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Abstract. Homomorphic Encryption (HE) presents a promising solu-
tion to securing neural networks for Machine Learning as a Service
(MLaaS). Despite its potential, the real-time applicability of current
HE-based solutions remains a challenge, and the diversity in network
structures often results in inefficient implementations and maintenance.
To address these issues, we introduce a unified and compact network
structure for real-time inference in convolutional neural networks based
on HE. We further propose several optimization strategies, including an
innovative compression and encoding technique and rearrangement in
the pixel encoding sequence, enabling a highly efficient batched compu-
tation and reducing the demand for time-consuming HE operations. To
further expedite computation, we propose a GPU acceleration engine to
leverage the massive thread-level parallelism to speed up computations.
We test our framework with the MNIST, Fashion-MNIST, and CIFAR-
10 datasets, demonstrating accuracies of 99.14%, 90.8%, and 61.09%,
respectively. Furthermore, our framework maintains a steady processing
speed of 0.46 seconds on a single-thread CPU, and a brisk 31.862 millisec-
onds on an A100 GPU for all datasets. This represents an enhancement
in speed more than 3000 times compared to pervious work, paving the
way for future explorations in the realm of secure and real-time machine
learning applications.

Keywords: Homomorphic Encryption · Convolutional Neural Network
· Secure inference · GPU acceleration.

1 Introduction

The Convolutional Neural Network (CNN), designed to extract discriminating
features that unveil inherent correlations within a data array, is extensively uti-
lized in the domain of image analysis. In contexts necessitating engagement with
substantial quantities of input data, Machine Learning as a Service (MLaaS) is
frequently favored. This involves users assigning inference tasks to servers, sub-
sequently capitalizing on the potent cloud infrastructure for efficient data ana-
lytics. In such an arrangement, the models are often deployed on cloud-based or
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edge device environments. Here, they generate predictions or inferences hinging
upon fresh inputs, conducting computations on enormous data sets that encom-
pass personal, medical, financial, and other categories of sensitive information.
While this has paved the way for manifold opportunities for businesses and so-
ciety, it has also simultaneously triggers considerable apprehensions concerning
data privacy.
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Fig. 1: The computational model of privacy-preserving Machine Learning as a
Service leveraging Homomorphic Encryption.

In order to alleviate these apprehensions, a variety of privacy-preservation
techniques are being devised and employed, consequently giving rise to the
concept of privacy-preserving inference. The privacy-preserving neural network
(PPNN) emerges as a prospective solution for executing inference on data of
a sensitive nature, leveraging cryptographic tools to prevent potential informa-
tion leaks and subsequently alleviate privacy-related concerns. A multitude of
recent studies have proposed several frameworks for PPNN computation, based
on Homomorphic Encryption (HE), Multi-Party Computation (MPC), or an
amalgamated approach of HE and MPC. The MPC-oriented methods [3, 14,18]
necessitate client participation in the computation and require data transfers of
several gigabytes during the inference process. The HE-enabled Convolutional
Neural Network (HCNN) [1, 8, 11, 17] innately facilitates direct evaluation over
ciphertexts, conferring numerous benefits such as one-shot communication, low
bandwidth usage, and non-interactive computation. Specifically, the client only
needs to engage with the server once to supply the data and can remain offline
throughout the evaluation process.

In spite of continuous advancements in this domain, the existing solutions
exhibit significant constraints. A multitude of studies are dedicated to the op-
timization and acceleration of HCNN by refining message encoding techniques,
network structures, or implementing strategies such as hardware acceleration
to capitalize on parallelism for enhanced efficiency. Nevertheless, these efforts
are yet to satisfy the pressing demands of real-time applications. Firstly, the
employed models are often intricate and diverse, necessitating model-specific
implementations. The proposed models also have dependency on the specific
datasets being processed, thereby undermining the feasibility of a unified and
universally applicable network structure. Secondly, the diversity of computa-
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tions across various types of model layers poses significant challenges, partic-
ularly when adapting homomorphic evaluations over ciphertexts. Finally, the
inherent nature of homomorphic encryption exacerbates these challenges by im-
posing high computational and memory overheads. This translates into extensive
resource requirements even for basic operations, thereby limiting the practical
application of such methodologies in contexts where computational resources or
time frames are restricted. Even the optimized low-latency framework [8] requires
730 seconds along with 12 GB of RAM for a single prediction in the CIFAR-10
dataset [15], wherein the input is a 32 × 32 pixel figure. Meanwhile, efforts fo-
cusing on GPU-acceleration [1] indicate a time frame of 304.43 seconds for the
same CIFAR-10 dataset. Thus, while HCNN represents a promising avenue in
the context of PPNN, these constraints highlight the pressing need for further
refinement and innovation within the field.

Contribution. In this work, we present an optimized HE-based inference frame-
work specifically designed for real-time application in convolutional neural net-
works. Our contributions are summarized as follows:

– We develop a unified and compact structure that is well-suited for HE ap-
plications. This structure efficiently combines multiple operations, making it
practical and easy to use.

– We propose several optimization strategies to improve efficiency. We devise
an optimized compression and encoding method that reduces the overhead of
processing 3-channel color images. Simultaneously, we meticulously arrange
the encoding sequence of pixels to allow highly batched computations across
different layers, substantially reducing the number of time-demanding HE
operations like homomorphic multiplication and rotation.

