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Abstract. In ASIACRYPT’17, Naito proposed a beyond-birthday-bound
variant of the LightMAC construction, called LightMAC Plus, which is
built on three independently keyed n-bit block ciphers, and showed that
the construction achieves 2n/3-bits PRF security. Later, Kim et al. claimed
(without giving any formal proof) its security bound to 23n/4. In FSE’18,
Datta et al. have proposed a two-keyed variant of the LightMAC Plus con-
struction, called 2k-LightMAC Plus, which is built on two independently
keyed n-bit block ciphers, and showed that the construction achieves
2n/3-bits PRF security. In this paper, we show a tight security bound
on the 2k-LightMAC Plus construction. In particular, we show that it
provably achieves security up to 23n/4 queries. We also exhibit a match-
ing attack on the construction with the same query complexity and hence
establishing the tightness of the security bound. To the best of our knowl-
edge, this is the first work that provably shows a message length inde-
pendent 3n/4-bit tight security bound on a block cipher based variable
input length PRF with two block cipher keys.

Keywords: LightMAC Plus, H-Coefficient technique, Beyond Birthday
Bound, Double Block Hash-then-Sum, 2k-LightMAC Plus

1 Introduction

In FSE’16 [LPTY16], Luykx et al. have proposed LightMAC, which has been
standardized by ISO/IEC standardization process. LightMAC is a block cipher
based PRF that operates in parallel mode, i.e., for an n-bit block cipher E
instantiated with two independently sampled keys K1,K2, and with a global
counter size s, the LightMAC function is defined as follows:

LightMACEK1,K2
(M) = EK2

( `−1∑
i=1

EK1
(〈i〉s‖M [i])⊕ padn(M [`])

)
,

where 〈i〉s denotes the s bit encoding of the integer i and (M [1], . . . ,M [`]) de-
notes the n− s bit parsing of message M , where each M [i] is an n− s bit string,
and padn is an injective function that takes a message and appends to it a suit-
able number of 10∗ to make the length of the padded string to be exactly n.
However, this design comes at the cost of a reduced rate of construction, where
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the rate of a construction is determined by the ratio of the total number of n-bit
message blocks in a message M to the total number of primitive calls with block
size n required to process the message M . Despite having a reduced rate, the de-
sign of LightMAC is simple in the sense that it minimizes all auxiliary operations
other than having the block cipher calls, which allows to have a low overhead
cost, and hence obtains a more compact implementation than PMAC [BR02].
Moreover, due to the inherent parallelism in the design of the scheme, Light-
MAC outperforms all the other popular sequential MAC constructions in terms
of throughput in the parallel computing infrastructure.

1.1 Beyond Birthday Bound Secure Variants of LightMAC

Over the years, there have been many proposals of variants of LightMAC con-
struction achieving beyond the birthday bound security. In 2017, Naito [Nai17]
proposed LightMAC Plus construction based on three block cipher keys and
showed that the construction is secure against all adversaries that make roughly
22n/3 queries. In fact, LightMAC Plus is the first beyond the birthday bound-
secure PRF which is proven to have a message length independent security
bound. In the same paper, the author has also proposed LightMAC Plus2 [Nai17]
that provides a higher security bound than LightMAC Plus or LightMAC, but
it comes at the increased number of block cipher calls. In CT-RSA’18 [Nai18],
Naito has improved the bound of the LightMAC Plus construction from q3/22n

to q2
t qv/2

2n, where qt is the number of tagging queries and qv is the number of
verification queries. This security bound implies that LightMAC Plus is secure up
to 2n tagging queries if the number of verification queries is 1. Later, in [LNS18],
Leurent et al. have shown a forging attack on the construction that achieves a
constant success probability when the number of tagging queries is 23n/4 and the
number of verification queries is 1, which in turn invalidates the security claim of
Naito [Nai18] on LightMAC Plus. In EUROCRYPT’20, Kim et al. [KLL20] have
claimed an improved security bound (but did not supply any formal proof to
back up the claim) of LightMAC Plus construction from 2n/3-bits to 3n/4-bits
(ignoring the maximum message length), and due to the result of [LNS18], the
improved bound of LightMAC Plus turns out to be the tight one.

In FSE’19, Datta et al. [DDNP18] proposed a two-keyed variant of LightMAC Plus,
called 2K-LightMAC Plus, where the sum function used in the finalization phase
uses the same block cipher key that is independent to the block cipher key used
in the internal hash computation of 2K-LightMAC Plus. Authors have shown that
2K-LightMAC Plus achieves 2n/3-bits security bound. In [Nai18], Naito has pro-
posed a single-keyed variant of LightMAC Plus, dubbed as LightMAC Plus-1k, in
which a single block cipher key is used in the entire construction. However, the
2n-bits output (Σ,Θ) of the internal hash computation is domain separated by
setting their two most significant bits to it 10 and 11, respectively. Moreover,
the checksum of the message blocks after padded with the string 0n−s is masked
with the Σ value. Author has shown that LightMAC Plus-1k achieves 2n/3-bits
security. Recently, Song [Son21] proposed another variant of the single-keyed
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LightMAC Plus construction dubbed as 1k-LightMAC Plus, in which a single block
cipher is used throughout the construction and the 2n-bit hash value is domain
separated by setting their most significant bit to 0 and 1 respectively. It has been
shown in [Son21] that 1k-LightMAC Plus also achieves 2n/3-bits security bound.

Therefore, to summarize, only the LightMAC Plus construction has been claimed
to achieve a tight 3n/4-bit security bound [KLL20], and all its existing reduced-
keyed variants achieve only 2n/3-bits security. Therefore, the motivation for this
paper stems from asking the question

Can we prove a tight 3n/4-bit security bound on any reduced-keyed vari-
ants of the LightMAC Plus construction ?

1.2 Our Contribution

In this paper, we answer the above question affirmatively and show that the con-
struction achieves a tight security bound up to 23n/4 queries (ignoring the maxi-
mum message length). In particular, we have shown an upper bound on the PRF
advantage of 2k-LightMAC Plus in roughly of the order of 23n/4 queries, provided
the maximum number of message blocks in a query is at most min{2n−2−1, 2s},
and the total number of distinct message blocks across all queries is at most 2n,
where n denotes the block size of the block cipher and s denotes the size of the
block counter. Moreover, we have also shown a matching PRF attack on the
construction with query complexity in roughly of the order of 23n/4 queries. The
schematic diagram of 2k-LightMAC Plus is shown in Fig. 1. However, to prove the
security bound of the construction, we deeply rely on the result of the mirror
theory, where we lower the bound on the number of solutions of a given sys-
tem of equations. The following result establishes an upper bound on the PRF
advantage of 2k- LightMAC Plus against all information-theoretic adversaries.

Theorem 1. Let K be a finite and non-empty set. Let E : K×{0, 1}n → {0, 1}n
be a block cipher. Then, the PRF advantage for any (q, `, σ, t) adversary against
2k-LightMAC Plus[E] is given by,

AdvPRF
2k-LightMAC Plus[E](q, `, σ, t) ≤ 2AdvPRP

E (σ + 2q, t′) +
96q4

23n
+

8
√

2q2

23n/2
+

7q4/3

2n

+
39q8/3

22n
+

244q2

22n
+

32q3

23n
+

6σ

2n
+

q

2n
+

8

2n
,

where ` ≤ min{2n−2 − 1, 2s}, is the maximum number of message blocks in
a query, σ ≤ 2n, is the total number of distinct message blocks queried, and
t′ = O((σ + 2q)t).
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Fig. 1: Pictorial description of the 2k-LightMAC Plus [DDNP18].

