
Short Concurrent Covert Authenticated Key Exchange
(Short cAKE)

Karim Eldefrawy1, Nicholas Genise2⋆, and Stanislaw Jarecki3

1 SRI International, karim.eldefrawy@sri.com
2 Duality Technologies, ngenise@dualitytech.com
3 University of California, Irvine, sjarecki@uci.edu

Abstract. Von Ahn, Hopper and Langford introduced the notion of steganographic a.k.a. covert
computation, to capture distributed computation where the attackers must not be able to distin-
guish honest parties from entities emitting random bitstrings. This indistinguishability should hold
for the duration of the computation except for what is revealed by the intended outputs of the
computed functionality. An important case of covert computation is mutually authenticated key
exchange, a.k.a. mutual authentication. Mutual authentication is a fundamental primitive often
preceding more complex secure protocols used for distributed computation. However, standard au-
thentication implementations are not covert, which allows a network adversary to target or block
parties who engage in authentication. Therefore, mutual authentication is one of the premier use
cases of covert computation and has numerous real-world applications, e.g., for enabling authenti-
cation over steganographic channels in a network controlled by a discriminatory entity.
We improve on the state of the art in covert authentication by presenting a protocol that retains
covertness and security under concurrent composition, has minimal message complexity, and reduces
protocol bandwidth by an order of magnitude compared to previous constructions. To model the
security of our scheme we develop a UC model which captures standard features of secure mutual
authentication but extends them to covertness. We prove our construction secure in this UC model.
We also provide a proof-of-concept implementation of our scheme.

1 Introduction

Steganography in the context of secure computation deals with hiding executions of secure computation
protocols.4 Such hiding is only possible if the participating parties have access to (public) communication
channels which are steganographic, i.e., which naturally exhibit some entropy. Cryptographic protocols
over such channels can be steganographic, a.k.a. covert, if all protocol messages the protocol exchanges
cannot be distinguished from (assumed) a priori random behavior of the communication channels.

The study of covert secure computation was initiated by Hopper et al. [38] for the two-party case,
and by Chandran et al. [21] and Goyal and Jain [35] for the multi-party case. Both [38] and [21,35]
prove feasibility for covert computation of arbitrary circuits which tolerates passive and malicious adver-
saries, respectively. Subsequently, Jarecki [40] showed that general maliciously-secure two-party covert
computation can be roughly as efficient as standard, i.e., non-covert, secure computation.

A flagship covert computation application is covert authentication and covert Authenticated Key
Exchange (cAKE). In a cAKE protocol, two parties can authenticate each other as holders of mutually
accepted certificates, but an entity who does not hold proper certificates, in addition to being unable to
authenticate, cannot even distinguish a party that executes a covert AKE from a random beacon, i.e.,
from noise on the steganographic channel. In essence, cAKE allows group members to authenticate one
another, but their presence on any steganographic communication channel is entirely hidden, i.e., they
are invisible.

The application of covert computation to covert AKE has been addressed by Jarecki [39], but the
state of the art in covert AKE is significantly lacking in several aspects: large bandwidth, high round
complexity, and (a lack of) security under concurrent composition. Regarding security, the scheme of
[39] achieves only sequential security, and does not ensure independence of keys across sessions, which is
insufficient for full-fledged (covert) AKE.5 Regarding round complexity and bandwidth, the cAKE pro-
tocol in [39] requires 6 message flows and relies on a composite-order group (and a factoring assumption),

⋆ This work was done while the second author was at SRI International.
4 This is a full version of a work published in [28].
5 In particular, [39] does not imply security against man in the middle attacks.

1

resulting in bandwidth which can be estimated as at least 3.6kB. Recent works on random encodings of
elliptic curve points, e.g. [11,59], allow for potentially dramatic bandwidth reduction if secure cAKE can
be instantiated over a prime-order group.

Covert vs. Standard Authentication. Covert Authenticated Key Exchange (cAKE) can be formal-
ized as a secure realization of functionality FcAKE[C] shown in Figure 1’s entirety, characterized by a
given admission function C. Let us first set the terms by explaining the standard, i.e. non-covert, AKE
functionality FAKE[C, L], characterized by C and a leakage function L, which is portrayed in the same
figure. Reading Figure 1 with dashed text and without greyed text defines FAKE[C, L], and with greyed
text and without dashed text defines FcAKE.

(standard or covert) AKE functionality:Party P1: Party P2:

-x1 �x2

K1 ←R {0, 1}κ; K2 ←R {0, 1}κ;

K2 ← K1 if (C(x1, x2) = 1)∧ (x1 ̸= ⊥) ∧ (x2 ̸= ⊥)

For i = 1, 2 do: if xi = ⊥ then reset Ki ← ⊥�K1 , L(x2) -K2 , L(x1)

Fig. 1. Standard AKE functionality FAKE[C, L] includes dashed text & omits greyed text; Covert
AKE functionality FcAKE[C] includes greyed text & omits dashed text.

In an AKE protocol, i.e. a protocol that realizes FAKE, parties P1 and P2 run on inputs x1 and x2,
which represent their authentication tokens, e.g. passwords, certificates, keys, etc., and if these inputs
match each other’s admission policy, jointly represented by circuit C, then P1 and P2 establish a shared
random session key K1 = K2, otherwise their outputs K1,K2 are independent.6 If L is a non-trivial
function, then the protocol leaks L(x) on P’s input x to P’s counterparty.

For example, Password Authenticated Key Exchange (PAKE) [7] can be defined as (secure realization
of) FAKE[Cpa] where Cpa is an equality test, i.e., Cpa(x1, x2) = 1 if and only if x1 = x2. In another
example, a standard notion of AKE, e.g. [27], which we will call here as a Fixed Public Key AKE (FPK-
AKE) to distinguish it from other AKE types, can be defined as FAKE[Cfpk, Lfpk] where Cfpk(x1, x2)= 1
iff x1 =(sk1, pk2) and x2 =(sk2, pk1) s.t. pk1, pk2 are the public keys corresponding to resp. sk1, sk2.
Leakage Lfpk is typically omitted in the works on FPK-AKE, e.g. [3,20], because it is assumed that
public keys pk i of each Pi are public inputs. However, the implicit leakage profile in these works is
Lfpk((skP, pkCP))= (pkP, pkCP) where pkP is a public key corresponding to skP.

7

We say that protocol Auth UC-realizes a covert AKE functionality FcAKE if it does so under a
constraint that a real-world party P invoked on input x=⊥ does not follow protocol Auth but instead
emulates a random beacon Auth$(κ) defined as follows: In each round, if Auth participant sends an n(κ)-

bit message then Auth$(κ) sends out an n(κ)-bit random bitstring, where κ is a security parameter. In
more detail, a covert AKE functionality FcAKE[C] makes the following changes to the standard AKE
functionality FAKE[C, L]: First, FcAKE eliminates leakage L(x), equivalently L(x)=⊥ for all x. Second,

FcAKE admits a special input x=⊥ which designates P as a random beacon, i.e., it tells P to run Auth$(κ)

instead of Auth. Third, FcAKE adds the check that x1 ̸=⊥ and x2 ̸=⊥ to the condition for setting K1 =K2.
Fourth, the functionality ensures that if P’s input is ⊥, i.e. P is a non-participant, then its output is ⊥.
Implications of Covert AKE. The first impact of covert AKE vs. the standard AKE, is that if we
disregard what P1 does with its output key K1, then a malicious P∗2 cannot distinguish an interaction
with a real party P1 (where x1 ̸=⊥) and a random beacon (where x1 =⊥) because in either case FcAKE

gives P∗2 the same output, a random key K2. Indeed, the only way P∗2 can distinguish cAKE participant

6 Note that Figure 1 defines AKE as a key exchange without explicit entity authentication, but the latter can
be added to any AKE by testing if parties output the same key via any key confirmation protocol.

7 In a standard FPK-AKE protocol party P can reveal either key. E.g. Sigma [44] used in TLS reveals P’s own
key pkP, while SKEME [43] reveals key pkCP which party P assumes for its counterparty, unless it employs
key-private encryption [4].

2

P1 from a random beacon, is not the cAKE protocol itself, but an application which P1 might run using
cAKE’s output K1. There are three cases of P1 from P∗2’s point of view, where x

∗
2 is P∗2’s input to FcAKE:

(1) P1 = protocol party with x1 s.t. C(x1, x
∗
2) = 1, in which case P∗2 learns K1;

(2) P1 = protocol party with x1 s.t. C(x1, x
∗
2) = 0, in which case K1 is hidden;

(3) P1 = random beacon, represented by x1 = ⊥, in which case K1 = ⊥.
The second property that cAKE adds to a standard AKE is that if the upper-layer application Π

which P1 runs on cAKE’s output K1 continues using steganographic channels, and P1 encrypts Π’s
messages on these channels under key K1, then P∗2 cannot distinguish cases (2) and (3). That is, P∗2
cannot tell a real-world P1 who ran cAKE on inputs that didn’t match x∗2 and then runs Π on cAKE
output K1, from a random beacon.8 Detecting case (1) from a random beacon depends on the upper-layer
protocol Π: If Π is non-covert than P∗2 will confirm that P1 is a real-world party by running protocol
Π on input K1 (which P∗2 learns if C(x1, x

∗
2) = 1). However, if protocol Π is itself covert then P1 will

continue to be indistinguishable from a random beacon even in case (1). In other words, cAKE protocols
are composable, e.g. running a covert PIN-authenticated KE, encrypted by a key created by a covert
PAKE, ensures covertness to anyone except a party who holds both the correct password and the PIN.

Group Covert AKE (Group cAKE). In this work we target a “group” variant of cAKE. Namely,
P’s authentication token is a pair x=(gpk , cert) where gpk is a public key identifying a group, cert is a
certificate of membership in this group, and the admission function CG(x1, x2) outputs 1 if and only if
∃ gpk s.t. x1 =(gpk , cert1), x2 =(gpk , cert2), and Ver(gpk , cert1)=Ver(gpk , cert2)= 1, where Ver stands
for certificate verification. In other words, both parties must assume the same group identified by gpk
and each must hold a valid membership certificate in this group. We assume that key gpk is generated by
a trusted group manager together with a master secret key msk which is used to issue valid certificates,
and that the certification scheme is unforgeable, i.e. that an adversary which sees any number of valid
certificates cert1, ..., certn cannot output cert∗ s.t. Ver(gpk , cert∗)= 1 and ∀ i cert∗ ̸= cert i.

The above setting of group cAKE is the same as that of group signatures [22], except that membership
certificates are used to authenticate, not to sign,9 and the authentication is covert. However, note that a
straightforward usage of group signatures for authentication, e.g. where two parties sign a key exchange
transcript using group signatures, can at best realize FAKE[CG, L] where leakage L hides Pi’s certificate
(and hence Pi’s identity) but reveals the group public key gpk , because a group signature is verifiable
under this key.10

In practice, a certification scheme must admit revocation, i.e. a group manager must be able to revoke
a certificate, e.g. by distributing revocation token rt s.t. (1) there is an efficient procedure Link which
links a certificate to this token, i.e. if Ver(gpk , cert)= 1 then Link(cert , rt)= 1 for rt associated with cert ,
and (2) certificates remain unforgeable in the presence of revocation tokens.11 If Link(cert ,RTset) stands
for a procedure which outputs 1 iff ∃ rt ∈ RTset s.t. Link(cert , rt)= 1, then we define group covert AKE
(with revocation), or simply group cAKE, as FcAKE[CGwr] where CGwr(x1, x2)= 1 iff

1. ∃ gpk s.t. x1 =(gpk , cert1,RTset1) and x2 =(gpk , cert2,RTset2),
2. Ver(gpk , cert1)=Ver(gpk , cert2)= 1,
3. and Link(cert2,RTset1)= Link(cert1,RTset2)= 0.

In other words, parties establish a shared secret key if both assume the same group public key, both hold
valid certificates under this key, and neither certificate is revoked by the revocation information held by
a counterparty.

Applications of group cAKE. Authentication and key exchange are fundamental primitives that
regularly precede secure protocols used for distributed online computations. Identifying executions of
such protocols is often used as a first step when blocking communication [54] or targeting it for filtering

8 This requires encryption with ciphertexts indistinguishable from random bitstrings, but this is achieved by
standard block cipher modes, CBC, OFB, or RND-CTR.

9 Using group signatures for authentication is known as an Identity Escrow [42].
10 Secret Handshake [2] flips this leakage, realizing FAKE[CG, L

′] for L′ that hides gpk but reveals a one-way
function of Pi’s certificate. To complete comparisons, standard PKI-based AKE realizes FAKE[CG, L

′′] s.t. L′′

reveals both a root of trust gpk and a one-way function of Pi’s certificate, namely Pi’s public key with gpk ’s
signature.

11 Here we follow the verifier-local revocation model [13], but other models are possible, e.g. using cryptographic
accumulators [8,17].

3

or other attacks [57,60]. Authentication is thus a natural primitive to be protected and rendered covert to
avoid such blocking or targeting. To the best of our knowledge, there are currently no practical covert
AKE protocols implemented, let alone deployed in distributed systems. If they existed, such protocols
could help hide and protect communication required for authentication and key establishment in such
systems. Since our work demonstrates that covert authentication can be realized with a (computation
and communication) cost very close to that required for existing non-covert anonymous authentication
(e.g., anonymous credentials [16]) or indeed standard non-private authentication (e.g., TLS handshake
with certificate-based authentication), we argue that such protocols could become an enabling tool in
large-scale resilient anonymous communication systems. Such anonymous communication systems have
been the focus of the recent DARPA research program on developing a distributed system for Resilient
Anonymous communication for Everyone (RACE) [55]. The RACE program objective was to develop
“an anonymous, end-to-end mobile communication that would be attack-resilient and reside entirely
within a contested network environment,” and its targets included stenographic hiding of communication
participants [55]. An efficient covert authentication could be play an essential role in such a system.

Other Variants of Covert AKE. There are other natural variants of covert AKE which can be
implemented using known techniques, but none of them imply a practical group cAKE. Covert PAKE
corresponds to FcAKE[Cpa], for Cpa defined above. Several known efficient PAKE schemes, e.g. EKE [7]
and SPAKE2 [1], most likely realize FcAKE[Cpa] after simple implementation adjustments, e.g. SPAKE2
should use an elliptic curve with a uniform encoding, which maps a random curve point to a random fixed-
length bitstring, see Section 2.4. (We believe this is likely to hold because these PAKE protocols exchanges
random group elements, or ideal-cipher encryptions of such elements.) The covert Fixed Public Key AKE
(FPK-AKE) corresponds to FcAKE[Cfpk], for Cfpk defined above. The work on key-hiding AKE [36] shows
that several FPK-AKE protocols, namely 3DH [49], HMQV [45], and SKEME [43] instantiated with key-
private and PCA-secure encryption, realize FAKE[Cfpk], i.e. FPK-AKE without leakage, and after similar
implementation adjustments as in the case of SPAKE2, these protocols probably realize FcAKE[Cfpk].
(This is likely to hold for similar reason, because these FPK-AKE protocols exchange random group
elements and ciphertexts.) Another variant is an identity based AKE (IB-AKE), where public key pk is
replaced by an identity and gpk is a public key of a Key Distribution Center. Covert IB-AKE can be
implemented using Identity-Based Encryption (IBE) with covertly encodeable ciphertexts, such as the
Boneh-Franklin IBE [12] given a bilinear map group with a covert encoding.

However, it is unclear how to efficiently implement group cAKE from covert PAKE, FPK-AKE, or
IB-AKE. Using any of these tools each group member would have to hold a separate token for every other
group member (be it a password, a public key, or an identity), and the authentication protocol would need
to involve n parallel instances of the covert PAKE/FPK-AKE/IB-AKE. Using the multiplexing technique
of [48,23] such parallel execution can be done covertly at Õ(n) cost, but this would not scale well. Either
of these Õ(n)-cost implementations can be seen as implementing a covert Broadcast Encryption (BE)
with O(n)-sized ciphertext. Indeed, any covert broadcast encryption implies cAKE. However, even though
there are broadcast encryption schemes with sublinear ciphertexts, e.g. [29], to the best of our knowledge
there are no sublinear BE schemes which are key-private [4], let alone covert.

1.1 Our Contributions

We show the first practical covert group cAKE scheme, with support for certificate revocation, with the
following features:

1. Universally composable (UC) covertness and security: We formalize a universally composable (UC)
[19] functionality for group cAKE, and show a scheme which realizes it. In particular, this implies
that our group cAKE scheme retains covertness and security under concurrent composition, and that
each session outputs an independent key, as expected of a secure AKE.

2. Practically efficient: Our group cAKE scheme is round minimal, using one simultaneous flow from
each party, and bandwidth efficient, with a message size of four DDH group elements and two points
in a type-3 bilinear curve, resulting in bandwidth of 351B, factor of 10x improvement over state of
the art. Our group cAKE scheme also has a low computational overhead of 14 exponentiations and
4 + n bilinear maps per party, where n is the size of the revocation list. Note that these parameters
are a constant factor away from non-covert Group AKE, or indeed any other (A)KE. (The most
significant slowdown compared to standard AKE comes from using bilinear maps.)

4

Furthermore, the above security and round improvements are enabled by security improvements in a
crucial tool used in covert computation, namely a covert Conditional Key Encapsulation Mechanism
(CKEM) [21,39],12 which we construct for any language with so-called Sigma-protocol, i.e. a 3-round
public-coin honest-verifier zero-knowledge proof of knowledge [26]. Covert CKEM is a covert KEM version
of Witness Encryption [32]: It allows the sender to encrypt a key under a statement x, where decryption
requires knowledge of a witness w for membership of statement x in a language L chosen at encryption.
This KEM is covert if the ciphertext is indistinguishable from a random string, and in particular cannot
be linked to either language L or statement x. The security improvements in covert CKEM are of
independent interest because covert CKEM is a covert counterpart of a zero-knowledge proof, and as
such it is a general-purpose tool which can find applications in other protocols.

Technical Overview. The high-level idea of our group cAKE construction follows the blueprint used for
group cAKE by Jarecki [39]. Namely, it constructs group cAKE generically from a covert Identity Escrow
(IE) scheme [42] and a covert CKEM: Each party sends a (covert) commitment to its IE certificate to the
counterparty, and each party runs a CKEM, once as the sender (S) and once as the receiver (R), where
the latter is proving ownership and validity of the committed certificate. Each party runs the CKEM
once as the receiver and once as the sender, since the protocol covertly computes an AND statement:
given (gpk , cert) from P and (gpk ′, cert ′) from P′, it checks that (cert ∈ LIE(gpk ′)) ∧ (cert ′ ∈ LIE(gpk))
where LIE(gpk) is the language of valid IE certificates generated under gpk . Finally, each party checks
the received committed certificate against their revocation list.13 If the revocation check passes, each
party uses the two CKEM outputs to derive a session key.

The main technical challenge is constructing provable secure group cAKE which is universally com-
posable. To achieve this we implement several significant upgrades to the covert CKEM notion defined
and constructed in [39] (for the same general class of languages with Sigma-protocols):
(1) First, we combine strong soundness of [39] and simulation-soundness of [9] to strong simulation-
soundness. I.e., we require an efficient extractor that extracts a witness from an attacker who distinguishes
S’s output key from random on instance x in the presence of a simulator which plays R role on any instance
x′ ̸= x. Strong simulation-soundness is needed in a concurrent group cAKE to let the reduction extract
a certificate forgery from an attacker who decrypts a covert CKEM on a statement corresponding to a
non-revoked certificate, while the reduction simulates all CKEM’s on behalf of honest R’s.
(2) Second, we amend covert CKEM with a postponed-statement zero-knowledge property, i.e. we require
a postponed-statement simulator for simulating the CKEM on behalf of a receiver R. Such simulator must
compute the same key an honest R would compute, and do so not only without knowing R’s witness
but also without knowing the statement used by R, until after all covert CKEM messages are exchanged.
A group cAKE scheme requires this property because the simulator cannot know a priori the group to
which a simulated party belongs, and hence cannot know the “I am a member of group [...]” statement
on which this party runs as a CKEM receiver R. However, once the functionality reveals e.g. that the
simulated R is a member of the same group as the attacker, the simulator must complete the R simulation
on such adaptively revealed statement.
(3) The third change is that we cannot disambiguate between proof/CKEM instances using labels, which
were used to separate between honest and adversarial CKEM instances in e.g. [40]. This change stems
from the fact that whereas in many contexts protocol instances can be tied to some public unique
identifiers of participating parties, we cannot use such public identifiers in the context of covert authenti-
cation. We deal with this technical challenge by strengthening the strong simulation-soundness property
(1) above even further, and requiring witness extractability from adversary A which decrypts in interac-
tion with a challenge S(x) instance, even if A has access to (simulated) R(x′) instances for any x′ values,
including x′ = x, with the only constraint that no A-R transcript equals the A-S transcript. Note that
the excluded case of such transcripts being equal corresponds to a passive attack, i.e. A just transmitting
messages between challenge oracles S and R, a case with which we deal separately.

We construct a covert CKEM, for any Sigma-protocol language, which satisfies this stronger covert
CKEM notion, by using stronger building blocks compared to the (Sigma-protocol)-to-(Covert-CKEM)
compiler of [39]. First, we rely on smooth projective hash functions (SPHF) with a property akin to PCA

12 Covert CKEM was called ZKSend in [21]. Variants of (covert or non-covert) CKEM notion include Conditional
OT [25], Witness Encryption [32], and Implicit ZK [9].

