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Leveraging GPU in Homomorphic Encryption:
Framework Design and Analysis of BFV Variants

Shiyu Shen, Hao Yang, Wangchen Dai, Lu Zhou, Zhe Liu, and Yunlei Zhao

Abstract—Homomorphic Encryption (HE) enhances data se-
curity by facilitating computations on encrypted data, opening
new paths for privacy-focused computations. The Brakerski-
Fan-Vercauteren (BFV) scheme, a promising HE scheme, raises
considerable performance challenges. Graphics Processing Units
(GPUs), with considerable parallel processing abilities, have
emerged as an effective solution.

In this work, we present an in-depth study focusing on acceler-
ating and comparing BFV variants on GPUs, including Bajard-
Eynard-Hasan-Zucca (BEHZ), Halevi-Polyakov-Shoup (HPS),
and other recent variants. We introduce a universal framework
accommodating all variants, propose optimized BEHZ implemen-
tation, and first support HPS variants with large parameter
sets on GPUs. Moreover, we devise several optimizations for
both low-level arithmetic and high-level operations, including
minimizing instructions for modular operations, enhancing hard-
ware utilization for base conversion, implementing efficient reuse
strategies, and introducing intra-arithmetic and inner-conversion
fusion methods, thus decreasing the overall computational and
memory consumption.

Leveraging our framework, we offer comprehensive compar-
ative analyses. Our performance evaluation showcases a marked
speed improvement, achieving 31.9× over OpenFHE running on
a multi-threaded CPU and 39.7% and 29.9% improvement, re-
spectively, over the state-of-the-art GPU BEHZ implementation.
Our implementation of the leveled HPS variant records up to 4×
speedup over other variants, positioning it as a highly promising
alternative for specific applications.

Index Terms—Homomorphic Encryption, BFV, GPU acceler-
ation, parallel processing.

I. INTRODUCTION

THE proliferation of server computing has magnified the
scale of server-hosted tasks, yielding remotely obtained

results while raising data privacy concerns. Homomorphic En-
cryption (HE) offers a robust solution, allowing computation
on encrypted data accessible only by the secret key holder,
thereby protecting data in privacy-sensitive applications.

The pioneering introduction of Fully Homomorphic Encryp-
tion (FHE) by Gentry [1], [2] ushered in a range of efficient
schemes. One notable branch leverages modular arithmetic
over finite fields, encompassing the BGV [3] and BFV [4],
[5] schemes which are efficient due to their support for batch
processing of integer vectors. The BFV scheme, first proposed
in [4] and later adjusted to Ring setting in [5], demonstrates
better performance in noise control. Consequently, it has been
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incorporated into prevalent HE libraries like SEAL [6] and
OpenFHE [7] and has found extensive application in a variety
of privacy-preserving applications, including privacy inference
[8], [9], decision tree evaluation [10], and set intersection [11].

In spite of the substantial benefits of the BFV scheme, its
performance is still far from satisfactory. Unlike the leveled
structure of BGV, BFV adheres to a scale-invariant design
with a constant ciphertext modulus. This results in homomor-
phic operations being conducted on ciphertexts with a large
modulus size, leading to inefficiencies due to the enormous
data magnitude. Additionally, the encryption structure of BFV
adds complexity to the decryption and multiplication processes
due to the division-and-rounding operation. Since approximate
arithmetic is incompatible with the Residue Number System
(RNS) representation, this operation has been considered dif-
ficult to perform on the RNS variant of BFV.

In light of these challenges, various optimizations have
emerged to mitigate these constraints. Currently, two primary
adaptations of the BFV in RNS stand out: the Bajard-Eynard-
Hasan-Zucca (BEHZ) [12] method and the Halevi-Polyakov-
Shoup (HPS) [13] method. The BEHZ method [12] introduces
a suite of approximation and correction algorithms that work
on modular integer arithmetic to yield approximated results,
while the HPS method [13] incorporates additional floating-
point arithmetic to streamline the evaluation process. A notable
limitation of the HPS approach, however, is the requirement
for high-precision floating-point arithmetic to support a larger
ciphertext modulus. The study in [14] addresses this issue
with a general-purpose digit decomposition technique, and
also offers several optimizations to BFV for noise control
and performance, including optimized homomorphic multipli-
cation and a leveled approach.

However, the high computational demands of these methods
pose a significant barrier to developing practical HE-based
applications. GPU acceleration, explored by numerous works,
is crucial to accelerating BFV and its applications. Badawi
et al. [15] first explored the implementation of the BEHZ
variant on GPUs, covering key generation, encryption, de-
cryption, homomorphic addition, and homomorphic multipli-
cation procedures. Further efforts have sought to improve the
performance [16]–[20], by optimizing the arithmetic opera-
tions bottleneck such as Number Theoretic Transform (NTT)
or expanding the range of other homomorphic operations.
For the HPS variant, the initial GPU implementation was
proposed in [21], but was limited to 32-bit arithmetic due
to precision constraints. More scalable implementations later
emerged, extending to multi-GPU architectures [22]. Efforts to
accelerate privacy-preserving applications based on BFV have
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also been researched, such as homomorphic convolutional
neural networks (HCNN) [23] and gradient boosting inference
(XGBoost) [18], [19]. While significant progress have been
made, several challenges still persist. There is potential for
further performance enhancement in current implementations,
and present GPU implementation of HPS is limited by the
parameter configurations it supports. Furthermore, the acceler-
ation of recent variants with potentially superior performance
remains unexplored.

Contributions. In this work, we comprehensively analyze
all BFV variants, break down the operations, and design a
generic GPU framework that accommodates and accelerates
all these variants. Specifically, we offer optimized GPU imple-
mentations of the BEHZ variant and first support the HPS with
large parameter sets and other HPS variants. Our optimizations
include:

• For arithmetic operations, we implement modular oper-
ations with minimal instructions for different data sizes.
We propose optimized base conversion implementation
with high hardware utilization, and reduce memory access
through loop unrolling.

• For decryption, we designed a finely-tuned memory reuse
strategy and optimize memory access patterns to decrease
consumption and latency.

• For BEHZ multiplication, we propose intra-arithmetic
fusion and inner-conversion fusion methods, allowing to
reuse temporary values, decrease the number of base
conversions, and reduce computational consumption.

• For HPS multiplication, we design a generic module for
three variants to maximize operation reuse. We adapt the
hybrid key-switching technique for ciphertext relineariza-
tion, and fuse tensoring with relinearization in the leveled
approach to further reduce the computation of scaling and
memory transfer.

Our performance evaluation reveals significant improvements.
Compared to OpenFHE running on a multi-threaded CPU,
our implementation on A100 achieves speedups of 14.3× to
31.9×. Against a recent state-of-the-art GPU implementation
of BEHZ, we achieve a 39.7% improvement for tensoring
and a 29.9% improvement for relinearization. For real-world
applications, as the multiplication depth increases, our GPU
implementation of the leveled HPS variant consistently outper-
forms, achieving around 4× the speed of other variants in our
implementation, showing a potential in specific applications.

II. PRELIMINARIES

A. Notation

We denote q as an integer and N as a power of 2. Let Z
be the set of integers, with Zq representing integers modulo
q. We define the polynomial ring as R = Z[X]/(XN + 1)
and the residue ring modulo q as Rq = R/qR. We use bold,
italic lowercase letters to represent polynomials, e.g. f :=∑N−1
i=0 fiX

i, which are elements of the ring R. We use UQ
to indicate the uniform distribution over ZQ, and Xk and Xe
are used to denote two distinct probability distributions over
the ring R. The notation f ← S signifies that the element f

is sampled according to the distribution S. The notation [a]q
stands for the integer a modulo q.

