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Abstract

We propose a new notion of knowledge soundness, denoted rogue-instance security, for interactive
and non-interactive batch knowledge proofs. Our notion, inspired by the standard notion of rogue-key
security for multi-signature schemes, considers a setting in which a malicious prover is provided with an
honestly-generated instance x1, and may then be able to maliciously generate related “rogue” instances
x2, . . . ,xk for convincing a verifier in a batch knowledge proof of corresponding witnesses w1, . . . ,wk for
all k instances – without actually having knowledge of the witness w1 corresponding to the honestly-
generated instance. This setting provides a powerful security guarantee for batch versions of a wide
variety of practically-relevant protocols, such as Schnorr’s protocol and similar ones.

We present a highly-efficient generic construction of a batch proof-of-knowledge applicable to any
algebraic Sigma protocols. The algebraic property refers to a homomorphic structure of the underlying
group and includes Schnorr’s protocol and others. We provide an almost tight security analysis for our
generic batch protocol, which significantly improves upon the previously known security bounds even for
the specific case of batch Schnorr protocol. We extend our results beyond algebraic Sigma protocols.
We analyze the rogue-instance security of a general batch protocol with plus-one special soundness (a
generalization of standard special soundness) and achieve improved security bounds in the generic case.

Our results use a particular type of high-moment assumptions introduced by Rotem and Segev
(CRYPTO 2021). These assumptions consider the hardness of a relation against algorithms with bounded
expected running time. Although Rotem and Segev introduced these assumptions, they did not provide
evidence to support their hardness. To substantiate and validate the high-moment assumptions, we
present a new framework for assessing the concrete hardness of cryptographic problems against oracle
algorithms with bounded expected runtime. Our framework covers generic models, including the generic
group model, random oracle model, and more. Utilizing our framework, we achieve the first hardness
result for these high-moment assumptions. In particular, we establish the second-moment hardness of
the discrete-logarithm problem against expected-time algorithms in the generic group model.
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1 Introduction

A zero-knowledge proof-of-knowledge protocol is a powerful cryptographic tool with diverse applications.
It enables a prover to convincingly demonstrate to a verifier, who holds an instance x, that it possesses
knowledge of a valid witness w for x. The fundamental power of such protocols lies in the ability to extract
a witness from a given prover, a property that varies in its precise formulation across different protocols.
Proofs of knowledge play a pivotal role in cryptographic protocols, both from a theoretical standpoint and
in practical implementations.

One notable example is Schnorr’s protocol [Sch89, Sch91], which serves as a zero-knowledge proof-of-
knowledge for the knowledge of the discrete-logarithm of a group element. In its interactive form, this protocol
offers an efficient identification scheme, while in its non-interactive form, it translates into a signature scheme
via the Fiat-Shamir transformation. The widespread influence of the Schnorr identification and signature
schemes stems from their conceptual simplicity and practical efficiency. Another compelling example is
a proof-of-knowledge for a Pedersen commitment or hash function, which is the product of two Schnorr
instances. In this scenario, the prover demonstrates the ability to “open” the commitment without actually
revealing its contents, thus maintaining the privacy of the committer [Oka92]. The wide-ranging applicability
of these protocols within the field of cryptography has garnered substantial attention and interest in a tight
analysis of their security bounds.

Extraction from special soundness. Both of the examples presented above exemplify Sigma protocols,
which are three-move protocols that exhibit the unique soundness notion called “special soundness”. This
property plays a vital role in the construction of an extractor. Specifically, the property states that it is
possible to extract a witness when provided with two accepting transcripts that share the same first message
but differ in the second message. Consequently, to establish the protocol’s security based on the hardness of
the underlying relation, the extractor must successfully extract two such valid transcripts from a potentially
malicious prover.

To achieve this goal, existing approaches employ a strategy of executing the protocol multiple times.
The analysis of these approaches draws upon the classic “forking lemma” introduced by Pointcheval and
Stern [PS00] (see also [AAB+02, BN06, BCC+16, KMP16]). These different approaches showcase a trade-off
between the success probability and the running time of the extractor. To provide a concrete example,
let us examine the Schnorr identification scheme and signature scheme, which derive their security from
the hardness of the discrete-logarithm problem. For the Schnorr identification scheme, suppose we have a
malicious prover who runs in time t and succeeds in impersonating with probability ϵ. We can transform
this malicious prover into a discrete-logarithm algorithm that runs in time 2t and succeeds with probability
ϵ2. Similarly, for the Schnorr signature scheme, suppose the attacker additionally performs at most q queries
to the random oracle. We can transform this attacker into a discrete-logarithm algorithm that runs in time
2t and succeeds with probability ϵ2/q. For any group of order p, where generic hardness of discrete-log is
believed to hold [Sho97], this leads to the bound ϵ ≤ (t2/p)1/2 for the Schnorr identification scheme, and a
bound of ϵ ≤ (q · t2/p)1/2 for the Schnorr signature scheme. Other trade-offs that were established lead to
the same bound [BD20, JT20]. In idealized models, such as the generic group model [Sho97, Mau05] and the
algebraic group model [FKL18, AHK20, BFL20, FPS20, MTT19, RS20], it is possible to achieve an optimal
bound of ϵ ≤ t2/p (see [Sho97, FPS20]).

High-moment forking lemma. The extractor runs the given adversary for the second time, only if the
first time succeeded. Thus, it is convenient to analyze the expected running-time of the extractor, rather
than its strict running-time [KL08]. In this case, the result is an algorithm for solving discrete-logarithm
with a bound on its expected running time. Recently, Segev and Rotem [RS21] have leveraged this type of
analysis to derive tighter bounds for Schnorr’s protocols (and similar Sigma protocols). Towards this end,
they established a hardness of discrete-logarithm for excepted time algorithms.

In simple terms, their second-moment assumption states that the success probability ϵ of any algorithm
A solving discrete-logarithm for a group of order p satisfies ϵ ≤ E

[
T 2
A

]
/p, where TA denotes the random
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variable corresponding to A’s running time.1 Under this assumption, Segev and Rotem were able to derive
the bound of ϵ ≤ (t2/p)2/3, which is the best-known bound for Schnorr in the standard model. Achieving
the optimal bound in the standard model remains an open problem that continues to drive ongoing research
and exploration.

Batch protocols. The Schnorr protocol and the Pedersen protocol both admit efficient batch versions
[GLS+04]. A batch protocol is given k instances, x1, . . . ,xk, and allows to prove the knowledge of all
corresponding k witnesses with a communication complexity that is approximately the same as that of a
single proof of knowledge. The efficiency gain provided by batch protocols is a highly desirable property
in many domains. In the context of blockchain, batching is a widely adopted practice aimed at reducing
costs and optimizing resource utilization, the instances are usually public-keys and the witnesses are private-
keys. By grouping multiple transactions or operations into a single batch, the associated overhead, such as
communication and computation costs (which affect the transaction fees), can be significantly reduced.

However, the security analysis of batch protocols raises several concerns. The security bounds vary
depending on how the instances are chosen in the security game (a modeling issue that does not appear
with a single instance). For example, in a permissionless blockchain network, the attacker can choose the
instances (its public-keys) adaptively as a function of existing instances sampled by honest parties. In such
a case, the security reduction cannot assume hardness of the instances chosen by the adversary. These
types of security games are known in the context of multi-signatures and are called rogue-key attacks (see
[BN06, BDN18, MPS+19, BD21, NRS21] and the many references therein).

The special soundness property extends to the multiple instance case. In this setting, the extractor must
extract k+1 valid transcripts from which it can compute all k corresponding witnesses (actually, it needs all
k+1 transcripts even if it aims to compute a single witness). This is a generalization of the standard special
soundness property, which we call plus-one special soundness. However, deriving tight security bounds for
the batch setting is even more challenging than the single case. A straightforward extension of the single
extractor to the batch version would run the malicious prover k + 1 times and would yield an extractor
that runs in approximately (k + 1) · t time, but with a success probability of ϵk+1, i.e., an exponential
decay in the number of instances. This is indeed the case in the batch Schnorr protocol given in [GLS+04].
Furthermore, the tighter bound of Segev and Rotem [RS21] does not seem to extend to the multiple instance
case (regardless of the precise security game definition). This raises the question of how to derive tight
security bounds for batch protocols.

1.1 Our contributions

We give several contributions towards a better understanding of batch proof-of-knowledge protocols.

Rogue-instance soundness. Our first contribution is a strong security notion for batch protocols, denoted
rogue-instance security, for interactive and non-interactive batch knowledge proofs. Our notion is inspired
by the standard notion of rogue-key security for multi-signature schemes. We consider a setting in which a
malicious prover is provided with an honestly-generated instance x1 (according to some distribution), and is
then allowed to maliciously generate related “rogue” instances x2, . . . ,xk for convincing a verifier in a batch
knowledge proof of corresponding witnesses w1, . . . ,wk for all k instances. This is done without the malicious
prover having knowledge of the witness w1 corresponding to the honestly-generated instance. This setting
provides a powerful security guarantee for batch versions of numerous practical and relevant protocols, such
as Schnorr’s protocol and similar ones. See Section 4 for the precise definition.

Batching algebraic Sigma protocols We construct batch protocols for a large family of Sigma proto-
cols and provide a relatively tight analysis. Our construction works for algebraic Sigma protocols, which
captures the proof-of-knowledge protocol for discrete-logarithm (Schnorr) [Sch89, Sch91], Pedersen commit-
ment [Oka92], Guillou-Quisquater identification scheme [GQ88] and more. The algebraic property refers to a

1They originally stated their assumption for a general d-moment but, in this paper, we focus on the second-moment.

2



homomorphic structure of the underlying group. Algebraic Sigma protocols consist of an algebraic one-way
function f such that the prover aims to prove knowledge of a preimage under f . The notion of algebraic
one-way function introduced by Catalano et al. [CFG+15] which relates to the notion of group-homomorphic
one-way generators introduced by Cramer and Damg̊ard [CD98]. We analyze the security of our construction
in the rogue-instance game and achieve the bound ϵ ≤ (t2/p)2/3 (for groups of order p) which matches the
state-of-the-art bound of Segev and Rotem [RS21] for a single instance. In particular, our bound does not
depend on the number of rogue instances. In more general form, our theorem is as follows.

Theorem 1 (Informal). Let Π be an algebraic Sigma protocol for a relation R ⊆ X ×W. If R is second-
moment hard with respect to a distribution D, then R has a batch protocol with rogue soundness error
ϵ(t) ≤ (t2/|W|)2/3.

In particular, our theorem gives us tighter security bounds for the batch version of Schnorr and Pederson
protocols. Specifically, the batch version of Schnorr’s protocols immediately implies the same bounds for the
corresponding batch identification scheme.

Corollary 1.1. Assuming that the discrete-logarithm problem is second-moment hard, any adversary that
runs in time t wins in the rogue soundness game for the batch Schnorr and Okamoto identification schemes
with probability at most (t2/p)2/3, where p is the order of the underlying group.

We extend our results for general batch Sigma protocols. We analyze the rogue-instance security of a
general batch protocol with plus-one special soundness and achieve the bound of ϵ ≤ (k2 · t2/p)1/2, which is
inferior to our bound for the specific case of algebraic protocols, but superior to previously known bounds.

Theorem 2 (Informal). Let Π be k-batch Sigma protocol for a relation R ⊆ X ×W with plus-one special
soundness. If R is second-moment hard with respect to a distribution D, then Π has rogue soundness error
ϵ(t) ≤ (k2 · t2/|W|)1/2.

In Table 1 we exemplify the concrete improvements we get in Theorem 1 and Theorem 2 for various
parameter settings.

Attacker’s Security Batch Bound of Generic bound Algebraic bound

running time parameter parameter [GLS+04] Theorem 2 Theorem 1

t λ k (t2/p)1/(k+1) (k2 · t2/p)1/2 (t2/p)2/3

264 256 2 2−42.67 2−63 2−85.33

264 256 4 2−25.6 2−62 2−85.33

280 256 6 2−13.71 2−45.42 2−64

280 512 8 2−39.11 2−173 2−234.66

2100 512 16 2−18.35 2−152 2−208

2100 512 24 2−12.48 2−151.42 2−208

2128 512 24 2−10.24 2−123.42 2−170.66

2128 512 32 2−7.76 2−123 2−170.66

Table 1: A comparison of the security guarantees for the batch Schnorr scheme provided by [GLS+04]
compared to our bounds given in Theorem 2 and in Theorem 1.

Non-interactive proof-of-knowledge. We construct non-interactive batch arguments from algebraic
Sigma protocols by applying the Fiat-Shamir paradigm to the batch Sigma protocols. Given Theorem 1,
the generic analysis of the Fiat-Shamir yields a bound on the rogue-instance game of ϵ ≤ q · (t2/p)2/3 when
considering malicious prover who runs in time t and performs at most q queries to the random oracle.
However, direct analysis of the rogue-instance game yields a bound of ϵ ≤ (kq · t2/p)2/3 which is again
matches the bound of Rotem and Segev [RS21], for a single instance. Informally, we show the following:
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Theorem 3 (Informal). Let Π be an algebraic Sigma protocol for a relation R ⊆ X ×W. If R is second-
moment hard with respect to a distribution D, then R has a non-interactive batch argument with rogue
soundness error ϵ(t) ≤ (kq · t2/|W|)2/3.

Establishing hardness for high-moment assumptions. Theorem 1 and Theorem 3 rely on the second-
moment-hardness of a relation, an assumption introduced in [RS21]. While the use of these assumptions
is beneficial, there is no evidence to support their hardness. To remedy the situation, we present a new
framework that allows to establish bounds for oracle-algorithms with expected running time. Utilizing our
framework, we achieve the first hardness result for these high-moment assumptions, relative to a oracle. The
general statement of our framework is somewhat technical and is given in Theorem 9.5. Thus, we present
two main implications of our framework, which are easier to state.

First, we establish the second-moment hardness of the discrete-logarithm problem against expected-time
algorithms in the generic group model. Shoup [Sho97] analyzed the generic hardness of the discrete-logarithm
problem with respect to strict time algorithms. He showed that any generic t-time algorithm that solves
the discrete-logarithm problem has success probability at most ϵ ≤ t2/p. Applying our framework yields
a bound of ϵ ≤ E

[
T 2
A

]
/p when considering unbounded algorithms where TA denotes the random variable

indicating the algorithm’s running time.

Theorem 4 (second-moment hardness in generic group model; Informal). For any query algorithm A, let
TA = TA(λ) be a random variable indicating the number of queries performed by A until he stops. For every
algorithm A that solves the discrete-logarithm problem in a generic group of prime order p and succeeds with
probability ϵA it holds that

ϵA ≤
E
[
T 2
A

]
p

.

Our framework is inspired by [JT20] which showed a generic framework to prove bounds with respect
to expected-time algorithms when considering only the first-moment of the expected running time. Their
result proves the first-moment assumption (Definition 3.1), but cannot be used to derive second-moment
hardness. Moreover, our framework achieves tighter bounds than theirs and is arguably easier to use (see
Corollary 9.6).

Second, we derive expected-time bounds for SNARKs in the random oracle model (ROM). We focus on
the construction of Micali [Mic00], which compiles a PCP to a SNARK in the ROM. It is known that if the
underlying PCP has soundness error ϵPCP, then every malicious prover that makes at most t-queries to the

random oracle can convince the verifier of a false statement with probability at most ϵ ≤ t · ϵPCP+ 3
2 ·

t2

2λ
(see

analysis in [BCS16]). Using our framework, we derive the following bound.

Theorem 5 (second-moment hardness of SNARKs; Informal). Suppose the Micali construction is instanti-
ated for a relation R with a PCP with error ϵPCP, and random oracle with output length λ. Then, for every
x /∈ L(R) and every malicious argument prover P̃ that performs TP̃ oracle queries (as a random variable)
and outputs a proof π̃ it holds that

Pr
[
Vf (x, π̃) = 1

]
≤ E

[
TP̃

]
· ϵPCP +

3

2
·
E
[
T 2
P̃

]
2λ

.

In Section 2.6, we further discuss the type of cryptographic problems relative to an oracle captured by our
framework. A formal treatment of the framework, including definitions, statements, and further examples,
is given in Section 9.1.
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2 Our techniques

We summarize the main ideas behind our results.

• In Section 2.1 we discuss the computational assumptions we consider in this work.
• In Section 2.2 we define batch Sigma protocols and extend the notion of rogue-key security for multi-
signature, to rogue-instance security of batch proof-of-knowledge.

• In Section 2.3 we first show a general compiler from a large family of Σ-protocols to a batch Σ-
protocol. Then, we show the high-level proof of the rogue-security of batch Σ-protocols constructed
via the general compiler.

• In Section 2.4 we start by showing how to construct non-interactive batch arguments using the general
compiler, then, we bound their rogue-security.

• In Section 2.5 we show how to apply our techniques on a general batch Σ-protocol and derive a concrete
bound on their rogue-soundness error.

• In Section 2.6 we describe our framework for establishing high-moment hardness assumptions.

2.1 High-moment hardness

We begin by describing the computational assumptions that underlie our work. Let R ⊆ X × W be a
relation, where X is the set of instances andW is the set of witnesses. We note that the relation (and in fact
all algorithms that will be described later on) are with respect to a setup algorithm that produces public
parameters. For the simplicity of this high-level overview, we omit the public parameters (where formal
definitions take them into account).

We consider distribution D over instance-witness pairs such that (x,w) ∈ R. For example, the dis-
tribution can sample a discrete-logarithm challenge. Typically, the hardness of the distribution is stated
with respect to strict-time algorithms, that is, algorithms that run in some fixed time t. Here, we consider
hardness with respect to an algorithm where the running time, t, is a random variable. We denote by TA,D
the random variable indicating the running time of A on input x where (x,w)← D. Informally, we say that
R is first-moment hard with respect to the distribution D if for every algorithm A, it holds that

first-moment hardness: Pr [(x, A(x)) ∈ R] ≤
E
[
TA,D

]
|W|0.5

, (1)

where the probability is taken over (x,w)← D and over A. The first-moment assumption is justified by the
work of Jaeger and Tessaro [JT20]. They developed a framework for proving tight bounds on the advantage
of an adversary with expected-time guarantees in generic models (a.k.a. “bad flag analysis”). In particular,
they prove the first-moment hardness of the discrete-logarithm problem in the generic group model. That
is, they show that every algorithm A with an expected running time E [TA] computes the discrete-logarithm
problem in the generic group model with probability at most E [TA] /p

1/2 (where p is the group size).
Recently, Rotem and Segev [RS21] have generalized this assumption for higher moments, where most

important for our work is the second-moment assumption. We say that a relation is second-moment hard
with respect to a distribution D if for every algorithm A it holds that

second-moment hardness: Pr [(x, A(x)) ∈ R] ≤
E
[
T 2
A,D
]

|W|
, (2)

where the probability is taken over (x,w) ← D and the algorithm A. The hardness of the second-moment
assumption does not follow from the framework of [JT20], and has no justification even in generic models.
In order to validate this assumption, we develop a framework (see Section 2.6), in the spirit of [JT20] which
does allow us to establish bounds for second-moments. In particular, it allows us to prove the second-
moment hardness of the discrete-logarithm problem in the generic group model. That is, we show that every
algorithm A with an expected running time E [TA] computes the discrete-logarithm problem in the generic
group model with probability at most E

[
T 2
A

]
/p.

5



2.2 Rogue-instance security for batch protocols

We move on to describe our notion of rogue-instance soundness for batch protocols. In a batch Σ-protocol, we
are given k instance-witness pairs (x1,w1), . . . , (xk,wk). The prover consists of two algorithmsP = (P1,P2),
where P1 sends a message α, the verifier V sends a random challenge β ∈ C, P2 responds with a message γ,
and the verifier V decides whether to accept.

