computing an empirical value using a random key and repeating
for M times. The final value of r is set to the median (or mean) of the obtained M
values [2, 12,16].
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partitioning techniques for a modular addition, but also introduce a partition
technique for complex ARX encryption function that contains two consecutive
modular additions [4, 5]. The basic idea of these partitioning techniques is to
partition the data into several subsets according to some ciphertext bits. In each
subset, one can observe a high correlation of a specific approximation. Besides,
with partitioning technique, partial key guessing is more feasible.

The partition is done according to the property of modular addition. Specif-
ically, consider two n-bit words x and z, and a modular addition operation

F2n
2 → Fn2 , (x, z) 7→ y = x� z,

as depicted in Fig. 2. In [4], Beierle et al. introduce Lemma 1 to compute the
value of z[i] and z[i]⊕ z[i− 1].

Fig. 2. One modular addition. We are interested in the value of z[i] or z[i]⊕ z[i− 1].

Lemma 1. [4] Let s = y⊕x and let i > 3. Let Sb0b1 := {(x, y) ∈ F2n
2 |s[i−1] = b0

and s[i− 2] = b1}. We have

z[i] =

 x[i]⊕ y[i]⊕ y[i− 1]⊕ 1, with corr. 1, if (x, y) ∈ S1∗
x[i]⊕ y[i]⊕ y[i− 2]⊕ 1, with corr. 1, if (x, y) ∈ S01

x[i]⊕ y[i]⊕ y[i− 3]⊕ 1, with corr. 0.5, if (x, y) ∈ S00,
(4)

z[i]⊕z[i−1] =

 x[i]⊕ y[i], with corr. 1, if (x, y) ∈ S0∗
x[i]⊕ y[i]⊕ y[i− 1]⊕ y[i− 2]⊕ 1, with corr. 1, if (x, y) ∈ S11

x[i]⊕ y[i]⊕ y[i− 1]⊕ y[i− 3]⊕ 1, with corr. 0.5, if (x, y) ∈ S10,

where S1∗ = S10 ∪ S11, and S0∗ = S00 ∪ S01.

In the attacks presented later, we also adopt another way to compute the
value of z[i], see Lemma 2.

Lemma 2. Let s = y ⊕ x and let i > 3. Let Sb0b1 := {(x, y) ∈ F2n
2 |s[i− 1] = b0

and s[i− 2] = b1}. We have

z[i] =

 y[i]⊕ x[i]⊕ x[i− 1], with corr. 1, if (x, y) ∈ S1∗
y[i]⊕ x[i]⊕ x[i− 2], with corr. 1, if (x, y) ∈ S01

y[i]⊕ x[i]⊕ x[i− 3], with corr. 0.5, if (x, y) ∈ S00

where S1∗ = S10 ∪ S11.
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For the convenience of applying Lemmas 1 and 2 in the rest of this pa-
per, we denote by v 〈i1, · · · , im〉 the value 〈γ, v[i1]|| · · · ||v[im]〉 in the case of an
indeterministic linear mask γ. For example, formula 4 is rewritten as z[i] =
x[i]⊕ y 〈i, i− 1, i− 2, i− 3〉 ⊕ 1.

3 Differential-Linear Approximations Searching

Consider the middle part Em which is verified experimentally. Given a differ-
ence ∆m, we will first introduce a new method to search for differential-linear
approximations ∆m → γm with a correlation higher than a threshold. Then it is
extended to search for differential-linear approximations ∆m → γout of E2 ◦Em.

3.1 Core Idea and Motivation

Core idea. Fig. 3 depicts the core idea of our search methods. Assume that
the correlations of two differential-linear approximations are known. We can
generate a new differential-linear approximation by the XOR operation, e.g.,
γ3 = γ1 ⊕ γ2 or γ6 = γ4 ⊕ γ5. Assume that the absolute correlation of ∆ → γi
for i ∈ {1, 2} exceeds a threshold, and the absolute correlation of ∆ → γj for
j ∈ {4, 5} does not exceed the threshold. Then we preferentially test ∆ → γ3

due to the motivation introduced later.

Fig. 3. The core idea of our differential-linear approximation searching methods. We
preferentially verify the correlation of ∆→ γ3 which is generated from two differential-
linear approximations with high correlation.

Motivation. The motivation behind our idea is relatively intuitive. Given a
differential-linear approximation ∆→ γ of an encryption function E, we define
a variable

zγ = 〈E(P )⊕ E(P ⊕∆), γ〉 (5)

where P ∈ Fn2 is the plaintext and zγ ∈ F2. Assume that zγ = 0 holds with
probability p, i.e., PrP∈Fn2 [zγ = 0] = p. As a result, the correlation of ∆→ γ is:

CorP∈Fn2 [zγ ] =
1

|2n|
∑
P∈Fn2

(−1)zγ = 2p− 1. (6)
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For convenience, denote by G(zγ) the correlation, i.e., G(zγ) = 2p− 1.
Suppose that G(zγi) is the correlation of ∆→ γi (see Fig. 3). Under the as-

sumption that the two variables zγ1 and zγ2 (resp. zγ4 and zγ5) are independent,
we have

G(zγ3) = G(zγ1)×G(zγ2), G(zγ6) = G(zγ4)×G(zγ5), (7)

due to the piling-up lemma [24]. If |G(zγi)| > c, i ∈ {1, 2} and
∣∣G(zγj )

∣∣ < c, i ∈
{4, 5} hold simultaneously where c is a threshold, then |G(zγ3)| > |G(zγ6)| will
hold too.

Thus, there is a heuristic conclusion: compared with two differential-linear
approximations with a low absolute correlation, two ones with a high absolute
correlation would be more likely to generate another relatively good differential-
linear approximation. Although the assumption that the two variables are inde-
pendent may not hold in a real scenario, this conclusion still shows a surprisingly
positive influence in the support experiment introduced in Section 3.2.

3.2 Iterative Search

Based on the heuristic conclusion, an iterative search algorithm is designed to

search for differential-linear approximations ∆m
Em−−→ γm (see Fig. 1).

The iterative search algorithm contains two phases:

1. Initialization phase: Preset a difference ∆m and a threshold c. Then select
t differential-linear approximations ∆m → γi with an absolute correlation
higher than c, and add the linear masks γi, i ∈ {1, · · · , t} to a pool P.

2. iterative phase: at the beginning of each iteration, traverse each possible
tuple (γi, γj) where γi, γj are two different linear masks picked from the pool.
If γi ⊕ γj /∈ P and the absolute correlation of ∆m → γi ⊕ γj exceeds the
threshold, add γi ⊕ γj to the pool.

Since the XOR operation (i.e., γi⊕γj) is a linear operation, the search space
of the iterative algorithm is decided by the t linear masks added to the pool
in the initialization phase. Denote by −→γ i the row vector transformed from the

linear mask γi, i.e., −→γ i[j] = γi[n − 1 − j]. Let γ = [−→γ 1, · · · ,−→γ t]
>

denote the
t× n matrix composed of the t vectors. Apparently, the search space is decided
by the rank of γ. If the rank is t, i.e., the t row vectors are linearly independent,
the size of the search space of the iterative algorithm is 2t.

