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Abstract. GIFT is a family of lightweight block ciphers based on SPN
structure and composed of two versions named GIFT-64 and GIFT-128.
In this paper, we reevaluate the security of GIFT-64 against the rectangle
attack under the related-key setting. Investigating the previous rectangle
key recovery attack on GIFT-64, we obtain the core idea of improving
the attack trading off the time complexity of each attack phase. We
flexibly guess part of the involved subkey bits to balance the time cost of
each phase so that the overall time complexity of the attack is reduced.
Moreover, the reused subkey bits are identified according to the linear
key schedule of GIFT-64 and bring additional advantages for our attacks.
Furthermore, we incorporate the above ideas and propose a dedicated
MILP model for finding the best rectangle key recovery attack on GIFT-64.
As a result, we get the improved rectangle attacks on 26-round GIFT-64,
which are the best attacks on it in terms of time complexity so far.
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key recovery attack - related-key scenario - key guessing strategy

1 Introduction

Accompanied by the momentous expansion in emerging ubiquitous technologies,
securing resource-limited devices has become increasingly important. Lightweight
block ciphers came into being in such a situation, which have more advantages in
terms of cost, speed, power, and execution time than traditional block ciphers, but
still provide a sufficiently high safety margin for resource-limited devices. Well-
known lightweight block ciphers include SIMON [4], SPECK [4], PRESENT [g],
GIFT [3], etc.

Over the past three decades, researchers have committed to researching
algorithms to efficiently and accurately evaluate the security of block ciphers.
In 1990, Biham and Shamir proposed differential cryptanalysis [6], which tracks
the difference between a pair of inputs to outputs. One of the essential steps of
differential cryptanalysis is to find a high-probability differential trail over the



target cipher. However, this goal is hard to achieve when the cipher contains many
rounds. The boomerang attack [29] is an extension of differential cryptanalysis,
which combines two short differential trails to get a long trail with a high
probability. The rectangle attack [5] is a variant of the boomerang attack. The
boomerang attack requires chosen plaintexts and chosen ciphertexts, while the
rectangle attack only needs to choose plaintexts. Besides, the rectangle attack
considers as many differences as possible in the middle to estimate the probability
more accurately. The boomerang and rectangle attacks have been applied to many
ciphers, and many good results have been obtained. For example, Biryukov et
al. [7] put forward the rectangle attack on full AES-192 and AES-256, and
Derbez et al. proposed the boomerang attack on full AES-192 in [13].

In recent years, many strategies emerged to mount key recovery attacks as
efficiently as possible for the rectangle attack, such as [14}25/32]. Song et al.
proposed the most efficient and generic rectangle key recovery algorithm at
ASTACRYPT 2022 [25]. This algorithm supports flexible key guessing strategies
and is compatible with all the previous rectangle key recovery algorithms. By
trading off the overall complexity, Song et al. obtained the optimal results of
rectangle key recovery attacks on a series of block ciphers.

GIFT is a family of SPN-based lightweight block ciphers proposed by Banik et
al. at CHES’17 [3]. Tt is composed of two versions named GIFT-64 and GIFT-128,
where the block sizes are 64 bits and 128 bits, and the numbers of rounds are
28 and 40, respectively. The key lengths of GIFT-64 and GIFT-128 are both
128 bits. As the inheritor of PRESENT |[8], GIFT mends its weak points and
achieves efficiency and security improvements. Because of the comprehensive
treatment of the linear layer and the S-box, GIFT receives excellent performance
in hardware and software implementations and has become one of the most
energy-efficient ciphers. Benefiting from these advantages, GIFT plays the role of
the underlying primitives of many lightweight authenticated encryption schemes,
such as GIFT-COFB [2], HyENA [10], LOTUS-AEAD and LOCUS-AEAD [9],
and SUNDAE-GIFT [1]. Notably, GIFT-COFB is one of the final round finalists
of the NIST Lightweight Cryptography standardization project EL Thus, the
security evaluation of GIFT is of great significance.

Previous attacks on GIFT-64. GIFT has attracted the attention of many
researchers since its publication and has been the subject of many cryptanalyses.
The best result of the meet-in-the-middle attack is from [21], which attacks 15-
round GIFT-64 under the single key scenario. Sun et al. proposed the best linear
attack on GIFT-64 at present, which is a linear attack on 19-round GIFT-64
in [27]. The most efficient differential analysis for GIFT-64 under the related-key
scenario is currently the 26-round differential attack of Sun et al. [26]. Dong et
al. proposed the most efficient attack on GIFT-64 for the moment, which is a
26-round rectangle key recovery attack we are interested in [14]. We summarize
the state-of-the-art attacks against GIFT-64 in Table[I} where RK and SK denote

* https://csre.nist.gov/projects/lightweight-cryptography.



related-key and single-key settings, respectively, and enc. and m.a. represent time
complexity in units of encryption and memory access.

This paper focuses on the rectangle key recovery attack against GIFT-64. In
2019, Chen et al. executed the 23-round rectangle key recovery attack on GIFT-64
based on a 19-round related-key boomerang distinguisher [11]. Later, Zhao et
al. |32] expanded this attack to 24 rounds with a more efficient key-guessing
strategy. In 2020, Ji et al. [16] proposed the 20-round related-key boomerang
distinguisher. Based on this distinguisher, they also proposed a 25-round related-
key rectangle key recovery attack on GIFT-64 using Zhao et al.’s strategy in [16].
At EUROCRYPT 2022, Dong et al. [14] further improved the key guessing
strategy and extended the attack of Ji et al. to 26 rounds, resulting in the most
effective rectangle key recovery attack of GIFT-64 so far.

Table 1: Summary of relevant analysis results of GIFT-64

Method ‘ Setting ‘ Round ‘ Time ‘ Data ‘Memory‘ Source ‘
Integral SK 14 |296:00 gpe, 26300 263.00 13]
MITM SK 15 |2112:00 g, 264.00 1 916.00 [21]
Linear SK 19 212711 epe. 262.96 260.00 127]

Boomerang| RK 23 2126-60 gpe. 263:30 - 119]

Differential] RK 26 |2123:23 enc. 260.96 | 910286 |26]
RK 23 |9107.00 . o 560.00 560.00 1)
RK 24  [29158 ope. 560.00 960.32 32
RK 25 9120.92 263.78 264.10 6]

Rectangle RK 26 212278 gpe. 20378 20878 (14)
RK 2 9121.75 o0 962.715 | 562.715 e
RK 2 9112.07 o0 963.79 963.79 [31)
RK 26 2110.06 gne. and 2'1%8m.a. 263.78 2064.36 Sec.
RK 26 2111-51 gne. and 211578 m.a. | 26378 2078 Sec.

Our contributions. We investigate the previous rectangle attacks on GIFT-64
and find that the time complexities of different attack phases are not balanced.
Inspired by the work of Song et al. [25], we study how to find a better strategy
for the rectangle key recovery attack on GIFT-64 to trade off the complexity of
each attack phase.

