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Abstract. Ascon, a family of algorithms that supports hashing and au-
thenticated encryption, is the winner of the NIST Lightweight Cryptog-
raphy Project. In this paper, we propose an improved preimage attack
against 2-round Ascon-XOF-64 with a complexity of 232 via a better
guessing strategy. Furthermore, in order to find a good guessing strategy
efficiently, we build a MILP model and successfully extend the attack to
3 rounds. The time complexity is 253 when IV = 0, while for the real IV ,
the attack still works and the time complexity is 251. Additionally, we
also investigate the resistance of Ascon-HASH against collision attacks.
We introduce the linearization of the inverse of S-boxes and then pro-
pose a practical free-start collision attack on 3-round Ascon-HASH using
a differential trail searched dedicatedly. Furthermore, We construct dif-
ferent 2-round connectors using the linearization of the inverse of S-boxes
and successfully extend the collision attack to 4 rounds and 5 rounds of
Ascon-HASH with complexities of 221 and 241 respectively. Although our
attacks do not compromise the security of the full 12-round Ascon-XOF
and Ascon-HASH, they provide some insights into Ascon’s security.

Keywords: Ascon · Preimage attack · Collision attack · Guessing strat-
egy · Linearization.

1 Introduction

With the increasing demand for a cryptographic primitive that provides both
encryption and authentication and the rise of lightweight cryptography that is
suitable to resource-constrained platforms, the National Institute of Standards
and Technology (NIST) decided to solicit lightweight authenticated encryption
by hosting a cryptographic competition in 2019. In February 2023, The NIST
Lightweight Cryptography Team announced that they decided to standardize the
Ascon family for lightweight cryptographic applications as it meets the needs of
most use cases where lightweight cryptography is required. Therefore, Ascon [5]
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is the ultimate winning algorithm after several rounds of selection processes. The
Ascon family consists of the authenticated ciphers Ascon-128 and Ascon-128a,
hash functions Ascon-HASH and Ascon-HASHA, and extendable output func-
tions Ascon-XOF and Ascon-XOFA. All schemes use the 320-bit permutation
which is repeated for 12 times. AEAD schemes and hashing schemes in Ascon
are based on duplex construction and sponge construction [1], respectively.

In recent years, there are a majority of valuable research results on Ascon,
including the results of the underlying permutation [6] [10] [13] [8] and AEAD
[6] [10] [12]. However, compared to permutation and authentication encryption,
which have been extensively analyzed, relatively few analyses focus on Ascon-
HASH and Ascon-XOF. Dobraunig et al., the designers of Ascon, proposed a
preimage attack on 2-round Ascon-XOF with a 64-bit output (aka Ascon-XOF-
64) based on state linearization strategy in [7]. In addition, Zong et al. [18]
performed a 2-round collision attack on Ascon-HASH with a non-practical time
complexity of 2125 and a collision attack on 2-round Ascon-XOF with a practical
time complexity of 215. Gerault et al. [10] proposed an improved collision attack
on 2-round Ascon-HASH with a time complexity of 2103, which is based on a
differential trail with a higher probability than the previous one. Yu et al. [17]
performed a practical collision attack on 2-round Ascon-HASH based on some
critical observations on the round function of Ascon, its complexity is 262.6. With
the widespread use of Ascon, analyzing its security against various attacks has
become increasingly important.

Table 1. Summary of attacks on Ascon-XOF and Ascon-HASH

Primitive Type Size Rounds Time Reference

Ascon-XOF Preimage 64 2/12 239 [7]
Ascon-XOF Preimage 64 2/12 232 Section3
Ascon-XOF Preimage 64 3/12 253 Section4
Ascon-XOF* Preimage 64 3/12 251 Section4

Ascon-HASH Collision 256 2/12 2125 [18]
Ascon-HASH Collision 256 2/12 2103 [10]
Ascon-HASH Collision 256 2/12 262.6 [17]

Ascon-HASH FS Collision 256 3/12 214 Section5
Ascon-HASH FS Collision 256 4/12 221 Section5
Ascon-HASH FS Collision 256 5/12 241 Section5

* means that the IV is a real IV and round constants and initialization are
both considered. FS is the abbreviation of Free-Start.
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1.1 Our Contribution.

In this paper, we aim to analyze the security of hashing modes Ascon-HASH
and Ascon-XOF of Ascon. On the one hand, we work on improving the time
complexity of the 2-round preimage attack and extending the attack to 3 rounds.
On the other hand, we also investigate the resistance of Ascon-HASH against
collision attacks. The previous attacks on Ascon-XOF and Ascon-HASH and
our new results are summarized in Table 1. Our contributions are summarized
as follows.

Improved preimage attack on 2-round Ascon-XOF The main idea of
our improved preimage attack is to derive 32 linear equations for the inputs
of round 1 and the outputs after the substitution layer in round 2 by guessing
32 input bits of round 2. By applying Gauss-Jordan elimination to those linear
equations, we can fully recover the message corresponding to the target hash
value. Furthermore, our improved preimage attack can reduce the complexity
from 239 summarized in [7] to 232.

Improved preimage attack on 3-round Ascon-XOF On the one hand, we
propose a preimage attack against 3-round Ascon-XOF, where IV is set to 0 and
round constants and initialization are ignored. For the first time, we transform
the manual selection of guess bits in Ascon preimage attacks into an automated
optimization problem and solve it through a dedicated MILP model. Specifically,
we perform a preimage attack on 3-round Ascon-XOF by just guessing 53 state
bits of the input in round 1, which means that we can find a preimage of 3-round
Ascon-XOF with a complexity of 253. On the other hand, we also propose a more
realistic preimage attack against 3-round Ascon-XOF, where the IV is a real IV
and round constants and initialization are both considered. We can obtain 13
linear equations by just guessing 51 state bits of the input in round 1 based on
another dedicated MILP model, which means that we can find a preimage of
3-round Ascon-XOF with a complexity of 251.

Improved collision attack on 3-round Ascon-HASH We propose a free-
start collision attack on 3-round Ascon-HASH based on a new 3-round differen-
tial trail searched dedicatedly, the main idea of which is to construct a 2-round
connector so that the differential propagation probability of the last two rounds
is 1. Moreover, the 2-round connector, playing an essential role in our attack, is
constructed by using the linearization of the inverse of S-boxes. As a result, in
the free-start setting, the complexity of our proposed collision attack on 3-round
Ascon-HASH is 214.

Collision attacks on 4-round and 5-round Ascon-HASH We construct
different 2-round connectors using the linearization of the inverse of S-boxes
and successfully extend the collision attack to 4 rounds and 5 rounds of Ascon-
HASH with complexities of 221 and 241 respectively. The essential factors in the
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success of these attacks are differential trails searched dedicatedly and 2-round
connectors based on the linearization of the inverse of S-boxes.

1.2 Organization.

The rest of paper is organized as follows. In Section 2, we give some prelim-
inaries and briefly describe the Ascon. In Section 3, we present our improved
preimage attack against 2-round Ascon-XOF. In Section 4, we describe our im-
proved preimage attacks against 3-round Ascon-XOF. In Section 5, we describe
our 3-round, 4-round and 5-round collision attacks against Ascon-HASH respec-
tively. Finally, the paper is concluded in Section 6.

2 Preliminaries

In this section, we will describe some definitions of preimage attack and collision
attack and the details of Ascon required for our attacks.

2.1 A Brief Description of Ascon

Ascon [4] proposed by Dobrauning et al., includes a permutation-based AEAD
and hashing schemes using a sponge duplex construction (see Fig.1). Its core
components are the two 320-bit permutations pa and pb with a and b rounds,
respectively. In the hash modes, both a and b are set to 12 (b is set to 8 for
Ascon-HASHA and Ascon-XOFA), the details are illustrated in Fig.1. For the
description of the round transformations, the 320-bit state S is split into five
64-bit words Xi, S = X0∣∣X1∣∣X2∣∣X3∣∣X4 (as shown in Fig.2). The 320-bit initial

H
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r

c

r

c

Fig. 1. Ascon’s Hashing Modes

state of Ascon-HASH and Ascon-XOF is defined by a constant IV which specifies
the algorithm parameters, including key k and round numbers a and the value of
a−b and the rate r, each written as an 8-bit integer (with h = l = 256 for Ascon-
HASH and h = 0 for unlimited output in Ascon-XOF). Then, it is followed by
the maximal output length of h bits as a 32-bit integer. Especially, key is set to 0
in the hash modes. The a-round permutation pa is applied to initialize the state
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S. Ascon-HASH and Ascon-XOF process the message M in blocks of r bits. The
padding process is as follows: it appends a single 1 and the smallest of 0s to M
such that the length of the padded message is an integer multiple of r bits. The
padded message is split into s blocks of r bits and described as Formula 1.

M1, ..,Ms ← r-bit blocks of M ∣∣1∣∣0r−1−(∣M ∣mod r) (1)

The permutations iteratively apply a round transformation p, which in turn
consists of three functions: the addition of constants pC , the substitution layer
pS , and the linear diffusion layer pL (p = pL ○ pS ○ pC). When representing the
i-th round in a layer, we append the number to the subscript; for instance, the
substitution of the 1-th round is written as pS,1. The output state after pS layer
is denoted as Y r = Y r

0 ∣∣Y r
1 ∣∣Y r

2 ∣∣Y r
3 ∣∣Y r

4 while the input state to the permutation
at r-th round is represented as Xr = Xr

0 ∣∣Xr
1 ∣∣Xr

2 ∣∣Xr
3 ∣∣Xr

4 . The bit at round r,
row i and column j will be denoted as Sr

i [j]. For instance, Xr
i [j] represents the

j-th bit of word i at the round r-th for j = 0, ...,63.

Addition of Constants (pC) The addition of constants pC adds the round
constant cr to the X2[7, ...,0] at each round where X2[7, ...,0] denotes 8 con-
secutive bits of X2 (see Fig.2). The added constant changes depending on the
round.