13 This requires a special-purpose commitment which is hiding only in the sense of one-wayness, and which allows
linking a revocation token to a committed certificate.

5

(plaintext checking attack) security of encryption. Using Random Oracle hash in derivation of SPHF out-
puts it is easy to assure this property for standard SPHF’s of interest. Secondly, we use covert trapdoor
commitments, with commitment instances defined by a random oracle hash applied to CKEM state-
ments, to enable postponed-statement simulation required by property (2) above. (Intuitively, trapdoor
commitments allow the simulator to open a message sent on behalf of an honest party as a CKEM cipher-
text corresponding to a group membership which the functionality reveals in response to a subsequent
active attack against this party.)

We achieve low bandwidth of the fully instantiated group cAKE by instantiating the above with
the Identity Escrow scheme implied by Pointcheval-Sanders (PS) group signatures [51]. The resulting
IE certificates involve only two elements of a type-3 bilinear pairing curve [31], which can be covertly
encoded using the Elligator Squared encoding of Tibouchi [59], with a hash onto group due to Wahby
and Boneh [62]. The CKEM part (for the language of valid IE certificates) requires sending only 4 group
elements (3 for R and 1 for S), and can be implemented over a standard curve, which can be covertly
encoded using e.g. the Elligator-2 encoding of Bernstein et al. [11].

Restriction to static corruptions. We note that our group cAKE scheme realizes the UC group
cAKE model only for the case of static corruptions, i.e. the adversary can compromise a certificate or
reveal a corresponding revocation token only if this certificate has never been used by an honest party.
This is because our group cAKE scheme has no forward privacy or covertness. In particular, all past
sessions executed by a party on some certificate become identifiable, and hence lose covertness (but only
covertness, and not security), if this certificate is compromised at any point in the future. This lack of
forward privacy comes from the verifier-local revocation mechanism. Enabling forward privacy in the face
of revocation, and doing so covertly, introduces new technical challenges. For example, we can use our
CKEM for a covert proof that a committed certificate is (or is not) included on a most recent (positive
or negative) accumulator (e.g. [50]) for a given group. However, it is not clear how two group members
can covertly deal with a possible skew between the most recent accumulator values they assume. We
leave solving such challenges to future work.

Related works. Von Ahn, Hopper, and Langford [61] introduced the notion of covert 2-party computa-
tion and achieved it by performing O(κ) repetitions of Yao’s garbled circuit evaluations. The underlying
circuit was also extended by a hash function. This protocol guaranteed only secrecy against malicious
participants and not output correctness. Chandran et al. [21] extended this to multiple parties while
achieving correctness, but their protocol was also non-constant-round, and its efficiency was several or-
ders of magnitude over known non-covert MPC protocols since each party covertly proves it followed
a GMW MPC protocol by casting it as an instance of the Hamiltonian Cycle problem. Further, that
proof internally used Yao’s garbled circuits for checking correctness of committed values. Goyal and Jain
[35] subsequently showed that non-constant-round protocols are necessary to achieve covert computation
with black-box simulation against malicious adversaries, at least in the plain MPC model, i.e., without
access to some trusted parameters. Hence, the former two constructions’ inefficiencies are necessary with-
out a trusted setup. Jarecki [39] showed a constant-round covert AKE with O(1) public key operations
satisfying a game-based, group-based covert AKE definition with a trusted setup. This protocol has a
somewhat large communication cost: three rounds and large bandwidth since it uses composite-order
groups. Recently, Kumar and Nguyen [47] gave the first post-quantum covert group-based AKE with
trusted setup by adopting Jarecki’s construction [39] to a lattice-based construction (three rounds in the
ROM). Kumar and Nguyen do not provide bandwidth estimates, but we expect them to be somewhat
large compared to Jarecki’s original construction since they rely on trapdoor lattices [33].

None of the aforementioned works are proven secure in the UC framework [19]. Cho, Dachman-Soled,
and Jarecki [23] achieve UC security for covert MPC of two specific functionalities, namely string equality
and set intersection. The work of Jarecki [40] achieves UC secure 2PC for any function, but its efficiency
is constant-round and sends O(κ|C|) symmetric ciphertexts and O(nκ) group elements where C is a
boolean circuit with n input bits for the function to be computed. Implementing covert group-based
authenticated key exchange using such generic protocol would be exceedingly costly. An open question
is if the covert group-based AKE of [39] is secure as-is in the UC model despite [39] using a weaker
instantiation of a covert CKEM.

Organization. Section 2 provides preliminaries. Section 3 presents a universally composable (UC) model
of group covert authenticated key exchange (group cAKE). Section 4 reviews the building blocks used in
our construction, namely covert trapdoor commitments, SPHF’s, and an Identity Escrow (IE). Section 5

6

uses the first two of these tools to construct a covert CKEM, a key modular component of our group
cAKE. The group cAKE scheme itself is shown in Section 6. Appendices A and B contain the proofs of
our two main security theorems, and Appendix C describes our proof of concept implementation.

2 Preliminaries

Let |p| be shorthand for the bit-length of a positive integer p. We reserve κ for the security parameter
throughout the paper. We say a function f(κ) on Z+ is negligible if it is asymptotically κ−ω(1): for
each polynomial q, there is an N , such that f(κ) < 1/q(κ) for all κ > N . Furthermore, all probability
distributions (X) in this paper are from distribution families indexed by Z+, or an infinite subset of Z+,
{Xκ}κ∈Z+ . The uniform distribution on a finite set S is denoted as U(S), and we denote a random variable
sampled from the uniform distribution over S as x←R S, and x←R X for a general distribution X . We
say two probability distributions, say Xκ and Yκ, with the same domains are statistically close, denoted
Xκ ≈s Yκ, if their normalized l1 distance, ∆(Xκ,Yκ) = 1

2

∑
z |Xκ(z)− Yκ(z)|, is negligible as a function

of κ. Two probability distributions, X and Y whose domains depend on some security parameter κ, are
computationally indistinguishable, denoted X ≈c Y, if for every probabilistic polynomial time algorithm
A, the following probability is negligible in κ

|Pr{A(x) = 1 : x←R X} − Pr{A(y) = 1 : y ←R Y}|.

Our constructions rely on the Random Oracle Model (ROM) [6] where a hash function, H : {0, 1}∗ →
D, for some domain D, is modeled as a truly random function. Our constructions use several hash func-
tions, H1,H2, . . . ,Hn, and an implementation must use domain separation in order to re-use a fixed hash
function H, e.g., SHA-256, for multiple random oracles, e.g. Hi(x) = H(⟨i⟩||x), where ⟨i⟩ is some encoding
of natural numbers. To obtain an RO hash H′ for an arbitrary integer range Zp = {0, ..., p− 1} from an
RO hash H with 2κ-bit outputs, one can set H′(x) = (v mod p) where v = H(⟨1⟩||x)|| . . . ||H(⟨n⟩||x) for
any n s.t. |p| ≥ 2κ · n+ κ.

2.1 Diffie-Hellman Problems

Here we review some background on Diffie-Hellman groups.

Definition 2.1. Let (G, ·) be a cyclic group of order p with generator g. The computational Diffie-
Hellman problem (CDH) on G is given (ga, gb) for a, b←R Zp, compute gab. The computational Diffie-
Hellman assumption on G is that this problem is hard, i.e., not PPT adversary A can solve this problem
with non-negligible probability for log2 p ≥ κ.

Definition 2.2. Let (G, ·) be a cyclic group of order p with generator g. The decisional Diffie-Hellman
problem (DDH) on G is to distinguish the the following two distributions:

{(g, ga, gb, gc) : a, b, c←R Zp}

and

{(g, ga, gb, gab) : a, b←R Zp}.

The decisional Diffie-Hellman assumption on G is that this problem is hard, i.e., not PPT adversary A
can solve this problem with non-negligible probability for log2 p ≥ κ.

Definition 2.3. Let (G, ·) be a cyclic group of order p with generator g. The gap computational Diffie-
Hellman problem (gap-CDH) on G is given (ga, gb) for a, b ←R Zp, compute gab given an oracle which
decides DDH: ODDH(g

a, gb, gc) = 1 iff c = ab (mod p). The computational gap Diffie-Hellman assumption
on G is that this problem is hard, i.e., not PPT adversary A can solve this problem with non-negligible
probability for log2 p ≥ κ.

Diffie-Hellman assumptions are commonly deployed on elliptic curve groups, such as Curve25519 [10].

7

2.2 Groups with Bilinear Maps

The key enabling mathematical structures throughout our paper are elliptic curves with type-3 bilinear
pairings. First used by Joux [41] for cryptography, pairings allow for advanced cryptographic construc-
tions due to their cryptographic hardness and bilinearity.

Definition 2.4. A bilinear pairing for groups of prime order p, G1, G2, and GT is a map e : G1×G2 →
GT with the following properties:

bilinearity: For all g ∈ G1, ĝ ∈ G2, a, b ∈ Zp, e(g
a, ĝb) = e(g, ĝ)ab.

non-degeneracy: For all g ̸= 1G1
, ĝ ̸= 1G2

, e(g, ĝ) ̸= 1GT
.

efficiency: e(·, ·) is efficiently computable.

A pairing is Type 3 if there is no efficiently computable homomorphism between G1 and G2 [31]. We
will use the following assumption, stated and proved in the generic group model [58] by Pointcheval and
Sanders [51].

Assumption 1 ([51]) Let (p,G1,G2,GT , e) be a bilinear pairing of type 3 with g (ĝ) a generator of G1

(G2), where they are generated according to a security parameter κ. In particular, their orders depend
on κ. For x, y ← Zp sampled uniformly and independently, set X̂ = ĝx, Ŷ = ĝy, and Y = gy. We define
the oracle O(m) on input m ∈ Zp to choose a random h ∈ G1 and output a pair P = (h, hx+my). Then,

the assumption is that no efficient adversary can generate a pair (hA, h
x+m′y
A) = PA with non-negligible

probability in κ given (g, ĝ, Y, X̂, Ŷ) for any m′ not previously queried to O and hA ̸= 1G1
.

2.3 Special Honest-Verifier Zero-Knowledge Proofs: Σ-Protocols

A Σ-protocol is a special honest-verifier public-coin zero-knowledge proof of knowledge system [26] which
forms a basis of many efficient ZKPK constructions. Here we define a stronger version of Σ-protocols than
in [26] where (1) both the verifier and the simulator use the same deterministic function to recompute
the prover’s first message from the rest of the protocol’s transcript, (2) the prover’s last message is
a deterministic function of prior messages, and (3) the simulator samples the prover’s last message
uniformly from a response space Sz .

Specifically, we define a Σ-protocol for R as tuple (P1,P2,VRec,Sch ,Sz), where P1 is a randomized
algorithm, P2,VRec are deterministic algorithms, and Sch ,Sz are sets, s.t. (1) for any (x,w) ∈ R, algo-
rithm P1(x,w) samples prover’s commitment a and randomness r, (2) verifier’s challenge is generated
by sampling ch uniformly in Sch , (3) algorithm P2(x,w, r, ch) outputs prover’s response z ∈ Sz , and (4)
the verifier accepts on statement x and transcript (a, ch, z) iff VRec(x, ch, z) outputs a. These algorithms
must further satisfy:

– Completeness: For any (x,w) ∈ R and ch ∈ Sch , if (a, r) ← P1(x,w) and z ← P2(x,w, r, ch) then
a← VRec(x, ch, z).

– Special Honest-Verifier Zero-Knowledge: For any (x,w) ∈ R and ch ∈ Sch , transcript (a, z) generated
by sampling z ←R Sz and setting a← VRec(x, ch, z), is distributed identically to an output of (P1,P2)
on (x,w, ch).

– Special Strong Soundness: Challenge space Sch is super-polynomial (in security parameter), and an
efficient extractor outputs w s.t. (x,w) ∈ R given any x and two accepting transcripts (a, ch, z) and
(a, ch ′, z′) for x s.t. ch ̸= ch ′.

– Response Uniqueness: For any x, ch, z, z′, if (1) ch ∈ Sch , (2) z, z′ ∈ Sz , and (3) VRec(x, ch, z) =
VRec(x, ch, z′), then z = z′.

As mentioned above, these properties are stronger than the original notion of Σ-protocol in [26], but
they are satisfied by many well-known Σ-protocols for prime-order groups, including additive and mul-
tiplicative relations on discrete logarithms, see e.g. [26,18]. In this work we will utilize a Σ-protocol for
relation RPS−IE, see eq. (3), on elements of a bilinear map group, as shown in Section 4.3.

8

2.4 Covert Encodings and Random Beacons

We recall the covert encoding and random beacon notions used in steganography.

Definition 2.5. Functions (EC,DC) form a covert encoding of domain D if there is an l s.t. EC :
D → {0, 1}l, DC : {0, 1}l → D is an inverse of EC, and EC(U(D)) is statistically close to the uniform
distribution on {0, 1}l. Function EC can be randomized but DC must be deterministic. In case EC is
randomized we require EC(U(D); r) to be statistically close to uniform when EC’s randomness r is a
uniform random bitstring of fixed length.

Definition 2.6. We call a finite set S uniformly encodable if it has a covert encoding. Further, a family
of sets S := {S[π]}π∈I indexed by some indexing set I is uniformly encodable if S[π] is uniformly
encodable for each π ∈ I.

Uniformly Encodable Domains. We use the following two uniformly encodable sets throughout the
paper: (1) an integer range [n] = {0, ..., n− 1}, and (2) points on an elliptic curve. For the former, if n
is near a power of two then we can send an integer sampled in U([n]) as is. Otherwise, for any t we can

encode t-tuple (ai)i∈[t] sampled from U([n]t) as
∑t−1

i=0 ai ·ni+r·nt for r ←R [m] wherem = ⌈2log2(n)+κ/n⌉.
(See e.g. Section 3.4 of [59] for a proof.) For uniform encodings of elliptic curve points we require two
sub-cases: (2a) a curve in Montgomery form and (2b) a pairing friendly curve. In case (2a) we can use
the Elligator-2 encoding [11], which takes a random point sampled from a subset S of group G = E(Fp),
where |S|/|G| ≈ 1/2, and injectively maps it to integer range [(p − 1)/2]. This map is then composed
with a uniform encoding of this integer range. In the random oracle model, if H is an RO hash onto G,
see e.g. [62], a simple way to encode point P sampled from the whole group, i.e. P ←R U(G) as opposed
to P ←R U(S), is to sample r ←R {0, 1}κ until Q = H(r) + P is in S, where G is a generator of G,
and output z = Elligator-2(Q)||r (see Lemma 2.1 below). In case (2b) we can use Tibouchi’s Elligator
Squared encoding [59], which represents a random curve point as a pair of random elements of base field
Fq. This randomized map is then composed with a uniform encoding of [q]2, implemented as above. In
summary, Elligator-2 admits a more narrow class of curves than Elligator Squared, but using the above
methods, the former creates slightly shorter encodings than the latter, resp. |p|+ 2κ vs. 2|q|+ κ bits.

Lemma 2.1. Let Elligator-2 : S → [(p − 1)/2] be the Elligator-2 map with |S| ≈ |G|/2. In the random
oracle model, if H is an RO hash onto G and P ←R U(G), then the outputs of the following algorithm
are sampled from distribution U([(p− 1)/2])× U({0, 1}κ):

1. sample r ←R {0, 1}κ until Q = H(r) + P is in S.
2. return z = Elligator-2(Q)||r.

Proof. We work backwards from U([(p−1)/2])×U({0, 1}κ). First, take (α||r)← U([(p−1)/2])×U({0, 1}κ)
and invert Elligator-2 to get (Elligator-2−1(α)||r) = (Q||r). This distribution is equal to U(S)×U({0, 1}κ).
Next, note that for any r, the distribution of P := Q − H(r) is uniformly random over G. This means
that (P ||r) = (Q− H(r)||r) is distributed as U(G)× U({0, 1}κ). □

Random Beacons. The term random beacon refers to a network node or party which broadcasts
random bitstrings. Such randomness sources are used for covert communication and here we use it for
covert authentication, and, more generally, covert computation. We use B$(κ) where B is an interactive
algorithm to denote a random beacon equivalent of B. Namely, if B has a fixed number of rounds and
ni is a polynomial s.t. for each i, the i-th round message of B has (at most) ni(κ) bits, then B$(κ) is an
interactive “algorithm” which performs no computation except for sending a random bitstring of length
ni(κ) in round i.

3 Universally Composable Model for Group Covert AKE

As discussed in the introduction, we define group covert AKE (group cAKE) as a covert group Authenti-
cated Key Exchange, i.e. a scheme which allows two parties certified by the same authority, a.k.a. a group
manager, to covertly and securely establish a session key. Covert AKE must be as secure as standard
AKE, i.e. an adversary who engages in sessions with honest parties and observes their outputs cannot

9

break the security of any session except by using a compromised but non-revoked certificate. In addition,
the protocol must be covert in the sense that an attacker who does not hold a valid and non-revoked
certificate not only cannot authenticate to an honest party but also cannot distinguish interaction with
that party from an interaction with a random beacon. If such protocol is implemented over a stegano-
graphic channel [38] a party who does not have valid authentication tokens not only cannot use it to
authenticate but also cannot detect if anyone else uses it to establish authenticated connections.

We define a group cAKE scheme as a tuple of algorithms (KG,CG,Auth) with the following in-
put/output behavior:

– KG is a key generation algorithm, used by the group manager, s.t. KG(1κ) generates the group public
key, gpk , and a master secret key, msk .

– CG is a certificate generation algorithm, used by the group manager, s.t. CG(msk) generates a mem-
bership certificate cert with a revocation token rt .

– Auth is an interactive algorithm used by two group members to (covertly) run an authenticated key
exchange. Each party runs Auth on local input (gpk , cert ,RTset), where RTset is a set of revocation
tokens representing revoked parties. Each party outputs (K , rt), where K ∈ {0, 1}κ∪{⊥} is a session
key (or ⊥ if no key is established) and rt ∈ RTset ∪ {⊥} is a detected revocation token in RTset,
or ⊥ if Auth participant does not detect that a counterparty uses a certificate corresponding to a
revocation token in RTset.

Our notion of AKE does not include explicit entity authentication, i.e., a party might output K ̸= ⊥
even though its counterparty is not a valid group member. However, since key K is secure, the parties
can use standard key confirmation methods to explicitly authenticate a counterparty as a valid group
member who computed the same session key. Moreover, Auth can remain covert even after adding key
confirmation, e.g. if key confirmation messages are computed via PRF using key K . Note that in the
definition above a real-world party P can output K = ⊥, which violates the (simplified) covert mutual
authentication model of Figure 1 in Section 1. However, w.l.o.g. P is free to run any upper-layer protocol
Π that utilizes Auth output K by replacing K = ⊥ with a random key, thus preserving its covertness if
protocol Π is covert.

Universally Composable Group cAKE. We define security of group cAKE via a universally com-
posable functionality Fg-cAKE shown in Figure 2, and we say that scheme Π = (KG,CG,Auth) is a group
cAKE if Π UC-realizes functionality Fg-cAKE in the standard sense of universal composability [19]. How-
ever, we adapt the UC framework [19] to the covert computation setting so that environment Z can pass
to party P executing an AKE protocol Auth a special input ⊥, which causes party P to play a role of
a random beacon. (The same convention was adopted by Chandran et al. [21] with regards to one-shot
secure computation.) For simplicity of notation we assume that protocol Auth is symmetric, i.e., the two
participants act symmetrically in the protocol, and that it has a fixed number of rounds. In this case, on
input (NewSession, ssid,⊥) from Z, this party’s session indexed by identifier ssid is replaced by a random

beacon, i.e., it will run Auth$(κ) instead of Auth, see Sec. 2
In Definition 3.1 we use the notation of [19], where IdealFg-cAKE,A∗,Z(κ, z) stands for the output

of environment Z in the ideal-world execution defined by the ideal-world adversary (a.k.a. simula-
tor) algorithm A∗ and functionality Fg-cAKE, for security parameter κ and Z’s auxiliary input z, and
RealΠ,A,Z(κ, z) stands for Z’s output in the real-world execution between a real-world adversary A and
honest parties acting according to scheme Π, extended as specified above in case party P receives Z’s
input (NewSession, ssid,⊥).

Definition 3.1. Protocol Π = (KG,CG,Auth) realizes a UC Covert Authenticated Key Exchange if for
any efficient adversary A there exists an efficient ideal-world adversary A∗ such that for any efficient
environment Z it holds that

{IdealFg-cAKE,A∗,Z(κ, z)}κ∈N,z∈{0,1}∗ ≈c {RealΠ,A,Z(κ, z)}κ∈N,z∈{0,1}∗

Group cAKE functionality. We explain how functionality Fg-cAKE operates and how it differs from
a standard AKE functionality, e.g. [20,46]. Note that functionality Fg-cAKE in Figure 2 is much more
complex than functionality FcAKE[CGwr] in Figure 1 in Section 1. The first difference are environment
commands GInit and CertInit, which are used to initialize groups and generate membership certificates,
and commands CompCert and RevealRT, which model adversarial compromise of resp. certificates and

10

Fg-cAKE interacts with parties denoted P and GM, and adversary A∗. Sets CompCertgid and
RevealRTgid store resp. compromised certificates and revealed revocation tokens for each gid.

