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Aurora: Leaderless State-Machine Replication with
High Throughput
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Abstract—State-machine replication (SMR) allows a determin-
istic state machine to be replicated across a set of replicas
and handle clients’ requests as a single machine. Most existing
SMR protocols are leader-based requiring a leader to order
requests and coordinate the protocol. This design places a
disproportionately high load on the leader, inevitably impairing
the scalability. If the leader fails, a complex and bug-prone fail-
over protocol is needed to switch to a new leader. An adversary
can also exploit the fail-over protocol to slow down the protocol.

In this paper, we propose a crash-fault tolerant SMR named
Aurora, with the following properties:

• Leaderless: it does not require a leader, hence completely
get rid of the fail-over protocol.

• Scalable: it can scale up to 11 replicas.
• Robust: it behaves well even under a poor network connec-

tion.
We provide a full-fledged implementation of Aurora and systemat-
ically evaluate its performance. Our benchmark results show that
Aurora achieves a throughput of around two million Transactions
Per Second (TPS), up to 8.7× higher than the state-of-the-art
leaderless SMR.

Index Terms—Crash fault-tolerance, state machine replication,
distributed systems

I. INTRODUCTION

STATE machine replication (SMR) is a distributed systems
technique where a deterministic state machine is replicated

across a set of nodes, known as replicas, to ensure fault
tolerance and consistency. In SMR, using a consensus protocol
is the most popular method to guarantee consistency in the
presence of faulty replicas. More specifically, replicas run the
consensus protocol to agree on the order of client requests,
store the ordered requests into a local log, and execute the
logged requests slot by slot. This strategy has been widely
used in real-world systems to provide better reliability. For
example, the classical consensus, Paxos and its variants [1],
[2], had been adopted in Chubby [3], Google Spanner [4]
and Microsoft Azure Storage [5]; recent systems such as Re-
thinkDB [6], Redis [7] and CockroachDB [8], chose Raft [9]
over Paxos due to better understandability.

Most consensus protocols like Paxos and Raft are leader-
based, i.e., requiring a leading replica to decide the order
of requests and coordinate the protocol. The protocol cannot
make progress if the leader fails and it relies on a fail-over
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protocol to switch to a new leader. This design has negative
effects on at least two aspects:

• Efficiency. It places a disproportionately high load on the
leader, inevitably impairing the scalability. An adversary
can also exploit the fail-over protocol to further slow
down the protocol [10].

• Codebase complexity. Although the normal case is sim-
ple, the fail-over protocol is too complex to implement
and debug [11]. For example, the fail-over protocol has
introduced bugs to Redis [12] and RethinkDB [12] when
Raft was integrated into these systems.

To address the first issue, recent consensus protocols adopt a
multi-leader paradigm to evenly distribute the leader’s respon-
sibility and overhead [13]–[15]. However, this paradigm needs
a fail-over protocol that is more complex than the single-leader
consensus.
Leaderless SMR. In SOSP ’21, Pan et al. presented a lead-
erless SMR named Rabia [16] that targets the setting of a
single datacenter. Rabia gets rid of the fail-over protocol by
leveraging a randomized binary consensus (RBC) to agree on
the request for each slot of the log. More specifically, each
replica proposes a batch of requests and runs RBC; (i) if
all (non-crash) replicas propose the same requests, they agree
on those requests for the current slots; (ii) if no majority of
replicas propose the same requests, they forfeit the slots; in
either case, RBC terminates in two message delays. Pan et al.
claim that case (i) is common in a single datacenter where
message delay is small compared to request intervals. Case
(ii) reduces the chance for a long tail latency: when RBC
seems difficult to terminate fast, the replicas forfeit the slots
so that RBC can still terminate in two message delays. Despite
these nice properties, Rabia has two limitations: can only work
within a single datacenter, and cannot scale to a large number
of replicas, which significantly limits its deployability.
Our contribution. In this paper, we propose a leaderless
SMR named Aurora, which successfully overcomes the two
limitations of Rabia: it extends to multiple datacenters de-
ployed in different zones within the same region and scales
to more replicas. The core idea of Aurora is to have replicas
run RBC to agree on “whether a certain replica has proposed
requests”, instead of “whether all replicas have proposed the
same request”; n instances of RBC can proceed in a batch
(where n is the number of replicas). In Rabia, each replica
proposes a batch of requests and they can agree on one batch
at most. In Aurora, each replica also proposes a batch of
requests, but they can agree on up to n batches, and these
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requests are likely to be different as each replica serves as a
proxy for different clients. As a result, Aurora could potentially
achieve a throughput that is n times higher than Rabia.
Furthermore, we borrow idea from the gossip protocol to make
two message delays to be the common case even under a poor
network connection. We provide a full-fledged implementation
of Aurora and systematically evaluate its performance. Our
experimental results show that Aurora achieves a throughput
around two million TPS, up to 8.7 × higher than Rabia.

II. RELATED WORK

Leader-based SMR. In 1998, Lamport presented Paxos [1],
[2], which is the first work in this line of research. Paxos re-
quires three phases with five message delays. Multi-Paxos [11]
eliminates the first phase by designating a stable leader,
resulting in three message delays. However, if the leader
crashes, a fail-over protocol will be triggered to select a new
leader. QuePaxa [17] improves the fail-over component of
Multi-Paxos by using randomization. Fast Paxos [18] saves
one message delay by allowing clients to bypass the leader
and send their requests directly to all replicas. It performs well
when no two clients issue conflicting requests concurrently, but
if collisions happen too frequent, it may perform worse than
classic Paxos. Generalized Paxos [19] improves throughput
by leveraging partial ordering, which allows requests to be
committed in different orders on different replicas, provided
that executing them in any order has the same effect. Multico-
ordinated Paxos [20] improves availability by allowing clients
to send their requests to a quorum of replicas. Raft [9] was
proposed to improve understandability and provide a better
codebase for implementing real-world systems. Roughly, it
adopts a stronger notion of leader to simplify the conceptual
design.
Multi-leader SMR. To improve the performance of leader-
based SMRs, multi-leader SMRs have been proposed. For
example, in Mencius [13], every replica acts as a leader for the
sequence numbers assigned to it. For example, Ri is a leader
for all sequence numbers j that satisfies (j mod n = i).
Ideally, Mencius can achieve a throughput that is n times
larger than leader-based SMRs. However, once a crash occurs,
the throughput of Mencius will quickly drop to zero until a
revocation starts that makes all correct replicas learn of no-ops
for instances coordinated by the faulty replica. EPaxos [14]
introduces a dependency graph to track the relationship of
different requests. Benefits from this approach, non-conflicting
requests can be committed in a fast path of two message de-
lays. However, replicas need to spend more time for checking
the dependencies; and in the presence of conflicts, it takes a
slow path of four message delays. Some protocols [21], [22]
eliminate the dependency graph in EPaxos. However, they still
need to resolve conflicts because they suffer the same vulnera-
bility to conflicts as EPaxos. SDPaxos [23] improves the per-
formance by separating replication from ordering. However,
it relies on a centralized node for ordering requests, which
could potentially become a performance bottleneck. WPaxos
[24] is a WAN-optimized multi-leader protocol. It leverages
the fast quorum Q = ⌊n/2⌋+ f to cut WAN communication