To ensure the vectors corresponding to the t linear masks are linearly in-
dependent, we focus on linear masks of Hamming weight 1 in the initialization
phase. For the convenience of further introducing the iterative algorithm, two
concepts named strong unbalanced bit and weak unbalanced bit are adopted, see
Definition 1.

Definition 1 For a preset difference ∆ and a threshold c, suppose that the linear
mask is γ = [i], i ∈ {0, · · · , n − 1} where n is the blocksize, if the absolute
correlation of the differential-linear approximation ∆ → γ exceeds c, the i-th
ciphertext bit is called a strong unbalanced bit. Otherwise, it is called a weak
unbalanced bit.
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Suppose that BS is the strong unbalanced bit set and BW is the weak unbal-
anced bit set for the given difference ∆. In the initialization phase, all the linear
masks [i] for i ∈ BS are added to the pool. Then the size of the search space is
2|BS |. Algorithm 1 summarizes the iterative search algorithm.

Algorithm 1 Search ∆m
Em−−→ γm in an iterative way

Require: A difference, ∆m; A threshold, c; Number of iterations, Ni; Sample size, N .
Ensure: A list of linear masks γm ∈ Fn2 .
1: P ← [];
2: Randomly generate N plaintexts Pi, i ∈ {1, · · · , N};
3: Collect N ciphertext pairs (Em(Pi), Em(Pi ⊕∆m)) for i ∈ {1, · · · , N}.
4: Initialization phase:
5: for i ∈ {0, · · · , n− 1} do
6: γm ← [i];
7: Compute the correlation Cor of ∆m → γm over the N ciphertext pairs.
8: if |Cor| > c then
9: Add [i] to P;

10: end if
11: end for
12: Iterative phase:
13: for i ∈ {1, · · · , Ni} do
14: Q ← [];
15: Traverse each possible tuple (γ1, γ2) where γ1, γ2 ∈ P. If γ1 ⊕ γ2 /∈ P ∪ Q,

compute the correlation of ∆m → γ1 ⊕ γ2 over the N ciphertext pairs. If the
absolute correlation exceeds c, add γ1 ⊕ γ2 to Q;

16: P ← P ∪Q; /*Merge two sets P and Q */
17: end for

A support experiment. We have performed an experiment on two ciphers
(i.e., 8-round LEA and 5-round Speck32) to support the previous heuristic con-
clusion and verify the iterative search, i.e., Algorithm 1.

Consider an encryption function Em : Fn2 → Fn2 and an input difference ∆m.
Set an absolute correlation threshold c to identify the strong (weak) unbalanced

bit set BS (BW). We focus on differential-linear approximations ∆m
Em−−→ γm

with an absolute correlation higher than the threshold c, and are interested in
their distributions in two spaces X1 and X2, where X1 and X2 are defined as:

X1 = {∆m
Em−−→ γm |0 < HW (γm) 6 d},

X2 = {∆m
Em−−→ γm |0 < HW (γm) 6 d; γm[i] = 0 for i /∈ BS },

where HW (γm) denotes the Hamming weight of γm, and d is the Hamming
weight threshold. We traverse the space X1 and denote by G all the found
differential-linear approximations with an absolute correlation higher than c.
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Table 3. Comparison of differential-linear approximations in two spaces.

Em n ∆m c |BS | d |X1| |X2| |G| |G ∩ X2| |G|
|X1|

|G∩X2|
|X2|

8-round LEA 128 [31] 2−4 14 2 8256 105 72 43 0.0087 0.4095

5-round Speck32 32 [22] 2−4 10
4 41448 385 785 311 0.0189 0.8078

3 5488 175 250 146 0.0456 0.8343

1 |X|: the size of set X; X ∩ Y : the intersection of sets X and Y .

2 |X1| =
∑
i∈{1,··· ,d}

(
n

i

)
; |X2| =

∑
i∈{1,··· ,d}

(
|BS |
i

)
.

At first, we let c = 2−4, set d = 2 for 8-round LEA and d = 4 for 5-round
Speck32. If we set a larger d, the experiment takes too long. Table 3 summarizes
the settings and experiment results. For 8-round LEA (respectively, 5-round
Speck32/64), we find a total of 72 (resp. 785) differential-linear approximations
with a correlation higher than 2−4, and 43 (resp. 311) out of which belong to the
space X2. Thus, if we randomly pick a sample x ∈ X1, the probability that x ∈ G
is 0.0087 (resp. 0.0189). However, if we randomly pick a sample x ∈ X2, the
corresponding probability is 0.4095 ≈ 47× 0.0087 (resp. 0.8078 ≈ 42× 0.0189).
The advantage is extremely significant 2. We wonder whether increasing d will
weaken the advantage. Thus, we set d = 3 for 5-round Speck32 and perform the
experiment again. Interestingly, the advantage becomes even more significant
when d increases from 3 to 4, due to the size (i.e., |X1|) of the first space X1

increasing too sharply (see the second and third row of Table 3).
Next, we run Algorithm 1 by setting the same difference ∆m (i.e., [31] for

8-round LEA and [22] for 5-round Speck32/64) and threshold c = 2−4. Fi-
nally, for 8-round LEA (respectively, 5-round Speck32/64), all the 43 (resp. 311)
differential-linear approximations are found within Ni = 1 (resp. 2) iterations.

3.3 Meet-in-the-Middle Search

Consider E2 ◦Em and a given difference ∆m. Based on each linear mask γm re-

turned by Algorithm 1, one can search linear approximations γm
E2−−→ γout using

an automatic search tool (e.g., [31]), and obtain a differential-linear approxima-

tion ∆m
E2◦Em−−−−−→ γout by connecting ∆m

Em−−→ γm and γm
E2−−→ γout.

However, Algorithm 1 is time-consuming. Moreover, in distinguishing attacks
or key recovery attacks, there are usually some requirements about the linear
approximation γm → γout, such as the upper bound of the correlation or the
Hamming weight of γout. If the value of γm is fixed to a concrete value in advance,
it is likely to be inefficient to find linear approximations γm → γout satisfying
the requirements.

2 The support experiment is also performed on 5-round PRESENT and 4-round DES,
and the advantage is significant too. More details are available at https://github.

com/AI-Lab-Y/DLA_search_and_partition_tree
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Hence, a meet-in-the-middle search algorithm is designed to search differential-

linear approximations ∆m
E2◦Em−−−−−→ γout. At a high-level view, we first search the

linear approximations γm
E2−−→ γout without setting the value of γm. For each

returned γm, check whether it is in the list returned by Algorithm 1.

Two tricks are applied to reduce the time consumption of the meet-in-the-
middle search. First, in order to accelerate the matching of linear mask γm, we
add the following necessary conditions when searching γm → γout:

γm[i] = 0, i ∈ BW (8)

where BW is the weak unbalanced bit set. Second, compute the experimental
correlation of ∆m → γm after a linear approximation γm → γout is returned,
instead of running Algorithm 1 to get the list of γm at the beginning. Algorithm 2
summarizes the meet-in-the-middle search algorithm.