63 53 43 33 23 13 7 3 0 X0 
X1 
X2 
X3 
X4

Fig. 2. Ascon’s constant addition layer

Substitution Layer (pS) The substitution layer pS updates the state S through
64 parallel applications of the 5-bit S-box (see Fig.3). The algebraic normal form
(ANF) of the S-box is shown in Equation 2.

Y0[j] =X4[j]X1[j]⊕X3[j]⊕X2[j]X1[j]⊕X2[j]⊕X1[j]X0[j]⊕X1[j]⊕X0[j]

Y1[j] =X4[j]⊕X3[j]X2[j]⊕X3[j]X1[j]⊕X3[j]⊕X2[j]X1[j]⊕X2[j]⊕X1[j]⊕X0[j]

Y2[j] =X4[j]X3[j]⊕X4[j]⊕X2[j]⊕X1[j]⊕ 1

Y3[j] =X4[j]X0[j]⊕X4[j]⊕X3[j]X0[j]⊕X3[j]⊕X2[j]⊕X1[j]⊕X0[j]

Y4[j] =X4[j]X1[j]⊕X4[j]⊕X3[j]⊕X1[j]X0[j]⊕X1[j]

(2)

Linear Diffusion Layer (pL) Each row of the 320-bit state consists of 64 bits,
which is diffused by a linear function ∑i(Xi), as shown in Equation 3 (see Fig.4).
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X0 
X1 
X2 
X3 
X4

Fig. 3. Ascon’s substitution layer

Here⋙ denotes the right cyclic shift operation over the 64-bit word.

Y0 = Σ0 (X0) =X0 ⊕ (X0⋙ 19)⊕ (X0⋙ 28)
Y1 = Σ1 (X1) =X1 ⊕ (X1⋙ 61)⊕ (X1⋙ 39)
Y2 = Σ2 (X2) =X2 ⊕ (X2⋙ 1)⊕ (X2⋙ 6)
Y3 = Σ3 (X3) =X3 ⊕ (X3⋙ 10)⊕ (X3⋙ 17)
Y4 = Σ4 (X4) =X4 ⊕ (X4⋙ 7)⊕ (X4⋙ 41)

(3)

X0 
X1 
X2 
X3 
X4

Fig. 4. Ascon’s linear diffusion layer

2.2 Preimage Attack and Collision Attack

The definition of preimage attacks is as follows. Given a function H and a target
value y, the goal of preimage attack is to find an input massage x ∈ {0,1}n such
that H(x) = y.

Additionaly, the 2-round preimage attack configuration used by Dobrauning
et al. [7] is described in Fig.5. Under the condition that the IV is set to zero and
all-zero IV is taken as the input of the round permutation, the input state bits
of X1[j],X2[j],X3[j],X4[j] are fixed to zero in round 1. Since the message M
is directly XORed to the first row of the input state in round 1, X0[j] of round 1
can be determined by the attacker. Based on these conditions, we can conclude
two properties of Ascon’s S-box as follows.

Property 1. [7] If X1[j],X2[j],X3[j],X4[j] are fixed to zero, then, Y0[j], Y1[j],
Y3[j] are determined by X0[j].
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M H
64 64

Fig. 5. 2-round preimage attack configuration

Property 2. [7] If X1[j],X2[j],X3[j],X4[j] are fixed to zero, then, Y2[j] = 1
and Y4[j] = 0 always hold.

Furthermore, the definition of collision attacks is to find any pair of different
input messages (M1, M2) (M1 ∈ {0,1}n, M2 ∈ {0,1}n) such that H(IV,M1) =
H(IV,M2). Moreover, the definition of free-start collision attacks is to find any
pair of initial values (IV1, IV2) and a pair of messages (M1, M2) (M1 ∈ {0,1}n,
M2 ∈ {0,1}n) such that H(IV1,M1) = H(IV2,M2) but IV1 = IV2 and M1 =M2

do not hold simultaneously (see Fig.6).

Fig. 6. Free-start collision attack configuration

3 Preimage Attacks on 2-round Ascon-XOF

In this section, we propose an improved preimage attack against 2-round Ascon-
XOF (with a 64-bit output) with the same setting as the one used by Dobrauning
et al. [7], where the IV is set to 0 and round constants and initialization are
ignored. The main idea of the preimage attack on 2-round Ascon-XOF proposed
by Dobrauning et al. [7] is to linear the state bits after the substitution layer of
round 2 by guessing 39 consecutive input state bits of round 1. More specifically,
they can obtain 25 linear equations after 2 rounds by guessing 39 consecutive
input state bits. Then, by solving the 25 linear equations, they can determine
the remaining 25 input state bits of round 1, which means that they can find a
preimage of 2-round Ascon-XOF with a complexity of 239.



8 Q. Fu et al.

3.1 Our Improved Preimage Attack on 2-round ASCON-XOF

Here we perform a preimage attack against 2-round Ascon-XOF by just guessing
32 state bits of round 2 before the substitution layer, which means that we can
find a preimage of 2-round Ascon-XOF with a complexity of 232. We will give
more details about our attack in the following.

There is a linear layer from Y 1 to X2. According to the property of Ascon’s
linear layer, X2

2 [j] = 1 and X2
4 [j] = 0 always hold due to Property 2. Then, Y 2

0 [j]
can be calculated as given in Equation 4 based on Property 2 and ANF of S-box
(The additions used in this paper are all modulo 64 additions).

Y 2
0 [j] =X2

1 [j]X2
0 [j]⊕X2

0 [j]⊕X2
3 [j]⊕ 1 (4)

Guessing each bit of X2
0 , we can obtain two linear equations (ignore constants)

as shown in equation 5.

Y 2
0 [j] =X2

1 [j]⊕X2
3 [j]

X2
0 [j] =X1

0 [j]⊕X1
0 [j + 19]⊕X1

0 [j + 28]
(5)

Y 2
0 can be obtained by applying P −1L,2 to H0, therefore, analyzing Y 2

0 is sufficient

43 3363 53

43 33 23 13 3 0

63 53 43 33 23 13 3 0

3 063 53 43 33 23 13

3 023 13

H
guesseduncertian linear 0 1

63 53

M

Fig. 7. 2-round preimage attack

to find a preimage. As shown in Fig.7, when guessing the last 32 bits of X2
0 , we
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can get 64 equations, denoted as EP (64 equations are described in Appendix
A). By solving the linear equation systems Ep, we can obtain a unique solution
denoted as Xpre. By applying p2 to Xpre, we can get a possible hash value
Hpre

0 , with a probability of 2−32 of matching the true hash value H0. Therefore,
we can obtain a preimage of H0 with a probability of 1 by traversing 232 possible
values of X2

0 [0], ...,X2
0 [31] and solving the corresponding equation systems. The

process of finding a preimage for H0 is as follows.

1. Calculate Y 2
0 from the hash value H0 through P −1L,2.

2. Take a set of possible values in X2
0 [31], ...,X2

0 [0] ∈ {0, ...,232−1}. Then, gen-
erate 64 linear equations based on these values and Y 2

0 .

3. Check whether the linear equation system is unsolvable. If it is unsolv-
able, return to Step 2 and perform the same process for other values of
X2

0 [31], ...,X2
0 [0]. If the linear equation system is solvable, go to Step 4.

4. Applying Gauss-Jordan elimination to the constructed linear equation sys-
tems, obtain a unique solution, denoted as Xpre.

5. Applying 2-round Ascon-XOF to Xpre. Check whether the calculated hash
value matches H0. If the hash value does not match, go back to Step 2 and
perform the same process for other values of X2

0 [31], ...,X2
0 [0].

3.2 Complexity Analysis and Comparisons of Our Improved
Preimage Attack

As shown in Fig.7, we can linearize 32 bits of Y 2
0 [31, ...,0] by guessing 32 bits

of X2
0 [31, ...,0]. Therefore, our proposed preimage attack is valid because 64

variables of X1
0 are all included in 64 linear equations (described in Appendix A).

Therefore, our proposed preimage attack on 2-round Ascon-XOF just needs to
guess 32 bits of X2

0 and solve 232 corresponding equation systems. For preimage

Table 2. Summary of preimage attacks against 2-round Ascon-XOF.

Primitive #rounds #guess bits Complexity Ref.

Ascon-XOF 2/12 39 239 [7]
Ascon-XOF 2/12 32 232 Section 3

attacks against 2-round Ascon-XOF, the summary of the results can be found
in Table 2. As shown in Table 2, in [7], Dobrauning et al. perform a preimage
attack on 2-round Ascon-XOF by guessing 39 bits of X1

0 , with a complexity of
239. Compared to the attack proposed by Dobrauning et al. [7], our proposed
preimage attack on 2-round Ascon-XOF can reduce the complexity from 239 to
232.
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4 Preimage Attacks on 3-round Ascon-XOF

In the previous section, we perform a preiamge attack on 2-round Ascon-XOF-
64 based on a better guessing strategy. However, how to choose a good guess-
ing strategy becomes very complicated when the number of rounds increases.
Therefore, to solve this complex problem, for the first time, we transform the
manual selection of guess bits in Ascon preimage attacks into an automated
optimization problem and solve it through the MILP program. In this section,
we propose a preimage attack on 3-round Ascon-XOF-64 based on a dedicated
MILP model, where the IV is set to 0 and round constants and initialization
are ignored. Additionally, we also propose a more realistic preimage attack on
3-round Ascon-XOF-64 using another dedicated MILP model, where the IV is
a real IV and round constants and initialization are both considered.

4.1 Analysis of Preimage Attack on 3-round Ascon-XOF

The resistance to preimage attacks is a significant security property of hash func-
tions because it ensures that the hash function is a one-way function, meaning
that it is easy to compute the hash value of an input, but difficult to compute the
input from the hash value. This property is important in many cryptographic
applications, such as digital signatures, message authentication codes, and pass-
word storage, where it is necessary to ensure that an attacker cannot recover the
original input from its hash value. Therefore, the resistance to preimage attacks
is a critical metric in the security analysis of hash functions. Given a function f
and a target value y, the goal of preimage attacks is to find an input x ∈ {0,1}n
such that f(x) = y. A valid preimage attack is to find x such that f(x) = y at
a complexity cost less than 2n. Therefore, the problem of finding a preimage
is actually an optimization problem. In cryptanalysis, attack tools for solving
optimization problems include MILP (Mixed Integer Linear Programming) [15]
and SAT (Boolean Satisfiability Problem) [14], etc.