2 Preliminaries

General Notations: For q ∈ N, we write [q] to denote the set {1, . . . , q}.
For a natural number n, {0, 1}n denotes the set of all binary strings of length
n and {0, 1}∗ denotes the set of all binary strings of arbitrary length. For a
natural number n, we call the elements of {0, 1}n blocks. For any binary string
x ∈ {0, 1}∗, |x| denotes the length i.e., the number of bits in x. For x, y ∈ {0, 1}n,
we write z = x⊕ y to denote the bitwise xor of x and y. For two binary strings
x, y ∈ {0, 1}∗, we write x‖y to denote the concatenation of x followed by y. For a

natural number n and x ∈ {0, 1}∗, we write (x1, x2, . . . , xl−1, xl)
n←− x to denote

the n-bit parsing of x, where |xi| = n for all i ∈ [l− 1] and 0 < |xl| ≤ n− 1. For
any n ∈ N, we define an injective function padn that takes an arbitrary string
x ∈ {0, 1}∗ and returns y ∈ ({0, 1}n)∗, defined as follows:

padn(x)
∆
= x‖10d,

where d is the smallest integer such that |padn(x)| is a multiple of n. For two
positive integers i, s such that i < 2s, we write 〈i〉s to denote the s-bit repre-
sentation of integer i. For b ∈ {0, 1}, we consider the function fixb that takes an
n-bit binary string x and returns x except its least significant bit is changed to
bit b. For b ∈ {10, 11}, we consider the function fixb that takes an n-bit binary
string x and returns x except its two most significant bits are changed to b. For
a pair of positive integers (i, j), (i′, j′) ∈ Z+ × Z+, we write (i, j) � (i′, j′) to
denote that either i < i′ or (i = i′ and j < j′).
We write a q-tuple x̃ = (x1, . . . , xq) as (xi)i∈[q]. When all the elements of a tuple
x̃ = (x1, . . . , xq) are distinct, then by abusing of notation, we often write x̃ as
the set x̃ = {xi : i ∈ [q]}. We write X (q) to denote the set of all q tuples whose
all elements are distinct, i.e.,

X (q) = {(x1, . . . , xq) : xi 6= xj ,∀i 6= j}.
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We write x ← y to denote the assignment of the variable y into x. For a set
X , X←$ {0, 1}n denotes that X is sampled uniformly at random from {0, 1}n
and independent to all random variables defined so far. For a tuple of ran-
dom variables (X1, . . . , Xq), we write (X1, . . . , Xq)←$ {0, 1}n to denote that
each Xi is sampled uniformly from {0, 1}n and independent to all other previ-

ously sampled random variables. Similarly, we write (X1, . . . , Xq)
wor←−− {0, 1}n

to denote that each Xi is sampled uniformly from {0, 1}n \ {X1, . . . , Xi−1}, i.e.,
Xi←$ {0, 1}n \ {X1, . . . , Xi−1}. For integers 1 ≤ b ≤ a, we write (a)b to denote
a(a− 1) . . . (a− b+ 1), where (a)0 = 1 by convention.

We denote the set of all functions from X to Y as Func(X ,Y). We write FuncX
when Y = {0, 1}n. Sometimes, we omit the set X from FuncX and simply write
Func when the domain is clear from the context. The set of all permutations
over X is denoted as Perm(X ). When X = {0, 1}n, then we omit X and simply
write Perm to denote the set of all permutations over {0, 1}n. We say that an
n-bit permutation P ∈ Perm maps a q-tuple x̃ to an another q-tuple ỹ, denoted

as x̃
P7→ ỹ, where each element of the x̃ tuple and the ỹ tuple is an n-bit string,

if the following holds:

∀i ∈ [q], P(xi) = yi.

We say that a q-tuple x̃ is permutation compatible with an another q-tuple ỹ,
where each element of both the tuples is an n-bit string, if there exists at least

one permutation P ∈ Perm such that x̃
P7→ ỹ.

2.1 Psuedorandom Function and Pseudorandom Permutation

Let F : {0, 1}k × X → {0, 1}n be a family of keyed functions from X to {0, 1}n.
We define the pseudorandom function (prf) advantage of F with respect to a
distinguisher A as follows:

Advprf
F (A )

∆
= ∆A [FK ; R] =

∣∣Pr[K ← {0, 1}k : A FK = 1]− Pr[R← Func : A R = 1]
∣∣ .

When X = {0, 1}n such that for every K ∈ {0, 1}k, the function EK : {0, 1}n →
{0, 1}n is bijective, then we call F to be a family of pseudorandom permutation.
We say that F is (q, `, σ, t, ε) secure if the maximum pesudorandom function
(permutation) advantage of F is ε where the maximum is taken over all distin-
guishers A that makes q queries to its oracle such that the total number of
message blocks queried across all q queries is σ, ` being the maximum number
of message blocks among all q queries, and the adversary runs for time at most
t, i.e.,

AdvW
F (q, `, σ, t)

∆
= max

A∈C
AdvW

F (A ),

where W is either prf or prp, C is the class of all distinguishers A that makes at
most q queries such that the total number of message blocks queried across all
q queries is σ, and ` being the maximum number of message blocks among all q
queries with run time at most t.
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The following result from linear algebra will be very useful in establishing the se-
curity bound of our construction. Proof of this result can be found in Proposition
1 of [DDN+17].

Lemma 1. Let (Z1, . . . , Zq)
wor←−− X ⊆ {0, 1}n with |X | = N > q. Let A be a

k× q binary matrix with rank r. We denote the column vector (Z1, . . . , Zq)
tr as

Z̃. Then, for any c̃ ∈ ({0, 1}n)k, we have

Pr[A · Z̃ = c̃] ≤ 1

(N − q + r)r
.

2.2 Mirror Theory

Consider an undirected edge-labelled acylic graph G = (V, E ,L) with edge la-
belling function L : E → {0, 1}n, where V = {P1, . . . , Pα} be the set of vertices
of the graph. For an edge {Pi, Pj} ∈ E , we write L({Pi, Pj}) = λij . For a path
P and a cycle C in the graph G, we define the label of the path and the label of
the cycle as

L(P)
∆
=
∑
e∈P
L(e), L(C) ∆

=
∑
e∈C
L(e).

We say the graph G is good if the graph is acylic and for all paths P of arbitrary
length in the graph G, one has L(P) 6= 0. For such a good graph G, we associate
a system of bivariate affine equations as follows:

EG = Yi ⊕ Zj = λij ∀ {Yi, Zj} ∈ E .

Note that, in the above system of bivariate affine equations, the variables are
the vertices of the associated graph. We say that two variables are involved
in an equation, if the corresponding vertices are connected by an edge in the
graph. The constants of the equations are the label of the corresponding edges.
Therefore, for the system of affine equations EG, the variables are Yi’s and Zi’s.
Now, we define an equivalence relation ∼ over V such that u ∼ v if and only if
(u, v) ∈ E . This equivalence relation induces a partition on V and each partition
is called a component. The size of a component refers to the number of elements
(i.e., the number of vertices) in the partition. The set of components in G is
denoted by comp(G) = (C1t . . .tCαtD1t . . .tDβ) where we assume that there
are α many components of G (i.e., C1, . . . ,Cα) with component size greater than
2 and β many components of G (i.e., D1, . . . ,Dβ) having component size exactly
2. We write C to denote C1 t . . . t Cα and D to denote D1 t . . . t Dβ . We write
qc to denote the total number of edges in C and q denotes the total number of
edges in the graph G. Then, it is easy to see that q = qc + β.

Notations: For the i-th component of C, i.e., Ci, which is acyclic and edge-
labelled graph, let VCi be the set of vertices of the component Ci and wi denotes
the cardinality of the set VCi . Let VC denotes the set of vertices of C. For 1 ≤
i ≤ α, we write σi = w1 + w2 + . . .+ wi, with the convention that σ0 = 0. Note
that qc = σα − α as each component Ci is a tree. Let h(G) denote the number
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of solutions to the graph G. Let hc(i) denote the number of solutions for the
subgraph C1 t C2 t . . . t Ci and hd(i) denote the number of solutions for the

subgraph C t Di where Di ∆
= D1 t D2 t . . . t Di. Therefore, hd(0) = hc(α) and

hd(β) = h(G).

Definition 1. Let EG be a system of equations corresponding to a good acyclic
edge-labeled graph G (as defined above). An injective function Φ : V → {0, 1}n, is
said to be an injective solution to EG if Φ(Pi)⊕Φ(Pj) = λij for all {Pi, Pj} ∈ E
such that L({Pi, Pj}) = λij.