B. Residue Number System

The Residue Number System (RNS) is often employed to
accelerate the computation of multi-precision integer arith-
metic. Consider a large integer Q := ΠL

i=1qi where all
qi are pairwise coprime. The Chinese Remainder Theorem
(CRT) provides an isomorphism ZQ ' ΠL

i=1Zqi , impling
a large integer in ZQ can be decomposed into residues in
Zqi and each fits in machine word size. This extends to
rings as RQ ' ΠL

i=1Rqi . For x ∈ RQ with coefficients
as multi-precision integers, the RNS representation of x can
be expressed as (x(1),x(2), . . . ,x(L)), where x(i) := [x]qi .
This replaces inefficient arithmetic over RQ with efficient
arithmetic over Rqi , via residue-wise computations using
native integer data types. The conversions between the original
and the RNS representation, can be expressed as follows:

x =

 L∑
i=1

[
x(i) ·

(
Q

qi

)−1]
qi

· Q
qi

− v ·Q (1)

x =

 L∑
i=1

x(i) ·

[(
Q

qi

)−1]
qi

· Q
qi

− v′ ·Q (2)

These two forms differ in their upper bounds: while the
upper bound of ||v||∞ is limited by L, the upper bound of
||v′||∞ is capped by L ·max qi.

RNS Base Conversion. The conversion of the RNS base
of an element is a necessary step during computation. Given
large integers Q := ΠL

i=1qi and R := ΠK
k=1rk with pairwise

coprime moduli, the respective RNS bases can be defined as
Q := {q1, q2, . . . , qL} and B := {r1, r2, . . . , rK}. To convert
the base of a ring element x ∈ RQ from base Q to base B,
two methods are currently proposed. The first is the Bajard-
Eynard-Hasan-Zucca (BEHZ) method [12], represented as:

ConvBEHZ
Q→B(x) =

[ L∑
i=1

[
x(i) · q̃i

]
qi
· q∗i

]
rk

K

k=1

(3)

Here, q∗i = Q/qi and q̃i = [q∗−1i ]qi . The output of ConvBEHZ
Q→B

is [[x]Q + vQ]R rather than [[x]Q]R, thereby introducing a
Q-overflow error.

The second method is the Halevi-Polyakov-Shoup (HPS)
method [13]. Unlike the BEHZ method, the HPS method com-
putes an exact conversion, outputting [[x]Q]P . This method
can be expressed as follows:

ConvHPS
Q→B(x) =

[ L∑
i=1

[
x(i) · q̃i

]
qi
· q∗i − vQ

]
rk

K

k=1

(4)

Here, v is computed as v = b
∑L
i=1[x(i) · q̃i]qi/qie. This

method initially computes the intermediate value y(i) := [x(i) ·
q̃i]qi using integer arithmetic, followed by the computation
of z(i) := y(i)/qi using floating-point arithmetic, and finally
sums up z(i) to get v.
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C. BFV Scheme

The BFV scheme operates over plaintext space Rt and
ciphertext space RQ, where t and Q are the plaintext and
ciphertext modulus respectively. Below, we describe the com-
monly used RNS-variant BFV scheme for efficiency, where
the modulus Q is represented as the product of a series of
coprime integers, i.e., Q = ΠL

i=1qi, and we denote P as the
special modulus.

Key Generation. The key generation procedure produces
keys used in encryption and evaluation based on the desired
security level, including the public key pk, the secret key
sk, and the relinearization key rlk. Ring elements s ← Xk,
a← UQ, a′j ← UQP , and the noise e, e′j ← Xe are sampled.
We denote dnum as the RNS-decomposition number. The
corresponding keys are then defined as follows:
• Secret key: sk := (1, s) ∈ R2.
• Public key: pk := (b,a) ∈ R2

Q, with b := [−a ·s+e]Q.
• Relinearization key: rlk := {(b′j ,a′j)}0≤j<dnum ∈
R2×dnum
QP , where b′j := [−a′j ·s+e′j +PTjs

2]QP and Tj
is a decomposition base.

In practice, sk is typically sampled from the uniform ternary
distribution {−1, 0, 1}, and the discrete Gaussian distribution
is often used for sampling the noise [24].

Encryption. Given a plaintext m ∈ Rt, the encryption
procedure generates a ciphertext ct := (c0, c1), encoding
m in the MSD with a scaling ∆ := bQ/tc. This procedure
includes symmetric and asymmetric encryption, differing by
the keys used in encryption. Sampling a′ ← UQ, r ← Xk and
e0, e1,← Xe, the two versions are as follows:
• Symmetric: set c1 := −a′ and compute c0 := [−a′ · s+
e0 + ∆[m]t]Q.

• Asymmetric: compute c0 := [r · b + e0 + ∆[m]t]Q and
c1 := [r · a+ e1]Q.

Decryption. Given a ciphertext ct = (c0, c1) ∈ R2
Q and a

secret key sk = (1, s), the decryption procedure recovers the
plaintext by computing m := [bt/Q · [c0 + c1 · s]Qe]t.

Multiplication. Homomorphic multiplication of two cipher-
texts ct1 = (c1,0, c1,1), ct2 = (c2,0, c2,1) ∈ R2

Q involves two
steps:
• Tensoring. First, takes the two ciphertexts ct1 and ct2 as

input and perform tensor product, outputs a triple ct∗ :=
(c∗0, c

∗
1, c
∗
2), where

c∗0 := [b∆−1c1,0 · c2,0e]Q
c∗1 := [b∆−1(c1,0 · c2,1 + c1,1 · c2,0)e]Q
c∗2 := [b∆−1c1,1 · c2,1e]Q

• Relinearization. Second, relinearize the triple to a cipher-
text with two ring elements, by computing (cr0, c

r
1) :=

bP−1c∗2 · rlke. Then, output ct := (c0, c1) := ([c∗0 +
cr0]Q, [c

∗
1 + cr1]Q).

Note that relinearization is an optional step but can offer better
performance in subsequent computations.

D. GPU Fundamentals

GPUs have emerged as powerful tools for high-performance
computing, due to their massive parallel processing capabili-
ties. The most basic execution unit within a GPU is the thread,

Algorithm 1 DecBEHZ: BEHZ-type BFV Decryption
Input: ct ∈ R2

Q, sk ∈ R2

Output: [m]t
1: x := 〈ct, sk〉
2: for i ∈ {t, γ} do . Scaling-and-rounding
3: f (i) := [ConvBEHZ

Q→i ([γt · x]Q)× [−Q−1]i]i

4: f̃ (γ) := f (γ) mod γ . Obtain centered remainder
5: m(t) := [(f (t) − f̃ (γ))× [γ−1]t]t
6: return m(t)

which runs a kernel in parallel with other threads to enhance
the overall processing speed. Every thread is equipped with its
private local memory and registers. Threads on a GPU are or-
ganized into thread blocks, where all threads can cooperatively
execute tasks and share data via shared memory (SMEM).
GPUs feature a complex memory hierarchy, including read-
and-write memory such as global memory (GMEM), shared
memory, and registers. Among these, global memory is the
largest, but it suffers from comparatively high latency.

GPUs operate with an instruction set that involves various
types of operations, including arithmetic, logic operations,
and memory access operations. A notable feature is that
GPUs typically have 32-bit registers, and thus 64-bit oper-
ations are constructed over the 32-bit arithmetic. This design
consideration is crucial for understanding and optimizing the
performance of GPU-based applications.

III. BFV VARIANTS

In this section, we delve into a comprehensive exploration
and analysis of various variants of BFV. We begin by focusing
on two primary methods, i.e., BEHZ and HPS, that address
the issues of simple scaling in decryption and complex scaling
in tensoring. Each method comes with its own set of strengths
and challenges, and we elucidate these with careful considera-
tion. Furthermore, we examine recent innovative adaptations of
these methods, including techniques to expand the input size in
HPS and strategies to minimize computational complexity and
memory usage in tensoring. Finally, we discuss the process of
relinearization, particularly the implementation of hybrid key-
switching within the BFV scheme.

A. Simple Scaling in Decryption

The decryption procedure in the BFV scheme operates by
first computing x := [c0+c1·s]Q inRQ. This is then scaled by
a factor of t/Q and rounded to the nearest integer to compute
m = [bt/Q · xe]t, where each coefficient of x undergoes the
scaling-and-rounding process. Notably, the BEHZ and HPS
methods differ in how they implement this operation. The
pseudocode of utilizing the two method for decryption are
represented in Algorithm 1 and 2 respectively.