Currently, the preimage attacks on Ascon are based on guessing strategies
and manual calculations to construct a linear equation system, and then find the
preimage by solving the equation systems. The drawback of this method is that
it is easy to ignore better solutions, resulting in higher complexity. For instance,
the preimage attacks on Ascon-XOF proposed by Dobraunig et al. rely on man-
ually selecting guess bits, constructing a linear equation system and solving the
linear system to obtain the preimage [7]. Therefore, we transform the manual
selection of guess bits in Ascon preimage attacks into an automated optimization
problem and solve it through the MILP program. To achieve this transformation,
we need to solve three major challenges.

1. How to establish the relationship between the linearization conditions of the
linearized bits in the output layer and the guessed bits in the input layer.

2. If the state bit that needs to be guessed contains several variables, the sit-
uation where the state bit is judged to have been guessed is very complex.
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How to choose a compromise method to model this complex situation and
achieve good results requires careful consideration.

3. When considering the actual IV , The conditions of each state bit to be
linearized or guessed are not regular, so the expression of each state bit needs
to be calculated, but it is very difficult to manually calculate the expression
of each state bit.

In response to the first challenge, we observe the properties of the ANF of Ascon’s
S-box and establish the relationship between the linearization conditions of the
linearized bits in the output layer and the guessed bits in the input layer from
top to bottom. For instance, Y 3

0 [j] can be expressed as the equation 6.

Y 3
0 [j] = (X3

4 [j]⊕X3
2 [j]⊕X3

0 [j]⊕ 1)X3
1 [j]⊕X3

3 [j]⊕X3
2 [j]⊕X3

0 [j] (6)

As shown in equation 6, there are two situations where Y 3
0 [j] is linearized. In

the first situation, Y 3
0 [j] is linearized when X3

1 [j] is guessed and X3
0 [j], X3

3 [j]
and X3

4 [j] are linearized (X3
2 [j] is always linear when IV is zero). In the second

situation, Y 3
0 [j] is linearized when X3

0 [j], X3
2 [j] and X3

4 [j] are guessed and
X3

1 [j] and X3
3 [j] are both linearized. By combining these two situations, we

can establish the relationship between the conditions for Y 3
0 to be linearized and

X3. Moreover, If we continue to establish the relationship between the conditions
imposed on X3 by linearization of Y 3

0 and input value X1
0 , then the relationship

between the linearization conditions of Y 3
0 and input value X1

0 is established.
More modeling details can be found in Algorithm 1.

The second challenge can be illustrated by an example. As for X3
1 [j], X3

1 [j]
can be expressed as the equation 7.

X3
1 [j] = Y 2

1 [j]⊕ Y 2
1 [j + 61]⊕ Y 2

1 [j + 39] (7)

In fact, if X3
1 [j] needs to be guessed, we need to consider the situation where

Y 2
1 [j], Y 2

1 [j + 61], and Y 2
1 [j + 39] are guessed. The number of values in {Y 2

1 [j],
Y 2
1 [j+61], Y 2

1 [j+39]} that have not been guessed denoted as M . If M is greater
than or equal to 2 when we need to guess X3

1 [j], the number of linear equations
needs to be increased by 1. If M is equal to 1, guessing X3

1 [j] is equivalent
to guessing the values in {Y 2

1 [j], Y 2
1 [j + 61], Y 2

1 [j + 39]} that have not been
guessed. If M is equal to 0, X3

1 [j] is equivalent to having been guessed. As
described above, the situation where the state bit containing several variables
needs to be guessed is complex. In order to reduce the complexity of modeling
and find better solutions, for all state bits that need to be guessed, our strategy is
that they are considered to be guessed only if all the variables they contain have
been guessed. For instance, the conditions for X3

1 [j] to be guessed is whether all
three values {Y 2

1 [j], Y 2
1 [j + 61], Y 2

1 [j + 39]} it contains have been guessed.
The third challenge can be described as follows. We need to know the expres-

sion of the state bit when it needs to be guessed or linearized. In other words,
we need to determine which items in the expression for this state bit need to be
guessed or linearized. However, the expression of each round’s state bit under
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the actual IV may be irregular, so we need to calculate the specific expression
for each state bit. Since the state of Ascon is 320 bits, manually calculating the
expression for each state bit would require enormous computations. Therefore,
we write a program by Sagemath to obtain the expression for each state bit
under the actual IV .

4.2 Our Preimage Attack on 3-round Ascon-XOF under Zero IV

In this section, we propose a preimage attack on 3-round Ascon-XOF (with a
64-bit output), where the IV is set to 0 and round constants and initialization
are ignored. Specifically, we perform a preimage attack on 3-round Ascon-XOF
by just guessing 53 state bits of X1

0 , which means that we can find a preimage
of 3-round Ascon-XOF with a complexity of 253. Indeed, our proposed preimage
attack on 3-round Ascon-XOF under 0 IV is based on MILP, more details about
our MILP model can be found in Algorithm 1. Next, we will provide a detailed
description to our MILP modeling process.

Based on the ANF of Ascon’s S-box, Y 3
0 [j] can be expressed as the equation

6.As shown in Equation 6, there are two situations where Y 3
0 [j] is linearized. In

the first situation, Y 3
0 [j] is linearized when X3

1 [j] is guessed and X3
0 [j], X3

3 [j]
and X3

4 [j] are linearized (X3
2 [j] is always linear). In the second situation, Y 3

0 [j]
is linearized when X3

0 [j], X3
2 [j] and X3

4 [j] are guessed and X3
1 [j] and X3

3 [j]
are both linearized. We will provide more details about our MILP program using
the first situation as an example. As shown in Fig.8, X3

1 is obtained by applying
PL,2 to Y 2

1 . Therefore, X3
1 [j] can be expressed as the equation 7. As shown

in equation 7, X3
1 [j] is guessed when Y 2

1 [j], Y 2
1 [j + 61] and Y 2

1 [j + 39] are all
guessed. Similarly, X3

1 [j] is linearized when Y 2
1 [j], Y 2

1 [j+61] and Y 2
1 [j+39] are

all linearized.
At the same time, Y 2

1 [j] can be simplified as shown in equation 8 because
X2

2 always equals 1 and X2
4 always equals 0 (see Fig.8).

Y 2
0 [j] =X2

1 [j]X2
0 [j]⊕X2

3 [j]⊕X2
0 [j]⊕ 1

Y 2
1 [j] =X2

3 [j]X2
1 [j]⊕X2

0 [j]⊕ 1

Y 2
3 [j] =X2

3 [j]X2
0 [j]⊕X2

3 [j]⊕X2
1 [j]⊕X2

0 [j]⊕ 1

Y 2
4 [j] =X2

1 [j]X2
0 [j]⊕X2

3 [j]⊕X2
1 [j]

(8)

Therefore, Y 2
1 [j] is guessed when X2

3 [j], X2
1 [j] and X2

0 [j] are all guessed.
At the same time, Y 2

1 [j] is linearized when X2
3 [j] or X2

1 [j] is guessed. When
Y 2
0 [j], Y 2

3 [j], and Y 2
4 [j] need to be guessed or linearized, the situation is similar

to that of Y 2
1 [j]. Especially, Y 2

2 [j] is equal to X2
1 [j]. Therefore, Y 2

2 [j] is guessed
when X2

1 [j] is guessed. At the same time, Y 2
2 [j] itself is linear. X2

0 [j] is a
linear combination of different bits of Y 1

0 , as shown in Equation 3. Therefore,
X2

0 [j] is guessed when Y 1
0 [j], Y 1

0 [j + 19] and Y 1
0 [j + 28] are all guessed. When

X2
1 [j] and X2

3 [j] need to be guessed, the situation is similar to that of X2
0 [j].

Moreover, based on Property 1, if X1
0 [j] is guessed then Y 1

3 [j], Y 1
1 [j] and Y 1

0 [j]
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are all guessed. Following the steps described above, the relationship between
the linearization conditions of Y 3

0 and input value X1
0 can be established.

Algorithm 1 Establishing a MILP model of 3-round Ascon preimage attack
Input: N: Index set of guessed bits in X1

0 ; Intermediate state variables: Y 1, X2, Y 2,
X3

Output: M: Number of bits of Y 3
0 to be linearized

1: According to equation 6, convert the linearization conditions of Y 3
0 [j] into con-

straint conditions on {X3
0 [j],X

3
1 [j],X

3
2 [j],X

3
3 [j],X

3
4 [j]} (j ∈ {0,1, ...,63}), and

record it as setX3

2: According to equation 3, convert the constraint conditions of X3(setX3) into con-
straint conditions on {Y 2

0 [j], Y
2
1 [j], Y

2
2 [j], Y

2
3 [j], Y

2
4 [j]}, and record it as setY 2

3: According to equation 2, convert the constraint conditions of Y 2(setY 2) into con-
straint conditions on {X2

0 [j],X
2
1 [j],X

2
2 [j],X

2
3 [j],X

2
4 [j]}, and record it as setX2

4: According to equation 3, convert the constraint conditions of X2(setX2) into con-
straint conditions on {Y 1

0 [j], Y
1
1 [j], Y

1
2 [j], Y

1
3 [j], Y

1
4 [j]}, and record it as setY 1

5: According to equation 2, convert the constraint conditions of Y 1(setY 1) into con-
straint conditions on X1

0 [j]
6: Add additional constraints: len(N) +M ⩽ 64 and the linearized Y 3

0 [j] can not be
a constant

7: Set the objective function: Maximize M
8: According to the conditional inequality obtained from step 1 to 6, solve the model

using the MILP optimizer
9: A feasible solution is found, save it to a file

The results of our preimage attack on 3-round Ascon-XOF are shown in Table
3, and the linear expressions for the linearized bits of Y 3

0 are shown in Appendix
B. Our proposed preimage attack on 3-round Ascon-XOF is valid because the

Table 3. Results of preimage attacks against 3-round Ascon-XOF.