The standard adaptive soundness requirement considers the case where a malicious prover wishes to
convince the verifier on k instances of its choice. However, we consider batch Σ-protocols with rogue-
instance security, where one instance x1 is sampled according to a given hard distribution, and the rest of
the instances x2, . . . ,xk are chosen adaptively as a function of x1.

Specifically, a batch Σ-protocol Π has ϵ rogue-soundness error if for every malicious prover P̃ = (P̃1, P̃2)
that runs in time t it holds that

Pr
[
RogueExpΠ(P̃, λ) = 1

]
≤ ϵ(t) ,

where the experiment RogueExpΠ(P̃, λ) defined as follows:
1. (x1,w1)← Dλ

2. ((x̃2, . . . , x̃k), α, st)← P̃1(x1)
3. β ← C
4. γ ← P̃2(st, β)
5. Output V(x1, x̃2, . . . , x̃k, α, β, γ).

Recall that the definition above omits the setup phase, see Section 4 for the precise definition.

2.3 Batching algebraic Sigma protocols

We first describe our general compiler for batching algebraic Σ-protocols. This compiler takes an algebraic
protocol (which we define next) and outputs a batch version of it (for the same relation). Then, we show
the high-level proof of our (almost tight) rogue-security for the batch protocol.

Algebraic Sigma protocols. Algebraic Σ-protocols are defined with respect to an algebraic one-way
function F. The protocol is a proof-of-knowledge of a preimage of F(r), for randomly sampled r. It is
a generalization of the preimage protocol presented by Cramer and Damg̊ard [CD98]. Algebraic one-way
functions were introduced by Catalano et al. [CFG+15], a closely related notion to group-homomorphic
one-way functions introduced by [CD98].

Informally, we say that a one-way function F : Am → B is algebraic if A and B are abelian cyclic groups
and for every x, x′ ∈ Am it holds that F(x+ x′) = F(x) · F(x′). We say that a Σ-protocol Π = (P1,P2,V) is
algebraic if the protocol has the following general recipe:

1. The prover P1 produces a message α = F(r) for r ∈ A.
2. A challenge β is sampled from Zp where p is the order of A.
3. The prover P2 produces a message γ = r + β ·w.

4. The verifier checks correctness by checking whether F(γ)
?
= α · xβ .

General compiler to batch Sigma protocols. We construct a batch Σ protocol Π∗ = (P∗
1,P

∗
2,V

∗)
from algebraic Σ-protocol by invoking the Σ-protocol k times. Specifically, given k instances, P∗

1 invokes
P1(xi) and produces the message α which is the multiplication of all αi’s. Then, given k challenges, P∗

2

invokes P2 for each challenge and produces the compressed message γ by summing the messages γi. More
formally, given an algebraic Σ-protocol Π = (P1,P2,V), we construct a batch Σ-protocol Π∗ = (P∗

1,P
∗
2,V

∗)
as follows:

1. The prover P∗
1 invokes αi ← P1(xi) and produces the message α = Πk

i=1αi.
2. k challenges βi are sampled from Zp where p is the order of A.
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3. The prover P∗
2 invokes γi ← P2(βi) for each challenge βi and produces the compressed message

γ =
∑k

i=1 γi.

4. The verifier checks correctness by checking whether F(γ)
?
= α ·Πk

i=1x
βi

i .

One can observe that the completeness of Π∗ follows from the homomorphic property of F. The prover-to-
verifier communication is two group elements. The verifier sends k elements, but since they are all uniformly
random strings, they can be easily compressed to a single group element using any pseudo-random generator
(e.g., using a random oracle).

Our objective is now to bound the rogue-soundness error of Π∗. To achieve this, we consider a malicious
prover P̃ that given as input an instance x1 which is sampled from a distribution D, and chooses the rest of
the instances x2, . . . ,xk as a function of x1. Its goal is to convince the verifier on x1, . . . ,xk. We construct an
algorithm that given as input an instance x, invokes P̃ on x in order to obtain a witness for x. Combined with
the second-moment assumption, it allows us to bound P̃’s success probability (which is the rogue-soundness
error).

In order to construct A, we make use of the special soundness property of Σ-protocols. Note that if a
Σ-protocol has special soundness, then our construction yields a batch protocol which has plus-one special
soundness (i.e., given k + 1 accepting transcripts on k instances with a common first message and pairwise
distinct challenges, one can extract all k witnesses). Obtaining k + 1 valid transcripts from the adversary
is very costly. However, in our case, we are only interested in extracting a single witness. Thus, we define
a relaxed notion called local special soundness that allows to extract a single witness from two specifically
designed transcripts.

Local special soundness. Informally, a batch Σ-protocol has local special soundness if there exists an
extractor E such that given k instances x1, . . . ,xk and a pair of accepting transcripts with a common first
message and only one different challenge βi ̸= β′

i, outputs a valid witness for xi. We now show that every
batch Σ-protocol constructed from algebraic Σ-protocol as above, has local special soundness.

Claim 1 (Informal). The batch Σ-protocol Π∗ constructed above from algebraic Σ-protocol has local special
soundness.

Proof sketch. Consider the algorithm E which takes as input a pair of accepting transcripts (α, β1, . . . , βk, γ),
(α, β′

1, . . . , β
′
k, γ

′) such that there exists only one index j on which βj ̸= β′
j , defined as follows:

1. Let i∗ be the index on which βi∗ ̸= β′
i∗ .

2. Output (γ − γ′)/(βi∗ − β′
i∗) on the group Zp where p is the order of App.

The proof follows from the homomorphic property of F (see Section 5.1 for a complete proof).

Due to the local special soundness property, it is sufficient to construct an algorithm A that invokes P̃
on x and outputs two accepting transcripts (α, β1, . . . , βk, γ), (α, β

′
1, . . . , β

′
k, γ

′) such that β1 ̸= β′
1.

We reduce the problem of finding two such transcripts to the “collision game” first introduced in [Cra96].
In more detail, we show that given an algorithm that succeeds in the collision game, we can construct an
algorithm that outputs two such transcripts, which conclude extracting a witness.

The collision game. We consider the collision game first introduced in [Cra96] and used in [ACK21, HL10]
which consists of a binary matrix H ∈ {0, 1}R×N . The output of the game is 1 if and only if two 1-entries
in the same row have been found.

Informally, the R rows correspond to the prover’s randomness and the N columns correspond to the
verifier’s randomness. An entry of H equals 1 if and only if the corresponding transcript is accepting. Then,
finding two 1-entries in the same row corresponds to finding two accepting transcripts with a common first
message and distinct challenges. Therefore, an algorithm for the collision game can be transformed into
an algorithm that finds two accepting transcripts, which by the local special soundness, allows extracting a
witness (see Section 5.3 for a complete proof).
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We now focus on constructing an algorithm for the collision game. In contrast to the collision game
algorithm of [Cra96] which runs in strict polynomial time, our algorithm runs in expected polynomial time.
A similar approach can be found in [ACK21, HL10], however, their algorithm minimizes only the first-
moment of the expected running time. The collision game algorithm of [ACK21, HL10] samples an entry
of H, if this entry equals 1, the algorithm continues to sample the entire row till it finds another 1-entry.
One can observe that the second-moment of the expected running time of this algorithm is too high to get
improved bounds.

Our goal is to construct an algorithm that maximizes the trade-off between the success probability and
the second-moment of the expected running time, in order to use the second-moment assumption.

Lemma 1 (Informal). Let H ∈ {0, 1}R×N be a binary matrix and let ϵ be the fraction of 1-entries in H.
Then, there exists an algorithm A with oracle access to H such that the following holds:

1. The expected number of queries performed by A to H is at most 2.
2. The second-moment of the expected number of queries performed by A to H is at most 4.
3. The probability that A succeeds in the collision game is at least ϵ1.5.

Proof sketch. Let B = 1√
ϵ
and consider the following algorithm A:

AH

1. Sample an entry (ρ, β) in H. If H[ρ, β] = 0, abort. Let F = ∅.

2. For every i ∈ [B]: sample without replacement entries in the same row ρ. If H[ρ, βi] = 1, set
F ← F ∪ {βi}.

3. If F = ∅, abort. Otherwise, choose uniformly at random an index β′ ∈ F and output ρ, β, β′.

Let QA be a random variable indicating the number of queries performed by A to H. For this section
only, we omit the bound on the expected number of queries and refer to the second-moment only. A complete
proof of the formal lemma can be found in Section 5.2.

By the description of A it performs 1 query to H with probability (1 − ϵ) and (1 + B) queries with
probability ϵ. Therefore,

E
[
Q2

A

]
= (1− ϵ) · 12 + ϵ · (1 +B)2 ≤ 1 + 2

√
ϵ+ 1 ≤ 4 .

For now, we give a high-level overview of the proof of A’s success probability. A complete proof can be
found in Section 5.2. Assuming the first query to H was 1-entry, the algorithm continues to sample entries
in the same row. Thus, if it hit a row with only one 1-entry, it succeeds in the game with probability zero.
Therefore, we divide the rows by the number of 1-entries in it and look at the probability to sample such a
row. Formally, for every 0 ≤ d ≤ N , we let δd be the fraction of rows with exactly d 1-entries. Assuming the
first query was 1-entry, A succeeds in the game if it finds at least one more 1-entry with B draws. Let Xd

be a random variable indicating the number of 1-entries found in B draws in a row with exactly d 1-entries.
Overall,

Pr [CollGame(A,H) = 1] ≥
N∑

d=2

δd ·
d

N
· Pr [Xd ≥ 1] .

In Section 5.2, we show that the above term is bounded by ≈ ϵ1.5.

2.4 Non-interactive batch arguments

In the previous subsection we showed a general compiler for batching algebraic Σ-protocols and bound their
rogue-soundness error. Similarly, in this subsection we refer to the non-interactive analog. We first construct
non-interactive batch arguments from algebraic Σ-protocols and then bound their rogue-instance security.
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Non-interactive batch arguments from Sigma protocols. We show how to construct non-interactive
batch arguments from algebraic Σ-protocols.

The construction is given by applying the Fiat-Shamir paradigm on the batch Σ-protocol constructed in
Section 2.3 except for one minor change. Recall that in the construction of batch Σ-protocols, the prover
is given as input k different challenges for each input. We wish to keep this property in the non-interactive
analog. Specifically, we construct a non-interactive batch argument NARG = (P,V) from algebraic Σ-protocol
by invoking the Σ-protocol k times and obtaining the challenges from a random oracle function f ∈ U(λ).
In more detail, given k instances, the prover P invokes αi ← P1(xi) and computes α as the multiplication
of αi’s. Then, it obtains each challenge βi by querying f(x1, . . . ,xk, α, i). Finally, it invokes P2 for each
challenge and computes γ by summing the messages γi. The prover P outputs the proof string (α, γ). The

verifier V computes βi by querying the random oracle f and checking whether F(γ)
?
= α ·Πk

i=1x
βi

i . One can
observe that the completeness of NARG follows from the homomorphic property of F and that the proof size
is two group elements.

Our objective now is to bound the rogue-soundness error of NARG. Similarly to the interactive case, the
NARG constructed above has local special soundness. Therefore, in order to extract a witness, it suffices to
construct an algorithm that outputs a pair of transcripts with a common first message and only one different
challenge βi ̸= β′

i.

Collision game for the non-interactive analog. Similar to the interactive case, our goal is to reduce
the task of finding two such transcripts to the collision game. However, this transformation presents certain
challenges. First, in the interactive case, we have two elements of randomness - the prover’s randomness
and the verifier’s randomness which can be straightforwardly represented as a matrix. In contrast, in the
non-interactive settings, the verifier’s randomness is replaced by random oracle queries. A malicious prover
performs at most q queries to the random oracle in order to obtain the challenges. Each answer from the
random oracle may affect the prover’s algorithm.

Secondly, in the interactive case, a prover P can be represented by two algorithms P1,P2. The algorithm
P1 outputs the first message α and a state st, and P2 given as input the challenges βi and the state st.
Consequently, in order to obtain a pair of transcripts with a common first message, we can invoke P1 and
P2, followed by invoking P2 again, on the same state and different challenges. In the non-interactive analog,
a prover P outputs the instances x2, . . . ,xk along with (α, γ). We assume without loss of generality that
P always outputs α that it queried the random oracle f with (x1, x̃2, . . . , x̃k, α). Then, in order to obtain
two transcripts with a common first message, we need to “guess” which random oracle query the prover is
going to output. We invoke the prover once to obtain (x̃2, . . . , x̃k, α, γ) and let i∗ be the random oracle on
which the prover queried (x1, x̃2, . . . , x̃k, α). Then, we invoke the prover, replicating the same random oracle
responses up to the i∗-th query. With probability ≈ 1/q the prover outputs the same instances and first
message α.

Therefore, we reduce the problem of finding two such transcripts into the “tree game”. In this game,
we consider a fixed randomness for the prover and consider a tree of depth q and degree 2λ. The depth
corresponds to the number of queries performed by the prover and the degree corresponds to the possible
answers from the random oracle f . Consequently, the execution of the prover corresponds to a random walk
on the tree and a leaf corresponds to the output of the prover. We let the value of a leaf be the random oracle
query on which the prover queried f with this output. More precisely, each leaf corresponds to an output
(x2, . . . ,xk, α, γ), we consider the value of a leaf to be the random oracle query in which the prover queried
f with (x2, . . . ,xk, α). Then, finding two transcripts with a common first message and distinct challenges
corresponds to finding two leaves with the same value i such that their lowest common ancestor is an internal
node v of height i. A formal proof of the reduction can be found in Section 6.3.

The tree game. We introduce a tree game where an algorithm is given oracle access to a tree T where
the value of each leaf is a number. Consider a complete tree T of depth l and degree r. Let Leaves(T ) be the
leaves of T and for every u ∈ Leaves(T ) let val(u) be the value “stored” in u. Note that not all leaves hold a
number value, we consider the value of such a leaf as ⊥. During the execution of the game, the algorithm A
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is given as input a number k and oracle access to the tree T and aims to find k+ 1 leaves u1, . . . , uk+1 with
the same value i that have the same lowest common ancestor v such that height(v) = i.

Due to the local special soundness property, it is sufficient to construct an algorithm that outputs two
accepting transcripts, then in this section, we consider the specific case where k = 1.

Lemma 2 (Informal). Let T be a complete tree of depth l and degree r and let ϵ be the fraction of non-bot
leaves in T . Then, there exists an algorithm A with oracle access to T such that on input k = 1 the following
holds:

1. The expected number of queries performed by A to H is at most 2.
2. The second-moment of the expected number of queries performed by A to H is at most 4.
3. The probability that A succeeds in the collision game is at least ϵ1.5/l.

Proof sketch. Let B = 1√
ϵ
and consider the following algorithm A:

AT

1. Sample a leaf u ∈ Leaves(T ). If val(u) = ⊥, abort.

2. Let v be the parent of u of height val(u) and let w be the parent of u of height (val(u)− 1). Let
F = ∅.

3. For every i ∈ [B]: sample without replacement leaves from Tv \ Tw. If val(ui) = val(u), set
F ← F ∪ {ui}.

4. If F = ∅, abort. Otherwise, choose uniformly at random a leaf u′ ∈ F and output u, u′.

Let QA be a random variable indicating the number of queries performed by A to T . For this section
only, we omit the bound on the expected number of queries and refer to the second-moment only. A complete
proof of the formal lemma can be found in Section 6.2.

By the description of A it performs 1 query to T with probability (1 − ϵ) and (1 + B) queries with
probability ϵ. Therefore,

E
[
Q2

A

]
= (1− ϵ) · 12 + ϵ · (1 +B)2 ≤ 1 + 2

√
ϵ+ 1 ≤ 4 .

For now, we give an informal high-level overview of the proof of A’s success probability. A complete proof
can be found in Section 6.2. Assume A samples a leaf u with the value h, then, A continues to sample leaves
from the same sub-tree in order to find another leaf with the value h. Let v be the parent of u of height
h. Note that for every h and v, the number of leaves with the value h in Tv may be different, which affects
its success probability. Therefore, for every value h, we “divide” the internal nodes to “buckets” by the
probability to sample a leaf with the value h in its sub-tree, and then we look at the probability to “reach”
each bucket.

Formally, for every 0 ≤ d ≤ l log r and 0 ≤ h ≤ l − 1, we let

δd,h = Pr
v:height(v)=h

[
|{u ∈ Leaves(Tv) : val(u) = h}|

|Leaves(Tv)|
∈
[
2−d, 2−d+1

]]
.

Note that a node v is in the d-th “bucket” if the probability to sample a leaf with the value h in the sub-tree
Tv is in

[
2−d, 2−d+1

]
. Assuming the first query to the tree is a leaf u with the value h, the remainder of

the game can be modeled by a hypergeometric distribution. Informally, B elements from a population of
size |Tv \ Tw| containing ≈ 2−d successes are drawn without replacement. Let Xδd,h be a random variable
indicating the number of leaves with the value h found in B draws in a sub-tree Tv such that v is in the d-th
“bucket”. Thus,

Pr [TreeCollGame(A, T ) = 1] ≥
l−1∑
h=0

N∑
d=2

δd,h · 2−d · Pr
[
Xδd,h ≥ 1

]
.

In Section 6.2, we show that the above term is bounded by ≈ ϵ1.5/l.
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2.5 General batch Sigma protocols

Batch Sigma protocols. In the general case, we consider batch Σ-protocols where given k instance-
witness pairs (xi,wi), the prover P1 sends a message α, the verifier V samples a challenge β and sends it,
the prover P2 responds with a message γ, and the verifier V decides whether to accept or reject by applying
a predicate to (x1, . . . ,xk, α, β, γ). In order to bound the rogue-soundness error of batch Σ-protocols, we
make use of the special soundness property. In particular, we consider the plus-one special soundness which
guarantees the existence of an extractor E. When it is given as input k + 1 transcripts of an execution of a
batch Sigma protocol on k instances, the extractor outputs k corresponding witnesses. More precisely, the
extractor is given as input k + 1 transcripts with a common first message and distinct pairwise challenges.

We construct an algorithm A that given as input an instance x invokes a malicious prover on input x to
obtain k + 1 transcripts, which by the plus-one special soundness allows extracting k witnesses, specifically,
to output a witness for x. Note that the algorithm needs to invoke the prover multiple times in order
to achieve approximately the same probability as in the specific case of batch protocols constructed from
algebraic Σ-protocols. Unfortunately, it appears that finding a good trade-off between the second-moment
of the expected running time and the success probability of the algorithm is challenging in this context. As
a result, in the general case, we rely on the first-moment assumption.

Similarly, we reduce the problem of finding k + 1 accepting transcripts to a generalized version of the
collision game first introduced in [Cra96]. In more detail, we construct an algorithm for the collision game
and then use it in order to obtain k + 1 accepting transcripts (with a common first message and pairwise
distinct challenges), which conclude extracting a witness.

General collision game. We provide a general version of the collision game first introduced in [Cra96]
and used in [ACK21, HL10], which consists of a binary matrix H ∈ {0, 1}R×N . We generalize the collision
game by an additional input, a number k ∈ N. The output of the game is 1 if and only if k + 1 entries with
the value 1 in the same row have been found. An algorithm for the collision game is given as input a number
k ∈ N and an oracle access to the matrix H.

Informally, the R rows correspond to the prover’s randomness and the N columns correspond to the
verifier’s randomness. An entry of H equals 1 if and only if the corresponding transcript is accepting. Then,
finding k+1 entries with the value 1 in the same row corresponds to finding k+1 accepting transcripts with
a common first message and pairwise distinct challenges. Therefore, an algorithm for the collision game can
be transformed into an algorithm that finds k + 1 accepting transcripts, which as discussed above, allows
extracting a witness (see Section 8.2 for a complete proof).

Lemma 3 (Informal). Let H ∈ {0, 1}R×N be a binary matrix and let ϵ be the fraction of 1-entries in H.
Then, there exists an algorithm A with oracle access to H such that on input k the following holds:

1. The expected number of queries performed by A to H is at most k + 1.
2. The probability that A succeeds in the game is at least ϵ.