GIFT has a bit-wise linear layer and a bit-wise key schedule. We carefully
study each component of GIFT and, for the first time, apply the generic rectangle
key recovery algorithm [25] to such ciphers. For ciphers like GIFT, which mostly
have bit-wise operations, finding the best key-guessing strategy is much more
sophisticated than for cell-wise ciphers. In the attack on GIFT-64, we carefully
analyzed the key schedule and identified all the reused key bits. To find the
best attack for a given rectangle distinguisher, we build a MILP model in which
all possible key guessing strategies are allowed and minimize the overall time
complexity. As a result, we improve the rectangle attacks on 26-round GIFT-64



with new key-guessing strategies. Our attacks on GIFT-64 are better than the
previous rectangle key recovery attacks and are the best attacks on GIFT-64 in
terms of time complexity to date. The comparison of our attacks with previous
works is shown in Table [Il Apart from this, we also study the rectangle key
recovery attack on GIFT-128 and eventually reduce the complexity of the attack
in [16] by a factor of 22. We explain the attack in the Appendix

It’s worth noting that Yu et al. [31] proposed remarkable cryptanalysis of
GIFT-64 concurrently (available on-line on The Computer Journal on 14th July
2023). They constructed an automatic search model which treats the distinguisher
and the key recovery phase as a whole for GIFT. Taking the linear key schedule
into account, they also discovered a new boomerang distinguisher of GIFT-64.
The complexity of their 26-round rectangle key recovery attack on GIFT-64 is
(T,D,M) — (2112.07 enc.,263‘79,263'79).

Organization. The rest of the paper is organized as follows. In Sec. [2| we
introduce the structure of GIFT-64 and review the rectangle attack and the
key recovery algorithm. In Sec. [3] we propose the dedicated MILP model for
finding the best rectangle key recovery attack on GIFT-64 and describe in detail
the rectangle key recovery attack based on a new key guessing strategy. Sec. [d
concludes the paper.

2 Preliminary

2.1 Description of GIFT-64

GIFT is a block cipher with Substitution-Permutation-Network, which Banik et
al. proposed at CHES’ 2017 [3]. According to the 64-bit and 128-bit block sizes,
GIFT has two versions, GIFT-64 and GIFT-128, with round numbers 28 and 40,
respectively. Both versions of GIFT use a 128-bit master key. 7 in this subsection
represents the number of rounds, where r € {1,2, ..., 28}.

Round Function. The round function of GIFT-64 consists of three operations.
For convenience, we consider the 64-bit round state as 16 4-bit nibbles. The three
operations of the round function are as follows:

1. SubCells: Nonlinear S-box substitutions are applied to each nibble, as is
shown in Table 2| Denote X, and Y, as the inputs and outputs of the 16
S-boxes in the round r.

Table 2: The S-box of GIFT
T 0[112(3[4|5|/6|7|8|9|a|b|c|d]|e
GS(z)|1|a|4|c|6|f]3]9|2|d|b|T|5|0|8]|e

2. PermBits: For each bit of input, linear bit permutation bp(;) < b;, Vi €
{0,1,...,63} is applied. The permutation P(i) is shown in Table [3| Denote
the state which is transformed from Y, by PermBits in round r as Z,.



Table 3: Specifications of GIFT-64 Bit Permutation

011234 |5|6]7|8]9(10(11(12|13(14|15
1) 0 |17|34|51|48| 1 |18|35|32|49| 2 |19|16|33|50| 3
16[17|18(19|20(21(22(23(24|25[26|27|28|29|30|31
1) 4 121|38|55|52| 5 |22|39|36|53| 6 |23|20|37|54| 7

K3
(
2
(
i [32]33]34]35[36[37[38]39]40[41[42[43[44[45[46[47
(
7
(

1)| 8 125|42|59|56| 9 |26|43|40|57|10|27 |24 |41 |58 |11

48149|50(51|52(53|54|55[56|57|58(59(60|61|62|63
1)]12129|46|63|60|13|30|47|44|61|14|31|28|45|62|15

3. AddRoundKey: This step consists of adding the round key and round
constants. At each round, a 32-bit round key is obtained from the master key.
Denote round key as RK, = U||V = uys, ..., uo||v15, ..., vg. For each round,
U and V are XORed with the cipher state, i.e., byjy1 < bgir1 D w4, bay <
by ®v;, Vi € {0, ...,15}. A single bit "1" and a 6-bit constant C' = ¢5cqczeacico
are added to each state at bit position 63, 23,19, 15,11, 7, 3 respectively, i.e.,
be3 < be3®1, bag < bazBcs, big < b1gDcey, bis < bi5®ces, b1y < b11®ca, by
by @ c1,b3 < b3 P cy. RK, is added to the state Z, in each round.

Key Schedule. Split the master key K into 8 16-bit subkeys k7||ks]|...||k1]|ko <
K. For each round, the round key consists of the last two significant subkeys,
and then, the key state is updated following k7||kg||...||k1||ko < k1 >> 2||ko >
12||...||ks]||k2, where > i is an 4-bit right rotation within a 16-bit word.

2.2 The Rectangle Attack

In this subsection, we review the rectangle attack and the generic rectangle key
recovery algorithm [25] and explain the notations used in this paper.

Fig. 1: Boomerang distinguisher



Before introducing the rectangle attack, we must first review the boomerang
attack. The boomerang attack was proposed by Wanger |29] in 1999, which is
an adaptive chosen plaintext/ciphertext attack. As is illustrated in Fig. [1} it
regards the target cipher as a composition of two sub-ciphers Fy and E, i.e.,
E = Ej o E;. The differential trail o« — g travels in Ey with probability p, and
the differential trail v — ¢ travels in F; with probability ¢, which composes the
boomerang distinguisher with the probability p?¢?. In [17], Kelsey et al. devel-
oped a chosen-plaintext variant and formed the amplified boomerang attack with
probability p?¢?2~", where n is the size of each block. The rectangle attack [5]
improves the amplified boomerang attack, which estimates the probability more
accurately by considering as many differences as possible in the middle. The

probability of a rectangle distinguisher is 2-"p242, where p = 1/ X;Pr? (a = By),

q = \/Z‘jPrQ('yj — §). Later, researchers discovered many methods to com-
pute the probability more accurately and proposed an innovative tool named
boomerang connectivity table (BCT) |12,/24]. The process of the rectangle attack
consists of two steps:

1. Choose plaintexts Py, Ps, P3, Py and encrypt them to C1, Cs, Cs, Cy, where
(P1, Py) and (Ps, Py) both satisfy input difference «, i.e., Py ® Py = Ps® P, =
.