costs. Some work [25], [26] improves performance by running
multiple consensus instances, which also increases both the
code complexity and the cost of recovery.
Leaderless SMR. Ben-Or’s randomized binary consensus [27]
is the main component for constructing a leaderless SMR.
Ezhilchelvan et al. [28] use a common coin [29] to reduce
the average number of message delays and allow proposers
to propose arbitrary values. Pedone et al. [30] exploit the
weakly ordering guarantees from the network layer. Cachin et
al. [31] propose a Diffie-Hellman based coin-tossing protocol
and construct a practical and theoretically optimal Byzantine
agreement protocol. Its efficiency and robustness were further
improved in [32]–[35].

III. PRELIMINARIES

A. State-machine replication

State-machine replication (SMR) allows a deterministic
state machine to be replicated across n replicas and handle
clients’ requests as a single machine, even in the presence of f
faulty replicas. SMR typically employs a consensus protocol to
achieve consistency and fault tolerance, ensuring the following
two properties:

• Safety: all non-faulty replicas execute the requests in the
same order, a.k.a. agreement; each executed request was
proposed by a client, a.k.a. validity.

• Liveness: a request proposed by a client will eventually
be executed, a.k.a. termination.

The famous FLP result states that it is impossible to achieve
deterministic consensus in an asynchronous network where at
least one replica may crash [36]. As a result, most existing
SMR systems [1], [9] ensure both safety and liveness only
when the network is stable (i.e., synchronous); they do not
ensure liveness when the network becomes asynchronous.

B. Randomized binary consensus

Another way to circumvent the FLP impossibility result
is to allow probabilistic termination. For example, in the
randomized binary consensus (RBC) for n = 2f + 1 replicas
proposed by Ben-Or [27], the probability for a replica Ri

to terminate approaches 1 as time proceeds, even in the
presence of f faulty replicas. However, the original RBC has
an average latency that is exponential with respect to the
number of replicas, as each replica flips a local coin. This
can be addressed by replacing the local coins by a common
coin whose value is identical across all replicas. The details
of RBC with a common coin can be found in Algorithm 1.

RBC proceeds in rounds: in each round, replicas first
exchange their states and decide their votes (Line 3-9 in
Algorithm 1) and then exchange their votes (Line 10-20 in
Algorithm 1). Ri sets vote to b (which is either 0 or 1) if b
appears at least (⌊n

2 ⌋+ 1) times in the STATE messages that
Ri has received (Line 6 in Algorithm 1); otherwise, Ri sets
vote to ? (Line 8 in Algorithm 1).

• If a non-? value b appears at least (f + 1) times in the
received VOTE messages, Ri can safely terminate and
output b (Line 14 in Algorithm 1).
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Algorithm 1: RBC - Ri

Input: A binary value bi
Output: A binary value of consensus

1 state := bi
2 while true do
3 Broadcast(STATE, r, state) ▷ r is the round number
4 Wait until receiving ≥ n− f round-r STATE messages
5 if value b appears ≥ ⌊n

2
⌋+ 1 times then

6 vote := b
7 else
8 vote := ?
9 end

10 Broadcast(VOTE, r, vote) ▷ vote can be 0, 1 or ?
11 wait until receiving ≥ n− f round-r VOTE messages
12 if a non-? value b appears ≥ f + 1 times then
13 Broadcast(DECIDE, b)
14 return b ▷ output b and terminate
15 else if a non-? value b appears at least once then
16 state := b
17 else
18 state := CommonCoinFlip(r)
19 end
20 r := r + 1 ▷ proceed to next round
21 end
22 /* executing in background */
23 Upon receiving a DECIDE message:
24 Broadcast(DECIDE, b)
25 return b
26 end

• If a non-? value b appears at least once (a simple quorum
intersection argument guarantees that there is at most one
non-? value in all votes), Ri sets state as b and moves
on to the next round (Line 16 in Algorithm 1).

• If all the received VOTE messages are “?”, Ri flips a
common coin to determine the state for the next round
(Line 18 in Algorithm 1). Notice that replicas executing
Line 18 in the same round will obtain the same state .

We remark that, when replicas can only crash (not Byzan-
tine), CommonCoinFlip(r) can be implemented easily by using
a random binary number generator with the same seed across
all replicas. The number of rounds depends on the outcome
of the common coin flip, hence its latency is less predictable
compared to the leader-based consensus protocols like Paxos
and Raft.

C. Design goal

We aim to design a leaderless SMR for n = 2f+1 replicas
where at most f replicas can be faulty (fail by crashing).
It achieves both agreement and termination; following Ra-
bia [16], it only achieves weak validity: each slot of the log
can either store client requests or be empty.

We consider an environment where communication is asyn-
chronous: each message sent to a non-crash replica will
eventually be received, but there is no bound on the message
delay. Like other leader-based SMR systems, we rely on
synchrony to ensure liveness; safety is guaranteed even if the
communication is asynchronous.

IV. DESIGN ROADMAP

We explain the design roadmap of Aurora by first revisiting
Rabia, and then step-by-step towards the final design.