In [DDD21], authors have proved that if G is a good acyclic edge-labeled graph
such that it is decomposed into finitely many components of size greater than 2
and exactly 2, then the number of injective solutions chosen from {0, 1}n, to EG,
is very close to the average number of solutions until the number of edges in E
is roughly 23n/4. Formally, the result is as follows:

Theorem 2. Let G = (V, E ,L) be a good acylic edge-labelled graph with |E| = q
edges and s vertices such that G is decomposed into α many components C1 t
. . . t Cα of size at least 3 and β many components D1 t . . . t Dβ of size exactly
2. For 1 ≤ i ≤ α, let wi be the total number of vertices of C1 t . . .tCi and qc be
the total number of edges in C1 t . . . t Cα. Let σα = w1 + w2 + . . . + wα be the
total number of vertices of C1 tC2 t . . .tCα. Then the total number of injective
solutions to EG which are chosen from {0, 1}n is at least:

(2n)s
2nq

(
1− 9q2

c

4 · 2n −
9q2
cq

22n
− 24q2qc

22n
− 6qqc

22n
− 40q2

22n
− 16q4

23n

)
.

We refer the interested reader to [DDD21] for proof of the result.

3 Proof of Theorem 1

As the first step of the proof, we replace the underlying block ciphers EK1
and

EK2 of the construction with a pair of uniformly sampled n-bit random permu-
tations P1 and P2 at the cost of the prp advantage of E and denote the resulting
construction as 2k-LightMAC Plus∗[P1,P2], i.e.,

AdvPRF
2k-LightMAC Plus[E](q, σ, t) ≤ 2AdvPRP

E (σ, t′) + AdvPRF
2k-LightMAC Plus∗[P1,P2](q, σ).

We write 2k-LightMAC Plus or 2k-LightMAC Plus∗ instead of 2k-LightMAC Plus[E]
or 2k-LightMAC Plus∗[P1,P2] whenever the primitives are understood from the
context. Now, our goal is to upper bound the information-theoretic PRF se-
curity of 2k-LightMAC Plus∗. For doing this, we bound the PRF security of
2k-LightMAC Plus∗ in terms of the distinguishing advantage of an information-
theoretic distinguisher D in distinguishing the output of 2k-LightMAC Plus∗ from
the output of an ideal world that consists of a random function RF which outputs
a random n-bit tag T on every input M ∈M. We assume that the distinguisher
D makes q queries to the oracle in either of the two worlds and at the end of
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the interaction, the oracle releases some additional information to D. If D inter-
acts with the oracle in the real world, then it releases Σ̃ = (Σ1, Σ2, . . . , Σq) and

Θ̃ = (Θ1, Θ2, . . . , Θq). However, if D interacts with the oracle in the ideal world,

then the oracle also releases Σ̃, Θ̃ tuple, where the tuple Σ̃, and Θ̃ are computed
in the ideal world as described in the following section.

3.1 Description of the Ideal World

The ideal oracle consists of two phases: (i) online phase in which for each queried
messageM i, the oracle samples the response Ti uniformly at random from {0, 1}n
and returns it to the distinguisher D. If it happens that any of the sampled
responses are all zero strings, then we set the bad flag Bad-Tag to 1 and abort
the game, i.e.,

Bad-Tag← 1 : ∃i ∈ [q] : Ti = 0n.

When all the queries and responses are over, the offline phase of the ideal world
begins. In this phase, we consider a function L1, which is initially undefined at
every point of its domain. The oracle of the ideal world computes Xi

j = 〈j〉s‖M i
j

values for all i ∈ [q], j ∈ [`i] and samples Y ij as follows: (a) if Xi
j is fresh in

X̃, then Y ij is uniformly sampled from outside of the set Ran(L1) followed by

including it to the set Ran(L1); (ii) on the other hand, if Xi
j collides with some

previous Xi′

j′ value, where (i′, j′) � (i, j), then Y ij is set to the value Y i
′

j′ . When

all the Y ij , for i ∈ [q], j ∈ [`i] are determined, the oracle computes the tuple
(Σi, Θi) for all i ∈ [q] as

Σi = fix0(Y i1 ⊕ Y i2 ⊕ . . .⊕ Y i`i), Θi = fix1(2`iY i1 ⊕ 2`i−1Y i2 ⊕ . . .⊕ 2Y i`i).

After the computation of the tuple (Σ̃, Θ̃) is over, we set the bad flag Bad1 to
1, if there exists two pairs (Σi, Θi) and (Σj , Θj) such that (Σi, Θi) = (Σj , Θj)
holds, i.e.,

Bad1← 1 : ∃i 6= j ∈ [q] : (Σi, Θi) = (Σj , Θj).

Moreover, we set the bad flag Bad2 to 1, if there exists two pairs (Σi, Ti) and
(Σj , Tj) such that (Σi, Ti) = (Σj , Tj) holds, i.e.,

Bad2← 1 : ∃i 6= j ∈ [q] : (Σi, Ti) = (Σj , Tj).

Similarly, we set the bad flag Bad3 to 1, if there exists two pairs (Θi, Ti) and
(Θj , Tj) such that (Θi, Ti) = (Θj , Tj) holds, i.e.,

Bad3← 1 : ∃i 6= j ∈ [q] : (Θi, Ti) = (Θj , Tj).

We set the bad flag Bad4 to 1 if there exists three distinct indices i1, i2, i3 ∈ [q]
such that Σi1 = Σi2 , Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n holds, i.e.,

Bad4← 1 : ∃i1, i2, i3 ∈ [q] : Σi1 = Σi2 , Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n.
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We set the bad flag Bad5 to 1 if there exists four distinct indices i1, i2, i3, i4 ∈ [q]
such that Σi1 = Σi2 , Θi2 = Θi3 , Σi3 = Σi4 holds, i.e.,

Bad5← 1 : ∃i1, i2, i3, i4 ∈ [q] : Σi1 = Σi2 , Θi2 = Θi3 , Σi3 = Σi4 .

We set the bad flag Bad6 to 1 if there exists four distinct indices i1, i2, i3, i4 ∈ [q]
such that Θi1 = Θi2 , Σi2 = Σi3 , Θi3 = Θi4 , Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n holds, i.e.,

Bad6← 1 : ∃i1, i2, i3, i4 ∈ [q] : Θi1 = Θi2 , Σi2 = Σi3 , Θi3 = Θi4 , Ti1⊕Ti2⊕Ti3⊕Ti4 = 0n.

Finally, we set the bad flag Bad7 to 1 if the number of colliding pairs for Σ or
Θ values is at least q2/3, i.e.,

Bad7← 1 :

{
|{(i, j) : i 6= j ∈ [q], Σi = Σj}| ≥ q2/3 or

|{(i, j) : i 6= j ∈ [q], Θi = Θj}| ≥ q2/3.

The offline phase of the ideal world is depicted in Fig. 2.

Therefore, we summarize the interaction of D with the oracle in the following
attack transcript

τ = {(M1, T1, Σ1, Θ1), (M2, T2, Σ2, Θ2), . . . , (Mq, Tq, Σq, Θq)}.