2. If ciphertexts satisfy the output difference Cy @ C3 = Co @ Cy = §, these four
plaintext-ciphertexts can construct a right quartet {(Py, C1), (P2, Ca2), (P, C3),
(P47 C4)}

The generic key recovery algorithm. Another line of research on the rectangle
attack is to mount key recovery attacks as efficiently as possible. The rectangle key
recovery algorithm includes four steps: (1) data collection, (2) pair construction,
(3) quartet generation and processing, and (4) exhaustive search. In the past
few years, efforts have been made to find more effective key guessing strategies
to improve the efficiency of key recovery attacks, like [14,/32]. In the generic
algorithm of Song et al. [25], which we are inspired by, one can select part of
partial key bits involved in extended rounds to guess. Using the generic algorithm,
the adversary can balance the complexities of each attack step by guessing the
involved key reasonably. The outline of the key recovery algorithm can be profiled
in Fig. 2]

The notations involved in the upcoming work will be described for a better
understanding. As shown in Fig. [2], o/ is the differential obtained by the propaga-
tion of a through £, ! and &' is the differential obtained by the propagation of &
through E¢. Note that not all quartets which satisfy the difference o’ and ¢’ are
useful to suggest and extract the right key. However, quartets that do not satisfy
such conditions are necessarily useless. 7, and r; are the number of unknown bits
of input differential and output differential. k; and ky denote the subkey bits for
verifying the differential propagation in Ej, and Ef, respectively, where my, = |ks|
and my = |ks| are the size of k;, and k;. In our attack, we guess part of k; and
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Fig. 2: Outline of rectangle key recovery attack

ky, so we denote kj and K as the bits in k, and ky which have been guessed.
Similarly, mj, = |kj|, m} = |k}\, and 77, 7’} are the number of inactive state bits
which can be deduced by guessing key bits. Besides, in order to clearly describe
the new attack, we define r; =, — 7, and mj = my, — my, (resp. s and m}).

Related-key rectangle attack. Under the related-key scenario, the rectangle
attack and the rectangle key recovery attack differ slightly from those under the
single-key setting. Let AK and VK be the key differences for Fy and E;. In the
phase of data collection, the adversary needs to access four related-key oracles
with K1, Ko = K1 @ AK, K3 =K; @ VK and Ky = K1 & AK & VK to obtain
four plaintext-ciphertexts of (P, C1), (P, Ca), (Ps,C3) and (Py, Cy) respectively.
The remaining steps should be performed under the related-key oracles as well.

The success probability. From the method of , the success probability of
the rectangle key recovery attack is calculated according to the Eq. [T} where
Sn = p%G%/27" is the signal/noise ratio, with an h-bit or higher advantage. s is

the expected number of right quartets.

e[ )

1
S (1)
2.3 The Rectangle Distinguisher of GIFT-64

Our attack is based on the 20-round related-key boomerang distinguisher of Ji et

al. :

a = 00 00 00 00 00 00 a0 00,
0 =04 00 00 00 01 20 10 00.

with:

AK = 0004 0000 0000 0800 0000 0000 0000 0010,
VK = 2000 0000 0000 0000 0800 0000 0200 0800.



The probability of the distinguisher above is P; = 2758557 Li et al. [18] have
increased this probability to 272743 by improving the BCT of the distinguisher
(but otherwise using the same parameters as Ji et al.). Note that this paper does
not discuss the calculation of the distinguisher probability but focuses on the key
guessing strategy in the key recovery phase.

3 New Rectangle Key Recovery Attack on GIFT-64

In this section, we propose the new rectangle key recovery attack on GIFT-64.
We begin by describing the specific parameters of the attack and the basic attack
idea. In subsection we will detail the dedicated MILP model and the key
guessing strategies based on this model. In subsection [3.2] we will describe the
exact process of the attack. The complexity of the two attacks will be calculated
in subsection 3.3}

As illustrated in Table [d] we utilize the distinguisher of Ji et al. to attack
26-round GIFT-64, where 7 denotes the bit with the unknown difference, 0 and 1
represent the bit with the fixed difference. Ej spans the first three rounds, and
44 unknown bits in E} distribute over AY7, thus r, =44. The number of subkey
bits involved in the unknown difference in Z; and Z5 is 24 and 6, respectively,
so my =30. E; spans the last three rounds, and there are 64 unknown bits in
E distributing over Zy, thus ry =64. The involved 32 bits, 24 bits, and 8 bits
subkeys are added to state Zys, Za5, and Za4 respectively, so my =64. Hence,
the number of subkey bits involved in ky and ky is my + my =94 bits.

Table 4: The 26-round related-key rectangle attack on GIFT-64. For round r, AX,
and AY, are the input and output differences of the S-boxes, and AZ, is the output
difference of the linear layer. r € {1,2,...,26}

EE A N O O O O O Y O O O O O N o O N O O O o N O B N N N O N N O O SN S A A N g
AY;  |7707 1770 01?77 7077 1707 7170 0777 7077 7707 7770 0777 7077 7707 7770 0777 7077
AZ,  |2722 2222 2222 2222 0000 0000 0000 0000 11?7 2?7?27 2227 2227 2222 11?7 2777 7777

AXo [7777 7777 27277 2777 0000 0000 0000 0000 1177 27277 2977 2277 27077 1177 2777 2777
AY> 0701 0070 0007 7000 0000 0000 0000 0000 0100 0070 0007 7000 7000 0100 0070 0007
AZy |?77?7 0000 71?77 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 7177
AXs |?7777 0000 7177 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 7177
AYs 1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010
AZs3 |0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0000 0000 0000

AX4(cr) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000

AX24(6)|0000 0100 0000 0000 0000 0000 0000 0000 0000 0001 0010 0000 0001 0000 0000 0000
AYa4 {0000 7?7?71 0000 0000 0000 0000 0000 0000 0000 ???7 7777 0000 7777 0000 0000 0000
AZs4 {0070 0000 0077 0700 0001 0000 7007 0070 ?000 0000 ?700 0007 0700 0000 0?70 7000
AXss [0070 0000 00?7 0700 0001 0000 7007 0070 7010 0000 7?00 0007 0700 0000 0770 7000
AYas 77770000 7777 7777 2777 0000 7777 2777 7?77 0000 77?7 77?7 7777 0000 7777 7777
AZs 7707 7707 7707 7707 7770 7770 7770 7770 0777 0777 0777 0777 7077 7077 7077 7077
AXag [7707 7707 7707 7707 7770 7770 7770 7770 07?77 0777 0777 07?7 7077 7077 7077 2077
AYag 7277 2727 2277 2227 2727 2277 2027 2727 7277 7277 2927 2772 27277 2727 2277 7727
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Thanks to the bit-wise linear key schedule of GIFT-64, the subkey bits are
reused in certain rounds. For example, if we guess RK7, we can obtain RKos
and vice versa. This relationship between subkey bits is also present in RK5
and RKog. As shown in Table |5, we mark the subkey bits involved in k; and
ks as bold, the subkey bits shared by RK; and RKj5 as green, and the subkey
bits shared in RK5 and RKsg as cyan. Note that only the bolded-and-colored
subkey bits are reusable. The number of reusable subkey bits is 26 (20 bits
between RK; and RKss5, say ki|ko in Table [5l 6 bits between RK5 and RKog,
say ks|ks in Table [5)). Therefore, the number of subkey bits involved in the attack
is 94 — 26 =68.