– Based on this, we harness the power of massive thread-level parallelism inher-
ent in GPUs to further improve the efficiency. We introduce a GPU accelera-
tion engine that significantly speeds up computations, enabling a substantial
speed increase.

– We test our framework on three datasets, including MNIST [16], Fashion-
MNIST [19], and CIFAR-10 [15], achieving an accuracy of 99.14%, 90.8%,
and 61.09%, respectively. Meanwhile, we maintain a steady processing speed
of 0.46 seconds on a single-thread CPU and 31.862 milliseconds on an A100
GPU. This represents a speedup of over 3000 times compared to previous
work, demonstrating the high efficiency and effectiveness of our framework.

Related Work. The domain of private predictions has received substantial
scholarly interest in recent years, with several noteworthy contributions to the
field. Initial research in this area adopted a solution based on batch encrypted
processing. CryptoNets, introduced by Gilad-Bachrach et al. [11], marked the
first instance of a privacy-preserving encrypted prediction as a service solution.
Despite leveraging YASHE [6], an HE scheme now considered insecure, Cryp-
toNets demonstrated the capacity to deliver predictions with an accuracy of
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98.95% on the MNIST data set. Building upon this, Boemer et al. [5] proposed
nGraph-HE, an HE-based extension to the Intel nGraph deep learning compiler.
The nGraph-HE approach echoed the techniques used in CryptoNets, although
different homomorphic encryption schemes, namely BFV [7, 12] and CKKS [9],
were employed. An optimized version of this work, termed nGraph-HE2 [4], sub-
sequently addressed the relatively shallow network limitations of nGraph-HE
and extended its scope to facilitate privacy-preserving inference on standard pre-
trained models, utilizing their inherent activation functions and number fields.
Badawi et al. [1] contributed to the field by presenting a GPU implementation
designed to accelerate execution.

These aforementioned works collectively emphasized a high-throughput de-
sign, wherein each node in the network is encrypted as a separate ciphertext.
They advocated batch processing of all images to be inferred, an approach that
can cause high memory overhead when applied to larger networks. Despite boast-
ing a small amortized time, such methods are not ideal when the number of
images for inference is limited. Contrasting with this line of work, Brutzkus et
al. [8] proposed a low latency privacy-preserving inference method, termed LoLa.
LoLa introduces an innovative data batching method that encrypts entire layers
and alters the data representation during computation, enabling efficient low
latency inference for a single image. Building upon the LoLa concept, Lou et
al. [17] observed the excessive homomorphic rotations in LoLa and designed a
homomorphic discrete Fourier transform algorithm to shift the ciphertexts to
the spectral domain, effectively reducing the overall number of rotations.

2 Preliminaries

2.1 Notation

In this work, we employ the following notations and mathematical concepts. We
denote by q an integer, and by N a power of two. The set of integers is repre-
sented by Z, and Zq stands for integers modulo q. We introduce the polynomial
ring R = Z[X]/(XN + 1) and the residue ring modulo q as Rq = R/qR. Poly-
nomials, which are elements of the ring R, are denoted by bold, italic lowercase
letters. For instance, f :=

󰁓N−1
i=0 fiX

i. The symbol f ← S signifies that the
polynomial f is chosen according to a specific distribution S. We represent the
encryption function as 󰌻·󰌼 to denote Encpk(·) under the public key pk, and the
decryption function as Decsk(·) under the secret key sk. We use the notation [a]q
to signify the integer equivalent of a modulo q. We denote the width and height
of an image as W and H, respectively, and the filter size as F × F . Regarding
the homomorphic operations, we assign particular notations for clarity: CAdd
signifies the addition between ciphertext and plaintext, HAdd denotes the addi-
tion of two ciphertexts, CMult represents the multiplication between ciphertext
and plaintext, while HMult corresponds to the multiplication of two ciphertexts.
Additionally, the rotation operation with a step size of i is denoted as HRoti.
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2.2 Residue Number System

The Residue Number System (RNS) is a numerical representation that can
enhance parallelism and modularity in computations. In RNS, we can repre-
sent a large integer belonging to ZQ as a set of smaller residues in Zqi , where
Q := ΠL−1

i=0 qi. Consequently, a ring element x ∈ RQ is represented as:

[x]QL
= (x(0),x(1), . . . ,x(L−1)) ∈ Rq0 ×Rq0 × · · ·×RqL−1

The base of the RNS can be switched from Q to R := ΠK−1
i=0 ri using the following

method [2], assuming the small moduli are pairwise co-prime:

ConvQ→R(x) =

󰀳

󰁃
󰀥
L−1󰁛

i=0

[xi · q̃i]qi · q
∗
i

󰀦

rj

󰀴

󰁄
K−1

j=1

Where x(i) := [x]qi , i ∈ [0, L).

In the light of this formulation, we can define methods for modulus extension
and reduction:

– ModUpQ→QR([x]Q) := ([x]Q, ConvQ→B([x]Q))

– ModDownQR→Q([x]Q, [x
′]R) := [R−1]Q · ([x]Q − ConvR→Q([x

′]R))

This methodology significantly bolsters computational efficacy, particularly
by facilitating parallel processing, a vital attribute for managing extensive com-
putations in large-scale contexts.