Let Tre denote the random variable that takes a transcript τ realized in the
real world. Similarly, Tid denotes the random variable that takes a transcript
τ realized in the ideal world. The probability of realizing a transcript τ in the
ideal (resp. real) world is called the ideal (resp. real) interpolation probability. A
transcript τ is said to be attainable with respect to D if its ideal interpolation
probability is non-zero, and Θ denotes the set of all such attainable transcripts.
Following these notations, we now state the main theorem of the H-Coefficient
technique [Pat08]:

Theorem 3 (H-Coefficident Technique). Let Θ = GoodTtBadT be a parti-
tion of the set of attainable transcripts. Suppose there exists εratio ≥ 0 such that
for any τ ∈ GoodT,

pre(τ)

pid(τ)

∆
=

Pr[Tre = τ ]

Pr[Tid = τ ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Tid ∈ BadT] ≤ εbad. Then

AdvPRF
2k-LightMAC Plus∗(D) ≤ εratio + εbad. (1)

Therefore, to prove the security of the construction using the H-Coefficient tech-
nique, we need to identify the set of bad transcripts and compute an upper
bound for their probability in the ideal world. Then we need to lower bound the
ratio of the real to ideal interpolation probability for a good transcript.
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Offline Phase of Oideal, Initialize L1 = ∅

1 : ∀i ∈ [q] : compute (Σi, Θi)← InternalL1(M i)

1 : ∀j ∈ [`i] : Xi
j ← 〈j〉s‖M i

j ;

2 : if L1(Xi
j) = >, then

3 : L1(Xi
j)← Y ij

$←− Ran(L1);

4 : else Y ij ← L1(Xi
j);

5 : Σi := fix0(Y i1 ⊕ · · · ⊕ Y i`i);

6 : Θi := fix1(2`iY i1 ⊕ · · · ⊕ 22Y i`i−1 ⊕ 2Y i`i);

return (Σi, Θi);

2 : Let Σ̃ = (Σ1, . . . , Σq), Θ̃ = (Θ1, . . . , Θq);

3 : if ∃i 6= j ∈ [q] : (Σi, Θi) = (Σj , Θj), then Bad1← 1 ,⊥;

4 : if ∃i 6= j ∈ [q] : (Σi, Ti) = (Σj , Tj), then Bad2← 1 ,⊥;

5 : if ∃i 6= j ∈ [q] : (Θi, Ti) = (Θj , Tj), then Bad3← 1 ,⊥;

6 : if ∃i1, i2, i3 ∈ [q] : Σi1 = Σi2 , Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n, then Bad4← 1 ,⊥;

7 : if ∃i1, i2, i3, i4 ∈ [q] : Σi1 = Σi2 , Θi2 = Θi3 , Σi3 = Σi4 , then Bad5← 1 ,⊥;

8 : if ∃i1, i2, i3, i4 ∈ [q] : Θi1 = Θi2 , Σi2 = Σi3 , Θi3 = Θi4 , Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n,

9 : then Bad6← 1 ,⊥;

10 : FΣ ← {(i, j) ∈ [q]2 : ∃i 6= j, Σi = Σj}; FΘ ← {(i, j) ∈ [q]2 : ∃i 6= j, Θi = Θj};

11 : if |FΣ | ≥ q2/3 ∨ |FΘ| ≥ q2/3, then Bad7← 1 ,⊥;

12 : return

(
(X̃i, Ỹi)i∈[q], (Σ̃, Θ̃)

)
;

Fig. 2: Offline phase of the Ideal oracle Oideal: Boxed statements denote bad
events. Whenever a bad event is set to 1, the oracle immediately aborts (denoted
as ⊥) and returns the remaining values of the transcript in any arbitrary manner.
So, if we proceed further we can surely assume that the event ⊥ (and so any
bad event so far) does not hold. We write > when the value of a variable is not
defined.
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3.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the
ideal world. We say that an attainable transcript τ is a bad transcript if anyone
the bad flags, defined in the offline phase of the ideal world as shown in Fig. 2,
is set to 1. Recall that BadT ⊆ Θ be the set of all attainable bad transcripts and
GoodT = Θ \ BadT be the set of all attainable good transcripts. We bound the
probability of bad transcripts in the ideal world as follows. Before we proceed to
bound the above events in the ideal world, we state the following two lemmas
that upper bounds the collision probability between two Σ (or Θ) values for two
distinct queries. We emphasize that the following result will be frequently used
in upper bounding the probability of the above bad events.

Lemma 2. For distinct two messages Mα and Mβ, we have

(i) Pr[Σα = Σβ ] ≤ 4

2n
, (ii) Pr[Θα = Θβ ] ≤ 4

2n
.

Proof. We prove only (i) as the proof of (ii) is exactly similar to (i). Suppose
the number of blocks of Mα and Mβ be `α and `β respectively. Without loss of
generality, we assume that `α ≤ `β . Now,

Σα = Σβ ⇒ msbn−1

( `α⊕
i=1

Yα[i]⊕
`β⊕
i=1

Yβ [i]︸ ︷︷ ︸
F

)
= 0n−1.

(2)

For computing the probability of the above event, we consider the following three
cases.

1. (`α = `β) ∧ (∃a ∈ [`α] : Xα[a] 6= Xβ [a]) ∧ (∀i ∈ [`α] \ {a} : Xα[i] = Xβ [i])
2. (`α = `β) ∧ (∃a, b ∈ [`α] : Xα[a] 6= Xβ [a] ∧Xα[b] 6= Xβ [b])
3. (`α 6= `β).

Case 1: Since Xα[a] 6= Xβ [a] ⇒ Yα[a] 6= Yβ [a] and Xα[i] = Xβ [i] ⇒ Yα[i] =
Yβ [i], for i ∈ [`α] \ {a}, F 6= 0n. So, the probability of Σα = Σβ is 1/2n−1.

Case 2: Suppose ∃a1, a2, . . . , aj ∈ [`α], j ≥ 2 such that, for all i ∈ [j], Xα[ai] 6=
Xβ [ai]. After eliminating all the same outputs between {Yα[i] : 1 ≤ i ≤ `α} and
{Yβ [i] : 1 ≤ i ≤ `β}, we have

F =

j⊕
i=1

(Yα[ai]⊕ Yβ [ai]) .

Since F has at most `α + `β outputs, the probability of F = 0n is 1/(2n − `α −
`β − 1).

Case 3: Without loss of generality, we assume that `α < `β . Similarly from the
previous case, after eliminating the same outputs between {Yα[i] : 1 ≤ i ≤ `α}
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and {Yβ [i] : 1 ≤ i ≤ `β}, we have

F =

j⊕
i=1

Yα[ai]⊕
k⊕
i=1

Yβ [ai],

where a1, . . . , aj ∈ [`α] and b1, . . . , bk ∈ [`β ]. Also, by the similar argument of
case 2, we have the probability of F = 0n is at most 1/(2n− `α− `β − 1). Hence,

Pr[Σα = Σβ ] ≤ 2

(2n − `α − `β − 1)

≤ 4

2n
, assuming `α + `β ≤ 2n−1. ut

Now, we are ready to bound the probability of the above bad events and hence,
we bound the probability of realizing a bad transcript in the ideal world as
follows:

Lemma 3 (Bad Lemma). Let us define the event BadT := Bad-Tag ∨ Bad1 ∨
Bad2 ∨ Bad3 ∨ Bad4 ∨ Bad5 ∨ Bad6 ∨ Bad7a ∨ Bad7b. Let τ ′ be any attainable
transcript and Xid be defined as above. Then

Pr[Xid ∈ BadT] ≤ 204q2

22n
+

80q4

23n
+

8
√

2q2

23n/2
+

8

2n
+

q

2n
+

6σ

2n
+

4q4/3

2n
+

32q3

23n
.

Proof. We upper bound the probability of individual bad events in the ideal
world and then by the virtue of the union bound, we sum up the bounds to
obtain the overall bound on the probability of bad transcripts in the ideal world.

1. Bound for Bad-Tag : For a fixed i ∈ [q], the probability that Ti = 0n is
exactly 2−n, which follows from the uniform sampling of the output for the i-th
query in the ideal world. Therefore, by varying over all possible choices fo i, we
have

Pr[Bad-Tag] = Pr[∃i ∈ [q] : Ti = 0n] ≤ q

2n
. (3)

2. Bound for Bad1 : For a fixed i 6= j ∈ [q], (Σi, Θi) = (Σj , Θj) implies the
following two equations:

E =



msbn−1

(
(Yi[1]⊕ . . .⊕ Yi[`i])⊕ (Yj [1]⊕ . . .⊕ Yj [`j ])

)
︸ ︷︷ ︸

S1

= 0n−1

msbn−1

(
(2`iYi[1]⊕ . . .⊕ 2Yi[`i])⊕ (2`jYj [1]⊕ . . .⊕ 2Yj [`j ])

)
︸ ︷︷ ︸

S2

= 0n−1,

where `i and `j denotes the number of blocks of message Mi and Mj . We bound
the probability of the above equation holds in the three disjoint cases as follows:
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1. (`i = `j) ∧ (∃a ∈ [`i] : Xi[a] 6= Xj [a]) ∧ (∀α ∈ [`i] \ {a} : Xi[α] = Xj [α])

2. (`i = `j) ∧ (∃a, b ∈ [`i] : Xi[a] 6= Xj [a] ∧Xi[b] 6= Xj [b])

3. (`i 6= `j).