Table 5: The relation of the involved subkey bits in the key recovery phase

AZy

7777

7077

7777

7777

0000

0000

0000

0000

1177

7077

7077

7077

70707

1177

7777

7777

k1lko

15[15

1414

13[13

12[12

11[11

10]10

9[9

8[3

77

6]6

55

4]4

3[3

2]2

11

0[0

AZ,

7777

0000

7177

0000

0000

0000

0000

0000

0001

0000

0000

0000

0000

0000

0000

717?

ks3|ka

1515

1414

13[13

1212

T1[11

10]10

9[9

8[8

77

6]6

5[5

44

33

22

171

0[0

AZss

7707

?770?

7707

7707

7770

7770

777077

077?

077?

077?

0777

7077

7077

707?

?707?

Ealko

117

10[6

95

8]

73

62

5[1

3[15

2[14

113

0[12

1511

14[10

13]9

12[8

AZs

7777

7777

7977

7777

7977

7077

7907|7077

7077

7977

7977

7977

7777

7777

7777

7777

Ealka

11[7

10[6

95

84

73

62

51

3[15

214

113

0[12

1511

14[10

13]9

12[8

Based on the observation of the previous rectangle key recovery attack instance

and the analysis of the GIFT-64 key schedule, we summarize the attack strategies
into the following two observations:

- The phases of pair construction and quartet generation and processing domi-
nate the time cost of our attacks. In general, there is a certain extent inverse
relationship between the time consumption of pair construction and quartet
generation and processing. Both of these parts are related to the number of
guessed subkey bits and the number of filtering bits produced. Balancing the
time complexity of these two parts with appropriate guessing subkey bits
will be the core idea of our improvement.

Our key guessing strategies are based on the idea of finding a method that
requires less guessing time complexity but can obtain more conditional bits,
i.e., my+ m} <2(r; + r}) The reused subkey bits can provide additional
filtering bits for some guesses. However, excessive guessing of these subkey
bits will make the complexity of pair construction and quartet generation
and processing unbalanced. Under the consideration of trading off the time
complexity, guessing as many reused subkey bits as possible will maximize
the advantage of our attack.

3.1 The Dedicated Model and New Key Guessing Strategy

As a block cipher with the bit-wise key schedule and bit-wise linear layer, the
structure of GIFT-64 allows us to directly reap the benefits of guessing each



bit. These advantages provide greater flexibility for our attack. Our attack is
under the related-key setting, so the filtering process corresponds to the guessed
subkeys and their complement. Note that we propose Attack I and Attack II in
this subsection.

Since mouha et al.’s seminal paper [20], Mixed Integer Linear Programming
(MILP) has been widely used in automated cryptanalysis and has yielded promis-
ing results in numerous cryptographic key recovery attacks [15,22,[28}[30]. In
this paper, we present a dedicated model for automated key recovery attack for
GIFT-64 based on our new subkey guessing strategy. We start our modeling
with a selection of plaintexts and ciphertexts that satisfy the difference of Z;
and Zsg, respectively. We use binary variables to indicate whether each bit is
known and mark all the output bits of an S-box as known if and only if both
its input bits and the 2 bits subkey involved are guessed. Guessing the subkey
bits allows the propagation of the knownness to obtain the filtering bits. Note
that the differential propagation in Fj is the exact opposite of the differential
propagation in E;. We then count the filtering bits of the S-box for which both
the input and output differences are known and calculate the time complexity of
each attack step. Naturally, we set our objective function to balance the time
complexity of each attack step optimally. The parameters we used are listed in
Table [6] and the dedicated model is described in Model

Attack I: The guessing of the keys involved in the forward and backward extend
rounds, shown in Fig. 3] and described as follows. Note that we have marked in
red (resp. blue) the keys guessed in the Ej (resp. Ey) and the filters that can be
used. Next, the guessed key bits and filters involved in Ej, and Ey are explained.

Involved in Ep: Choose the plaintexts that satisfy AZ;. If ko[0] and &1 [0]
are guessed, we can obtain the value of X5[3 : 0] and filter out the pairs of
plaintexts that do not satisfy the difference 0007 by using the filter GS(X3][3 :
0)) ® GS(X2[3:0] ® AX,[3:0]) = AY3[3 : 0]. As shown in Fig. [3| there are none
bit in AX5[3 : 0] with fixed difference and 3 bits in AY5[3 : 0] with fixed difference.
When k1[0] and ko[0] are guessed, there exist 3 filtering bits (7?77 — 0007) via
the corresponding S-box. We guess 24 bits ko[15,14,13,12,7,6,5,4,3,2,1,0] and
k1[15,14,13,12,7,6,5, 4,3,2,1,0] to obtain 34 filtering bits in round 2. We guess
6 bits k2[15,13,0] and k3[15, 13, 0] to obtain 10 filtering bits in round 3. Therefore,
we guess 30 subkey bits and obtain 44 filtering bits in Ey, i.e., my =30 can
verify 1, =44, and r; = ry, —r, =0.

Involved in Ey: The filtering bits are obtained in the same way as described
in Ey. We guess 16 bits k3[8,7,6,5,4,3,2,1] and k3[14,12,11,10,9, 8,7, 5], com-
bined with the guessed subkey bits ko[15,13,0] and k3[15,13, 0] which can be
reused, this guess provides 11 filtering bits in round 26. We guess 2 bits kq[10, 9],
combined with ko[14,13,6,5] and k1[14,13,6,5,2, 1] that can be reused. This
guess provides 17 filtering bits in round 25. Therefore, we guess 18 subkey
bits and obtain 28 filtering bits in Ey, i.e., m, = 18 can verify 1}, =28, and
T =rp -1} =36.
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Table 6: Parameters of dedicated model

Parameter Implication

Ro ={1,2,3} Extension rounds in Ej

R1 = {24,25,26} Extension rounds in Ey

r € {Ro||R1} Round number in extension rounds

m € {0,...,16} S-box position in each round

n € {0,...,4} Bit position in the input (resp. output) of S-box
s €A{0,...,4} Number of attack step

Binary KX, mn, KYrm,n |Bit difference is known or not

Binary F X, mn, F'Yrmn |Bit difference is fixed or not

Binary GK,.m Subkey bits is guessed or not
Integer A, Number of filtering bits of each filter
General T Time complexity of each attack step
General T' Upper bound of T

Algorithm 1 Optimal key guessing strategy searching

Require: Ry rounds in Ej and R; rounds in Ey, the system of inequalities for linear

layer and its inverse, the number of S-box in each round m, the size of each S-box n,
multi binary variables K X, m n, KYrmn, FXrmn, FYrmmn, GKrm, multi integer
variables A, ,,, multi general variables Ts and T