Keys: Initialization and Attacks

On (GInit, gid) from GM:
Save (gid,GM), reject future GInit queries for the same gid, send (GInit,GM, gid) to A∗.

On (CertInit, gid, cid) from P:
If ∃ no prior record (·, gid, cid), save tuple (P, gid, cid).

On (CompCert,P, gid, cid) from A∗ [A∗ must have environment permission for this action]:

If ∃ record (P, gid, cid) and ∃ no record (P, ·, gid, cid, ·, ·) add cid to CompCertgid and RevealRTgid.

On (RevealRT,P, gid, cid) from A∗ [A∗ must have environment permission for this action]:
If ∃ record (P, gid, cid) and ∃ no record (P, ·, gid, cid, ·, ·) add cid to RevealRTgid.

Authentication Sessions: Initialization, Connections, Attacks

On (NewSession, ssid,⊥) from P:
Save record (P, ssid,⊥,⊥,⊥,⊥) marked random, send (NewSession,P, ssid,⊥) to A∗.

On (NewSession, ssid, gid, cid,RTcids) from P:
If RTcids ⊆ RevealRTgid and ∃ record (P, gid, cid) but ∃ no prior record (P, ssid, ·, ·, ·, ·):
– if cid ̸∈ RevealRTgid, send (NewSession,P, ssid,⊥) to A∗

– if cid ∈ RevealRTgid, send (NewSession,P, ssid, gid, cid) to A∗

Save record (P, ssid, gid, cid,RTcids,⊥) marked fresh.

On (Interfere,P, ssid) from A∗:
If ∃ record (P, ssid, ·, ·, ·,⊥) marked fresh, re-label it interfered.

On (Connect,P, ssid,P′, ssid′) from A∗:
If ∃ record rec = (P, ssid, gid, cid, ·,⊥) marked fresh and record (P′, ssid′, gid′, cid′, ·,K ′) marked
either fresh or connected(P, ssid, cid) (any of gid′, cid′, K ′ can be equal to ⊥) then:

– if gid = gid′ then re-label rec as connected(P′, ssid′, cid′)
– if gid ̸= gid′ then re-label rec as interfered

On (Impersonate,P, ssid, gid∗, cid∗) from A∗:
If ∃ rec = (P, ssid, gid, ·, ·,⊥) marked fresh:

– if gid = gid∗ and cid∗ ∈ CompCertgid then re-label rec as compromised(cid∗)
– if gid = gid∗ and cid∗ ̸∈ CompCertgid then re-label rec as interfered(cid∗)
– if gid ̸= gid∗ then re-label rec as interfered

Authentication Sessions: Key Establishment

On (NewKey,P, ssid,K ∗) from A∗:
If ∃ session record rec = (P, ssid, gid, cid,RTcids,⊥) marked flag then:

1. if flag = random set K ← ⊥ and cidCP ← ⊥
2. if flag = compromised(cid′) for cid′ ̸∈ RTcids, set K ← K ∗ and cidCP ← ⊥
3. if flag is either connected(·, ·, cid′) or compromised(cid′) or interfered(cid′), for cid′ ∈ RTcids,

set K ← ⊥ and cidCP ← cid′

4. if flag = connected(P′, ssid′, cid′) for cid′ ̸∈ RTcids, and ∃ rec′ = (P′, ssid′, gid, cid′, ·,K ′) s.t.
K ′ ̸= ⊥ and rec′ terminated as connected(P, ssid, cid), set K ← K ′ and cidCP ← ⊥

5. in any other case set K ←R {0, 1}κ and cidCP ← ⊥
Modify rec as (P, ssid, gid, cid,RTcids,K) and output (NewKey, ssid,K , cidCP) to P.

Fig. 2. Fg-cAKE: Group cAKE functionality, static corruptions enforced by boxed text

11

revocation tokens (which are not assumed public by default). Command NewSession models party P
engaging in group cAKE on input x = (gpk , cert ,RTset), exactly as FcAKE[CGwr] of Figure 1, except
that in Fg-cAKE these real-world inputs are replaced by ideal-world identifiers, resp. gid, cid,RTcids.
One aspect of functionality Fg-cAKE is that there can be many number of such sessions present, and the
adversary can “connect” any pair of such sessions, by passing their messages. Secondly, the adversary can
actively attack any session using some compromised group certificate, and functionality Fg-cAKE carefully
delineates the effect of such attack based on whether the group assumed by the attacker matched the
one used by the attacker party, and if so then whether the certificate used by the attacker was revoked
by the attacked party.

Secure initialization and trusted group manager. A crucial difference between Fg-cAKE and stan-
dard AKE is that in the latter each party can function on its own, creating its (private, public) key
pair, e.g. as in [37], maybe accessing a global certificate functionality, e.g. as in [20]. By contrast, the
Covert AKE model Fg-cAKE must explicitly include a group manager party, denoted GM, initialized
via query (GInit, gid) which models generation of a group public key indexed by a unique identifier gid.
Consequently, the Fg-cAKE model assumes a trusted party, secure channels at initialization, and secure
distribution of revocation tokens. We explain each of these assumptions in turn. Note that identifier gid
in command (GInit, gid) is associated with that group instance by each party P, which can be realized if
GM has a reliable authenticated connection to each party, which allows authenticated broadcast of gpk .
GM is assumed trusted because the model does not allow a compromise of GM or the master secret msk
held by GM. Furthermore, when Z’s command (CertInit, gid, cid) to party P, prompting it to generate
a membership certificate with identifier cid (assumed unique within group gid), we assume that only P
can later use it to authenticate. Looking ahead, we will implement CertInit relying on a secure channel
between P and GM. Party GM will generate the certificate identified by cid, it will send it to P on the
secure channel, and GM will be trusted not to use the certificate itself.

The above assumptions pertain to initialization procedures, but the on-line authentication will rely
on the secure P-to-GM channels in one more aspect, namely for secure delivery of revocation tokens.
The environment tells P to run the authentication protocol via query (NewSession, ssid, gid, cid,RTcids),
which models P starting an AKE session using its certificate identified by cid within group gid, where
RTcids is a set of identifiers of revoked certificates which P will use on this session. Crucially, at this
step an implementation must allow P to translate this set of certificate identifiers RTcids into a set
RTset of actual revocation tokens corresponding to these certificates. This can be realized e.g. if the
trusted party GM stores the revocation tokens for all certificates it generates and that the P-GM channel
allows for secure and authenticated transmission of the revocation tokens from GM to P whenever the
environment requests it by including them in set RTcids input to P in some NewSession query. Note that
the environment can set RTcids in an arbitrary way, which models e.g. parties that do not receive the
revocation tokens of all compromised parties.14

Static compromise model. Adversary can compromise any certificate, using command (CompCert,
gid,P, cid), and it can reveal the revocation information corresponding to any certificate, using command
(RevealRT, gid,P, cid). The first command adds cid to the set CompCertgid of compromised certificate
identifiers in group gid, and both commands add cid to the set RevealRTgid of certificate identifiers whose
revocation tokens are revealed to the adversary. A compromised certificate cid allows the adversary to
actively authenticate to other parties using interface Impersonate, whereas a revealed revocation token
implies that party P which uses it to authenticate can be identified by the adversary, and hence no
longer covert (see the second clause in NewSession interface). Finally, we allow only for static corruptions,
which is implied by marked text fragments in Fig. 2, which impose that an adversary can compromise a
certificate and/or reveal a revocation token only if this certificate was never used by an honest party. This
is because the group cAKE scheme we show in this work has no forward privacy, i.e., all past sessions
executed by a party on some certificate become identifiable, and hence lose covertness, if this certificate
is compromised at any point in the future. Because it appears difficult to capture a notion of “revocable
covertness”, i.e., that protocol instances remain covert until a certificate they use is revealed, we forego on
trying to capture such property and limit the model by effectively requiring that the adversary corrupts
all certificates and reveals all revocation tokens at the beginning of the interaction.

14 To see an example of how real-world parties can use scheme Π = (KG,CG,Auth) to implement the environment’s
queries to Fg-cAKE, please see Figure 5 in Section 6.

12

Note on the environment. An environment plays a role of an arbitrary application utilizing the group
cAKE scheme. The role of group cAKE is to make real AKE sessions indistinguishable from random
beacons, but the two send different outputs to the environment: the former outputs keys, the latter do
not. If the environment leaks that output to the adversary then the benefit of covertness will disappear.
However, this is so in the real-world: If an adversary can tell that two nodes use the established key
to communicate with each other, they will identify these parties on the application level and the covert
property of the AKE level was “for naught”, at least in that instance. However, if the upper-layer
communication stays successfully hidden in some steganographic channel, then the adversary continues
being unable to detect these parties. The versatility of a universally composable definition is that it implies
the maximum protection whatever the strength of the upper-layer application: If the upper-layer allows
some sessions to be detected (or even leaks the keys they use), this information does not help to detect
other sessions, and it does not help distinguish anything from the cryptographic session-establishment
protocol instances. The same goes for the revocation information the AKE sessions take as inputs: If the
upper-layer detects compromised certificates and delivers the revocation information to all remaining
players, the adversary will fail to authenticate to other group members and it will fail to distinguish
their session instances from random beacons. If the revocation information does not propagate to some
group member, the adversary can detect that party using a compromised certificate, but this inevitable
outcome will not help the attacker on any other sessions.

3.1 Detailed Walk Through Fg-cAKE Session Interfaces

Below we provide a detailed walk through session establishment, attacks, and termination interfaces of
functionality Fg-cAKE in Figure 2.

AKE session establishment and attacks:. Party P starts an AKE session by environment’s command

(NewSession, ssid, gid, cid,RTcids), where ssid is a locally unique session identifier (which w.l.o.g. can be
implemented by a counter), gid identifies the group instance, cid is an identifier of a membership certificate
P will use on this session, and RTcids contains of identifiers of revoked certificates. (In our implementation
these identifiers will be translated into revocation tokens reliably delivered from GM.) For each session
which uses a non-compromised/revoked certificate, i.e., if cid ̸∈ RevealRTgid, Fg-cAKE reveals only (P, ssid)
to A∗. Note that entity P and session counter ssid are just handles on a unique protocol instance, but
this information does not include either the instance gid of the group public key or the identifier cid
of the membership certificate. The same origin information (P, ssid) is leaked to A∗ if the session is a
random beacon, which happens if Z starts P via command (NewSession, ssid,⊥), hence A∗ cannot tell
an AKE session from a random beacon and has to simulate either one in the same way. However, if
cid ∈ RevealRTgid, i.e., P uses a certificate whose revocation token leaked to the adversary, Fg-cAKE

reveals (gid, cid) to A∗, i.e., the protocol instance is non-covert and can be linked to the group gid and a
particular certificate cid. The functionality also marks random-beacon sessions random and real sessions
fresh, but does not leak it to A∗.

After session (P, ssid) starts, the adversary can do 3 things to it: First, is that it can perform some
active attack but without successfully following the protocol on a valid certificate. All such attempts
should be equivalent to a denial-of-service attack, and they are modeled by query (Interfere,P, ssid)
interface which marks such session interfered. The consequence of that is that when the session terminates
it will output a random key unknown to anyone else (see below on AKE session termination). The second
option is that the real-world adversary routes all messages between session (P, ssid) and some other session
(P′, ssid′), thus letting them communicate, a.k.a. “connect”, at least until the last P′-to-P message. This is
modeled by query (Connect,P, ssid,P′, ssid′). Note that the adversary can do that to both the real sessions
and the random beacon sessions. (Indeed, unless a real session runs on credentials whose revocation tokens
were leaked, the adversary cannot tell the difference between the two.) In response Fg-cAKE will mark the
(P, ssid) session as connected to (P′, ssid′) but it will do so only if (1) both session are non-random and
they assume the same group instance gid = gid′, (2) session (P, ssid) is fresh, i.e., the adversary hasn’t
interrupted it before, and (3) session (P′, ssid′) is also fresh or it was already connected to (P, ssid). If either
condition is not met this attempted connection will result in session (P, ssid) being marked interfered (so
it outputs an independent random key at termination), but note that A∗ does not learn which is the
case. The last option is that the adversary interacts with session (P, ssid) using a compromised certificate
with identifier cid∗ for group gid∗, which is modeled by command (Impersonate,P, ssid, gid∗, cid∗). The

13

functionality checks that cid∗ is indeed a compromised certificate generated within group gid∗. In that
case, if the attacked session (P, ssid) runs on the same group instance gid = gid∗ then Fg-cAKE marks
session (P, ssid) as compromised using certificate cid∗, and otherwise it treats it just like an interfered
session. Note that the attacker again does not learn which is the case, i.e. it does not learn if gid = gid∗.

AKE session termination:. Finally, if the real-world adversary sends to a session all the messages it

needs to terminate, the ideal-world adversary sends (NewKey,P, ssid,K ∗) to Fg-cAKE, where K ∗ is the
extracted key which the honest session (P, ssid) would compute if it was successfully attacked. There are
6 cases for such sessions:

(1) if the session is random, i.e., it was a random beacon, then its outputs are ⊥ no matter what;

(2,3) if the session is marked compromised(cid′), i.e., it was compromised by an active attack us-
ing matching gid and a compromised certificate cid′, then (3) if cid′ is in the list RTcids of revoked
certificates P uses then (P, ssid) will detect this and reject by outputting K = ⊥ and the detected
certificate cid′ as the counterparty certificate identifier cidCP, but (2) if cid

′ is not on the list, i.e., the
adversary used a certificate which P does not have on its revocation list, then this authentication
succeeds and P outputs the adversarial key K = K ∗ (and cidCP = ⊥ since P did not detect its
counterparty’s certificate);

(3,4) if the session is marked connected(P′, ssid′, cid′), i.e., it was passively connected to another ses-
sion running on the same gid, then (3) if that session used certificate cid′ on P’s revocation list RTcids
then P rejects. However, if cid′ is not on that list then (4) if (P′, ssid′) was the first to terminate, and
it established a key K ′ ̸=⊥, then Fg-cAKE copies this key and gives it to P as well, i.e., sets K ← K ′:
This is the case of two AKE sessions which run on mutually non-revoked valid certificates for the
same group gid and thus successfully establish a shared secure key;

(5) if (P, ssid) is connected to (P′, ssid′) but is the first to terminate, or if (P, ssid) is “left alone”, or
its session was interrupted, this party outputs a secure key.

Note that the only case when A∗ learns the key is case (2), an unavoidable on-line attack using a non-
revoked certificate. In all other cases a session either rejects (1,3) or outputs a secure key (5) which can
be computed by two parties (4) if they run on compatible inputs and all their messages are delivered
without interference.

4 Building Blocks: Commitment, SPHF, Identity Escrow

Our group cAKE construction consists of (1) each party sending out a blinded covert Identity Escrow
(IE) certificate, and (2) each party verifying the counterparty’s value using a covert Conditional Key
Encapsulation Mechanism (CKEM). (This group cAKE construction is shown in Figure 6 in Section 6.)
The covert CKEM construction in turn uses a covert Trapdoor Commitment and a covert Smooth
Projective Hash Function (SPHF) which must be secure against a Plaintext Checking Attack (PCA). In
this section we define and show efficient instantiations for each of the three above building blocks, i.e.
covert Trapdoor Commitments, in Subsection 4.1, PCA-secure covert SPHF, in Subsection 4.2, and covert
IE, in Subsection 4.3. (The construction of covert CKEM using trapdoor commitments and PCA-secure
SPHF is shown in Section 5.) To fit bandwidth restrictions of steganographic channels we instantiate all
tools with bandwidth-efficient schemes, using standard prime-order elliptic curve group for the Trapdoor
Commitment and SPHF, and type-3 curves with bilinear pairings for IE.

4.1 Covert Trapdoor Commitment

For the reasons we explain below, we modify the standard notion of a Trapdoor Commitment [30]
by splitting the commitment parameter generation into two phases. First algorithm GPG on input the
security parameter κ samples global commitment parameters π, and then algorithm PG on input π
samples instance-specific parameters π. The commitment and decommitment algorithms then use pair
(π, π) as inputs. The trapdoor parameter generation TPG runs on the global parameters π output by GPG,

14

but it generates instance parameters π with the trapdoor tk . Then, the trapdoor commitment algorithm
TCom on input π generates commitment c with a trapdoor td , and the trapdoor decommitment algorithm
TDecom on input (π, π, c, tk , td ,m) generates decommitment d . Crucially, the trapdoor commitment
TCom takes only global parameters as inputs, which allows a simulator to create trapdoor commitments
independently from the instance parameters π.

Definition 4.1. Algorithm tuple (GPG,PG,Com,Decom) forms a trapdoor commitment scheme if there
exists algorithms (TPG,TCom,TDecom) s.t.:

– GPG(1κ) samples global parameters π and defines message spaceM
– PG(π) samples instance parameters π
– Com(π, π,m) outputs commitment c and decommitment d
– Decom(π, π, c,m, d) outputs 1 or 0

– TPG(π) outputs instance parameters π with trapdoor tk
– TCom(π) outputs commitment c with trapdoor td
– TDecom(π, π, c, tk , td ,m) outputs decommimtment d

The correctness requirement is that if π ← GPG(1κ), π ← PG(π), and (c, d) ← Com(π, π,m) then
Decom(π, π, c,m, d) = 1.

Definition 4.2. We say that a trapdoor commitment scheme forms a covert perfectly-binding trapdoor
commitment if it satisfies the following:

1. Trapdoored and non-trapdoored distributions indistinguishability: For any m tuples (π, π, c, d) gen-
erated by the following two processes are computationally indistinguishable: sample π ← GPG(1κ)
and fix any m ∈M,

P0 : π ← PG(π), (c, d)← Com(π, π,m)

P1 : (π, tk)← TPG(π), (c, td)← TCom(π),

d ← TDecom(π, π, c, tk , td ,m)

2. Perfect binding: If π ← GPG(1κ) and π ← PG(π), then for any c,m,m ′, d , d ′ it holds except for negli-
gible probability over the coins of GPG and PG, that if Decom(π, π, c,m, d) = Decom(π, π, c,m ′, d ′) =
1 then m = m ′.

3. Covertness: There is a uniformly encodable set family S s.t. for any m, tuples (π, π, c) and (π, π, c′)
are computationally indistinguishable for π ← GPG(1κ), π ← PG(π), c ← Com(π, π,m), c′ ←R

U(S[π]).

Discussion. The first property is specialized for scenarios where each commitment instance π is used
only for a single commitment. This restriction is not necessary for the implementation shown below, but
we use it for simplicity because it suffices in our CKEM application. Note that perfect binding property
holds on all non-trapdoored commitment instance parameters π, and it is unaffected by the equivocability
of commitments pertaining to any trapdoored commitment instances π′. Observe also that the covertness
property implies the standard computational hiding property of the commitment. Finally, we note that
the above properties do not imply non-malleability, and we defer to Section 5 for the intuition why that
suffices in the CKEM application.

Random Oracle Applications. In the Random Oracle Model (ROM) it can be convenient to replace
the instance generator algorithm PG with a random oracle, but for that we need an additional property:

Definition 4.3. We say that a trapdoor commitment scheme has RO-compatible instance parame-
ters if each π output by GPG(1κ) defines set C[π] s.t. (1) distribution {π}π←PG(π) is computation-
ally indistinguishable from uniform in C[π], and (2) there exists an RO-indifferentiable hash function
H : {0, 1}∗ → C[π].

The above property allows an application to set instance parameters as π := H(lbl), where string lbl can
be thought of as a label of that commitment instance. If a label can be uniquely assigned to a committing
party then for all labels corresponding to adversarial instances the simulator can set H(lbl) by sampling

15

PG(π), which makes all these instances perfectly binding, while for all labels corresponding to honest
parties the simulator can set H(lbl) by sampling TPG(π), which makes all these instances equivocable.

In the CKEM application, Section 5, the label lbl is a statement x used in a given CKEM instance. In
this way the simulator can “cheat” in the CKEM’s on statements of the simulated parties without affect-
ing the soundness of the CKEM’s executed by the adversarial parties.15 The same CKEM application
also motivates why it is useful for the trapdoor commitment TCom to be independent of a commitment
instance parameter π. Namely, this enables the “statement-postponed zero-knowledge” property in the
CKEM application, where the simulator at first does not know the statement x used by the CKEM
sender on the onset of simulation, but it can use TCom(π) to create an equivocable commitment, which
it can then open to an arbitrary message for any parameter π = H(x) generated in the trapdoored way.

Covert Trapdoor Commitment Instantiation under DDH in ROM. We instantiate the covert
trapdoor commitment using a modified Pedersen commitment which is equivocable on trapdoored in-
stances and perfectly binding on the non-trapdoored instances. The instantiation relies on a group of
prime order which is uniformly encodable and on which the DDH assumption holds.16

Construction 4.1 Define a ‘Double Pedersen’ trapdoor commitment scheme:

– GPG(1κ) fixes group G of prime order q, picks g1, g2 ←R G \ {1}, and sets π = (G, q , g1, g2) and
M = Zq

– PG(π) outputs π = (h1, h2) for h1, h2 ←R G
– Com(π, π,m) outputs (c, d) for d ←R Zq and c ← (gd1 · hm

1 , gd2 · hm
2)

– Decom(π, π, c,m, d) outputs 1 iff m ∈ Zq and c = (gd1 · hm
1 , gd2 · hm

2)

– TPG(π) picks tk ←R Zq and outputs π = (h2, h2) = (gtk1 , gtk2) and tk
– TCom(π) picks td ←R Zq and outputs c = (gtd1 , gtd2) and td
– TDecom(π, π, c, tk , td ,m) outputs d = td − tk ·m mod q

Theorem 4.1. The ‘Double Pedersen’ trapdoor commitment construction 4.1 is covert perfectly-binding
with RO-compatible instance parameters, assuming that the DDH assumption holds in group G, that G
is uniformly encodable, and that there is an RO-indifferentiable hash onto G.