Proof sketch. We consider the following algorithm:

AH(k)

1. Sample an entry (ρ, β) in H. If H[ρ, β] = 0, abort.

2. Sample without replacement entries in the same row ρ, until k + 1 entries with the value 1 are
found or the row has been exhausted.

Let QA be a random variable indicating the number of queries performed by A to H. Note that the
number of 1-entries in each row affects the expected number of queries performed by A. Thus, we let ϵρ be
the fraction of 1-entries in row ρ. Assuming the first query to H lies in row ρ and equals 1, the remainder
of the algorithm can be modeled by a negative hypergeometric distribution. Elements from a population of
size N − 1 containing ϵρN − 1 successes are drawn without replacement till k successes are counted. Thus,
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assuming that the first query lies in a row ρ and equals 1, the expected number of queries performed by A

is k(N−1+1)
ϵρN−1+1 = k

ϵρ
. Overall,

E [QA] = 1 +
1

R

R∑
1

ϵρ ·
k

ϵρ
= k + 1 .

As discussed in Section 2.3, in order to bound the success probability we divide the rows by the number of
1-entries in it. Formally, for every 0 ≤ d ≤ N , we let δd be the fraction of rows with exactly d 1-entries.
Note that if A’s first query to H lies in a row with at least k + 1 entries with the value 1, it succeeds in the
game with probability 1. Thus,

Pr [CollGamek(A,H) = 1] ≥
R∑

d=k+1

δd ·
d

N
.

In Section 8.1 we show that the above term is bounded by ≈ ϵ.

2.6 Expected time hardness framework

In this subsection, we present our framework for analyzing the expected-time hardness of cryptographic
problems in generic models. Our framework allows bounding the success probability of query-algorithms in
experiments that involve access to an oracle (e.g., solving discrete-logarithm in the generic group model).
Here, we consider the number of queries performed by the algorithm and ignore its actual runtime.

Our overall goal is to prove statements of the form: if any algorithm that performs t queries (as a
strict parameter) has success probability ϵ(t) in a particular experiment, then any algorithm A has success
probability E [ϵ(TA)], where TA is a random variable for the number of queries performed by A. Such a
statement would allow us to derive the desired first-moment and second-moment hardness that we need for
discrete-logarithm and other problems.

Perhaps surprisingly, such a general statement is incorrect, which we demonstrate via the multiple
discrete-logarithm problem. Yun [Yun15] showed that any generic t-time algorithm given k instances of
the discrete-logarithm problem solves all of them with probability at most ϵ(t) ≤ (k · t2/p)k (which is tight).
However, this bound does not translate to E [ϵ(TA)] = kk · E

[
T 2k
A

]
/pk. To illustrate this, consider the

following generic algorithm A for the case where k = 2:

1. Perform p1/8 distinct queries to the group oracle and store the query-answer list µ.
2. If there is no “collision” (i.e., two pairs (x, y), (x′, y′) ∈ µ, such that x ̸= x′ and y = y′), then abort.
3. Otherwise, perform another p1/4 distinct queries to the group generation oracle.

A careful analysis (via the “birthday paradox”) shows that the success probability of this algorithm is

ϵ ≈ (p1/8)2

p
· (p

1/4)2

p
=

1

p5/4
.

The fourth moment of the expected number of queries is (roughly)

E
[
T 4
A

]
≈ (p1/8)4 +

p1/4

p
· (p1/4)4 = O(p1/2) .

However, these do not satisfy the bound of ϵ ≤ 4 · E
[
T 4
A

]
/p2:

ϵ ≈ 1

p5/4
̸≤

4 · E
[
T 4
A

]
p2

≈ 1

p3/2
.

This raises the question of when can we derive bounds for expected algorithms. What distinguishes the
multiple discrete-logarithm (for which we have no non-trivial bounds for expected algorithms) compared
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to the single discrete-logarithm (for which we derive tight bounds for expected algorithms)? We define a
(relatively natural) property of the experiment, called history oblivious, that can precisely distinguish the
two cases and allows us to derive our bounds. Roughly speaking, history oblivious experiment is defined via
the existence of a predicate on the sequence of query/answer pairs (the trace). When the predicate of the
trace is true, then the algorithm is able to solve its task with no additional queries. When the predicate is
false, the trace has a limited effect on its success probability (only the size of the trace affects the probability
and not its contents).

For example, in the discrete-logarithm problem, the trace to the generic group would be true if it contains
a collision. When the predicate is true, one can easily deduce a solution. Otherwise, the trace gives almost
no helpful information to the algorithm except for specific elements which are not the discrete-logarithm.
That is, in this case, the advantage only depends on the size of the trace. Any two traces of the same size
for which the predicate is false yield equal success probability for the algorithm. Observe that this is not the
case for multiple discrete-logarithm. Here, we have three types of interesting traces (rather than two). A
trace can contain no collisions, or a single collision (from which one can deduce one discrete-logarithm but
not the other), or two collisions (from which one can derive both discrete-logarithms). The predicate in this
case would identify a trace with two collisions. Thus, two traces of the same size, one from the first type
and one from the second type would have drastic different effect on the success probability, as in the latter
it needs to solve only a single discrete-logarithm.

In summary, for any history oblivious experiment we show that:

Pr[strict algorithms succeeds] ≤ ϵ(t) =⇒ Pr[expected-time algorithms succeeds] ≤ E [ϵ(t)] .

We formalize the above statement in Theorem 9.5. This allows us to prove first and second-moment hardness
of discrete-logarithm Equations (1) and (2), which are the basis for our results. It also allows us to derive
our bounds for the Micali SNARK construction given in Theorem 5. Our framework is inspired by the work
of Jaeger and Tessaro [JT20], however, their tools do not allow us to prove the second-moment hardness
assumptions in generic models. Furthermore, our approach is arguably simpler to use and provides tighter
security bounds even for first-moment assumptions. We show that our framework recovers the bounds of
[JT20] in Corollary 9.6.
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3 Preliminaries

For any n ∈ N, we denote the set of all positive integers up to n as [n] := {1, . . . , n}. For any finite set
S, x ← S denotes a uniformly random element x from the set S. Similarly, for any distribution D, x ← D
denotes an element x drawn from distribution D.

3.1 High-moment hardness

A relation R is a set R = {Rλ}λ∈N, where Rλ ⊆ Pλ × Xλ × Wλ for any λ ∈ N, for sets X = {Xλ}λ∈N,
W = {Wλ}λ∈N and P = {Pλ}λ∈N. The corresponding language L(Rλ) is the set of public parameters pp
and instances x for which there exists a witness w such that (pp,x,w) ∈ Rλ.

We consider distributions D = {Dλ}λ∈N over the relation where each Dλ produces (pp,x,w) ∈ Rλ. We
note by Dλ(pp) the distribution that produces (x,w) such that (pp,x,w) ∈ Rλ.

For any such distribution Dλ(pp) and an algorithm A, we denote by TA,Dλ
the random variable indicating

the running time of A on input x where (x,w)← Dλ(pp).

Definition 3.1 (First-moment hard relation). Let ∆ = ∆(λ), ω = ω(λ) be functions of the security param-
eter, and let R = {Rλ}λ∈N be a relation where Rλ ⊆ Pλ×Xλ×Wλ. Let Setup be a setup algorithm that on
input 1λ, outputs pp ∈ Pλ. We say that R is first-moment hard (with respect to a distribution D = {Dλ}λ∈N
and a setup algorithm Setup) if for every algorithm A and for every λ ∈ N it holds that

Pr

(pp,x, w̃) ∈ Rλ

∣∣∣∣∣∣
pp← Setup(1λ)
(x,w)← Dλ(pp)
w̃← A(pp,x)

 ≤ ∆ · E
[
TA,Dλ

]
|Wλ|ω

.

Definition 3.2 (Second-moment hard relation). Let ∆ = ∆(λ), ω = ω(λ) be functions of the security
parameter, and let R = {Rλ}λ∈N be a relation where Rλ ⊆ Pλ × Xλ ×Wλ. Let Setup be a setup algorithm
that on input 1λ, outputs pp ∈ Pλ. We say that R is second-moment hard (with respect to a distribution
D = {Dλ}λ∈N and a setup algorithm Setup) if for every algorithm A and for every λ ∈ N it holds that

Pr

(pp,x, w̃) ∈ Rλ

∣∣∣∣∣∣
pp← Setup(1λ)
(x,w)← Dλ(pp)
w̃← A(pp,x)

 ≤ ∆ · E
[
T 2
A,Dλ

]
|Wλ|ω

.

3.2 Sigma protocols

Definition 3.3 (Σ-Protocol). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ×Xλ×Wλ for any λ ∈ N. A
Σ-protocol Π for relation R is a 5-tuple (Setup,P1,P2,V, C) where Setup and P1 are probabilistic polynomial-
time algorithms, P2 and V are deterministic polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble
of efficiently sampleable sets. The protocol Π is defined as follows:

1. The algorithm Setup(1λ) produces public parameters pp.
2. The algorithm P1(pp,x,w) produces a message α and a state st.
3. A challenge β is sampled uniformly at random from the challenge set Cpp.
4. The algorithm P2(st, β) produces a message γ.
5. The algorithm V(pp,x, α, β, γ) determines the output of the protocol by outputting 0 or 1.

We require that for every λ ∈ N and (x,w) ∈ Rλ it holds that

Pr

V(pp,x, α, β, γ) = 1

∣∣∣∣∣∣∣∣
pp← Setup(1λ)
(α, st)← P1(pp,x,w)
β ← Cpp
γ ← P2(st, β)

 = 1 .
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Definition 3.4 (Special soundness). Let Π = (Setup,P1,P2,V, C) be a Σ-protocol for a relation R, and let
t = t(λ) be a function of the security parameter λ ∈ N. Then, Π has t-time special soundness if there exists
a deterministic t-time algorithm E that on any public parameters pp ∈ P, any input statement x ∈ Xλ and
any two accepting transcripts with a common first message and distinct challenges, outputs a witness w such
that (pp,x,w) ∈ R.

Definition 3.5 (Zero knowledge Σ-protocol). Let Π = (Setup,P1,P2,V, C) be a Σ-protocol for a relation
R, and let t = t(λ) be a function of the security parameter λ ∈ N. Then, Π is t-time zero-knowledge if there
exists a probabilistic t-time algorithm Sim such that for every λ ∈ N and public parameters-instance-witness
tuple (pp,x,w) ∈ Rλ the distributions(pp,x, α, β, γ)

∣∣∣∣∣∣
(α, st)← P1(pp,x,w)
β ← Cpp
γ ← P2(st, β)

 and {Sim(pp,x)}

are identical.

3.3 Batch Sigma protocols

Definition 3.6 (Batch Σ-protocol). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ × Xλ ×Wλ for any
λ ∈ N and let K ∈ N be a bound on the number of instances. A batch Σ-protocol Π for relation R is a
5-tuple (Setup,P1,P2,V, C) where Setup and P1 are probabilistic polynomial-time algorithms, P2 and V are
deterministic polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble of efficiently sampleable sets.
For any k ≤ K, the protocol Π is defined as follows:

1. The algorithm P1(pp, (x1,w1), . . . , (xk,wk)) produces a message α and a state st.
2. A challenge β is sampled uniformly at random from the challenge set Cpp.
3. The algorithm P2(st, β) produces a message γ.
4. The algorithm V(pp,x1, . . . ,xk, α, β, γ) determines the output of the protocol by outputting 0 or 1.

We have the following two requirements:

1. Completeness: For every λ, k ∈ N such that k ≤ K, for any (x1,w1), . . . , (xk,wk) ∈ Rλ it holds that

Pr

V(pp,x1, . . . ,xk, α, β, γ) = 1

∣∣∣∣∣∣∣∣
pp← Setup(1λ,K)
(α, st)← P1(pp, (x1,w1), . . . , (xk,wk))
β ← Cpp
γ ← P2(st, β)

 = 1 .

2. Soundness: Π has ϵ (adaptive) soundness error if for every λ, k ∈ N such that k ≤ K, it holds that
for any malicious prover P̃ = (P̃1, P̃2):

Pr

 ∃i ∈ [k], s.t. xi ∈ Xλ \ L(R)
V(pp,x1, . . . ,xk, α, β, γ) = 1

∣∣∣∣∣∣∣∣
pp← Setup(1λ,K)

(x1, . . . ,xk, α, st)← P̃1(pp)
β ← Cpp
γ ← P̃2(st, β)

 ≤ ϵ(λ,K) .

Definition 3.7 (Plus-one special soundness). Let Π = (Setup,P1,P2,V, C) be a batch Σ-protocol for a
relation R with a bound K on the number of instances, and let t = t(λ,K) be a function of K and the
security parameter λ ∈ N. Then, Π has t-time plus-one special soundness if there exists a deterministic
t-time algorithm E that for every λ ∈ N and k ≤ K, on any public parameters pp, any k inputs statements
x1, . . . ,xk ∈ Xλ and any k + 1 accepting transcripts with a common first message and pairwise distinct
challenges, outputs k witnesses w1, . . . ,wk such that for every i ∈ [k] it holds that (pp,xi,wi) ∈ Rλ.
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Definition 3.8 (Zero knowledge batch Σ-protocol). Let Π = (Setup,P1,P2,V, C) be a batch Σ-protocol for
a relation R with a bound K on the number of instances, and let t = t(λ,K) be a function of K and the
security parameter λ ∈ N. Then, Π is t-time zero-knowledge if there exists a probabilistic t-time algorithm
Sim such that for any k ≤ K, for every λ ∈ N and (pp,x1,w1), . . . , (pp,xk,wk) ∈ Rλ the distributions(pp,x1, . . . ,xk, α, β, γ)

∣∣∣∣∣∣
(α, st)← P1(pp, (x1,w1), . . . , (xk,wk))
β ← Ck,λ
γ ← P2(st, β)

 and {Sim(pp,x1, . . . ,xk)}

are identical.

3.4 Non-interactive arguments

Definition 3.9 (Non-interactive argument). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ × Xλ ×Wλ

for any λ ∈ N. A non-interactive argument (NARG) in the ROM for relation R is a 3-tuple NARG =
(Setup,P,V) where Setup, P, and V are oracle algorithms such that the following holds:

1. Completeness: For every security parameter λ ∈ N and (x,w) ∈ Rλ it holds that

Pr

Vf (pp,x, π) = 1

∣∣∣∣∣∣
f ← U (λ)

pp← Setupf (1λ)
π ← Pf (pp,x,w)

 = 1 .

2. Soundness: NARG has ϵ (adaptive) soundness error if for every λ ∈ N, instance size bound n ∈ N
and for any t-time malicious prover P̃ that performs at most q queries to f it holds that:

Pr

 |x| ≤ n
x ∈ Xλ \ L(R)
Vf (pp,x, π̃) = 1

∣∣∣∣∣∣
f ← U (λ)

pp← Setupf (1λ)

(x, π̃)← P̃f (pp)

 ≤ ϵ(λ, t, q, n) .

Definition 3.10 (Zero knowledge). Let NARG = (Setup,P,V) be a non-interactive argument for a relation
R , and let t = t(λ) be a function of the security parameter λ ∈ N. Then, NARG has adaptive zero-knowledge
if there exists a probabilistic t-time algorithm Sim, such that for every λ ∈ N, query bound q ∈ N, q-query
admissible algorithm A = (A1,A2) and instance bound n ∈ N, the following two distributions are identical:b

∣∣∣∣∣∣∣∣∣∣

f ← U (λ)

pp← Setupf (1λ)

(x,w, st)← Af
1 (pp)

π ← Pf (x,w)

b← Af
2 (st, π)

 and


b′

∣∣∣∣∣∣∣∣∣∣∣

f ← U (λ)

pp← Setupf (1λ)

(x,w, st)← Af
1 (pp)

(π, µ)← Simf (x)

b′ ← Af [µ]
2 (st, π)


,

where f [µ] denotes the fact that f is modified to be consistent with the query-answer list µ. Above, A is
admissible if on input pp it always outputs (x,w) such that (pp,x,w) ∈ Rλ and |x| ≤ n.

3.5 Non-interactive batch arguments

Definition 3.11 (Non-interactive batch argument). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ×Xλ×
Wλ for any λ ∈ N and let K be a bound on the number of instances. A non-interactive batch argument in
the ROM for relation R is a 3-tuple NARG = (Setup,P,V) where Setup is a probabilistic polynomial time
algorithm, and P and V are oracle algorithms such that the following holds:

1. Completeness: For every security parameter λ, k ∈ N such that k ≤ K, and for any k pairs
(x1,w1), . . . , (xk,wk) ∈ Rλ it holds that

Pr

Vf (pp,x1, . . . ,xk, π) = 1

∣∣∣∣∣∣
f ← U (λ)

pp← Setupf (1λ,K)
π ← Pf (pp, (x1,w1), . . . , (xk,wk))

 = 1 .
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2. Soundness: NARG has ϵ (adaptive) soundness error if for every λ, k ∈ N such that k ≤ K, instance
size bound n ∈ N, and for any t-time malicious prover P̃ that performs at most q queries to f it holds
that:

Pr

 ∀i ∈ [k] : |xi| ≤ n
∃j ∈ [k] : xj ∈ Xλ \ L(R)
Vf (pp,x1, . . . ,xk, π̃) = 1

∣∣∣∣∣∣
f ← U (λ)

pp← Setupf (1λ,K)

(x1, . . . ,xk, π̃)← P̃f (pp)

 ≤ ϵ(λ, t, q, n) .

Definition 3.12 (Zero knowledge). Let NARG = (Setup,P,V) be a non-interactive batch argument for a
relation R with a bound K on the number of instances, and let t = t(λ,K) be a function of the security
parameter λ ∈ N. Then, NARG has adaptive zero-knowledge if there exists a probabilistic t-time algorithm
Sim, such that for every λ, k ∈ N such that k ≤ K, query bound q ∈ N, q-query admissible algorithm
A = (A1,A2) and instance size bound n ∈ N, the following two distributions are identical:b

∣∣∣∣∣∣∣∣∣∣

f ← U (λ)

pp← Setupf (1λ,K)

((x1,w1), . . . , (xk,wk), st)← Af
1 (pp)

π ← Pf (pp, (x1,w1), . . . , (xk,wk))

b← Af
2 (st, π)


and, 

b′

∣∣∣∣∣∣∣∣∣∣∣

f ← U (λ)

pp← Setupf (1λ,K)

((x1,w1), . . . , (xk,wk), st)← Af
1 (pp)

(π, µ)← Simf (x1, . . . ,xk)

b′ ← Af [µ]
2 (st, π)


,

where f [µ] denotes the fact that f is modified to be consistent with the query-answer list µ. Above, A is
admissible if on input pp it always outputs (x,w) such that (pp,x,w) ∈ Rλ and |x| ≤ n.

3.6 Probabilities

Definition 3.13 (Hypergeometric distribution). The hypergeometric distribution describes the probability
of k “successes”, in n draws without replacement, from a population of size N of which K are defined as
“successes”. If a random variable follows the hypergeometric distribution it holds that

Pr[X = k] =

(
K
k

)
·
(
N−K
n−k

)(
N
n

) .

Definition 3.14 (Negative hypergeometric distribution). The negative hypergeometric distribution describes
the following distribution: Given N elements, of which K are defined as “successes” and the rest are “fail-
ures”, elements are drawn one after another, without replacement. Let X be the number of draws until k
successes are drawn. Thus,

Pr[X = x] =

(
x− 1

k − 1

)
·
(
N−x
K−k

)(
N
K

) ,

and,

E [X] =
k(N + 1)

K + 1
.
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4 Rogue-instance security

In this section, we give our definition of rogue-instance security notion for batch protocols and non-interactive
batch arguments, which is inspired by the rogue-key security notion for multi-signatures.