BEHZ Method. The BEHZ method simplifies the com-
putation by replacing the rounding operation with flooring,
expressed as follows:⌊

t

Q
[x]Q

⌋
=
t[x]Q − [t · x]Q

Q
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Algorithm 2 DecHPS: HPS-type in BFV Decryption
Input: ct ∈ R2

Q, sk ∈ R2, {(ωi, θi)}i∈[0,L)
Output: [m]t

1: x := 〈ct, sk〉
2: for j ∈ [0, N) do . Scaling-and-rounding
3: w := 0, v := 0.0 . x := {x(i)}
4: for i ∈ [1, L] do . x(i) :=

∑N−1
j=0 x

(i)
j Xj

5: w := w + [x
(i)
j · ωi]qi . Integral part

6: v := v + x
(i)
j · θi . Fractional part

7: sum := w + v
8: mj := bsum− sum/te . Modular reduction
9: return m :=

∑N−1
j=0 mjX

j

This provides exact integer division that can be performed
under the RNS representation. The process of base conversion
from Q to t causes the term t[x]Q to vanish during compu-
tation modulo t. After base conversion, the remaining term
[[t · x]Q]t can be obtained. Then, an auxiliary modulo γ that
is coprime to both t and Q is introduced to correct the error
produced by base conversion and the replacement of rounding.
For i ∈ {t, γ}, we have

ConvBEHZ
Q→{t,γ}(x)× [−Q−1]i = γ ([m]t + tδ0) +

⌊
γ
δ1
Q

⌉
− δ2

In this equation, the term γtδ0 disappears under the moduli
t and γ. The error δ2 is the same under modulo t and γ.
Using the centered remainder modulo γ enables us to reduce
γ([m]t + tδ0) modulo t to γ[m]t modulo t. As such, the
decryption result [m]t can be recovered by multiplying [γ−1]t
by γ[m]t.

HPS Method. The HPS method focuses on each coefficient
of the ring elements. To simplify the notation, we use x ∈ ZQ
and m ∈ Zt to denote the coefficients. In this case, the RNS
representation of x is given by (x(1), x(2), . . . , x(L)). Applying
equation (2) to decompose x, each coefficient of the decryption
result m is computed by the following sequence of operations:

m :=

⌊
t

Q
x

⌉
=

⌊(
L∑
i=1

x(i) · q̃i ·
t

qi

)
− ν ·Q · t

Q

⌉

=

[⌊
L∑
i=1

x(i) ·
(
q̃i ·

t

qi

)⌉]
t

=

[(
L∑
i=1

x(i) · ωi

)
+

⌊
L∑
i=1

x(i) · θi

⌉]
t

(5)

Here, tq̃i/qi := ωi + θi, where ωi ∈ Zt and θi ∈ [−1/2, 1/2)
can be pre-computed. We then compute w := [

∑L
i=1 x

(i)ωi]t
and v := b

∑L
i=1 x

(i)θie. The decryption result can finally be
obtained by computing [w + v]t.

Enlarge the Input Size in HPS. For the HPS method, we
can only store θ̃i = θi+εi instead of the accurate θi in practice,
with an error term given by |εi| < 2−κ when κ-bit precision
is available. Consequently, the total error term is defined as
ε =

∑L
i=1 xiεi. To ensure the correctness of decryption, we

Algorithm 3 TensorBEHZ: BEHZ-type BFV Tensoring
Input: ct1 := (c1,0, c1,1), ct2 := (c2,0, c2,1) ∈ R2

Q

Output: ct∗ := (c∗0, c
∗
1, c
∗
2) ∈ R3

Q

1: for i ∈ {1, 2}, h ∈ {0, 1}, k ∈ [1,K] do
2: ςi,h := ConvBEHZ

Q→Bsk([m̃ci,h]Q)
3: rm̃,i,h := −ConvBEHZ

Q→{m̃}([m̃ci,h]Q) ·Q−1 mod m̃

4: ς ′i,h := (ςi,h +Q · rm̃,i,h) · m̃−1 . SmMrq in Bsk,m̃
5: c′i,h := ci,h||ς ′i,h, ct′i := (c′i,0, c

′
i,1) . Concatenate

6: ct′ := (c′0, c
′
1, c
′
2) := ct′1 × ct′2 . ct′ in Q∪ Bsk

7: for h ∈ [0, 2] do . Scaling-and-rounding in Bsk
8: c̃h :=

(
t · [c′h]Bsk − ConvBEHZ

Q→Bsk(t · [c′h]Q)
)
×Q−1

9: for h ∈ [0, 2] do . ConvSK

10: αsk := [(ConvBEHZ
B→msk([c̃h]B)− [c̃h]msk)R−1]msk

11: c∗h := ConvBEHZ
B→Q([c̃h]B)− αskR

12: return ct∗ := (c∗0, c
∗
1, c
∗
2)

require that ||ε||∞ < 1/4. However, as the IEEE 754 double-
precision format provides 53-bit precision, the HPS method
does not accommodate large moduli. This implies a constraint
on the magnitude of L · qmax, where qmax = maxi qi, thus
introducing a significant limitation that high precision floating-
point arithmetic becomes a necessity when the size of the
modulus is large.

To mitigate this, we employ the digit decomposition tech-
nique as described in [14]. We define a base B ∈ Z such that
B > 2, and a ds = dlog qmax/ logBe. In this setting, x(i)

can be decomposed as xi =
∑ds−1
j=0 x

(i)
j · Bj . Therefore, the

decryption result m can be computed as follows:

m =

[(
L∑
i=1

x(i) · ωi

)
+

⌊
L∑
i=1

x(i) · θi

⌉]
t

=

 L∑
i=1

ds−1∑
j=0

[x
(i)
j · ωi,j ]t

+

 L∑
i=1

ds−1∑
j=0

x
(i)
j · θi



t

In the above equations, t[q̃i · Bj ]qi/qi := ωi,j + θi,j , where
ωi,j ∈ Zt and θi,j ∈ [−1/2, 1/2) can be pre-computed. With
this methodology, we can enlarge the input size and make the
HPS method more flexible in handling large modulus.

B. Complex Scaling in Tensoring

Given ciphertexts ct1 := (c1,0, c1,1), ct2 := (c2,0, c2,1) ∈
R2
Q, the tensoring step of BFV homomorphic multiplication

first computes the tensor product ct′1 × ct′2 to yield a triple
ct′ := (c′0, c

′
1, c
′
2). Subsequently, it scales this triple down

by t/Q to produce ct∗ = [b tQ · ct
′c]QR3

Q. In this context, it
is crucial that the product is calculated without any modular
reduction prior to scaling. To ensure this correctness, we
employ an auxiliary modulus R := ΠK

k=1rk > Q, where
each ci,h is extended to modulo QR to facilitate the product
calculation. This auxiliary base is denoted as B = r1, . . . , rK .
To address the complex scaling involved here, two distinct
approaches have been proposed by BEHZ [12] and HPS
[13]. We summarize the two different tensoring processes in
Algorithm 3 and Algorithm 4.
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Algorithm 4 TensorHPS: HPS-type BFV Tensoring
Input: ct1 := (c1,0, c1,1), ct2 := (c2,0, c2,1) ∈ R2

Q

Output: ct∗ := (c∗0, c
∗
1, c
∗
2) ∈ R3

Q

1: for i ∈ {1, 2}, j ∈ {0, 1} do
2: ςi,j := ConvHPS

Q→B(ci,j)
3: c′i,j := ci,j ||ς ′i,j , ct′i := (c′i,0, c

′
i,1) . Concatenate

4: ct′ := (c′0, c
′
1, c
′
2) := ct′1 × ct′2 . ct′ in Q∪ B

5: for h ∈ [0, 2] do . Scaling-and-rounding
6: for j ∈ [0, N) do . c′h := {c′(i)h , c

′(k)
h }

7: w := 0, v := 0.0
8: for i ∈ [1, L] do . c

′(i)
h :=

∑N−1
j=0 c

′(i)
h,jx

j

9: v := v + c
′(i)
h,j · θi

10: v := bve . Fractional part
11: for k ∈ [1,K] do
12: for i ∈ [1, L] do
13: w := w + [c

′(i)
h,j · ωi,k]rk

14: w := w + [c
′(k)
h,j · λk]rk . Integral part

15: c̃
(k)
h,j := [w + v]rk . c̃

(k)
h :=

∑N−1
j=0 c̃

(k)
h,jx

j

16: c∗h := ConvHPS
B→Q(c̃h) . c̃h := {c̃(k)h }

17: return ct∗ := (c∗0, c
∗
1, c
∗
2)

BEHZ Method. Due to the fact that the conversion
ConvBEHZ

Q→B(ci,h) can introduce a Q-overflow, symbolized as
ci,h+Qu, an extra modulus m̃ is introduced that allows us to
deploy the Small Montgomery Reduction technique to mitigate
this overflow. Initially, the ciphertexts are multiplied by m̃, and
then converted to bases Bsk and {m̃} respectively, where in
the first conversion we achieve ςi,h = [m̃ci,h]Q+Qui,h. Next,
the Small Montgomery Reduction method computes:

ς ′i,h :=
[(
ςi,h +Q[−c′′(m̃)/Q]m̃

)
· m̃−1

]
i

This guarantees that for integers τ and ρ, given that ||u||∞ < τ
and m̃ρ ≥ 2τ + 1, we can deduce ς ′i,h ≡ ςi,h mod Q and
||ς ′i,h||∞ ≤

Q
2 (1 + ρ), thereby mitigating the overflow.