2.3 CKKS Scheme

In the realm of Fully Homomorphic Encryption (FHE) schemes, the Cheon-Kim-
Kim-Song (CKKS) scheme [9] emerges as one of the most noteworthy, primarily
owing to its support for floating-point and complex numbers. This compati-
bility aligns favorably with the needs of real-world applications. The CKKS is
classified as a leveled homomorphic scheme, signifying its capability to evaluate
computations with a pre-determined depth of multiplication, once the requisite
parameters have been established. The scheme employs a moduli chain, denoted
as QL := ΠL

i=0qi, as the ciphertext modulus, while the switching to a smaller
modulus, represented as Q′, is utilized for managing noise. The plaintext space
in the CKKS scheme is represented by R, with the ciphertext space being de-
fined as RQl

= ZQl
[X]/

󰀃
XN + 1

󰀄
at level l. In this representation, Ql := Π l

i=0qi
and N symbolizes a power of 2. This structure facilitates noise management and
complexity reduction, crucial aspects for maintaining computational efficiency
in complex number manipulations.
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Encoding. In the CKKS scheme, up to N/2 distinct messages can be encoded
into individual slots of a single plaintext to facilitate batch processing, allow-
ing for enhanced flexibility with input data types such as floating-point and
complex numbers. To achieve message encoding and decoding, the scheme lever-
ages two mapping functions. The initial one is the canonical embedding σ : p 󰀁→
(p(ξj))j∈Z∗

2N
which maps p ∈ R[X]/(XN+1) to H = {(zj)j∈Z∗

2N
: z2N−j = z̄j} ⊆

CN . The subsequent one is the natural projection π : (zj)j∈Z∗
2N

󰀁→ (zj)j∈T , with
T as a subgroup of Z∗

2N . Consequently, decoding is accomplished through the

sequential transformation R[X]/(XN +1)
σ−→H π−→CN/2, with encoding repre-

sented as the inverse of this process. To accommodate floating-point numbers,
a scaling factor ∆ is introduced to convert them to integers. With this archi-
tecture in place, the encoding and decoding functions in the CKKS scheme are
realized as Ecd(z ∈ CN/2;∆) : CN/2 → R, z 󰀁→ m = ⌊∆ · σ−1(π−1(z))⌉ and
Dcd(m ∈ R;∆) : R → CN/2,m 󰀁→ z = π(σ(∆−1 · m)), respectively. This
structure endows the CKKS scheme with remarkable efficiency and versatility
in handling varied data types.

Encryption and Decryption. The encryption and decryption process in
CKKS is defined as follows. The secret key is composed of a random ring element
s ∈ R sampled following the distribution Xk, and is represented as sk := (1, s).
The public key, denoted as pk := (b,a), is formulated as ([−a·s+e]QL

,a) ∈ R2
Q,

where a
$←RQL

and e ← Xe. For the encryption of a plaintext m, the result-
ing ciphertext ct := (c0, c1) is computed as Encpk(m) := [r · (b,a) + (e0 +
m, e1)]QL

∈ RQL
, where r ← Xk and e0, e1 ← Xe. Conversely, to decrypt the

ciphertext ct = (c0, c1) ∈ R2
Ql

at level l, the decryption result is computed as
m′ := [c0 + c1 · s]Ql

.

Homomorphic Evaluation. In the context of the CKKS, homomorphic eval-
uation is achieved through various operations. Taking ring elements x, y as two
plaintexts, with x encoding a vector x, the following properties are provided:

– Addition (⊕): Dec(󰌻x󰌼 ⊕ 󰌻y󰌼) = x+ y,Dec(󰌻x󰌼 ⊕ y) = x+ y.
– Multiplication (⊗): Dec(󰌻x󰌼 ⊗ 󰌻y󰌼) = x · y,Dec(󰌻x󰌼 ⊗ y) = x · y.
– Rotation (HRoti(·)): Dec(HRoti(󰌻x󰌼)) = Ecd(x ≪ i).

2.4 HE-enabled Neural Network

In the architecture of an HCNN, neurons are meticulously organized into several
layers. These layers typically contain two categories based on their function:
linear and nonlinear layers.

– Linear Layers. The principal components of linear layers are convolu-
tional layers and fully connected layers. These layers primarily perform linear
weighted-sum operations denoted as 󰌻y󰌼 = w⊗ 󰌻x󰌼⊕ b, where w represents
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the weight matrix and b the bias vector post-encoding. The data input is en-
coded as x and the output is represented by y. The convolutional layer only
selects a subset of the output from the previous layer as input to each neu-
ron through the use of a filter. Contrarily, the fully connected layer receives
inputs from all neurons in the previous layer.

– Non-Linear Layers. The activation layers, which generally perform nonlin-
ear functions, fall under this category. These layers are instrumental in pre-
venting overfitting in the model. However, these nonlinear functions often
necessitate polynomial approximations for homomorphic evaluations. The
Rectified Linear Unit (ReLU) is a commonly used activation function in this
context, performing an element-wise operation defined as y = max(0, x).

The image pixel values are typically normalized to a floating-point number
within the interval [0, 1], which is compatible with the input domain of CKKS.
Furthermore, the entirety of the vector can be encoded into a single plaintext,
thereby allowing batch processing, a technique that enhances computational
efficiency significantly. This integration of the data input with the encryption
scheme proves advantageous for the utilization of HE in neural networks.