4.1 Batch Sigma protocols

In a batch Σ-protocol, we are given k instance-witness pairs (x1,w1), . . . , (xk,wk). The standard adaptive
soundness requirement considers the case where a malicious prover wishes to convince the verifier on k
instances of its choice. However, we consider batch Σ-protocols with rogue-instance security, where one
instance x1 is sampled according to a given hard distribution, and the rest of the instances x2, . . . ,xk are
chosen adaptively as a function of x1. Formally,

Definition 4.1 (Rogue soundness). Let Π = (Setup,P1,P2,V, C) be a batch Σ-protocol for a relation R with
a bound K on the number of instances. Then, Π has (t, ϵD)-rogue soundness (with respect to a distribution
D = {Dλ}λ∈N and the setup algorithm Setup) if for every λ, k ∈ N such that k ≤ K and for any t-time
malicious prover P̃ = (P̃1, P̃2):

Pr

V(pp,x1, x̃2, . . . , x̃k, α, β, γ) = 1

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)

((x̃2, . . . , x̃k), α, st)← P̃1(pp,x1)
β ← Cpp
γ ← P̃2(st, β)

 ≤ ϵD(λ, t,K) .

4.2 Non-interactive batch arguments

Similarly, in a non-interactive batch argument, we are given k instance-witness pairs (x1,w1), . . . , (xk,wk).
We consider the rogue-instance security, where an instance x1 is sampled according to a given hard distribu-
tion, and the rest of the instances x2, . . . ,xk are chosen adaptively by the prover while having oracle access
to a random oracle. Formally, we define the rogue-instance security of non-interactive batch arguments as
follows:

Definition 4.2 (Rogue soundness). Let NARG = (Setup,P,V) be a non-interactive batch argument for a
relation R with a bound K on the number of instances. Then, NARG has (t, q, ϵD)-rogue soundness (with
respect to a distribution D = {Dλ}λ∈N and the setup algorithm Setup) if for every λ, k ∈ N such that k ≤ K
and for any t-time malicious prover P̃ that performs at most q queries to f it holds that:

Pr

Vf (pp,x1, x̃2, . . . , x̃k, π̃) = 1

∣∣∣∣∣∣∣∣
f ← U (λ)

pp← Setupf (1λ,K)
(x1,w1)← Dλ(pp)

(x̃2, . . . , x̃k, π̃)← P̃f (pp,x1)

 ≤ ϵD(λ, t, q, k) .

18



5 Batching algebraic Sigma protocols

In this section, we define algebraic Σ-protocols and construct their batch version. Then, we bound the
rogue-soundness error of such batch Σ-protocols using the second-moment assumption (Definition 3.2).

In Section 5.1 we define algebraic one-way functions and construct batch Σ-protocols from algebraic Σ-
protocols. Then, in Section 5.2 we generalize the “collision game” presented in [ACK21, HL10, Cra96] for
multiple instances while referring to the second-moment of the expected running time. Finally, in Section 5.3
we prove the rogue-instance security of batch Σ-protocols constructed from algebraic Σ-protocols.

5.1 Algebraic Sigma protocols

In this section, we refer to Σ-protocols that have a specific structure we call algebraic Σ-protocols and then,
we define their batch analog.

Our definition of algebraic Σ-protocols relies on algebraic one-way function, presented in [CFG+15, CD98].

Definition 5.1 (Algebraic one-way function). A family of m-variate one-way functions consists of two
algorithms (Setup,F) that work as follows. On input 1λ, the algorithm Setup(1λ) produces public parameters.
Any such public parameters pp, determines the function Fpp : Am

pp → Bpp such that for every x ∈ Am
pp, it is

efficient to compute Fpp(x). A family of one-way functions is algebraic if for every λ ∈ N and pp← Setup(1λ)
the following holds:

• Algebraic: The sets App,Bpp are abelian cyclic groups with operators (+), and (·), respectively.

• Homomorphic: For any input x, x′ ∈ Am
pp it holds that F(x+ x′) = F(x) · F(x′).

We now define the notion of algebraic Σ-protocols, which is a generalization of the preimage protocol
presented in [CD98].

Definition 5.2 (Algebraic Σ-protocol). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ×Xλ×Wλ for any
λ ∈ N. A Σ-protocol Π = (Setup,P1,P2,V, C) for relation R is algebraic if there exists m-variate algebraic
one-way function (Setup,F) such that for every pp produced by Setup(1λ) the following holds:

• For every x,w it holds that (pp,x,w) ∈ Rλ if and only if Fpp(w) = x.

• The challenge space Cpp ⊆ Zp where p is the order of App.

• The protocol Π is defined as follows:

1. The algorithm P1(x,w) produces a message α = F(r) for some r ∈ App and a state st.
2. A challenge β is sampled uniformly at random from the challenge set Cpp.
3. The algorithm P2(st, β) produces a message γ = r + β ·w.

4. The algorithm V(x, α, β, γ) determines the output of the protocol by checking whether F(γ)
?
= α·xβ.

Note that the setup algorithm of the function is the setup algorithm of the protocol. In fact, the prover
holds a public parameters-instance-witness tuple such that x = Fpp(w). Thus, the prover convinces the
verifier that it knows the preimage of x. Note that the verifier’s computation can be performed using
exponentiation by squaring, however there may exist more efficient algorithms.

Next, we construct a batch version of any algebraic Σ-protocol as follows.

Construction 5.3 (Batch Σ-protocol). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ×Xλ×Wλ for any
λ ∈ N and let K ∈ N be a bound on the number of instances. Let Π = (Setup,P1,P2,V, C) be an algebraic
Σ-protocol with an agebraic one-way function (Setup,F). We define Π∗ = (Setup∗,P∗

1,P
∗
2,V

∗, C) to be a
batch Σ-protocol for relation R as follows. The algorithms Setup∗ and P∗

1 are probabilistic polynomial-time
algorithms, P∗

2 and V∗ are deterministic polynomial-time algorithms, and C = {Cpp}pp∈P is an ensemble of
efficiently sampleable sets. For every k ≤ K the protocol is defined as follows:

19



1. The algorithm Setup∗(1λ,K) is the same algorithm as Setup(1λ).
2. The algorithm P∗

1(pp, (x1,w1), . . . , (xk,wk)) invokes (Ri, sti) ← P1(pp,xi,wi) for every i ∈ [k] and
produces a message α = Πk

i=1Ri and a state st = (st1∥ . . . ∥stk).
3. k different challenges β1, . . . , βk are sampled uniformly at random from the challenge set Cpp.
4. The algorithm P∗

2(st, β1, . . . , βk) parses st = (st1∥ . . . ∥stk), invokes γi ← P2(sti, βi) and produces a

message γ =
∑k

i=1 γi.

5. The algorithm V(pp,x1, . . . ,xk, α, β, γ) determines the output of the protocol checking whether F(γ)
?
=

α ·Πk
i=1x

βi

i .

Note that the completeness of the protocol above follows from the homomorphic property of F and
that the prover-to-verifier communication is two-group elements. The verifier sends k elements, but since
they are all uniformly random strings, they can be easily compressed to a single group element using any
pseudo-random generator (e.g., using a random oracle).

Definition 5.4 (Local special soundness). Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a
relation R and let Π∗ be the batch Σ-protocol defined in Construction 5.3 with a bound K on the number of
instances. Then, Π∗ has local special soundness if there exists a deterministic polynomial time algorithm E
that for every λ ∈ N and k ≤ K, given public parameters pp, any k inputs statements x1, . . . ,xk ∈ Xλ and
any pair of accepting transcripts (α, β1, . . . , βk, γ), (α, β

′
1, . . . , β

′
k, γ

′) such that there exists only one index j
on which βj ̸= β′

j, outputs a witness wj such that (xj ,wj) ∈ Rλ.

We now show that every batch Σ-protocol defined in Construction 5.3 has local special soundness.

Claim 5.5. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a relation R and let Π∗ be the batch
Σ-protocol constructed from Π as defined in Construction 5.3 with a bound K on the number of instances.
Then, Π∗ has local special soundness.

Proof. Consider the algorithm E which takes as input public parameters pp, instances x1, . . . ,xk and a pair
of accepting transcripts (α, β1, . . . , βk, γ), (α, β

′
1, . . . , β

′
k, γ

′) such that there exists only one index j on which
βj ̸= β′

j , defined as follows:

1. Let i∗ be the index on which βi∗ ̸= β′
i∗ .

2. Output (γ − γ′)/(βi∗ − β′
i∗) on the group Zp where p is the order of App.

Observe that since the two transcripts are accepting it holds that

Fpp(γ) = α ·Πk
i=1x

βi

i and Fpp(γ
′) = α ·Πk

i=1x
β′
i

i .

Since βi = β′
i for every i ̸= i∗, it holds that

x
βi∗
i∗ · Fpp(γ

′) = x

β′
i∗

i∗ · Fpp(γ) .

Note that xi∗ = Fpp(wi∗), therefore, by the homomorphic property, it holds that

Fpp((βi∗ − β′
i∗)wi∗) = Fpp(γ − γ′) .

Thus, (γ − γ′)/(βi∗ − β′
i∗) is a preimage of xi∗ , i.e, a valid witness for xi∗ . The extractor E performs only

three group operations, therefore, Π∗ has local special soundness.

In Section 5.3, we show a concrete bound on the rogue soundness error of batch Σ-protocols defined in
Construction 5.3. Formally, we prove the following.

Theorem 5.6. Let ∆ = ∆(λ), ω = ω(λ), tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions of the
security parameter λ ∈ N and the bound on the number of instances K ∈ N. Let Π be an algebraic Σ-protocol
for a relation R and let Π∗ = (Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π as defined
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in Construction 5.3. If R is second-moment hard with respect to a distribution D and the setup algorithm
Setup, then Π∗ has (tP̃, ϵ)-rogue soundness error such that

ϵD(λ, tP̃, tV, tW ,K) ≤
(
∆ · 32 · (tP̃ + tV + tW )2

|Wλ|ω

)2/3

+
4

|Cpp|
,

where tV denotes the running time of the verifier V and tW denotes the running time of the witness extractor.

5.2 The collision game

Similar to the collision game presented in [ACK21, HL10, Cra96], we consider a binary matrixH ∈ {0, 1}R×N .
However, instead of looking for two 1-entries in the same row, the generalized algorithm A is given as input
a number k ∈ N and oracle access to the matrix and its goal is to find k + 1 entries with the value 1 in the
same row in H. Formally, the game is constructed as follows:

CollGamek(A,H)

1. The algorithm A(k) is given oracle access to H and outputs ρ and β1, . . . , βk+1.

2. The output of the game is 1 if and only if H[ρ, β1] = . . . = H[ρ, βk+1] = 1 and β1, . . . , βk+1 are distinct.

In particular, in this section, we refer to the collision game when k = 1. We construct an algorithm that
finds two 1-entries in the same row in H with probability at least ≈ ϵ3/2 and performs ≈ 2 queries to H
where ϵ is the fraction of 1-entries in H. Formally, we prove the following.

Lemma 5.7. Let H ∈ {0, 1}R×N be a binary matrix and let ϵ be the fraction of 1-entries in H. Let QA be
a random variable indicating the number of queries performed by A to H. Then, there exists an algorithm
A with oracle access to H such that on input k = 1 the following holds:

1. E [QA] ≤ 2.
2. E

[
Q2

A

]
≤ 4.

3. Either ϵ < 4
N or Pr[CollGame(A,H) = 1] ≥ ϵ1.5

8 .

Proof. Let B =
⌈

1√
ϵ
− 1
⌉
and consider the following algorithm A:

AH(1)

1. Sample ρ← R and β ← N . If H[ρ, β] = 0 abort.

2. Let S = ∅. For every i ∈ [B], sample βi ← N \ S and set S = S ∪ {βi}. If for every i ∈ [B] it
holds that H[ρ, βi] = 0, abort.

3. Choose uniformly at random an index i for which H[ρ, βi] = 1.

4. Return ρ, β and βi.

We now prove each claim separately.

Claim 5.8. It holds that E [QA] ≤ 2.

Proof. By the description of A, it performs a single query to H, and then only with probability ϵ it performs
B queries. Thus, we can bound the expectation by

E [QA] = 1 + ϵ ·B ≤ 1 +
1√
ϵ
· ϵ ≤ 2 .
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Claim 5.9. It holds that E
[
Q2

A

]
≤ 4.

Proof. By the description of A, with probability 1− ϵ, it performs a single query, and with probability ϵ it
performs (1 +B) queries. Thus, we can bound the expectation squared by

E
[
Q2

A

]
= (1− ϵ) · 12 + ϵ · (1 +B)2

= 1− ϵ+ ϵ(1 + 2B +B2)

= 1 + 2ϵB + ϵB2

≤ 1 + 2
√
ϵ+ 1

≤ 4 .

Claim 5.10 (Success probability). Either ϵ < 4
N or Pr[CollGame(A,H) = 1] ≥ ϵ1.5

8 .

In order to bound A’s success probability, we first show a lower bound on the probability that A does
not abort in Item 2.

Claim 5.11. Let Xd be a random variable indicating the number of 1-entries found in B draws in a row
with exactly d 1-entries. For every d > 1, it holds that Pr[Xd ≥ 1] ≥ min{0.5, d·B

2N }.

Proof. The random variable Xd can be modeled by a hypergeometric distribution (see Definition 3.13). The
population is of size N − 1, the number of successes is d− 1 and the number of draws is B. Thus,

Pr[Xd ≥ 1]

= 1− Pr[Xd = 0]

=

(
1−

(
d−1
0

)
·
(
N−1−(d−1)

B−0

)(
N−1
B

) )
(3)

=

(
1− (N − d)! · (N − 1−B)!

(N − 1)! · (N − d−B)!

)
=

(
1− (N − d)(N − d− 1) · . . . · (N − d−B + 1)

(N − 1)(N − 2) · . . . · (N − 1−B + 1)

)
,

where Equation (3) follows from the hypergeometric distribution. Note that, for every i ≥ 1 it holds that

N − d− i+ 1

N − i
= 1− d− 1

N − i
≤ 1− d− 1

N − 1
.

Therefore, we obtain that

Pr[Xd ≥ 1]

≥ 1−
(
1− d− 1

N − 1

)B

= 1−

((
1− d− 1

N − 1

)N−1
) B

N−1

≥ 1− e−
(d−1)B
N−1 .

We bound the expression above by considering two cases:

22



• Case 1: (d−1)B
N−1 ≤ 1.59. For any x ∈ [0, 1.59] it is known that e−x ≤ 1 − x

2 . Applying this inequality

we get that Pr[Xd ≥ 1] ≥ 1− e−
(d−1)B
N−1 ≥ (d−1)B

2(N−1) .

• Case 2: (d−1)B
N−1 > 1.59. In this case, it holds that Pr[Xd ≥ 1] ≥ 1− e−1.59 ≥ 0.79

Overall, in both cases we have Pr[Xd ≥ 1] ≥ min{0.5, (d−1)·B
2(N−1) }.

Given Claim 5.11, we are now ready to bound the success probability.

Proof of Claim 5.10. Assuming the first query to the matrix was 1-entry, A continues to sample entries from
the same row. Note that for each row, the number of 1-entries may be different which affects the success
probability of the algorithm. Therefore, we “divide” the rows into “buckets” by the number of 1-entries in
it. Formally, for every 0 ≤ d ≤ N , we define δd be the fraction of rows with exactly d 1-entries.

When d ≤ 1, we know that the success probability is 0. Thus, we consider only δd for d ≥ 2. This lets us
derive the following:

Pr[CollGame(A,H) = 1]

≥
N∑

d=2

δd
d

N
· Pr [Xd ≥ 1]

≥
N∑

d=2

δd
d

N
·
(
min

{
1

2
,
(d− 1) ·B
2(N − 1)

})
Let n :=

⌊
1 + N−1

B

⌋
, then,

Pr[CollGame(A,H) = 1]

≥
n∑

d=2

δd
d

N
· (d− 1) ·B
2(N − 1)

+

N∑
d=n+1

δd
d

N
· 1
2

=
B

2

n∑
d=2

δd
d(d− 1)

N(N − 1)
+

1

2
·

N∑
d=n+1

δd
d

N

=
B

2N(N − 1)

n∑
d=0

δd · d(d− 1) +
1

2
·

N∑
d=n+1

δd
d

N

Let ϵ1 :=
∑n

d=0 δd
d
N and ϵ2 :=

∑N
d=n+1 δd

d
N . By Jensen’s inequality we get that

1

N(N − 1)

n∑
d=0

δd · d(d− 1) ≥ 1

N(N − 1)
· ϵ1N (ϵ1N − 1) ≥ ϵ21 ·N − ϵ1

N
= ϵ21 −

ϵ1
N

.

Therefore we get,

Pr[CollGame(A,H) = 1] ≥ B

2

(
ϵ21 −

ϵ1
N

)
+

1

2
ϵ2 .

Since ϵ1 + ϵ1 = ϵ, the minimum of the above expression is where ϵ1 = ϵ. Thus, we can write

Pr[CollGame(A,H) = 1] ≥ B

2

(
ϵ2 − ϵ

N

)
≥ 1

2 · 2
√
ϵ
· ϵ2 − ϵ

2 ·
√
ϵN

=
ϵ1.5

4
−
√
ϵ

2N
.

Since ϵ ≥ 4
N , it holds that,

√
ϵ

2N
≤
√
ϵ

2
(
4
ϵ

) =
ϵ1.5

8
.
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This leads to,

Pr[CollGame(A,H) = 1] ≥ ϵ1.5

8
,

which completes the proof.

5.3 Rogue soundness error bound from the collision game

We now use the algorithm for the collision game in order to construct an algorithm that extracts a witness
w for an instance x. Then, combined with the second-moment assumption we prove Theorem 5.6.

First, we prove the following lemma (which is interesting on its own):

Lemma 5.12. Let tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions of the security parameter λ ∈ N
and the bound on the number of instances K ∈ N. Let Π be an algebraic batch Σ-protocol for a relation R
and let Π∗ = (Setup,P1,P2,V, C) be the batch Σ-protocol constructed from Π as defined in Construction 5.3.
Let tV denote the running time of the verifier V and let tW denote the running time of the witness extractor.
Let D = {Dλ}λ∈N be a distribution over the relation where each Dλ produces (pp,x,w) ∈ Rλ. For every
prover P̃ = (P̃1, P̃2) that runs in time tP̃, there exists an algorithm A∗ such that:

1. E
[
TA∗,Dλ

]
≤ 2 · (tP̃ + tV + tW ).

2. E
[
T 2
A∗,Dλ

]
≤ 4 · (tP̃ + tV + tW )2.

3. Either ϵ < 4
|Cpp| or Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ1.5

8 where ϵ is the rogue-soundness

error of Π∗ with respect to a distribution D and the setup algorithm Setup.

Proof. We denote by aux the variable for tuples of (pp,x, β⃗) where β⃗ = (β2, . . . , βk) and βi ∈ {0, 1}r. We
consider binary matrices H = {Haux}pp,xβ⃗ ∈ {0, 1}

R×N , where the R rows correspond to P̃’s randomness and

the N columns correspond to V’s randomness for one instance. Note that although P̃’s and V’s randomness
depends on the number of instances that the prover outputs, we can always bound it by the randomness size
when P̃ outputs K instances.

An entry of Haux equals 1 if and only if the corresponding transcript (between P̃ and V) is accepting.
Recall that every algorithm A for the collision game aims to find k + 1 entries with the value 1 in the same
row. As P̃’s randomness is fixed along one row, finding two 1-entries in the same row correspond to finding
two accepting transcripts (α, β1, β⃗, γ), (α, β

′
1, β⃗, γ

′). Given Claim 5.5, Π∗ has local special soundness, i.e.,
there exists an algorithm E that runs in time tW which given two accepting transcripts as considered above,
extracts a witness for the instance x1.

