
Lower Bounds on Anonymous Whistleblowing

Willy Quach ∗ LaKyah Tyner † Daniel Wichs ‡

Abstract

Anonymous transfer, recently introduced by Agrikola, Couteau and Maier [ACM22] (TCC ’22), allows
a sender to leak a message anonymously by participating in a public non-anonymous discussion in which
everyone knows who said what. This opens up the intriguing possibility of using cryptography to ensure
strong anonymity guarantees in a seemingly non-anonymous environment.

The work of [ACM22] presented a lower bound on anonymous transfer, ruling out constructions with
strong anonymity guarantees (where the adversary’s advantage in identifying the sender is negligible)
against arbitrary polynomial-time adversaries. They also provided a (heuristic) upper bound, giving a
scheme with weak anonymity guarantees (the adversary’s advantage in identifying the sender is inverse
in the number of rounds) against fine-grained adversaries whose run-time is bounded by some fixed
polynomial that exceeds the run-time of the honest users. This leaves a large gap between the lower bound
and the upper bound, raising the intriguing possibility that one may be able to achieve weak anonymity
against arbitrary polynomial time adversaries, or strong anonymity againstfine grained adversaries.

In this work, we present improved lower bounds on anonymous transfer, that rule out both of the
above possibilities:

• We rule out the existence of anonymous transfer with any non-trivial anonymity guarantees against
general polynomial time adversaries.

• Even if we restrict ourselves to fine-grained adversaries whose run-time is essentially equivalent to
that of the honest parties, we cannot achieve strong anonymity, or even quantitatively improve over
the inverse polynomial anonymity guarantees (heuristically) achieved by [ACM22].

Consequently, constructions of anonymous transfer can only provide security against fine-grained adver-
saries, and even in that case they achieve at most weak quantitative forms of anonymity.
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1 Introduction

Consider the following question:

Can a sender leak a message anonymously, by exclusively participating in a public non-anonymous
discussion where everyone sees who said what?

In particular, we consider a setting where the participants are having a seemingly innocuous discussion (e.g.,
about favorite cat videos). The discussion is public and non-anonymous, meaning that the participants are
using their real identities and everyone knows who said what.1 The non-sender participants are having a
real conversation about this topic. On the other hand, the sender is carefully choosing what to say in a way
that looks like she is participating in the conversation, but her real goal is to leak a secret document (e.g.,
NSA’s polynomial-time factoring algorithm). At the end of the discussion, anyone should be able to look
at the transcript of the conversation and reconstruct the secret document, without learning anything about
which of the participants was the actual sender responsible for leaking it. Despite its conceptual importance
and simplicity, this question has not been studied until recently, perhaps because it may appear “obviously
impossible”.

A formal study of the question was recently initiated by Agrikola, Couteau and Maier in [ACM22], who,
perhaps surprisingly, raise the intriguing possibility of answering it positively using cryptography. They do
so by introducing a new cryptographic primitive, dubbed anonymous transfer (henceforth AT), to capture
the setting above. An anonymous transfer involves a sender with a secret document, along with unaware
dummy participants who send uniformly random messages.2 The parties run for some number of rounds,
where in each round the sender and each participant sends a message. At the end of the protocol anyone can
reconstruct the secret document with high probability given the transcript. However, the transcript cannot
be used to identify who the sender is among the participants.

Crucially, anonymous transfer does not rely on the availability of any (weak) anonymous channels, nor
on the availability of trusted third parties during the execution. Instead, all protocol messages are assumed
to be traceable to their respective senders, and all other dummy participants only passively send random
messages. The simplicity of the setting makes it both a natural question to explore, and raises very intriguing
possibility of “creating” anonymity in a seemingly non-anonymous environment.

Anonymous transfer and whistleblowing. One central motivation for studying anonymous transfer
is its relation to whistleblowing, where whistleblowers wish to leak confidential and oftentimes sensitive
information, while operating in a potentially untrusted environment. The whistleblowers themselves usually
risk being subjected to both harsh social, financial, and even legal consequences if caught [ABE14, Inz18,
BBC22]. One natural mitigation for those risks is the use appropriate tools, typically cryptographic ones,
to ensure anonymity of the leak. And indeed, a large body of work is devoted to build such tools.

One crucial aspect of these tools is the assumptions made on resources available to the whistleblower,
which we would ideally like to minimize. From a practical perspective, it seems unreasonable to assume
the general availability of, say, anonymous channels or online trusted parties to whistleblowers. In fact,
even given the availability of such anonymous channels, their use alone could potentially be incriminating.
From a more theoretical perspective, cryptographic solutions leveraging such assumptions could be seen
as bootstrapping weaker forms of anonymity. Unfortunately, as far as we are aware, except the work of
[ACM22], all prior work on whistleblowing assume the availability of an online form of trust, and thus do
not seem to answer the initial question we consider. In contrast, [ACM22] asks the intriguing question of
whether cryptography can create forms of anonymity in a more fundamental sense.