3 XNET: Improved HCNN

In this section, we provide a comprehensive overview of our proposed network,
the XNET, highlighting its distinctive features and improvements over the con-
ventional HCNN. We start by introducing the unified network structure of
XNET, which streamlines data processing and promotes operational efficiency.
Subsequently, we delve into the specifics of spatial operations adaptation, detail
the activation layer approximation, and elucidate the implementation of highly
batched dense layer computations, which play a crucial role in enhancing com-
putational performance.

3.1 Vertorized Message Maps in XNET

Below we introduce our approach that focuses on the efficient handling of image
data in privacy-preserving inference. Our proposition entails several mappings
for vectorized data representations, consequently obtaining messages primed for
encoding and encryption or changing the context of ciphertexts. These mappings
are meticulously designed to enhance computational efficiency during subsequent
model evaluation.

Convolution Map. The convolution map plays an integral role in bridging the
gap between an original image and a specialized representation, facilitating com-
putations conducive to HE operations. The central objective of this map lies in
the reconstruction of the image in such a way that the pixels in the same position
of each receptive field can be computed in an SIMD approach. In the convolution
map process, the image is first decomposed in accordance with a given convo-
lution filter, allowing for the extraction of each receptive field. The pixels that
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(a) α-stacked map.
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(c) Convolution map with a kernel of 4 weights to 4 messages.

Fig. 2: Descriptions of the defined vectorized message maps in XNET.

occupy the same position within these receptive fields are then transferred to
identical messages. This means that the j-th pixel of the i-th receptive field is
positioned in the i-th slot of the j-th message. For an image of size W × H
and a filter of size F × F with a stride of S, the total number of messages rep-
resented equates to the size of the filter. Each message length corresponds to
the receptive fields coverage ((W − F )/S + 1)× ((H − F )/S + 1). Through this
mapping technique, efficient and streamlined computations can be performed on
convolutional layers in a manner that is amenable to HE operations.

Stacked Map. The stacked map mechanism involves the creation of a message
encompassing several duplicates of a short vector v, which are uniformly dis-
tributed within the message. The fundamental purpose of this mapping technique
is to harness the substantial volume of slots to enhance the parallelism intrinsic
to batch processing. This strategy contributes to reducing the count of homo-
morphic operations needed. In a standard scenario, an α-stacked map applied to
a message of length n results in a message containing α copies of v. This proce-
dure is depicted by the formula vi 󰀁→ (v′i, v

′
i+⌊n/α⌋, v

′
i+2⌊n/α⌋, . . . , v

′
i+(α−1)⌊n/α⌋).

Through this mapping, each vector is systematically replicated and placed through-
out the message, maximizing slot usage and promoting a high degree of paral-
lelism, consequently reducing the computational overhead of HE operations.

Interleaved Map. The interleaved map plays a pivotal role in reordering the
sequence of a given vector based on a provided permutation σ. This results
in the generation of a vector that adheres to this newly established sequence.
For a vector v, where vi denotes the i-th element, the interleaved map method
facilitates the creation of a new vector v′, where i-th element v′i is essentially
vσ(i), i.e., the σ(i)-th element of the initial vector. A special case worth noting
arises when the permutation σ is an identity permutation. In such a scenario,
the map exhibits a direct one-to-one correspondence between the elements of
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Table 1: Illustrative breakdown of our proposed HCNN architecture: procedural
stages, input/output dimensions, and corresponding operations.

Procedure Input size Output size Descryption

Pre-process
Grayscaling 32× 32× 3 32× 32× 1

Transform the 3-color channel input to a
grayscale representation

Batching 32× 32× 1 1024× 9
Reorganize the grayscale image through

the convolutional mapping

Convolution 1024× 9 1024× 8
Pad to 34× 34 and apply 8 filters of 3× 3
with stride (1, 1) for feature extraction

Activation 1024× 8 1024× 8
Polynomial approximation to ReLu for

activation mapping

Pooling 1024× 8 64× 8
Conduct dimensionality reduction using

an extent of 4 and stride 4

Inference Dense 512× 1 128× 1
Apply a linear operation with 128 filters

to integrate global features

Activation 128× 1 128× 1
Polynomial approximation to ReLu for

activation mapping

Dense 128× 1 10× 1
Execute a final linear operation with 10
filters for optimized feature extraction

Output 10× 1 10× 1
Final classification vector representing

the output labels

the vector and the result, effectively denoted as vi 󰀁→ v′i. The Interleaved Map,
therefore, serves as a powerful tool in data manipulation, enabling flexibility in
structuring the sequence based on desired permutations.

3.2 Unified Network Structure

Practical considerations underline the merit of maintaining a single unified model,
as it presents a more resource-efficient solution compared to training and man-
aging a plethora of specialized models. With this insight, we propose a com-
pact and unified HCNN architecture, as presented in Table 1. We elucidate the
methodology integral to the proposed design, which streamlines data analysis by
transforming and simplifying inputs, adeptly managing features, and classifying
operations to accommodate the unique needs of homomorphic evaluations. This
consolidated approach brings significant practical benefits, especially in terms of
resource efficiency.