Proof. We argue the four properties separately. To argue trapdoored and non-trapdoored indistinguisha-
bility of tuple (π, π, c, d), denote the non-trapdoored view as V0 and the trapdoored view as V1. Con-
sider a modified trapdoored view V ′1 where π is generated by TPG but c and d are generated by
Com instead of by TCom and TDecom. Note that V ′1 ≡ V1, because if (h1, h2) = (gtk1 , gtk2) then
c = (gd1 ·hm

1 , gd2 ·hm
2) = (gtd1 , gtd2) for td = d + tk · m, which means that a standard commitment looks

exactly like a trapdoored commitment, moreover d is the same value d = td − tk ·m which is revealed
in trapdoored decommitment. Note that V0 and V ′1 differ only in generation of strings π = (h1, h2),
which are generated as random pairs of group elements in V0 and as (gtk1 , gtk2) for tk ←R Zq in V ′1 . Since
(g1, g2) are random group elements, indistinguishability of V0 and V ′1 follows from DDH assumption on
the group.

Perfect binding holds because if (h1, h2) is generated by PG than if (α1, α2) = (dlog(g1, h1), dlog(g2, h2))
then α1 ̸= α2 except for 1/q probability, in which case for every c ∈ G2 there exists a unique (d ,m) ∈ Z2

q

s.t. c = (gd1 h
m
1 , gd2 h

m
2), namely (d ,m) s.t. (d + α1m, d + α2m) = (γ1, γ2) where c = (gγ1

1 , gγ2

2).
To argue covertness, assume the uniformly encodable set G2. (Note that if random G elements are

encodable as random bitstrings then so are random pairs of G elements.) Note that c = (c1, c2) output
by Com is generated s.t. (c1/h

m
1 , c2/h

m
2) = (gd1 , g

d
2) for random d ←R Zq , while for c which is uniform in

G2 pair (c1/h
m
1 , c2/h

m
2) is uniform in G2. Since g1 and g2 are random elements of G, indistinguishability

of these two distributions follows by reduction to DDH.
It follows that the scheme has RO-compatible instance parameters, because algorithm PG(π) samples

parameters π at random in space C = G × G, and if H is an RO-indifferentiable hash onto G then H′

defined e.g. as H′(x) = (H(0|x),H(1|x)) is an RO-indifferentiable hash onto G×G. □

15 Except if an adversarial party copies a statement of the honest party, in which case CKEM security comes
from the PCA security of SPHF, see Section 4.2.

16 Looking ahead, for OW-PCA security of SPHF for a language associated to this commitment, see Section 4.2,
we will also need the GapDH assumption on the group.

16

4.2 Covert SPHF with PCA-security

A smooth projective hash function (SPHF) for an NP language L, introduced by Cramer and Shoup [24],
allows two parties to compute a hash on a statement x ∈ L where one party computes the hash using a
random hash key hk and the statement x, and the other can recompute the same hash using a projection
key hp corresponding to hk and a witness w for x ∈ L. The smoothness property is that if x ̸∈ L then
the hash value computed using key hk on x is statistically independent of the projection key hp. In
other words, revealing the projection key hp allows the party that holds witness w for x ∈ L to compute
the hash value, but it hides this value information-theoretically if x ̸∈ L. In this work we require two
additional properties of SPHF, namely covertness and One-Wayness under Plaintext Checking Attack
(OW-PCA) security, which we define below.

Definition 4.4. A covert smooth projective hash function (covert SPHF) for NP language L parame-
terized by π, is a tuple of PPT algorithms (HKG, Hash, PHash) and set family H indexed by π, where
HKG(π) outputs (hk , hp), and PHash(x,w, hp) and Hash(x, hk) both compute a hash value v s.t. v ∈ H[π].
Furthermore, this tuple must satisfy the following properties:

– Correctness: For any (π, x, w) s.t. x ∈ L[π] and w is a witness for x, if (hk , hp) ← HKG(π) then
Hash(x, hk) = PHash(x,w, hp).

– Smoothness: For any π and x ̸∈ L[π], hash Hash(x, hk) is statistically close to uniform over H[π]
even given hp, i.e. tuples (hp, v) and (hp, v ′) are statistically close for (hk , hp) ← HKG(π), v ←
Hash(x, hk), and v ′ ←R U(H[π]). Moreover, space H[π] must be super-polynomial in the length of π.

– Covertness: There is a uniformly encodable set S s.t. for any π, distribution {hp}(hk ,hp) ←R HKG(π)

is statistically close to uniform over S[π].

One-Wayness under Plaintext-Checking Attack (OW-PCA) for SPHF. We define OW-PCA
security notion for SPHF in analogy with OW-PCA security of Key Encapsulation Mechanism (KEM).
OW-PCA security of KEM [34,53] asks that for a random KEM public key pk and ciphertext c, an
efficient attacker cannot, except for negligible probability, output the key k encrypted in c even given
access to a Plaintext-Checking (PCA) oracle, which holds the corresponding secret key sk and for any
(ciphertext,key) query (c′, k′) outputs 1 if k′ = Dec(sk , c′) and 0 otherwise. An SPHF can implement a
KEM if L is hard on average, i.e. if on random x ∈ L it is hard to compute the corresponding witness
w, because statement x, witness w, projection key hp, and hash value v could play the KEM roles of
respectively pk , sk , c, and k. We define the OW-PCA property of SPHF as requiring that such KEM
scheme is OW-PCA secure, i.e. that for a random (statement, witness) pair (x,w) in L and random
HKG(π) outputs (hk , hp), an efficient attacker cannot output v = Hash(x, hk) even given access to a
PCA oracle, which holds the witness w and for any query (hp′, v ′) outputs 1 if v ′ = PHash(x,w, hp′) and
0 otherwise.

Following the above parallel to the OW-PCA property of KEM, statement x, which acts like a public
key, should be randomly sampled by the challenger. However, in the CKEM applications of Section 5, we
need OW-PCA SPHF for statements chosen from a “mixed” distribution, where part the statement is
arbitrarily chosen by the adversary and only part is randomly sampled by the challenger. Specifically, we
will consider language LCom of valid commitments in a covert perfectly-binding trapdoor commitment
scheme, see Definition 4.2, parameterized by global commitment parameters π:

LCom[π] = {(π,m, c) | ∃ d s.t. Decom(π, π, c,m, d) = 1} (1)

Further, we will need OW-PCA security to hold for statements x = (π,m, c) where components (π,m)
are chosen by the adversary on input π while component c together with witness d is chosen at random
by the OW-PCA challenger.

In general, let L be parameterized by strings π sampled by alg. PGsphf(1
κ), let Lpre[π] be a language

of fixed-length prefixes of elements in L[π], and for any π and xL ∈ Lpre[π], let

RL[π, xL] = {(xR, w) | s.t. (xL, xR) ∈ L[π] and w is its witness}.

Notably from in Equation 1, xL = (π,m), xR = c, and the witness w is the decommitment d . We define
OW-PCA of SPHF for L as follows:

17

Definition 4.5. SPHF for language L with parameter generation algorithm PGsphf and prefix language
Lpre is One-Way under Plaintext Checking Attack (OW-PCA) if for any efficient A the following prob-
ability is negligible:

Pr [v = Hash(x, hk) | v ← APCA(w,·)(π, x, hp, st)]

where π ← PGsphf(1
κ), (xL, st) ← A(π) s.t. xL ∈ Lpre[π], (xR, w) ←R RL[π, xL], x ← (xL, xR),

(hk , hp)← HKG(π), and oracle PCA(w, ·) on queries (hp′, v ′) from A outputs 1 if v ′ = PHash(x,w, hp′)
and 0 otherwise.

SPHF for LCom using ‘Double Pedersen’ Commitment. Recall the trapdoor commitment scheme
(GPG,PG,Com, ...) shown in Construction 4.1. Let PGsphf be the global parameter generation algorithm
GPG in that construction, in particular PGsphf(1

κ) outputs π = (G, q , g1, g2). Note that LCom[π] in-
stantiated for this scheme contains tuples (π=(h1, h2),m, c=(c1, c2)) s.t. there exists d ∈ Zq s.t.
(c1/h

m
1 , c2/h

m
2) = (gd1 , g

d
2), i.e. if dlog(g1, c1/h

m
1) = dlog(g2, c2/h

m
2). Define Lpre[π] as the set of pairs

(π,m) ∈ G2 × Zq . We show that the SPHF for discrete-log equality [24] is an SPHF for LCom which is
covert and OW-PCA if group G is uniformly encodable and GapDH assumption holds on G.

Construction 4.2 The SPHF for LCom proceeds as follows:

– HKG(π) picks hk = (hk1, hk2)←R Z2
q and sets hp = (g1)

hk1(g2)
hk2

– Hash((π, c,m), hk) parses π = (h1, h2) and c = (c1, c2) and outputs

v ← (c1/h
m
1)hk1(c2/h

m
2)hk2

– PHash((π, c,m), d , hp) outputs v ← hpd

Theorem 4.2. SPHF in construction 4.2 is (1) covert if G is uniformly encodabable and (2) OW-PCA
under GapDH on G, for PGsphf and Lpre defined above.

Proof. Correctness is by inspection. SPHF is smooth on space H[π] = G because this space is of

the required super-polynomial size, and if c1 = gd1 · hm
1 and c2 = gd2

′ · hm
2 for d ̸= d ′ then v =

(c1/h
m
1)hk1(c2/h

m
2)hk2 = (g1)

d·hk1(g2)
d′·hk2 is uniform in G and independent of hp = (g1)

hk1(g2)
hk2 .

SPHF covertness follows because hp is a random element in S[π] = G, and G is uniformly encodable.
We argue that under GapDH assumption on G this SPHF is also OW-PCA secure. Note that for

any π, π,m, the OW-PCA challenge c, hp satisfies that (1) hp is random in G and (2) c=(c1, c2) s.t.
(c1/h

m
1 , c2/h

m
2) is distributed as (gd1 , g

d
2) for d ←R Zq . Note also that the PCA oracle can be implemented

with a DDH oracle, which given query (hp′, v ′) answers 1 iff (g1, c1/h
m
1 , hp′, v ′) is a DDH tuple. Therefore,

if an efficient adversary can solve for v = hpd given access to the PCA oracle, the reduction can break
GapDH: Given a CDH challenge (g1, hp, g

d
1) the reduction can set g2, g

d
2 by exponentiating g1, g

d
1 to

a random value in Zq , and for arbitrary π = (h1, h2) and m, it can set (c1, c2) as (gd1 h
m
1 , gd2 h

m
2), and

implement the PCA oracle using the DDH oracle as described above. □

4.3 Covert Identity Escrow

We describe a Covert Identity Escrow (IE) scheme, an essential ingredient in our group cAKE construction
of Section 6.

IE Syntax. An Identity Escrow (IE) scheme [42] is an entity authentication scheme with operational
assumptions and privacy properties similar to a group signature scheme [22]. Namely, a designated party
called a group manager (GM) uses a key generation algorithm KG to first generate a group public key gpk
and a master secret key msk . Then, using the master secret key and a certificate generation algorithm CG,
the group manager can issue each group member a membership certificate cert together with membership
validity witness v . This pair allows a group member to authenticate herself as belonging to the group, but
this authentication is anonymous in that multiple authentication instances conducted by the same party
cannot be linked. In other words, the verifier is convinced that it interacts with some group member,
in possession of some valid membership certificate, but it cannot tell which one. Following [13] we use
the Verifier-Local Revocation (VLR) model for IE/group signature, where algorithm CG produces also
a revocation token rt corresponding to certificate cert , and the authentication between a prover holding
(gpk , cert , v) and the verifier holding gpk and a set of revocation tokens RTset is defined by a triple of
algorithms CertBlind, Ver, Link, as follows:

18

1. The prover uses a certificate blinding algorithm CertBlind to create a blinded certificate bc from its
certificate cert , and sends bc to the verifier.

2. The prover proves knowledge of witness v corresponding to the blinded certificate bc using a zero-
knowledge proof of knowledge for relation

RIE = {((gpk , bc), v) s.t. Ver(gpk , bc, v) = 1} (2)

3. The verifier accepts if and only if the above proof succeeds and the tracing algorithm Link does not
link the blinded certificate to any revocation token in set RTset, i.e. if Link(gpk , bc, rt) = 0 for all
rt ∈ RTset.

The IE syntax and correctness requirements are formally captured as follows:17

Definition 4.6. An identity escrow (IE) scheme is a tuple of efficient algorithms (KG,CG,CertBlind,Ver, Link)
with the following syntax:

– Key Generation alg. KG picks a public key pair, (msk , gpk)← KG(1κ)
– Certificate Generation alg. CG generates a certificate cert, its validity witness v, and revocation token

rt, (cert , v , rt)← CG(msk)
– Blinding alg. CertBlind outputs a blinded certificate, bc ← CertBlind(cert)
– Verification alg. Ver, s.t. if (msk , gpk)← KG(1κ), (cert , v , rt)← CG(msk), and bc ← CertBlind(cert),

then Ver(gpk , bc, v) = 1
– Tracing alg. Link, s.t. if (msk , gpk) ← KG(1κ), (cert , v , rt) ← CG(msk), and bc ← CertBlind(cert),

then Link(gpk , bc, rt)= 1

IE Security. Below we state the standard IE security properties [42], strengthened by covertness needed
for our group cAKE construction.

The IE unforgeability property is that the adversary who receives some set of certificates, cannot
create pair (bc, v) which satisfies the verification equation, i.e. Ver(gpk , bc, v) = 1, but which the tracing
algorithm Link fails to link to the revocation tokens corresponding to the certificates received by the
adversary. In the group cAKE application an adversary, in addition to holding some set of compromised
certificates, can also observe revocation tokens and blinded certificates corresponding to non-compromised
certificates. The definition below captures this by giving the adversary an arbitrary number of revocation
tokens rt and certificates cert from which it can generate blinded certificates on its own:

Definition 4.7. We call an IE scheme unforgeable if for any efficient algorithm A the probability that
b = 1 in the following game is negligible in κ, for m,n polynomial in κ s.t. m < n:

1. set b← 0 and (msk , gpk)← KG(1κ)
2. for i ∈ [1, n] set (cert i, vi, rt i)← CG(msk)
3. (bc∗, v∗)← A(gpk , {cert i, vi, rt i}i∈[1,m], {cert i, rt i}i∈[m+1,n])
4. b← 1 if Ver(gpk , bc∗, v∗) = 1 and Link(gpk , bc∗, rt i) = 0 for all i ∈ [1,m]

(In the above game, tuples (cert i, vi, rt i) for i ∈ [1,m] represent compromised certificates, set {rt i}i∈[m+1,n]

contains all additional revocation tokens the adversary learns, and set {cert i}i∈[m+1,n] can be used to
derive all blinded certificates the adversary receives from non-compromised parties.)

The IE covertness property strengthens the standard IE property of authentication anonymity [42].
Authentication anonymity asks that an adversary cannot link blinded certificate bc and decide e.g.
whether they are generated from the same certificate or not. Covertness strengthens this by requiring
that blinded certificates are indistinguishable from random elements in a uniformly encodable domain
(hence they can be covertly encoded, see Section 2.4). Since each blinded certificate is indistinguishable
from random domain element, it follows in particular that they are unlinkable. Similarly as in the
unforgeability property, the adversary should be able to observe other certificates, hence in the definition
below we hand the adversary the master secret key msk from which it can generate certificates, blinded
certificates, and revocation tokens.

17 More generally, CertBlind should take witness v along with cert as input, and produce output v ′ along with bc as
output, where v ′ is a validity witness for the blinded certificate bc. We use simpler syntax assuming that v ′ = v
because it declutters notation, and it suffices for IE instantiation from Pointcheval-Sanders signatures [51].

19

Definition 4.8. We call an IE scheme covert if there is a uniformly encodable domain D s.t. for any
efficient algorithm A quantity |p0 − p1| is negligible in κ for n,m polynomial in κ, where pb = Pr[b′ = 1]
in the following game:

1. (msk , gpk)← KG(1κ)
2. for i ∈ [1, n] set (cert i, vi, rt i)← CG(msk)
3. for all (i, j) ∈ [1, n]× [1,m]:

if b = 1 then set bcij ← CertBlind(cert i) else pick bcij ←R D
4. b′ ← A(msk , gpk , {bcij}i∈[1,n],j∈[1,m])

We require that the zero-knowledge proof for relation RIE in eq. (2) used is (based on) a Σ-protocol.
We need this property to build a covert CKEM for the same relation using the Σ-to-CKEM compiler of
Section 5.2.

Definition 4.9. We call an IE scheme Σ-protocol friendly if relation RIE, Equation (2), admits a Σ-
protocol with a uniformly encodable response space Sz .

Finally, we require IE to satisfy that the same blinded certificate cannot, except for negligible proba-
bility, correspond to two different honestly generated revocation tokens created on behalf of two different
groups. This property allows the AKE scheme constructed in Section 6 to realize the group cAKE func-
tionality Fg-cAKE of Section 3, which assumes that if the real-world adversary attempts to authenticate
using some group certificate then this implies a unique choice of a certificate, and hence also a group for
which it was generated.

Definition 4.10. We call IE scheme unambiguous if:

(1) the probability that Link(gpk0, bc, rt0) = Link(gpk1, bc, rt1) = 1 is at most negligible for any efficient
A, where (msk b, gpk b)← KG(1κ), (vb, certb, rtb)← CG(msk b) for b ∈ {0, 1}, and
bc ← A(msk0, v0, cert0, rt0,msk1, v1, cert1, rt1);

(2) the same holds if the above experiment is adjusted by setting (msk , gpk)← KG(1κ) and (vb, certb, rtb)←
CG(msk) for b ∈ {0, 1}, and we measure the probability that Link(gpk , bc, rt0) = Link(gpk , bc, rt1) = 1.

Covert IE Instantiation using Pointcheval-Sanders Signature. We show how the Pointcheval-
Sanders group signature [51] gives rise to a secure, covert, and Σ-protocol friendly IE scheme. In the
following we will refer to this Covert IE implementation as Pointcheval-Sanders IE (PS IE).

Construction 4.3 Let (p,G1,G2,GT , e) be a bilinear pairing of type 3 with g (ĝ) a generator of G1

(G2). The Pointcheval-Stern IE scheme works as follows:

– KG(1κ) picks x, y ←R Zp and outputs msk = (x, y) and gpk = (X̂, Ŷ) = (ĝx, ĝy) (the public key
includes also the description of the pairing group)

– CG(msk) picks σ̃ ←R G1, v ←R Zp, sets ω̃ ← σ̃x+y·v , and outputs certificate cert = (σ̃, ω̃), validity

witness v, and revocation token rt = Ŷ v

– CertBlind(cert = (σ̃, ω̃)) picks t ←R Zp and outputs bc = (σ, ω) = (σ̃t, ω̃t)

– Ver(gpk = (ĝ, X̂, Ŷ), bc = (σ, ω), v) = 1 iff e(σ, X̂ · Ŷ v) = e(ω, ĝ)

– Link(gpk = (ĝ, X̂, Ŷ), bc = (σ, ω), rt) = 1 iff e(σ, X̂ · rt) = e(ω, ĝ)

Theorem 4.3. Pointcheval-Sanders IE scheme, Construction 4.3, is unforgeable, covert, Σ-protocol
friendly, and unambiguous, where unforgeability holds under Assumption 1, see Section 2.2, and covert-
ness holds under the DDH assumption in G1 if group G1 is uniformly encodable.

Proof. We argue each of the above properties in turn:

Unforgeability. Unforgeability follows from the unforgeability of the Pointcheval-Sanders (PS) signa-
ture, proven under the same assumption [51]. In the PS signature scheme, tuples (v , cert) are formed
as above, and they have the same security property. Note that there is no essential difference between
certificate cert = (σ̃, ω̃) and its blinding bc = (σ, ω): For a given validity witness v and group pub-
lic key gpk = (ĝx, ĝy), both cert and bc are distributed as pairs (σ, σx+y·v) for random σ ← G1. The

20

security of PS signatures rests on the fact that under Assumption 1, Sec. 2.2, an adversary who gets
tuples (cert i, vi, rt i) cannot create (cert∗, v∗) s.t. Ver(gpk , cert∗, v∗) = 1 and Link(gpk , cert∗, rt i) = 0
for all i. Moreover, this holds even if the adversary is also given any number of additional (certj , rtj)
pairs. In more detail, notice that for each bc∗ there is a unique v∗ which satisfies the verification equa-
tion in Construction 4.3, implying that the adversary cannot produce a forgery for i ∈ [1,m]. Partition
the event that the adversary wins into two cases. First, assume (bc∗, v∗) correspond to a (cert i, rt i) for
i ∈ [m+1, n]. Such adversary can be used to solve DLOG on G2 given (h, hx+v∗y ∈ G2

1. The Link equation
in Construction 4.3 implies that the only remaining case is that the forgery corresponds to a new v∗

unseen by the adversary, but this happens with only negligible probability by Assumption 1.