A. Rabia revisit

In Rabia [16], a client sends requests to a designated replica
(which is this client’s proxy) and waits for responses from
the same replica. Upon receiving a request, Ri pushes it to a
local priority queue PQi and forwards it to all other replicas.
Replicas continuously agree on the requests for each slot as
long as their PQs are non-empty.

During a consensus round of Rabia, each Ri sends the top-m
requests of PQi to other replicas in proposal i and waits for
(n − f) proposals; if all these proposals are with the same
requests, Ri inputs 1 to RBC (Algorithm 1); otherwise, it
inputs 0. If RBC outputs 1, replicas store the agreed requests
in the current slot of their local logs. If RBC outputs 0, replicas
forfeit the current slot and move on to the next slot.

Allowing replicas to forfeit a slot, Rabia violates the validity
property of a SMR system (i.e., the output has to be client
requests). Instead, it achieves a relaxed version of validity
named weak validity: the value stored in each slot of the log
can either be client requests or a NULL value ⊥.

Although the latency of RBC is unpredictable (cf. Sec-
tion III-B), the RBC in Rabia is guaranteed to terminate in
two message delays when either of the following conditions
is satisfied:

1) all replicas, excluding crashed ones, propose the same
requests; or

2) no majority of replicas propose the same requests.
We remark that condition (1) is the key requirement for

Rabia to be efficient (condition (2) also results in two message
delays, but replicas will forfeit the slot, hence they still rely
on condition (1) to make progress). The authors of Rabia
claim that condition (1) is the most common case in a
single datacenter where message delay is small compared to
request intervals: given that each replica will forward a request
(received from a client) to all other replicas, it is highly likely
that replicas will have the same oldest pending requests in
their local priority queues. However, this is not the case if
replicas are deployed across multiple zones, where message
delay could be larger than the request intervals. When batching
is introduced, the batch of requests proposed by a replica is
more likely to be different from others.

B. Go beyond a single datacenter

Recall that a leader-based SMR relies on a leader to
propose requests, and all replicas run consensus to agree on
its proposal. Rabia gets rid of the leader by having all replicas
propose requests and it uses RBC to determine whether these
replicas have proposed the same request. Consequently, its
efficiency highly relies on the condition that “all replicas,
excluding crashed ones, propose the same request”, which is
only true within a single datacenter. In Aurora, we go one step
further: we have replicas agree on whether a certain replica
has proposed requests or not.
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In Aurora, each Ri also sends the top-m requests of PQi to
other replicas in proposal i and waits for proposals from other
replicas. However, we do not require all replicas to propose
the same requests; on the contrary, it will be much better
if they propose totally different requests (we will explain in
Section IV-C). If Rj has received proposal i within a timeout,
it inputs 1 to RBC (Algorithm 1), otherwise, it inputs 0. RBC
is guaranteed to terminate in two message delays when either
of the following conditions is satisfied:

1) all replicas, excluding crashed ones, have received
proposal i within a timeout; or

2) no replica has received proposal i within a timeout.

Notice that we do not require all replicas to propose the
same request. Hence, Aurora goes beyond a single datacenter
and can be deployed across multiple zones within the same
region. Furthermore, batching will not have any side-effect on
RBC because we do not require replicas to propose the same
batch of requests.

C. To be more scalable

During a consensus round of Aurora, each replica Ri locally
maintains a vector BI i of input bits: if Ri has received a
proposal from Rj (i.e., proposal j) within a timeout, it sets
BI i[j] := 1; otherwise, it sets BI i[j] := 0; it always sets
BI i[i] := 1. Then, they run n instances of RBC (Algorithm 1):
each Ri inputs BI i[j] to the j-th instance; if the j-th instance
outputs 1, the requests in proposal j will be stored in the
corresponding slot; if it outputs 0, these requests will be left
to the next round (forfeit the slot like Rabia). Notice that the n
instances of RBC can proceed in a batch, as a single instance.
Figure 1 visualizes this process.

In Rabia, each replica proposes a batch of requests and
they can agree on one batch at most. In Aurora, each replica
proposes a batch of requests as well, but they can agree on up
to n batches, and these requests are likely to be different as
each replica serves as a proxy for different clients. In addition,
replicas do not propose requests forwarded by other replicas
because they only push the requests from clients into the PQ.
As a result, Aurora could potentially achieve a throughput that
is n times higher than Rabia.

D. To be more robust

Next, we discuss different kinds of network connectivities
among n = 2f + 1 replicas and explain how we optimize
the broadcast to make Aurora more robust. For simplicity, we
say Ri and Rj are “connected” if the message delay between
them is much smaller than the timeout; in contrast, they are
“disconnected” if the message delay is larger than the timeout.
A set of replicas are fully connected if every two of them are
connected; a set of replicas are strongly connected if there
is a connected path between every two replicas in this set.
Roughly, there are following kinds of network connectivities:

1) A quorum Q of at least f + 1 non-crash replicas are
fully connected, and the rest replicas are either crash or
disconnected from Q.

2) A quorum Q of at least f + 1 non-crash replicas are
strongly connected, and the rest replicas are either crash
or disconnected from Q.

3) No quorum of more than f non-crash replicas are either
fully or strongly connected.

Under condition (1), it is clear that every replica inside Q
will receive proposals sent from the replicas that are also
inside Q; the binary consensus instances for such proposals
will output 1s. On the other hand, replicas inside Q will not
receive proposals sent from the replicas that are outside Q; the
binary consensus instances for such proposals will output 0s.
In either case, the binary consensus instances are guaranteed
to terminate in two message delays. The replicas outside Q
might stay in the “while” loop of the binary consensus, but
they will eventually receive the DECIDE messages and catch
up to the replicas inside Q.

Under condition (3), the binary consensus is unlikely to ter-
minate in two message delays, but it will eventually terminate
and safety will be guaranteed. Notice that condition (3) is a
nightmare for all consensus protocols, so we leave it as it is.