Algorithm 2 Search ∆m
Em−−→ γm

E2−−→ γout in a meet-in-the-middle way

Require: A difference, ∆m; A threshold, c; Sample size, N .
Ensure: A list of linear mask tuples (γm, γout) where γm, γout ∈ Fn2 .
1: P ← []; BS ← [];
2: Randomly generate N plaintexts Pi, i ∈ {1, · · · , N};
3: Collect N pseudo-ciphertext pairs (Em(Pi), Em(Pi ⊕∆m)) for i ∈ {1, · · · , N}.
4: Stage 1 (initialization phase in Algorithm 1):
5: for i ∈ {0, · · · , n− 1} do
6: γm ← [i];
7: Compute the correlation Cor of ∆m → γm over the N pseudo-ciphertext pairs.
8: if |Cor| > c then
9: Add i to BS ;

10: end if
11: end for
12: Stage 2 (search γm → γout):
13: for i ∈ {0, · · · , n− 1} and i /∈ BS do
14: Add a condition γm[i] = 0 to Model() ; /*Model() is the automatic search

model of linear approximations γm → γout */
15: end for
16: Collect linear mask tuples (γm, γout) by running Model(); /* filter tuples with

duplicate mask γm before Stage 3 */
17: Stage 3 (compute the correlation of ∆m → γm):
18: for each returned tuple (γm, γout) do
19: Compute the correlation Cor of ∆m → γm over the N pseudo-ciphertext pairs.

20: if |Cor| > c then
21: Add (γm, γout) to P;
22: end if
23: end for

11



Remark 1. In order to apply Algorithm 2, one needs to determine the number
of rounds (denoted by rm) covered by the middle part Em. If rm is too large,
the strong unbalanced bit set BS corresponding to a given difference ∆m may
be an empty set, which will reduce the search space of Algorithm 2.

To avoid this problem and take full advantage of Algorithm 2, we provide
an empirical rule on setting rm as follows. Consider a pre-defined set (denoted
by Dm) of differences ∆m to be searched. For most (for example, three-fourths)
elements ∆m = v ∈ Dm, the setting rm should make sure that the corresponding
strong unbalanced bit sets BSv are non-empty sets. This is based on our experi-
ence from searching for differential-linear approximations of LEA and Speck.

4 Partition Tree

In this section, we present a generic tool named partition tree to generate parti-
tions for ARX encryption functions, starting from basic concepts.

4.1 Basic Concepts

A partition tree is a tree that describes the partition conditions and approxi-
mations simultaneously. In a partition tree, each non-leaf node stands for one
object whose value is unknown, and each leaf node stands for one object whose
value is known.

To build such a tree, some necessary concepts are proposed.

• Partition Edge: Denote by A99KB (with a red dashed arrow) a partition
edge, which means that we need to divide all the data into multiple partitions
according to the value of B, for computing the value of A.

• Approximation Edge: Denote by A
X−→ B (with a black arrow) an approxi-

mation edge, which means that A = X ⊕ B where the value of X is known
and the value of B is unknown. Similarly, the approximation edge A → B
stands for A = B.

4.2 Building Process and Usage

In this subsection, we introduce the process of building a partition tree, and show
how to derive the final partitions from the partition tree. For a more intuitive
and deeper understanding, partition trees related to two encryption functions
are first presented directly.

Partition trees related to two encryption functions. The first encryption
function is the single modular addition as shown in Fig. 2, i.e., y = z�x. Again,
we are interested in the value of z[i] or z[i, i−1]. Three partition trees are shown
in Fig. 4.

The second encryption function is the two consecutive modular additions as
shown in the left picture in Fig. 5. The right picture shows a partition tree related

12



Fig. 4. Partition trees related to one modular addition. The left and middle partition
trees correspond to Lemma 1. The right one corresponds to Lemma 2.

to it. In [4,5], the authors have presented the final partitions and approximations
of z1[i]. Later, we will explain how to obtain the results presented in [4,5] using
the partition tree.

Fig. 5. Partition tree for two consecutive modular additions. The left picture shows
the encryption function. The right picture shows the partition tree. Notice that ia =
(i+ a)mod n, ib = (i+ b)mod n, ic = (i+ a+ b)mod n, and n is the word size.

Building process. At a high level, we build a partition tree by simulating
the propagation of linear approximation. First, create a root node standing for
the target bit (e.g. z[i], z[i, i − 1] in Fig. 4). Second, propagate the approxi-
mation. When meeting a modular addition, we choose partition conditions (eg.
(x⊕y)[i−1] and (x⊕y)[i−2] in Fig. 4) for creating partition edges, and choose
an approximation for creating an approximation edge. The available partition
conditions and approximations refer to Lemma 1 and Lemma 2. When meeting
other linear operations, we just need to create approximation edges. In an itera-
tive way, we expand the tree until each leaf node is only related to objects whose
values are known.

13



When meeting a modular addition, one can flexibly choose the partition
conditions and approximations. For example, we always choose two partition
conditions and an approximation with an indeterministic linear mask in Fig. 4.
In Fig. 5, for computing z1[i], we choose only one partition condition and a
deterministic approximation. The choice depends on the concrete encryption
function.

Usage. Once a partition tree is built, we can obtain the final partitions and
approximations. Take the partition tree as shown in Fig. 5 as an example.

In the partition tree, there are 7 partition edges that contain five different
partition conditions. The related five values are vi for i ∈ {1, 2, 3, 4, 5}:

v1 = t1[i− 1]⊕ z2[i− 1]

= (y2[ia − 1]⊕ y1[ib − 2]⊕ y1[ic − 2])⊕
(y1[ib − 1]⊕ y0[ib − 1])⊕ (y1[ic − 1]⊕ y0[ic − 1]);

v2 = y1[ib − 1]⊕ y0[ib − 1]; v3 = y1[ib − 2]⊕ y0[ib − 2];

v4 = y1[ic − 1]⊕ y0[ic − 1]; v5 = y1[ic − 2]⊕ y0[ic − 2].

(9)

Since the first value is related to v2 and v4, the authors in [4, 5] transformed it
into a simplified form, i.e., v1 = y2[ia − 1] ⊕ y1[ib − 2] ⊕ y1[ic − 2]. As a result,
the data is split into 25 partitions according to the value v1||v2||v3||v4||v5.

Traverse the partition tree from the root node along with approximation
edges, and we have

z1[i] ≈ 〈γ , y2[ia]||y0[ib]||y1[ib]||y1[ib − 1]||y1[ib − 2]||y1[ib − 3]||
y0[ic]||y1[ic]||y1[ic − 1]||y1[ic − 2]|| y1[ic − 3]〉 .

Next, we determine γ for each partition with the help of the partition tree and
the value v1||v2||v3||v4||v5. Finally, the corresponding correlation is estimated
experimentally. Readers can verify the above analysis by referring to the work
in [5] and [4].

4.3 Dynamic Partitioning Technique

To make the key recovery attack achieve a good performance, for a given en-
cryption function, the correlation corresponding to each partition should be non-
zero [4]. When the encryption function is relatively complex, we may need to
dynamically choose the partition conditions for each data to achieve the target.

In this section, we introduce the dynamic partitions for parallel modular
additions as depicted in Fig. 6, which are used in attacks on LEA.

Partition tree for three parallel modular additions. At first, we are
interested in the value z3[i]. Fig. 7 shows a partition tree.