Case 1: Since Xi[a] 6= Xj [a] ⇒ Yi[a] 6= Yj [a] and Xi[α] = Xj [α] ⇒ Yi[α] =

Yj [α], for α ∈ [`i] \ {a},
⊕`i

t=1 Yi[t] ⊕
⊕`j

t=1 Yj [t] 6= 0n−1. So, the probability of
S1 = 0n−1 is 1/2n and also the probability of S2 = 0n−1 is 1/2n−1. Thus, the
probability that satisfies equation E is 1/22n−2.

Case 2: Suppose ∃a1, a2, . . . , ap ∈ [`i], p ≥ 2 such that, for all t ∈ [p], Xi[at] 6=
Xj [at]. After eliminating all the same outputs between {Yi[α] : 1 ≤ α ≤ `i} and
{Yj [α] : 1 ≤ α ≤ `j}, we have

S1 = msbn−1

( p⊕
t=1

(Yi[at]⊕ Yj [at])
)
, S2 = msbn−1

( p⊕
t=1

2`i−at+1 (Yi[at]⊕ Yj [at])
)
.

(4)

Note that, there are at most `i+`j outputs in S1 and S2. Therefore, the numbers
of possibilities for Yi[a1] and Yi[a2] are at least 2n − (`i + `j − 2) and 2n −
(`i + `j − 1) respectively. Therefore, by fixing the values to the other output
variables of equations in E , the equations in E provide a unique solution for
Yi[a1] and Yi[a2]. As a result, the probability that equation E is satisfied is at
most 4/(2n − (`i + `j − 2))(2n − (`i + `j − 1)).

Case 3: Without loss of generality, we assume that `i < `j . Similar to the
previous case, after eliminating the same outputs between {Yi[α] : 1 ≤ α ≤ `i}
and {Yj [α] : 1 ≤ α ≤ `j}, we have

S1 = msbn−1

( p1⊕
t=1

Yi[at]⊕
p2⊕
t=1

Yj [at]

)
,

S2 = msbn−1

( p1⊕
t=1

2`i−at+1Yi[at]⊕
p2⊕
t=1

2`j−at+1Yj [at]

)
, (5)

where a1, . . . , ap1 ∈ [`i] and b1, . . . , bp2 ∈ [`j ]. By `i < `j , we have `j ∈ {b1, . . . , bp2}
and `j 6= 1. Since, there are at most `i + `j outputs in S1 and in S2, the number
of possibilities for Yj [b1] and Yj [`j ] is at least (2n−(`i+`j−2))(2n−(`i+`j−1)).
By fixing the values to the other output variables of equations in E , the equations
in E provide a unique solution for Yj [b1] and Yj [`j ]. As a result, the probability
that equation E is satisfied is at most 4/(2n − (`i + `j − 2))(2n − (`i + `j − 1)).

Therefore, we see that for each of the above case, equations in E holds with
probability at most 4/(2n− (`i + `j − 2))(2n− (`i + `j − 1)). Therefore, we have

Pr[Bad1] ≤ 4
(
q
2

)
(2n − (`i + `j − 2))(2n − (`i + `j − 1))

≤ 8q2

22n
, (6)

where the second last inequality follows due to the fact that `i + `j − 1 ≤ 2n−1.
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3. Bound for Bad2: To bound the probability of the event Bad2, for a fixed
choice of indices i 6= j ∈ [q],

Pr[Σi = Σj , Ti = Tj ]
(1)
= Pr[Σi = Σj ] · Pr[Ti = Tj ]

(2)
=

4

2n
× 1

2n
=

4

22n
,

where (1) follows due to the fact that the distribution of Ti is independent over
the distribution of Σi in the ideal world and (2) follows from Lemma 2 and from
the event that Ti = Tj holds with probability 2−n. Therefore, by varying over
all possible choices of indices, we have

Pr[Bad2] = Pr[∃i 6= j ∈ [q] : (Σi, Ti) = (Σj , Tj)] ≤
2q2

22n
(7)

4. Bound for Bad3: We bound the probability of the event Bad3 in a similar
way as we have bounded the probability of the event Bad2. Using the exact
argument as used in bounding the probability of the event Bad2, we similarly
bound the probability of the event Bad3 and hence, we have

Pr[Bad3] ≤ 2q2

22n
. (8)

5.Bound for Bad4: To obtain the bound for Bad4, we first define an auxiliary
bad event

Aux-Bad := Yi[j] ∈ {0n, 0n−11}.
It is easy to see that Pr[Aux-Bad] ≤ 2σ

2n , if σ is the total number of blocks over all
the q queries. Now we will obtain the bound for Bad4 assuming that the auxiliary
bad doesn’t occur. Suppose ` be the maximum number of message blocks among
all the q queries. After fixing a triplet (i1, i2, i3), Σi1 = Σi2 , Θi2 = Θi3 can be
represented by a system of three linear equations as follows:

Σ′i1 = Σ′i2 ⊕ 0n−1b1 ⇔
t⊕

j=1

A1,j · Y [j] = 0n−1b1,

Θ′i2 = Θ′i3 ⊕ 0n−1b2 ⇔
t⊕

j=1

A2,j · Y [j] = 0n−1b2,

(9)

for some Aα,β , bij , where i ∈ [2], j ∈ [2] and t ≤ 3`. The i-th row of the
augmented matrix (A|B) is denoted as (A|B)i and we denote the i-th row of
the coefficient matrix A as Ai for i = 1, 2. Now, we assume that b1 = b2 = 0.
If Aux-Bad doesn’t occur then (i) A1 contains at least three 1’s, and (ii) A2

contains at least two distinct entries and at most two 2α for each α. Thus, A2

is not a multiple of A1, and hence rank of A is at least 2. For other choices of
b1, b2 also we can also show that the rank of A is at least 2. Thus, for a fixed
choice of indices i1, i2, i3 ∈ [q] as follows:

Pr[Σi1 = Σi2 , Θi2 = Θi3 , Ti1 ⊕ Ti2 ⊕ Ti3 = 0n ∧ Aux-Bad]
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= Pr[Σi1 = Σi2 , Θi2 = Θi3 ∧ Aux-Bad] · Pr[Ti1 ⊕ Ti2 ⊕ Ti3 = 0n]

=
4

(2n − 3`)(2n − 3`− 1)
× 1

2n − 2

≤ 32

23n
,

assuming ` ≤ 2n−2 − 1. Here we have used the facts that the distribution of
Ti1 , Ti2 , Ti3 are chosen uniformly at random and they are independent over the
distribution of Σi in the ideal world. Therefore, by varying over all possible
choices of indices, we have

Pr[Bad4] ≤ Pr[Aux-Bad] + Pr[Bad4 ∧ Aux-Bad] ≤ 2σ

2n
+

32q3

23n
. (10)

6.Bound for Bad5: To obtain the bound for Bad5, we first define an auxiliary
bad event

Aux-Bad := Yi[j] ∈ {0n, 0n−11}.
It is easy to see that Pr[Aux-Bad] ≤ 2σ

2n , if σ is the total number of blocks over
all the q queries. Now we will obtain the bound for Bad5 conditioned on the
auxiliary bad doesn’t happen. Suppose ` be the maximum number of message
blocks among all the q queries. For the Σ and Θ collision we can simply eliminate
all the same input blocks. Let us denote

Bad5i1,i2,i3,i4 ⇔ Σi1 = Σi2 ∧Θi2 = Θi3 ∧Σi3 = Σi4 ,

for (i1, i2, i3, i4) ∈ [q]4. Therefore,

Bad5⇔
∨

(i1,i2,i3,i4)∈[q]4

Bad5i1,i2,i3,i4 .