In the rounding step, the earlier γ-correction method is
insufficient for exact rounding in this complex scaling sce-
nario. Hence, we apply the fast RNS flooring method for
approximating the division of Q from c under modulo i as:
[(c− ConvBEHZ

Q→i ([c]Q))× [Q−1]i]i. Consequently, for each c′h,
h ∈ [0, 2], the following equation holds true in base Bsk:(
t · [c′h]Bsk − ConvBEHZ

Q→Bsk(t · [c′h]Q)
)
×Q−1 =

⌊
t

Q
c′h

⌉
+u′h

where ||u′h||∞ ≤ L.
Finally, we employ another extra modulus msk to perform

an exact conversion back to the original base:

ConvSKBEHZ
Bsk→Q(c̃h) := [ConvBEHZ

B→Q(c̃h)− αskR]Q

Here, αsk := [(ConvBEHZ
B→msk(c)− [c]msk)R−1]msk .

HPS Method. The HPS variant [13] completes the compu-
tation in two stages. Initially, the scaling process is applied as
in (5) to compute c̃h = [b tRQR · c

′
hc]R, h ∈ [0, 2]. This equates

to executing scaling over the modulus tR and then discarding
the RNS component of modulus t, which yields:[⌊

t

Q
· c′h
⌉]

rk

=

[⌊
L∑
i=1

c
′(i)
h · tQ̃iR

qi
+

K∑
k=1

c
′(k)
h · tQ̃kr∗k − tv′R

⌉]
rk

=

[⌊
L∑
i=1

c
′(i)
h · tQ̃iR

qi

⌉
+

K∑
k=1

c
′(k)
h · tQ̃kr∗k − tv′R

]
rk

=

[⌊
L∑
i=1

c
′(i)
h · tQ̃iR

qi

⌉
+ c
′(k)
h ·

[
tQ̃kr

∗
k

]
rk

]
rk

Here, Q̃i := [(q∗iR)−1]qi , Q̃k := [(Qr∗k)−1]rk , and r∗k =
R/rk. Subsequently, c̃h is achieved under base B, which are
then converted to obtain c∗h ∈ RQ. Here, Wi + θ′i is the value
for tQ̃iR

qi
, with Wi ∈ ZR representing the integral part and

θ′i ∈ [− 1
2 ,

1
2 ) the fractional part. To account for the integral

part, we pre-compute and store ω′i,k := [Wi]rk for each i in
the range [1, L] and k in the range [1,K].

Compact HPS. In order to ensure accurate tensoring, the
auxiliary modulus R should be slightly larger than Q. In
practice, this is often achieved by setting K = L+1. However,
a more compact method proposed in [14] suggests switching
the modulus of one of the two ciphertexts from Q to R.
Consequently, after multiplying the two ciphertexts, the noise
magnitude transitions from a multiple of Q2 to a multiple of
QR that diminishes modulo QR. This approach provides an
advantage by allowing the choice of R ≈ Q, which leads
to a more compact parameter configuration where K = L,
thereby reducing computational complexity. The distinctions
from Algorithm 4 are as follows:
• Firstly, in line 2, the RNS base of one of the ciphertexts,

for example, ct1, is switched from base Q to B, and then
extended to base Q∪ B.

• Secondly, during the scaling-and-rounding process, in-
stead of dividing by Q to obtain residues in base B
and then switching to Q, division by P is performed to
directly get residues in base Q.

As a result, this method reduces the total number of base
conversions by 1, and the reduced size of K decreases the
complexity of each base conversion calculation.

Leveled HPS. Taking inspiration from the leveled structure
of the BGV scheme [3], a leveled approach can also be applied
to BFV multiplication [14] by switching to Ql := Πl

i=1qi
for performing multiplication, thereby reducing both compu-
tational and memory complexity of BFV multiplication. The
process is as follows:
• Scale the ciphertexts by Ql

Q to obtain c̃t1 :=

bQlQ ct1e, c̃t2 := bQlQ ct2e ∈ R2
Ql

.
• Extend the RNS base to acquire ct′1 and ct′2 ∈ R2

QlRl
,

where Ql = Πl
i=1qi and Rl = Πl

k=1rk.
• Perform the tensor product in RQlRl to obtain ct′ :=

ct′1 × ct′2 := (c′0, c
′
1, c
′
2) ∈ R3

QlRl
.

• Scale ct′ to modulo Ql by scaling-and-rounding Rl
through computation of c̃t := b tP · ct

′e to acquire
c̃t := (c̃0, c̃1, c̃2) ∈ R3

Ql
.

• Lastly, scale c̃t ∈ R3
Ql

up to the original Q by ct :=

b QQl c̃te to get the result ct := (c0, c1, c2) ∈ R3
Q.
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Algorithm 5 Relin: Hybrid BFV relinearization
Input: ct∗ := (c∗0, c

∗
1, c
∗
2) ∈ R3

Q, rlk := {(rlkj,0, rlkj,1)}
Output: ct := (c0, c1) ∈ RQ

1: (t0, t1) := (0, 0)
2: for j ∈ [0,dnum) do
3: ς := [[c∗2]Dj · Q̃j ]Dj . Decomposition
4: c̄ := ς||ConvDj→Q∗

j∪P(ς) . Base extension
5: (c̄r0, c̄

r
1) := (c̄ · rlkj,0, c̄ · rlkj,1) . Switch key

6: (t0, t1) := ([t0 + c̄r0]QP , [t1 + c̄r1]QP )

7: (cr0, c
r
1) := (bP−1 · t0e, bP−1 · t1e) . Scaling down

8: (c0, c1) := ([c∗0 + cr0]Q, [c
∗
1 + cr1]Q)

9: return ct := (c0, c1)

Compared to the compact HPS variant that reduces the size
of rk by 1, the leveled approach reduces both the magnitude
of the inner loop from L or K to l, at the cost of more base
conversions. However, these conversions are more efficient
since the size of the RNS base of the input and output is
diminished. The selection criteria for l is provided in [25].
Notably, the final scaling computation of ct := b QQl c̃te can
be simplified to multiplying the discarded component of Q to
c̃t, as Q

Ql
= ΠL

i=l+1qi. In detail, this entails multiplying [ QQl ]qi

for i ∈ [1, l] to each residues c(i)h modulo qi and padding the
c
(l+1)
h to c(L)h components to zero for h ∈ [0, 2].

C. Relinearization

Hybrid key-switching, as initially proposed for the CKKS
scheme [26], is notable for its ability to handle real number
input, but it can also be adapted for homomorphic encryption
schemes over finite fields such as BFV. In our adaptation,
we select the special modulus as P = Π`

i=1pi and define
the decomposition number as dnum := dL/`e. We denote
Dj := Πα−1

i=0 qjα+i, and Q∗j := Q/Dj , and Q̃j := [Q∗−1j ]Dj .
Then, we present the adapted hybrid key-switching technique
in Algorithm 5. The relinearization key, rlk, consists of a set
of tuples: rlk := {([−ajs + ej + PTjs

2]PQ,aj)}j∈[0,dnum),
wherein the decomposition base, Tj , is set as Q∗j .