Pre-Processing. In the methodology put forth, a pre-processing phase is in-
corporated, designed to consolidate the three color channels of a 3-dimensional
image into a singular grayscale channel. This step effectively transmutes the im-
age dimensions from 32× 32× 3 to 32× 32× 1. This transformation is achieved
by computing the average of the pixel values spanning across the Red, Green,
and Blue color channels for each pixel location, thereby converting the color
image into a grayscale equivalent. The fundamental motivation behind this pre-
processing measure is to streamline the ensuing processing stages, consequently
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reducing computational complexity without significantly undermining the crit-
ical image features requisite for detailed analysis. It should be noted that this
step capitalizes on the fact that human visual perception predominantly depends
on luminance, a feature aptly encapsulated in grayscale images. Through this
pre-processing phase, the original image can be represented in a more compact
form, thereby mitigating both data size and computational complexity.

Private Inference. The inference phase of the proposed architecture is charac-
terized by multiple layer types, each playing a distinctive role in the extraction
and refinement of features from the given input data. The initiation of this phase
involves the execution of a convolutional operation that applies multiple filters
to the batched inputs, thereby resulting in a set of ciphertexts signifying the
primary extracted features. Specifically, an assortment of eight filters, each of
size 3 × 3, is employed to systematically scrutinize the batched inputs. The fil-
ter weights and bias are encoded into disparate plaintexts through the stacked
mapping, and subsequently, these are multiplied or added respectively to the
encrypted pixel vectors, leading to a transformation from an input dimension-
ality of 1024 × 9 to an output of 1024 × 8. It should be noted that the images
undergo a process of zero-padding, resulting in a dimensionality expansion to
34×34. The comprehensive coverage paired with the filters’ relatively small size
facilitates an extensive feature extraction from the input, enabling detection of
small-scale patterns.

Following the convolutional layer, an activation function is applied, thus en-
abling the model to discern more complex relationships within the data. The
output from the activation function is then subjected to an average pooling
operation. This operation is performed with a size of 4 and stride of 4, thus
reducing the spatial dimensions of the feature maps to 64× 8. The pooling op-
eration holds twofold benefits, it mitigates overfitting by offering an abstracted
representation, and decreases computational cost by reducing the dimensionality
of the representation.

Finally, the condensed feature maps are then passed through a series of dense
layers. Each of these dense layers performs a linear operation on its input, amal-
gamating the features within a global context. The dense layers, equipped with
128 and 10 filters respectively, continuously refine the representations, thereby
reducing their dimensionality whilst preserving the complexity of the features.
As a result, the model achieves an efficient and robust feature analysis during
private inference.

Classification of Operations. Within the context of our proposed network
architecture, we classify the operations conducted across the previously discussed
layers into two primary categories based on the structure of the operation:

– Spatial Operations. This category encompasses both convolutional and pool-
ing operations. These operations intrinsically consider spatial relationships
among pixels in an image by employing two-dimensional kernels that slide
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across the width and height of the image. These layers retain the spatial
structure of the image and enable the network to learn and comprehend
spatial hierarchies.

– Non-Spatial Operations. This category refers to the dense and activation
layers where the input data is regarded as a flat array rather than a two-
dimension image. In a dense layer, for instance, every neuron is intercon-
nected with every neuron in the previous layer, regardless of their spatial
relationships in the original image. Similarly, activation functions apply a
non-linear transformation to each input independently.

The core objective of this classification is to address the unique processing
requirements associated with homomorphic evaluation. Homomorphic encryp-
tion schemes present distinct operational complexities that vary depending on
operation structure. By distinguishing these types, we can tailor the application
of homomorphic operations to better fit the computation of each layer, thereby
optimizing performance.

3.3 Adaptations of Spatial Operations

Spatial operations, in the context of our proposed HCNN architecture, primar-
ily involve the convolutional layer and the average pooling layer. These layers
function in a sequential flow of computation that begins with a convolutional
operation extracting receptive fields, followed by the application of an activation
function, and finally, the average pooling of the resultant output.

In this process, it is worth noting that the computations involving multipli-
cations with weights and additions with bias, which can be computed in parallel
for each pixel. We achieved this by initially packing the pixels to allow batch
processing, thus optimizing computational efficiency. This technique, designed
to finely adapt the HE operations, is a key component in our architecture.

In detail, we initially apply the convolutional map to obtain F 2 messages.
These messages are then encoded and encrypted, resulting in ciphertexts that
effectively hide the original data. Concurrently, we apply the stacked map to
encode each weight in the convolutional filters into different plaintexts. For each
channel, the ciphertexts are then multiplied with the corresponding plaintexts.
The results of these multiplications across all channels are then aggregated,
yielding the convolutional results for each individual channel. Given that our
architecture accommodates 8 channels, this step produces 8 distinct ciphertexts.
Subsequent to these operations, we apply the activation function to the processed
data. The final step in this sequence is the computation of average pooling. This
operation serves to abstract and reduce the spatial dimensions of the processed
data, consequently resulting in a more manageable and efficient representation
for subsequent layers.

Interleaved Batching Technique. In order to optimize the processing of the
pooling component, we introduce an interleaved convolutional map in our pro-
posed HCNN architecture. Our design deviates from the conventional approach
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Fig. 3: A schematic representation of the interleaved convolutional mapping using
8 filters of size 3×3 in our proposed HCNN architecture, and the computational
flow from convolution to average pooling.

of sequentially storing each receptive field; instead, it stores the set of receptive
fields processed by the same pooling operation in a sequential manner. This in-
novative approach enables the direct execution of pooling operations following
batched convolutional operations.