The performance of Aurora under condition (2) can be
as worse as under condition (3), because when a replica Ri

broadcasts a proposal i, only its direct neighbors can receive
proposal i within a timeout. We aim to optimize this so that
all replicas in Q can receive proposal i within a timeout, then
the performance of Aurora under condition (2) will be as
good as that under condition (1). To this end, we borrow idea
from the gossip protocol [37]: when Rj receives proposal i, it
broadcasts it again; to avoid flooding, Rj broadcasts the hash
of proposal i instead of proposal i itself; replica who receives
the hash but did not receive proposal i will pull proposal i from
Rj . Of course, when broadcasting the hash, Rj can exclude
the replicas that it has received the same hash from. When the
timeout allows any replica inside the strongly connected Q
to receive proposals within the timeout, our optimization can
make a quorum of strongly connected replicas behave like a
quorum of fully connected replicas. For example, to ensure the
optimization is typically effective, we can set the timeout to be
n times the message delay (measured under a stable network)
between two connected replicas.

This optimization also needs to be applied to the STATE
and VOTE messages inside RBC (but no need to broadcast
the hash as the STATE and VOTE messages are small); it
ensures that replicas inside Q will receive the 1s (sent from
replicas inside Q) before receiving the potential 0s (sent from
the replicas outside q).

E. Workflow of Aurora

Figure 1 depicts the workflow from R1’s point of view:

❶ R1 retrieves the top-m requests from its priority queue
PQ1 and broadcasts them in a batch proposal i.

❷ Meanwhile, R1 collects proposals from other replicas:
when it receives a proposal from Rj , it sets BI 1[j] := 1.

❸ They run n instances of RBC in batch; R1 uses BI 1[j]
as the input for the j-th RBC instance.

❹ R1 uses BO1 to record the output for each RBC instance.
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❺ R1 decides which proposals should be committed accord-
ing to BO1. In this example, proposal1, proposal2, and
proposal5 should be committed.

❻ R1 treats proposal4 as the proposal sent by R4 in the next
round.

Reconciliation

proposal4

proposal1, proposal2, proposal5

proposal1 from     1

proposal2 from    2

timeout  from    3

proposal4 from    4

proposal5 from    5

1

1

0

1

1

BI1

10011 BO1

Broadcast proposal

Priority queue

Log

Binary consensusBinary consensusBinary consensusBinary consensusBatched RBC

❻

❷

❶

❸

❹
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1

1

0
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1
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0
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1

BI5

1

1

0

1

1

BI4

1

1

1

0

1

BI3
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     1
’s point of view

❺

Fig. 1. Workflow of Aurora from R1’s point of view.

V. AURORA IN DETAIL

In this section, we present Aurora in greater details.

A. Message handler

A client sends a request to a designated replica. If it
receives no response within timeout, it re-sends it to another
replica. Algorithm 2 shows how a replica Ri in Aurora handles
messages that trigger consensus. It roughly works in the
following three cases:

• Upon receiving a request, Ri pushes it to PQi, which is
used to store pending requests, i.e., requests that have not
been stored in the log yet (Line 10-11). After gathering
at least m requests, Ri picks the top-m requests from
PQi and broadcasts them in a batch as proposal i to all
replicas; this action brings Ri to the consensus stage (Line
17-20).

• When other replicas receive proposal i, they will also
move on to the consensus stage. In addition, they will
broadcast the hash of proposal i to ensure that other
replicas that are not connected with Ri can also receive
proposal i (Line 26-30).

• Replicas who received the hash of proposal i will check
whether they have already received the proposal. If so,
they simply ignore this message. Otherwise, they will pull
proposal i from the sender of the hash, and move on to
the consensus stage. They will also forward the hash to
other replicas (Line 36-40).

We introduce the term “run” to represent a run of the entire
protocol, starting with every replica making proposals and
ending with a decision being made. Each run has a run id
(Line 6), which is concatenated to each proposal (Line 14),
making the proposals different. If a replica does not hear a
positive decision on its proposal by the end of the current run,
it will make the same proposal in the next run. We achieve this
through the “propose on” flag (Line 5): a replica can make a

proposal only when this flag is 1. Furthermore, replicas will
accept a proposal as long as it was not committed, even if
its run id is lower than the current run (Line 25 and 35). In
this way, even if a replica has a slow connection to others, its
proposals will eventually be received and committed.

Algorithm 2: Message handler - Ri

1 Local Variables:
2 Log i ▷ local log
3 PQi ▷ priority queue
4 consensus on := 0 ▷ whether Ri is in a consensus
5 propose on := 1 ▷ whether Ri can make proposals
6 run id := 0 ▷ The run id
7 BI i := [0, ..., 0]
8 proposalsi := []
9

10 Upon receiving request from a client:
11 PQi.push(request)
12 if |PQi| ≥ m AND propose on = 1 then
13 propose on := 0
14 req := top-m requests in PQi

15 proposal i := (req, run id, i)
16 BI i[i] := 1; proposalsi[i] := proposal i
17 Broadcast(proposal i)
18 if consensus on = 0 then
19 consensus on := 1
20 Aurora main()
21 end
22 end
23 end
24
25 Upon receiving proposal j from Rj:
26 if consensus on = 0 and proposal j was not committed

then
27 consensus on := 1
28 BI i[j] := 1
29 proposalsi[j] := proposal j
30 Broadcast(H(proposal j)) ▷ exclude Rj

31 Aurora main()
32 end
33 end
34
35 Upon receiving H(proposalk) from Rj:
36 if consensus on = 0 and proposalk was not committed

then
37 consensus on := 1
38 pull proposalk from Rj

39 BI i[k] := 1; proposalsi[k] := proposalk
40 Broadcast(H(proposalk)) ▷ exclude Rj and Rk

41 Aurora main()
42 end
43 end

B. Proposal exchange

Notice that replicas might send proposals simultaneously.
To include all these proposals into consensus, we introduce a
“proposal exchange” phase in the beginning of the consensus
stage (Line 1-19 in Algorithm 3). Namely, each Ri sets a timer
and collects proposals in a similar way as Algorithm 2 until
timeout or having received n proposals. After collecting the
proposals, they start to run the batched RBC to agree on which
requests to be inserted into the log.
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Algorithm 3: Aurora main - Ri

1 Start timer
2 repeat
3 Upon receiving proposal j from Rj:
4 if proposal j was not committed then
5 BI i[j] := 1
6 proposalsi[j] := proposal j
7 Broadcast(H(proposal j)) ▷ exclude Rj