After fixing a quadruple (i1, i2, i3, i4), Bad5i1,i2,i3,i4 can be represented by a
system of three linear equations as follows;

Σ′i1 = Σ′i2 ⊕ 0n−1b1 ⇔
t⊕

j=1

A1,j · Y [j] = 0n−1b1,

Θ′i2 = Θ′i3 ⊕ 0n−1b2 ⇔
t⊕

j=1

A2,j · Y [j] = 0n−1b2,

Σ′i3 = Σ′i4 ⊕ 0n−1b3 ⇔
t⊕

j=1

A3,j · Y [j] = 0n−1b3,

(11)

for some Aα,β , bi, where i ∈ [3]. Suppose

B =

0n−1b1
0n−1b2
0n−1b3


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Therefore, (A|B) be the augmented matrix and A be the coefficient matrix of
the system of equations. The i-th row of the augmented matrix is denoted by
(A|B)i and the i-th row of the coefficient matrix is denoted by Ai for i = 1, 2, 3.
We analyse the following cases depending on the B matrix as follows.

Case 1. B is all zero matrix. We fix (i1, i2, i3, i4) and consider the matrix A.
First let us consider the case `i2 = `i3 . Now assuming that Aux-Bad doesn’t
occur, we have the following four properties:

(P1) Both A1 and A3 contains at least three 1’s. This is due to the fact that
there are Σ′ collisions in A1 and A3,

(P2) All the entries of A2 should look like 2β for some β,
(P3) A2 contains at most two 2α for each α, and
(P4) Since there is Θ collision for A2, it contains at least two distinct elements.

It is easy to see that the above properties ensure that A2 is not a multiple of
A1, and hence rank of the coefficient matrix A is at least 2. This implies that,
either rank of A is 3, or A1 = A3, or A2 = xA1 + yA3, for some nonzero values
x, y. We define three cases as follows:

(a) T1
∆
=
{

(i1, i2, i3, i4) ∈ [q]4 : A has rank 3
}

,

(b) T2
∆
=
{

(i1, i2, i3, i4) ∈ [q]4 : A1 = A3

}
,

(c) T3
∆
=
{

(i1, i2, i3, i4) ∈ [q]4 : A2 = xA1 ⊕ yA3 for some non-zero x,y
}

.

Case (1a): Since the matrix is full ranked, the probability of Y -variables which
satisfies system of equation is bounded by 1/(2n − t)(2n − t− 1)(2n − t− 2). So
we have

Pr

 ∨
(i1,i2,i3,i4)∈T1

Bad5i1,i2,i3,i4

 ≤ q4

(2n − 4`)(2n − 4`− 1)(2n − 4`− 2)
≤ 8q4

23n
,

(12)
as t ≤ 4`.

Case (1b): To bound the probability of Bad5i1,i2,i3,i4 for (i1, i2, i3, i4) ∈ T2, we
define an equivalence relation ∼ on [q]2, where (i1, i2) ∼ (i3, i4) implies A1 = A3

for A, which means that Σ′i1 = Σ′i2 ⇔ Σ′i3 = Σ′i4 . Assume that the relation ∼
partitions [q]2 into r many subsets, namely I1, . . . , Ir, i.e., [q]2 = I1 t · · · t Ir.
Now, we consider the event Σ′i1 = Σ′i2 for all (i1, i2) ∈ Ij , j = 1, . . . , r, denoted
by Fj . Then, we have

Pr[Fj ] ≤ 2/2n.

Therefore, we have

Pr

 ∨
(i1,i2,i3,i4)∈T2

Bad5i1,i2,i3,i4

 ≤ Pr

 ∨
j∈[r]

∨
(i1,i2),(i3,i4)∈Ij

Bad5i1,i2,i3,i4


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≤
r∑
j=1

Pr[Fj ]Ṗr

 ∨
(i1,i2),(i3,i4)∈Ij

(
Θ′i2 = Θ′i3

) ∣∣∣∣Fj


≤
r∑
j=1

2

2n
.min

{
2|Ij |2

2n
, 1

}
, (13)

where ` ≤ 2n/16. Using the given condition
∑r
j=1 |Ij | = q2, min

{
2|Ij |2

2n , 1
}

have

maximum value when r = bq2/2
n−1
2 c + 1 and |Ij | = 2

n−1
2 , for j = 1, . . . , r − 1

and |Ir| = q2 − (r − 1)2
n−1
2 . Hence,

Pr

 ∨
(i1,i2,i3,i4)∈T2

Bad5i1,i2,i3,i4

 ≤ 2
√

2q2

23n/2
+

2

2n
. (14)

Case (1c): Now we consider the case (i1, i2, i3, i4) ∈ T3. Properties (P1) - (P4)
ensure that (i) A1 and A3 intersect at most two positions and can not be disjoint,
and (ii) A2 can have at most three different elements. So, we can find a submatrix
of order 3× 3  1 1 0

2α 2α ⊕ 2β 2β

0 1 1

 ,
where α 6= β. Since all the elements of A2 is a power of 2, there must exist some
γ such that 2α ⊕ 2β = 2γ . We define

NEQi,j
∆
= {µ ∈ [min{`i, `j}] : Mi[µ] 6= Mj [µ]}t{µ : min{`i, `j} < µ ≤ max{`i, `j}}.

Since xA1⊕yA3 gives at most three nonzero elements in A2, NEQi2,i3 = {α, β, γ}.
Now consider that Mi2 and Mi3 are given with NEQi2,i3 = {α, β, γ}, where
2α ⊕ 2β ⊕ 2γ = 0 and α < β < γ. We have to find Mi1 and Mi4 such that
(i1, i2, i3, i4) ∈ T3. In this scenario, A2 is determined uniquely. After choosing
distinct x, y ∈ {2α, 2β , 2γ}, A1 and A3 are fix, such that xA1 ⊕ yA3 = A2. If A2

contains every nonzero element exactly twice and if x = 2α and y = 2β , then we
can find a submatrix of order 3× 6 1 0 1 1 0 1

2α 2β 2γ 2α 2β 2γ

0 1 1 0 1 1


with other elements are 0’s. As, there are at most two possibilities that Mi1

yielding A1 and Mi4 yielding A3 each, Mi1 and Mi4 can be chosen at most 24
possible ways. Therefore we have,

Pr

 ∨
(i1,i2,i3,i4)∈T3

Bad5i1,i2,i3,i4

 ≤ 24
(
q
2

)
(2n − 4`− 1)(2n − 4`− 2)

≤ 96q2

22n
. (15)
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By considering all the three sub-cases we have

Pr

 ∨
(i1,i2,i3,i4)∈T1

⊔
T2

⊔
T3

Bad5i1,i2,i3,i4

 ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
+

96q2

22n
. (16)

Now we consider the case where `i2 6= `i3 . W.l.o.g. assume that `i2 > `i3 . We
observe that property (P1), (P4) remains as it is, and property (P2) gets modified
to the fact that all the entries of A2 should now look like 2β or 2`i2−`i3+β for
some β. Similar to the previous analysis, this may results in three sub-cases 1a,
1b, and 1c. We can easily bound 1a and 1b identically. Now we claim that 1c
can not happen in this case. This is due to the fact that (i) The length difference
in the two messages ensures that the contribution of Y -variables can not be
canceled out (as the coefficients are different depending on the length of the
message), (ii) one can have at least 2 different and at most 3 different entries in
A2, (iii) Both A1, A3, and A1 ⊕ A3 must contain at least 3 1’s. Combining the
cases, we have

Pr[Bad5-1 | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
+

96q2

22n
. (17)

Case 2: B is a non-zero matrix. Let us fix (i1, i2, i3, i4). Now depending on
the values of b1, b2, b3 we have the cases as follows:

Case (2a): This case corresponds to b1 = b3 = 0, and b2 = 1. In this event, it
is clear that (A|B)2 can not be written as a linear combination of (A|B)1 and
(A|B)3. So, the rank of (A|B) is either 2 or 3. Thus, we have

Pr[Bad5-2a | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
.