Let A be the algorithm for the collision game constructed in Lemma 5.7, we construct the algorithm A∗

as follows:
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A∗(pp,x1)

1. Initialize an empty mapping M between the randomness used by P̃ and V and the transcript
between them.

2. Let r be V’s randomness size for each instance. For 2 ≤ i ≤ K, sample βi ← {0, 1}r.

3. Invoke A(1). When A performs a query on (ρ, β) answer as follows:

(a) Invoke ((x̃2, . . . , x̃k), α, st)← P̃1(pp,x1; ρ).

(b) Invoke γ ← P̃2(β, β2, . . . , βk, st).

(c) Set M [(ρ, β)]← (x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ).

(d) Return V(pp,x1, x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ) as the answer to the query.

4. When A outputs ρ, β1, β2: set (x̃2, . . . , x̃k, α
∗
1, β

∗
1 , β

∗
1,2 . . . , β

∗
1,k, γ

∗
1 ) ← M [ρ, β1] and

(x̃2, . . . , x̃k, α
∗
2, β

∗
2 , β

∗
2,2 . . . , β

∗
2,k, γ

∗
2)←M [ρ, β2].

5. Run w̃1 ← E(x̃2, . . . , x̃k, α
∗
1, β

∗
1,2, . . . , β

∗
1,k, (β

∗
1,1, γ

∗
1,1), (β

∗
2,1, γ

∗
2,1)).

6. Output w̃1.

We prove each claim separately.

Claim 5.13 (Expected running time). It holds that E
[
TA∗,Dλ

]
≤ 2 · (tP̃ +V+ tW ).

Proof. Observe that whenever A query H, the algorithm A∗ invokes P̃ and V. Thus, the expected number
of invocations that A∗ performs to P̃ and V is the expected number of queries performed by A. Thus,

E
[
TA∗,Dλ

]
≤ E [QA] · (tP̃ +V) + tW

≤ 2 · (tP̃ + tV + tW ) .

Claim 5.14 (Second-moment of expected running time). It holds that E
[
T 2
A∗,Dλ

]
≤ 4 · (tP̃ + tV + tW )2 .

Proof. Following the same observation as in Claim 5.13 we obtain that

E
[
T 2
A∗,Dλ

]
≤ (E [QA] · (tP̃ + tV))

2
+ t2W

≤ (E [QA] · (tP̃ + tV + tW ))
2

= E [QA]
2 · (tP̃ + tV + tW )2 .

Jensen’s inequality leads to

E
[
T 2
A∗,Dλ

]
≤ E

[
Q2

A

]
· (tP̃ + tV + tW )2

≤ 4(tP̃ + tV + tW )2 .

Claim 5.15 (Success probability). Either ϵ < 4
|Cpp| or Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ1.5

8

where ϵ is the rogue-soundness error of Π∗ with respect to a distribution D and the setup algorithm Setup.
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Proof. Whenever A succeeds in the collision game with Haux, the algorithm A∗ outputs a witness for x1.
Thus,

Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)


=
∑
aux

Pr[aux] · Pr [CollGame(A,Haux) = 1] .

For every aux = (pp,x, β⃗), we let

ϵaux = Pr


V(pp,x, x̃2, . . . , x̃k, α, β, β2, . . . , βk, γ) = 1
conditioned on pp← Setup(1λ,K)
∧ (x1,w1)← Dλ(pp)
∧ β2, . . . , βk ← Cpp

∣∣∣∣∣∣∣∣
((x̃2, . . . , x̃k), α, st)← P̃1(1

λ, pp,x)
β2, . . . , βk ← Cpp
γ ← P̃2(st, β2, . . . , βk)

 .

The collision game matrix Haux has ϵaux fraction of 1-entries. Thus, conditioned on aux, the probability that

A succeeds in the collision game is
ϵ1.5aux

8 . Therefore,

Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 =
∑
aux

Pr[aux] · ϵ
1.5
aux

8

= E
aux

[
ϵ1.5aux

8

]

≥
E
aux

[ϵaux]
1.5

8
(4)

≥ ϵ1.5

8
, (5)

where Equation (4) follows from Jensen’s inequality and Equation (5) follows from the fact that E
aux

[ϵaux] =

ϵ.

We are now ready to show a bound on the rogue soundness error of batch Σ-protocol defined in Con-
struction 5.3.

Proof of Theorem 5.6. Let P̃ be a cheating prover and let ϵD be the rogue soundness error with respect to
D and Setup. Given Lemma 5.12 and the assumption that R is second-moment hard with respect to the
distribution D and the setup algorithm Setup, it holds that either ϵD < 4

|Cpp| or,

ϵ1.5D
8
≤ Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)


≤

∆ · E
[
T 2
A∗,D

]
|Wλ|ω

≤
∆ · 4 · (tP̃ + tV + tW )2

|Wλ|ω
.
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This leads to

ϵD ≤
(
∆ · 32 · (tP̃ + tV + tW )

|Wλ|ω

)2/3

.

Overall we derive the following bound

ϵD ≤ max

{(
∆ · 32 · (tP̃ + tV + tW )

|Wλ|ω

)2/3

,
4

|Cpp|

}

≤
(
∆ · 32 · (tP̃ + tV + tW )

|Wλ|ω

)2/3

+
4

|Cpp|

5.4 Algebraic batch identification schemes

An identification scheme consists of a Σ-protocol for relation R and an algorithm Gen that produces a distri-
bution over (x,w) ∈ R where the public key is the instance x and the secret key is the witness w. Similarly,
we construct a batch identification scheme that consists of batch Σ-protocol defined in Construction 5.3 and
an algorithm Gen that given public parameters pp, produces a distribution over (x,w) ∈ R(pp).

Note that the execution of ID is as the execution of the batch Σ-protocol where each public key pk
corresponds to an instance, and a secret key sk corresponds to a witness.

We consider the rogue-security notion of batch identification scheme, asking a cheating prover P̃ given
as input an instance x produced by Gen, to convince the verifier V on (x, x̃2, . . . , x̃k) where x̃2, . . . , x̃k are
adaptively chosen by P̃ while given access to an honest transcript-generator for the instance x and another
(k − 1) instances by its choice. Formally, we let Transpk1,sk1(·) denote an oracle that when queried with
input (pk2, sk2), . . . (pkk, skk), runs an honest execution of the protocol on input (pk1, sk1), . . . (pkk, skk) and
returns the resulting transcripts (α, β, γ). We define the rogue-security of a batch identification scheme as
follows:

Definition 5.16 (Rogue soundness). Let ID = (Setup,Gen,P1,P2,V, C) be a batch identification scheme for
a relation R. Then, ID is (t, ϵ)-rogue soundness (with respect to Gen and Setup) if for every λ, k ∈ N such that
k ≤ K and for any t-time malicious prover P̃ = (P̃1, P̃2) that performs q queries to the transcript-generation
oracle it holds that:

Pr
[
StrongIdentID(P̃, λ)

]
≤ ϵ(λ, t, q,K) ,

where the experiment StrongIdentID(P̃, λ) defined as follows:

StrongIdentID(P̃, λ):

1. pp← Setup(1λ,K).
2. (pk1, sk1)← Gen(pp).

3. ((p̃k2, . . . , p̃kk), α, st)← P̃
Transpk1,sk1

(·)
1 (pp, pk1).

4. β ← Cpp.
5. γ ← P̃2(st, β).
6. Output V(pp, pk1, p̃k2, . . . , p̃kk, α, β, γ) = 1.

Recall that batch identification scheme ID consists of a batch Σ-protocol Π∗ defined in Construction 5.3
such that the execution of ID is as the execution of Π∗ where each public key pk corresponds to an instance and
a secret key sk corresponds to a witness. Thus, if Π∗ is zero-knowledge, we can assume that every malicious
prover does not query the transcript-generation oracle, as such queries can be internally simulated given
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the public keys. Formally, if Π∗ is t-time zero-knowledge (Definition 3.8), for every malicious prover that
performs q queries to the transcript-generation oracle Transpk1,sk1(·), we can construct a malicious prover
that does not query the transcript-generation oracle and instead runs the simulator q times to generate
transcripts. Specifically, if Π∗ has tSim-time zero-knowledge, any malicious prover that runs in time tP̃ and
performs q queries to Transpk1,sk1(·), can be simulated by a malicious prover that runs in time tP̃ + q · tSim.

Recall that every batch Σ-protocol Π∗ defined in Construction 5.3 is constructed from an algebraic Σ-
protocol Π. We now show that if Π is tSim-time zero-knowledge, then Π∗ is (k·tSim)-zero-knowledge. Formally,
we prove the following.

Claim 5.17. Let Π = (Setup,P1,P2,V, C) be an algebraic Σ-protocol for a relation R and let Π∗ be the batch
Σ-protocol constructed from Π as defined in Construction 5.3 with a bound K on the number of instances.
If Π is tSim-time zero-knowledge, then Π∗ is (K · tSim)-time zero-knowledge.

Proof. Let Sim be a simulator for the distributions of Π. Consider the algorithm Sim∗ which takes as input
public parameters pp and instances x1, . . . ,xk and is defined as follows:

1. For every i ∈ [k]: invoke (αi, βi, γi)← Sim(pp,xi).

2. Compute α = Πk
i=1αi and γ =

∑k
i=1 γi.

3. Output (α, β1, . . . , βk, γ).

Observe that the distribution of Sim∗’s outputs is identical to the distribution of the transcript of an honest
execution of Π∗. This claim can be proven using a simple hybrid argument.

Thus, from Theorem 5.6 we derive the following corollary:

Corollary 5.18. Let ∆ = ∆(λ), ω = ω(λ), tP̃ = tP̃(λ), tV = tV(λ,K), tW = tW (λ,K), tSim = tSim(λ,K), q =
q(λ) be functions of the security parameter λ ∈ N and the bound on the number of instances K ∈ N. Let Π
be an algebraic Σ-protocol for relation R with tSim-time zero-knowledge and let Π∗ = (Setup,P1,P2,V, C) be
the batch Σ-protocol constructed from Π as defined in Construction 5.3. Let ID = (Setup,Gen,P1,P2,V, C)
be the batch identification scheme consists with Π∗. If R is second-moment hard with respect to Gen, then
for any malicious prover P̃ that runs in time tP̃ and issues q transcript-generation queries it holds that

Pr
[
StrongIdentID(P̃, λ)

]
≤
(
∆ · 32 · (tP̃ + q ·K · tSim + tV + tW )2

|Wλ|ω

)2/3

+
4

|Cpp|
,

where tV denotes the running time of the verifier V and tW denotes the running time of the witness extractor.
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6 Non-interactive batch arguments from algebraic Sigma proto-
cols

In the previous section, we constructed batch Σ-protocols from algebraic Σ-protocols and bounded their
rogue-soundness error. In this section, we construct non-interactive batch arguments from algebraic Σ-
protocols via the Fiat-Shamir paradigm [FS86]. Similarly, the goal of this section is to bound the rogue-
instance security of the non-interactive analog.

In Section 6.1 we construct non-interactive batch arguments from algebraic Σ-protocols. As in the
previous section, in Section 6.2 we introduce a tree game, then in Section 6.3, we show the rogue-instance
security of non-interactive batch arguments constructed via the Fiat-Shamir paradigm from algebraic Σ-
protocols.

6.1 Non-interactive batch arguments

In this section, we construct the non-interactive analog of batch Σ-protocols defined in Construction 5.3.
Recall that in the construction of batch Σ-protocols, the prover is given as input k different challenges for

each input. We wish to keep this property in the non-interactive analog, formally, we consider the following:

Construction 6.1 (NARGs from batch Σ-protocols). Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Pλ ×
Xλ×Wλ for any λ ∈ N and let K ∈ N be a bound on the number of instances. Let Π = (Setup,P1,P2,V, C)
be an algebraic Σ-protocol with an algebraic one-way function (Setup,F). We define NARG = (Setup,P,V)
to be the non-interactive batch argument constructed as follows for every k ≤ K. The argument prover P
receives as input public parameters pp, instances x1, . . . ,xk and witnesses w1, . . . ,wk, and the verifier V
receives as input the public parameters pp, the instances x1, . . . ,xk and an argument string π. Both receive
query access to a random oracle f ∈ U(λ) that outputs λ bits.

• Pf (pp, (x1,w1), . . . , (xk,wk)):

1. For every i ∈ [k], invoke (Ri, sti)← P1(pp,xi,wi).
2. Compute α = Πk

i=1Ri.
3. For every i ∈ [k]: derive the challenge βi := f(x1, . . . ,xk, α, i).
4. For every i ∈ [k]: invoke γi ← P2(sti, βi).

5. Compute γ =
∑k

i=1 γi.
6. Output the argument string π := (α, γ).

• Vf (pp,x1, . . . ,xk, π):

1. Parse the argument Π as a tuple (α, γ).
2. For every i ∈ [k]: derive the challenge βi := f(x1, . . . ,xk, α, i).

3. Check that F(γ)
?
= α ·Πk

i=1x
βi

i .

The setup algorithm Setup remains the same.

Recall that we showed in Claim 5.5 that the batch Σ-protocol defined in Construction 5.3 has local
special soundness. Similarly, it is easy to see that the claim holds for the non-interactive batch argument
constructed in Construction 6.1.

In Section 6.3 we present a concrete bound on the rogue-soundness error of the non-interactive batch
argument NARG defined in Construction 6.1. Specifically, we formally establish the following theorem:

Theorem 6.2. Let ∆ = ∆(λ), ω = ω(λ), tP̃ = P̃(λ,K), tV = tV(λ,K), tW = tW (λ,K), q = q(λ,K) be
functions of the security parameter λ ∈ N and the bound on the number of instances K ∈ N. Let Π =
(Setup,P1,P2,V, C) be an algebraic Σ-protocol for a relation R and let NARG = (Setup,P,V) be the non-
interactive batch argument constructed from Π as defined in Construction 6.1. If R is second-moment hard
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with respect to a distribution D and the setup algorithm Setup, then NARG has (tP̃ , q, ϵ)-rogue soundness
error such that

ϵD(λ, tP̃ , tV , tW , q,K) ≤
(
∆ · 32K · q(tP̃ + tV + tW )2

|Wλ|ω

)2/3

+
4K · q
2λ

,

where tV denotes the running time of the verifier V and tW denotes the running time of the witness extractor.

6.2 The tree game

We introduce a tree game where an algorithm is given oracle access to a tree T where the value of each leaf
is a number. Informally, an algorithm succeeds in the game if it finds k + 1 leaves with the same value in
the same sub-tree.

Consider a complete tree T = (V,E) of depth l and degree r. Let Leaves(T ) be the leaves of T and let
val : Leaves(T )→ {0, . . . , l − 1} be a function represents the value of each leaf in T . Note that not all leaves
hold a number value, we consider the value of such a leaf as ⊥. Let lca() be a function that describes the
lowest common ancestor of a group of nodes.

During the execution of the game, the algorithm A is given as input a number k and oracle access to the
tree T . Its goal is to find k+1 leaves u1, . . . , uk+1 with the same value i that have the same lowest common
ancestor v such that height(v) = i. More precisely, algorithm A knows the tree’s structure and is given oracle
access to the value of each node in T . We say that A succeeds in the game if it produces k + 1 leaves with
the same value i that have the same lowest common ancestor v such that height(v) = i. Formally, the game
is constructed as follows:

TreeCollGamek(A, T )

1. The algorithm A(k) is given oracle access to T and outputs u1, . . . , uk+1.

2. The output of the game is 1 if and only if u1, . . . , uk+1 ∈ Leaves(T ) and there exists an internal node
v ∈ T \ Leaves(T ) such that lca(u1, . . . , uk+1) = v and height(v) = val(u1) = . . . = val(uk+1).

In particular, in this section, we refer to the tree game when k = 1. We construct an algorithm that finds
two leaves with the same value in T with probability at least ≈ ϵ3/2/l and performs ≈ 2 queries to T where
ϵ is the fraction of non-bot leaves in T and l is the depth of T . Formally, we prove the following.

Lemma 6.3. Let T = (V,E) be a complete tree of depth l and degree r and let val : Leaves(T )→ {0, . . . , l − 1}
be a function represents the value of each leaf in T . Let ϵ be the fraction of non-bot leaves in T and let QA

be a random variable indicating the number of queries performed by A to T . Then, there exists an algorithm
A with oracle access to T such that on input k = 1 the following holds:

1. E [QA] ≤ 2.
2. E

[
Q2

A

]
≤ 4.

3. Either ϵ < 4l
r or Pr[TreeCollGame(A, T ) = 1] ≥ ϵ1.5

8l .

Proof. Let p : {0, . . . , l} × Leaves(T ) → V be a function such that parent(i, u) = v if v is the parent of u at

level i in T . Let Tv to denote the sub-tree rooted in v and let B =
⌈

1√
ϵ
− 1
⌉
. We consider the following

algorithm A:
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AT (1)

1. Sample u ← Leaves(T ). If val(u) = ⊥ abort. Let v = parent(val(u), u) and T ′ =
Tparent(val(u)−1,u).

2. Let S = ∅. For every i ∈ [B]: sample ui ← Leaves(Tv \ {S ∪ T ′}) and set S = S ∪ {ui}.

3. If for every i ∈ [B] it holds that val(ui) ̸= val(u), abort.

4. Choose uniformly at random an index i such that val(ui) = val(u). Return u, ui.

We now prove each claim separately.

Claim 6.4. It holds that E [QA] ≤ 2.

Proof. By the description of A, it performs at least one query. Then, with probability ϵ it continues to
sample B leaves, therefore,

E [QA] = 1 + ϵ ·B ≤ 1 +
√
ϵ ≤ 2 .

Claim 6.5. It holds that E
[
Q2

A

]
≤ 4.

Proof. By the description of A, with probability 1− ϵ, it performs a single query, and with probability ϵ it
performs (1 +B) queries. Thus, we can bound the expectation squared by

E
[
Q2

A

]
= (1− ϵ) · 12 + ϵ · (1 +B)2

= 1− ϵ+ ϵ(1 + 2B +B2)

= 1 + 2ϵB + ϵB2

≤ 1 + 2
√
ϵ+ 1

≤ 4 .

Claim 6.6. Either ϵ < 4l
r or Pr[TreeCollGame(A, T ) = 1] ≥ ϵ1.5

8l .

Proof. We begin with a short high-level overview of the proof. Assume A samples a leaf u with the value
h such that parent(h, u) = v for some leaf v and a value h. Then, A continues to sample leaves from Tv in
order to find another leaf with the value h. Note that for every h and v, the number of leaves with the value
h in Tv may be different, which affects its success probability. Therefore, for every value h, we “divide” the
internal nodes to “buckets” by the probability to sample a leaf with the value h in its sub-tree, and then we
look at the probability to “reach” each bucket.

Formally, for every 0 ≤ d ≤ l log r and 0 ≤ h ≤ l − 1, we let

δd,h = Pr
v:height(v)=h

[
|{u ∈ Leaves(Tv) : val(u) = h}|

|Leaves(Tv)|
∈
[
2−d, 2−d+1

]]
.

Note that a node v is in the d-th “bucket” if the probability to sample a leaf with the value h in the sub-tree
Tv is in

[
2−d, 2−d+1

]
.