8 end
9 end

10
11 Upon receiving H(proposalk) from Rj:
12 if BI i[k] = 0 and proposalk was not committed

then
13 pull proposalk from Rj

14 BI i[k] := 1
15 proposalsi[k] := proposalk
16 Broadcast(H(proposalk)) ▷ exclude Rj and Rk

17 end
18 end
19 until timeout or BI i[l] = 1 ∀ 1 ≤ l ≤ n;
20
21 BO i := BatchedRBC(BI i)
22
23 for k := 1 to n do
24 if BO i[k] = 1 and proposalsi[k] = ⊥ then
25 pull proposalk from other replicas
26 proposalsi[k] := proposalk
27 end
28 end
29
30 Deduplicate(proposalsi)
31 commit proposalsi ▷ add the requests in proposalsi to Log i

32 for k := 1 to n do
33 if BO i[k] = 1 then
34 proposalsi[k] := ⊥
35 BI i[k] := 0
36 end
37 end
38 consensus on := 0
39 run id := run id +1
40 if BO i[i] = 1 then
41 propose on := 1
42 end

C. Batched RBC

Algorithm 4 shows the details of the batched RBC. It takes
BI i (indicators for whether Ri has received a proposal in the
current run) as the input states and outputs BO i (indicators
for whether a proposal should be inserted into the log).

Recall that, in RBC, replicas first exchange STATE mes-
sages containing a state bit of either 0 or 1, and decide their
votes; then, they exchange VOTE messages containing a vote
of 0, 1, or ?. The goal of our batched RBC is to run n RBC
instances in a single batch. To this end, we batch n state
bits into a single STATE message and batch n votes into
a single VOTE message. In this way, we can significantly
save the bandwidth without affecting the overall latency. This
is because the latency introduced by the binary consensus
component is determined by the slowest RBC instance even
when there is no batching. Specifically, replicas wait for all
RBC instances to terminate before proceeding to step 5, as
shown in Figure 1.

Algorithm 4: BatchedRBC - Ri

Input: BI i

Output: BO i

1 statesi := BI i; votesi := []
2 while true do
3 Broadcast(STATE, r, run id, statesi) ▷ r-th round
4 repeat
5 Upon receiving a STATE message M from Rj:
6 if this is the first time received M then
7 Broadcast(M )) ▷ exclude Rj

8 end
9 end

10 until receiving ≥(f + 1) round-r STATE messages;
11 for k := 1 to n do
12 if (decided , b) appears at the k-th slot of any

received statesj then
13 votesi[k] := (decided , b)
14 else if a value b appears ≥(f + 1) times at the k-th

slot of all received statesj then
15 votesi[k] := b
16 else
17 votesi[k] :=?
18 end
19 end
20 Broadcast(VOTE, r, run id, votesi)
21 repeat
22 Upon receiving a VOTE message M from Rj:
23 if this is the first time received M then
24 Broadcast(M )) ▷ exclude Rj

25 end
26 end
27 until receiving ≥(f + 1) round-r VOTE messages;
28 for k := 1 to n do
29 if (decided , b) appears at the k-th slot of any

votesj or a non-? value b appears ≥(f + 1) times
at the k-th slot of all received votesj then

30 statesi[k] := (decided , b)
31 else if a non-? value b appears at the k-th slot of

any received votesj then
32 statesi[k] := b
33 else
34 statesi[k] := CommonCoinFlip(r)
35 end
36 r := r + 1
37 end
38 if all n slots in statesi have “decided” flags then
39 Broadcast(DECIDE, run id, statesi)
40 Return statesi
41 end
42 end
43 /* Executing in background */
44 Upon receiving a DECIDE message M from Rj:
45 Broadcast(M ) ▷ exclude Rj

46 Return statesj
47 end

In more detail, each replica Ri maintains two arrays: statesi
(initialized with BI i) and votesi (initially empty). In the first
round, Ri broadcasts statesi in a STATE message and waits
for the STATE messages from other replicas (Line 3-10). Upon
receiving a STATE message, Ri forwards it to other replicas,
for a similar reason as forwarding the proposals. However, this
time, Ri does not need to forward the hash because the STATE
message is small (only 3n bits). After receiving at least (f+1)
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STATE messages1, Ri assigns values to votesi based on the
received states:

• First of all, once the replicas have reached a consensus
for any RBC instance, they will add a flag “decided” to
the corresponding slot in states; after seeing this flag,
Ri simply follows the decision and assigns the decided
value (together with the flag) to the corresponding slot in
votesi (Line 13).

• If a value b appears at least (f +1) times at the k-th slot
of all received states , Ri assigns b to votesi[k] (Line 15).

• For other slots, Ri assigns ? to the corresponding slots of
votesi (Line 17).

Next, Ri broadcasts votesi in a VOTE message, and waits
for and forwards the VOTE messages of other replicas (Line
20-27). After receiving at least (f + 1) VOTE messages, Ri

decides statesi for the next round based on the received votes:
• If any slot has been decided with a non-? value b (has a

“decided” flag, or there are at least (f +1) replicas vote
for b), Ri assigns (decided , b) to the corresponding slot
in statesi (Line 30).

• If a non-? value b appears at the k-th slot of any
received votes (the quorum intersection argument on state
messages guarantees that there is at most one non-?
value), Ri assigns b to statesi[k] (Line 32).

• For other slots, replicas flip a common coin to decide the
states for the next phase (Line 34).

If all slots have been decided, Ri broadcasts statesi in a
DECIDE message and terminates the batched RBC (Line 38-
41). Other replicas who receive the DECIDE message will also
terminate the batched RBC (Line 44-47).

D. Reconciliation

After terminating the batched RBC, Ri will put the agreed
requests into Logi. More specifically, Ri first goes over all
slots in proposalsi: if the corresponding RBC instance for
a slot returns 1 but Ri has not received the proposal yet, it
needs to pull the proposal from others (Line 23-28 in Algo-
rithm 3). As different replicas may propose duplicate requests,
Ri needs to deduplicate the remaining requests in proposalsi
before adding them to Logi (Line 30-31 in Algorithm 3). In
the end of the consensus stage, Ri resets BI i, proposalsi,
consensus on, propose on, and enters the next run (Line 32-
42 in Algorithm 3).