Item Index #Total bits

Guess bits of X1
0

1 2 4 5 6 7 8 9 11 12 13 14 15 16 18 19 21
22 24 25 26 27 28 29 30 31 33 34 35 37 38
40 41 43 44 46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

53

Linear bits of Y 3
0 2 5 12 21 24 27 30 34 37 52 63 11

remaining 11 bits that have not been guessed are all included in the 11 linear
equations. Therefore, we can obtain a preimage of H with a probability of 1
by traversing 253 possible values of guessing bits and solving the corresponding
equation systems.
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43 3363 53

43 33 23 13 3 0

63 53 43 33 23 13 3 0

3 063 53 43 33 23 13

3 023 13

H
guesseduncertian linear 0 1

63 53

M

3 063 53 43 33 23 13

3 063 53 43 33 23 13

Fig. 8. 3-round preimage attack

4.3 Our Preimage Attack on 3-round Ascon-XOF under Real IV

In this section, we perform a preimage attack on 3-round Ascon-XOF, where the
IV is a real value and round constants and initialization are both considered. In
fact, the steps of the MILP model of our preimage attack on 3-round Ascon-XOF
under a real IV are similar to that of our preimage attack on 3-round Ascon-
XOF with zero IV . The difference is that the conditions of each state bit that
needs to be guessed or linearized need to follow the expressions obtained by our
Sagemath program. Therefore, the MILP modeling process will be omitted here.
We can obtain 13 linear equations of Y 3

0 with respect to X1
0 by just guessing 51

state bits of X1
0 , which means that we can find a preimage of 3-round Ascon-

XOF with a complexity of 251. The results of our preimage attack on 3-round
Ascon-XOF under real IV are described in Table 4. The linear expressions for
the linearized bits of Y 3

0 are shown in Appendix C, and the initial state S0
1
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Table 4. Results of preimage attacks against 3-round ASCON-XOF under real IV .

Item Index #Total bits

Guess bits of X1
0

0 1 2 4 5 7 8 9 10 11 12 13 16 18 19 20 21
22 23 24 26 27 29 30 31 32 33 34 35 37 38
39 41 42 43 44 46 47 48 49 51 52 54 55 56
57 58 59 60 61 63

51

Linear bits of Y 3
0 5 13 16 19 27 30 35 44 47 49 52 57 58 13

of our preimage attack of 3-round Ascon-XOF is described in Appendix D. Our
proposed preimage attack on 3-round Ascon-XOF under real IV is valid because
the remaining 13 bits that have not been guessed are all included in the 13 linear
equations. Therefore, we can obtain a preimage of the given hash value with a
probability of 1 by traversing 251 possible values of guessing bits and solving the
corresponding equation systems.

5 Collision Attacks on Reduced Ascon-HASH

When performing collision attacks on SPN-based primitive, we can attack for
more rounds if we can linearize the nonlinear layers at an acceptable cost. Lin-
earization of nonlinear layers requires a lot of degrees of freedom. Compared to
the collision attack on Keccak proposed by Qiao et al. [16], Ascon’s state only
has 64 bits of degrees of freedom, making linearization strategy using in [16] less
effective in Ascon’s collision attacks. In order to effectively use the linearization
strategy, we consider the free-starting collision setting and investigate the resis-
tance of Ascon-HASH against collision attacks in this setting. By comprehen-
sively analyzing the properties of Ascon and its S-box, we found that a 2-round
connector constructed by applying the linearization of the inverse of S-boxes can
extend collision attacks against Ascon-HASH for more rounds under the free-
start collision setting. Therefore, in this section, we propose free-start collision
attacks on reduced Ascon-HASH based on new differential trails searched by
CP [9], followed by the details of constructing 2-round connectors, which play
an essential role in our attacks.

5.1 S-Box Linearization

The critical observation is that the internal state of Ascon-HASH is much larger
than the digest size, providing a majority of freedom degrees to attackers to
launch collision attacks. One can select some subsets of the available spaces
with special properties to achieve deterministic differential propagation. As for
Ascon, we intend to choose the subsets that can make the S-Box linear, i.e.,
the expression of the S-box can be re-written as a linear transformation when
the inputs are restricted to such subsets. When considering the entire 25 input
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space of the S-box, the S-box is nonlinear. However, affine subspaces with a
size equal to or less than 4, as shown in [16], could be found so that the S-box
can be linearized. Since the S-box is the only nonlinear part of the Ascon round
function. Therefore, the entire round function will become linear when the inputs
of all S-boxes are restricted to such subspaces. Formally, we give the following
definition and observation.

Definition 1 (Linearizable affine subspace [16]). Linearizable affine subspaces
are affine input subspaces on which S-box substitution can be re-written as a
linear transformation. If V denotes a linearizable affine subspace of an S-box
operation S(⋅), ∀x ∈ V,S(x) = A ⋅ x + b where A is a matrix and b is a constant
vector.

For instance, when the input is limited to subset {01001, 11001, 01010, 11010}
({09, 19, 0A, 1A} in hex), the corresponding output set of Ascon’s S-box is
{00101, 01100, 01000, 00001}({05, 0C, 08, 01} in hex), and its corresponding
input difference and output difference are 10 and 09 (in hex) respectively, the
corresponding S-box can be re-written as a linear transformation:

y =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0 1
0 0 1 0 0
1 0 0 0 0
1 0 0 1 1
1 1 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⋅ x +

⎛
⎜⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎟
⎠

(9)

Where x and y are bit vector representations of input and output values of
the Ascon S-box with the least significant bit on top. As shown in Equation 9,
when the input is restricted to a linearizable affine subspace, the S-box can be
re-written as a linear transformation, denoted as y = A ⋅ x + b.

Definition 2 (The linearization of the inverse of the S-box). When the input is
restricted to a linearizable affine subspace, the inverse of the S-box can also be
re-written as a linear transformation, expressed as x = A−1 ⋅ y + b′. Where A−1

represents the inverse matrix of A, b′ represents a constant vector.

Specifically, Equation 10 denotes the constraints of the input of the inverse of
the S-box. When the input is restricted to a linearizable affine subspace, the
inverse of the S-box can also be re-written as a linear transformation.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y0 = 0
y3 = 0
y1 ⊕ y4 = 1

(10)

Where [y0, y1, y2, y3, y4]T is the vector representation of y.

Observation 1 [16] Given a 5-bit input difference δin and a 5-bit output dif-
ference δout with DDT (δin, δout) ≠ 0, denote the solution set V = {x ∶ S(x)+
S (x + δin ) = δout } and S(V ) = {S(x) ∶ x ∈ V }, we have
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1. if DDT (δin, δout) = 2 or 4, V is a linearizable affine subspace.
2. if DDT (δin, δout) = 8, there are six 2-dimensional subsets Wi ⊂ V, i = 0,1, ...5

such that Wi(i = 0,1, ...5) are linearizable affine subspaces.

As is well known that there is a one-to-one corresponding relationship be-
tween linearizable affine subspaces and entries with 2 or 4 in DDT [11]. As for
the DDT entries with value 8, we can deduce 6 2-dimensional linearizable affine
subspaces from the 3-dimensional subset, meaning that linearizing the S-box re-
quires at least 3 degrees of freedom. For instance, the 3-dimensional subset with
input difference and output difference being 10 and 09 is {09, 19, 0A, 1A, 0D,
1D, 0E, 1E} and the six 2-dimensional linearizable affine subspaces from it are

{09,19,0A,1A},
{09,19,0D,1D},
{09,19,0E,1E},
{0A,1A,0D,1D},
{0A,1A,0E,1E},
{0D,1D,0E,1E}.

(11)

When projected to the whole Ascon state, the direct product of affine sub-
spaces of each S-box forms affine subspaces of the entire state. Therefore, the
entire round function becomes linear when all the S-boxes in the round function
are linearized. This will be the method that we are to handle the S-box layer of
the first round of the 2-round connector.

5.2 A 2-round Connector based on the Linearization of the Inverse
of S-boxes

The important observation is that the internal state of Ascon-HASH is much
larger than the digest size, providing a larger number of freedom degrees to
attackers to mount collision attacks. Therefore, we perform a collision attack on
3-round Ascon-HASH based on this observation. Firstly, We establish a 2-round
connector between the permutations of Ascon. The main idea of our 2-round
connector is to transform the problem into solving a system of linear equations.
Two rounds of Ascon permutation can be expressed as PL3 ○ PS3 ○ PL2 ○ PS2

(omitting the PC). The layer PS2 can be linearized by the method discussed in
Section 5.1, i.e., given both the input differences and output differences of PS2,
the operations PL2 ○PS2 can become linear when the input values are restricted
to the linearizable affine subspace. At the same time, the differences at layer
PS3 can also propagate with a probability of 1 when the inputs are limited to a
specific set.

Next, we will show how the layers PS2 and PS3 can propagate with probability
1 simultaneously. In the first step, we can add linear equations to the input values
(denoted as X3) of round 3 to achieve deterministic difference propagation in
round 3 (from X3 to Y 3). Since the output difference of ∆Y 3 is given, if we
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restrict the input value of X3 to the specific set based on the method described
in Section 5.1, we can achieve deterministic difference propagation of round 3.
As for round 3, there are 44 active S-boxes. Therefore, there are a total of 134
constraint equations for the input value according to the DDT of Ascon’s S-box
and the 3-round differential trail shown in Fig.9, denoted as:

A ⋅X3 = b2 (12)

Where A denotes a matrix of 134 rows and 320 columns, X3 denotes a vector of
320 rows and 1 column, representing the input value of round 3, and b2 denotes
a vector of 134 rows and 1 column. In addition, there is a linear layer in the
transformation from the output of round 2 (Y 2) to the input of round 3 (X3),
denoted as L2. Indeed, the transformation of the L2 can be considered as a
matrix computation, written as L2 ⋅Y 2 =X3. Where L2 denotes a matrix of 320
rows and 320 columns, Y 2 denotes a vector of 320 rows and 1 column.