Ensure: system of inequalities

15:
16:
17:
18:

19:

/* Initialization */

Constraints: all KXo = KY5 =1

Constraints: F X, m,n and FY; p,,, follow the differential in E, and Ef
/* Counting the number of filtering bits */

: for r in Ry do

for i = 0 to m do
Constraints: all KY;.; . =1 if and only if all KX, ;. =GK,; = GK, ; =1,
otherwise all KY,.; . =0
Constraints: A,; = KY;; .« X (sum(FY;;) — sum(FX,;))
end for
Constraints: Linear permutation from KY; .« to KX, i1«
end for
for r in Ry do
for i =0 to m do
Constraints: all KX, ;. =1 if and only if all KY;.;+ = GK,; = GK, ;» =1,

otherwise all KX, ;. =0
Constraints: A, ; = KX, i« X (sum(FX,;) — sum(FY;;))
end for
Constraints: Reversed linear permutation from KX, . . to KY,_1 4«

: end for

/* Computing time complexity */

for s in the number of attack steps do
Constraints: T follow Eq. [f]
Constraints: T >= T

end for

/* Objective function */

MINIMIZE T

11
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Fig. 3: Guessed key bits and the corresponding propagation relations for Attack I
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Attack II: We also performed the attack using another similar key-guessing
strategy. This attack has a slightly lower time complexity when computing €
using a different method than Attack I. The parameters of the attack are only
briefly described here, and the attack processes are the same as in Attack I. We
calculate the complexity of this attack in subsection [3.3] and include a detailed
description in Fig. 4] of Appendix[A] The key guessing strategy for this attack is
as follows:

Involved in Ep: In round 1, we guess 22 bits ko[15,14,13,12,7,6,5,4, 3,1, 0]
and k4[15,14,13, 12,7,6,5,4,3,1,0] to obtain 32 filtering bits. In round 2, we
guess 4 bits k3[13,15] and k3[13, 15] to obtain 7 filtering bits. Therefore, we have
guessed 26 bits of subkeys and obtained 39 filtering bits, i.e., m; =26, r;, =39,
Ty =1, — 1y =5.

Involved in Ey: In round 26, we guess 20 bits k2[14,12,7,6,5,4,3,2,1,0] and
ks[14,12, 11,10,9,8,7,6,5,4], combine with the reused ks[15,13] and k3[15, 13],
this guess provides 12 filtering bits. In round 25, we guess 2 bits ko[11, 9], combine
with the reused ko[15,13,7,6,5] and k4[15,14,13,7,6,5, 3, 1], this guess provides
22 filtering bits. Therefore, we have guessed 22 bits of subkeys and obtained 34
filtering bits, i.e., m’f =22, 7“}- =34, 1} =71y — r} =30.

3.2 New Rectangle Attack on GIFT-64

In this subsection, we conducted the rectangle key recovery attack against
GIFT-64 using different key guessing strategies. For both attacks, we choose
y = /5-22 7" /\/P; to be the number of structures that should be pre-constructed,
where s is the number of quartets expected to be correct.

The key guessing strategy is detailed in subsection The complexities will
be calculated in subsection [3.3] The attack process is as follows:

1. Collect and store y structures of 2™ plaintexts each. Encrypt these structures
under four related keys K1, Ko, K3, and K. We obtain four datasets con-
taining the plaintext-ciphertexts under four related keys, denote as Lq, Lo,
L3, and Ly. Let D =y - 2™ for convenience, so the time, data, and memory
complexity of this step is Ty = Mo = Diorqr =4 - D =y - 27012,

2. Guess (mj, +m/;)-bit key, and for each guess:

(a) Initialize a list of key counters for the unguessed subkey bits of k; and
ky, the memory complexity of key counters is M, = 2t my

(b) For each plaintext-ciphertext collected in step [1} partially encrypt P; and
partially decrypt C; under the key bits we guessed, i.c., P;" = Ency (F),
CF = Deck} (C;), where i € {1,2,3,4}. The time complexity of this step
is 4. D =y - 2712 partial encryptions.

(¢) Choose to construct pairs in the input of Ej. The reason is that con-
structing pairs in the input of E} can get more filters for the phase of
constructing pairs and balance the time complexity

i. Insert L into a hash table indexed by the r} inactive bits of P}, so
there are 27 items, each of which comprises 27 pairs (Pf,CY). For

13



ii.

Lo, find matches in the hash table according to the rj inactive bits of
Py . Each match corresponds to a pair {( Py, CY), (Py,C5)}. There are

! Tb
y-2" items in total, and there will be 2- 5 different combinations

for each item. Perform the same operation to L3z and L4, so we can get
two sets S1 = {(Py,CT),(Py,C3)} and S2 = {(P5,C%), (Py,Ch)}.
The size of each is:

/ 2" .
y'2rb-2~(2)D-2’"b. (2)
The memory complexity of this step is M; = 2- D - 2™ for storing
sets S7 and Sy. We need D - 27 look-up tables to construct each set.
The time complexity of this step is 2- D - 2" memory accesses.

Insert S; into a hash table indexed by the 27"} inactive bits of both
Cy and Cj. Since each set contains D - 2 pairs, there are 227}
items, each of which comprises D - 275 =27 pairs {(P},CT), (Py,C5)}.
For S2, find matches in the hash table according to the 21"} inac-
tive bits of both C3 and Cj}. Each matching provides a quartet
{(Pf,Cy), (P5,C3), (Ps,C%), (Pr,C3)} for us. For each item, similar

~

D-. 27';—27"}
to step [2(c)il there are 2 - < 5 > different combinations. So

the number of quartets we generate is

*_2 ’
22r/f 9. (D.Qrb Tf) — D2.92rpt2r—2ry (3)
2

The time complexity of this step is D?- 92ry+2ry—2rs memory accesses.

(d) Utilize the quartets we obtain above to determine the key candidates

involved in Ej and Ey and increase the corresponding key counters.
Denote the time cost of processing each quartet as €. The time complexity
of this step is D? - 225277727 . ¢ We will discuss the estimation of € in
detail in subsection B.3l

Select the top 2™ +t77 =" hits in the counters to be the key candidates,
which delivers a h-bit or higher advantage, where 0 < h < my +mj.
Guess the remaining £ — my — my bits key according to the key schedule
and exhaustively search over them to recover the correct key, where k is
the key size of GIFT-64. The time complexity of this step is 257%™~
encryptions.