1For concreteness, the public discussion could occur over Facebook or Twitter, and users need to be logged in with their
true identity.

2This departs from our informal setting, where a real discussion occurred, while we now assume that “real discussions”
are uniformly random. Various works, including [HLv02, vH04, vHL05] show how to embed uniform randomness into real
discussions. Concretely, it suffices to (randomly) encode uniformly random messages to the distribution representing the (non-
necessarily uniform) communication pattern, in a way that the random messages can be decoded.
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Prior work on anonymous transfer. Along with introducing anonymous transfer, [ACM22] gives both
lower bounds, and, perhaps surprisingly, plausibility results on its feasibility. Let us introduce some notation.
The correctness error ε = ε(λ) of an anonymous transfer is the probability secret documents fail to be
reconstructed, and the anonymity δ = δ(λ) of an AT is the advantage a transcript of the AT provides towards
identifying the sender.3 An AT is in general interactive, and consists of c = c(λ) rounds of interaction.

On the negative side, [ACM22] shows that no protocol can satisfy close to ideal forms of correctness and
security, namely ε, δ = negl(λ), against all polynomial time adversaries. They supplement this lower bound
with a plausibility result, by giving heuristic constructions of anonymous transfer with fine-grained security.
This heuristic construction provides negligible correctness error, but weaker anonymity guarantees (namely
δ ≈ 1/c, where c is the number of rounds), and only against a restricted class of fine-grained adversaries,
who are allowed restricted to be at most O(c) times more powerful than honest users, which are argued
secure by relying on ideal obfuscation.

Still, the work of [ACM22] leaves open the possibility of building anonymous transfer with non-optimal
correctness and security guarantees (e.g, δ ≤ 1/c) secure against arbitrary polynomial-time attacks.

Our results. In this work, we give improved lower bounds for anonymous transfer, largely ruling out
potential improvements over the heuristic upper bound from [ACM22]. Throughout this exposition, we will
consider the case of 2 participants, one sender and a non-sender; [ACM22] shows that lower bounds in that
setting translates to lower bounds for any larger number of parties. Our main theorem shows that anonymous
transfer with any non-trivial anonymity against general polynomial-time attackers is impossible, solving a
conjecture explicitly stated in [ACM22].

Theorem 1.1 (Informal). For any 2-party anonymous transfer protocol for ω(log λ)-bit messages with cor-
rectness error ε, for all polynomial α = α(λ), there exists a polynomial-time adversary that identifies the
sender with probability at least 1− ε− 1/α.

Note that, the probability of identifying the sender is essentially optimal, as, with probability ε, the
sender might act as a dummy party, and therefore this rules out any non-trivial constructions.

Our attack runs in polynomial-time, but where the polynomial is fairly large. This unfortunately does
not match the run-time of allowed adversaries in the heuristic construction of [ACM22].

As a secondary result, we show that even in the setting of fine-grained adversaries whose run-time is
essentially equivalent to that of the honest parties, we can identify senders with probability 1/c whenever
the secret document can be reconstructed. This shows that, even in the fine-grained setting, one cannot
improve on the quantitative anonymity guarantees achieved by the heuristic construction of [ACM22].

Theorem 1.2 (Informal). For any 2-party anonymous transfer protocol for ω(log λ)-bit messages, with
correctness error ε, and having c-round of interaction, there exists a fine-grained adversary whose run-time
matches that of the reconstruction procedure up to additive constant factors, that identifies the sender with
probability at least (1− ε− negl(λ))/c.

Theorem 1.2 in particular rules out all fine-grained protocols with a polynomial number of rounds, if
both δ and ε are negligible. For comparison, the lower bound of [ACM22] rules out very similar parameters,
but where the run-time of the adversary is m(λ) = λ · cg times larger than the one of the reconstruction
procedure, for some arbitrary constant g > 0.

Related work on whistleblowing. Current solutions for anonymous messaging and anonymous whistle-
blowing include systems based on onion routing [DMS04], mix-nets [Cha03], and Dining Cryptographer
networks or DC-nets [Cha88, CGBM15, APY20, ECZB21, NSSD21]. Additionally, there have been other
applications developed that utilize new techniques inspired by the models mentioned previously [CGBM15,
Ber16, CCD+20]. Each of these solutions, however, intrinsically assumes that there exists non-colluding

3In this work, we use the convention that an AT is stronger as ε, δ tend to 0; this is the opposite convention of [ACM22]
where this held whenever ε, δ tend to 1.
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honest servers that participate to ensure anonymity. [ACM22] is the first to introduce a model which does
not rely on this assumption. Impossibility results could be interpreted as evidence that such an assumption
is in fact necessary.