The data is split into 64 partitions in the following way

Tb0b1b2b3b4b5 = {(z0, y0, y1, y2, k0, k1, k2) ∈ (Fn2 )7) |b0b1b2b3b4b5 = v1||v2||v3||v4||v5||v6 },

14



Fig. 6. Parallel modular additions. We assume that the values of the three keys
k0, k1, k2, and the input word z0 are known. The values of the other three input words
z1, z2, z3 are unknown.

Fig. 7. A partition tree for three parallel modular additions.

where the six partition conditions vi for i ∈ {1, · · · , 6} are:

v1 = (y0 ⊕ z0 ⊕ k0)[i− 1];

v2 = (y0 ⊕ z0 ⊕ k0)[i− 2]; v3 = (y0 ⊕ z0 ⊕ k0)[i− 3];

v4 =

{
(y1 ⊕ k1)[i− 1]⊕ y0[i− 2], if v2 = 1;
(y1 ⊕ k1)[i− 1]⊕ y0[i− 3], if v2 = 0.

v5 =

{
(y1 ⊕ k1)[i− 2]⊕ y0[i− 3], if v3 = 1;
(y1 ⊕ k1)[i− 2]⊕ y0[i− 4], if v3 = 0;

v6 =

{
(y2 ⊕ k2)[i− 1]⊕ y1[i− 2], if v2 ⊕ v5 = 0;
(y2 ⊕ k2)[i− 1]⊕ y1[i− 3], if v2 ⊕ v5 = 1;

(10)

The approximation of z3[i] is

z3[i] ≈ 〈γ , y2[i]||y2[i− 1]||y2[i− 2]||y1[i]||y1[i− 1]||y1[i− 2]||y1[i− 3]||
y0[i]||z0[i]||z0[i− 1]||z0[i− 2]||z0[i− 3]||k2[i]||k1[i]||k0[i]||
k0[i− 1]||k0[i− 2]|| k0[i− 3]〉 ,
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where γ and corresponding correlation Cor are summarized in Table 10. The
average absolute correlation is 2−0.868.

To identify the belonging partition for data, one needs to dynamically choose
the approximations of v4, v5, and v6. If any one of v4, v5, v6 is computed using a
fixed approximation, the correlation corresponding to some partitions will be 0.

Partition trees for two parallel modular additions. In the key recovery
attacks introduced later, we are interested in the value z2[i] too. We directly
adopt the subtree (see Fig. 7) that takes z2[i] as the root node.

The data is split into 32 partitions in the following way:

Tb0b1b2b3b4 = {(z0, y0, y1, k0, k1) ∈ (Fn2 )5 |b0b1b2b3b4 = v1||v2||v3||v4||v5 },

where the five values vi for i ∈ {1, · · · , 5} are shown in formula 10.
The approximation of z2[i] is

z2[i] ≈ 〈γ , y1[i]||y1[i− 1]||y1[i− 2]||y1[i− 3]||y0[i]||z0[i]||z0[i− 1]||
z0[i− 2]||z0[i− 3]||k1[i]||k0[i]||k0[i− 1]||k0[i− 2]|| k0[i− 3]〉 ,

where γ and corresponding correlation Cor are summarized in Table 11. The
average absolute correlation is 2−0.452.

Partition tree makes the process of generating partitions and approximations
more efficient and easier to understand, which breaks the barrier to applying the
partitioning idea to ARX ciphers.

5 Overview of Our Attack Framework

This paper mainly focuses on the attack framework which is first proposed in [5]
at CRYPTO 2020 and further improved in [4]. The framework has a constraint
on how the secret key to be recovered is operated in the encryption process, which
is removed in this section. Fig. 8 (the left picture) shows our attack framework.
Here the encryption function F uses the secret key k to encrypt its input. In [4,5],
the secret key is used as the last whitening key (see the right picture), which is
the core difference. Our aim is to recover parts of the secret key k by using a
distinguisher ∆in → γout.

In the following, we assume that the ciphertext-key (i.e., the concatenation
c||k of the ciphertext and key) space Fn2 is split into a direct sum P ⊕ R with
nP := dimP and nR := n − nP , so that the partitions will be given by the
cosets Tpi = pi ⊕ R for any pi ∈ P (i.e., pi represents a set of the partition).
Therefore, we can uniquely express c||k as (c||k)P ⊕ (c||k)R, where (c||k)P ∈ P
and (c||k)R ∈ R. Then, for any pi ∈ P, the partition Tpi ⊂ Fn2 is defined as
Tpi = {(c||k) ∈ Fn2 |(c||k)P = pi }.

The idea is to identify several tuples
(
Tpi , λ(pi)

)
, i ∈ {1, · · · , s}, for which we

can observe a high absolute correlation

εi := Cor(c||k)∈Tpi

[
〈γout, z〉 ⊕

〈
λ(pi), c||k

〉]
,

16



Fig. 8. The schematic diagram of the key recovery attack framework.

where λ(pi) is the linear mask of c||k when (c||k)P = pi. We finally observe
the following correlation for (c, c̃) by guessing the secret key k, and the final
correlation is defined as

ρi,j := Cor(c||k,c̃||k)∈Tpi×Tpj

[〈
λ(pi), c||k

〉
⊕
〈
λ(pj), c̃||k

〉]
. (11)

According to the analysis in [4], the correlation ρi,j can be estimated as

ρi,j = εiεjCor(x,x̃)∈(Fn2 )2 [〈γout, z ⊕ z̃〉] . (12)

Next, let us consider the differential-linear attack using N pairs. Let (c, c̃)
be the lth pair and assume that c and c̃ belong to the ith and jth partitions,
respectively, i.e., (c||k)P = pi and (c̃||k)P = pj (for ease of notation, we do
not make the dependency of c, c̃, i, j on l explicit). Then we get the 1-bit
representation

wl =
〈
λ(pi), c||k

〉
⊕
〈
λ(pj), c̃||k

〉
and let Cl = ρi,j where ρi,j is the correlation for the lth pair when the ith and
jth partitions are used for this pair.

Compute the following log-likelihood ratio (LLR) statistic:

LLR =
1

2

N∑
l=1

ln
(
1− C2

l

)
+

1

2

N∑
l=1

ln

(
1 + Cl
1− Cl

)
(−1)wl . (13)

According to the analysis in [4], the LLR statistic follows normal distribution
N (µ0, σ

2
0) and N (µ1, σ

2
1) when the correct and wrong keys are guessed, respec-

tively. The corresponding distribution parameters are

µ0 = −µ1 =
1

2

N∑
l=1

C2
l =

N

2
C, σ2

0 = σ2
1 =

N∑
l=1

C2
l = NC.

Thus, one can recover the correct key by distinguishing between N (µ0, σ
2
0) and

N (µ1, σ
2
1).
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To compute the LLR statistic, we need to calculate Cl and wl. At first, the
key denoted by kP is guessed to identify the partition. After guessing kP , the
first term of the LLR statistic, i.e., α := 1

2

∑N
l=1 ln

(
1− C2

l

)
, is constant and

independent of wl. Then, we may need to guess some key bits denoted by kL to
compute wl, and further compute the second term of the LLR statistic.