Covertness. First, note that if G1 is uniformly encodable then so is domain (G1)
2 of blinded certificates.

Secondly, each blinded certificate is distributed as (σ, σt) where t = x + y · v . Since each v is random,
so is each t, even to an adversary who holds msk = (x, y). Therefore, distinguishing between b = 0 and
b = 1 in the covertness game for PS IE, is equivalent to distinguishing, for each i ∈ [1, n], between (1)
tuples of the form {(σij , σ

ti
ij)}j∈[1,m] where ti ←R Zp and σi1, ..., σim ←R G1, and (2) m pairs of random

G1 elements. The indistinguishability between the two follows from the DDH assumption on G1.

Σ-protocol. Consider relation RIE, eq. (2), instantiated for the PS IE scheme:

RPS−IE = {((gpk = (ĝ, X̂, Ŷ), bc = (σ, ω)), v) s.t. e(σ, X̂ · Ŷ v) = e(ω, ĝ)} (3)

The Σ-protocol for RPS−IE is a tuple (P1,P2,VRec,Sch ,Sz), see Section 2.3 for notation, where Sch =
Sz = Zp , and algorithms P1,P2,VRec are defined as follows, where gpk and bc are always parsed as

gpk = (ĝ, X̂, Ŷ) and bc = (σ, ω):

– P1((gpk , bc), v) picks r ← Zp and sets a← e(σ, Ŷ r)
– P2((gpk , bc), v , r, ch) outputs z = r + ch · v (mod p)
– Verifier accepts on x=(gpk , bc) and (a, ch, z) iff a = e(σ, X̂ch Ŷ z) · e(ω, ĝ−ch)

The completeness and response uniqueness properties can be seen by inspection. For special HVZK, note
that for any ch ∈ Zp , choosing z ← Zp and setting a ← e(σ, X̂ch Ŷ z) · e(ω, ĝ−ch) generates identical
transcript to that generated by an honest prover. For special strong soundness, note that the challenge
space Sch = Zp is super-polynomial, furthermore for any (gpk , bc) and any two accepting transcripts

(a, ch, z) and (a, ch ′, z′) s.t. ch ′ ̸= ch, the verification equations imply e(σ, Ŷ δzX̂δch) = e(ω, ĝδch) for
δch =(ch − ch ′) and δz =(z − z′), which implies that e(σ, Ŷ δz/δch X̂) = e(ω, ĝ), hence an efficient witness
extractor can compute v = δz/δch (mod p) s.t. ((gpk , bc), v) ∈ RPS−IE. Finally, note that the prover’s
response space Sz = Zp is uniformly encodable, see Sec. 2.4.

Unambiguity. For part (1), note that Link(gpk , bc, rt) = 1 for gpk = (ĝ, X̂, Ŷ) and bc = (σ, ω) iff
e(σ, X̂ · rt) = e(ω, ĝ), i.e. iff dlog(σ, ω) = dlog(ĝ, X̂ · rt). For a random group key gpk and random
(cert , v , rt) generated for that group, we have X̂ = ĝx and rt = (Ŷ)v = ĝy·v where x, y, v are all random
in Zp . Therefore if A on inputs random msk0 = (x0, y0), msk1 = (x1, y1), and random v0, v1 (from which
A can generate everything else it can see), generates bc s.t. Link(gpk0, bc, rt0) = Link(gpk1, bc, rt1) = 1,
it must hold that dlog(ĝ, X̂0 · rt0) = dlog(ĝ, X̂1 · rt1), i.e. that x0 + y0 · v0 = x1 + y1 · v1, which can
happen with probability only 1/p. As for part (2), note that Link(gpk , bc, rt0) = Link(gpk , bc, rt1) = 1 iff
rt0 = rt1, which holds with probability 1/p. □

5 Covert Strong Simulation-Sound Conditional KEM

Conditional Key Encapsulation Mechanism (CKEM) [39] is a KEM counterpart of Witness Encryption
(WE) [32] and Conditional Oblivious Transfer (COT) [25]. A CKEM for an efficiently verifiable relation
R (and a corresponding NP language LR) is a protocol that allows sender S and receiver R, to establish,
on input a statement x, a secure key K if R holds a witness w s.t. (x,w) ∈ R. Since CKEM is an
encryption counterpart to a zero-knowledge proof, we follow [39,9,40] and use ZKP terminology referring
to CKEM properties, e.g. we call CKEM sound if S’s output KS is pseudorandom if x ̸∈ LR, and we call
it strong sound [39] if w is extractable from any algorithm distinguishing KS from random.

Benhamouda et al. [9] strengthened the notion of CKEM (called Implicit Zero-Knowledge therein)
to include simulatability, i.e. that there exists an efficient simulator which for any x ∈ LR computes R’s

21

output KR without the knowledge of witness w for x, and simulation-soundness, i.e. that adversarial
CKEM instances remain sound even in the presence of a simulator which simulates CKEM instances
performed on behalf of honest players. Jarecki [40] extended simulation-sound CKEM of [9] to covertness,
i.e. indistinguishability of a simulation (and hence also the real receiver) from a random beacon.

Here we adopt the covert zero-knowledge and simulation-sound CKEM notion which follows the
above chain of works, but we modify it in several ways. First, we combine strong soundness of [39] and
simulation-soundness of [9] to strong simulation-soundness, i.e. we require an efficient extractor that
extracts a witness from an attacker who distinguishes S’s output key from random on instance x in the
presence of a simulator which plays the receiver’s role on any instance x′ ̸= x. This is motivated by
the group cAKE application where a reduction must extract a certificate forgery from an attacker who
breaks sender’s security of CKEM on a statement corresponding to a non-revoked certificate.

Our second change is introducing a postponed-statement zero-knowledge property to CKEM, which
asks that there exists a postponed-statement simulator which simulates the CKEM on behalf of the
receiver, i.e. recovers the same key KR which an honest receiver would compute, not only without knowing
the witness but also without knowing the statement used by the real-world receiver R, except after all
CKEM messages are exchanged, i.e. in the final key-computation step of the receiver. This property is
crucial in an application like group cAKE, because in the ideal-world group cAKE scheme, see the group
cAKE functionality in Section 3, the simulator does not know the group to which a simulated party
belongs. Indeed, the simulator does not even know if a party whose execution it simulates is a real party
which executes the group cAKE for some group or it is a random beacon. Therefore, the simulator will
not know the statement x on which the real-world party performs the CKEM, except in the final step
in the case that (1) the adversary performs a CKEM for some group, and (2) the functionality confirms
that the honest party involved in this execution is a real-world receiver R (and not a random beacon)
and R runs on the same group the adversary does. At this point the simulator reconstructs the correct
statement x the real-world R would have used in that case, and passes x to the postponed-statement
CKEM simulator to compute R’s output KR.

The third change is that we cannot use proof labels, which were used to separate between honest and
adversarial proof/CKEM instances in e.g. [40]. This change stems from the fact that whereas in many
applications protocol instances can be tied to unique identifiers of participating parties, we cannot do
so in the case of covert authentication. Indeed, an adversary A interacting with a covert authentication
system could forward statement x from receiver R to sender S, and forward S’s CKEM for x from S
to R. If in the simulation-soundness game A learns R’s output KR then A can trivially distinguish S’s
output KS from random, as KS and KR are equal. Since this attack scenario corresponds to the case of
AKE attacker who forwards protocol messages between R and S, we will handle that case separately as
eavesdropper security, while in the simulation-soundness game we impose a restriction that the challenge
A-S interaction transcript differs from all A-R transcripts. Note that both the relation RPS−IE for which
we need this CKEM, and the SPHF tool we use to construct the CKEM scheme below, are malleable, e.g.
if the adversary changes statement x = (σ, ω) to x′ = (σδ, ωδ) then x′ ∈ RPS−IE if x ∈ RPS−IE. However,
we obtain sufficient separation between CKEM instances by deriving the CKEM key via a random oracle
(RO) hash on the SPHF-derived key and an interaction transcript.

In Section 5.1 below we define the covert zero-knowledge strong simulation-sound CKEM, and then
in Section 5.2 we show a CKEM construction which achieves this covert CKEM notion in ROM for any
relation R with a Σ-protocol.

5.1 Definition of covert CKEM with strong simulation-soundness

Definition 5.1. A conditional key encapsulation mechanism (CKEM) for relation R is an algorithms
tuple (GPG,Snd,Rec) s.t. parameter generation GPG(1κ) generates CRS parameter π, and the sender
Snd and receiver Rec are interactive algorithms which run on local respective inputs (π, x) and (π, x, w),
where each of them outputs a session key K as its local output. CKEM correctness requires that for all
(x,w) ∈ R and π ← GPG(1κ), if KS ,KR are respective outputs of Snd(π, x) and Rec(π, x, w) interacting
with each other, then KS = KR.

In the definition below we use the notation P&Out(x) for an interactive algorithm P that runs on input
x and attaches its local output to its last message. (In our case this output will be a CKEM key KS or
KR.) For notation P$(κ) refer to Section 2.4.

22

Definition 5.2. A CKEM for relation R is covert zero-knowledge and strong simulation-sound if there
exist efficient algorithms TGPG and psTGPG which on input 1κ output parameters π together with trap-
door td, and interactive algorithms TRec and psTRec which runs on input (π, x, td), which satisfy the
following properties:

1. Setup Indistinguishability: parameters π generated by GPG(1κ), TGPG(1κ), and psTGPG(1κ), are
computationally indistinguishable.

2. Zero-Knowledge: For any efficient A,

{ARecO(π,·)(π)} ≈c {ATRecO(π,td,·)(π)}

for (π, td) ← TGPG(1κ), where oracle RecO(π, ·) runs Rec&Out(π, x, w) and TRecO(π, td , ·) runs
TRec&Out(π, x, td), on any query (x,w) ∈ R sent by A.

3. Statement-Postponed Zero-Knowledge: The above property must hold for (psTGPG, psTRec) replacing
(TGPG,TRec) where psTRec computes all its network messages given (π, td) and only uses x for its
local output.

4. Receiver Covertness: For any efficient A, {ARec(π,x,w)(st)} ≈c {ARec$(κ)

(st)} for π ← GPG(1κ) and
(x,w, st)← A(π) s.t. (x,w) ∈ R.

5. Sender Covertness: For any efficient A, {ASnd(π,x)(st)} ≈c {ASnd$(κ)

(st)} for π ← GPG(1κ) and
(st , x)← A(π).

6. Passive Security: For any efficient A,

{A(π, st , tr,KS)} ≈c {A(π, st , tr,K ′)}

for π ← GPG(1κ), (x,w, st) ← A(π) s.t. (x,w) ∈ R, (tr,KS ,KR) ← [Snd(π, x) ↔ Rec(π, x, w)],
K ′ ← {0, 1}κ.

7. Strong Simulation-Soundness: There exists an efficient algorithm Ext s.t. for any deterministic efficient
algorithm A = (A1,A2), if ϵ = |p0 − p1| is non-negligible, then so is ϵ′, for pb for b = 0, 1 and ϵ′

defined as follows:

pb = Pr [b′ = 1 : (π, td , x, st)← Init[A1](1
κ), b′ ← Expb[A2](π, td , x, st)]

ϵ′ = Pr [(x,w) ∈ R : (π, td , x, st)← Init[A1](1
κ), w ← ExtA2(st)(π, td , x, st)]

where

– Init[A1](1
κ) sets (π, td)← TGPG(1κ) and (x, st)← ATRec&Out(π,·,td)

1 (π);

– Expb[A2](π, td , x, st) outputs b
′=ASndMod&Out(b,π,x),TRec&Out(π,·,td)

2 (st) s.t.

• SndMod&Out(1, π, x) runs Snd&Out(π, x);
• SndMod&Out(0, π, x) runs Snd(π, x) and then sends K ′S ← {0, 1}κ;

Moreover, Expb rejects if A2 makes the transcript of an interaction with SndMod(b, π, x) the same as
that of any interaction with TRec(π, x, td).

Discussion. The most direct comparison to the above notion of covert CKEM is a covert CKEM defined
in [40]. Differences from [40] include (1) lack of labels, (2) strengthening of simulation-soundness to strong
simulation-soundness, and (3) requirement that the CKEM facilitates statement-postponed simulation.
Furthermore, (4) we allow the adversary in the strong simulation-soundness game to interact with the
receiver even on the same statement x used in the challenge sender interaction, with the only constraint
of excluding the trivial attack when the adversary passes all messages between S and R, i.e. when some
A-R transcript equals the A-S transcript. We compensate for the latter constraint with (5) a passive
security requirement, i.e. that if the adversary passes messages between S and R then the security holds
even if the attacker knows the authentication tokens these parties use.

23

5.2 Compiler from Σ-protocol to covert CKEM in ROM

Our covert CKEM protocol, shown in Figure 3, is a compiler which creates a covert CKEM for relation R
from any Σ-protocol for R. The two other tools this protocol requires are a covert perfectly-binding trap-
door commitment scheme, see Section 4.1, and a covert and OW-PCA secure SPHF for language LCom[π]
associated with this commitment scheme, see Section 4.2 and equation (1). In addition, the compiler uses
the ROM, and in particular it assumes that the commitment scheme has RO-compatible instance pa-
rameters, see Section 4.1, and it instantiates the instance parameter generation of the commitment with
an RO hash HCom. Usage of ROM is motivated by the goal of realizing all CKEM security properties at
low cost in computation, communication, and round complexity. In particular, our CKEM has minimal
round complexity: one simultaneous flow. It is natural to ask whether the same strong properties can be
achieved, and at what costs, in the standard model, but we leave this as an open question.

Protocol Ingredients (see text):

– Σ-protocol (P1,P2,VRec,Sch ,Sz) for relation R;
– covert perfectly-binding trapdoor commitment (GPG,PG,Com,Decom) on msg. space M,

with RO-compatible instance parameters with param. space C;
– covert SPHF (HKG,Hash,PHash) for LCom[π];
– CRH H and RO’s H1,H2,HCom with ranges resp. M, Sch , {0, 1}κ, and C;

The GPG algorithm is the same as in the commitment scheme, i.e. π ← GPG(1κ).

Rec.1: On inputs (x,w) ∈ R, compute:

(a, r)← P1(x,w)

π ← HCom(x)

(c, d)← Com(π, π,H(a))

ch ← H1(x, c)

z ← P2(x,w, r, ch)

and send (c, z) to S (using covert encoding).

Snd.1: S precomputes (hk , hp)← HKG(π) and sends hp to R (covertly encoded).

Rec.2: Given hp, compute:

vR ← PHash((π, π, c,H(a)), d , hp)

KR ← H2(x, c, z, hp, vR)

Snd.2: On input x and given (c, z), compute:

ch ← H1(x, c)

π ← HCom(x)

a← VRec(x, ch, z)

vS ← Hash((π, π, c,H(a)), hk)

KS ← H2(x, c, z, hp, vS)

Fig. 3. Covert CKEM (in ROM) for any relation R with a Σ-protocol

Comparison with [39]. Our CKEM construction is a modification of the Σ-to-CKEM compiler of
Jarecki [39], where (1) the commitment scheme Com which R uses to compute c in step R.1 must be a
trapdoor commitment, where the commitment parameters are derived by an RO hash of the statement
x, (2) the covert SPHF has an additional property of OW-PCA security, see Def. 4.5 in Sec. 4.2, and
(3) the CKEM key output is not the SPHF hash value itself, but the RO hash of that value together
with the language statement and the protocol transcript. Intuitively, the first change allows the CKEM
to achieve statement-postponed zero-knowledge, since the trapdoor receiver can create a commitment
without knowing the instance parameter π. The second change assures security against a passive attacker.
The last change allows for a stronger version of simulation-soundness, see Def. 5.2, which asks that the

24

Sender CKEM challenge is secure in the presence of Receiver CKEM oracle that can be executed even on
the same statement, and the only restriction is that the CKEM transcripts of the adversary’s interactions
with the Sender and the Receiver cannot be the same. (The case of same transcripts is covered by the
passive security property.) The proof of the following theorem is included in Appendix A:

Theorem 5.1. CKEM for R shown in Fig. 3 is covert zero-knowledge and strong simulation-sound in
ROM, if R has a Σ-protocol with uniformly encodable response space Sz , trapdoor commitment Com is
perfectly binding and covert, H is a CRH, and SPHF for LCom is covert, smooth, and OW-PCA secure.

Let (p, g, ĝ1,G1,G2,GT , e) be type-3 curve. Given gpk = (X̂, Ŷ) ∈ (G2)2 [assume gpk defines all
curve parameters] and bc = (σ, ω) ∈ (G1)2, define:

RPS−IE = { ((gpk , bc), v) | e(σ, X̂ · Ŷ v) = e(ω, ĝ)}

Let (G, q) be a DDH group, e.g. a standard curve. Let H be a CRH, and HCom,H1,H2 be RO’s,
with ranges resp. Zq , G2, Zq , and {0, 1}κ.
Messages (c1, c2, z) and hp below are sent using covert encodings on G and Zq .

PG: On 1κ, set π = (g1, g2)← G2 (assume G is chosen for sec. par. κ)

Rec.1: R on x = (gpk , bc) and v picks (r, d)← Zp×Zq , sets a← e(σ, Ŷ r), π = (h1, h2)← HCom(x),

(c1, c2)← (gd1 · h
H(a)
1 , gd2 · h

H(a)
2), z← r + H1(x, c1, c2) · v mod p, and sends (c1, c2, z) to S

Snd.1: S precomputes hk = (hk1, hk2)← Z2
q and sends hp = (g1)hk1(g2)hk2 to R

Rec.2: On message hp, R sets vR ← (hp)d and KR ← H2((gpk , bc), c1, c2, z, hp, vR)

Snd.2: On statement x= (gpk , bc) and message (c1, c2, z), S sets π = (h1, h2) ← HCom(x), a′ ←
e(σ, X̂ch Ŷ z) · e(ω, ĝ−ch) for ch = H1(x, c1, c2), sets vS ← (c1 · h−H(a′)

1)hk1 · (c2 · h−H(a′)
2)hk2 ,

and KS ← H2((gpk , bc), c1, c2, z, hp, vS)

Fig. 4. Covert CKEM for Pointcheval-Sanders IE relation RPS−IE.

Efficient Instantiation. In Figure 4 we show an efficient instantiation of the generic CKEM construction
from Fig. 3, for relation RPS−IE defined by Covert IE using Pointcheval-Sanders signatures, see Sec. 4.3,
the “Double Pedersen” trapdoor commitment, see Sec. 4.1, and the associated SPHF, see Sec. 4.2.

By the security of protocol building blocks (Theorems 4.1, 4.2, 4.3), we obtain a corollary of Theorem 5.1:

Corollary 1. CKEM for RPS−IE in Fig. 4 is covert zero-knowledge and strong simulation-sound in ROM,
if DDH and GapDH assumptions hold on group G, H is a CRH, and group G is uniformly encodable.

6 Construction of Group Covert AKE Protocol

In Figures 5 and 6 we show algorithms (KG,CG,Auth) which implement a generic group cAKE construc-
tion from covert Identity Escrow (IE) and covert CKEM. In Figure 5 we show the group initialization
algorithm KG and certificate generation algorithm CG, which implement respectively the GInit and CertInit
interfaces of UC group cAKE, as defined in Section 3. Figure 5 also shows the “input-retrieval” step in the
implementation of the NewSession command, which triggers the online authentication algorithm Auth.
The algorithm Auth itself, executing between two parties, is shown in Figure 6. Note that if a party is
called with command (NewSession, ssid,⊥) then it executes as a random beacon, as noted in Figure 5,
instead of following the Auth protocol of Figure 6.

The authentication protocol Auth in Figure 6 uses the same combination of IE and CKEM as in the
covert AKE of [39], i.e. each party commits to its IE certificate, and then performs a CKEM to (implicitly
and covertly) prove that it knows a valid secret key issued by the group manager, corresponding to this
committed certificate. (Also, similarly as in [39], since the IE supports verifier-local revocation, each
party uses algorithm Link to locally verify the committed certificate against each revocation token on its
revocation list.) In spite of reusing the same construction paradigm, the novel aspects of this protocol are
as follows: First, thanks to stronger CKEM properties we can show that this generic protocol realizes UC

25

Protocol Ingredients:

– covert IE scheme IE = (KG,CG,CertBlind,Ver, Link)
– covert CKEM scheme CKEM = (GPG, Snd,Rec) for relation RIE

– secure channel between GM and each party P

Common Reference String Generation:
Sample CKEM global common reference string π ← GPG(1κ)

Initialization by GM on (GInit, gid):
Sample (msk , gpk)←R KG(1κ), broadcast (gid,GM, gpk , π) to all P’s

Certificate Generation by party P on (CertInit, gid, cid):
P retrieves (gid,GM, gpk , π), sends cid to GM on a secure channel
GM sets (v , cert , rt)← CG(msk), sends (v , cert , rt) to P on a secure channel
P stores (gid, cid, v , cert , rt), GM stores Trt [gid, cid]← rt

Authenticated Key Exchange by party P on (NewSession, ssid, gid, cid,RTcids):

1. P retrieves (gid,GM, gpk , π) and (gid, cid, v , cert , ·)
P sends (gid,RTcids) to GM on a secure channel
GM sends back RTset = {Trt [gid, cid] s.t. cid ∈ RTcids} on a secure channel

2. P runs protocol Auth((gpk , π), (v , cert),RTset) in Figure 6
P outputs (NewKey, ssid,K , cidCP) for (K , cidCP) output by protocol Auth

Random Beacon implemented by party P on (NewSession, ssid,⊥):

Party P runs Auth$(κ), a random beacon of the same bandwidth as protocol Auth

Fig. 5. Generic group cAKE: Initialization and UC interface.