The interleaved convolutional map is essentially a fusion of convolutional
map and interleaved map techniques. To illustrate this, consider an image of
size W ×H being processed by a filter of size F ×F with a stride of S. Initially,
all receptive fields of size F 2 are extracted and mapped to F 2 messages. This
process involves a permutation that affects the position of each receptive field
but leaves the convolutional operation unaffected, given that computations are
batched and executed in an SIMD manner. Following this, we perform four
homomorphic rotations and additions to compute the sum value, in alignment
with the pooling layer’s function of averaging 16 values. Fig. 3 presents a visual
representation of our approach, exemplifying the use of a filter of size 3×3. This
innovative technique of interleaved batching effectively adapts the processing
of the pooling part, enhancing computational efficiency and data flow in our
proposed architecture.

3.4 Effective Approximation of Activation Layer

In our proposed HCNN architecture, we apply the ReLu as the activation func-
tion, defined as ReLu(x) = max(0, x). As a popular option in contemporary
network designs, the ReLU function is distinguished by its property of zeroing
out negative values while maintaining linearity for positive inputs. However, due
to its non-linearity, its application within the context of the CKKS homomor-
phic encryption scheme requires an approximation technique, most commonly
the Taylor series or Chebyshev polynomials. These higher-degree polynomial
approximations, while effective within a certain range of x values, may deviate
significantly from the ReLU function for larger or smaller x values. Bearing this
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Fig. 4: Example of the parallelized dense layer computation in HCNN with di-
mension k1 = 4 and k2 = 3.

in mind, our approach leverages a simpler quadratic approximation, represent-
ing the function as ReLU(x) ≈ x2. The simplicity and universal continuity and
differentiability of this function assures computational efficiency.

Admittedly, the quadratic approximation lacks the sparsity property of ReLU,
which yields efficiency by driving many of the neurons to output zero. However,
given that the operands are ciphertexts in homomorphic operations, the plaintext
value will not influence the computation pattern. Therefore, the lack of sparsity
does not significantly impact the computational performance. Consequently, for
these reasons, we employ the quadratic approximation for the ReLU function,
enabling the activation operation to be conducted with a single homomorphic
multiplication.

3.5 Efficient Batched Computation in Dense Layer

In the dense layer, every neuron exhibits a connection to each neuron from the
preceding layer, and each linkage carries an associated weight. The output of a
neuron is calculated by summing the products of these weights with their cor-
responding inputs, adding a bias term, and passing the resultant sum through
an activation function. Mathematically, let us denote x as an input vector of
dimension k1, and W as a weight matrix of dimension k1 × k2. Here, k1 repre-
sents the number of neurons in the previous layer, and k2 denotes the number
of neurons in the current dense layer. Furthermore, let b be the bias vector of
dimension k2. Consequently, the output vector y of the dense layer can be com-
puted as: y := W ·x+b. As the computation for each neuron can be performed
independently, a form of parallel computation is naturally facilitated. In fig. 4,
we provide an illustrative example of this process, with k1 = 4 and k2 = 3.

For the dense layer of our proposed network, we achieve highly batched com-
putation and introduce two optimizations. These are specifically designed to
significantly reduce computational and memory overhead, thereby enhancing
overall performance. These methods are detailed below.

Low-Complexity Transition. In our proposed network, before average pool-
ing, we possess eight ciphertexts, with each storing 64 pooling results across
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1024 slots at intervals of 16. The traditional method for transitioning from the
pooling layer to the dense layer involves homomorphically rotating the i-th ci-
phertext by 1024i steps and summing all ciphertexts. This results in a ciphertext
that accommodates 512 results within 8192 slots, paving the way for the batch
processing computation of the dense layer.

However, we deviate from this standard approach and propose a method with
lower complexity. In the initial stage of the pre-processing phase, we employ
a stacked map. Specifically, in contrast to the traditional batching approach,
we store eight copies in each ciphertext, and encode the weights in the same
position across the eight channels into a single plaintext. This strategy reduces
the original 64 plaintexts to just eight.

We then perform eight homomorphic multiplications on the ciphertext and
sum all the results. Consequently, we are left with a single ciphertext containing
eight stacked results. This optimization is beneficial as it not only reduces the
homomorphic multiplication with weight plaintexts and the homomorphic addi-
tion with bias plaintexts, but also obviates the need for homomorphic rotation
to achieve the stacked map, thereby simplifying the computational process.

Tight Packing. After the average pooling stage, the results are stored at inter-
vals of 16, which leads to an inefficient utilization of available slots and under-
utilizes the potential for parallel computation. To address this inefficiency, we
introduce a tight packing technique. This technique involves iterative applica-
tion of homomorphic rotation and addition on the ciphertext with steps defined
in 1, 2, 4, 8. Following this procedure, each of the previously empty 15 slots now
stores a copy of the pooling result. Subsequently, the positions of the weights
of the dense layer are adjusted to correspond to this sequence, and the then
encoded to produce the plaintexts. By applying this method, we achieve a sig-
nificant increase in parallelism, improving it by a factor of 16. In the architecture
of our proposed network, the first dense layer stores 512 × 16 weights in each
weight plaintext, resulting in a total of 8 weight plaintexts.

This highly parallel structure provides substantial benefits, markedly enhanc-
ing processing speed and overall performance. This enhancement is particularly
significant when handling complex network operations in the dense layer, thereby
improving the efficiency of our proposed network architecture.