Divide the linear mask λ(pi) and λ(pj) into two parts, i.e., λ(pi) = g(pi)||Γ (pi)

and λ(pj) = g(pj)||Γ (pj), such that〈
λ(pi), c||k

〉
=
〈
g(pi), c

〉
⊕
〈
Γ (pi), k

〉
,
〈
λ(pj), c̃||k

〉
=
〈
g(pj), c̃

〉
⊕
〈
Γ (pj), k

〉
, (14)

then kL is determined by Γ (pi) ⊕ Γ (pj). The size of kL is dimW where a linear
subspace W is defined by W := Span{Γ (pi) ⊕ Γ (pj)|i, j ∈ {1, · · · , s}}.

The computation of the second term of the LLR statistic is further acceler-
ated by using the Fast Walsh-Hadamard transform (FWHT) [13], like the work
in [4]. In some cases, due to the XOR operation k⊕χ in F where k is the secret
key and χ is an intermediate state, the linear masks g(pi) and g(pj) can be further
divided into two parts, i.e., g(pi) = φ(pi)||Γ (pi), and g(pj) = φ(pj)||Γ (pj).

Next, we use an array β, whose element β(Γ ) is defined as

β(Γ ) :=
1

2

N∑
l=1:Γ=Γ (pi)⊕Γ (pj)

ln

(
1 + Cl
1− Cl

)
(−1)〈φ

(pi)||Γ (pi),c〉⊕〈φ(pj)||Γ (pj),c̃〉.

Then, the second term of the LLR statistic is computed as

LLR′ =
1

2

N∑
l=1

ln

(
1 + Cl
1− Cl

)
(−1)wl =

∑
Γ∈W

β(Γ )× (−1)〈Γ,k〉.

Using the FWHT, one can evaluate LLR′ for each Γ, k ∈ FdimW
2 with a time

complexity dimW · 2dimW .
Algorithm 3 summarizes the attack procedure using the FWHT. We first

collect N ciphertext pairs, guess kP , and prepare a real number α and the
array of real numbers β to compute the LLR statistic. For every ciphertext pair,
we identify partitions, get corresponding correlation ρi,j and linear mask, and
update α and β accordingly. We finally apply the FWHT to β and the LLR
statistic is computed as α + β̃(kL). The overall running time is estimated as
2nP (2N+dimW ·2dimW ), where nP is the bit length of kP . A total of nP+dimW
key bits are recovered. Besides, one can deduce the following proposition.

Proposition 1. [4] After running Algorithm 3 for p−1 times where p is the
probability of the prepended differential ∆in → ∆m, the probability that the cor-
rect key is among the key candidate is

psuccess >
1

2
Pr[C(kP , kL) > Θ] =

1

2

(
1− Φ

(
Θ− N

2 C√
NC

))
,

where Φ is the cumulative distribution of the standard normal distribution N (0, 1).

The expected number of wrong keys is 2nP+dimW

p ×
(

1− Φ

(
Θ+N

2 C√
NC

))
.
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Algorithm 3 Key recovery

Require: Cipher E, sample size N , threshold Θ.
Ensure: List of key candidates (kP , kL) for nP + dimW bit of information on k.
1: for l ∈ {1, · · · , N} do
2: x

$←− U ⊕ a;
3: (c(l), c̃(l))← (E(x), E(x⊕∆in))
4: end for
5: for each possible k′P do
6: α← 0
7: for Γ ∈W do
8: β(Γ )← 0
9: end for

10: for l ∈ {1, · · · , N} do
11: (c, c̃)← (c(l), c̃(l))
12: Compute (c||k)P and (c̃||k)P to identify partitions.
13: Identify Ti × Tj for ((c||k)P , (c̃||k)P) and get corresponding correlation ρi,j .
14: Γ ← Γ (c||k)P ⊕ Γ (c̃||k)P

15: α← α+ 1
2
ln(1− ρ2i,j)

16: β(Γ )← β(Γ ) + 1
2
ln
(

1+ρi,j
1−ρi,j

)
(−1)〈g

(c||k)P ,c〉⊕〈g(c̃||k)P ,c̃〉

17: end for
18: Compute β̂ by using the FAST Walsh-Hadamard Transform.
19: C(k′P , k

′
L)← α+ β̂(kL′)

20: if C(k′P , k
′
L) > Θ then

21: Save (k′P , k
′
L) as a key candidate.

22: end if
23: end for

6 Application to LEA

In 2013, the LEA family of block ciphers is published at WISA [18], expected
to provide confidentiality in both high-speed and lightweight environments. In
2016, it is established as the national standard of Republic of Korea (KS X
3246). After six years of public evaluation, it is included in the ISO/IEC 29192-
2:2019 standard (Information security - Lightweight cryptography - Part 2: Block
ciphers). The LEA family has three members with a common block size of 128
bits and three different key sizes of 128, 192, and 256 bits, denoted by LEA-128,
LEA-192, and LEA-256, respectively.

Round function. The encryption of LEA maps a plaintext of four 32-bit words
(x0

0, x
0
1, x

0
2, x

0
3) into a ciphertext (xr0, x

r
1, x

r
2, x

r
3) using a sequence of r rounds,

where r = 24 for LEA-128, r = 28 for LEA-192 and r = 32 for LEA-256. Fig. 9
provides a schematic view of the round function of LEA.

In [18], the designers claim that the actual differential-linear characteristics
should be much shorter than 14 rounds or have a bias (equal to half of the
correlation) whose absolute value is significantly smaller than 2−57. Moreover,
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Fig. 9. The round function of LEA.

the designers claim that the secure number of rounds is 17 for LEA-128, 18 for
LEA-192, and 19 for LEA-256.

6.1 Differential-Linear Approximations

We first report differential-linear approximations that are searched using the
methods introduced in Section 3.

Let r1, rm, r2 denote the number of rounds covered by E1, Em, E2 respec-

tively. The differential-linear approximation ∆m
Em−−→ γm and linear approxima-

tion γm
E2−−→ γout are first searched together using Algorithm 2. Then a prepend

differential ∆in
E1−−→ ∆m is added. Since it is practically infeasible to test all the

differences ∆m, we restricted ourselves to the case of a difference ∆m of the form
[i] or [i, i + 1], i.e., 1-bit or consecutive 2-bit differences. We set c = 2−8 (the
correlation threshold) for Algorithm 2. Table 4 summarizes three differential-
linear approximations searched by the above setting, which will be used in key
recovery attacks.

Table 5 shows one of the optimal 4-round differential characteristics whose
output difference is ∆m = [31]. By placing it before the 12-round or 13-round
differential-linear approximation as shown in Table 4, we obtain a 16-round
or 17-round distinguisher for LEA. The 17-round distinguisher with a corre-
lation 2−33 × (−2−6.04) × 2−10×2 = −2−59.04 is the best distinguisher so far.
The previous best distinguisher is the 16-round Boomerang distinguisher with a
probability 2−117.2 [19].

6.2 Detecting Subspaces

For the 4-round differential characteristic as shown in Table 5, we need to detect
a subspace U of the input space such that E1(P ⊕ u)⊕ E1(P ⊕ u⊕∆in) = ∆m

for all u ∈ U if E1(P )⊕E1(P ⊕∆in) = ∆m. To detect such a subspace, we first
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Table 4. Differential-Linear approximations of round reduced LEA.