We remark in the end that, similar to Rabia [16], Aurora
supports a simple mechanism for log compaction. We refer
to [16] for more details.

VI. SAFETY AND LIVENESS

In this section, we prove the correctness (i.e., safety and
liveness) of Aurora. Recall that replicas commit proposals
according to the output BO of the batched RBC, which implies
that the safety of Aurora is completely due to the safety of
the batched RBC (Algorithm 4).

1Recall that RBC (Algorithm 1) requires receiving (n − f) STATE
messages. As we assume n = 2f + 1, it is equal to receiving (f + 1)
STATE messages.

A. Safety

Next, we prove the safety of Aurora by showing that
the batched RBC satisfies safety (i.e., agreement and weak
validity). We say “a non-? value b is r-locked for the k-th RBC
instance” if every replica Ri starts round-r in Algorithm 4 with
statesi[k] set to b.

Lemma 1. In the same round, it is impossible for two replicas
to vote differently for the same RBC instance.

Proof. The proof is by contradiction. Suppose Ri and Rj vote
for 0 and 1 respectively for the k-th RBC instance in round-r.
Then, Ri must have received at least (f + 1) states with the
k-th slot as 0. Similarly, Rj must have received at least (f+1)
states with the k-th slot as 1. As there are 2f +1 replicas in
total, there must be at least one replica that has sent different
states to Ri and Ri (quorum intersection argument). This is
impossible as we assume replicas can only fail by crashing
(cf. Section III-C)

Lemma 2. If a replica decides b for the k-th RBC instance
in round-r, then b is (r+1)-locked for the k-th RBC instance.

Proof. Suppose Ri decides b for the k-th RBC instance in
round-r (Line 30 in Algorithm 4). There are following cases:

1) “b appears ≥(f +1) times at the k-th slot of all received
votes”.

2) “(decided , b) appears at the k-th slot of any received
votesj”.

In case (1), there must be at least (f + 1) replicas vote for
b for the k-th RBC instance. Then, any replica Rj that starts
round-(r+1) must have received at least one vote for b for the
k-th RBC instance due to the quorum intersection argument
(recall that Rj is required to receive at least (f + 1) votes
to move on to the next round). Furthermore, by Lemma 1,
Rj will not receive any votes for (1 − b) for the k-th RBC
instance in round-r. As a result, Rj will set statesi[k] to b in
Line 32 (Algorithm 4) in round-r and start round-(r+1) with
statesi[k] = b.

In case (2), Rj must have decided b for the k-th RBC
instance in round-r′ with r′ < r. Based on the discussion
above for case (1), any replica Rl entering round-(r′ +1) will
have states l[k] = b, and the same for round-(r + 1).

Lemma 3. If a value b is r-locked for the k-th RBC instance,
then any replica reaching Line 28 (Algorithm 4) in round-r
will decide b in round-r.

Proof. Suppose b is r-locked for the k-th RBC instance. Then,
the k-th slots of all states received in Line 5 (Algorithm 4) of
round-r are with b. As a result, all replicas reaching Line 20
(Algorithm 4) will vote for b for the k-th RBC instance. Any
replica Ri reaching Line 28 (Algorithm 4) in round-r must
have received at least (f + 1) votes and all the k-th slots are
with b. Then, Ri will decide b for the k-th instance in round-
r.

Lemma 4. If a replica decides b for the k-th instance in round-
r, then any replica reaching Line 28 (Algorithm 4) in round-
(r + 1) will decide b for the k-th instance in round-(r + 1).
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Proof. By Lemmas 2 and 3.

Theorem 1 (Agreement). If two replicas Ri and Rj decide
b and b′ for the k-th RBC instance in rounds r and r′

respectively, then b = b′.

Proof. Suppose two replicas Ri and Rj decide b and b′ for the
k-th RBC instance in rounds r and r′ respectively. There are
following two cases:

1) r = r′. If Ri decides b for the k-th instance, then it must
have received at least one vote for b. Similarly, Rj must
have received at least one vote for b′. As this is in the
same round, by Lemma 1, b = b′.

2) r < r′. Given that Rj decides in round-r′, it must have
reached Line 28 in rounds r+1, ..., r′. If Ri decides b in
round-r, by Lemma 4, Rj will decide b in round-(r+1).
That means b′ = b.

Theorem 1 implies that replicas that have terminated the
batched RBC will have the same log: if a RBC instance outputs
1, all replicas will store the corresponding requests in the
current slot; otherwise, all of them will forfeit the slot.

Theorem 2 (Weak validity). If a replica stores a request other
than ⊥ in its log, this request must be sent by a client.

Proof. If Ri stores a request other than ⊥ in its log, the
corresponding RBC instance must have output 1. In Line 31 of
Algorithm 3, Ri will add the requests in proposalsi to Logi,
and all requests in proposalsi were sent by clients.

B. Liveness

Next, we first show that the batched RBC terminates with
probability 1. Then, we show how Aurora guarantees the
liveness.

Lemma 5. With probability 1, there is a round-r where a
non-? value b is r-locked for the k-th RBC instance.

Proof. There are following three cases:
1) In round-(r − 1), if all replicas execute Line 34 in

Algorithm 4, they will start round-r with states[k] being
set to the output of CommonCoinFlip(r − 1), and the
claim directly follows.

2) Similarly, if all replicas execute Line 32 in Algorithm 4,
they will start round-r with states[k] being set to the
same value b, and the claim follows.

3) It becomes complex when some replicas execute Line
32 and adopt b, while others execute Line 34 and adopt
b′. Due to the properties of the common coin, the value
it computes at a given round is independent from the
values it computes at the other rounds. Thus, b is equal
to b′ with probability p = 1/2. Let P (r) be the following
probability:

P (r) = Pr[∃r′ : r′ ≤ r : br′ = b′r′ ],

where br′ denotes the value of b in round-r′. We have

P (r) = p+ (1− p)p+ ...+ (1− p)r−1p

= 1− (1− p)r.