For every 0 ≤ i ≤ l − 1, let Ai be the same algorithm as A except for one minor change, instead of
aborting in Item 1 if val(u) = ⊥, it aborts if val(u) ̸= i. By the description of A it holds that,

Pr[TreeCollGame(A, T ) = 1] =

l−1∑
i=0

Pr[TreeCollGame(Ai, T ) = 1] .
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We now bound the above term Pr[TreeCollGame(Ai, T ) = 1]. Let u be the first leaf A samples and let
v = parent(val(u), u). We say that a leaf ui ∈ Tv is “good” if val(ui) = height(v). By the definition of δd,h,
there exists a d such that the fraction of good leaves in Tv is at least 2−d. Thus, the number of good leaves
in Tv is at least 2−d · rl−h. Assuming val(u) = h, algorithm A continues to sample leaves from Tv \ T ′. Let
η be the fraction of good leaves in Tv \ T ′. Note that the number of good leaves in T ′ is at most rl−h−1,
therefore, the fraction of good leaves in Tv \ T ′ is at least,

η ≥ 2−d · rl−h − rl−h−1

rl−h − rl−h−1

=
rl−h−1 · (2−dr − 1)

rl−h−1 · (r − 1)

=
2−dr − 1

r − 1

≥ 2−d − 1

r
.

Let X be the number of good leaves A finds with B draws. By Claim 5.11, it holds that Pr [X ≥ 1] ≥
min

{
1
2 , η ·

B
2

}
. Therefore,

Pr[TreeCollGame(Ai, T ) = 1]

≥
l log r∑
d=0

δd,i · 2−d · Pr [X ≥ 1]

≥
l log r∑
d=0

δd,i · 2−d ·min

{
1

2
,
B

2

(
2d − 1

r

)}

Let n :=
⌊
log
(

rB
r+B

)⌋
, then,

Pr[TreeCollGame(Ai, T ) = 1]

≥
n∑

d=0

δd,i · 2−d · 1
2
+

l log r∑
d=n+1

δd,i · 2−d · B
2

(
2d − 1

r

)

=
1

2
·

n∑
d=0

δd,i · 2−d +
B

2
·

(
l log r∑
d=n+1

δd,i · 2−2d − 1

r
·

l log r∑
d=n+1

δd,i · 2−d

)
.

Let ϵi be the fraction of leaves with the value i. Let ϵi,1 :=
∑n

d=0 δd,i · 2−d and ϵi,2 :=
∑l log r

d=n+1 δd,i · 2−d. By
Jensen’s inequality it holds that

l log r∑
d=n+1

δd,i · 2−2d

=

l log r∑
d=n+1

δd,i ·
(
2−d

)2
≥ ϵ2i,2 .

Therefore,

Pr[TreeCollGame(Ai, T ) = 1] ≥ ϵi,1
2

+
B

2
· ϵ2i,2 −

B

2r
· ϵi,2 .
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Note that
∑l log r

d=0 δd,i · 2−d = ϵi,1 + ϵi,2 ≤ ϵ. Therefore, the minimum of the above expression is where
ϵi,2 = ϵi, which lets us write

Pr[TreeCollGame(Ai, T ) = 1] ≥ B

2
· ϵ2i −

B

2r
· ϵi .

Overall, we obtain,

Pr[TreeCollGame(A, T ) = 1] ≥
l−1∑
i=0

(
B

2
· ϵ2i −

B

2r
· ϵi
)

=
B

2
·
l−1∑
i=0

ϵ2i −
B

2r

l−1∑
i=0

ϵi .

The following claim (which we prove later on) provides a lower bound on the above term
∑l−1

n=0 ϵ
2
n.

Claim 6.7. For every p1, . . . , pn such that
∑n

i=1 pi = ϵ it holds that
∑n

i=0 p
2
i ≥ ϵ2

n .

Given Claim 6.7 and the fact that
∑l−1

i=0 ϵi = ϵ, it holds that,

Pr[TreeCollGame(A, T ) = 1]

≥ B · ϵ2

2l
− Bϵ

2r

≥ 1

2
√
ϵ
· ϵ

2

2l
− 1√

ϵ
· ϵ

2r

=
ϵ1.5

4l
−
√
ϵ

2r
.

Since, ϵ ≥ 4l
r , it holds that

√
ϵ

2r
≤
√
ϵ

2 · 4lϵ
=

ϵ1.5

8l
.

This leads to,

Pr[TreeCollGame(A, T ) = 1] ≥ ϵ1.5

8l
.

For completeness, we now prove Claim 6.7.

Proof of Claim 6.7. Observe that
(
pi − ϵ

n

)2
= p2i −

2ϵ·pi

n + ϵ2

n2 , therefore,

n∑
i=0

(
pi −

ϵ

n

)2
=

n∑
i=0

(
p2i −

2ϵ · pi
n

+
ϵ2

n2

)

=

n∑
i=0

p2i −
2ϵ

n
·

n∑
i=0

pi + n · ϵ
2

n2

=

n∑
i=0

p2i −
2ϵ

n
· ϵ+ ϵ2

n
, (6)

where Equation (6) follows from the fact that
∑n

i=0 pi = ϵ. The above equation holds if and only if the
following holds,

n∑
i=0

p2i =

n∑
i=0

(
pi −

ϵ

n

)2
+

2ϵ2

n
− ϵ2

n
≥ ϵ2

n
,

which completes the proof.
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6.3 Rogue security for NARGs from algebraic batch Sigma protocols

We now show how to construct an algorithm that given an instance x extracts a corresponding witness
w given the algorithm for the tree game. Then, combined with the second-moment assumption we prove
Theorem 6.2.

First, we prove the following lemma (which is interesting on its own),

Lemma 6.8. Let tP̃ = P̃(λ,K), tV = tV(λ,K), tW = tW (λ,K), q = q(λ,K) be functions of the security
parameter λ ∈ N and the bound on the number of instances K ∈ N. Let Π = (Setup,P1,P2,V, C) be an
algebraic Σ-protocol for a relation R and let NARG = (Setup,P,V) be the non-interactive batch argument
constructed from Π as defined in Construction 6.1. Let tV denote the running time of the verifier V and let
tW denote the running time of the witness extractor. Let D = {Dλ}λ∈N be a distribution over the relation
where each Dλ produces (pp,x,w) ∈ Rλ. For every cheating prover P̃ that runs in time tP̃ and issues q
queries to a random oracle f that outputs λ bits, there exists an algorithm A∗ such that:

1. E
[
TA∗,Dλ

]
≤ 2(tP̃ + tV + tW ).

2. E
[
T 2
A∗,Dλ

]
≤ 4(tP̃ + tV + tW )2.

3. Either ϵ ≤ 4K·q
2λ

or Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ1.5

8K·q where ϵ is the rogue-soundness

error of NARG with respect to a distribution D and the setup algorithm Setup.

Proof. For simplicity, let P̃ ′ be the same prover as P̃ except for one minor change. Each time P̃ queries f with
(x̃2, . . . , x̃k, α, 1), P̃ ′ queries f(x̃2, . . . , x̃k, α, i) for every 2 ≤ i ≤ k, and only then queries f(x̃2, . . . , x̃k, α, 1).
Therefore, if P̃ performs q queries, then P̃ ′ performs at most q′ = q ·K.

We denote by aux the variable for tuples of (pp,x, ρ) where ρ ∈ {0, 1}r. We consider complete trees
T = {Taux}pp,x,ρ of depth q′ and degree 2λ. The depth corresponds to the number of queries P̃ ′ performs
and the degree corresponds to the number of possible answers of f . We represent a leaf by all the answers
from the random oracle that led to that output.

Note that an execution of P̃ ′ corresponds to a random walk on the tree Taux, therefore, a leaf (y1, . . . yq) ∈
Leaves(T ) leads to an output (x1, x̃2, . . . , x̃k, αi, γi). We set the value of such a leaf to be the index of the
random oracle query (starting from 0) in which P̃ ′ queried f with (x1, x̃2, . . . , x̃k, αi, 1). If P̃ ′ does not query
(x1, x̃2, . . . , x̃k, αi, 1) or V(x1, x̃2, . . . , x̃k, αi, f(x1, x̃2, . . . , x̃k, αi, 1), . . . , f(x1, x̃2, . . . , x̃k, k), γi) = 0, we set
the value to be ⊥.

Recall that every algorithm A for the tree game on input k, aims to find k+1 leaves with the same index
i that have the same lowest common ancestor v such that height(v) = i. As P̃ ′’s randomness is fixed, finding
k + 1 non-bot leaves that point to the same node corresponds to finding k + 1 accepting transcripts with a
common first message and instances and distinct pairwise challenges for the first instance. More precisely,
let A be the algorithm constructed in Lemma 6.3, algorithm A∗ invokes A on input k = 1 while simulating
its oracle queries to T by executing P̃ ′ and V. If A outputs two leaves, algorithm A∗ creates two transcripts
with a common first message and pairwise distinct challenges for the first instance. Recall that we showed in
Claim 5.5 that the non-interactive batch argument defined in Construction 6.1 has local special soundness.
Let NARG.E be the witness extractor of NARG.

Formally, we construct the algorithm A∗ as follows:
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A∗(pp,x1)

1. Let r be P̃ ′’s randomness size and sample ρ← {0, 1}r. Let M be a mapping between the answers
from the random oracle to P̃ ′’s output.

2. Invoke A(1). When A performs a query on a leaf u do as follows:

(a) Let y1, . . . , yq′ be the representation of u.

(b) Invoke (x̃2, . . . , x̃k, α, γ) ← P̃ ′f (pp,x1; ρ). When P̃ ′ query it’s j-th query to f respond
with yj .

(c) For every i ∈ [k]: let ti denote the index of the query in which P̃ ′ queried
f(x1, x̃2, . . . , x̃k, α1, i). If P̃ ′ does not query f with (x1, x̃2, . . . , x̃k, α, i), let ti = 0.

(d) If t1 = 0 or V(pp,x1, x̃2, . . . , x̃k, α, yt1 , . . . , ytk , γ) = 0, return ⊥ as the answer to the query.
Otherwise, return (t1 − 1) as the answer to the query.

(e) Set M [(y1, . . . , yq′)]← (x̃2, . . . , x̃k, α, yt1 , . . . , ytk , γ).

3. When A outputs u1, u2:

(a) Let yi,1, . . . , yi,q′ be the representation of ui.

(b) Set (x̃i,2, . . . , x̃i,ki
, α∗

i , β
∗
i,1, . . . , β

∗
i,ki

γ∗
i ) = M [yi,1, . . . , yi,q′ ].

4. If k1 ̸= k2, or α
∗
1 ̸= α∗

2, or (x̃1,2, . . . , x̃1,k1
) ̸= (x̃2,2, . . . , x̃2,k2

), or β∗
1,1 = β∗

2,1, or there exists an
index j such that β∗

1,j ̸= β∗
2,j , abort.

5. Run w̃1 ← NARG.E(α1, β
∗
1,2, . . . , β

∗
1,k, (β

∗
1 , γ

∗
1), (β

∗
2 , γ

∗
2)).

6. Output w̃1.

We now prove each of the claims separately.

Claim 6.9 (Bound on the expected running time). It holds that E
[
TA∗,Dλ

]
≤ 2(tP̃ + tV + tW ).

Proof. Observe that whenever A query T , the algorithm A∗ invokes P̃ ′ and V. Thus, the expected number
of invocations that A∗ performs to P̃ ′ and V is the expected number of queries performed by A. Note that
P̃ ′’s running time is tP̃ and V’s running time is at most tV , then,

E
[
TA∗,Dλ

]
≤ E [QA] · (tP̃ + tV) + tW

≤ 2(tP̃ + tV + tW ) . (7)

where Equation (7) follows from Lemma 6.3.

Claim 6.10 (Bound on the second-moment of the expected running time). It holds that E
[
T 2
A∗,Dλ

]
≤

4(tP̃ + tV + tW )2.

Proof. Following the same observation as in Claim 6.9 we obtain that

E
[
T 2
A∗,Dλ

]
≤ (E [QA] · (tP̃ + tV))

2
+ t2W

≤ (E [QA] · (tP̃ + tV + tW ))
2

= E [QA]
2 · (tP̃ + tV + tW )2 .

Jensen’s inequality leads to

E
[
T 2
A∗,Dλ

]
≤ E

[
Q2

A

]
· (tP̃ + tV + tW )2

≤ 4(tP̃ + tV + tW )2 .
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We now bound the success probability.

Claim 6.11. Either ϵ ≤ 4K·q
2λ

or Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ1.5

8K·q where ϵ is the rogue-

soundness error of NARG with respect to a distribution D and the setup algorithm Setup.

Proof. Recall that A∗ simulates A’s oracle queries to T such that each leaf leads to an output of P̃ ′.
The value of each leaf that leads to an output (x̃2, . . . , x̃ki

, αi, γi) is the index of the query in which P̃ ′

queried f with (x1, x̃2, . . . , x̃ki , αi, 1). If P̃ ′ queried f with (x1, x̃2, . . . , x̃ki , αi, 1), then it already queried
(x1, x̃2, . . . , x̃ki , αi, j) for every 2 ≤ j ≤ k.

Whenever A succeeds in the tree game with Taux, it outputs u1, u2 with the same value i that have
the same lowest common ancestor v such that height(v) = i. Since each leaf corresponds to P̃ ′’s output,
whenever A succeeds in the tree game it produces two outputs that queried to f by P̃ ′ on the same query
and answered differently. In fact, A produces two outputs which share the first message (x̃2, . . . , x̃k, α) and
the k − 1 last randomness, but differ on their first randomness. Thus,

Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
∧ (x,w)← Dλ(pp)
w̃1 ← A∗(pp,x1)


=
∑
aux

Pr[aux] · Pr [TreeCollGame(A, Taux) = 1]

For every aux = (pp,x, ρ), we let

ϵaux = Pr


Vf (pp,x, x̃2, . . . , x̃k, α, γ) = 1
conditioned on pp← Setup(1λ,K)
∧ (x,w)← Dλ(pp)
∧ ρ← {0, 1}r

∣∣∣∣∣∣∣∣ (x̃2, . . . , x̃k, α, γ)← P̃ ′f (pp,x; ρ)

 .

The tree Taux has ϵaux fraction of non-bot leaves. Thus, conditioned on aux, the probability that A succeeds

in the tree game is
ϵ1.5aux

8·q′ . Therefore,

Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
∧ (x,w)← Dλ(pp)
w̃1 ← A∗(pp,x1)


=
∑
aux

Pr[aux] · ϵ
1.5
aux

8 · q′

= E
aux

[
ϵ1.5aux

8 · q′

]

≥
E
aux

[ϵaux]
1.5

8 · q′
(8)

=
ϵ1.5

8 · q′
, (9)

where Equation (8) follows from Jensen’s inequality and Equation (9) follows from the fact that E
aux

[ϵaux] = ϵ.

Overall, since q′ = K · q, we conclude that

Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ1.5

8K · q
.
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We now prove the main theorem of this section.

Proof of Theorem 6.2. Let P̃ be a cheating prover and let ϵD be the rogue soundness error of NARG with
respect to D and Setup. Given Lemma 6.8 and the assumption that R is second-moment hard with respect
to the distribution D and the setup algorithm Setup, it holds that either ϵD ≤ 4K·q

2λ
or,

ϵ1.5D
8K · q

≤ Pr

(pp,x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)


≤

∆ · E
[
T 2
A∗,D

]
|Wλ|ω

≤
∆ · 4(tP̃ + tV + tW )

|Wλ|ω
.

This leads to

ϵD ≤
(
∆ · 32K · q(tP̃ + tV + tW )

|Wλ|ω

)2/3

.

Overall, we derive the following

ϵD ≤ max

{(
∆ · 32K · q(tP̃ + tV + tW )

|Wλ|ω

)2/3

,
4K · q
2λ

}

≤
(
∆ · 32K · q(tP̃ + tV + tW )

|Wλ|ω

)2/3

+
4K · q
2λ

.
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7 Implications to the Schnorr and Okamoto schemes

In this section, we derive a concrete bound on the rogue-soundness error of the batch version of Schnorr and
Okamoto schemes. We first show that each one is algebraic, then, assuming the second-moment assumption,
we apply Corollary 8.9 and Theorem 6.2 in order to bound their rogue-instance security.

In the description of the schemes, we rely on the existence of a group generator algorithm GroupGen
that on input 1λ, outputs a description (G, p, g) of an abelian cyclic group G of prime order p, where g
is a generator of the group. We consider the standard case that on input 1λ, the algorithm GroupGen
outputs a description of a group such that p ≥ 2λ. We denote by texp = texp(λ) the time required for a
single exponentiation if the group G where (G, p, g) ← GroupGen. For simplicity, we assume that sampling
elements from Zp, arithmetic computations in Zp and group operations in G can be done efficiently and are
subsumed by texp.

7.1 The Schnorr protocol

We start by recalling the Schnorr identification scheme IDSchnorr = (Setup,Gen,P1,P2, C) which is defined as
follows:

Setup(1λ):

1. (G, p, g)← GroupGen(1λ)

2. Output (G, p, g)

Gen(pp):

1. Parse pp as (G, p, g)

2. w← Zp

3. x = gw

4. Output (x,w)

V(pp,x, α, β, γ):

1. Parse pp as (G, p, g)

2. If gγ = α · xβ then output 1
and otherwise output 0

P1(pp,x,w):

1. Parse pp as (G, p, g)

2. r ← Zp

3. α = gr

4. st = (w, r)

5. Output (α, st)

P2(st, β):

1. Parse st as (w, r)

2. Output γ = r + β ·w

Note that the scheme’s challenge space Cpp is Zp. One can observe that Schnorr identification scheme is
algebraic.

Using construction Construction 5.3, we consider a batch version of Schnorr identification scheme as
follows:

Construction 7.1. Let (Setup,F) be a family of functions such that for every pp = (G, p, g) produced
by Setup(1λ) the function Fpp : Zp → G defined as follows: Fpp(x) = gx. A batch version for Schnorr
identification scheme IDB-Schnorr = (Setup,Gen,P1,P2, C) is constructed as follows:
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Setup(1λ):

1. (G, p, g)← GroupGen(1λ)

2. Output (G, p, g)

Gen(pp):

1. Parse pp as (G, p, g)

2. w← Zp

3. x = Fpp(w)

4. Output (x,w)

V(pp,x1, . . . ,xk, α, β1, . . . , βk, γ):

1. Parse pp as (G, p, g)

2. If Fpp(γ) = α ·Πk
i=1x

βi
i then output 1

and otherwise output 0

P1(pp, (x1,w1), . . . , (xk,wk)):

1. Parse pp as (G, p, g)

2. For every i ∈ [k]:

(a) Sample ri ← Zp

(b) Compute Ri = Fpp(ri)

3. α = Πi=k
i=1Ri

4. st = (w1, . . . ,wk, r1, . . . , rk)

5. Output (α, st)

P2(st, β1, . . . , βk):

1. Parse st as (w1, . . . ,wk, r1, . . . , rk)

2. For every i ∈ [k]: compute γi = ri + βi ·
wi

3. Compute γ =
∑k

i=1 γi

4. Output γ

Note that the verifier performs k+ 1 exponentiation, therefore it runs in time (k + 1)texp. By Claim 5.5,
Schnorr batch identification scheme has local special soundness. The extractor E performs only arith-
metic operations in the ring Zp, and hence its running time is subsumed by texp. Additionally, Claim 5.17
shows if the Schnorr protocol has tSim zero-knowledge, then Schnorr batch Σ-protocol has (K · tSim)-time
zero-knowledge. Note that Schnorr protocol has 2texp-time zero-knowledge, therefore, we combined with
Corollary 8.9 we derive the following.

Theorem 7.2. Let tP̃ = tP̃(λ), q = q(λ) be functions of the security parameter λ ∈ N and the bound on
the number of instances K ∈ N. Let IDB-Schnorr = (Setup,Gen,P1,P2,V, C) be Schnorr batch identification
scheme defined in (Construction 7.1). If the discrete-logarithm problem is second-moment hard with respect
to Gen, then for any malicious prover P̃ that runs in time tP̃ and issues q transcript-generation queries it
holds that

Pr
[
StrongIdentIDB-Schnorr

(P̃, λ)
]
≤
(
32 · (tP̃ + 2K(q+ 1)texp)

2

2λ

)2/3

+
4

2λ
.