3.3 Complexity Analysis

We will introduce two different methods to process quartets and extract key
information, i.e., calculation of €, which will bring different time complexity
to our attacks. We apply € computed using the method of the pre-constructed
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hash table into the MILP model and compute the time complexity of Attack I
accordingly. We also bring e computed using the method of the guess and filter
to the MILP model and compute the time complexity of Attack IT accordingly.
We mount this approach to our two attacks and take Attack I as an example to
introduce it in detail. The complexity analysis of Attack II is calculated in detail
in the appendix [A]

Guess and filter: Suppose we obtain N, quartets after step|2d|in the first attack.
Guessing k2[14,12] and k36, 4], we can use filters GiS(Ya6[15 : 12]) & GS(Ya6[15 :
12| AY%6[15 : 12] =7077 and G'S (Yog[4T : 44]) DG S (Yag[AT : 44) P AYoe[4T : 44] =
?0?7?7. Furthermore, combined with the subkey bits ko[15, 7,3, 1] and k4[15,7, 3],
which have been guessed before, we can use filters GS(Y25[63 : 60]) & GS(Y25[63 :
60] © AY5[63 : 60] = 0070 and G'S(Y25[55 : 48]) © GS(Ya5[55 : 48] © AYa5([63 :
48] = 0077,0700. There are 10 filtering bits for pairs, so 20 filtering bits for
quartets. Therefore, there are 24 - Ny - 2720 = Ny - 2716 quartets remain, and the
time cost is 2%+ N, S-box accesses. Note that after this step, the number of quartets
remaining is much lower than before. The time consumption of the remaining
steps will be far less than N, - 24 S-box accesses. Therefore, € ~ 24/26 ~ 2707
encryption.

Table 7: Precomputation tables for the 26-round attack on GIFT-64

No. |Starting bits |Subkey bits|Bits deduced Filter condition T & M|Filter
effect
1 |Yoq[47 : 44] ko[14,12] |Yys[47 : 44] Xa6[14] ® Xé6[14] =0 2148 2-16
Yao[16:12]  |ka[6,4]  |Y26[15:12] Xz6[44] © X36[44] = 0
X20[63  60] Xo6[4T : 44] X25[63 : 60] @ X55[63 : 60]
=262 F 2 Xhel47 - 44] = 0070
Xo6[31 : 28] Xo6[15 : 12] Xo5[55 : 48] @ X,5[55 : 48]
X/6[15: 12] = 0077, 0700
X563 : 60]
X463 : 60]
Xo5[55 : 48]
X555 : 48]

Yoo [47 1 44], Y5 [15 : 12], X26[63 : 60], X26[31 : 28],i =1,2,3,4
k2[14,12], k3[6, 4]

2 |Yag[51 : 48] ko8] Y51 : 48] X06[49] @ X4[49] = 0 250 |o—14
Ya6(35 : 32] k1[8] ;‘iz;e E’Z : i’g% §265’3% g §é6 E’g} = 8
B : 26 =
Ya6[19 : 16] k2[14,10, 9] )(2;6 51 : 48] Xo5[15 : 12] $X§5[15 2 12]
X6[3 : 0] k3[6,2,1] | x/ [51 : 48] = 0700
Xo6[35 : 32] Xo5[7: 0] @ X55[7 : 0]
X5e[35 : 32 = 0770, 7000
Xo6[19 : 16]
X6[19 : 16]
Xo5[15 : 12]
X415 :12]
X25 7 0]
X35(7: 0]

Y3;[51 : 48], Yag[35 : 32], Yog[19 : 16], Xo6[3 : 1],4 = 1,2,3,4 :
ko8], k1[8], k2[14, 10, 9], k3[6, 2, 1]
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Pre-construct hash tables: As shown in Table[7] the time complexity of step
[2d] can be reduced by accessing the hash table instead of traversing subkeys. We
can obtain the bits deduced according to the inputs of the filters, i.e., starting
bits and subkey bits. Utilize these bits to match pairs in the quartets. Each
match can provide the corresponding subkey information. The time and memory
cost of each subtable is determined by the underlined bits, and the filtering effect
indicates the number of candidate subkeys obtained for each subtable access.
Note that these hash tables in our paper are all built for quartets but can also
be built for pairs in memory-limited cases.

As shown in Fig. [3] these uncoloured cells of ARK; denote the subkey bits not
used in previous steps, where ¢ = 24, 25, 26. We should access subtable No.1 in
Table m first. Combining state Ya6[47 : 44], Yog[15 : 12], X26[63 : 60], X26[31 : 28]
with subkey bits ko[14,12], k3[6,4], we can deduce the corresponding Yy4[47 : 44],
Yo6l15 : 12], Xog[47 = 44], X6[47 = 44], Xo6[15 : 12], X56[15 : 12], X25[63 : 60],
X15[63 : 60], Xo5[55 : 48], X4:[55 : 48]. We can obtain filtering bits from
Xo6[14] © Xi6[14] = 0, Xo6[44] & X54[44] = 0, X25[63 : 60] B X55[63 : 60] = 0070,
Xo5[55 : 48] @ X4 [55 : 48] = 007?,0700. Specifically, for a pair of plaintext, there
are 10 filtering bits from AYag[47 : 44] =7777 — AXq6[47 : 44] =7770, AY56[15 :
12] =7777 — AXg6[15 : 12] =707?, AY55[63 : 60] =777? — AXy5[63 : 60] =
0070, AY55[31 : 28] =7777,7777 — AXo5[31 : 28] = 0077,0700. Therefore, we
can get 20 filtering bits for a quartet using these filters. According to these
filters, we can extract information of k9[14,12], k3[6, 4] and discard quartets that
suggest nothing. We need to store subkey bits ks[14,12], k3[6,4] into a hash
table indexed by 64-bit Yas[47 : 44], Y5 [15 @ 12], X54[63 : 60], X54[31 : 28] in
total, where i = 1,2,3,4. The filter effect is 2716, which means 2'6 quartets will
be filtered out, so the time and memory cost to construct such a subtable is
964-16 _ 948

For now, the number of quartets is much lower than before. To process the
rest of the quartets and increase key counters, we need to access the remaining
subtable No.2. The time cost of the following steps will be far less than that of
accessing subtable No.1. Finally, we get ¢ ~ 1 memory access.

The complexity of Attack I: Considering the total complexity and success rate,
we choose s = 2 and h = 20, so we need construct y = /s - 237" //Py = 21778
structures in step [l|and D = y - 2™ = 26178,

e Data complezity: The plaintexts in step [I]are the total data we need to collect
in this attack.

Dyorar =4 - D = 26378 (4)

o Memory complexity: We need store data collected in step [1} key counters
described in step [2a} and datasets S; and Sa generated in step [2(c)il
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Mtotal :M0+M1 +Mc
=4-D+2-D-2% +2mtm;

_ 263478 + 262.78 4 236
~ 264.36

(®)

e Time complexity: The time complexity consists of five parts: (1) data collection
in step|l|denote as T, (2) partial encryption and partial decryption in step
denote as T1, (3) pairs generation in step denote as Ty, (4) quartets
generation and processing in stepdenote as T5 and (5) the exhaustive search
of the remaining key in step [2f] denote as Ty. Recall that our key guessing
strategy provides the following parameters: my = 30,7, = r, = 44,1 =0
and m} = 18,7“} =281} =rp — r} = 36. For the last four parts, we need to
consider all guessing of (my, +m’;) = 48 subkey bits.