Moreover, in round 2 (from X2 to Y 2), there are 33 active S-boxes. According
to [2,3], for any pair of (δin,δout), the solution set V = {x ∶ S(x) + S (x + δin ) = δout}
forms an affine subspace. In other words, V can be deduced from the set {0,1}5
by setting up i constraints when the size of V is 25−i. Since the number of
DDT(0C,08) is 8, there are six 2-dimensional subsets Wi ⊂ V, i = 0,1, ...5 such
that Wi(i = 0,1, ...5) are linearizable affine subspces according to the property
described in Section 5.1. We can randomly select one from these linearizable
affine subspaces, which can be deduced from the set {0,1}5 by setting up i
constraints that turn to be binary linear equations.

In general, these constraints of input values can be written in the form of
linear equations. Therefore, The constraints on the input values of the round 2
can be denoted as:

A1 ⋅X2 = b1 (13)

Where A1 denotes a matrix of 104 rows and 320 columns, X2 denotes a vector
of 320 rows and 1 column, representing the input value of round 2, and b1
denotes a vector of 104 rows and 1 column. Given the input difference and
output difference of round 2, all active S-boxes in round 2 can be re-written as a
linear transformation under the corresponding i linear constraints on the input
values, denoted as:

L−10 ⋅ Y 2 + b′0 =X2 (14)

Here, L−10 denotes a matrix that can be deduced while the input difference and
output difference of round 2 are given and b′0 represents a constant vector. By
applying L2 ⋅ Y 2 =X3 into Equation 12, we can obtain Equation 15 as follows:

A ⋅L2 ⋅ Y 2 = b2 (15)

Moreover, by substituting Equation 14 into Equation 13, we can obtain Equation
16 as follows:

A1 ⋅L−10 ⋅ Y 2 = b′1 (16)

In fact, the solutions of the linear equation systems composed of Equation 15 and
Equation 16 will be the solutions of the 2-round connectors. By restricting the
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input values of the 2-round connector to the solution sets, the input difference
can propagate to the output difference with a probability of 1. For simplicity,
we use ES to denote the system of linear equations.

5.3 Free-start Collision Attack on 3-round Ascon-HASH

Zong et al. [18] proposed a collision attack on 2-round Ascon-HASH with a
complexity of 2125 by using a differential trail with a probability of 2−199. Gerault
et al. [10] obtained an improved differential trail with a probability of 2−156 by
using CP, decreasing the complexity of the collision attack of 2-round Ascon-
HASH from 2125 to 2103. Yu et al. [17] performed a practical collision attack on
2-round Ascon-HASH based on some critical observations on the round function
of Ascon, its complexity is 262.6. The commonality between these algorithms is
that both the input difference and the output difference of the differential trail
exist only in the rate part, and then the output difference is canceled by XORing
the message pair in the next block.

However, in the free-start setting, the input difference may exist in the IV
of the hash function, based on which we can mount a collision attack on Ascon-
HASH with the input difference in the IV but not the rate part. We perform
a collision attack on 3-round Ascon-HASH based on a new 3-round differential
trail. The details of the 3-round differential used in our attack are described in
Fig.9.

As shown in Fig.9, the first round has 5 active S-boxes with a probability of
2−13, and the second round has 33 active S-boxes with a probability of 2−90. The
total probability of the 3-round differential trail is 2−237. Furthermore, accord-
ing to the method described in Section 5.2, round 2 and round 3 of the 3-round
differential trail can be constructed as a 2-round connector, through which the
input difference of the round 2 can propagate to the output of round 3 determin-
istically. Therefore, the 3-round differential trail used by our attack is built by
a 2-round connector and a 1-round differential trail with a probability of 2−13.
The differential trail used by our collision attack on 3-round Ascon-HASH is
summarized in Table 5. We adjust the value of Y 2 to satisfy the conditions of
the 2-round connector so that round 2 and round 3 can propagate the difference
with a probability of 1. The configuration of our collision attack on 3-round
Ascon-HASH is shown in Fig.10.

As shown in Fig.10, we apply the 3-round differential trail described above
to the permutation (denoted as p3) in the initialization phase. After absorbing
a pair of messages with a difference equal to the difference in the output of the
3-round differential trail in the absorbing phase, we can get collisions in the
squeezing phase. As the required freedom of degree in step S1 is 213, therefore,
213 degrees of freedom is enough for our collision attack to find Y 2 and Y 2∗ that
satisfy the 3-round differential trail. For the attack process, we define a Boolean
function:

f ∶ F 13
2 → F2. (17)

If we construct ((IV,M1), (IV ∗,M∗

1 )) based on Y 2 that satisfies f(Y 2) = 1, the
pair will lead to a collision. The function f(Y 2) can be constructed as follows:



20 Q. Fu et al.

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

3 063 53 43 33 23 13

3 023 1343 3363 53

IV

S
differencezero difference

Fig. 9. 3-round differential trail of Ascon-HASH

S1 Compute Y 1, Y 1∗ by applying the operation P −1L (P −1S (Y 2)), P −1L (P −1S (Y 2∗))
on (Y 2, Y 2∗) that satisfies A ⋅L2 ⋅ Y 2 = b2 and A1 ⋅L−10 ⋅ Y 2 = b′1.

S2 Compute X1,X1∗ by applying the operation P −1S (Y 1), P −1S (Y 1∗) and check
whether ∆X1 = X1 ⊕X1∗ holds.

S3 Compute Y 3, Y 3∗ by applying the operation PS(PL(Y 2)), PS(PL(Y 2∗)) on
(Y 2, Y 2∗) and check whether ∆Y 3 = Y 3 ⊕ Y 3∗ holds.

S4 If (Y 2, Y 2∗) satisfies all steps, f(Y 2) return 1; otherwise return 0.

Analysis of Degree of Freedom. The degree of freedom of the solution space
of ES is a crucial factor for the success of our collision attack on 3-round Ascon-
HASH. In other words, if the degree of freedom of the solution space is larger
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Table 5. Our differential trail on 3-round Ascon-HASH

Round(r) Probability Input difference(∆Xr) Output difference(∆Y r)

1 2−13

0000000000000000
8000000000000000
0000080000002000
0020000080000000
0000000000000000

8020080080002000
8020080000000000
8020080080002000
8000080000002000
8020000080000000

2 2−90

8422180c8300b008
8120480001004014
c2308c20c2003080
9020480204002008
8160400081401000

d642000e8400b01c
1742982e8240e08c
c2108c22c2404094
5772d42c4100f09c
9000580287401004

3 2−134

804a9b0ba0216074
f052d89b886961dc
f0108803286961dc
0829232020069020
9863f8ba80069008

f87bfbbba86ff1fc
0000000000000000
0000000000000000
0000000000000000
0000000000000000

H

64 6464

256 256

Fig. 10. Our attack configuration on 3-round Ascon-HASH

than the weight of the 3-round differential trail, it indicates that there is at least
one pair of messages having the same digest. As for round 1 of our 3-round dif-
ferential trail, each active S-box needs to be linearized, with constraint equations
added to its input values. The degree of freedom of round 2 can be calculated
as ∑63

i=0D
(2)
i , where D

(2)
i is the degree of freedom of the 5-bit input space of the

i-th S-box in round 2. The definition of D(2)i is as follows. If DDT(δin, δout) is
equal to 4 or 8, D(2)i is equal to 2. If DDT(δin, δout) is equal to 2, D(2)i is equal
to 1. If DDT(δin, δout) is equal to 0, D(2)i is equal to 5, where δin and δout denote
the input and output differences of the i-th S-box.

Another reduction in degrees of freedom is due to constraints on the input
values of the S-boxes in round 3. Each active S-box in round 3 can deterministi-
cally propagate the input difference to the output difference by adding constraint
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equations to its input values. Therefore, the degree of freedom of round 3 can be
calculated as ∑63

i=0D
(3)
i , where D

(3)
i is the degree of freedom of the 5-bit input

space of the i-th S-box in round 3. If DDT(δin, δout) is equal to 8, D(3)i is equal
to 3. If DDT(δin, δout) is equal to 4, D(3)i is equal to 2. If DDT(δin, δout) is equal
to 2, D(3)i is equal to 1. if DDT(δin, δout) is equal to 0, D(3)i is equal to 5. For
the i-th S-box in round 3, we add (5 - D(3)i ) equations to ES . As a result, The
degree of freedom of the ES can be calculated as follows:

D =
63

∑
i=0

D
(2)
i −

63

∑
i=0

(5 −D(3)i ) (18)

According to the 3-round differential trail used in our collision attack, the degree
of freedom D equals 82. Since D(82) is larger than the weight(13) of the 3-round
differential trail used in our attack, the 3-round Ascon-HASH collision attack we
proposed can theoretically obtain collisions.

Complexity Analysis. According to the 3-round differential trail described in
Table 5, the weight of round 1 of the 3-round differential trail is 13, which is also
the weight of the 3-round differential trail. Therefore, in the classical computer
setting, our proposed 3-round collision attack on Ascon-HASH using 2-round
connectors has a hash complexity of 213. The results are shown in Table 1 and
the details of the attack process are as follows:

1. Generate a total of 213 pairs of messages Y 2 and Y 2∗ = Y 2 ⊕∆Y 2 that sat-
isfies the conditions of A ⋅L2 ⋅ Y 2 = b2 and A1 ⋅L−10 ⋅ Y 2 = b′1.