4 Implementation and Acceleration

4.1 Instantiation of Data Sets

We deploy the proposed network on three datasets: MNIST [16], Fashion-MNIST
[19], and CIFAR-10 [15]. MNIST and Fashion-MNIST both include 28 × 28
grayscale images distributed over 10 categories. The CIFAR-10 dataset features
32×32 color images, categorized into 10 classes. To accommodate these datasets
into our network, we pad all images to 34 × 34 dimensions. Given our use of a
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Table 2: Breakdown of resource consumption across different layers in the pro-
posed network.

Convolution Activation Pooling Dense Activation Dense

Input
Ciphertext 9 1 1 1 1 1
Plaintext 10 0 1 10 0 2

Output Ciphertext 1 1 1 1 1 1

HE operation

HAdd 8 0 4 83 0 16
CAdd 1 0 0 1 0 1
HMult 0 1 0 0 1 0
CMult 9 0 1 16 0 1
HRot 0 0 4 83 0 16

Consumed depth 1 1 1 2 1 1

unified network, the processing steps remain consistent across all datasets. Ta-
ble 2 presents a detailed account of resource consumption at each stage of our
network, showcasing how our approach effectively caters to the distinct charac-
teristics of each dataset. This marks a significant stride towards efficient resource
utilization within the scope of homomorphically encrypted operations.

4.2 Scheme Configuration

The total multiplication depth is 7 in our network, as a consequence, the modulus
chain is instantiated with |QL| = 340 and L = 7. For our requirements, this set-
ting provides a substantial security level of 128-bit. To streamline computations,
we keep ciphertexts in a double-CRT representation, where each residue under
the RNS representation is in the Number Theoretic Transformation (NTT) do-
main. We particularly set the dimension N = 214 to meet our computational
needs. The key-switching, which is an integral part of our implementation, is
performed with a special modulus |P | = 60. This setting allows for a larger ci-
phertext decompose number, while simultaneously enabling a reduction in other
HE parameters, such as the ring dimension N . Notably, this provides a bal-
ance between complexity and parameter size. It upholds the same security level,
thereby making it a more efficient choice than the full RNS variant [13], partic-
ularly for circuits where the evaluation depth is not excessively deep.

4.3 Hierarchical Decomposition and Acceleration of Layers

To efficiently compute the HCNN layers, we closely examine the underlying HE
evaluation operations constituting each layer, as well as their hierarchical struc-
ture. Leveraging our custom-developed GPU acceleration engine, we optimize
these operations for top-tier performance. Importantly, RNS level operations,
which form the fundamental components of these HE operations, are particu-
larly amenable to batch processing on a GPU, given that the residues can be
processed in parallel. Fig. 5 presents our approach.
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Fig. 5: Illustration of the hierarchical construction of HCNN layers, correspond-
ing HE evaluation operations, and our custom-built GPU acceleration engine for
efficient execution.

The foundation of our GPU acceleration engine is the Polynomial Acceler-
ation Unit (PAU). The primary function of the PAU is to expedite polynomial
arithmetic operations under the RNS representation by batching residues. In the
context of the RNS-level operations facilitated by the PAU:

– EleAdd: performs modular addition, indicating an element-wise addition op-
eration on the polynomials. This operation underscores the simple yet crucial
aspect of polynomial arithmeticaddition at the element level.

– EleMult: represents the Hadamard (element-wise) product of two polyno-
mials, manifesting an integral part of the PAU’s capabilities in executing
complex polynomial operations.

– Conv: signifies the base conversion operation, underscoring the PAU’s ability
to facilitate flexible arithmetic operations in different numerical bases.

– NTT: corresponds to the Number Theoretic Transform, a critical component
in the polynomial arithmetic domain for transforming polynomials between
different domain to accelerate polynomial multiplications.

Based on this unit, we develop the homomorphic evaluation operations, and
the pseudocode is present in Algorithm 1. Each of these HE operations can
be reconstructed by the more elemental RNS level operations. Specifically, the
operations HAdd and CAdd consist of EleAdd. On the other hand, the opera-
tions ciphertext-ciphertex multiplication HMult, plaintext-ciphertex multiplica-
tion CMult, and rotation HRot are more complex, containing operations EleMult,
EleAdd, Conv, and NTT, respectively.

By utilizing this hierarchical decomposition approach, we can streamline the
computation process in HCNNs, making the execution of complex operations
more manageable and efficient. Furthermore, our GPU acceleration engine en-
sures that these operations are performed at an expedited rate, thus enhancing
the overall performance of our HCNN implementation.
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Algorithm 1 Implemented Homomorphic Evaluation Operations

1: function HAdd(ct, ct′)
2: ct := (c0, c1), ct

′ := (c′0, c
′
1)

3: d0 := c0 + c′0, d1 := c1 + c′1
4: return ctA := (d0,d1)

5: function HMult(ct0, ct1, swk)
6: ct := (c0, c1), ct

′ := (c′0, c
′
1)

7: d0 := c0 · c′0, d2 := c1 · c′1, d1 := c1 · c′0 + c0 · c′1
8: (d′

0,d
′
1) := KeySwitch(d0, swk)

9: return ctM := (d0 + d′
0,d1 + d′

1)

10: function HRot(ct, sn, swk)
11: ct := (c0, c1)
12: d0 := FrobeniusMap(c0, sn), d1 := FrobeniusMap(c1, sn)
13: (d′

0,d
′
1) := KeySwitch(d0, swk)