To=4-D=2%T
T, = gmy+tmy 4. — 911178

Ty = 2mstmy 9. D . 9T — 9110.78 ©)
Ty = omitmy . D2 g2rit2ri=2n o _ 9ll556

’ ’ ’ !’
T4 — 2mb+mf+k7mb7mf7h — 2k7h — 2108

We obtain € ~ 2797 encryption with the method of the guess and filter. The
time complexity of Attack Lis Ty +T5+Ty = 55-2111-7842115-5670.7. 9108 ~,114.86
encryption and Tb =211%-78 memory access.

We obtain € ~ 1 memory access with the method of the pre-constructed hash
table. The time complexity of Attack Iis T +7Ty = 26—62111'78—{—2108 A QUL T8=211
2108 ~ 2110.06 96 round encryptions and Ty 4 T3 = 2110-78 4 2115.56 ~ 2115.80
memory accesses.

According to Eq. [1} the success rate of Attack I is around 75%.

The complexity of Attack II: We choose s = 2 and h = 20, so D = 26178,
The data complexity is Dyorqr = 20378, memory complexity is M/, = 2675, We
obtain that € &~ 2727 encryptions with the method of the guess and filter, so time
complexity is 211151 26-round encryptions and 211578 memory accesses. We
obtain that € ~ 1 memory access with the method of the pre-construct hash table.
Thence, the time complexity is 2119-96 26-round encryptions and 21166 memory
accesses. The complexity calculation of Attack II is detailed in Appendix [A]

According to Eq. |1} the success rate of Attack IT is around 75%.

In summary, we obtained that the best current rectangle key recovery attack
on GIFT-64 is Attack I, which pre-constructs hash tables to process quartets. The
attack complexity is: data complexity is Diotar = 26378, memory complexity
is Miotar = 26436 time complexity is Tiotar = 211296 26-round encryption
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and 2115-80 memory accesses. Further, calculating using the probability which
improved by Li et al., the overall complexity of the attack is: D}, , = 20322
M, =258 T = 21095 26 round encryption and 2''5-2* memory accesses.

)

Reevaluate the Security of GIFT-128 We also re-evaluate the ability of
GIFT-128 to resist rectangle key recovery attack. In [16], Ji et al. proposed
the rectangle key recovery attack on 23-round GIFT-128. They guessed all the
subkey bits involved in Ej, non-guessed any subkey bits in Fy. For improvement,
we guess 2 fewer subkey bits in Ej, than [16] and roughly reduce its total time
complexity by a factor of 22. The details are given in Appendix

4 Discussion and Conclusion

We propose new key guessing strategies to improve the attack of 26-round GIFT-
64. The MILP model of the best key guessing strategy for GIFT-64 rectangle key
recovery attack is constructed, and thus the optimal key guessing strategy for
our attack scenario is obtained by searching and comparing. Our attacks against
GIFT-64 are the best in terms of time complexity so far. For GIFT-64, its bit-wise
linear permutation gives us great flexibility, and the reused subkey bits derived
by the bit-wise key schedule provide additional filter bits for each guessing. Our
attack starts from the bit-wise operations of GIFT-64 and considers the more
accurate selection of the subkey bits involved in the attack so as to guess the key
more effectively. This idea also provides a new possibility for better attacks on
block ciphers structured by bit-wise operations.

We have observed that the designer of GIFT had not claimed the related-key
security. For the community of symmetric cryptography, however, we believe that
cryptographic security analysis under related-key settings is indispensable.
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A Complexity analysis of Attack II
Recall that the key guessing strategy for Attack II has the following parameters:
my = 26, ry, = 39, 1y =5, m’; = 22, v}, = 34, r}; = 30, which are also visually

identified in Fig. [4] As in Attack I, we choose s = 2 and h = 20, so D = 26178,

Guess and filter In the second attack, supposing the number of quartets to
be processed is N;. We guess ko[2] and k;[2], which provide 4 filtering bits for
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Fig. 4: Guessed key bits and the corresponding propagation relations for Attack II
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quartets (AX5[11 : 8] = 1177 — AY,[11 : 8] = 0100), the filter is GS(X3[11 : 8])D
GS(X,[11: 8] & AX,[11 : 8]) = 0100. Therefore, there are 22- N/ -27* = N/ .22
quartets remain, and the time cost is 22 - N " S-box accesses. Note that after this
step, the number of quartets remaining is much lower than before. The time
consumption of the remaining steps will be far less than N, - 22 S-box accesses.
Therefore, € ~ 22 /26 ~ 2727 encryption.

Pre-construct hash tables:

We also pre-construct hash tables in the second attack to calculate e. The
detail is in Table [8] With similar processes as Attack I, we obtain € &~ 1 memory
access.

Table 8: Precomputation tables for the 26-round attack on GIFT-64

No. |Starting bits |Subkey bits |Bits deduced Filter condition T™ Filter
effect
1 [Xo[11:8] ko[0] X;[u : 8] Y2([35:32] ® Y, [35:32] =(2%¢  [2712
Xa[3: 0] k(0] 1)5 [[131 Os];] (})/1([)?? 0] @ Y{[3 : 0] = 0010
X 2 3[9: =
Y25[35:32]  |k2[0) Y;[11 - 8] Xos[11: 8] & Y/ [11 : 8] —
k3[0] Ya[3: 0] 0070
Y4 [3:0]
Xo5[35 : 32]
X45[35: 32]

Xo[11: 8], X3[3: 0], Ya5[35:32],4 = 1,2, 3,4 :
ko [0], k1[0], k2[0], k3([0]

2 |Yag[51 : 48] k2[3,2,1,0] |Yas[51 : 48] X26[49] ® X45[49] = 0 248 19716
Y2635 : 82]  |k3[10,9,8, 1] Y2635 : 32] X26[32] © Xy6[32] = 0
Vao[19 - 16] Y56(19 : 16] X26[19] ® X36[19] = 0
e X6[3 : 0] X26[2] @ X36[2] =0
Ya6[3: 0] Xo6[51 : 48] Xo5[15 : 12] @ X55[15 : 12]

X151 : 48] = 0700
X26[35 : 32] Xo25[7: 0] ® X55[7: 0]
X135 : 32] = 0770, 7000
Xo6[19 : 16]

X45[19 : 16]

Xog[3: 0]

Xés 3:0

Xo5[15 : 12]

X415 :12]

X25 7 0]

X35(7: 0]

Y3 [51 : 48], Yag[35 : 32], Yog[19 : 16], X26[3 : 1],4 = 1,2,3,4 :
k2[10,9,8,1], k3(3,2,1,0]

e Data complexity: The required data are the same as described in Eq. .
Diotar =4-D = 263.78

o Memory complexity: Let M}, M{ and M/ denote the memory complexity of
storing pairs, quartets, and key counters respectively.
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t/otal = Mé + M{ + M(/'
=4.D+92.D-2"% 4 2mtm;
_ 263.78 + 267.78 + 235
~ 26748

(7)

e Time complexity: The time complexity consists of five parts: (1) data collection
denoted as T{}, (2) partial encryption and partial decryption denoted as 77,
(3) two sets S7, S5 generation denoted as T3, (4) quartets generation and
processing denoted as T35, and (5) exhaustively searching the remaining key
bits denoted as T}.