Given the scale-invariance of the BFV scheme, the base
extension of c∗2 can be eliminated as per the original method-
ology [26]. The decomposition process is simplified by ex-
tracting the appropriate RNS residues and subsequently mul-
tiplying them with Q̃j . In the next phase, the RNS base is
extended from Dj to Q ∪ P , and the inner-product with rlk
is computed to yield the accumulation result, (t0, t1) ∈ R2

QP .
The resulting vectors are then scaled down by a factor of 1

P
to obtain (cr0, c

r
1) ∈ R2

Q. This output is added to the original
ciphertext to complete the process.

In conjunction with this, the [13] can be efficaciously im-
plemented in this context to improve computational efficiency.
The optimization is achieved by designating the decomposition
base Tj to be the product Q̃jQ∗j This adjustment obviates the
necessity of scalar multiplication with Q̃j in the decomposition
stage, thereby streamlining the process.

TABLE I
BREAKDOWN OF OPERATIONS FOR THE BEHZ AND HPS VARIANTS OF

BFV

Operations Break down

DecBEHZ
Inner product, base conversion, subtraction,

scalar multiplication
DecHPS Inner product, simple scaling-and-rounding

TensorBEHZ
Scalar multiplication, base conversion, tensor product,
scalar multiplication with accumulation / subtraction

TensorHPS Base conversion, complex scaling-and-rounding
Relin Base conversion, inner product, addition

IV. FRAMEWORK AND OPTIMIZED IMPLEMENTATION

A. Hierarchical Operation Breakdown

Based on the comprehensive analysis undertaken earlier, we
conduct a hierarchical operation breakdown, deconstructing
complex operations into a series of reusable RNS level poly-
nomial operations, as depicted in Table I. In our approach,
the HPS variant comprises operations include the product
and a specific form of scaling-and-rounding. This stands in
contrast to the BEHZ variant, which necessitates a more
intricate sequence of operations, including product, multiple
base conversions, and various other arithmetic operations.
Consequently, our implementation follows a three-tiered struc-
ture that supports diverse computations.
• Low-level Ring Arithmetics: This foundational layer

sets the groundwork for our implementation, commencing
with our refined integer modular operations with the
least instructions. Based on this, we further implement
polynomial modular operations to extend the capability.

• RNS-level Operations: In this layer, we perform arith-
metic operations over polynomials that are represented
under the RNS. Capitalizing on the inherent parallelism
of GPU architecture, we batch execute these operations,
thereby enhancing performance. We aim to implement
the operations in a generic manner, ensuring their wide
applicability and reusability across different cases.

• High-level Module of Homomorphic Operations: The
final tier concentrates on developing generic modules
for different variant operations, leveraging previously im-
plemented reusable operations. We explore finely-tuned
fusion approaches to reduce memory access and usage,
thereby boosting the performance.

This layered implementation strategy fosters operational
efficiency and enhances the versatility. It optimizes the ex-
ecution of both BEHZ and HPS variants and provides room
for potential expansion to cover more computational use cases.

B. Ring Arithmetic

Below, we delve into the implementation details of our
modular operations and polynomial multiplication, which form
the backbone of our framework.

Modular Reduction. For modular reduction, we use the
Barrett reduction method, which replaces costly division with
quicker multiplication and bit-shifting. This approach necessi-
tates a pre-computation step where µ := b 2

β

q c, with β being
set as the machine word size. Subsequently, the reduction
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Algorithm 6 Modular Multiplication
1: function ModRed(a, q, µ) . Reduction of 64-bit integer
2: tmp := umul64hi(a, µ) . µ := b 2

64

q c
3: return a− tmp · q
4: function CModMul(a, ζ, q, µ) . Constant multiplication
5: tmp := umul64hi(a, µ) . µ := b ζ·2

64

q c
6: return a · ζ − tmp · q
7: function ModMul(a, b, q, µ := µ1 · 264 + µ0)
8: mul.lo.u64 rl, a, b
9: mul.hi.u64 rh, a, b . ab := rh · 264 + rl

10: mul.hi.u64 tmp, rl, µ0

11: mad.lo.cc.u64 tmp, rl, µ1, tmp
12: madc.hi.u64 res, rl, µ1, 0
13: mad.lo.cc.u64 tmp, rh, µ0, tmp
14: madc.hi.u64 res, rh, µ0, res
15: mad.lo.u64 res, rh, µ1, res
16: mul.lo.u64 res, res, q . Barrett subtraction
17: sub.u64 res, rl, res
18: return res

result is computed as a − ba·µ
2β
c · q. We develop multiple

modular reduction algorithms using CUDA PTX instructions
to minimize instruction use and maximize efficiency, with
pseudocode detailed in Algorithm 6. The basic Barrett reduc-
tion ModRed reduces a 64-bit integer input a and compute
a mod q. After multiplying a and pre-computed µ, the high
64-bit of the 128-bit multiplication result is stored to implicitly
conduct the shifting. This product is then subtracted from q,
costing two 64-bit multiplication instructions in total.

Modular Multiplication. Based on this, we employ the
Shoup technique [27] for quicker modular multiplication when
one input is a constant, denoted as CModMul. When mul-
tiplying a and a constant ζ, it can be merged into pre-
computation by setting µ := b ζ·2

64

q c. This saves one multipli-
cation instruction, bringing the cost of modular multiplication
to the same as reduction. For general cases with two variable
inputs, we adopt the optimized modular reduction from [20],
and develop a modular multiplication ModMul for two 64-bit
integers. As CUDA does not support 128-bit registers, two 64-
bit multiplication instructions are utilized to obtain the 128-bit
multiplication result. We calculate the quotient by multiplying
each 64-bit component as b (a12

64+a0)·(µ12
64+µ0)

2128 c, followed
by subtraction from a. The total cost includes 2 multiplication
instructions for multiplication and 7 for reduction.

Polynomial Multiplication. Polynomial multiplication
poses a significant performance challenge, which we address
by employing the Number Theoretic Transform (NTT). For
polynomials f , g ∈ Rq , the forward negacyclic NTT is
formulated as f̂ := NTT(f), f̂j =

∑n−1
i=0 fiζ

(2i+1)j (mod q),
and the inverse is f := INTT(f̂), fi = 1

n

∑n−1
j=0 f̂jζ

−(2i+1)j

(mod q), where ζ is the primitive 2n-th root of unity. This
transformation allows us to perform multiplication as fg :=
INTT(NTT(f) ·NTT(g)), reducing computational complexity
from O(n2) to O(n log n). We adopt the commonly used
hierarchical NTT implementation [28], [29], and partition the
process into two kernels, each responsible for different trans-

(a) (b)

(c)
Fig. 1. The structure of our base conversion implementation prior to the
loop unroll optimization. (a) A polynomial in RNS representation. (b) The
first kernel of the base conversion processing at an I ·N dimension. (c) The
second kernel of the base conversion working at an O ·N dimension.

formation levels. For every forward or inverse NTT operation
involving N elements, we use 8 per-thread implementation,
where each thread in a kernel loads eight residues into
the registers and perform a radix-8 transformation. SMEM
is used for temporary output storage between each radix-8
transformation to minimize GMEM interaction.

C. Base Conversion

Base conversion for a polynomial c in RNS representation
is a critical operation. The sizes of the input and output bases,
denoted as I and O, and the process dimensions, I · N and
O · N , present GPU implementation challenges due to their
disparity. Setting the entire parallelism at I ·O·N , as suggested
by [20], could lead to inefficient utilization of GPU hardware
resource. Conversely, focusing on a single dimension (e.g.,
O · N ) burdens each thread with repeated calculations. To
balance these trade-offs, we implement two distinct kernels
with different parallelism.

The first kernel tackles scalar modular multiplication in the
I ·N dimension, deploying I ·N threads to execute the opera-
tion, as depicted in Fig. 1b. The subsequent kernel operates in
the O · N dimension, executing modular multiplication with
a matrix constructed from [q∗i ]qj , as shown in Fig. 1c. For
the HPS method, we fuse the fractional computation into the
second kernel. Given that v = b

∑I
i=1[x(i) · q̃i]qi/qie where

the norm is bound by I , we pre-compute the multiples of Q
in a look-up table for selecting results based on v.