P on ((gpk , π), (v , cert),RTset) P′ on ((gpk , π), (v ′, cert ′),RTset′)

bc ← CertBlind(cert) -bc �bc
′

bc′ ← CertBlind(cert ′)

KS ← Snd(π, (gpk , bc′)) ←→ CKEM ←→ Rec(π, (gpk , bc′), v ′)→ K ′
R

(P→ P′)

KR ← Rec(π, (gpk , bc), v) ←→ CKEM ←→ Snd(π, (gpk , bc))→ K ′
S

(P← P′)

If ∃ rt ∈ RTset s.t. If ∃ rt ′ ∈ RTset′ s.t.
Link(gpk , bc′, rt) = 1 Link(gpk , bc, rt ′) = 1

then K ← ⊥, cidCP ← cid[rt] then K ′ ← ⊥, cid′CP ← cid[rt ′]
else K ← H({KS ,KR}ord), cidCP ← ⊥ else K ′ ← H({K ′

S ,K
′
R}ord), cidCP ← ⊥

H is RO with range {0, 1}κ, notation {a, b}ord stands for (min(a, b),max(a, b))

Fig. 6. Generic group cAKE: protocol Auth, using covert encodings for bc/bc′.

group cAKE notion defined in Section 3. This implies that the protocol remains covert and secure under
concurrent composition, e.g. that leakage of keys on any session does not endanger either covertness or
security of any other session. Secondly, the strong notion of CKEM allows for minimal interaction, i.e.
both receiver and sender can send only one message without waiting for their counterparty. Consequently,
the generic Auth protocol in Figure 6 has a minimally-interactive instantiation shown in Figure 7.

The security of the above group cAKE construction is captured in the following theorem, with a proof
included in Appendix B:

Theorem 6.1. Protocol Π = (KG,CG,Auth) in Figs. 5,6 realizes UC Covert Authenticated Key Ex-
change if IE is secure, covert, and Σ-protocol friendly, and CKEM is covert zero-knowledge and strong
simulation-sound.

Efficient Instantiation. Figure 7 shows a concrete instantiation of the generic group cAKE scheme
shown in Figures 5,6. This instantiation uses the IE scheme based on Pointcheval-Sanders signatures, see
Section 4.3, and the CKEM from Section 5 instantiated as shown in Figure 4. Note that the protocol has

26

We use the same parameters as CKEM for RPS−IE in Fig. 4, i.e. (p, g, ĝ1,G1,G2,GT , e) is a
type-3 curve, (G, q) is a DDH group, and H is a CRH, and HCom,H1,H2 are RO’s, with ranges
resp. Zq , G2, Zq , and {0, 1}κ.

Values (σ, ω), (c1, c2, z), hp below are sent using covert encodings on G1, G and Zq .

Common Reference String Generation:

Set π = (g1, g2)←R (G)2

Group Manager GM Initialization:

Set msk = (x, y)←R (Zp)2 and gpk = (X̂, Ŷ)← (ĝx, ĝy)

Certificate Generation by GM:

For P: Pick (v , u)←R (Zp)2, set (σ̃, ω̃)← (gu, gu(x+y·v)), rt ← Ŷ v

For P′: Pick (v ′, u′)←R (Zp)2, set (σ̃′, ω̃′)← (gu
′
, gu

′(x+y·v′)), rt ′ ← Ŷ v′

Authentication Protocol

P on ((gpk , π), (v , (σ̃, ω̃)),RTset): P′ on ((gpk , π), (v ′, (σ̃′, ω̃′)),RTset′):

(σ, ω)← (σ̃t, ω̃t) for t←R Zp (σ′, ω′)← ((σ̃′)t
′
, (ω̃′)t

′
) for t′ ←R Zp

(r, d)←R Zp × Zq , a← e(σ, Ŷ r) (r′, d ′)←R Zp × Zq , a′← e(σ′, Ŷ r′)
(h1, h2)← HCom((gpk , (σ, ω))) (h′

1, h
′
2)← HCom((gpk , (σ′, ω′)))

(c1, c2)← (gd1h
H(a)
1 , gd2h

H(a)
2) (c′1, c

′
2)← (gd

′
1 h

′H(a′)
1 , gd

′
2 h

′H(a′)
2)

z← r + ch · v mod p z′← r′ + ch ′ · v ′ mod p
for ch = H1(gpk , σ, ω, c1, c2) for ch ′ = H1(gpk , σ′, ω′, c′1, c

′
2)

(hk1, hk2)←R (Zq)2 (hk ′
1, hk

′
2)←R (Zq)2

hp ← ghk1
1 ghk2

2 hp′ ← g
hk′

1
1 g

hk′
2

2

-bc = (σ, ω), (c1, c2, z), hp �bc′ = (σ′, ω′), (c′1, c
′
2, z

′), hp′

KR ← H2(gpk , σ, ω, c1, c2, z, (hp
′)d) K ′

R ← H2(gpk , σ′, ω′, c′1, c
′
2, z

′, (hp)d
′
)

a′ ← e(σ′, X̂ch′
Ŷ z′) · e(ω′, ĝ−ch′

) a← e(σ, X̂ch Ŷ z) · e(ω, ĝ−ch)
for ch ′ = H1(gpk , σ′, ω′, c′1, c

′
2) for ch = H1(gpk , σ, ω, c1, c2)

(h′
1, h

′
2)← HCom((gpk , (σ′, ω′))) (h1, h2)← HCom((gpk , (σ, ω)))

vS ← (c′1h
′−H(a′)
1)hk1 · (c′2h

′−H(a′)
2)hk2 v ′

S ← (c1h
−H(a)
1)hk

′
1 · (c2h−H(a)

2)hk
′
2

KS ← H2(gpk , σ′, ω′, c′1, c
′
2, z

′, vS) K ′
S ← H2(gpk , σ, ω, c1, c2, z, v

′
S)

If ∃ rt ∈ RTset s.t. If ∃ rt ′ ∈ RTset′ s.t.

e(σ′, X̂ · rt) = e(ω′, ĝ) e(σ, X̂ · rt) = e(ω, ĝ)
then K ← ⊥, cidCP ← cid[rt] then K ′ ← ⊥, cid′CP ← cid[rt ′]
else K ← H({KS ,KR}ord), cidCP ← ⊥ else K ′ ← H({K ′

S ,K
′
R}ord), cidCP ← ⊥

Output (K , cidCP) Output (K ′, cid′CP)

Fig. 7. Instantiation of Covert AKE, with IE of Section 4.3 and CKEM of Figure 4

minimal interaction, as each party sends a single message without waiting for the counterparty, and it is
quite practical: Its bandwidth is 6 group elements per party (2 in a base group of a type-3 elliptic curve
and 4 in a standard group), and each party computes 10 fixed-base exp’s, 4 variable-base (multi-)exp’s,
and 4 + n bilinear maps, where n is the size of the revocation list.

We include a step-by-step explanation why the code of player P in the Authentication Protocol in
Fig. 7 is an instantiation of the generic group cAKE protocol of Figure 6 using the PS IE scheme of
construction 4.3 and the CKEM instantiated as in Figure 4:

– The first line implements the certificate commitment procedure CertBlind;

– The next four lines implement step Rec.1 of P← P′ CKEM, where P plays the receiver R on statement
x = (gpk , (σ, ω)) and witness v in RPS−IE;

– The next two lines lines implement step Snd.1 of the P→ P′ CKEM, where P plays the sender S for
the counterparty’s statement (not yet revealed);

– P’s message contains the committed certificate bc = (σ, ω), R’s P ← P′ CKEM message (c, z) =
((c1, c2), z), and S’s P→ P′ CKEM message hp;

27

– The first line of the code after receiving counterparty’s message is step Rec.2, computing R’s P← P′

CKEM key KR;
– The next four lines are step Snd.2, computing S’s P→ P′ CKEM key KS on statement x′ = (gpk , bc′)

based on bc′ = (σ′, ω′) received from P′;
– The final four steps implements checking the counterparty’s committed certificate against P’s revo-

cation list, and deciding on the output based on that, which is done as in the generic protocol in
Figure 6.

References

1. Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange protocols. In Topics
in Cryptology – CT-RSA 2005, pages 191–208, 2005.

2. Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica Staddon, and Hao-Chi Wong. Secret
handshakes from pairing-based key agreements. In IEEE Symposium on Security and Privacy (S&P), pages
180–196, 2003.

3. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of authentication
and key exchange protocols (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing (STOC), page 419–428, 1998.

4. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key en-
cryption. In Advances in Cryptology — ASIACRYPT 2001, pages 566–582. Springer, 2001.

5. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In CCS, pages 390–399. ACM, 2006.

6. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In CCS, pages 62–73. ACM, 1993.

7. S.M. Bellovin and M. Merritt. Encrypted key-exchange: Password-based protocols secure against dictionary
attacks. In IEEE Computer Society Symposium on Research in Security and Privacy, pages 72–84, 1992.

8. Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital signatures.
In Advances in Cryptology — EUROCRYPT, pages 274–285, 1993.

9. Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee. Implicit zero-knowledge
arguments and applications to the malicious setting. In CRYPTO (2), volume 9216 of Lecture Notes in
Computer Science, pages 107–129. Springer, 2015.

10. Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key Cryptography, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

11. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve points indis-
tinguishable from uniform random strings. In CCS, pages 967–980. ACM, 2013.

12. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In CRYPTO, volume
2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

13. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In Vijayalakshmi Atluri,
Birgit Pfitzmann, and Patrick McDaniel, editors, ACM CCS 2004, pages 168–177. ACM Press, October 2004.

14. Sean Bowe. Bls12-381: New zk-snark elliptic curve construction, Mar 2017.
15. Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi Tibouchi.

Efficient indifferentiable hashing into ordinary elliptic curves. In CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 237–254. Springer, 2010.

16. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
93–118. Springer, 2001.

17. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In Advances in Cryptology — CRYPTO, pages 61–76, 2002.

18. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product of two safe
primes. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 107–122. Springer,
1999.

19. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages
136–145. IEEE Computer Society, 2001.

20. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels. In
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 337–351. Springer, 2002.

21. Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai. Covert multi-party computation. In
FOCS, pages 238–248. IEEE Computer Society, 2007.

22. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991.

28

23. Chongwon Cho, Dana Dachman-Soled, and Stanis law Jarecki. Efficient concurrent covert computation of
string equality and set intersection. In RSA Conference on Topics in Cryptology - CT-RSA, page 164–179,
2016.

24. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
45–64. Springer, 2002.

25. Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Conditional oblivious transfer
and timed-release encryption. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages
74–89. Springer, 1999.

26. Ivan Damg̊ard. On ∑-protocols. https://cs.au.dk/~ivan/Sigma.pdf, 2010.
27. Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication and authenticated key

exchanges. Designs, Codes and Cryptography, 2:107–125, 1992.
28. Karim Eldefrawy, Nicholas Genise, and Stanislaw Jarecki. Short concurrent covert authenticated key exchange

(short cAKE). In Advances in Cryptology — ASIACRYPT 2023. Springer, 2023.
29. Amos Fiat and Moni Naor. Broadcast encryption. In Advances in Cryptology — CRYPTO’ 93, pages

480–491. Springer, 1994.
30. Marc Fischlin. Trapdoor commitment schemes and their applications. PhD thesis, Goethe University Frank-

furt, Frankfurt am Main, Germany, 2001.
31. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discret. Appl.

Math., 156(16):3113–3121, 2008.
32. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications. In

Symposium on Theory of Computing Conference, STOC’13, pages 467–476. ACM, 2013.
33. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic

constructions. In STOC, pages 197–206. ACM, 2008.
34. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping secret all

partial information. In STOC, pages 365–377. ACM, 1982.
35. Vipul Goyal and Abhishek Jain. On the round complexity of covert computation. In STOC, pages 191–200.

ACM, 2010.
36. Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. Khape: Asymmetric pake from key-hiding key exchange.

In Advances in Cryptology – CRYPTO, pages 701–730, 2021.
37. Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. KHAPE: asymmetric PAKE from key-hiding key exchange.

In CRYPTO (4), volume 12828 of Lecture Notes in Computer Science, pages 701–730. Springer, 2021.
38. Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganography. In CRYPTO, volume

2442 of Lecture Notes in Computer Science, pages 77–92. Springer, 2002.
39. Stanislaw Jarecki. Practical covert authentication. In Public Key Cryptography, volume 8383 of Lecture Notes

in Computer Science, pages 611–629. Springer, 2014.
40. Stanislaw Jarecki. Efficient covert two-party computation. In Public Key Cryptography (1), volume 10769 of

Lecture Notes in Computer Science, pages 644–674. Springer, 2018.
41. Antoine Joux. A one round protocol for tripartite diffie-hellman. In ANTS, volume 1838 of Lecture Notes in

Computer Science, pages 385–394. Springer, 2000.
42. Joe Kilian and Erez Petrank. Identity escrow. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO

’98, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998,
Proceedings, volume 1462 of Lecture Notes in Computer Science, pages 169–185. Springer, 1998.

43. Hugo Krawczyk. SKEME: A versatile secure key exchange mechanism for internet. In 1996 Internet Society
Symposium on Network and Distributed System Security (NDSS), pages 114–127, 1996.

44. Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in the
IKE protocols. In Advances in Cryptology – CRYPTO 2003, pages 400–425. Springer, 2003.

45. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Advances in Cryptology –
CRYPTO 2005, pages 546–566, 2005.

46. Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In CRYPTO, volume 3621 of
Lecture Notes in Computer Science, pages 546–566. Springer, 2005.

47. Rajendra Kumar and Khoa Nguyen. Covert authentication from lattices. In ACNS, volume 13269 of Lecture
Notes in Computer Science, pages 480–500. Springer, 2022.

48. Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving group discovery with linear com-
plexity. In International Conference on Applied Cryptography and Network Security - ACNS, pages 420–437,
2010.

49. Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol, https://signal.org/docs/

specifications/x3dh/, 2016.
50. Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryptology - CT-RSA 2005,

The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005,
Proceedings, pages 275–292, 2005.

29

https://cs.au.dk/~ivan/Sigma.pdf
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/

51. David Pointcheval and Olivier Sanders. Short randomizable signatures. In CT-RSA, volume 9610 of Lecture
Notes in Computer Science, pages 111–126. Springer, 2016.

52. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. J.
Cryptol., 13(3):361–396, 2000.

53. Phillip Rogaway. Nonce-based symmetric encryption. In FSE, volume 3017 of Lecture Notes in Computer
Science, pages 348–359. Springer, 2004.

54. Jacob Appelbaum Roger Dingledine. How governments have tried to block tor. https://oldsite.

andreafortuna.org/security/files/TOR/slides-28c3.pdf.
55. Anmol Sachdeva. Darpa making an anonymous and hack-proof mobile commu-

nication system. FOSSBYTES Online Article, 2019. https://fossbytes.com/

darpa-anonymous-hack-proof-mobile-communication-system/.
56. Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational points on elliptic curves over

finite fields. In ANTS, volume 4076 of Lecture Notes in Computer Science, pages 510–524. Springer, 2006.
57. Wazen M. Shbair, Thibault Cholez, Antoine Goichot, and Isabelle Chrisment. Efficiently bypassing sni-based

https filtering. In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pages
990–995, 2015.

58. Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, volume 1233
of Lecture Notes in Computer Science, pages 256–266. Springer, 1997.

59. Mehdi Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as uniform random
strings. In Financial Cryptography, volume 8437 of Lecture Notes in Computer Science, pages 139–156.
Springer, 2014.

60. N S Vipin and M Abdul Nizar. Efficient on-line spam filtering for encrypted messages. In 2015 IEEE
International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES),
pages 1–5, 2015.

61. Luis von Ahn, Nicholas J. Hopper, and John Langford. Covert two-party computation. In STOC, pages
513–522. ACM, 2005.

62. Riad S. Wahby and Dan Boneh. Fast and simple constant-time hashing to the BLS12-381 elliptic curve.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):154–179, 2019.

A Proof of security for the Covert CKEM construction

We include the proof of Theorem 5.1 deferred from Section 5.2, i.e. the proof of security of the Covert
CKEM construction of Figure 3.

Proof. Trapdoor receiver algorithm TRec and psTRec are shown resp. in Figure 8 and 9. The trapdoor
parameters generation TGPG for TRec is identical to the standard parameter generation GPG, and the
only trapdoor assumed by the trapdoor receiver algorithm TRec, denoted td , is a control over the random
oracle H1. Likewise psTGPG for psTRec is identical to GPG, except its trapdoor td is a control over the
random oracle HCom.

TRec(π, x, td), where td is the control of RO H1:

TRec.1 forms message (c, z) to S as follows:

(ch, z)←R Sch × Sz

a← VRec(x, ch, z)

π ← HCom(x)

(c, d)← Com(π, π,H(a))

ch → H1(x, c) (and abort if H1 has been queried on (x, c) previously)

TRec.2, given S’s message hp, computes KR as Rec.2 does:

vR ← PHash((π, π, c,H(a)), d , hp)

KR ← H2(x, c, z, hp, vR)

Fig. 8. Trapdoor receiver TRec for CKEM of Fig. 3.

30

https://oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf
https://oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf
https://fossbytes.com/darpa-anonymous-hack-proof-mobile-communication-system/
https://fossbytes.com/darpa-anonymous-hack-proof-mobile-communication-system/

spTRec(π, td , x), where x is withheld till spTRec.2 and td is the control of RO HCom:

On adversary’s new query x to HCom:

(π, tk)← TPG(π)

π → HCom(x) (and associate tk with x)

spTRec.1(π, td) forms message (c, z) to S as follows:

(c, tdCom)← TCom(π)

z ←R Sz

spTRec.2, given x and S’s message hp, retrieves tk associated with x, and sets:

ch ← H1(x, c)

a← VRec(x, ch, z)

d ← TDecom(π, π, c, tk , tdCom,H(a))

vR ← PHash((π, π, c,H(a)), d , hp)

KR ← H2(x, c, z, hp, vR)

Fig. 9. Statement-postponed trapdoor receiver spTRec for CKEM of Fig. 3.

Lemma A.1. CKEM for R in Fig. 3 is Setup Indistinguishable in the ROM.

Proof. Setup indistinguishability is immediate in ROM, because TGPG and psTGPG are identical to GPG,
and trapdoor td each of them generates denotes only a control over random oracle, resp. H1 and HCom.

Lemma A.2. CKEM for R in Fig. 3 is Zero-Knowledge in the ROM assuming trapdoor commitment
Com is covert, Com has RO-compatible commitment instance parameters, and that R has a Σ-protocol.

Proof. Figure 8 depicts the trapdoor simulator TRec. The Zero-Knowledge property follows from the
Σ-protocol’s Special Honest Verifier Zero-Knowledge property (Section 2.3): that for all fixed ch ∈ Sch ,
sampling z ← Sz then a ← VRec(x, ch, z) is identically distributed to (a, z) computed in the honest
manner: (a, r) ← P1(x,w) and z ← P2(x,w, r, ch). Randomizing over ch matches the distribution of ch
in the ROM. Therefore, Rec and TRec have the same distribution conditioned on the event that TRec
does not abort. Conversely, TRec only aborts if H1 is queried twice on (x, c) and this happens with
negligible probability because c is computationally indistinguishable from a uniformly encodable set of
superpolynomial size, Definition 4.2. □

Lemma A.3. CKEM for R in Fig. 3 is Statement-Postponed Zero-Knowledge in the ROM assuming
trapdoor commitment Com is covert, Com has RO-compatible commitment instance parameters, and that
R has a Σ-protocol.

Proof. Figure 9 depicts the trapdoor simulator spTRec. First note that the view of S is (c, z) and the
output of the random oracles. The former, (c, z), in spTRec (Figure 9) is computationally indistinguish-
able from the real protocol because of Com’s trapdoor covertness and the Σ-protocol’s Special Honest
Verifier Zero Knowledge property (Section 2.3): that for all fixed ch ∈ Sch , sampling z ← Sz then
a← VRec(x, ch, z) is identically distributed to (a, z) computed in the honest manner: (a, r)← P1(x,w)
and z ← P2(x,w, r, ch). Randomizing over ch matches the distribution of ch in the ROM. The other
random oracle programming is done for π which is computationally indistinguishable from U(C) by
Definition 4.2. Statement-Postponed Zero-Knowledge is clear from Figure 9. □

Lemma A.4. CKEM for R in Fig. 3 is receiver and sender covert assuming the trapdoor commitment
scheme Com is covert, the SPHF for LCom is statistically covert, and R’s Σ-protocol has a uniformly
encodable response space Sz .