Té —4.D = 263.78
T1I — gmptmy 4. D — 9111.78
T2/ _ 2mg+m} .2.D = 2115.78 (8)
Té — omptmy 2 92rj—2n e = 211356
T;i — 2k7h — 2108
We obtain that ¢ ~ 2727 encryptions with the method of the guess and
filter, so T} ~ 21986 memory access. The time complexity is T} + T4 + T} =
% - QUILT8 | 911086 4 9108 o 911151 96 1ound encryptions and T3 = 2115-78

memory accesses.

We obtain that € is 1 memory access with the method of the pre-construct

hash table. Thence, the time complexity is T{ + T = o - 211178 4 2108 — 2110.06

26-round encryptions and Ty + T4 = 2115-78 4 211356  2116.06 emory accesses.

B Rectangle key recovery attack on GITF-128

The 19-round related-key rectangle distinguisher of GIFT-128 [16]:

o = 00000000000000a00000000060000000,
6 = 00200000000000000000004000002020.

with:
AK = 8000 0000 0000 0000 0000 0000 0002 0000,
VK = 0000 0000 0000 0000 0002 0000 0002 0000.

The probability of this distinguisher is P; = 2199:626 Ag shown in Table EL
The unknown state difference is distributed in AX3[23 : 20], AX5[119 : 116] and
AX5[123 : 120]. The subkey bits involved in the forward expansion round are
k5[14], k1[14], ]{i5[13}, k‘1 [13], k‘4[5}, and k0[5]
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Table 9: The 23-round related-key rectangle attack on GIFT-128. For round r, AX,
and AY, are the input and output differences of the S-boxes, and AZ, is the output
difference of the linear layer. r € {1, 2, ...,23}

. 0000 0000 0000 0000 1177 7277 2227 2277 22727 2927 2777 2777 0000 0000 0000 0000
input 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1177 0000 OOO0 0000 0000
AY; 0000 0000 0000 0000 0100 0070 0007 1000 7100 0?70 007? 7007 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000

AZ: 0000 1177 7177 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ?7?7? 0000 0000 0000 0000 0000

AX, 0000 1177 7177 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 KOO0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 7777 0000 0000 0000 0000 0000

AYs 0000 0100 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 OOO0 KOO0 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 K000 0000 0000

AZy 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 KOO0 0000 0000
AXs(a) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000
0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 K000 0000 0000
AXa5(5) 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0000 0010 0000 0010 0000

AYas 0000 0000 7?7?77 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 7?71 0000 0000 0000 0000 0000 7?77 0000 ?7?? 0000

A 0007 0000 0000 0000 0000 0001 0000 0707 7000 0000 0000 0000 0000 7000 0000 7070
0700 0000 0000 0000 0000 0700 0000 0707 0070 0000 0000 0000 0000 0070 0000 7070

AXos 0007 0000 0010 0000 0000 0001 0000 0707 7000 0000 0000 0000 0000 7000 0000 7070
0700 0000 0000 0000 0000 0700 0000 0707 0070 0000 0000 0000 0000 0070 0000 7070

AYas 7777 0000 77?7 0000 0000 7?7?77 0000 7777 7?77 0000 0000 0000 0000 ?77? 0000 7777
7777 0000 0000 0000 0000 ???7 0000 7777 7?77 0000 0000 0000 0000 ?77? 0000 7?77

A 0707 7070 0700 7070 0700 7070 0700 7070 7070 0707 0070 0707 0070 070? 0070 0707
© 10707 7070 0007 7070 0007 7070 0007 7070 7070 0707 7000 0707 7000 0707 7000 0707
output 0707 7070 0700 7070 0700 7070 0700 7070 7070 0707 0070 0707 0070 070? 0070 0707
0707 7070 0007 70?70 0007 7070 0007 7070 7070 0707 7000 0707 7000 0707 7000 0707

Ji et al. [16] guessed all these 6-bit subkeys involved in AX5. By applying
filters GS(X2[23 : 20]) & GS(AX2[23 : 20] ® X[23 : 20]) = AY>[23 : 20] = 1000,
GS(X3[119 : 116])®GS(AX2[119 : 116]® X2[119 : 116]) = AY>[119 : 116] = 0010,
and GS(X2[123 : 120]) ® GS(AX2[123 : 120] @ X5[123 : 120]) = AY3[123 : 120] =
0100, they obtained 9 filtering bits, which are highlighted in red in Table [0} The
parameters they used were r, =9, my = mj =6, so rj = 0; ry =52, my = 34,
my =0, 50 15 = 52; s = 2 and h = 22, yielding y = /s - on/2=m | py = 211031
and D =y - 2" = 211931,

However, they overlooked the time consumption of partial encryption and
decryption. To recalculate the time complexity based on their parameters: Ty =
4. D = 212131 epcryptions, T) = omytmy 4. D = 12731 partial encryptions,
Ty = 2mtms . 2. D . 2" = 212631 memory accesses, and Ty = 27+ H™r . D2 .
222y =2n o — 992.62 encryptions using the guess and filter method, where
€ = 4-22/23 ~ 27052 encryptions. Additionally, Ty = 27 tk—my—mi—h _
2k—h — 9106 apcryptions. The total time complexity is To + 11 + T35 + Ty =
2121.31 + 2127.31 . 4/26 + 292.62 + 2106 ~ 2124.72 encryptions and T2 — 2126.31
memory accesses.

We chose to guess only 4 subkey bits involved in the forward expansion
round, namely ks5[13], k1[13], k4[5], and ko[5]. By applying the filter GS(X2[23 :
20]) © GS(AX[23 : 20] ® X5[23 : 20]) = AY5[23 : 20] = 1000 and GS(X5[119 :
116]) ® GS(AX2[119 : 116] @ X5[119 : 116]) = AY3[119 : 116] = 0010, we
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obtained 7 filtering bits. Therefore, m; = 4, rj and rj = 9 — 7 = 2, the
rest of the parameters are the same as [16]. The time complexities of this
attack are Ty = 4 - D = 2'2131 encryptions, T} = omytmy 4. D = 212531
partial encryptions, Tb = oMy tmy 9. D .oy = 2126:31 memory accesses, and
Ty = 2mbtmy . D292, 25 =2n ¢ — 99462 oneryptions using the guess and filter
method, where € = 4 - 22 /23 ~ 27952 encryptions. The total time complexity is
TO + Tl + T3 + T4 — 2121.31 + 2125.31 . 4/26 + 294.62 + 2106 ~ 2123.1 encryptions,
and Ty =2126-31 memory accesses.
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