Case (2b): This case corresponds to b1 = b3 = 1, and b2 = 0. In this event A2

follows the conditions (P2)-(P4). Since A2 contains at least 2 distinct elements
and b1 = b3 = 1, b2 = 0, (A|B)2 can not written as a linear combination of
(A|B)1 and (A|B)3. So, the rank of (A|B) is either 2 or 3. Thus, we have

Pr[Bad5-2b | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
.

Case (2c): This case corresponds to b1 6= b3, and b2 = 0. In this event (A|B)1 6=
(A|B)3. Also, there exists at least one column in (A|B) where the corresponding
elements of A1 and A3 are distinct. Due to this reason (A|B)2 can not written
as a linear combination of (A|B)1 and (A|B)3. So, the rank of (A|B) is 3. Thus,
we have

Pr[Bad5-2c | Aux-Bad] ≤ 16q4

23n
.
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Case (2d): This case corresponds to b1 6= b3, and b2 = 1. This is the same as
Case 2c. Thus the probability of this event is bounded by

Pr[Bad5-2d | Aux-Bad] ≤ 16q4

23n
.

Case (2e): This case corresponds to b1 = b2 = b3 = 1. In this event, any of the
cases may happen among Case 1a, Case 1b and Case 1c. Thus the probability
of this event is bounded by

Pr[Bad5-2e | Aux-Bad] ≤ 8q4

23n
+

2
√

2q2

23n/2
+

2

2n
+

96q2

22n
.

Thus, summing all the above five cases, we have

Pr[Bad5-2 | Aux-Bad] ≤ 56q4

23n
+

6
√

2q2

23n/2
+

6

2n
+

96q2

22n
. (18)

Finally, combining all the cases, we obtain:

Pr[Bad5] ≤ Pr[Bad5 | Aux-Bad] + Pr[Aux-Bad]

≤ Pr[Bad5-1 | Aux-Bad] + Pr[Bad5-2 | Aux-Bad] + Pr[Aux-Bad]

≤ 64q4

23n
+

8
√

2q2

23n/2
+

2σ + 8

2n
+

192q2

22n
. (19)

7. Bound for Bad6: To obtain the bound for Bad6, we first define an auxiliary
bad event

Aux-Bad := Yi[j] ∈ {0n, 0n−11}.
It is easy to see that Pr[Aux-Bad] ≤ 2σ

2n , if σ is the total number of blocks
over all the q queries. Now we will obtain the bound for Bad6 assuming that
the auxiliary bad doesn’t occur. Suppose ` be the maximum number of mes-
sage blocks among all the q queries. After fixing a quadruple (i1, i2, i3, i4),
Θi1 = Θi2 , Σi2 = Σi3 , Θi3 = Θi4 can be represented by a system of three linear
equations as follows:

Θ′i1 = Θ′i2 ⊕ 0n−1b1 ⇔
t⊕

j=1

A1,j · Y [j] = 0n−1b1,

Σ′i2 = Σ′i3 ⊕ 0n−1b2 ⇔
t⊕

j=1

A2,j · Y [j] = 0n−1b2,

Θ′i3 = Θ′i4 ⊕ 0n−1b3 ⇔
t⊕

j=1

A3,j · Y [j] = 0n−1b3,

(20)

for some Aα,β , bα, where α ∈ [3] and t ≤ 4`. The i-th row of the augmented
matrix (A|B) is denoted as (A|B)i and we denote the i-th row of the coefficient
matrix A as Ai for i = 1, 2. Now we claim that if Bad-Aux doesn’t occur, then



20 Nilanjan Datta1, Avijit Dutta1 and Samir Kundu2

rank of A is at least 2, for any choice of (b1, b2). Thus, for a fixed choice of indices
i1, i2, i3, i4 ∈ [q] as follows:

Pr[Θi1 = Θi2 , Σi2 = Σi3 , Θi3 = Θi4 , Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n ∧ Aux-Bad]

= Pr[Θi1 = Θi2 , Σi2 = Σi3 , Θi3 = Θi4 ∧ Aux-Bad] · Pr[Ti1 ⊕ Ti2 ⊕ Ti3 ⊕ Ti4 = 0n]

=
4

(2n − 4`)(2n − 4`− 1)
× 1

2n − 3
=

16

23n
,

assuming ` ≤ 2n−2−1. Note that, we have used the facts that the distribution of
Ti1 , Ti2 , Ti3 , Ti4 are chosen uniformly at random and they are independent over
the distribution of Yi values in the ideal world. Therefore, by varying over all
possible choices of indices, we have

Pr[Bad6] ≤ Pr[Aux-Bad] + Pr[Bad6 ∧ Aux-Bad] ≤ 2σ

2n
+

16q4

23n
. (21)

8. Bound for Bad7a and Bad7b: We bound only the probability of the event
Bad7a as the analysis of bounding the probability of the event Bad7b is exactly
similar to that of bounding the probability of the event Bad7a. To bound the
probability of the event Bad7a, we define an indicator random variable. For each
i 6= j ∈ [q], we define Xi,j which is defined as follows:

Xi,j =

{
1, if Σi = Σj

0, otherwise

Note that, Pr[Xi,j = 1] = Pr[Σi = Σj ] and therefore, from Lemma 2, we have

Pr[Xi,j = 1] =
4

2n
.

We define another random variable X :=
∑
i,j

Xi,j . Therefore, we have

Pr[Bad7a] = Pr[|{(i, j) ∈ [q]× [q] : i 6= j,Σi = Σj}| > q2/3]

= Pr[X > q2/3] ≤ E[X]

q2/3
≤ 4

(
q
2

)
2n · q2/3

≤ 2q4/3

2n
. (22)

Using the exact argument as used in bounding the probability of the event Bad7a,
we similarly bound the probability of the event Bad7b and hence, we have

Pr[Bad7b] ≤
2q4/3

2n
(23)

Finally, the result follows as sum the probabilities of all these bad events. ut

3.3 Analysis of Good Transcript

In this section, we lower bound the ratio of the probability of realizing a good
transcript τ in the real and the ideal world. Let τ be a good transcript, where

τ = {(M1, T1, X̃1, Ỹ1, Σ1, Θ1), (M2, T2, X̃2, Ỹ2, Σ2, Θ2), . . . , (Mq, Tq, X̃q, Ỹq, Σq, Θq)}.
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In order to compute the real or ideal interpolation probability, let σ denote the
distinct number of message blocks among all q queries. As a result of that, the
ideal interpolation probability becomes 2−nq/(2n)σ.
Now, to compute the real interpolation probability, we first note that the permu-
tation P1 is invoked on a total of σ distinct input-output pairs and P2 is invoked
on at most 2q input-output pairs. Therefore, we have

Pr[Tre = τ ] = Pr[P1(Xi
j) = Y ij ,∀i ∈ [q], j ∈ [`i],P2(Σi)⊕ P2(Θi) = Ti,∀i ∈ [q]]

= Pr[P1(Xi
j) = Y ij ,∀i ∈ [q], j ∈ [`i]] · Pr[P2(Σi)⊕ P2(Θi) = Ti,∀i ∈ [q]︸ ︷︷ ︸

E

]

=
1

(2n)σ
· Pr[E] (24)

Therefore, it now boils down to compute a lower bound on the probability of
the event E. To do this, we first consider that τ is a good transcript. As a
result of it, none of the bad flags defined in the offline phase of the ideal world
have been set to 1. Now, we consider the tuple Σ̃ = (Σ1, Σ2, . . . , Σq), Θ̃ =
(Θ1, Θ2, . . . , Θq) corresponding to the good transcript τ . From the two tuples

Σ̃ and Θ̃, we construct an edge labeled graph G as follows: for each i ∈ [q], Σi
and Θi represents the vertices of the graph and for each i ∈ [q], we put an edge
between the vertices Σi and Θi with the label of the edge being Ti. Moreover,
for any i 6= j, if Σi = Σj , then we merge the corresponding two vertices into
one. Similarly, for any i 6= j, if Θi = Θj , then we merge the corresponding
two vertices into one. This will end up with an edge-labeled graph having the
following properties:

1. The graph does not have any cycle of length 2, otherwise the bad event Bad1
would have been hold true.

2. The label of an edge of any path is non-zero, otherwise bad event Bad-Tag
would have been hold true.

3. For a path of length two in the graph, the xor of the label of the edges of
the path is non-zero, otherwise, the bad event Bad2 or the bad event Bad3
would have been hold true.