Optimization with Loop Unroll. Memory constraints due
to excessive loading and storing operations can affect the
performance of the two kernels, particularly in instances where
constants are repeatedly loaded by each thread. To mitigate
this, we apply loop unrolling, as demonstrated in Algorithm
7. We establish an unroll factor, F , wherein each thread
processes F coefficients of I residues. This not only reduces
the loads of pre-computed values (q∗i , rk, µk) from F to one,
but also enables the substitution of 64-bit operations with
wider instructions, hence reducing pipeline overhead. Note
that in Algorithm 7, we use WideLoad and WideStore to
denote general case wide load and store instructions, such as
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Algorithm 7 Unrolled base convert acc
1: function Conv ScalarMul(c′, c, params)
2: tid ∈ [0, dI ·N/F e), i := tid/(N/F ), f ∈ [0, F )
3: (q̃i, qi, µi)← params[i], {cf} := WideLoad(c(i))
4: return c′ ← WideStore(CModMul({cf}, q̃i, qi, µi))
5: function Conv MatMul(c′′, c′, params)
6: tid ∈ [0, dO ·N/F e), f ∈ [0, F ), {accf} := {0}
7: S← params . Cache in SMEM
8: for i ∈ [0, I) do
9: {cf} := WideLoad(c′(i))

10: q∗i ← S[I · [tid]O + i]
11: {accf} := {accf}+ cf · q∗i
12: (rk, µk)← S[[tid]O]
13: return c′′ ← WideStore(ModRed({accf}, rk, µk))

Temp memory

Accumulator

Stage 1:
transform to
NTT domain

Stage 2:
inner product

Stage 3: transform
to normal domain

Stage 4: addition

Stage 5: scaling-and-rounding

Fig. 2. The architecture of generic decryption module designed to accommo-
date both BEHZ and HPS techniques.

the ldg intrinsic. For example, with F = 2, two 64-bit load
instructions can be replaced by a single 128-bit one.

D. Decryption

To cater to both the BEHZ and HPS techniques, we design
a generic module, depicted in Fig. 2. The decryption in the
BFV scheme first compute the inner product of sk and ct,
followed by scaling the result by t

Q to the nearest integer.
The scaling-and-rounding phase is the primary differentiation
point between the BEHZ and HPS, with the former utilizing
modular arithmetic, and the latter harnessing precision.

In the first step, the inner product of sk and ct is computed.
It is worth noting that relinearization is not a compulsory
procedure, which means ct may contain more than two
elements, ct := (c0, c1, c2, . . .). In such cases, a generic
inner product with sk := (1, s, s2, . . .) is required. Thus, we
design an accumulated multiplication kernel. We first invoke

Algorithm 8 SSRBEHZ: BEHZ simple scaling-and-rounding
Input: x := 〈ct, sk〉
Output: m

1: tid ∈ [0, L ·N), i := tid/N
2: x′[tid] := ModMul(x[tid], [tγ]qi , qi)
3: f ′ := Conv Scalar(x′, Q)
4: f := Conv MatMul(f ′, Q, {t, γ})
5: tid ∈ [0, N)
6: f (γ)[tid] := ModRed(γ − f (γ)[tid], γ)
7: f (t)[tid] := ModRed(f (t)[tid] + f (γ)[tid], t)
8: m[tid] := ModMul(f (t)[tid], [γ−1]t)

Algorithm 9 SSRHPS:HPS simple scaling-and-rounding
Input: x := 〈ct, sk〉
Output: m

1: tid ∈ [0, N)
2: sumI := 0, sumF := 0.0
3: for i ∈ [0, L), j ∈ [0, ds) do
4: {x(i)tid,j} ← x[iN + tid]

5: sumF = sumF +
∑ds−1
j=0 x

(i)
tid,j θ̃i,j

6: sumI = sumI +
∑ds−1
j=0 ModMul(x

(i)
tid,jωi,j)

7: sumF = sumF + sumI

8: sum = bsumF − t · bsumF · 1t ce
9: m[tid] := sum

the NTT kernels to transition elements in ct, barring c0, to the
NTT domain, and subsequently carry out efficient polynomial
multiplication with si. To minimize memory overhead, we
establish a buffer in GMEM for memory reuse. Following this,
the accumulated result is converted back added to c0.

The subsequent scaling-and-rounding phase is contingent
on the specific method used. Our implementations of the
BEHZ and HPS methods, denoted as SSRBEHZ and SSRHPS,
respectively, are outlined in Algorithm 8 and 9.

Optimizations to BEHZ Method. In contrast to the HPS
method, which requires only coefficient-wise addition and
multiplication, the BEHZ method is more complex, involv-
ing four distinct stages, and offering two different levels
of parallelism corresponding to the dimensionality of the
operands. For the first two kernels, which conduct modular
multiplication with γt and the first kernel of base conversion
Conv ScalarMul, are essentially scalar modular multiplica-
tion. Therefore, we fuse them into a single kernel with L·N/F
threads, thus eliminating writing and reading x′ from the
GMEM. Following this, we launch the second kernel of base
conversion, Conv MatMul, which utilizes dK ·N/F e threads
to conduct the unrolled modular multiplication with the matrix.
Then, we adjust f (r) to the centered remainder of f modulo
γ, compute γ − f (r) to derive the reflexivity, add this to f (t)

to obtain f (t) − f (r), and then multiply by [γ−1]t to produce
the final m. This process is optimized by fusing to one kernel.

E. Homomorphic Multiplication

Homomorphic multiplication in the BFV scheme poses a
significant computational challenge. We aim at accelerating
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all BEHZ and HPS variants of this operation. These variants
come with their unique sets of merits and demerits, making it
essential to focus on all in order to devise more comprehensive
and efficient solutions.

The existing researches predominantly concentrate on en-
hancing the speed of the BEHZ variant. For instance, the
study documented in [19] focuses on small parameter sets
and employs 10 kernels, leaving ample room for potential
computational and memory optimizations. The research out-
lined in [20] focuses on compact designs and divide the
entire procedure into three processes to facilitate kernel fusing.
They do provide valuable insights, but there remain several
underexplored optimizations within the context of BEHZ-type
multiplication. On the other hand, the HPS variant has received
relatively less attention in the literature. The work [21] con-
fines the data type to 32-bit arithmetic, thereby restricting the
scope and applicability of their solutions.

In contrast, our design strategy primarily aims to accommo-
date a more generalized case, and addresses these limitations.
We propose a series of novel enhancements aimed at improv-
ing both schemes. Below, we elucidate our implementations
and optimizations.

1) Optimizations in BEHZ-type Tensoring: We have imple-
mented several key optimizations to enhance the efficiency of
BEHZ-type tensoring. These include:
• Intra-Arithmetic Fusion: Noticing that the first phase

of base conversion, Conv Scalar, comprises scalar mul-
tiplication computation and that the second phase is
frequently followed by arithmetic operations such as
scalar multiplication and subtraction in the same bases,
we have investigated several fusion strategies for per-
formance enhancement. We adapted multiplication with
other constants to integrate into the first phase. By incor-
porating m̃ into the pre-computation of the conversion
matrix, we can directly derive [m̃c]Q, thus eliminating
a modular multiplication for each coefficient with m̃.
Furthermore, we have fused multiply-and-subtract com-
putation into the second phase of base conversions in
both the fast flooring and ConvSK stages, given that these
computations are conducted under identical RNS bases.
These optimizations have significantly minimized time-
consuming GMEM access of the polynomials.

• Inter-Conversion Fusion: In BEHZ-type tensoring com-
putation, it is common to convert one polynomial to two
different bases successively. Conventionally, this would
involve calling two base conversion functions. However,
we noted that the initial phase of these conversions
is the same and can be reused, reducing computation.
Specifically, in the process of reducing Q-overflow prior
to the tensor product, we observed that two base con-
versions, i.e., ConvBEHZ

Q→Bsk and ConvBEHZ
Q→{m̃}, converting

[m̃ci,h]Q to base Bsk and {m̃} respectively, share the
same Conv Scalarprocess. We fused these two oper-
ations, thus saving one stage of the conversions. A
similar approach was adopted in ConvSK, where [c̃h]B
are converted to base {msk} and base B, respectively.