As limr→+∞P (r) = 1, the claim follows.

Lemma 6. The batched RBC terminates with probability 1.

Proof. By Lemmas 3 and 5, with probability 1, there is a
round-r where all correct replicas decide b as long as they
reach Line 28 (in Algorithm 4). Based on the assumption of
asynchronous communication, they will eventually reach Line
28. That means the k-th RBC instance terminates in round-r.

As the above argument is for any RBC instance, then, with
probability 1, there is a round-r′ where all RBC instances
terminate (i.e., the batched RBC terminates).

Next, we prove the liveness of Aurora.

Theorem 3 (Liveness). A request sent by a client will even-
tually be executed.

Proof. Recall that, in Aurora, a client re-sends a request to
another replica when it receives no response within a timeout.
Therefore, the client will eventually send this request to a non-
crashed replica Ri, which will batch them into a proposal i
and send it to other replicas (Line 17 in Algorithm 2). Notice
that the “re-send” mechanism also maintains the linearizability
when clients switch between replicas. Specifically, it ensures
that a replica always sends the pending requests before sending
a new one. If a replica Rj receives proposal i, it inputs 1 to
the corresponding RBC instance; otherwise, it inputs 0. By
Lemma 6, the batched RBC terminates with probability 1. If
all correct replicas input 1, the batched RBC will output 1;
otherwise, it may output 0 or 1. In the former case, the requests
will be executed (Line 31 in Algorithm 3). In the later case,
they will run the same consensus stage again for proposal i
Line 32 to 42 in Algorithm 3. Based on the assumption of
asynchronous communication, proposal i will eventually be
received by all non-crash replicas. Recall that replicas will
process a proposal as long as it was not committed, even if its
run id is lower than the current run. Then, they will input 1
to the corresponding RBC instance, which will output 1 and
the requests will be executed. That is to say, a request sent by
a client will eventually be executed.

VII. EVALUATION

In this section, we systematically evaluate the performance
of Aurora and compare it against three SMR systems:

• Rabia2: our closest competitor.
• Multi-Paxos3 (with pipelining): the most common choice

in production systems.
• EPaxos3 (with pipelining): the state-of-the-art SMR sys-

tem that achieves fast-path latency of two message delays.
We implement Aurora using the same programming lan-

guage (Go 1.15.8) as these three implementations. We use
SHA256 as the hash function. Additionally, we use the same
replicated key-value store implementation as Rabia, which
follows closely to the one from Multi-Paxos and EPaxos.
Therefore, we can perform a fair comparison.

2https://github.com/haochenpan/rabia
3https://github.com/efficient/epaxos
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Fig. 2. Performance in the same zone.

A. Setting

Each replica runs on a separate AWS VM with four 3.1GHz
vCPUs and 8 GB RAM, running Ubuntu Server 18.04.1 LTS
64. Following the setting of Rabia [16], the RTT is around
0.25ms within the same availability zone (us-east-1-b) and
0.4ms between multiple zones within the same region (us-
east-1-b, us-east-1-c, us-east-1-d).

We generate closed-loop clients on a separate VM with 32
3.1GHz vCPUs and 128 GB RAM. In the EPaxos evaluations,
we generate non-conflicting requests to achieve the maximal
throughput for a fair comparison. The ratio of conflicting
requests does not affect Aurora’s throughput since it executes
requests in total order. The size of a single request is 16B [38],
[39]. Following the best practice in [14], [16], all systems use
client batching size 10, i.e., each client batches 10 requests into
a single request; EPaxos, Paxos, Rabia use proxy batching
size 100, 500 and 20 respectively. In Aurora, We use the
same proxy batching size as Rabia for a fair comparison.
That means, in our benchmarks, EPaxos, Paxos, Rabia, Aurora
respectively batch at most 1 000, 5 000, 200, 200 16B-requests
in a proposal . Following prior work [14], [16], we set a
timeout of 5ms for replicas to batch requests if the desired
batch size is not reached.

Throughput is measured in agreed requests per second,
while latency quantifies the time taken for a single request to
complete. The null slots do not contribute to the throughput as
they do not contain any requests. All experiments are repeated
5 times and average values with error bars indicating standard
deviations are reported.

B. Performance in the same zone

We first measure their performance when all replicas are
deployed in the same availability zone. We fix the number of
replicas n as three, increase the number of concurrent closed-
loop clients, and measure throughput vs. latency (both median
latency and 99th percentile latency). Figure 2a and 2b show
the results with varying load sizes (the number of clients: 60,
80, 100, 200, 300, 400, 500) on each system.

Before saturation, Aurora and Rabia have smaller stable
latency than Paxos and EPaxos, despite of their three-message
delay. This is due to their higher throughput, making the
request queuing time small. The stable median latency of
Aurora is around 2× better than Rabia and 3× better than
Paxos and EPaxos; its 99th percentile latency is around 3×
better than Rabia and Paxos, and 4× better than EPaxos. The
throughput of Aurora is around 2× better than Rabia, 3.5×
better than EPaxos, and 6.4× better than Paxos. In particular,
in the same availability zone with 3 replicas, Aurora can reach
a throughput of 1 021 320 TPS, with a median latency around
2ms.

Next, we increase the number of replicas n and measure the
scalability of these SMR systems. Figure 2c 2d and 2e show
the results. The 99th percentile latency of Rabia increases
significantly with more replicas being added. Recall that Rabia
requires as many replicas as possible to propose the same
proposal; otherwise, it will not take the fast path or forfeit
a slot, increasing the possibility of long tail latency and null
slots. Specifically, three replicas allow Rabia to use the fast
path 99.626% of the time and have only 0.3% null slots,
compared to 90.498% and 5.9% with 11 replicas. In contrast,
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Fig. 3. Performance in the multiple zones.

Aurora’s latency plots are more flattened, because in Aurora
a request can be processed as long as the proposal containing
that request can be delivered. Three replicas allow Aurora to
use the fast path 99.996% of the time and have only 0.012%
null slots, compared to 99.962% and 0.033% with 11 replicas.