Proof. Receiver covertness follows from the covertness of the commitment scheme, c from
(c, d) ← Com(π, π,H(a)) is covert, and the covertness from Σ-protocol has a uniformly encodable re-
sponse space Sz (covert encodings here are implicit). See Definition 4.2. Sender covertness follows imme-
diately from Definition 4.4, that hp is covert (e.g., in a uniformly encodable space). □

31

Lemma A.5. CKEM for R in Fig. 3 is passively secure in the ROM if the SPHF for LCom is OW-PCA
secure.

Proof. Note that for any (x,w) ∈ R, the CKEM transcript Snd(π, x) ↔ Rec(π, x, w) and key are gen-
erated as tr ← (c, z, hp) and KS ← H2(x, c, z, hp, v) where (a, z) is generated by Σ-protocol prover
on inputs (x,w) (and access to oracle H1 which generates challenge ch), (c, d) ← Com(π, π,H(a)),
(hk , hp)← HKG(π), and v ← Hash((π, π, c,H(a)), hk).

The reduction to OW-PCA security of SPHF for LCom recreates the above view by generating (a, z)
using (P1,P2,H1)

(x,w), and then using SPHF OW-PCA challenge (π, π, c, hp) generated for message
m = H(a). Since the only way an adversary can distinguish the real KS key from random is by querying
H2 on (x, c, z, hp, v ′) for v ′ = PHash((π, π, c, a), d , hp), the reduction monitors these queries, and identifies
v ′ = v using the PCA oracle on (v ′, hp) to test v ′ in each H2 query.

□

Lemma A.6. CKEM for R in Fig. 3 is strong simulation-sound in the ROM if H is a CRH, the SPHF
for LCom is statistically smooth and is OW-PCA secure, and that R has a Σ-protocol.

Proof. Assume A = (A1,A2) s.t. AdvA = |p1 − p0| is non-negligible, where pb for b = 1, 0 is defined as
follows:

– p1 is the probability that A2(st) outputs 1 on access to oracles Snd&Out(π, x) and TRec&Out(π, ·, td)
for (π, td)← TPG(1κ) and (x, st)← A1(π) on access to oracle TRec&Out(π, ·, td), constrained so that
oracle Snd&Out is queried once and the A-S transcript cannot equal to any A-R transcript.

– p0 is the probability that A2(st) outputs 1 in the same game as above except that oracle Snd&Out(π, x)
sets its output K as a random κ-bit string.

Recall that TPG(1κ) generates random π, and td denotes simulator TRec’s control over RO hash
functions H1,H2. For challenge bit b, an interaction of A with sender S modeled by oracle Snd&Out(π, ·)
goes as follows:

– A receives hp for (hk , hp)← HKG(π) from S
– A sends (x, c, z) to S
– A receives K b

S from S, where K 0
S ← {0, 1}κ and K 1

S = H2(x, c, z, hp, vS) for π ← HCom(x), vS =
Hash((π, π, c,H(a)), hk) and a = VRec(x,H1(x, c), z).

Consider also the i-th interaction of A with oracle TRec&Out(π, ·, td):
– A sends statement xi to R
– A receives (ci, zi) from R created as (chi, zi) ← Sch × Sz , ai ← VRec(xi, chi, zi),π ← HCom(xi),

(ci, di)← Com(π, π,H(ai)), and H1(xi, ci)← chi

(game aborts if H1 was queried on this input before)
– A sends to R projection key hpi s.t. (xi, ci, zi, hpi) ̸= (x, c, z, hp)
– A receives Ki = H2(xi, ci, zi, hpi, vR) for vR = PHash((π, π, ci,H(ai)), di, hpi).

Denote the event that (xi, ci) = (x, c) as EQi, let EQ be the union of events EQi over all sessions i, and
let NEQ be the complement of EQ. Let AdvEA stand for the adversarial advantage constrained by event
E, i.e. where the above security game is modified so A’s true output is ignored and artificially set to
0 if event E does not occur. Note that if AdvA ≥ ϵ then either AdvEQA ≥ ϵ/2 or AdvNEQA ≥ ϵ/2 because
Pr[EQ ∪ NEQ] = 1.

Case 1: Consider first the case when AdvNEQA ≥ ϵ/2, i.e. when the attacker succeeds with non-negligible
advantage without making any A-R values (xi, ci) equal to (x, c) in the A-S interaction. In this case the
proof, based on the Bellare-Pointcheval forking lemma [52,5], is the same as in [39], and we sketch it here.

Let AdvNEQ,j
A be A’s advantage restricted further by the constraint that (x, c) in A-S interaction forms A’s

j-th query to oracle H1. (If A makes no such query we can add a wrapper that does when A sends x, c, z

to S.) If A makes at most qH queries to H1 then there exists j s.t. AdvNEQ,j
A ≥ ϵ/(2qH). Let CS be the event

that (x, c, z) implies a correct statement, i.e. that (π, π, c,H(a)) ∈ LCom for a = VRec(x,H1(x, c), z). If

¬CS then by SPHF smoothness value K 1
S is distributed identically as K 0

S , hence AdvNEQ,j,CS
A ≥ ϵ/(2qH).

(If SPHF smoothness is statistical then AdvNEQ,j,CS
A and AdvNEQ,j

A can be apart by at most negligible
difference.) The extractor Ext runs the beginning of the security game generating (π, td) as TPG(1κ)

32

and providing access to TRec to A until A makes the j-th query (x, c) to H1. If this query does not
correspond to the challenge statement x and pair (c, z) which A sends to S in the security game, Ext

aborts. Otherwise Ext saves tuple (ch, z) for ch = H1(x, c). With probability at least ϵ′ = AdvNEQ,j,CS
A this

tuple satisfies that H(a) for a = VRec(x,H1(x, c), z) is committed in c. Re-running the same experiment
with (deterministic) A but “forking” on the j-th query to H1 by setting H1(x, c) to a fresh random
value ch ′, can lead to a second tuple (ch ′, z′) s.t. H(a′) for a′ = VRec(x,H1(x, c

′), z′) is committed in c,
and by the standard forking lemma argument, this rewinding strategy succeeds with probability at least
ϵ′′ ≥ (ϵ′)2/2. The probability that ch ′ = ch is only 1/|Sch |, which must be negligible, and if a′ ̸= a we
have a break in the CRH property of H, so with probability at least ϵ′′ − (δA,H + 1/|Sch |), where δA,H is
the negligible advantage of the implied reduction to CRH of H, we have a′ = a and ch ′ ̸= ch, and by the
special strong soundness of Σ, there is an efficient extraction procedure which extracts w s.t. (x,w) ∈ R
from two such transcripts.

Case 2: We will argue that the second case, i.e. AdvEQA ≥ ϵ/2, is not possible for non-negligible ϵ.
This will imply that for non-negligible ϵ the first case is the only one possible, and thus complete the
proof. Assume for contradiction that AdvEQA is non-negligible. Since A can start only polynomially-many

sessions TRec sessions, there must be an i s.t. AdvEQi

A is non-negligible, i.e. that A has non-negligible
advantage in a security game when (x, c) = (xi, ci).

Case 2(a): Consider first the case when z ̸= zi. By the Σ-protocol response uniqueness property this
implies that a = VRec(x,H1(x, c), z) and ai = VRec(x,H1(x, c), zi) satisfy a ̸= ai. By CRH property of
H, there is at most negligible chance that H(a) = H(ai), hence we can assume that H(a) ̸= H(ai). Since
ci is created by TRec as a commitment to H(ai), by perfect binding property of Com the same value
c = ci is not a commitment to H(a), which means that the challenge statement (π, π, c,H(a)) is not in
LCom. Therefore by SPHF smoothness the real and random CKEM key values K 1

S and K 0
S are distributed

identically, hence in this case advantage Adv
EQi∩[z ̸=zi]
A has to be negligible.

Case 2(b): Consider the second case when z = zi, which implies that a = ai, and therefore statement

xCom = (π, π, c,H(a)) is in LCom. Let adversary’s advantage in this case, ϵ = Adv
EQi∩[z=zi]
A , be non-

negligible. Denote i-th session of TRec as R(i). Note that A gets hp from S for (hp, hk)← HKG(1κ), and
that since (x, c, z) = (xi, ci, zi) the adversary can pass to R(i) only some value hpi ̸= hp. Observe that
A receives from S the CKEM challenge key KS set as K 1

S = H2(x, c, z, hp, vS) (or as K
0
S ← {0, 1}κ) for

vS = Hash(xCom, hk), and that A receives from R(i) the receiver’s CKEM key Ki = H2(x, c, z, hpi, vR)
for vR = PHash(xCom, d , hpi), where (c, d) are honestly generated by R(i) as (c, d) ← Com(π, π,H(a))
for a = VRec(x, ch, z) and random ch, z (and setting H1(x, c) to ch). (Note that we discounted the case
that H1-setting can fail in the first security game.) In the Random Oracle model, if A has advantage ϵ
in distinguishing K 1

S from K 0
S then A must query H2 on point (x, c, z, hp, vS) with probability ϵ. Note

also that A does not learn anything from R(i) output Ki unless it also queries H2 on (x, c, z, hpi, vR).
Whether it does or does not perform that latter query, we can construct a reduction A′ to OW-PCA
security of SPHF. Reduction A′ runs the security game above on OW-PCA challenge parameters π
(note that TPG generates π in the same way as PG, and trapdoor td is solely a backdoor to RO’s
H1,H2), setting hp output by S to the hp value in the OW-PCA challenge, and running TRec(π, ·, td)
to service each A-R interaction except for the i-th instance R(i). For the latter A′ picks ch, z and sets
a = VRec(x, ch, z) as TRec, sets the OW-PCA challenge message m ← H(a), receives c generated by the
OW-PCA security game as (c, d) ← Com(π,H(a)), sets H1(x, c) ← ch as TRec, and outputs (c, z) to
A. (Since we assume that A passes this tuple to S we can denote it c, z instead of ci, zi.) Note that S’s
challenge SPHF value is vS = Hash(xCom, hk) for xCom = (π, π, c,m), thus if A′ captures this vS value
from H2 query (x, c, z, hp, vS) of A then A′ wins the OW-PCA game. However, A′ has no access to d so
it cannot compute key Ki = H2(x, c, z, hpi, vR) for vR = PHash(xCom, d , hpi). This is why we need SPHF
one-wayness to hold in the presence of the plaintext-checking oracle: Using oracle PCA(d , ·) reduction A′
can test, on every query (x, c, z, hpi, vR) of A to H2, if vR = PHash(xCom, d , hpi), and if so then A′ sets
Ki ← H2(x, c, z, hpi, vR). This shows that A′ succeeds in the OW-PCA game with the same advantage
which A has in CKEM simulation soundness if (x, c, z) = (xi, ci, zi). Since under OW-PCA assumption
this advantage must be negligible, this completes the proof. □

By combining Lemmas A.1, A.2, A.3, A.4, A.5, and A.6, the proof is complete. ■

33

B Proof of security for the group cAKE scheme

We include the proof of Theorem 6.1 deferred from Section 6, i.e. the proof of security of the group cAKE
construction shown in Figures 5 and 6 in Section 6.

Note on the secure channels. The protocol in Figure 5 assumes a secure channel P↔ GM between the
special party GM and each party P. This channel is secure in the sense of “lead pipe”, i.e. the adversary
does not even know if anyone transmits anything on it. For example, in the certificate generation P
requests and then receives a group certificate (v , cert , rt) on this channel, but the adversary A does not
even learn that this communication takes place, hence in the ideal group cAKE model, see Figure 2. If the
real-world adversary A learns that certification takes place, this would be simulatable as well, if the ideal-
world adversaryA∗, a.k.a. the simulator, was told that P is getting some certificate from GM in response to
the environment’s certification generation query (CertInit, gid, cid) to P. However, when P runs the online
authentication protocol, in response to the environment’s query (NewSession, ssid, gid, cid,RTcids) to P,
our implementation assumes that P uses the P↔ GM to exchange the set RTcids of the environment-level
identifiers of revoked certificate to the set RTset of implementation-level revocation tokens rt generated
for the corresponding certificates by GM. Even if this communication were secure, a standard channel
would leak the number of the revoked certificates P uses to A, which would be not simulatable unless
functionality Fg-cAKE leaks the same to the ideal-world adversary A∗. Our notion of the P ↔ GM in
essence assumes that the issuance of certificates to honest parties and dissemination of the revocation
tokens happen “out of bounds” for the real-world adversary A. (Consequently, the ideal-world A∗ does
not have to receive information related to these actions.) This appears to be a clean interface between
the real-world covert authentication and our UC model Fg-cAKE. In particular, if the environment wants
to pass any information to the real-world adversary about either honest players’ certificates or the size
or content of their revocation lists, the environment can do this, and our results imply security in that
case as well.

Simulator construction. Recall that, by definition 3.1, we need to show a construction of the ideal-
world adversary algorithm A∗, i.e. the simulator, which on interaction with functionality Fg-cAKE and
the real-world adversary A, emulates a view which no efficient environment Z can distinguish from a
real-world interaction between the same adversary A and honest parties running protocol Π. Below we
show the construction of A∗ for the proof that under the assumptions stated in Theorem 6.1 on IE
and CKEM, no efficient Z can distinguish between the real-real world interaction defined by Π and the
ideal-world interaction defined by Fg-cAKE and simulator A∗ shown below.

The ideal-world algorithm A∗ acts as follows:

1. At initialization A∗ sets (π, td)← TGPG(1κ).

2. On any query (GInit,GM, gid) from Fg-cAKE, A∗ samples (msk , gpk)← KG(1κ), saves (gid,msk , gpk),
and adds gpk to set Gset.

3. Note that A∗ does not learn from Fg-cAKE when some certificate is created. However, if Z sends a
permission to A∗ to issue either (CompCert,P, gid, cid) or (RevealRT,P, gid, cid) queries to Fg-cAKE

for some (gid, cid), then whichever comes first, A∗ generates (v , cert , rt)← CG(msk), associates this
certificate with (gid, cid), and reveals resp. (v , cert) (on CompCert) or rt (on RevealRT), and adds cid
to lists CompCertgid and RevealRTgid (on CompCert) or only to list RevealRTgid (on RevealRT), just
like Fg-cAKE does.

4. When A∗ gets (NewSession,P, ssid, gid, cid) from Fg-cAKE, i.e. if P runs NewSession on (gid, cid) for

cid ∈ RevealRTgid, A∗ retrieves (v , cert) corresponding to (gid, cid) (note that A∗ must have created
these if cid ∈ RevealRTgid) and:
(a) A∗ sends bc ← CertBlind(cert) to A and receives bc′ from A;
(b) A∗ runs KS ← Snd(π, (gpk , bc′)), interacting with A;
(c) A∗ runs KR ← Rec(π, (gpk, bc), v), interacting with A;
(d) Set tr[P, ssid] to the interaction transcript and K ∗ ← H({KS ,KR}ord);
(e) If tr[P, ssid] = tr[P′, ssid′] for any P′, ssid′: then set msgF ← (Connect,P, ssid,P′, ssid′) and reset

K ∗ ← ⊥;
(f) else if ∃ cid∗∈RevealRTgid associated with rt∗ s.t. Link(gpk , bc′, rt∗)=1: then set

msgF ← (Impersonate,P, ssid, gid, cid∗);
(g) else set msgF ← (Interfere,P, ssid) and reset K ∗ ← ⊥;

34

(h) Send messages msgF and (NewKey,P, ssid,K ∗) to Fg-cAKE.

5. When A∗ gets (NewSession,P, ssid,⊥) from Fg-cAKE, i.e. if P is either a random beacon or it runs

NewSession on (gid, cid) for cid ̸∈ RevealRTgid, then:

(a) A∗ samples random bc from CertBlind output domain and sends it to A;
(b) A∗ runs Snd.1(π) interacting with A, saving its private state stS;
(c) A∗ runs psTRec.1(π, td) interacting with A, saving its private state stR;
(d) When A sends bc′ and interactions end, set tr[P, ssid] to their transcript;
(e) If tr[P, ssid] = tr[P′, ssid′] for any P′, ssid′: then set msgF ← (Connect,P, ssid,P′, ssid′) and

K ∗ ← ⊥;
(f) else if ∃ (gid∗, cid∗) s.t. cid∗∈RevealRTgid∗ and Link(gpk∗, bc′, rt∗)=1 for gpk∗, rt∗ associated with

gid∗, cid∗: then set x← (gpk∗, bc′) and do:

– set KS ← Snd.2(π, x, stS) and KR ← psTRec.2(π, td , x, stR);
– reset K ∗ ← H({KS ,KR}ord);
– set msgF ← (Impersonate,P, ssid, gid∗, cid∗);

(g) else set msgF ← (Interfere,P, ssid) and K ∗ ← ⊥;
(h) Send messages msgF and (NewKey,P, ssid,K ∗) to Fg-cAKE.

Notational conventions. We use Pssid for an instance of party P running subsession ssid. Note that
the environment Z identifies group instances with identifiers gid and certificate and revocation token
instances within a given group with identifiers cid, while in the implementation these correspond to
respectively group public keys gpk , certificates (v , cert), and revocation tokens rt . To avoid the need to
constantly translate between these two levels, we say that Z “tells Pssid to run Auth on (gpk , cert ,RTset)”
if Z sends (NewSession, ssid, gid, cid,RTcids) to P for gid corresponding to gpk , cid corresponding to cert ,
and revoked certificate identifier set RTcids corresponding to a set of revocation tokens RTset. We likewise
say that Z “tells Pssid to run Auth$(κ)” when Z sends (NewSession, ssid,⊥) to P, and we say that “Pssid

outputs (K , rt)”, where K is either ⊥ or a key and rt is either ⊥ or a revocation token, if P outputs
(NewKey, ssid,K , cidCP) for cidCP corresponding to rt . However, since a real session Pssid always outputs
(K , rt) s.t. K = ⊥ if and only if rt ̸= ⊥, we simplify the syntax and assume that real Pssid outputs
either K or rt (but not both), and it never outputs ⊥, while a random beacon Pssid always outputs ⊥.
In the ideal-world execution, we say that “instance Pssid runs” some algorithm when the simulator A∗
runs this algorithm on behalf of Pssid. We use RTsetgpk and CCsetgpk to denote the set of resp. revocation
tokens and compromised certificates, corresponding to sets RevealRTgid and CompCertgid of resp. revoked
and compromised cid’s within group gid corresponding to gpk . Finally, in either the real-world or the
ideal-world executions, we treat the real-world adversary A as an interface of Z.
Note on static compromise model. Recall that functionality Fg-cAKE imposes a static compromise
model, see Section 3, therefore we can assume that Z issues all certificate commands CompCert and all
revocation token reveal commands RevealRT at the outset. This partitions the set of certificates into two
sets, the “revealed”, whose corresponding revocation token are in RTsetgpk and the “hidden”, which are
not. The set of revealed certificates is further divided between the “compromised”, whose certificates
were subject to the CompCert query, and “revealed-only”, whose revocation tokens were subject to only
the RevealRT query. All Pssid sessions running on revealed certificates are simulated by A∗ in step 4 while
sessions running on hidden certificates are simulated by A∗ in setp 5. The divergencies between the real
world and the ideal world view which these two simulation methods create are summarized below, for
the revealed certificates in step 3 and for the hidden certificates in step 4.

Summary of real-world vs. ideal-world differences. Recall that we need to argue that for any Z
(we adopt the standard convention that A is only an interface of Z),

{IdealFg-cAKE,A∗,Z(κ, z)}κ∈N,z∈{0,1}∗ ≈c {RealΠ,A,Z(κ, z)}κ∈N,z∈{0,1}∗

We will show the above via a sequence of games below, but first we list the summary code of the
ideal-world execution, in as much as it differs from the real-world execution. This walk-through of the
differences between ideal-world and real-world is made with references to the group cAKE protocol shown
in Fig. 6 in Section 6, the simulator A∗ shown above, and the functionality Fg-cAKE in Fig. 2 in Section 3.

1. π is generated by GPG in the real-world and by TGPG in the ideal-world.

35

2. If Z tells Pssid to run Auth$(κ) then this is what Z sees in the real world, while in the ideal world
Pssid runs as A∗ in step 5, i.e. (s1) it sends random bc, (s2) on the outgoing CKEM it runs Snd.1(π),
(s3) on the incoming CKEM it runs psTRec(π, td), (s4) when these complete and A sends bc′, A∗
performs some computation which results in sending msgF ∈ {Connect, Impersonate, Interfere} and

NewKey to Fg-cAKE. However, if Pssid runs Auth$(κ) then Fg-cAKE marks it random, hence (regardless
of msgF) session Pssid outputs ⊥ in both the real and the ideal worlds. Thus the only difference
between the two is in the network messages, i.e. steps (s1)-(s3) above.

3. If Z tells Pssid to run Auth on (gpk , cert ,RTset) s.t. rt ∈ RTsetgpk for rt corresponding to cert , then
this is what Z sees in the real world, while in the ideal world Pssid also runs Auth on the above inputs
when sending outgoing messages, but the local output of Pssid is determined as follows, depending
on transcript tr[P, ssid] and bc′ received from A:
(a) If tr[P, ssid] = tr[P′, ssid′] (let gpk ′, cert ′,RTset′ be the inputs of P′ssid′ if it is a real session, and

let rt ′ correspond to cert ′) then (c1) Pssid outputs rt ′ if P′ssid′ is real, gpk = gpk ′, and rt ′ ∈ RTset;
(c2) Pssid outputs the same key as P′ssid′ if P′ssid′ is real, it has output a key, gpk = gpk ′, and
rt ′ ̸∈ RTset; (c3) Pssid outputs a random key in any other case.