2) Generic HPS-type Tensoring Design: We have devel-
oped a generic HPS-type tensoring framework which is com-

Algorithm 10 CSRHPS: HPS complex scaling-and-rounding

Input: c := {c(i)}, i ∈ [0, I)
Output: c′ := {c′(i)}, i ∈ [0, O)

1: tid ∈ [0, N)
2: sumI := {0, 0}, sumF := 0.0
3: for k ∈ [O, I) do
4: sumF := sumF + c[kN + tid] · θ̃k−O
5: for k ∈ [0, O) do
6: for j ∈ [O, I) do
7: sumI := sumI + c[jN + tid] · ωk,j−O
8: sumI := sumI + c[kN + tid] · λk
9: c′[kN + tid] = ModRed(ModRed(sumI) + bsumF e)

10: return c′

patible with all three HPS variants. Given the two input
ciphertexts ct1, ct2 ∈ RQ, the framework extends the base of
the first ciphertext ct1 to Q∪B, or scales it down to Ql before
extending to Ql∪Bl. The second ciphertext ct2 is manipulated
to extend its base to Q∪B, convert to B, then extend to Q∪B,
or convert to Bl and then extend to Ql ∪ Bl according to the
three variants. After the tensor product, the ciphertexts are
converted back to the original base Q. Each variant varies
in base size, thereby consuming different computation and
memory resources.

Considering the frequent invocation of the HPS-type com-
plex scaling-and-rounding function with varying input and
output sizes, we have designed a generic CSR kernel to
accommodate all cases, as outlined in Algorithm 10. We
implement lazy reduction, performing modular reduction only
after accumulation. An 128-bit accumulator, sumI , is defined
to handle cases where no overflow occurs. This versatile
approach significantly enhances computational efficiency and
is a noteworthy contribution towards the advancement of
homomorphic encryption.

3) Reducing Computation in Leveled Approach: In the
leveled variant, an approach analogous to the tensoring stage
is employed wherein the ciphertexts are scaled down to
modulo Ql for relinearization. Remarkably, the final step in
TensorLHPS involves scaling up the ciphertexts from modulo
Ql to Q. Consequently, we adopt an optimized strategy that
fuses the tensoring and relinearization stages in this variant.

This streamlined approach yields multiple benefits. Firstly,
if the level remains consistent in the two stages, the dual
scaling operations effectively cancel each other out, thereby
reducing computational load. Moreover, this approach also
manages to eliminate the noise that is typically introduced by
these two scaling operations. This innovative strategy offers
a significant enhancement in computational efficiency and
precision, reinforcing the efficacy of the leveled approach in
homomorphic encryption.

F. Complexity Analysis

Below, we perform an analytical examination of the BFV
variant implementations that are built on our proposed frame-
work. We begin by detailing the pre-computations required for
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Standard HPS Tensoring Compact HPS Tensoring (CHPS) Leveled HPS Tensoring (LHPS)
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Fig. 3. A unified module for original HPS, compact HPS, and leveled HPS variants.

TABLE II
PRE-COMPUTATIONS FOR ALL VARIANTS. NOTATION Ql := Πli=1qi AND Rl := Πlk=1rk ARE USED TO ENSURE COMPATIBILITY WITH CHPS AND

LHPS, AND sι ∈ {qi, rk}. FOR CHPS, l := L. FOR LHPS, THESE PRE-COMPUTATIONS ARE PERFORMED FOR EACH LEVEL l ≤ L.

Operation Values Description Size Type

BEHZ Decryption

[γ−1]t γ−1 mod t 1

Integer[t · γ]qi t · γ mod qi L
[−Q−1]{t,γ} −Q−1 mod {t, γ} 2

ConvBEHZ
Q→{t,γ} Base Convertor 3L

HPS Decryption ωi,j [t · [[(Q/qi)−1]qi ·Bj ]qi/qi]t ds · L Integer
θi,j [t · [[(Q/qi)−1]qi ·Bj ]qi ]qi/qi ds · L Double

BEHZ Tensoring

q prm Auxiliary Bsk (4N + 1)(K + 1)

Integer
[t]Bsk , [Q]Bsk , [Q−1]Bsk , [m̃−1]Bsk {t, Q,Q−1, m̃−1} mod {rk,msk} 4(K + 1)

[R]qi R mod qi L
[R−1]msk , [−Q−1]m̃ R−1 mod msk , −Q−1 mod m̃ 2

ConvBEHZ Q → Bsk , Q → m̃, B → Q, B → msk 2LK + 5L+ 3K + 3

All HPS Tensoring q prm Auxiliary B (4N + 1)K Integer
ConvHPS Q → B, B → Q 2(KL+K + L+ 1)

HPS ω′i, λk [t ·R · [(QR/sι)−1]sι/sι]rk K(L+ 1) Integer
θi [t ·R · [(QR/qi)−1]qi ]qi/qi L Double

CHPS & LHPS ω′i, λk [t ·Ql · [(QlRl/sι)−1]sι/sι]qi L(K + 1) Integer
θi [t ·Ql · [(QlRl/ri)−1]ri ]ri/ri K Double

LHPS ω′′i , λ′k [Ql · [(Q/qτ )−1]qτ /qτ ]qτ l · (L− l + 1) Integer
θ′′i Ql · [(Q/qτ )−1]qτ /qτ L− l Double

these variants, and subsequently discuss their computational
complexity.

1) Pre-computation: A vital aspect is the pre-computation
of certain values that expedite subsequent calculations. For ev-
ery single modulus q, several pre-computations are undertaken,
which we denote as qprm. Specifically, we compute the value
µ := b 2

64

q c for fast modular reduction, and two sequences of
ζi and (ζ−1)i function as the NTT and INTT tables, where
ζ2N ≡ 1 mod q. Additionally, we calculate µ0,i and µ1,i for
the rapid const modular reduction CModMul. These calculations
cumulatively require 4N + 1 integers.

In the case of each RNS base conversion, we pre-compute
the convert matrices [q̃i]qi and [q∗i ]rk for conversions from base
Q := {qi} to B := {rk}, where i ∈ [1, L] and k ∈ [1,K]. This

is executed for both the BEHZ and HPS methods. For the HPS
method, additional computations of [v ·Q]rk are needed where
v ∈ [0, L]. The total computational cost amounts to L(K+ 1)
for the BEHZ method and 2L+LK+ 1 for the HPS method.

Table II summarizes the pre-computation values for all
BEHZ and HPS variants that are implemented in our frame-
work, including the decryption and multiplication operations.

2) Computational Complexity: To provide an overarching
view of the computational complexity of our approach, we
present a comprehensive summary in Table III. Prior studies
such as [14] have performed operation-level analyses, which
involved counting the number of operations, including base
conversion and NTT, to assess computational overhead. An-
other work by [21] presented a comparative analysis of BEHZ
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TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITY ACROSS VARIANTS USING OUR FRAMEWORK. THE METRICS ARE EVALUATED BASED ON THE NUMBER

OF INSTRUCTIONS.

Operations Memory Instructions Arithmetic Instructions
GMEM load GMEM store SMEM load IM FP

SSRBEHZ O((3L/F + L+ 3)N + 2L+ 4) O((2L+ 4)N) O(2LN/F ) O(8LN + 22N) 0
SSRHPS O(LN + 2dsL+ 5L/F + 2L+ 2) O(N) 0 O(dsLN) O((dsL+ 1)N)

TensorBEHZ

O((35L+ 45K + 45)N/F
+10KLN + 95LN + 96KN

+4KL+ 8L+ 7K + 9)

O(20(L+K + 1)N + 5LN
+8(K + 1)N + 3N)

O(7blogN/3c(L+K + 1)N)
+(10LK + 10L+ 6K + 6)N/F

O(7(L+K + 1)N logN) + 212N
+164KN + 109LN + 20LKN

0

TensorHPS

O((5K + 5L)N/F + 16KLN
+94LN + 80KN + 7KL

+37L+ 36K)
O(29LN + 20.5KN)

O(7blogN/3c · (L+K)N
+7LKN/F )

O(7(L+K)N logN
+18KLN + 56LN + 92KN)

O(7LKN + 3LN + 3KN)

TensorCHPS
O(30LN/F + 15L2N + 166LN

+4KN + 6L2 + 74L)
O(47LN) O(14LNblogN/3c+ 6L2N/F )

O(14LN logN
+162LN + 18L2N)

O(4L2N + 6LN)

TensorLHPS

O(5lN/F + 7l2N + 10LN
+4KN + 161lN + 8lLN

+2lL+ 82l + 4l2)
O(40lN + LN) O(14lNblogN/3c+ 6l2N/F )

O(14lN logN + 10l2N
+165lN + 4LN + 8lLN)

O(4l2N + 2LN + 4lN)

TABLE IV
PERFORMANCE OF OUR OPTIMIZED BFV VARIANTS IMPLEMENTATION ON BOTH THE 3090 TI GPU AND A100 GPU (MEASURE IN MILLISECONDS). THE

SPEEDUP FACTOR IS DETERMINED BY COMPARING PERFORMANCE OF OUR IMPLEMENTATION ON A100 GPU AGAINST THE PERFORMANCE OF
OPENFHE WITH AN EQUIVALENT PARAMETER SET RUNNING ON A MULTI-THREADED CPU.