With the number of replicas increasing, EPaxos can handle
more requests and its throughput increases. On the other hand,
EPaxos needs to check request dependencies and the local
computation becomes its bottleneck at some point, after which
its throughput starts decreasing. In contrast, with the number of
replicas increasing, Aurora can handle more requests without
introducing more local computation, hence its throughput
keeps increasing.

When n=11, the stable median latency of Aurora is around
4× lower than EPaxos and 3× lower than Rabia and Paxos;
its 99th percentile latency is around 4.7× lower than Rabia,
1.7× lower than Paxos, and 2.3× lower than EPaxos. When
considering throughput, the superiority of Aurora becomes
more prominent. It achieves a throughput (1 941 720 TPS) that
is around 6.6× higher than EPaxos, 18× higher than Paxos,
and 8.7× higher than Rabia when n=11.

C. Performance across multi-zones

Figure 3 shows the performance of all systems when the
replicas are deployed across multiple availability zones within
the same region. Paxos and EPaxos are barely impacted, while
Aurora and Rabia are moderately impacted (around a 30%
drop and a 26.4% drop).

When there are three replicas, the stable median latency of
Aurora is around 2.5× better than Rabia and 3× better than
Paxos and EPaxos; its 99th percentile latency is around 3×

better than Rabia and Paxos, and 3.7× better than EPaxos. The
throughput of Aurora is around 2× better than Rabia, 2.5×
better than EPaxos, and 4.3× better than Paxos. In particular,
in multi-zones with 3 replicas, Aurora can reach a throughput
of 707 280 TPS, with a median latency around 2.2ms.

When adding more replicas, Aurora still performs the
best among all four SMR systems. It achieves a throughput
(1 624 480 TPS) that is around 5× higher than EPaxos, 11×
higher than Paxos, and 8× higher than Rabia when n=11. For
the same reason mentioned in Section VII-B, as the number of
replicas increases, Rabia has a higher probability of forfeiting
a slot and fewer opportunities to take a fast path compared to
Aurora. These results can lead to an increasing waiting time
for all the proposals in the local priority queue, resulting in a
longer tail latency.

D. Performance under poor networks with crash replicas.

The performance of both Aurora and Rabia depend on the
underlying network: Rabia requires all non-crash replicas to
propose the same batch of requests, and Aurora requires all
non-crash replicas to receive the proposal. Next, we measure
their performance under a poor network connection with crash
replicas. We set up a cluster consisting of 5 replicas, 2 of which
are crash; the rest 3 replicas are connected with each other by
3 bidirectional links, one of which was added with a 50ms
delay (through NetEm4).

Figure 4 shows the performance of Aurora with and without
optimization (cf. Section IV-D) compared with Rabia, Paxos
and EPaxos when they are saturated. It shows that Aurora

4https://man7.org/linux/man-pages/man8/tc-netem.8.html

https://man7.org/linux/man-pages/man8/tc-netem.8.html
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Fig. 4. Performance under poor networks with crash replicas.

(with optimization) has a massive performance drop under
this setting, because the correct replicas need to always wait
for the proposals from the crash replicas until a timeout
(5ms). Nevertheless, it is still around 20× better than that w/o
optimization and 50× better than Rabia in throughput, and it is
around 20× better than both that w/o optimization and Rabia
in latency. This is because both Aurora w/o optimization and
Rabia need to wait 50ms to get the message from the slow link.
Although Paxos and EPaxos achieve good performance due to
their pipelining implementation, Aurora still has comparable
throughput to Paxos and comparable latency to EPaxos.

E. Integration with Redis

We integrate Aurora with Redis (dubbed RedisAurora) to
perform evaluation for a real-world example. In RedisAurora,
we utilize Redis native MGET and MSET commands to
process requests (same as RedisRabia). We systematically
evaluate the throughput of RedisAurora and compare it against
three Redis-based systems: (i) synchronous-replication with
one master and one replica (Sync-Rep(1)); (ii) synchronous-
replication with one master and two replicas (Sync-Rep(2));
and (iii) RedisRabia [16]. All systems use a batching size
of 200. We evaluate these systems by deploying them across
three replicas (except for Sync-Rep(1), two replicas) in the
same zone, and test their performance when they are saturated.
Figure 5 shows the evaluation results.

In Sync-Rep(1) and Sync-Rep(2), the master makes choices
and dictates them to the backup; the system’s throughput is
limited by the rate of state machine execution. As a result, the
throughput of Sync-Rep(2) is 2× that of Aurora. The delay in
completing slots introduced by the storage engine significantly
reduces the throughput of Aurora and Rabia because they
have not implemented pipelining. However, the throughput of
Aurora is still 1.7 times higher than that of Rabia.
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Fig. 5. Throughput of different Redis integrations.

F. Performance Analysis

We analyze the complexity of Aurora and three other pro-
tocols (Multi-Paxos, EPaxos, and Rabia) as shown in Table I
to better understand our protocol. From the table, Multi-
Paxos and EPaxos have better results. However, both Rabia
and Aurora outperform them in practice, which may seem
counterintuitive. This is because the communication overhead
is not a bottleneck with a small number of replicas5 in a stable
network.

The bottleneck of Multi-Paxos lies with the leader due to the
unbalanced workload stemming from its leader-based design.
As for EPaxos, the bottleneck is local computation because
it needs to check all dependencies to ensure safety. Rabia
achieves a higher performance by evenly distributing the work-
load to all replicas and avoiding costly local computations.
Aurora shares the same advantages as Rabia but can agree
on up to n decisions per consensus round, compared to only
1 decision per consensus round in Rabia. Therefore, Aurora
achieves even higher performance.

TABLE I
COMPLEXITIES.

Multi-Paxos EPaxos Rabia Aurora

Message complexity O(n) O(n2) O(n2) O(n3)
Message delays 2 2 3 3

Decisions per round 1 n 1 n

VIII. CONCLUSION

In this paper, we propose a leaderless crash-fault tolerant
SMR, which eliminates the need for a fail-over protocol. To
demonstrate its scalability and robustness, we systematically
evaluate its performance on a testbed consisting of 11 AWS
VMs across multiple zones within the same region.

In future work, we plan to explore applying this idea in
more challenging settings. For example, we will investigate
how to make it tolerant to Byzantine faults and how to adapt
it for WAN environments.
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