(rm, r2) ∆m → γm → γout Cor of ∆m → γout

(8, 3) [26]→
∑
→ [0, 9, 61, 91, 105] 2−4.679

(8, 4) [31]→
∑
→ [0, 9, 61, 91, 105] −2−10.970

(8, 5)
[31]→ [8, 41, 42, 73, 74]→

−2−6.04 × 2−10×2

[0, 29, 37, 38, 61, 68, 88, 91, 101, 102, 105, 114]

1 ∑ : all the possible linear masks γm are considered. Since many dis-
tinguishers returned by Algorithm 2 share the same linear mask γout,
we directly estimate the experimental correlation of ∆m → γout.

2 The three correlations 2−4.679, −2−10.970, −2−6.04 are estimated again
using N plaintext pairs and 100 keys. The three values are the median
of 100 experimental correlations. For 2−4.679 and −2−6.04, N = 224.
For −2−10.970, N = 232. The number 2−10 in the third row is the
correlation of the linear approximation γm → γout.

Table 5. An 4-round differential characteristic with an output difference ∆m = [31].

r ∆ Pr

0 (0x8a000080, 0x80402080, 0x80402210, 0xc0402234)

1 (0x80400014, 0x80000014, 0x88000004, 0x8a000080) 2−17

2 (0x80000000, 0x80400000, 0x80400010, 0x80400014) 2−10

3 (0x80000000, 0x80000000, 0x80000000, 0x80000000) 2−6

4 [31] 1

collect 210 plaintext pairs conforming to the differential characteristic using the
fast method introduced in [14].

The subspace is searched as follows: (1) Traverse i ∈ {0, · · · , 127}, flip the ith
bit of each pair (P, P ) and compute the probability Pr that the new pair (P ⊕
[i], P ⊕ [i]) still conforms to the 4-round differential characteristic. If Pr > 0.7,
save i as a basis element. (2) Traverse each possible tuple (i1, · · · , ik) for k 6 3
where ij , j ∈ {1, · · · , k} is not a basis element, and check whether [i1, · · · , ik]
can be a basis element by flipping the k bits of each pair simultaneously.

Table 6 summarizes the result of the search. Given any plaintext pair (P, P ⊕
∆in) conforming to the 4-round differential characteristic as shown in Table 5,
using the 34 basis elements, one can create from the plaintext pair a plain-
text structure consisting of 234 plaintext pairs. These 234 plaintext pairs are
expected to pass the differential characteristic together, with a theoretical prob-
ability 2−3.7 under the assumption that the effects of the 34 basis elements
are independent. For verifying the theoretical probability 2−3.7, we generate 210

plaintext pairs conforming to the 4-round differential characteristic, and find
that the empirical probability is 2−3.18 (resp. 2−3.17, 2−3.33) for LEA-128 (resp.
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Table 6. Probability that adding one basis element doesn’t affect the output difference.

Probability Basis Number

Pr = 1 [2], [4, 36], [22, 54, 86], [31] 4

0.9 6 Pr < 1 [14], [15], [16], [17], [18], [19], [20], [21], [50, 82], [51], [52]

[63, 95], [110], [111], [112], [113], [114], [124], [125], [126], [127] 21

0.8 6 Pr < 0.9 [23], [46, 78], [53], [83], [104], [105], [115] 7

0.7 6 Pr < 0.8 [24], [47, 79] 2

LEA-192, LEA-256) 3. Thus, we obtain Lemma 3. The 17-round key recovery
attack introduced later uses this linear subspace.

Lemma 3. There is a set X ⊆ F128
2 of size 2128−33−3.7 and a 34-dimensional

linear subspace U , such that for any element x ∈ X and any u ∈ U it holds that
E1(x⊕ u)⊕ E1(x⊕ u⊕∆in) = ∆m where E1 denotes 4 rounds of LEA.

6.3 The 17-Round Key Recovery Attack

The 16-round differential-linear approximation introduced in Section 6.1 is used
to attack 17-round LEA by guessing the last round key. Look at the LEA round
function as shown in Fig. 9. For the convenience of introducing the 17-round key
recovery attack, we make the following transformation:

(z0, z1, z2, z3) := (x160 , x
16
1 ⊕ rk161 , x162 ⊕ rk163 , x163 ⊕ rk165 );

(k0, k1, k2) := (rk160 , rk
16
1 ⊕ rk162 , rk163 ⊕ rk164 );

(y0, y1, y2, y3) := (x170 ≫ 9, x171 ≪ 5, x172 ≪ 3, x173 ).

(15)

Now, the notations are consistent with those used in Fig. 6.
Consider the linear mask is [0, 9, 61, 91, 105]. The corresponding five bits to

be computed are z3[0], z3[9], z2[29], z1[27], and z0[9]. For z3[0] and z0[9], there
are two deterministic relation:

z3[0] = (z0 ⊕ y0 ⊕ y1 ⊕ y2)[0]⊕ (k0 ⊕ k1 ⊕ k2)[0]; z0[9] = y3[9]. (16)

Notice that the key bit (k0 ⊕ k1 ⊕ k2)[0] will be canceled in the key recovery
stage. Thus, only the remaining three bits need to be computed by guessing key
bits and using the partitioning technique.

Table 7 summarizes the approximations and partition conditions related to
z3[9], z2[29], z1[27]. To identify the partition, we need to know

s[26], s[25], s[28], s[27], g[28]⊕ y0 〈27, 26〉 , g[27]⊕ y0 〈26, 25〉 ,
s[8], s[7], s[6], g[8]⊕ y0 〈7, 6〉 , g[7]⊕ y0 〈6, 5〉 , h[8]⊕ y1 〈7, 6〉

3 The code for verifying the theoretical probability 2−3.7 is available at https://

github.com/AI-Lab-Y/DLA_search_and_partition_tree
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Table 7. Approximations and partition conditions related to z3[9], z2[29], z1[27].

ζ1 Choice: z1[27]

P1 3 pi ∼= (s[26], s[25])

Linear: y0[27], z0[27], z0[26], z0[25], z0[24], k0[27], k0[26], k0[25], k0[24]

ζ2 Choice: z2[29]

P2 3 pi ∼= (s[28], s[27], s[26], g[28]⊕ y0 〈27, 26〉 , g[27]⊕ y0 〈26, 25〉)
Linear: y1[29], y1[28], y1[27], y1[26], y0[29], z0[29], z0[28], z0[27], z0[26]

k1[29], k0[29], k0[28], k0[27], k0[26]

ζ3 Choice: z3[9]

P3 3 pi ∼= (s[8], s[7], s[6], g[8]⊕ y0 〈7, 6〉 , g[7]⊕ y0 〈6, 5〉 , h[8]⊕ y1 〈7, 6〉)
Linear: y2[9], y2[8], y2[7], y1[9], y1[8], y1[7], y1[6], y0[9], z0[9], z0[8],

z0[7], z0[6], k2[9], k1[9], k0[9], k0[8], k0[7], k0[6]

and 12-bit key guessing is enough, where s = z0 ⊕ k0 ⊕ y0 and g = y1 ⊕ k1 and
h = y2 ⊕ k2 .

After guessing the 12-bit key, we identify 3 × 2 partitions for a ciphertext
pair, and access corresponding linear masks and correlations. Suppose that the
six correlations are Cori for i ∈ {1, · · · , 6}. We have

ρ = −2−10.97 ×
6∏
i=1

Cori (17)

under the assumption that the six differential-linear approximations are inde-
pendent, where ρ is used to calculate the LLR statistic for key recovery.