14: return ctR := (d′
0,d1 + d′

1)

15: function Rescale(ct)
16: ct := (c0, c1) ∈ RQl , j ∈ [0, l)

17: d0 := [q−1
l · (c(j)0 − c

(l)
0 )]ql , d1 := [q−1

l · (c(j)1 − c
(l)
1 )]ql

18: return ct′ := (d0,d1)

19: function KeySwitch(ct, swk)
20: ct := (c0, c1) ∈ RQl , swk := {(bi,ai)}i∈[0,l]

21: (c′0, c
′
1) := (0, 0)

22: for i ∈ [0, l] do

23: c∗ := ModUpqi→QlP
(c

(i)
1 )

24: (c∗0, c
∗
1) := (〈c∗, bi〉, 〈c∗,ai〉)

25: (c′0, c
′
1) := (c′0, c

′
1) + (c∗0, c

∗
1)

26: (c′′0 , c
′′
1 ) := (ModDownQlP→Ql(c

′
0),ModDownQlP→Ql(c

′
1))

27: return ct′′ = (c′′0 , c
′′
1 )

5 Results and Comparison

5.1 Hardware Specifications

Our experiments are performed on an Arch Linux system with kernel 5.15. The
C/C++ code is compiled using g++ 12.2.0, and GPU tasks are handled us-
ing CUDA 11.8. For the CPU baseline, we employ an Intel(R) Core(TM) i9-
12900KS CPU with 16 cores. We deploy and test our GPU implementation on a
NVIDIA Tesla A100 80G PCIe. This diverse configuration allows us to assess the
robustness across a variety of hardware environments, yielding a well-rounded
understanding of the performance of our implementation.

5.2 Performance and Comparisons

Table 3 delivers an in-depth performance analysis of our network on both CPU
and GPU hardware platforms. The CPU processing times demonstrate that the
first dense layer requires the most computational resources, taking up to 369.769
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Table 3: Detailed breakdown of the execution time for each layer in our network,
measured in milliseconds.

Device Convolution Activation Pooling Dense Activation Dense

CPU 26.145 12.284 33.8 369.769 3.943 22.745
GPU 1.491 0.044 0.148 29.751 0.036 0.428

Speedup 17.5× 279.2× 228.4× 12.4× 109.5× 53.1×

milliseconds. This substantial duration can be attributed to the significant num-
ber of homomorphic multiplication and rotation operations required in this stage.
Meanwhile, the pooling and convolution layers follow in terms of time consump-
tion. On the A100 GPU, the dense layer still necessitates the majority of the
processing time, albeit at a much reduced duration of 29.751 milliseconds. The
convolution, pooling, and activation layers, on the other hand, are handled quite
efficiently, each requiring less than 2 milliseconds. Our GPU implementation fa-
cilitates speedups of up to 17.5× for convolution, 228.4× for pooling, 12.4× for
the dense layer, and 109.5× for activation.

Table 4: Comparison of execution time and accuracy between our network and
prior works on MNIST [16], Fashion-MNIST [19], and CIFAR-10 datasets [15].
Times are measured in seconds.

Method Dataset Accuracy (%) Latency (s) Platform

CryptoNets [11] MNIST 98.95 205 CPU
FCryptoNets [10] MNIST 98.71 39.1 CPU

LoLa [8] MNIST 98.95 2.2 CPU
Falcon [17] MNIST 98.95 1.2 CPU

LoLa [8] CIFAR-10 76.5 730 CPU
Falcon [17] CIFAR-10 76.5 107 CPU

XNET

MNIST 99.14 0.46 CPU
MNIST 99.14 0.032 GPU

Fashion-MNIST 90.8 0.46 CPU
Fashion-MNIST 90.8 0.032 GPU

CIFAR-10 61.09 0.46s CPU
CIFAR-10 61.09 0.032 GPU

Table 4 provides a performance comparison of our proposed method with
other established techniques, evaluated on NIST [16], Fashion-MNIST [19], and
CIFAR-10 datasets [15]. Across all datasets, our method not only achieves com-
petitive accuracy, but also significantly reduces the latency compared to other
works. In the context of MNIST, our approach attains the highest accuracy
of 99.14%, outperforming CryptoNets, FCryptoNets, LoLa, and Falcon. More
impressively, it reduces the execution time from 205 seconds in CryptoNets to
0.46 seconds on CPU and a mere 0.032 seconds on GPU. When it comes to
the more complex CIFAR-10 and Fashion-MNIST datasets, our solution still
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maintains superior performance in terms of latency, staying consistent at 0.46
seconds on CPU and 0.032 seconds on GPU, despite a slight drop in accuracy.
This demonstrates that our method successfully provides a real-time solution for
secure neural network inference across various datasets and platforms, breaking
through the limitations of existing works.

6 Conclusion

In this study, we present an optimized HE-based convolutional neural network
inference framework for real-time applications. This is achieved through a unified
and compact network structure, and several innovative optimization strategies,
including a unique compression and encoding technique, and efficient rearrange-
ment of the encoding sequence of pixels. We further exploit GPU’s thread-level
parallelism for accelerated computation. Experimental results on three datasets
show remarkable inference accuracies and a notable processing speed improve-
ment, with a 3000× speedup compared to prior works. Our findings contributes
to future research in secure and real-time machine learning applications, inspir-
ing further advancements in network structure design, optimization techniques,
and hardware utilization.
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