2. Compute Y 1, Y 1∗ through the operation P −1L (P −1S (Y 2)), P −1L (P −1S (Y 2∗)) on
(Y 2, Y 2∗). Because the probability of the 2-round connector is 1, there are
213 pairs of messages (Y 1, Y 1∗) satisfying Y 1 ⊕ Y 1∗ =∆Y 1.

3. Compute X1,X1∗ through the operation P −1S (Y 1), P −1S (Y 1∗).

4. With a probability of 2−13, a pair of messages (X1,X1∗) will satisfy the con-
straint for the first round. Thus, we will have, on average, one message pair
that satisfies the input difference ∆in.

5. Apply a random message block M1 and M∗

1 =M1 ⊕∆out to the (IV , IV ∗)
selected at the end of Step 4 and ((IV,M1), (IV ∗,M∗

1 )) will leads to a
collision.

The complexity of the attack process above is 2 ⋅ 213 = 214 hash function calls.
As shown in Table 1, our proposed collision attack is more superior. Compared
to the collision attack proposed by Zong et al. [18], the collision attack proposed
by Gerault et al. [10] and the collision attack proposed by Yu et al. [17], our
proposed collision attack on Ascon-HASH can attack one more round and the
corresponding complexity is just 214.



Title Suppressed Due to Excessive Length 23

5.4 Free-start Collision Attack on 4-round Ascon-HASH

Here we propose a free-start collision attack against 4-round Ascon-HASH, which
is performed based on a new 4-round differential trail searched by CP with a
complexity of 221. Its main idea is to construct a 2-round connector by applying
the linearization of the inverse of S-boxes so that the differential propagation
probability of the last two rounds is 1.

A 2-round Connector for 4-round Collision Attack. Similar to the 3-
round free-start collision attack described in 5.3, our proposed 4-round free-
start collision attack can also construct a 2-round connector in the last two
rounds. Therefore, the differences in the layers PS4 and PS3 can propagate with
probability 1 simultaneously.

Since the output difference ∆Y 4 is given, if we restrict the input values of X4

to the specific set by adding constraint equations, we can achieve deterministic
difference propagation of round 4 (from X4 to Y 4). As for round 4, there are
44 active S-boxes and a total of 133 constraint equations for the input values,
which can be written as:

A4 ⋅X4 = b4 (19)

Where A4 denotes a matrix of 133 rows and 320 columns, X4 denotes a vector of
320 rows and 1 column, representing the input values of round 4, and b4 denotes
a vector of 133 rows and 1 column.

As for round 3 (33 active S-boxes), each active S-box can be re-written as
a linear transformation under the corresponding linear constraints on the input
values. All equations constraining the input values (X3) of active S-boxes in
round 3 can be merged, denoted as:

A3 ⋅X3 = b3 (20)

Where A3 denotes a matrix of 113 rows and 320 columns, X3 denotes a vector
of 320 rows and 1 column, representing the input values of round 3, and b3
denotes a vector of 113 rows and 1 column. The linear transformations of all
active S-boxes in round 3 can also be merged, denoted as:

L−13 ⋅ Y 3 + b′3 =X3 (21)

Here, L−13 denotes a matrix that can be deduced while the input difference and
output difference of round 3 are given and b′3 represents a constant vector. Ad-
ditionally, there is a linear layer in the transformation from the output of round
3 (denoted as Y 3) to the input of round 4 (X4), denoted as L34. By applying
L34 ⋅ Y 3 =X4 into Equation 19, we can obtain Equation 22 as follows:

A4 ⋅L34 ⋅ Y 3 = b4 (22)

Moreover, by substituting Equation 21 into Equation 20, we can obtain Equation
23 as follows:

A3 ⋅L−13 ⋅ Y 3 = b′′3 (23)
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In fact, the solutions of the linear equation systems composed of Equation 22
and Equation 23 will be the solutions of the 2-round connector. By restricting the
input values of the 2-round connector to the solution sets, the input difference
of the 2-round connector can propagate to the output difference of the 2-round
connector with a probability of 1. For simplicity, we use EM to denote the linear
equation systems.

Our Collision Attack on 4-round Ascon-HASH. Here we perform a col-
lision attack on 4-round Ascon-HASH based on a new 4-round differential trail.
The 4-round differential trail used by our free-start collision attack on 4-round
Ascon-HASH is summarized in Table 6 and Appendix E. The first round has
1 active S-box, with a probability of 2−2 and the second round has 7 active S-
boxes, with a probability of 2−18. The third round has 33 active S-boxes, with a
probability of 2−110 and the fourth round has 44 active S-boxes, with a proba-
bility of 2−133. Therefore, the total probability of the 4-round differential trail is
2−263.

H
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256 256

Fig. 11. Our attack configuration on 4-round Ascon-HASH

According to the method described in section 5.2, round 3 and round 4 can
be constructed as a 2-round connector, through which the input difference of
round 3 can propagate to the output difference of round 4 with a probability
of 1. Therefore, the 4-round differential trail used by our attack is built by a
2-round connector and a 2-round differential trail with a probability of 2−20. We
adjust the value of Y 3 to satisfy the conditions of the 2-round connector so that
the differences of round 3 and round 4 can propagate with a probability of 1.

The configuration of our free-start collision attack on 4-round Ascon-HASH
is shown in Fig.11. We apply the 4-round differential trail described above to the
permutation (denoted as p4) in the initialization phase. After absorbing a pair
of messages with a difference equal to the difference in the output of the 4-round
differential trail in the absorbing phase, we can get collisions in the squeezing
phase.

As the required freedom of the degree in Step S1 is 220, therefore, 220 degrees
of freedom is enough for our collision attack to find Y 3 and Y 3∗ that satisfy the
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Table 6. Our differential trail on 4-round Ascon-HASH

Round(r) Probability Input difference(∆Xr) Output difference(∆Y r)

1 2−2

0000000000000000
0000000000000000
0000000020000000
0000000000000000
0000000000000000

0000000020000000
0000000000000000
0000000020000000
0000000020000000
0000000000000000

2 2−18

0000000020000402
0000000000000000
0000000030800000
0000000020081000
0000000000000000

0000000030881000
0000000020880402
0000000030881000
0000000010880402
0000000020081402

3 2−110

0a81000030881612
0041100920c82412
00000000280e3840
02810000108c2e47
0410040a2148042a

0290000128040005
0c10140b39c6002b
00c0100139ce161a
0040100108421221
0c411403314c3a6f

4 2−133

02d0a00301042517
7ae33852a1ee215b
68a31841a1ce254f
8110802500008684
d3c1303600a88291

fbf3b877a1eea7df
0000000000000000
0000000000000000
0000000000000000
0000000000000000

4-round differential trail. For the attack process, we define a Boolean function:

f ∶ F 20
2 → F2. (24)

If we construct ((IV,M1), (IV ∗,M∗

1 )) based on Y 3 that satisfies f(Y 3) = 1, then
the pair leads to a collision. The function f(Y 3) can be constructed as follows:

S1 Compute Y 2, Y 2∗ by applying the operation P −1L (P −1S (Y 3)), P −1L (P −1S (Y 3∗))
on (Y 3, Y 3∗) that satisfies A4 ⋅L34 ⋅ Y 3 = b4 and A3 ⋅L−13 ⋅ Y 3 = b′′3 .

S2 Compute X2,X2∗ by applying the operation P −1S (Y 2), P −1S (Y 2∗) on (Y 2, Y 2∗)
and check whether ∆X2 = X2 ⊕X2∗ holds.

S3 Compute X1,X1∗ by applying the operation (P −1L (P −1S (X2)), (P −1L (P −1S (X2∗))
on (X2,X2∗) and check whether ∆X1 = X1 ⊕X1∗ holds.

S4 Compute Y 4, Y 4∗ by applying the operation PS(PL(Y 3)), PX(PL(Y 3∗)) on
(Y 3, Y 3∗) and check whether ∆Y 4 = Y 4 ⊕ Y 4∗ holds.

S5 If(Y 3, Y 3∗) satisfies all steps, f(Y 3) return 1; otherwise return 0.
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Analysis of Degree of Freedom. The degree of freedom of the solution space
of EM is a crucial factor for the success of our collision attack on 4-round Ascon-
HASH. If the degree of freedom of the solution space is larger than the weight
of the 4-round differential trail, it indicates that there is at least one pair of
messages having the same digest. As for round 3 of our 4-round differential trail,
each active S-box needs to be linearized, with constraint equations added to its
input values. The degree of freedom can be calculated as ∑63

i=0 F
(3)
i after the

linearization of round 3, in which F
(3)
i is the degree of freedom of the 5-bit input

space of the i-th S-box in round 3. Here the definition of F (3)i is the same as the
definition of ∑63

i=0D
(2)
i described in Section 5.3.

Another decrease in the degree of freedom is due to the constraints on the
input values of round 4. The definition of ∑63

i=0 F
(4)
i , the degree of freedom of 5-

bit input values to S-boxes in round 4, is the same as the definition of ∑63
i=0D

(3)
i

described in Section 5.3. For the i-th S-box in round 4, we add (5−F (4)i ) equations
to EM . The degree of freedom of the final EM can be calculated as follows:

N =
63

∑
i=0

F
(3)
i −

63

∑
i=0

(5 − F (4)i )) (25)

According to the 4-round differential trail used in our collision attack, the degree
of freedom F equals 74. Since F (74) is larger than the weight (20) of the 4-round
differential trail used in our attack, our proposed collision attack against 4-round
Ascon-HASH can get collisions in theory.

Complexity Analysis. According to the 4-round differential trail described in
Table 6, the weight of round 1 and round 2 of the 4-round differential trail is 20.
Therefore, our proposed 4-round collision attack using a 2-round connector has
a complexity of 2 ⋅ 220 = 221.

5.5 Free-start Collision Attack on 5-round Ascon-HASH

Here we propose a free-start collision attack on 5-round Ascon-HASH based on
a new 5-round differential trail searched dedicatedly, followed by the details of
constructing a 2-round connector, which plays an essential role in our attack. Its
time complexity is 241.