Similarly, we consider the non-interactive batch argument of Schnorr protocol as constructed in Con-
struction 6.1. Then ,we obtain the following theorem

Theorem 7.3. Let tP̃ = tP̃(λ), q = q(λ) be functions of the security parameter λ ∈ N and the bound on
the number of instances K ∈ N. Let NARGB-Schnorr = (Setup,P,V) be the non-interactive batch argument
constructed from Schnorr protocol as constructed is (Construction 6.1). If the discrete-logarithm problem is
second-moment hard with respect to GroupGen, then NARGB-Schnorr has (tP̃ , q, ϵ)-rogue soundness error such
that

ϵ(λ, tP̃ , q,K) ≤
(
32K · q(tP̃ + (K+ 1)texp)

2

2λ

)2/3

+
4K · q
2λ

.

7.2 The Okamoto protocol

We start by recalling the Okamoto identification scheme IDOkamoto = (Setup,Gen,P1,P2, C) which is defined
as follows:

39



Setup(1λ):

1. (G, p, g)← GroupGen(1λ)

2. h← G
3. Output ((G, p, g), h)

Gen(pp):

1. Parse pp as ((G, p, g), h)

2. w,w′ ← Zp

3. x = gw · hw′

4. w = (w,w′)

5. Output (x,w)

V(pp,x, α, β, γ):

1. Parse pp as ((G, p, g), h)

2. Parse γ as (s, s′)

3. If gs · hs′ = α · xβ then output 1
and otherwise output 0

P1(pp,x,w):

1. Parse pp as ((G, p, g), h)

2. r, r′ ← Zp

3. α = gr · hr′

4. st = (w, r, r′)

5. Output (α, st)

P2(st, β):

1. Parse st as (w, r, r′)

2. Parse w as (w,w′)

3. s = r + β · w
4. s′ = r′ + β · w′

5. Output γ = (s, s′)

Note that the scheme’s challenge space Cpp is Zp. One can simply observe that Okamoto identification scheme
is algebraic identification scheme.

Using construction Construction 5.3, we consider a batch version of Okamoto identification scheme as
follows:

Construction 7.4. Let (Setup,F) be a family of one way functions such that for every pp = ((G, p, g), h)
produced by Setup(1λ) the function Fpp : Zp × Zp → G defined as follows: Fpp(x, x

′) = gx · hx′
. A batch

version for Okamoto identification scheme IDB-Okamoto = (Setup,Gen,P1,P2, C) is constructed as follows:
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Setup(1λ):

1. (G, p, g)← GroupGen(1λ)

2. h← G
3. Output ((G, p, g), h)

Gen(pp):

1. Parse pp as ((G, p, g), h)

2. w,w′ ← Zp

3. x = gw · hw′

4. w = (w,w′)

5. Output (x,w)

V(pp,x1, . . . ,xk, α, β1, . . . , βk, γ):

1. Parse pp as ((G, p, g), h)

2. Parse γ as (s, s′)

3. If Fpp(s, s
′) = α ·Πk

i=1x
βi
i then output 1

and otherwise output 0

P1(pp, (x1,w1), . . . , (xk,wk)):

1. Parse pp as ((G, p, g), h)

2. For every i ∈ [k]:

(a) Sample ri, r
′
i ← Zp

(b) Compute Ri = Fpp(ri, r
′
i)

3. α = Πi=k
i=1Ri

4. st = (w1, . . . ,wk, r1, r
′
1, . . . , rk, r

′
k)

5. Output (α, st)

P2(st, β1, . . . , βk):

1. Parse st as
(w1, . . . ,wk, r1, r

′
1, . . . , rk, r

′
k)

2. For every i ∈ [k]:

(a) Parse wi as (wi, w
′
i)

(b) Compute si = ri + βi · wi

(c) Compute s′i = r′i + βi · w′
i

3. Compute s =
∑k

i=1 si

4. Compute s′ =
∑k

i=1 s
′
i

5. Output γ = (s, s′)

Let R2 be the relation produced by Gen. The relation R2 consists of pairs (gxhy, (x, y)). Let D be a
distribution over pairs (gx, x). It is well known that the hardness of the relation R2 with respect to Gen
is implied by the hardness of the discrete-logarithm relation with respect to D. Therefore, if the discrete-
logarithm relation is second-moment hard, then R2 is second-moment hard with ω = 1/2 (Definition 3.2),
since the witness space of R2 is of size p2 compared to the witness space of discrete-logarithm which is of
size p.

Note that the verifier performs k + 1 exponentiation, therefore its running time is (k + 1) · texp. By
Claim 5.5, Okamoto batch identification scheme has local special soundness. The extractor E performs only
arithmetic operations in the ring Zp, and hence its running time is subsumed by texp. Additionally, Claim 5.17
shows if the Okamoto protocol has tSim zero-knowledge, then Okamoto batch Σ-protocol has (K · tSim)-time
zero-knowledge. Note that Okamoto protocol has tSim-time zero-knowledge such that Sim = 3·texp. Combined
with Corollary 8.9 we derive the following.

Theorem 7.5. Let tP̃ = tP̃(λ), q = q(λ) be functions of the security parameter λ ∈ N and the bound on
the number of instances K ∈ N. Let IDB-Okamoto = (Setup,Gen,P1,P2,V, C) be Okamoto batch identification
scheme defined in (Construction 7.4). If the discrete-logarithm problem is second-moment hard with respect
to Gen, then for any malicious prover P̃ that runs in time tP̃ and issues q transcript-generation queries it
holds that

Pr
[
StrongIdentIDB-Schnorr

(P̃, λ)
]
≤
(
32 · (tP̃ + 3K(q+ 1)texp)

2

2λ

)2/3

+
4

2λ
.

Similarly, we consider the non-interactive batch argument of the Okamoto protocol as constructed in
Construction 6.1. Then ,we obtain the following theorem

Theorem 7.6. Let tP̃ = tP̃(λ), q = q(λ) be functions of the security parameter λ ∈ N and the bound on
the number of instances K ∈ N. Let NARGB-Okamoto = (Setup,P,V) be the non-interactive batch argument
constructed from Okamoto protocol as constructed is (Construction 6.1). If the discrete-logarithm problem is
second-moment hard with respect to GroupGen, then NARGB-Okamoto has (tP̃ , q, ϵ)-rogue soundness error such
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that

ϵ(λ, tP̃ , q,K) ≤
(
32K · q(tP̃ + (K+ 1)texp)

2

2λ

)2/3

+
4K · q
2λ

.
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8 Interactive proof of knowledge

In this section, we give a concrete bound on the rogue soundness error with respect to first-moment hard
distribution of any batch Σ-protocol with tW -time plus-one special soundness. Then, we extend this result
for batch identification schemes which consist of a zero-knowledge batch Σ-protocol.

In Section 8.1, we construct a general algorithm for the collision game considered in Section 5.2. Then in
Section 8.2, we give our main theorem of this section which shows the rogue-instance security with respect
to a first-moment hard distribution of batch Σ-protocols.

8.1 General collision game

We now consider the collision game generalization from Section 5.2 and show the following lemma:

Lemma 8.1. Let H ∈ {0, 1}R×N be a binary matrix and let ϵ be the fraction of 1-entries in H. Let QA be
a random variable indicating the number of queries performed by A to H. Then, there exists an algorithm
A with oracle access to H such that on input k the following holds:

1. E [QA] ≤ k + 1

2. Pr[CollGamek(A,H) = 1] ≥ ϵ− 3k2

N

Proof. We consider the following algorithm A:

AH(k)

1. Sample ρ← R and β ← N . If H[ρ, β] = 0 abort.

2. Let S, F = {β}. While |F | < k:

(a) Sample βi ← N \ S and set S = S ∪ {βi}.
(b) If H[ρ, βi] = 1, set F = F ∪ {βi}.
(c) If |S| = N , abort.

3. Return ρ and βi for each βi ∈ F .

We now prove each claim separately.

Claim 8.2. It holds that E [QA] ≤ k + 1.

Proof. Let ϵρ be the fraction of 1-entries in row ρ in H. Note that either way, A performs at least 1 query.
By the construction of A, assuming the first query to the matrix was 1-entry, finding another k entries with
the value 1 can be modeled by a negative hypergeometric distribution (Definition 3.14). The population is
of size N − 1 and the number of “successes” in each row is ϵρN − 1. Therefore, the expected number of

queries made to H is k(N−1+1)
ϵρN−1+1 = k

ϵρ
. Overall, the expected number of queries performed by A is

E [QA] ≤ 1 +
1

R
·

R∑
ρ=0

ϵρ ·
k

ϵρ
= 1 +

k

R
·

R∑
ρ=0

1 = k + 1 .

It remains to show a lower bound on the probability that A succeeds in the collision game.

Claim 8.3. It holds that Pr[CollGamek(A,H) = 1] ≥ ϵ− 3k2

N .
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Proof. We begin with a short high-level overview of the proof. Assuming the first query to the matrix was
1-entry, A continues to sample entries from the same row. Note that for each row, the number of 1-entries
may be different which affects the success probability of the algorithm. Therefore, as in Claim 5.10, we
“divide” the rows into “buckets” by the number of 1-entries in it.

Formally, for every 0 ≤ d ≤ N , we let δd be the fraction of rows with exactly d 1-entries. If A sampled a
row with at least k+1 entries with the value 1, then it necessarily finds k+1 different 1-entries and succeeds
in CollGamek(A,H). Therefore,

Pr[CollGamek(A,H) = 1] ≥
N∑

d=k+1

δd
d

N
=

N∑
d=0

δd
d

N
−

k+1∑
d=0

δd
d

N
.

Note that
∑N

0 δd
d
N = ϵ. Thus,

Pr[CollGamek(A,H) = 1] ≥ ϵ−
k+1∑
d=0

d

N
≥ ϵ− 3k2

N
.

8.2 Rogue soundness error from the collision game

We now show how to invoke the algorithm for the collision game in order to extract a witness. Then, we
prove the main theorem of this section which shows a bound on the rogue soundness error with respect to a
first-moment hard distribution. Formally, we derive the following theorem:

Theorem 8.4. Let ∆ = ∆(λ), ω = ω(λ), tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions of the
security parameter λ ∈ N and the bound on the number of instances K ∈ N. Let Π = (P1,P2,V, C) be a
batch Σ-protocol with tW -time plus-one special soundness for a relation R. If R is first-moment hard with
respect to a distribution D and the setup algorithm Setup, then Π has (tP̃, ϵ)-rogue soundness error such that

ϵD(λ, tP̃, tV , tW ,K) ≤
∆ · (K+ 1) · (tP̃ + tV + tW )

|Wλ|ω
+

3K2

|Cpp|
,

where tV denotes the running time of the verifier V.

When referring to the non-interactive arguments constructed via the Fiat-Shamir paradigm [FS86], The-
orem 8.4 directly derives the following corollary:

Corollary 8.5. Let ∆ = ∆(λ), ω = ω(λ), tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions of the
security parameter λ ∈ N and the bound on the number of instances K ∈ N. Let Π = (P1,P2,V, C) be
a batch Σ-protocol with tW -time plus-one special soundness for a relation R. Let NARG = (P,V) be the
non-interactive batch argument of Π constructed via the Fiat-Shamir paradigm. If R is first-moment hard
with respect to a distribution D and the setup algorithm Setup, then Π has (tP̃ , q, ϵD)-rogue soundness error
such that

ϵD(λ, tP̃ , tV , tW , q,K) ≤
∆ · q(K+ 1) · (tP̃ + tV + tW )

|Wλ|ω
+

3q ·K2

|Cpp|
,

where tV denotes the running time of the verifier V.

In order to prove Theorem 8.4 we first show the following lemma (which is interesting on its own):
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Lemma 8.6. Let tP̃ = tP̃(λ,K), tV = tV(λ,K), tW = tW (λ,K) be functions of the security parameter λ ∈ N
and the bound on the number of instances K ∈ N. Let Π = (P1,P2,V, C) be a batch Σ-protocol with tW -
time plus-one special soundness for a relation R. Let tV denote the running time of the verifier V and let
D = {Dλ}λ∈N be a distribution over the relation where each Dλ produces (pp,x,w) ∈ Rλ. For every prover
P̃ = (P̃1, P̃2) that runs in time tP̃, there exists an algorithm A∗ such that:

1. E
[
TA∗,Dλ

]
≤ (K+ 1) · (tP̃ + tV + tW ).

2. Pr

(x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ − 3K2

|Cpp| where ϵ is the rogue-soundness error of Π with

respect to a distribution D and the setup algorithm Setup.

Proof. We consider a binary matrix H ∈ {0, 1}R×N , where the R rows correspond to P̃’s randomness and
the N columns correspond to V’s randomness. Note that although P̃’s and V’s randomness depends on the
number of instances that P̃ outputs, we can always bound its size by the randomness size when P̃ outputs
K instances.

An entry of H equals 1 if and only if the corresponding transcript (between P̃ and V) is accepting. Recall
that every algorithm A for the collision game on input k, aims to find k + 1 entries with the value 1 in the
same row. As P̃’s randomness is fixed along one row, finding k + 1 entries with the value 1 in the same
row corresponds to finding k + 1 accepting transcripts with a common first message and pairwise distinct
challenges, which by the plus-one special soundness allows extracting k witnesses.

Let A be the algorithm for the collision game constructed in Lemma 8.1, we construct the algorithm A∗

as follows:

A∗(pp,x1)

1. Initialize an empty mapping M between the randomness used by P̃ and V and transcript
between them.

2. Invoke A(K). When A performs a query on (ρ, β) answer as follows:

(a) Invoke ((x̃2, . . . , x̃k), α, st)← P̃1(1
λ, pp,x1; ρ).

(b) Invoke γ ← P̃2(β, st).

(c) Set M [(ρ, β)]← (α, β, γ).

(d) Return V(pp,x1, x̃2, . . . , x̃k, α, β, γ) as the answer to the query.

3. When A outputs ρ, β1, . . . , βK+1: for every j ∈ [K+ 1]: set (α∗
j , β

∗
j , γ

∗
j )←M [ρ, βj ].

4. Let k∗ be the number of instances P̃1 outputs when running with the randomness ρ. Run
w̃1, . . . , w̃k∗ ← Π.E(α∗

1, (β
∗
1 , γ

∗
1), . . . , (β

∗
k∗+1, γ

∗
k∗+1)).

5. Output w̃1.

We prove each claim separately.

Claim 8.7. It holds that E
[
TA∗,Dλ

]
≤ (K+ 1) · (tP̃ + tV + tW ).

Proof. Observe that whenever A query H, A∗ invokes P̃ and V. Thus, the expected number of invocations
that A∗ performs to P̃ and V is the expected number of queries performed by A. Thus,

E
[
TA∗,Dλ

]
≤ E [QA] · (tP̃ + tV) + tW ≤ (K+ 1) · (tP̃ + tV + tW ) .

45



Claim 8.8. It holds that Pr

(x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ− 3K2

|Cpp| where ϵ is the rogue-soundness

error of Π with respect to a distribution D and the setup algorithm Setup.

Proof. Whenever A succeeds in the collision game with H, the algorithm A∗ outputs a witness for x1. Thus,

Pr

(x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)


= Pr

[
CollGameK(A,H) = 1

∣∣∣∣ pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)

]
.

Let aux denote that variable for a tuple (pp,x). For every aux = (pp,x), we let

ϵaux = Pr

 V(pp,x, x̃2, . . . , x̃k, α, β, γ) = 1
conditioned on pp← Setup(1λ,K)
(x,w)← Dλ(pp)

∣∣∣∣∣∣
((x̃2, . . . , x̃k), α, st)← P̃1(pp,x)
β ← Cpp
γ ← P̃2(st, β)

 .

Conditioned on pp ← Setup(1λ,K) and (x1,w1) ← Dλ, the collision game matrix has ϵaux fraction of 1-
entries for aux = (pp,x1). Thus, conditioned on pp← Setup(1λ,K) and (x1,w1)← Dλ, the probability that

A succeeds in the collision game is ϵaux − 3K2

|Cpp| . Therefore,

Pr

(x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)


=
∑
aux

Pr

 CollGameK(A,H) = 1
conditioned on pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)

 · Pr [aux]
=
∑
aux

(
ϵaux −

3K2

|Cpp|

)
· Pr [aux]

= E
aux

[
ϵaux −

3K2

|Cpp|

]
= E

aux
[ϵx1

]− 3K2

|Cpp|
.

Note that E
aux

[ϵaux] = ϵ, and thus,

Pr

(x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(1λ,K)
(x1,w1)← Dλ(pp)
w̃1 ← A∗(pp,x1)

 ≥ ϵ− 3K2

|Cpp|
.

We are now ready to show a bound on the rogue soundness error of batch Σ-protocol with plus-one
special soundness.
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Proof of Theorem 8.4. Let P̃ be a cheating prover and let ϵD be the rogue soundness error with respect to
D. Given Lemma 8.6 and the assumption that R is first-moment hard with respect to the distribution D
and the setup algorithm Setup, it holds that

ϵ− 3K2

|Cpp|
≤ Pr

(x1, w̃1) ∈ R

∣∣∣∣∣∣
pp← Setup(K)
(x1,w1)← Dλ

w̃1 ← A∗(pp,x1)


≤

∆ · E
[
TA∗,D

]
|Wλ|ω

≤
∆ · (K+ 1)(tP̃ + tV + tW )

|Wλ|ω
.

This leads to

ϵ ≤
∆ · (K+ 1) · (tP̃ + tV + tW )

|Wλ|ω
+

3K2

|Cpp|
.

8.3 Batch identification schemes

Recall that a batch identification scheme ID consists of a batch Σ-protocol Π such that the execution of ID
is as the execution of Π where each public key pk corresponds to an instance and a secret key sk correspond
to a witness. Thus, as discussed in Section 5.4, if Π has tSim-time zero-knowledge, any malicious prover that
runs in time tP̃ and performs q queries to Transpk1,sk1(·), can be simulated by a malicious prover that runs
in time tP̃ + q · tSim. Thus, from Theorem 8.4 we derive the following corollary:

Corollary 8.9. Let ∆ = ∆(λ), ω = ω(λ), tP̃ = tP̃(λ), tV = tV(λ,K), tW = tW (λ,K), tSim = tSim(λ,K), q =
q(λ) be functions of the security parameter λ ∈ N and the bound on the number of instances K ∈ N. Let
Π = (Gen,P1,P2,V, C) be a batch identification scheme with tW -time plus-one special soundness and tSim-
time zero-knowledge for a relation R. If R is first-moment hard with respect to Gen, then for any malicious
prover P̃ that runs in time tP̃ and issues q transcript-generation queries it holds that

Pr
[
StrongIdentP̃,Π(λ)

]
≤

∆ · (K+ 1) · (tP̃ + q · tSim + tV + tW )

|Wλ|ω
+

3K2

|Cpp|
,

where tV denotes the running time of the verifier V.
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9 Proving expected-time hardness in generic models

In this section, we present a generic framework for analyzing expected-time hardness of cryptographic prob-
lems. In fact, applying our framework proves the second-moment assumption (Definition 3.2) for the discrete-
logarithm problem in the generic group model. Shoup [Sho97] analyzed generic hardness of the discrete-
logarithm problem with respect to strict time algorithms. He showed that any generic t-time algorithm that
solves the discrete-logarithm problem has success probability at most ϵ ≤ t2/p. Applying our framework
yields a bound of ϵ ≤ E

[
T 2
A

]
/p when considering unbounded algorithms where TA denotes the random

variable indicating the algorithm’s running time.
Our framework is inspired by [JT20] which showed a generic framework to prove bounds with respect

to expected-time algorithms when considering only the first-moment of the expected running time. Their
result proves the first-moment assumption (Definition 3.1) but cannot be used to derive the second-moment
assumption.

In Section 9.1 we introduce our framework for proving expected-time hardness. In Section 9.3 we derive
the second-moment assumption for the discrete-logarithm problem by applying our framework in the generic
group model. In Section 9.2 and Section 9.4 we show the expected-time hardness of the collision-resistance
of a random-oracle and of SNARKs.