Experimental reports. Before estimating the complexity of the 17-round at-
tack, we first execute a practical auxiliary experiment. Look at the two differential-
linear approximations as shown in the first and second rows of Table 4. They have
the same output linear mask γout. Since the correlation of [26]→ [0, 9, 61, 91, 105]
is very high, we use it to verify our attack procedure. The right pair and the
correct key are used to observe the LLR statistic for the correct case.

The LLR statistic depends on the sum of the squared correlation NC =∑N
l=1 c

2
l . We estimated C ≈ 2−14.052 and NC ≈ 61.74 when N = 220 pairs

are used. Fig. 10 shows the comparison of the LLR statistics, where the theo-

retical distribution is drawn by the normal distribution with mean NC
2 (for a

correct case) and −NC2 (for a wrong case) and the standard deviation
√
NC.

By repeating the attack 512 times, two experimental histograms are drawn. In
each trial, we ensure that the correlation of ∆m → γout approximately equals
2−4.679. Note that the experimental one is more biased than the theoretical esti-
mation in the correct case. We expect that the reason comes from the additional
auto-correlation-linear hull [4] that we do not take into account. The auxiliary
experiment well verifies our attack procedure.
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Fig. 10. Comparison with LLR statistics.

For the 17-round attack, we estimated C ≈ 2−26.334 and NC ≈ 50.77 when
N = 232 pairs are used. We finally estimate the data complexity and time
complexity of this attack. To identify the partition, we need to guess the 12-bit
key. We also enumerated elements of the linear subspace W and computed the
basis using Gaussian elimination. As a result, the dimension of W is 9. To find
a right pair, we need 233+3.7 iterations because of Lemma 3. Thus, there are
about 212+9+33+3.7 = 257.7 wrong cases. When 233.2 pairs are used, we have
NC ≈ 116.16. With a success probability of 90%, we can construct a 69.6-bit
filter, which is enough to remove 257.7 wrong cases. We finally estimate the time
complexity by using the following formula 4:

T = p−1 × 2nP ×
(
2N + dimW2dimW

)
= 233+3.7 × 212 ×

(
2× 233.2 + 9× 29

)
≈ 282.9.

6.4 The 18-Round Key Recovery Attack

The 17-round differential-linear approximation introduced in Section 6.1 is used
to attack 18-round LEA. Since the correlation of the differential-linear approxi-
mation of E2 ◦Em is too low, the LLR-based key recovery technique is not appli-
cable. Hence, the classical key recovery algorithm introduced in Appendix A is
adopted. For convenience, the transformation as shown in formula 15 is adopted.

The correlation of the 17-round distinguisher is −2−59.04. Let the advantage
be a = 50 and the success probability be 0.99, the required data complexity is
N = 2124.8 chosen-plaintext pairs. Consider the output linear mask

γout = [0, 29, 37, 38, 61, 68, 88, 91, 101, 102, 105, 114].

If no partition techniques are applied, in order to obtain the above bits, we need
to guess 30× 3 = 90 key bits, i.e., the least significant 30 bits of k0 and k1 and
k2. This will make the time complexity 2124.8+1+90 = 2215.8.

4 Notice that the required time complexity will be lower when the absolute correlation
of ∆m → γout exceeds 2−10.97.
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To make the 18-round attack apply to LEA-192, we make an improvement
to this attack. Concretely, we compute z3[29] (i.e., bit 29) using the first two
partitions (with correlation 1) as shown in Lemma 1 or Lemma 2. As a result,
for the key k2, we just need to guess three bits k2[29] and k2[28] and k2[27],
instead of 30 bits. In other words, the improved attack guesses 30× 2 + 3 = 63
key bits. Notice that only 3

4 ×
3
4 ×N ≈ 2−0.83N chosen-plaintext pairs are useful

now. Thus, the new data complexity should be 2124.8 × 20.83 = 2125.63 chosen
plaintext pairs. The improved time complexity is 2125.63+1+63 = 2189.63 < 2192.

7 Application to Speck

Speck is a family of lightweight block ciphers designed by researchers from the
U.S. National Security Agency (NSA) [3]. The Speck family has been a part of
the RFID air interface standard (ISO/IEC 29167-22).

The Speck family contains ten members, each of which is characterized by its
block size 2n and key size mn, thus is named Speck2n/mn. All the members with
the same block size are also named Speck2n, i.e., Speck32, Speck48, Speck64,
Speck96 and Speck128 respectively. The round function of Speck is shown in
Fig. 11. For Speck32, two parameters are R = 7 and L = 2. For the remaining
members, two parameters are R = 8 and L = 3.

Fig. 11. The Speck round function.

Although the Speck family has been proposed for about ten years, there
are few public papers on its resistance against differential-linear attacks. To our
knowledge, there are no reports on differential-linear distinguishers of Speck96
and Speck128.

If we set aside the distinguishers given by fully automatic differential-linear
approximation searching methods [6, 23], the previous best distinguishers are:
(1) 10-round differential-linear distinguisher (with a correlation 2−13.90) [28] for
Speck32; (2) 11-round (with a probability 2−44.31), 15-round, 17-round, and 20-
round differential distinguishers [30] for Speck48, Speck64, Speck96, Speck128
respectively. The results in [6, 23] will be introduced and compared later.

Differential-linear approximations of Speck. Using Algorithm 2, we have
found many differential-linear distinguishers for the Speck family.
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Again, let r1, rm, r2 denote the number of rounds covered by E1, Em, E2

respectively. For all the members, the absolute correlation threshold used in Al-
gorithm 2 is 2−8. Moreover, we restricted ourselves to the case of a difference
∆m of the form [i] or [i, i + 1]. Table 8 summarizes some differential-linear ap-
proximations that we have found. For convenience, we put the three numbers
(i.e., r1, rm, r2) on the arrows.

Table 8. Differential-Linear approximations of round-reduced Speck.

Member ∆in
r1−→ ∆m

rm−−→ γm
r2−→ γout Cor of ∆in → γout

Speck32
(0x2800, 0x10)

1−→ [22]
6−→

2−2 × (−2−10.2)∑ 3−→ (0x2300, 0x4380)

Speck48

(0x20082, 0x120200)
2−→ [39]

6−→
2−5 × (−2−6.40)× 2−3×2

[2]
3−→ (0xc2801, 0xd0800)∗

(0x20082, 0x120200)
2−→ [39]

6−→
2−5 × (−2−10.51)× 2−2×2

[1, 2, 5, 37]
3−→ (0xc00c0d, 0xc0c)

Speck64

(0x102490, 0x10801004)∗
3−→ [53]

6−→
2−11 × 2−9.15 × 2−4×2

[0, 29, 40]
4−→ (0x420c0200, 0x2400200)∗

(0x40004092, 0x10420040)∗
3−→ [47]

6−→
2−11 × 2−9.63 × 2−5×2

[25, 26, 29, 37]
4−→ (0xc410060, 0x480060)∗

Speck96

(0x20020028202, 0x120200049282)
4−→

2−20 × 2−5.72 × 2−8×2

[93]
6−→ [10, 12, 13, 69]

5−→
(0x4d000203422b, 0xc0002030223)∗

(0x20200200282, 0x821202000492)
4−→

2−20 × 2−8.59 × 2−9×2

[85]
6−→ [4, 41, 44, 51, 52, 59, 60]

5−→
(0x201234d00000, 0x201630c00000)∗

Speck128

(0x40002403c012, 0x10020040000400c2)∗
5−→

2−30 × 2−5.81 × 2−10×2
[117]

8−→ [5, 77]
5−→

(0xa49000000020343, 0x208000000020303)∗

(0x2000120120090, 0x8010020000200610)∗
5−→

2−30 × 2−7.70 × 2−11×2
[120]

8−→ [7, 79]
5−→

(0x82802c000000808, 0x829a40000000809)∗

1 ∑ : all the possible γm are considered for Speck32. Since many distinguishers
returned by Algorithm 2 share the same linear mask γout, we directly estimate
the experimental correlation (i.e., −2−10.2) of ∆m → γout.