A 2-round Connector for 5-round Collision Attack. Similar to the 3-
round free-start collision attack described in 5.3, our proposed 5-round free-
start collision attack can also construct a 2-round connector in the last two
rounds. Therefore, the differences in the layers PS5 and PS4 can propagate with
probability 1 simultaneously.

Since the output difference ∆Y 5 is given, if we restrict the input values of X5

to the specific set by adding constraint equations, we can achieve deterministic
difference propagation of round 5 (from X5 to Y 5). As for round 5, there are
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41 active S-boxes and a total of 133 constraint equations for the input values,
which can be written as:

A5 ⋅X5 = b5 (26)

Where A5 denotes a matrix of 133 rows and 320 columns, X5 denotes a vector of
320 rows and 1 column, representing the input values of round 5, and b5 denotes
a vector of 133 rows and 1 column.

As for round 4 (40 active S-boxes), each active S-box can be re-written as
a linear transformation under the corresponding linear constraints on the input
values. All equations constraining the input values (X4) of active S-boxes in
round 4 can be merged, denoted as:

A6 ⋅X4 = b6 (27)

Where A6 denotes a matrix of 138 rows and 320 columns, X4 denotes a vector
of 320 rows and 1 column, representing the input values of round 4, and b6
denotes a vector of 138 rows and 1 column. The linear transformations of all
active S-boxes in round 4 can also be merged, denoted as:

L−14 ⋅ Y 4 + b′6 =X4 (28)

Here L−14 denotes a matrix that can be deduced while the input difference and
output difference of round 4 are given and b′6 represents a constant vector. Ad-
ditionally, there is a linear layer in the transformation from the output of round
4 (denoted as Y 4) to the input of round 5 (X5), denoted as L45. By applying
L45 ⋅ Y 4 =X5 to Equation 26, we can obtain Equation 29 as follows:

A6 ⋅L45 ⋅ Y 4 = b5 (29)

Moreover, by substituting Equation 28 into Equation 27, we can obtain Equation
30 as follows:

A6 ⋅L−16 ⋅ Y 4 = b′′6 (30)

In fact, the solutions of the linear equation systems composed of Equation 29 and
Equation 30 will be the solutions of the 2-round connector. By restricting the
input values of the 2-round connector to the solution sets, the input difference
of the 2-round connector can propagate to the output difference of the 2-round
connector with a probability of 1. For simplicity, we use EN to denote the linear
equation systems.

Our Collision Attack on 5-round Ascon-HASH. Here we perform a col-
lision attack on 5-round Ascon-HASH based on a new 5-round differential trail.
The 5-round differential trail used by our free-start collision attack on 5-round
Ascon-HASH is summarized in Table 7 and Appendix F. The first round has
1 active S-box, with a probability of 2−2 and the second round has 3 active S-
boxes, with a probability of 2−6. The third round has 11 active S-boxes, with a
probability of 2−32, the fourth round has 40 active S-boxes, with a probability
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Table 7. Our differential trail on 5-round Ascon-HASH

Round(r) Probability Input difference(∆Xr) Output difference(∆Y r)

1 2−2

0000000000000000
0000000000080000
0000000000080000
0000000000000000
0000000000000000

0000000000080000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

2 2−6

0080000000080001
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0080000000080001
0080000000080001
0000000000000000
0000000000000000
0000000000000000

3 2−32

0000200008080000
0480100002490009
0000000000000000
0000000000000000
0000000000000000

0400200000480008
040020000a080009
0480100002490009
0480100002490009
0000000008000000

4 2−127

00812000444a0001
2415300048400001
a2d218400364a40d
86c5b2440a49936d
0004000008100000

a4d382044d6bb36b
2481a004045a2209
0006080041653561
048628444d24250c
a2c0b2440251936c

5 2−133

0405004470131a84
0884146034c23100
0405142060d23b04
55010b8d48154a97
59841be93c045013

5d851fed7cd77b97
0000000000000000
0000000000000000
0000000000000000
0000000000000000

of 2−127 and the fifth round has 41 active S-boxes, with a probability of 2−133.
Therefore, the total probability of the 5-round differential trail is 2−300.

According to the method described in Section 5.2, round 4 and round 5 can
be constructed as a 2-round connector, through which the input difference of
round 4 can propagate to the output difference of round 5 with a probability
of 1. Therefore, the 5-round differential trail used by our attack is built by a
2-round connector and a 3-round differential trail with a probability of 2−40. We
adjust the value of Y 4 to satisfy the conditions of the 2-round connector so that
the differences of round 4 and round 5 can propagate with a probability of 1.

The configuration of our free-start collision attack on 5-round Ascon-HASH
is shown in Fig.12. We apply the 5-round differential trail described above to the
permutation (denoted as p5) in the initialization phase. After absorbing a pair
of messages with a difference equal to the difference in the output of the 5-round
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H

64 6464

256 256

Fig. 12. Our attack configuration on 5-round Ascon-HASH

differential trail in the absorbing phase, we can get collisions in the squeezing
phase.

As the required freedom of the degree in Step S1 is 240, therefore, 240 degrees
of freedom is enough for our collision attack to find Y 4 and Y 4∗ that satisfy the
5-round differential trail. For the attack process, we define a Boolean function:

f ∶ F 40
2 → F2. (31)

If we construct ((IV,M1), (IV ∗,M∗

1 )) based on Y 4 that satisfies f(Y 4) = 1, then
the pair leads to a collision. The function f(Y 4) can be constructed as follows:

S1 Compute Y 3, Y 3∗ by applying the operation P −1L (P −1S (Y 4)), P −1L (P −1S (Y 4∗))
on (Y 4, Y 4∗) that satisfies A6 ⋅L45 ⋅ Y 4 = b5 and A6 ⋅L−14 ⋅ Y 4 = b′′6 .

S2 Compute X3,X3∗ by applying the operation P −1S (Y 3), P −1S (Y 3∗) on (Y 3, Y 3∗)
and check whether ∆X3 = X3 ⊕X3∗ holds.

S3 Compute X2,X2∗ through the operation (P −1S (P −1L (X3)), (P −1S (P −1L (X3∗))
on (X3,X3∗) and check whether ∆X2 = X2 ⊕X2∗ holds.

S4 Compute X1,X1∗ through the operation (P −1S (P −1L (X2)), (P −1S (P −1L (X2∗))
on (X2,X2∗) and check whether ∆X1 = X1 ⊕X1∗ holds.

S5 Compute Y 5, Y 5∗ by applying the operation PS(PL(Y 4)), PS(PL(Y 4∗)) on
(Y 4, Y 4∗) and check whether ∆Y 5 = Y 5 ⊕ Y 5∗ holds.

S6 If(Y 4, Y 4∗) satisfies all steps, f(Y 4) return 1; otherwise return 0.

Analysis of Degree of Freedom. The degree of freedom of the solution space
of EN is a crucial factor for the success of our collision attack on 5-round Ascon-
HASH. As for round 4 of our 5-round differential trail, each active S-box needs
to be linearized, with constraint equations added to its input values. The degree
of freedom can be calculated as ∑63

i=0N
(4)
i after the linearization of round 4, in
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which N
(4)
i is the degree of freedom of the 5-bit input space of the i-th S-box

in round 4. Here the definition of N (4)i is the same as the definition of ∑63
i=0D

(2)
i

described in Section 5.3.
Another decrease in the degree of freedom is due to the constraints on the

input values of round 5. The definition of ∑63
i=0N

(5)
i , the degree of freedom of 5-

bit input values to S-boxes in round 5, is the same as the definition of ∑63
i=0D

(3)
i

described in Section 5.3. For the i-th S-box in round 5, we add (5−N (5)i ) equations
to EN . The degree of freedom of the final EN can be calculated as follows:

N =
63

∑
i=0

N
(4)
i −

63

∑
i=0

(5 −N (5)i )) (32)

According to the 5-round differential trail used in our collision attack, the degree
of freedom N equals 49. Since N(49) is larger than the weight (40) of the 5-round
differential trail used in our attack, our proposed collision attack against 5-round
Ascon-HASH can get collisions in theory.

Complexity Analysis. According to the 5-round differential trail described in
Table 7, the weight of round 1, round 2 and round 3 of the 5-round differential
trail is 40. Therefore, our proposed 5-round collision attack using a 2-round
connector has a complexity of 2 ⋅ 240 = 241.

6 Conclusions

In this paper, we present a security analysis of hashing modes Ascon-HASH
and Ascon-XOF of Ascon, the winner of the NIST Lightweight Cryptography
Project. Firstly, we propose an improved preimage attack against 2-round Ascon-
XOF-64 with a complexity of 232 via a better guessing strategy. Compared to
the attack proposed by Dobrauning et al., our proposed preimage attack on 2-
round Ascon-XOF-64 can reduce the complexity from 239 to 232. Secondly, in
order to find a good guessing strategy efficiently, we build a MILP model and
successfully extend the attack to 3 rounds of Ascon-XOF-64. The time complex-
ity is 253 when IV = 0, while for the real IV , the attack still works and the time
complexity is 251. Thirdly, we also propose a practical free-start collision attack
on 3-round Ascon-HASH based on a new 3-round differential trail searched by
CP with a complexity of 214. Its main idea is to construct a 2-round connector
using the linearization of the inverse of S-boxes. Last but not least, we construct
different 2-round connectors using the linearization of the inverse of S-boxes and
successfully extend the collision attack to 4 rounds and 5 rounds of Ascon-HASH
with complexities of 221 and 241 respectively.