4. The graph does not have any odd length cycle.

5. The graph contains path of length three, which we call N path, such that
the xor of the label of the edges of the path is non-zero, otherwise bad event
Bad4 would have been hold true.

6. The graph does not have any M-path, otherwise bad event Bad5 would have
been hold true. A pictorial description of the M path is shown in (b) of Fig. 3

7. The graph contains a W path such that the xor of the label of the edges of
the path is non-zero, otherwise bad event Bad6 would have been hold true.
A pictorial description of the W path is shown in (a) of Fig. 3
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8. The last three properties ensure that the graph does not have any cycle of
length 4 or above and it does not have any path of length more than 4.
Hence, the graph G becomes acyclic. Therefore, G is a collection of some
disjoint components.

9. Finally, due to Bad7a and Bad7b, each component is of size at most q2/3.

Σi1 Σi2 = Σi3 Σi4

Θi1 = Θi2 Θi3 = Θi4

Ti1 Ti2 Ti3 Ti4

(a)

Θi1

Σi1 = Σi2

Θi2 = Θi3

Σi3 = Σi4

Θi4

Ti1 Ti2 Ti3 Ti4

(b)

Fig. 3: (a) represents a W-path and (b) represents a M-path.

Therefore, computing a lower bound on the probability of the event E is equiva-
lent to computing a lower bound on the number of injective solutions which are
chosen from {0, 1}n to EG. Therefore, by applying Theorem 2, we have

Pr[E] ≥ 1

2nq

(
1− εratio

)
. (25)

Therefore, from Eqn. (24) and Eqn. (25), we have

Pr[Tre = τ ] ≥ 1

(2n)σ
· 1

2nq
·
(

1− εratio

)
(26)

where εratio is defined as follows:

εratio
∆
=

9q2
c

4 · 2n +
9q2
cq

22n
+

24q2qc
22n

+
6qqc
22n

+
40q2

22n
+

16q4

23n
. (27)

where qc denotes the total number of edges in the components having size greater
than two. Since qc ≤ q2/3 ≤ q, we have

εratio ≤
9q4/3

4 · 2n +
9q7/3

22n
+

24q8/3

22n
+

6q5/3

22n
+

40q2

22n
+

16q4

23n
(28)

Finally, the result follows by taking the ratio of real to ideal interpolation prob-
ability, and by combining Lemma 3 and Eqn. (28). ut

4 Matching Attack on 2k-LightMAC Plus

In this section, we show a distinguishing attack on 2k-LightMAC Plus with 23n/4

query complexity which establishes the proven security bound of 2k-LightMAC Plus
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is tight. The distinguishing attack essentially follows a similar technique as de-
scribed in [LNS18]. Broadly speaking, we first make a sufficient number of queries
to the construction so that it satisfies a given relation R. Once, we get a quadru-
ple that satisfies the relationR; we try to distinguish. Note that we have assumed
that s ≤ n/4 for the attack. Details of the attack are given as follows:

1. Perform the following for different choices of x ≤ 23n/4:

(a) Make queries to the construction 2k-LightMAC Plus on the fol-
lowing three inputs: (i) 0‖x, (ii) 1‖x, (iii) 2‖x.

(b) L[x]
∆
= ‖2i=0

(
2k-LightMAC Plus(i‖x)

)
.

2. For each (x1, x2, x3, x4) such that L[x1]⊕L[x2]⊕L[x3]⊕L[x4] = 03n,
do the following:

(a) Make four additional queries to the construction
2k-LightMAC Plus with the following inputs: (i) 3‖x1, (ii)
3‖x2, (iii) 3‖x3, (iv) 3‖x4.

(b) If
⊕4

i=12k-LightMAC Plus(3‖xi) = 0n output 1.

3. Output 0.

4.1 Attack Idea

Due to the presence of collisions in the fix functions in the finalization process,
we can construct a matching attack by utilizing differences in Σ′ and/or Θ′ that
are absorbed by the fix functions. Our approach involves finding a quadruple of
messages (M1 := u‖x1,M2 := u‖x2,M3 := u‖x4,M4 := u‖x4) such that two
values collide within half of the state. Specifically, we search for quadruples that
satisfy a relation R(M1,M2,M3,M4) defined as:

R(M1,M2,M3,M4)
∆
=


Σ′(M1) = Σ′(M2)⊕ 0n−11

Θ′(M2) = Θ′(M3)⊕ 0n−11

Σ′(M3) = Σ′(M4)⊕ 0n−11

Θ′(M4) = Θ′(M2)⊕ 0n−11

Note that, a quadruple (M1,M2,M3,M4) satisfies the relation R, we must have

4⊕
i=1

2k-LightMAC Plus(Mi) = 0n.
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Now, it is easy to see that our choice of messages, as shown in the attack algo-
rithm, ensures the following:

R(M1,M2,M3,M4)⇔


EK1

(〈2〉‖x1) = EK1
(〈2〉‖x2)⊕ 0n−11

2EK1
(〈2〉‖x2) = 2EK1

(〈2〉‖x3)⊕ 0n−11

EK1
(〈2〉‖x3) = EK1

(〈2〉‖x4)⊕ 0n−11

2EK1(〈2〉‖x4) = 2EK1(〈2〉‖x1)⊕ 0n−11

⇔


⊕4

i=1 EK1(〈2〉‖xi) = 0n

EK1
(〈2〉‖x1) = EK1

(〈2〉‖x2)⊕ 0n−11

EK1
(〈2〉‖x1) = EK1

(〈2〉‖x4)⊕ 0n−11

Therefore, R defines a 3n-bit relation which is independent of u, so that several
quadruples can be made easily that satisfy R. Now we consider a list:

L = {2k-LightMAC Plus(0‖x)‖2k-LightMAC Plus(1‖x)‖2k-LightMAC Plus(2‖x)},

where x ∈ [23n/4] and looking for a quadruples (x1, x2, x3, x4) such that L(x1)⊕
L(x2) ⊕ L(x3) ⊕ L(x4) = 03n. This leads to an attack: we look for a quadruple
(x1, x2, x3, x4) such that

∀u ∈ {0, 1, 2},
4⊕
i=1

2k-LightMAC Plus(u‖xi) = 0n.

We expect on average one random quadruple (with 23n potential quadruples,
and a 3n-bit filtering), and one quadruple satisfying R (also a 3n-bit condition).
The correct quadruple is checked with 4 extra queries (as given in line 2(a) of
the algorithm). It is easy to see that the distinguisher succeeds with probability
(1− 1

2n ). This is due to the fact that the probability that line 2(b) gets executed
for (i) the real construction is 1, and for (ii) a random function is 1

2n .

4.2 Attack Complexity

It is easy to see that the number of queries made by the adversary is Õ(23n/4).
The searching required for step (iii) is done with at most Õ(23n) operations,
and using O(23n/4) memory size (to store all the lists). We would like to point
out that one can improve on the time complexity of the attack following the
technique used in [LNS18], that can report a quadruple used in line 2(a) in
Õ(23n/2) operations.

5 Conclusion

To the best of our knowledge, this is the first work that provably shows a mes-
sage length-independent 3n/4-bit tight security bound for a block cipher-based
variable input length PRF with two block cipher keys. Proving a similar security
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bound for 1k-LightMAC Plus is an interesting research problem. To prove the se-
curity of the 1k-LightMAC Plus construction, we require to solve a combinatorial
problem, called mirror theory over a restricted set, a variant of the mirror the-
ory result, that considers establishing a lower bound on the solutions of a given
system of bivariate affine equations which are chosen from a non-empty finite
subset of {0, 1}n.
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