2 ∗ : There are many optional choices.
3 The total correlation of ∆in → γout is X × Y × Z2 where X is the probability

of ∆in → ∆m, Y is the experimental correlation (estimated using 230 pairs and
100 keys) of ∆m → γm, and Z is the correlation of γm → γout.

26



We are the first to report differential-linear distinguishers for Speck96 and
Speck128. Moreover, when the results in [6, 23] are not considered, the two dis-
tinguishers (with a correlation −2−12.2 and −2−17.40) in the second and third
rows of Table 8 are the best distinguishers for Speck32 and Speck48 respectively.

Comparison with fully automatic search methods in [6,23]. The authors
in [6, 23] both searched differential-linear approximations of Speck using their
fully automatic MIQCP/MILP-based methods. We have compared our search
method, i.e., meet-in-the-middle search (Algorithm 2) with the methods in [6,23].
Table 9 presents the comparison results.

Table 9. Comparison of three search methods.

Method
Differential-linear approximation

Speck32 Speck48 Speck64 Speck96 Speck128

MIQCP/MILP [6] A10(−12.0) × × × ×
MIQCP/MILP [23] A10(−11.58) A11(−17.55) A12(−26.93) × ×

Algorithm 2 A10(−12.2) A11(−17.40) A13(−28.15) A15(−41.72) A18(−55.81)
1 × : not reported. Ar(X) : an r-round differential-linear approximation with an

absolute correlation 2X .

It is clear that our method performs better when applied to Speck48, Speck64,
Speck96, and Speck128. In [6], the authors explained that their MIQCP/MILP-
based method is currently slow, which is the bottleneck of the method in [23] too.

Besides, our method selects good differential-linear approximation ∆m
Em−−→ γm

by the experimental correlation while the methods in [6,23] do this by the theo-
retical correlation. Since the theoretical correlation is less accurate than the ex-
perimental correlation (see the data in [6,23]), we guess that the MIQCP/MILP-
based methods may neglect some good differential-linear approximations, e.g.,
those we have found in this paper.

Now, consider the key recovery attack. The previous best key recovery attack
against round-reduced Speck is the differential attack proposed by Dinur in [15].
Based on an h-round differential with a probability p, the adversary can attack
(h + 2)-round Speck with a time complexity p−1 using the method in [15]. We
do not find differential-linear distinguishers which cover more rounds than the
previous best differential distinguisher in this paper. As a result, based on the
differential-linear approximations presented in Tables 8, we do not obtain key
recovery attacks which attack more rounds than previous best attacks.

8 Conclusions

In this paper, based on a novel idea, we have proposed new algorithms to search
for differential-linear approximations with a high correlation. Besides, a generic
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tool named partition tree is proposed to efficiently generate partitions for com-
plex ARX encryption functions. Based on our work, the cryptanalyst is able to
better evaluate a cipher’s resistance to differential-linear attacks. Moreover, the
powerful attack framework proposed in [5] can be applied to more ciphers. The
applications to LEA and Speck have demonstrated the potential and positive
influence of our work.

In our search algorithms, we can not traverse all the possible differences
∆m, which is still a bottleneck. We believe that it is possible to combine the
advantages of our method and MIQCP/MILP-based methods, for accelerating
MIQCP/MILP-based methods or making our method totally unconstrained (i.e.,
have no constraints on the difference ∆m too). This topic could be a future re-
search direction. Another direction is further explaining the heuristic conclusion
presented in Section 2 under no assumptions, i.e., considering various possible
dependencies between different differential-linear approximations.
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A Classical Key Recovery Attack

Consider an (h+ 1)-round encryption function E. Using an h-round differential-
linear distinguisher ∆ → γ of E, one can recover the round key rk ∈ Fn2 at
round h+ 1. Without loss of generality, assume that Cor > 0 where Cor is the
correlation of the distinguisher ∆→ γ.

Algorithm 4 summarizes the attack procedure. If N is sufficiently large, crk
will be the largest one among 2n correlations, where rk is the round key. There
is a trade-off between N and the rank of crk. In [12], Blondeau et al. presented
a theoretical analysis of the relation between N and the rank of crk.

The theoretical analysis in [12] is based on a concept named advantage in-
troduced in [29]. If an attack on an n-bit key (eg. Algorithm 4) gets the correct
value ranked among the top s out of 2n possible candidates, we say the attack
obtained an (n − log2(s))-bit advantage over the exhaustive search. Then the
case where crk is the largest one among 2n correlations corresponds to obtaining
an n-bit advantage over an n-bit key.

If an attack obtains a preset advantage, we say the attack succeeded. In [12],
Blondeau et al. presented that the success probability of the attack is:

PS = Φ
(

2
√
Nε− Φ−1

(
1− 2−a

))
,
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Algorithm 4 Key recovery

Require: (h+ 1)-round encryption function E, sample size N ;
h-round differential-linear distinguisher ∆→ γ;

Ensure: List of 2n corrrelations {c0, · · · , c2n−1}.
1: ci ← 0 for i ∈ {0, · · · , 2n − 1};
2: for j ∈ {1, · · · , N} do
3: Randomly choose a plaintext x;
4: (Cjh+1,0, C

j
h+1,1)← (E(x), E(x⊕∆));

5: for i ∈ {0, · · · , 2n − 1} do
6: (Cjh,0, C

j
h,1)← (ORD(Cjh+1,0, i),ORD(Cjh+1,1, i));

/* ORD(C, i) stands for one round decryption and i is the key guess. */

7: ci ← ci + (−1)

〈
γ,C

j
h,0

〉
⊕
〈
γ,C

j
h,1

〉
;

8: end for
9: end for

where Φ is the cumulative distribution function of the standard normal distri-
bution, a is the preset advantage of the attack in bits, and ε is the bias of the
differential-linear distinguisher ∆ → γ. Note that ε = 1

2Cor where Cor is the
correlation of ∆→ γ. From this estimate, the data complexity of the differential-
linear attack is deduced.

Lemma 4. [12] Given the bias ε = 1
2Cor of a differential-linear approxima-

tion, the data complexity of a key-recovery attack with advantage a and success
probability PS can be given as

N =

(
Φ−1 (PS) + Φ−1

(
1− 2−a

))2
4ε2

.

B Partitions for Parallel Modular Additions
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