Although our attacks can not extend to the full 12-round Ascon-HASH and
Ascon-XOF, we are convinced that our works will provide new insights into
Ascon’s security and future works on Ascon.
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A Equation systems of preimage attack on 2-round
Ascon-XOF

Y 2
0 [0] =X1

0 [61]⊕X1
0 [39]⊕X1

0 [10]⊕X1
0 [17]

Y 2
0 [1] =X1

0 [62]⊕X1
0 [40]⊕X1

0 [11]⊕X1
0 [18]

Y 2
0 [2] =X1

0 [63]⊕X1
0 [41]⊕X1

0 [12]⊕X1
0 [19]

Y 2
0 [3] =X1

0 [0]⊕X1
0 [42]⊕X1

0 [13]⊕X1
0 [20]

Y 2
0 [4] =X1

0 [1]⊕X1
0 [43]⊕X1

0 [14]⊕X1
0 [21]

Y 2
0 [5] =X1

0 [2]⊕X1
0 [44]⊕X1

0 [15]⊕X1
0 [22]

Y 2
0 [6] =X1

0 [3]⊕X1
0 [45]⊕X1

0 [16]⊕X1
0 [23]

Y 2
0 [7] =X1

0 [4]⊕X1
0 [46]⊕X1

0 [17]⊕X1
0 [24]

Y 2
0 [8] =X1

0 [5]⊕X1
0 [47]⊕X1

0 [18]⊕X1
0 [25]

Y 2
0 [9] =X1

0 [6]⊕X1
0 [48]⊕X1

0 [19]⊕X1
0 [26]

Y 2
0 [10] =X1

0 [7]⊕X1
0 [49]⊕X1

0 [20]⊕X1
0 [27]

Y 2
0 [11] =X1

0 [8]⊕X1
0 [50]⊕X1

0 [21]⊕X1
0 [28]

Y 2
0 [12] =X1

0 [9]⊕X1
0 [51]⊕X1

0 [22]⊕X1
0 [29]

Y 2
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0 [10]⊕X1
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0 [30]
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0 [53]⊕X1
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0 [31]
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0 [15] =X1
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0 [54]⊕X1
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0 [32]
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0 [13]⊕X1
0 [55]⊕X1

0 [26]⊕X1
0 [33]

Y 2
0 [17] =X1

0 [14]⊕X1
0 [56]⊕X1

0 [27]⊕X1
0 [34]

Y 2
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0 [15]⊕X1
0 [57]⊕X1
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0 [35]
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0 [29]⊕X1
0 [36]
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0 [28]
X2

0 [1] =X1
0 [1]⊕X1

0 [20]⊕X1
0 [29]

X2
0 [2] =X1

0 [2]⊕X1
0 [21]⊕X1

0 [30]
X2

0 [3] =X1
0 [3]⊕X1

0 [22]⊕X1
0 [31]

X2
0 [4] =X1

0 [4]⊕X1
0 [23]⊕X1

0 [32]
X2

0 [5] =X1
0 [5]⊕X1

0 [24]⊕X1
0 [33]

X2
0 [6] =X1

0 [6]⊕X1
0 [25]⊕X1

0 [34]
X2

0 [7] =X1
0 [7]⊕X1

0 [26]⊕X1
0 [35]

X2
0 [8] =X1

0 [8]⊕X1
0 [27]⊕X1

0 [36]
X2

0 [9] =X1
0 [9]⊕X1

0 [28]⊕X1
0 [37]

X2
0 [10] =X1

0 [10]⊕X1
0 [29]⊕X1

0 [38]
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X2
0 [11] =X1

0 [11]⊕X1
0 [30]⊕X1

0 [39]
X2

0 [12] =X1
0 [12]⊕X1

0 [31]⊕X1
0 [40]

X2
0 [13] =X1

0 [13]⊕X1
0 [32]⊕X1

0 [41]
X2

0 [14] =X1
0 [14]⊕X1

0 [33]⊕X1
0 [42]

X2
0 [15] =X1

0 [15]⊕X1
0 [34]⊕X1

0 [43]
X2

0 [16] =X1
0 [16]⊕X1

0 [35]⊕X1
0 [44]

X2
0 [17] =X1

0 [17]⊕X1
0 [36]⊕X1

0 [45]
X2

0 [18] =X1
0 [18]⊕X1

0 [37]⊕X1
0 [46]

X2
0 [19] =X1

0 [19]⊕X1
0 [38]⊕X1

0 [47]
X2

0 [20] =X1
0 [20]⊕X1

0 [39]⊕X1
0 [48]

X2
0 [21] =X1

0 [21]⊕X1
0 [40]⊕X1

0 [49]
X2

0 [22] =X1
0 [22]⊕X1

0 [41]⊕X1
0 [50]

X2
0 [23] =X1

0 [23]⊕X1
0 [42]⊕X1

0 [51]
X2

0 [24] =X1
0 [24]⊕X1

0 [43]⊕X1
0 [52]

X2
0 [25] =X1

0 [25]⊕X1
0 [44]⊕X1

0 [53]
X2

0 [26] =X1
0 [26]⊕X1

0 [45]⊕X1
0 [54]

X2
0 [27] =X1

0 [27]⊕X1
0 [46]⊕X1

0 [55]
X2

0 [28] =X1
0 [28]⊕X1

0 [47]⊕X1
0 [56]

X2
0 [29] =X1

0 [29]⊕X1
0 [48]⊕X1

0 [57]
X2

0 [30] =X1
0 [30]⊕X1

0 [49]⊕X1
0 [58]

X2
0 [31] =X1

0 [31]⊕X1
0 [50]⊕X1

0 [59]
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B Linear equations of Y 3
0

when IV is set to 0.

When guessing bits of X1
0 are all guessed as 0, the expression for the linearized

bits of Y 3
0 are as follows:

Y 3
0 [63] =X1

0 [45]⊕X1
0 [23]⊕X1

0 [3]
Y 3
0 [52] =X1

0 [39]⊕X1
0 [17]

Y 3
0 [37] = 0

Y 3
0 [34] = 0

Y 3
0 [30] =X1

0 [17]⊕X1
0 [0]

Y 3
0 [27] = 0

Y 3
0 [24] = 0

Y 3
0 [21] =X1

0 [45]⊕X1
0 [3]

Y 3
0 [12] =X1

0 [36]⊕X1
0 [32]

Y 3
0 [5] =X1

0 [39]
Y 3
0 [2] =X1

0 [36]

When guessing bits of X1
0 are all guessed as 1, the expression for the linearized

bits of Y 3
0 are as follows:

Y 3
0 [63] =X1

0 [23]
Y 3
0 [52] =X1

0 [39]⊕X1
0 [23]⊕ 1

Y 3
0 [37] =X1

0 [42]
Y 3
0 [34] =X1

0 [39]
Y 3
0 [30] =X1

0 [17]
Y 3
0 [27] =X1

0 [32]⊕X1
0 [23]

Y 3
0 [24] =X1

0 [20]
Y 3
0 [21] =X1

0 [45]⊕X1
0 [17]⊕ 1

Y 3
0 [12] =X1

0 [36]⊕X1
0 [17]⊕ 1

Y 3
0 [5] =X1

0 [10]
Y 3
0 [2] = 1
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C Linear equations of Y 3
0

under Real IV .

When guessing bits of X1
0 are all guessed as 0, the expression for the linearized

bits of Y 3
0 are as follows:

Y 3
0 [58] =X1

0 [50]⊕ 1
Y 3
0 [57] = 1

Y 3
0 [52] =X1

0 [53]⊕X1
0 [50]⊕X1

0 [28]⊕ 1
Y 3
0 [49] =X1

0 [50]⊕X1
0 [25]

Y 3
0 [47] = 0

Y 3
0 [44] =X1

0 [36]⊕ 1
Y 3
0 [35] = 1

Y 3
0 [30] =X1

0 [36]⊕X1
0 [28]⊕X1

0 [15]⊕X1
0 [6]

Y 3
0 [27] = 0

Y 3
0 [19] =X1

0 [25]⊕X1
0 [17]

Y 3
0 [16] =X1

0 [45]
Y 3
0 [13] =X1

0 [62]⊕X1
0 [53]⊕X1

0 [14]
Y 3
0 [5] =X1

0 [50]⊕X1
0 [45]⊕X1

0 [15]⊕X1
0 [6]⊕X1

0 [3]⊕ 1

When guessing bits of X1
0 are all guessed as 1, the expression for the linearized

bits of Y 3
0 are as follows:

Y 3
0 [58] =X1

0 [50]
Y 3
0 [57] =X1

0 [62]⊕X1
0 [53]⊕X1

0 [17]⊕X1
0 [3]

Y 3
0 [52] =X1

0 [62]⊕X1
0 [14]⊕X1

0 [6]
Y 3
0 [49] =X1

0 [25]⊕X1
0 [14]

Y 3
0 [47] = 0

Y 3
0 [44] =X1

0 [45]⊕X1
0 [25]

Y 3
0 [35] =X1

0 [35]⊕X1
0 [40]⊕X1

0 [17]
Y 3
0 [30] =X1

0 [40]⊕X1
0 [17]⊕X1

0 [15]⊕ 1
Y 3
0 [27] =X1

0 [25]⊕X1
0 [3]

Y 3
0 [19] =X1

0 [45]⊕X1
0 [36]⊕ 1

Y 3
0 [16] =X1

0 [45]⊕X1
0 [17]⊕X1

0 [14]
Y 3
0 [13] =X1

0 [62]⊕X1
0 [17]⊕ 1

Y 3
0 [5] =X1

0 [50]⊕X1
0 [45]⊕X1

0 [3]⊕ 1
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D Initial state S0
1

of 3-round Ascon-XOF under real IV .

Table 8. Initial state S0
1 of 3-round Ascon-XOF under real IV .

Item S0
1 (Hex)

Initial state

572189c148318b05
af4d04273a5422d6
09a0c623eb455377
55d5f514195c3489
9d6294e4afc8e4d7
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E 4-round differential trail of Ascon-HASH.

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

3 063 53 43 33 23 13

3 023 1343 3363 53

IV

S
differencezero difference

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

Fig. 13. 4-round differential trail of Ascon-HASH
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F 5-round differential trail of Ascon-HASH.

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

3 063 53 43 33 23 13

3 023 1343 3363 53

IV

differencezero difference

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

63 53 43 33 23 13 3 0

S

Fig. 14. 5-round differential trail of Ascon-HASH
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