(b) If tr[P, ssid] is adversarial and Link(gpk , bc′, rt) = 0 for all rt ∈ RTsetgpk , then Pssid outputs
random key K ;

(c) If tr[P, ssid] is adversarial and ∃ rt ∈ RTsetgpk s.t. Link(gpk , bc′, rt) = 1:
i. if rt ∈ RTset then Pssid outputs rt ;
ii. if rt ∈ CCsetgpk \ RTset then Pssid outputs K ∗ set by A∗ in step 4d;
iii. else Pssid outputs random key K ;

4. If Z tells Pssid to run Auth on (gpk , cert ,RTset) s.t. rt ̸∈ RTsetgpk for rt corresponding to cert , then
this is what Z sees in the real execution, while in the ideal execution Pssid runs as in steps (s1)-(s3)
in item 2 above, but when these complete and A sends bc′ then Pssid local output is as follows,
depending on tr[P, ssid] and bc′ received from A:
(a) If tr[P, ssid] = tr[P′, ssid′] then Pssid output is as in step 3a above;

(b) If tr[P, ssid] is adversarial and Link(gpk∗, bc′, rt) = 0 for all gpk∗ and rt ∈ RTsetgpk
∗
, then Pssid

outputs random key K ;
(c) If tr[P, ssid] is adversarial and Link(gpk∗, bc′, rt) = 1 for some gpk∗ and rt ∈ RTsetgpk

∗
then:

i. If gpk∗ = gpk and rt ∈ RTset then Pssid outputs rt ;
ii. If gpk∗ = gpk and rt ∈ CCsetgpk \ RTset then Pssid outputs K ∗ set by A∗ in step 5f;
iii. else Pssid outputs random key K ;

Game sequence. We fix an efficient environment algorithm Z, which is a presumed distinguisher
between the real-world and ideal-world interaction, and we show a sequence of game changes which
bridges between Z’s view of the real-world interaction defined by group cAKE scheme Π, which we
denote Game 0, and the ideal-world interaction implied by functionality Fg-cAKE and the simulator A∗
shown above, which we denote Game 10. For any i, we use Gi to denote the event that Z outputs 1 in
interaction with Game i, and our goal is to prove that |Pr[G0]−Pr[G10]| ≤ negl(κ) under the assumptions
stated in the theorem.

Game 0 (real world): This is the real-world game as defined by protocol Π.

Game 1 (key/rt transfer on passive session): We change the game so that it acts like in the ideal
world in step 3a, i.e. if a real session Pssid is connected to some other session P′ssid′ which is real (i.e. it is not
a random beacon) then we don’t compute the output of Pssid as in the real world, but we shortcut it in two
cases, where gpk , cert ,RTset and gpk ′, cert ′,RTset′ are inputs of resp. Pssid and P′ssid′ and rt ′ corresponds
to cert ′: (1) if gpk = gpk ′ and rt ′ ∈ RTset then Pssid outputs rt ′, and (2) if gpk = gpk ′, rt ′ ̸∈ RTset,
and P′ssid′ has terminated with a key then Pssid outputs the same key which P′ssid′ . Note that after this
change the game looks like the ideal-world game in step 3a in case of either clauses (c1) or (c2). Change
(1) creates no difference in the game view by IE correctness, specifically that Link(gpk , bc′, rt ′) = 1
if bc′ ← CertBlind(cert ′) for (cert ′, rt ′) generated by CG(msk). Change (2) is indistinguishable by IE
unambiguity, specifically that the probability that Link(gpk , bc′, rt) = 1 for bc′ ← CertBlind(cert ′) for
(cert ′, rt ′) generated by CG(msk) and any rt ̸= rt ′, and CKEM correctness, i.e. that if Pssid and P′ssid
run CKEM on correct statement,witness pair then they get the same K , and hence the same key.
Consequently, |Pr[G0]− Pr[G1]| ≤ negl(κ).

36

Game 2 (random key on passive session): We modify the game so it acts like the ideal world in
step 3a, i.e. if a real session Pssid is connected to some other session P′ssid′ and clauses (c1) and (c2) are
not triggered, i.e. we are in the “otherwise” clause (c3), then instead of computing the output of Pssid

as in the real world, we shortcut it by making Pssid output a random key K ←R {0, 1}κ. Note that after
this change the game looks like the ideal-world game in step 3a.

First, note that if clauses (c1) and (c2) are not triggered then the probability that Pssid outputs some
revocation token rt ̸= ⊥ (and K = ⊥), is negligible: In the case that P′ssid′ is random, then there is

only negligible probability that Link(gpk , bc′, rt) = 1 for any rt ∈ RTsetgpk and bc′ random in CertBlind’s
domain, because by IE covertness such bc′ is indistinguishable from a bc′ generated for an independently
created cert ′, and by IE unambiguity a revocation token rt corresponding to a random certificate cert
will not work in Link on a blinded version of another random certificate cert ′. In the second case, that
P′ssid′ is real but gpk

′ ̸= gpk , then there is only negligible probability that Link(gpk , bc′, rt) = 1 for any rt
corresponding to cert generated for gpk and bc′ output by CertBlind(cert ′) for cert ′ generated for gpk ′:
This follows from IE unambiguity and IE correctness because IE correctness implies that bc′ has to be
correct for gpk ′, hence IE unambiguity implies that it cannot be at the same time correct for gpk .

Second, if Pssid does not output K ̸= ⊥ then recall that it outputs its key as K = H({KS ,KR}ord)
for KS ← Snd(π, (gpk , bc′)) and KR ← Rec(π, (gpk , bc), v). Since tr[P, ssid] = tr[P′, ssid′], in the lat-
ter interaction Rec interacts with either honest party running (case 1) Snd(π, (gpk , bc)), or (case 2)

Snd(π, (gpk ′, bc)), or (case 3) Snd$(κ). (The first two cases occur for real P′ssid′ running on resp. gpk ′ = gpk
and gpk ′ ̸= gpk , while the third case occurs if P′ssid′ is a random beacon.) We claim that in all of these
cases the probability that the adversary queries H on KR is negligible. Assume otherwise and let Pssid

and P′ssid′ be a pair of instances for which this event occurs with non-negligible probability. Consider a
modified interaction in which either case 2 or case 3 of P′ssid′ are modified to case 1. By CKEM sender
covertness, the change from case 2 to case 3 creates at most a negligible difference, and likewise the
change from case 3 to case 1 creates at most a negligible difference in the probability of this event.
Finally, assume that this event happens in case 1. That case leads to to contradiction by CKEM passive
security, because the reduction would create a valid blinded certificate bc and witness v as inputs for
Pssid, and it would emulate the whole rest of the game except for distinguishing between a real KR = KS

output by Snd(π, (gpk , bc)) and Rec(π, (gpk , bc), v) and a random key, because only the first one could
be subject of A’s query to H (except for the negligible probability). This concludes the argument that
|Pr[G1]− Pr[G2]| ≤ negl(κ).

Game reassessment: By the changes made above, Game 2 acts as the ideal-world in clause 3a. Note
that it also follows the ideal-world game in clause 3(c)i, because in the real world Pssid outputs rt because
Link(gpk , bc′, rt) = 1 for rt ∈ RTset, exactly like the ideal world in this clause. Furthermore, Game 2 also
follows the ideal-world game in clause 3(c)ii, because if rt ̸∈ RTset then the ideal-world game outputs
K = H({KS ,KR}ord) for KS ,KR computed as in the real-world game. We would like to argue that the
game remains indistinguishable also if it starts acting like the ideal-world game in clauses 3b and 3(c)iii.
Note that these cases correspond to an adversarial transcript, i.e. an active attack, in which bc′ is either
(clause 3b) not linked to any rt ∈ RTsetgpk or (clause 3(c)iii) linked to some rt ∈ RTsetgpk which
is not in RTset ∪ CCsetgpk . In other words, it is not on the revocation list which Pssid uses and it is
also not a compromised certificate (otherwise this would correspond to a successful compromise, as in
clause 3(c)ii). We can unite these two clauses is a single clause, which outputs a random key if Link does
not link bc′ to any rt ′ in RTset∪CCsetgpk . In other words, we want to argue that if the adversary uses a
non-compromised certificate (randomized certificates are part of the protocol transcript so they can be
replayed, and further randomized, by the adversary) which is not on Pssid’s revocation list, then Pssid will
output a key which the adversary cannot tell from random.

Note that if adversary sends bc′ and then computes KR (by sending it as query to H) then by
CKEM strong soundness there is an extractor which can extract witness v ′ s.t. ((gpk , bc′), v ′) ∈ RIE,
i.e. Ver(gpk , bc′, v ′) = 1. If at the same time bc′ avoids tracing with any rt ∈ CCsetgpk , we would like to
use tuple (bc′, v ′) as an attack on IE unforgeability. However, we cannot make this reduction just yet,
because the game creates more (cert , v) pairs that just the ones in set CCsetgpk . Therefore, we must first
prune the game from all (cert , v) pairs s.t. cert ̸∈ CCsetgpk . We will do so in the next few games, by
changing real instances Pssid so that if it runs on cert ̸∈ CCsetgpk then it runs TRec on (π, td) in place of
Rec on (π, (gpk , bc), v).

37

Game 3 (replacing Rec with TRec): We first modify Game 2 so that at initalization π ← GPG(1κ)
is replaced by (π, td) ← TGPG(1κ). Secondly, we modify it so that if real session Pssid runs on a non-
compromised certificate cert ̸∈ CCsetgpk , then Pssid sends bc ← CertBlind(cert) and runs Snd(π, (gpk , bc′))
as before, but it replaces Rec(π, (gpk , bc), v) with TRec(π, (gpk , bc), td). CKEM setup indistinguishability
and CKEM zero-knowledge imply that |Pr[G2]− Pr[G3]| ≤ negl(κ).

Game 4 (random key with non-compromised credentials): We modify Game 3 so that it acts like the
ideal-world game in clauses 3b and 3(c)iii, i.e. Pssid outputs a random key if Link does not link bc′ to any
rt ′ in RTset∪CCsetgpk (see the discussion above). Let E be the event that some session Pssid receives bc′

which is not linked to any rt ′ ∈ CCsetgpk (assume w.l.o.g. that RTset is empty) but A queries H on KS

computed by Snd(π, (gpk , bc′)) on this session. Assume that Pr[E] is non-negligible and we will argue
that this violates our assumptions. Observe that if Pr[E] is non-negligible then so is an advantage of a
tester T which emulates game 3 by interacting with IE group manager for group gpk as a black-box, so
whenever there is a certificate compromise query CompCert for this group, T gets a new (cert , v) pair
from the manager, and this certificate is placed in list CCsetgpk . However, T also gets other certificates
cert and revocation tokens rt , corresponding to non-compromised certificates, and on these it emulates
game 3 using TRec(π, ·, td) as an oracle. When A sends bc′ to a chosen instance Pssid (the argument
considers a separate reduction for each protocol instance invoked by Z), T sets x = (gpk , bc′) and after
interacting with challenge oracle Snd(π, x) it can distinguish between KS output by Snd(π, (gpk , bc′))
and a random key: T simply monitors the queries of A to H to decide if KS is real or random. (Note
that A can send bc′ after seeing Snd’s messages, but we assume Snd can be split into Snd.1, which does
not statement x as an input and produces all network messages, and Snd.2 which takes x and completes
Snd execution to compute its local output KS . Therefore T can ask oracle Snd first for its network
messages, which it forwards to A, and only then gives statement x to this oracle.) By CKEM strong
simulation-soundness, if T ’s advantage in this distinguishing game is non-negligible, then there exists
an efficient extractor which interacts with the same group manager and outputs with non-negligible
probability witness v for (gpk , bc′) in relation RIE, i.e. s.t. Ver(gpk , bc, v) = 1. However, since event E
assumes that Link(gpk , bc′, rt) = 0 for all rt ’s corresponding to the compromised certificates, an existence
of such extractor is contradicted by IE unforgeability. This implies that Pr[E] is negligible, which in turn
implies that |Pr[G3]− Pr[G4]| ≤ negl(κ).

Game reassessment: By the changes made above, Game 4 acts like the ideal-world in all of step 3.
However, in step 4 it acts close to the ideal-world game except for three aspects: First, it simulates
instances Pssid running on all non-compromised credentials, while the ideal-world game does so only on
hidden credentials (recall that if credential is hidden then it is not compromised, but not the other way
around because credentials can have revealed revocation tokens without being compromised). Second, it
simulates such instances using TRec instead of psTRec. Third, on simulated selections it creates bc via
CertBlind(cert) rather than sampling bc at random. Fourth, Game 4 in step 4c checks only if there exists
rt ∈ RTsetgpk s.t. Link(gpk , bc′, rt) = 1, in contrast to the ideal-world procedure which casts a wider net

and checks if there exists gpk∗ and rt ∈ RTsetgpk
∗
s.t. Link(gpk∗, bc′, rt) = 1. We address each of these

divergence in turn in the following games.

Game 5 (running instead of simulating sessions on revealed-only credentials): We modify Game 4
by restricting the set of parties emulated via TRec to those who execute on cert which is “hidden”, i.e.
they were not subject to either CompCert or RevealRT queries (i.e. cert which corresponds to rt s.t.
rt ̸∈ RTsetgpk), instead of parties who run on cert which is only non-compromised, i.e. cert ̸∈ CCsetgpk .
The change is that we change TRec back to Rec on these instances, hence CKEM zero-knowledge implies
that |Pr[G4]− Pr[G5]| ≤ negl(κ).

Game 6 (replacing TRec with psTRec): We modify Game 5 to eliminate the second divergence listed
above, i.e. (1) at initialization TGPG(1κ) is replaced by psTGPG(1κ), and (2) all sessions Pssid which run
on hidden certificates (i.e. certificates whose revocation tokens rt satisfy rt ̸∈ RTsetgpk) are emulated
using simulator psTRec(π, ·, td) for td output by psTGPG, instead of TRec(π, ·, td) for td output by
TGPG, as was done in Game 4. The CKEM setup indistinguability, CKEM zero-knowledge, and CKEM
statement-postponed zero-knowledge properties together imply that |Pr[G5]− Pr[G6]| ≤ negl(κ).

Game 7 (random certs for hidden certificates): We modify Game 6 to eliminate the third divergence,
i.e. if Pssid runs on a hidden certificate cert then we ignore cert and we sample bc at random from

38

the IE certificate space D. The difference this creates is that on hidden sessions corresponding to any
fixed certificate cert , each bc is independently sampled from D whereas before they were all created
via CertBlind(cert). However, IE covertness implies that these two views are indistinguishable (note
that in the IE covertness game the tester gets the IE master secret key msk so it can create other valid
certificate,witness pairs and thus emulate the rest of the game). Consequently, |Pr[G6]−Pr[G7]| ≤ negl(κ).

Game 8 (general revocation search): We modify Game 6 so clause 4c casts a “wider net” by checking

for any gpk∗, rt s.t. Link(gpk∗, bc′, rt) = 1 and rt ∈ RTsetgpk
∗
. Note that if gpk∗ = gpk then this is

identical to the previous constraint. Furthermore, if this clause is satisfied for gpk∗ ̸= gpk but not with gpk
then Pssid outputs random key both before and after this change. The only externally observable difference
this change creates in the game is in case the clause is satisfied for both gpk∗ and gpk ̸= gpk∗. However,
IE unambiguity implies that such even has negligible probability, hence |Pr[G7]− Pr[G8]| ≤ negl(κ).

Game 9 (simulated random beacons): We modify Game 8 so that when Z tells Pssid to run Auth$(κ),

we replace Pssid executing the random beacon Auth$(κ) with the corresponding view in the ideal-world,
i.e. we run substeps (s1)-(s3) of the ideal-world execution in step 2, i.e. we send random bc sampled

from the IE certificate space, replace Snd$(κ) with Snd.1(π) on the outgoing CKEM, and replace Rec$(κ)

with psTRec(π, td) on the incoming CKEM, but Pssid output is still ⊥. Note that after this change the
execution emulates the ideal-world in step 2. The first change creates an indistinguishable statistical
distance because by covertness property of IE the domain of blinded certificates is uniformly encodeable.
The second change is computationally indistinguishable by sender covertness of CKEM, and the third
change is computationally indistinguishable by receiver covertness of CKEM, which says that Rec$(κ) can
be replaced by Rec on an arbitrary statement,witness pair (x,w) in the language relation, and statement-
postponed zero-knowledge of CKEM which shows that such Rec is indistinguishable from psTRec(π, td , x).
However, since the adversary only sees network messages here, i.e. it has access to Rec and not Rec&Out,
we can restrict the last transition to psTRec.1(π, td), as required in Game 9. In particular, the arbitrary
(x,w) in the language relation is relevant only to the mid-point in the above transition, i.e. to show

that Rec$(κ) ≈c psTRec.1(π, td) by the two transitions, Rec$(κ) ≈c Rec(π, x, w) and Rec(π, x, w) ≈c

psTRec(π, td). Summing up, the above four properties imply that |Pr[G8]− Pr[G9]| ≤ negl(κ).

Game 10 (ideal world): This is the ideal-world game, but by inspection it is identical to Game 9,
hence Pr[G9] = Pr[G10], which completes the proof.

C Proof of Concept Implementation

Our proof of concept implementation can be downloaded at the following link18 and a video of a CKEM
demo can be found at this link19. We emphasize that our covert encodings on BLS12-381 in sage is a
proof of concept, i.e., it is somewhat slow. However, moving the implementation to C++ (NTL) would
significantly improve the timings. We leave this to future work due to deadline constraints.

Here we describe an implementation written in sage and C++ using both the MIRACL library as well
as Shoup’s Number Theory Library20 (NTL). We emphasize that though there are many implementations
of hashing onto a curve, there are few implementations of bandwidth-efficient, advanced covert protocols.
Standard covert encodings we use are described in Section 2. The commitment scheme and the SPHF are
instantiated on Curve25519 [11]. Further, we used the BLS12-381 pairing for our pairing friendly type-3
curve [14]. This curve is implemented in MIRACL.

To our knowledge, there are no implementations of covert encodings of type-3 curves. However, the
required building blocks for our protocol are implemented and described in the literature. The first main
building block is Elligator Squared [59], which works on all elliptic curves. The second is the work of
Wahby and Boneh [62] showing how to apply standard encodings to BLS12-381.

Elligator Squared requires an encoding f : Fq → E(Fq) which is well-distributed and has few pre-
images for each point in its range. Then, a point on the curve is encoded by two base field elements
u, v randomly sampled conditioned on f(u) + f(v) = P . (See Algorithm 1 of [59] for more details.)

18 https://www.dropbox.com/sh/dvxg0e0xuw3qtlj/AAAO1CKF-OWAD1QANzf5KaqFa?dl=0
19 https://www.dropbox.com/s/cnpbkgf55n2hyyu/short_cAKE_demo-Copy.mp4?dl=0
20 https://www.sagemath.org/, https://github.com/miracl/core/tree/master/cpp, and https://libntl.

org/

39

https://www.dropbox.com/sh/dvxg0e0xuw3qtlj/AAAO1CKF-OWAD1QANzf5KaqFa?dl=0
https://www.dropbox.com/s/cnpbkgf55n2hyyu/short_cAKE_demo - Copy.mp4?dl=0
https://www.sagemath.org/
https://github.com/miracl/core/tree/master/cpp
https://libntl.org/
https://libntl.org/

Unfortunately, the only encoding directly applicable to BLS12-381 is the slow, complicated encoding
given by Shallue and van de Woestijne [56]. Furthermore, there is no simple description of the inverse
map in the literature to our knowledge. However, Wahby and Boneh give a simple solution in their
work on hashing to BLS12-381. They simply compute a low degree isogeny , ϕ : G1 → G′1 which is
also invertible, to an alternative curve where the simplified SWU map given by Brier et al. [15] applies!
Therefore, we perform the following to covertly encode a point P on BLS12-381’s G1:

1. First, map the point using the isogeny P ′ = ϕ(P) given by Wahby and Boneh.
2. Then, use Elligator Squared with the simplified SWU encoding, as described in Section 4 of [59].

Bandwidth Comparison. Here we compare the required bandwidth between our protocol and the previous
state of the art [39]. In particular, we measure the number of bytes a party sends in its message in the Auth
protocol. Our protocol has a message of (σ,w, c1, c2, z, hp) which is two elements in G1, three elements
in G, and one exponent for G1. Therefore, we have (4 ·381+128)/8 ≈ 207 bytes for the two G1 elements,
(255+128) ≈ 48 for the exponent z, and 2 ·(256+128)/8 = 96 bytes for the two G, Curve25519, elements
encoded with Elligator2 together with rejection sampling. Summed, the total bandwidth is 351 bytes!
This is significantly less than the 3.6KB in [39], by a factor of ≈ 10. Further, we estimate comparable
security in both schemes21.

21 NIST estimates RSA with 2048 bit modulus has about 112 bits of security, https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf, and NCC recently estimated BLS12-381 as having
117 bits of security, https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_
Public_Report_2019-01-30_v1.3.pdf.

40

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf

	Short Concurrent Covert Authenticated Key Exchange (Short cAKE)