Operations Our work OpenFHE [7] Speedup
3090 Ti A100 Multi-thread CPU

logN 13 14 14 15 15 13 14 14 15 15 14
logQ 120 300 240 660 540 120 300 240 660 540 300
logP 60 60 120 60 180 60 60 120 60 180 60

HMultBEHZ 0.311 0.463 0.398 1.378 0.921 0.486 0.634 0.573 1.426 1.017 20.200 31.9×
HMultHPS 0.207 0.389 0.289 1.445 0.968 0.310 0.466 0.395 1.293 0.872 14.400 30.9×
HMultCHPS 0.189 0.323 0.261 1.302 0.836 0.292 0.445 0.367 1.207 0.794 11.800 26.5×
HMultLHPS - 0.290 0.255 1.187 0.775 - 0.408 0.318 1.145 0.735 11.400 27.9×
DecBEHZ 0.039 0.049 0.046 0.104 0.086 0.066 0.072 0.071 0.108 0.100 1.030 14.3×
DecHPS 0.032 0.040 0.037 0.092 0.075 0.052 0.058 0.057 0.090 0.085 0.960 16.6×

TABLE V
PERFORMANCE COMPARISON OF OUR OPTIMIZED BEHZ VARIANT GPU IMPLEMENTATION WITH RELATED WORKS [19]–[21] (MEASURE IN

MILLISECONDS). SPEEDUP RATIOS ARE DETERMINED BY COMPARING PERFORMANCE WITH EACH RESPECTIVE WORK ON THE SAME HARDWARE
PLATFORM.

Operations Our work [19] [20] [21]
3090 Ti A100 3060 Ti 3060 Ti Speedup V100S V100

logN 13 14 15 13 14 15 15 15 15 15
logQP 218 438 881 218 438 881 881 881 881 600

TensorBEHZ 0.261 0.380 1.037 0.400 0.489 1.068 2.267 3.757 39.7% 1.608 5.705
Relin 0.100 0.212 0.988 0.147 0.293 0.983 2.209 3.150 29.9% -
DecBEHZ 0.040 0.054 0.131 0.067 0.075 0.129 0.317 - - -

and HPS variants, although it was confined to the number of
modular operations and floating-point operations.

Our analysis diverges from these previous approaches by
providing a more granular evaluation that aligns more closely
with the GPU platform. Given that GPU-based implementa-
tions of HE tend to be memory-bound, our assessment takes
into account the memory access complexity of each variant,
including GMEM load, GMEM store, and SMEM access.
Furthermore, acknowledging that the number of instructions
used by modulo reduction varies depending on data sizes, we
offer in-depth count of integer multiplication instructions (IM)
and floating-point instructions (FP).

V. PERFORMANCE EVALUATION

In this section, we present the performance of our im-
plementation, and the comparison with related works. Our
experimental setup comprises of a variety of computational
units. We compile the C/C++ code using g++ 12.2.0 and the
GPU implementations with CUDA 11.8 on an Arch Linux
system with kernel 5.15. For establishing a CPU baseline, we

use an Intel(R) Core(TM) i9-12900KS CPU, equipped with 16
cores. For our GPU implementation, we test the performance
across two different GPUs. These include a NVIDIA Tesla
A100 80G PCIe and a NVIDIA GeForce RTX 3090 Ti,
providing a diverse range of computational capabilities for
our analysis. We measure the performance of the various
procedures in terms of their execution time, which is reported
in milliseconds (ms). Note that the reported times also account
for the latency associated with data transfer between the CPU
and GPU.

A. Performance of BFV Variants
Table IV elucidates the performance outcomes of our tai-

lored BFV variant implementations across two distinct GPUs,
with metrics furnished in milliseconds. The HMult operation,
indicative of homomorphic multiplication, comprises both
tensoring and relinearization. Meanwhile, the Dec operation
corresponds to the decryption procedure.

In the leveled variant, HMultLHPS, we present the perfor-
mance resulting from a single-level drop, except for N = 213
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parameter sets where no level decrement is permissible. For
comparison, we run the open-source library OpenFHE [7] on
our multi-threaded CPU platform to establish a CPU baseline.

Our implementations demonstrate significant speedups com-
pared to the OpenFHE implementation, with the speedup
factors range from 14.3× to 31.9×. For the CHPS and LHPS
variants, the performances range from 0.189ms to 1.302ms
and 0.290ms to 1.187ms respectively on the 3090 Ti GPU,
demonstrating the utility of these specialized variants in en-
hancing computational efficiency. The LHPS variant shows
promising performance, making it as a highly efficient solution
for certain use cases, with clear benefits over the traditional
BFV implementation. Within our experimental landscape, the
HPS variants outperform the BEHZ variant in most cases.
For instance, on the 3090 Ti GPU, with parameters set to
logN = 14, logQ = 300, and logP = 60, the HMult

operation showcases an approximately 19% improvement of
HPS over BEHZ.

B. Comparison with Related Works

Given that our GPU-based implementation of the HPS
variants is the first of its kind, we have chosen to benchmark
the performance of our BEHZ variant against several relevant
studies [19]–[21]. The work in [19] represents the most recent
and advanced implementation of the BEHZ variant on a GPU.
Meanwhile, [21] illustrates a GPU implementation utilizing
32-bit arithmetic.

The performance of our optimized BEHZ variant imple-
mentation on different GPU platforms and a comprehensive
comparison is provided in Table V. As the work of [19]
remains closed-source, we compared the performance to ours
on an equivalent hardware platform. When evaluating the
logN = 15 and logQP = 881 parameter set, our TensorBEHZ
and Relin operations show execution times of 2.267ms and
2.209ms, respectively. This corresponds to substantial speedup
ratios of 39.7% and 29.9% respectively, thereby underscoring
the efficacy of our GPU-accelerated implementation.

C. Sensitivity to Multiplication Depth in Application

To explore the impacts of different variants of homomorphic
multiplication in a real-world application scenario, we im-
plemented an application performing recursive homomorphic
multiplication in a binary tree pattern. We set the parameters
as logN = 15, logQP = 840, with the number of special
moduli being 1.

For BEHZ, HPS, and CHPS variants, the performance
remained essentially constant regardless of the increase in
multiplication depth. However, the LHPS variant demonstrated
a different pattern, with the number of layers dropped contin-
uously increasing with the multiplication depth, leading to a
gradual decline in performance.

Nevertheless, at a multiplication depth of 20, the LHPS
variant managed to enhance performance by around 4× when
compared to the other three variants. The data underscores
the impressive performance of the LHPS variant in specific
application scenarios. This suggests that the LHPS variant
could be an exceptionally efficient alternative for certain use
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Fig. 4. Performance comparison of four homomorphic multiplication variants
within a recursive binary tree application scenario, assessed across varying
multiplication depths.

cases, thereby offering discernible advantages over traditional
BFV implementations.

VI. CONCLUSION

In this work, we provide a comprehensive and insightful
study on accelerating and comparing BFV variants on GPUs.
Our research not only develops a universal framework that
accommodates all BFV variants, but also presents several
notable advancements, including support for large-parameter
HPS variants on GPU and significant optimizations that min-
imize computational and memory consumption. Performance
evaluation shows substantial speed improvements, with our im-
plementation of the leveled HPS variant emerging as a promis-
ing solution for specific applications. Our work contributes
to the ongoing advancements in the field of Homomorphic
Encryption and provides avenues for future explorations and
improvements in privacy-preserving computations.
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