9.1 Our framework

Definition 9.1 (Monotonic predicate). A predicate P is monotonic if for every tr such that P (tr) = 1, it
holds that P (tr||tr′) = 1 for every tr′.

We consider distributions D(λ) which produces an oracle O and define the hardness of a predicate as
follows:

Definition 9.2 (Hard predicate). A predicate P is ϵ-hard if for every strict time algorithm At it holds that

Pr

[
P (tr) = 1

∣∣∣∣ O ← D(λ)out
tr←− At

O (in)

]
≤ ϵ(t) .

In addition, we define history-oblivious predicates. Intuitively, this family of predicates includes predicates
on which each query is oblivious to the history of the query-answer list (see Section 2.6 for further discussion).
We define history-oblivious by considering the hardness to set the predicate to output 1 on input tr∥(x, y)
where (x, y) is a fresh query-answer pair and tr is a query-answer list on which the predicate outputs 0.

For any list of query-answer pairs µ we denote by D(λ, µ) the distribution D(λ) of all oracles such that
for every (xi, yi) ∈ µ it holds that yi = O(xi). We let X,Y be the query and answer spaces.

Definition 9.3 (History-oblivious predicate). Let P be an ϵ-hard predicate. We say that P is history-
oblivious with respect to O if there is a function κ(·), such that for every t ∈ N the following holds:

1. For every 0 ≤ i ≤ t, every trace tr of length i with P (tr) = 0, and any query x ∈ X:

Pr

[
P (tr∥(x, y)) = 1

∣∣∣∣ O ← D(λ, tr)y = O(x)

]
≤ κ(i) .

2.
∑t

j=0 κ(j) ≤ ϵ(t).

(Above, the length of a trace is the number of query/answer pairs it contains.) We consider experiments
relative to an oracle, for which their security relies on the trace between the adversary and the oracle. We
capture this using a monotonic predicate on the trace. Formally, we define the following:

Definition 9.4 (δ-bounded experiment). Let ExpO be an experiment with oracle access O, and let δ = δ(λ)
be a function of the security parameter λ ∈ N. We say that ExpO is δ-bounded with respect to a monotonic
predicate P if for every (bounded and unbounded) algorithm A it holds that,

Pr

[
ExpO(in, out) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
≤ Pr

[
P (tr) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
+ δ .
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Given the definitions above, we prove the following theorem.

Theorem 9.5. Let ExpO be a δ-bounded experiment with respect to a predicate P which is ϵ-hard. If P is
history-oblivious, then, for every unbounded algorithm A it holds that,

Pr

[
ExpO(in, out) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
≤ E [ϵ(t)] + δ .

In particular, Theorem 9.5 allows us to recover the same bounds given in [JT20], which is captured in
the following corollary.

Corollary 9.6. Let ExpO be a δ-bounded experiment with respect to a predicate P which is ϵ-hard where

ϵ(t) = ∆td

N for ∆, d,N ≥ 1. If P is history-oblivious, then, for every unbounded algorithm A it holds that,

Pr

[
ExpO(in, out) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
≤ d

√
ϵ(E [TA]) + δ =

d

√
∆

N
· E [TA] + δ ,

where TA is a random variable indicating the number of queries performed by A until he stops, when given
access to an oracle O.

First, we prove Theorem 9.5 and then after we prove Corollary 9.6.

Proof of Theorem 9.5. Let tri be the first i pairs in the query-answer list between the algorithm and the
oracle O. Let Yi be an indicator random variable for the event that

1. |tr| ≥ i; and
2. P (tri) = 1; and
3. P (tri−1) = 0.

Note that, the events Yi = 1 are mutually exclusive, thus:

Pr

[
P (tr) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
=

∞∑
i=1

Pr

[
Yi = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
,

To simplify the notation throughout the proof, we omit the explicit reference to the probability taken over
the sampling of the oracle O ← D(λ) and the execution of the algorithm.

Let TA = TA(λ) be a random variable indicating the number of queries performed by A until he stops,
when given access to an oracle O. Note that for every i ∈ N, it holds that Yi = 1 only if the number of
queries performed by the algorithm is at least i. Thus,

Pr

[
P (tr) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
=

∞∑
i=1

Pr
[
Yi = 1

∣∣ TA ≥ i
]
· Pr[TA ≥ i]

≤
∞∑
i=1

Pr
[
Yi = 1

∣∣ TA ≥ i
]
·

∞∑
t=i

Pr[TA = t]

The following claim (which we prove later on) shows an upper bound on the above term Pr
[
Yi = 1

∣∣ TA ≥ i
]
.
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Claim 9.7. If P is ϵ-hard and history-oblivious, for every i ∈ N it holds that

Pr
[
Yi = 1

∣∣ TA ≥ i
]
≤ κ(i) .

Given Claim 9.7 it holds that,

Pr

[
P (tr) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
≤

∞∑
i=1

κ(i) ·
∞∑
t=i

Pr [TA = t]

=

∞∑
t=1

Pr [TA = t] ·
t∑

i=1

κ(i) (10)

≤
∞∑
t=1

Pr [TA = t] · ϵ(t) (11)

= E [ϵ(t)] ,

where Equation (10) is rearranging the summation and Equation (11) follows from the fact that P is ϵ-hard
and history-oblivious. Overall, we conclude that,

Pr

[
ExpO(in, out) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
≤ E [ϵ(t)] + δ .

For completeness, we now prove Claim 9.7.

Proof of Claim 9.7. For every i it holds that,

Pr
[
Yi = 1

∣∣ TA ≥ i
]

= Pr
[
P (tri) = 1 ∧ P (tri−1) = 0

∣∣ TA ≥ i
]

≤ Pr

[
P (tri) = 1

∣∣∣∣ TA ≥ i
P (tri−1) = 0

]
.

Let (x, y) be the i-th query-answer pair in tri. Since the events TA ≥ i and P (tri−1) = 0 depends only on
tri−1, we can find a query-answer list tr′i−1 such that P

(
tr′i−1

)
= 0 and leads to TA ≥ i. Thus, if

Pr

[
P (tri) = 1

∣∣∣∣ TA ≥ i
P (tri−1) = 0

]
> κ(i) ,

then, there exists a query-answer list tr′i−1 such that

Pr

[
P
(
tr′i−1∥(x, y)

)
= 1

∣∣∣∣ O ← D(λ, tr′i−1)
y = O(x)

]
> κ(i) ,

in contradiction to the fact that P is history-oblivious.

We next give a proof of Corollary 9.6.
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Proof of Corollary 9.6. We show that if ϵ(t) = ∆td

N , then E [ϵ(t)] ≤ d
√

ϵ(E [TA]). By the definition of ϵ(t), it

holds ϵ(t) ≤ 1 for every t. Therefore, when we consider ϵ(t) = ∆td

N we implicitly consider ϵ(t) = min{1, ∆td

N }.
Thus,

E [ϵ(t)] = E
[
min

{
1,

∆td

N

}]

=

d
√

N/∆∑
t=0

∆td

N
· Pr[TA = t] +

∞∑
t= d
√

N/∆+1

Pr[TA = t]

≤

d
√

N/∆∑
t=0

(
∆td

N

)1/d

· Pr[TA = t] +

∞∑
t= d
√

N/∆+1

d

√
∆

N
t · Pr[TA = t] (12)

=

∞∑
t=0

d

√
∆

N
t · Pr[TA = t]

=
d

√
∆

N
· E [TA]

=
d

√
∆

N
· E [TA]

d

= d

√
ϵ(E [TA]) ,

where Equation (12) holds since when t ≤ d
√
N/∆, it holds that ∆td

N ≤ 1, and when t ≥ d
√
N/∆ it holds

that d

√
∆
N t ≥ 1. Therefore, combined with Theorem 9.5, if ϵ(t) = ∆td

N we conclude that

Pr

[
ExpO(in, out) = 1

∣∣∣∣ O ← D(λ)out
tr←− AO (in)

]
≤ E [ϵ(t)] + δ ≤ d

√
ϵ(E [TA]) + δ =

d

√
∆

N
· E [TA] + δ .

9.2 Collision-resistance of a random oracle.

In this section, we show the expected-time hardness of the collision-resistance of a random oracle. Here, an
algorithm is given oracle access to a random oracle f ∈ U(λ) and aims to find x ̸= x′ such that f(x) = f(x′).
Formally,

Lemma 9.8. For any query algorithm A, let TA = TA(λ) be a random variable indicating the number of
queries performed by A until he stops, when given access to a random oracle f that outputs λ bits. Then,
for every algorithm A it holds that

Pr

[
f(x) = f(x′)

∧ x ̸= x′

∣∣∣∣∣ f ← U (λ)
(x, x′)← Af

]
≤ 1

2
·
E
[
T 2
A

]
2λ

+
1

2λ
.

Proof. Let tr be the query-answer list between the algorithm A and the random oracle f and we let P be
the predicate as follows:

P (tr) =

{
1 ∃(x, y), (x′, y′) ∈ tr s.t x ̸= x′ and y = y′

0 otherwise
.

We consider two cases:

51



• Case 1: A outputs x, x′ ∈ tr. If the algorithm finds a collision, then there exists a query on which the
predicate outputs 1. Thus,

Pr

[
f(x) = f(x′)

∧ x ̸= x′

∣∣∣∣∣ f ← U (λ)
(x, x′)← Af

]
≤ Pr

[
P (tr) = 1

∣∣∣∣ f ← U (λ)

(x, x′)
tr←− Af

]
.

• Case 2: A outputs x, x′ /∈ tr. Then, the algorithm finds a collision with probability 1/2λ.
We construct the experiment RO-Collf as follows:

RO-Collf (x, x′):

1. Return 1 if and only if x ̸= x′ and f(x) = f(x′).

Note that

Pr

[
f(x) = f(x′)

∧ x ̸= x′

∣∣∣∣∣ f ← U (λ)
(x, x′)← Af

]
= Pr

[
RO-Collf (x, x′) = 1

∣∣∣∣ f ← U (λ)
(x, x′)← Af

]
≤ Pr

[
P (tr) = 1

∣∣∣∣ f ← U (λ)

(x, x′)
tr←− Af

]
+

1

2λ
.

Note that P is a monotonic predicate, therefore, RO-Collf is 1
2λ
-bounded with respect to the predicate P

(Definition 9.4). In order to use Theorem 9.5, it remains to show that P is ϵ-hard and history-oblivious.
Recall that the definition of ϵ-hard predicates considers strict time algorithms. Let At be a t-query algorithm
and let Yi denote the event in which At finds the first collision in the i-th query. Overall,

Pr

[
P (tr) = 1

∣∣∣∣ f ← U (λ)

(x, x′)
tr←− Af

]
= Pr [∃i : Yi] ≤

t∑
1

Pr [Yi] =

t∑
1

i− 1

2λ
≤ 1

2
· t

2

2λ
.

Therefore, P is ϵ-hard where ϵ(t) = 1
2 ·

t2

2λ
. We define κ(i) = i−1

2λ
, and we get that for any trace of length i

(which for the predicate outputs 0), and any query x it holds that

Pr

[
P (tr∥(x, y)) = 1

∣∣∣∣ f ← U (λ)
y = f(x)

]
≤ κ(i) .

As we have shown above, it holds that
∑t

1 κ(i) ≤ ϵ(t). Thus, P is history-oblivious.
By applying Theorem 9.5, it holds that

Pr

[
f(x) = f(x′)

∧ x ̸= x′

∣∣∣∣∣ f ← U (λ)
(x, x′)← Af

]
≤ E [ϵ(t)] +

1

2λ
=

1

2
·
E
[
T 2
A

]
2λ

+
1

2λ
.

9.3 Expected-time hardness of DL in the GGM

The generic group model Let p be a prime and let σ : Zp → {0, 1}s be a random injective mapping such
that s ≥ log p. A generic algorithm takes as input σ(x1), . . . , σ(xk) and given an oracle access to a group
operation oracle O that satisfies the following:

O(σ(a), σ(b),±) = σ(a± b) .
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Lemma 9.9. For any query algorithm A, let TA = TA(λ) be a random variable indicating the number of
queries performed by A until he stops. Then, for every generic algorithm A it holds that

Pr
[
x′ = x

∣∣ x′ ← AO(p, σ(1), σ(x))
]
≤ 1

2
·
E
[
T 2
A

]
p

+
1

p
,

where the probability is taken over the random choice of σ and x ∈ Zp.

Proof. In the analysis of the discrete-logarithm problem in the generic group model, it suffices to focus on
the probability of finding a collision in the group operation oracle. This is because if an algorithm can
find a collision, it can exploit this to solve the discrete-logarithm problem efficiently. Thus, we consider the
following predicate:

P (tr) =

{
1 ∃(x, y), (x′, y′) ∈ tr s.t x ̸= x′ and y = y′

0 otherwise
,

where tr is the query-answer list between the algorithm A and the oracle O. We construct the experiment
DL-GGM as follows:

DL-GGMO((p, σ(1), σ(x)), x′):

1. Compute σ(x′) using σ(1) and queries to O (e.g, using repeated squaring).

2. Return 1 if and only if σ(x) = σ(x′).

Note that

Pr
[
x′ = x

∣∣ x′ ← AO(p, σ(1), σ(x))
]
= Pr

[
DL-GGMO((p, σ(1), σ(x)), x′) = 1

∣∣∣ x′ ← AO(p, σ(1), σ(x))
]

≤ Pr
[
P (tr) = 1

∣∣∣ x′ tr←− AO(p, σ(1), σ(x))
]
+

1

p
,

where the probability is taken over the random choice of σ and x ∈ Zp.
Note that P is a monotonic predicate, therefore, DL-GGM is 1

p -bounded with respect to the predicate P

(Definition 9.4). Following the same approach as in Section 9.2, one can show that P is history-oblivious

and ϵ-hard where ϵ(t) = 1
2 ·

t2

p . By applying Theorem 9.5, it holds that

Pr
[
x′ = x

∣∣ x′ ← AO(p, σ(1), σ(x))
]
≤ 1

2
·
E
[
T 2
A

]
p

+
1

p
.

9.4 Expected-time hardness of SNARKs in the ROM

We show that our framework can be used to derive expected-time hardness of different types of primitives,
specifically, the hardness of SNARKs in the ROM. There are several SNARKs in the ROM (with uncon-
ditional security) [Mic00, BCS16, CY21a, CY21b]. These constructions follow a shared paradigm: they
compile a probabilistic proof (a PCP or an IOP) into a SNARK by using a commitment scheme and other
ROM techniques.

Here we focus on the construction of Micali [Mic00] for simplicity. We briefly overview the construction.
The Micali construction is based on Kilian’s transformation [Kil92] and the Fiat-Shamir paradigm [FS86].
Informally, the argument prover P commits to a PCP string using a Merkle tree and obtains a root rt.
Then, it derives the PCP randomness ρ by querying the random oracle on the root and invokes the PCP
verifier VPCP with the randomness ρ to obtain the query-answer list a. Finally, it obtains authentication
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paths auth for all answers in a and produces the proof π = (rt,a, auth). The argument verifier V parses the
proof π = (rt,a, auth), computes the randomness ρ by querying the random oracle f with rt, checks that the
query-answer list a consists with the authentication paths auth and invokes the PCP verifier VPCP with the
randomness ρ and the answers a.

Prior work [Mic00, Val08, BCS16] showed that if the underlying PCP has soundness error ϵPCP, then
every malicious prover that makes at most t-queries to the random oracle, can convince the verifier of a

false statement with probability at most ϵ ≤ (t+ 1) · ϵPCP + 3
2 ·

t2

2λ
. Applying our framework, we obtain the

following:

Lemma 9.10. Let PCP be a PCP for a relation R with soundness error ϵPCP, and let Micali [PCP, λ] be
the Micali transformation for PCP. For any malicious argument prover P̃, let TP̃ be a random variable

indicating the number of queries performed by P̃ until he stops, when given access to a random oracle f that
outputs λ bits. Then, for every malicious argument prover P̃ it holds that

Pr

[
Vf (x, π̃) = 1

∧ x /∈ L(R)

∣∣∣∣∣ f ← U (λ)

(x, π̃)← P̃f

]
≤ (E

[
TP̃

]
+ 1) · ϵPCP +

3

2
·
E
[
T 2
P̃

]
2λ

.

Proof. We assume that we can derive two distinct oracles from f : an oracle fMT used for the Merkle
commitment scheme and an oracle fρ used to derive the PCP randomness. We construct the experiment
Micali-Exp as follows:

Micali-ExpfMT,fρ(x, π):

1. Parse π as a tuple (rt,a, auth).
2. Derive PCP randomness ρ := fρ(x, rt).

3. Return 1 if and only if V
[a]
PCP(x, ρ) = 1, a consists with the authentication paths auth and x /∈ L(R).

Let trMT = ((x1, y1), . . . , (xt1 , yt1)) be the query-answer list between a malicious argument prover P̃ and
the random oracle fMT and let trρ = ((x1, y1), . . . , (xt2 , yt2)) be the query-answer list between a malicious

argument prover P̃ and the random oracle fρ. Note that each query x to fMT is of the form x = x1∥x2. We
consider the 3 following predicates:

1. P1(trMT): outputs 1 if and only if there exists i > j such that xj ̸= xi and yj = yi.
2. P2(trMT): outputs 1 if and only if there exists i > j such that yi = x1

j or yj = x2
j .

3. P3(trρ, trMT): outputs 1 if and only if there exists a query (x, rt) ∈ trρ such that there exists a where:

(a) V
[a]
PCP(x, fρ(x, rt)) = 1; and

(b) trMT contains valid authentication paths for all answers in trMT with respect to the root rt.

Consider the predicate P (tr), which outputs 1 if and only if one of the above predicates is accepting. We
observe that Micali-Exp is ϵPCP-bounded with respect to the predicate P . Given the strict time analysis of

the Micali transformation, the predicate P is ϵ-hard where ϵ(t) = t · ϵPCP + 3
2 ·

t2

2λ
(for further discussion see

[CY21b]).
We argue that P is history-oblivious. Note that each query performed by P̃ is either to fMT or to fρ. If

P̃ queried fMT, then P is satisfied only if P1 or P2 is accepting. If P̃ queried fρ, then P is satisfied only if P3

is accepting. The i-th query satisfies the predicate P1 of P2 with probability at most 3 · i−1
2λ

and satisfies the
predicate P3 with probability at most ϵPCP. Overall, the i-th query satisfies the predicate P with probability
at most max{ϵPCP, 3 · i−1

2λ
} ≤ ϵPCP +3 · i−1

2λ
. Thus, we define κ(i) = ϵPCP +3 · i−1

2λ
, and get that for any trace

of length i (which for the predicate outputs 0), and any query x it holds that

Pr

[
P (tr∥(x, y)) = 1

∣∣∣∣ f ← U (λ)
y = f(x)

]
≤ κ(i) .
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Then, we have that

t∑
j=0

κ(j) =

t∑
j=0

ϵPCP + 3 · i− 1

2λ
≤ t · ϵPCP +

3

2
· t

2

2λ
= ϵ(t)

Overall, we conclude that the predicate is history-oblivious.
By applying Theorem 9.5 we derive the following

Pr

[
Vf (x, π̃) = 1

∣∣∣∣ f ← U (λ)

(x, π̃)← P̃f

]
= Pr

[
Micali-Expf (x, π̃) = 1

∣∣∣∣ f ← U (λ)

(x, π̃)← P̃f

]
≤ Pr

[
P (tr)

∣∣∣∣ f ← U (λ)

(x, π̃)
tr←− P̃f

]
+ ϵPCP

≤ E
[
TP̃

]
· ϵPCP +

3

2
·
E
[
T 2
P̃

]
2λ

+ ϵPCP ,

which completes the proof.
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