Open problems. The main open question left by [ACM22] and this work is the construction of fine-grained
anonymous transfer matching their heuristic construction, but under standard assumptions.

Additionally, our attack in Theorem 1.1 runs in fairly large polynomial time, which does not tightly
match the fine-grained security proved in the heuristic construction of [ACM22]. We leave for future work
the possibility of improving the run-time of an attack matching the properties of Theorem 1.1.

2 Technical Overview

Anonymous transfer. Let us first recall some basic syntax and notations for anonymous transfer (hence-
forth AT), introduced in [ACM22]. In this overview, we will focus on 2-party anonymous transfer, which
features a sender, a dummy party and an external receiver.45 The sender takes as input a message µ to trans-
fer. The sender and the dummy party exchange messages in synchronous rounds, with the restriction that
the dummy party only sends random bits. An execution of the transfer spans over c rounds of interaction,
where both parties send a message at each round. Given a full transcript, the external receiver can (attempt
to) reconstruct the original message. We say that an AT has ε correctness error if the reconstruction proce-
dure fails to recover µ with probability at most ε; and that it is δ-anonymous if no adversary has advantage
greater than δ in identifying the sender amongst the two participating parties over a random guess, where
the adversary can choose the message to be sent.6 We refer to Section 3.1 for formal definitions.

In that setting, [ACM22] showed the following lower bound on AT.

Theorem 2.1 ([ACM22], paraphrased). Every (two-party, silent receiver) AT with ε-correctness and δ-
anonymity against all polynomial-time adversary, and consisting of c rounds, satisfies δ · c ≥ 1−ε

2 − 1/m(λ)
for all polynomial m(λ).

In particular, no AT can satisfy δ, ε = negl(λ) (assuming c = poly(λ), which holds if participants
are polynomial-time). More precisely, [ACM22] show, for all polynomial m(λ), an attack with runtime
m(λ) · poly(λ) with advantage at least 1

c · (
1−ε
2 − 1/m(λ)).

The main limitation of Theorem 2.1 is that it does not rule out the existence of AT protocols with
anonymity δ scaling inverse-polynomially with the number of rounds c, e.g. δ = 1/c. In other words, the
trade-off between correctness and security could potentially be improved by relying on a large amount of
interaction. And indeed, [ACM22] does provide a plausibility result, where, assuming ideal obfuscation,
there exists a fine-grained AT with δ ≈ 1/c, ε = negl(λ), so that anonymity does improve with the number
of rounds. A secondary limitation is that, because the attack corresponding to Theorem 2.1 needs to call the
honest algorithms a polynomial number of times (even though the polynomial can arbitrarily small), this
potentially leaves room for “very fine-grained” protocols, where security would only hold against adversaries
running in mild super-linear time compared to honest users.

Our main results are stronger generic attacks on anonymous transfer protocols.

A general blueprint for our attacks. The core idea behind all our attacks is a simple notion of progress
associated to any (potentially partial) transcript of an AT. We do so by associating a real value p ∈ [0, 1]R
to partial transcripts of an AT, as follows. We can complete any partial transcripts, replacing all missing
messages by uniformly random ones, and attempt to recover the input message µ← {0, 1}ℓ from the sender.

4Anonymous transfer can also be defined with more than a single “dummy” party. We focus for simplicity on the 2-party
case for this overview, and will show how to extend the attacks to the N -party case subsequently.

5We consider here “silent” receivers who do not send any messages — this is similarly known to be sufficient for lower bounds
[ACM22].

6We remind the reader that [ACM22] takes different conventions than ours for ε and δ. With our notation, an AT satisfies
stronger properties as ε and δ get smaller and closer to 0, and are ideally negligible in the security parameter.
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For a partial transcript, we define p ∈ [0, 1]R to be the probability that a random completion of the transcript
allows to recover µ.

The next step is to attribute partial evolutions of p, as the transcript gets longer, to parties in the
protocol. Namely if, after party A sends the ith message in the transcript, the value of the protocol evolves
from pi−1 to pi, and we attribute to A some progress dependent on pi−1 and pi. We then make the following
observations: the empty transcript has value p0 = 1/2ℓ close to 0 (if µ is chosen uniformly at random), and
full transcripts have (on expectation) value p2c = 1− ε close to 1 by correctness. Our main leverage is that
messages sent by the unaware, dummy participant in an AT do not significantly change the value of a partial
transcript: this is because, in our random completion of transcripts, messages from the dummy party follow
their real distribution. Furthermore, as long as the final value p2c is significantly larger than the initial value
p0, then a significant amount of total progress has to be made at some point. Therefore the messages from
the sender have to significantly bias the values of partial transcripts towards 1.

This results in the following blueprint for identifying the sender of the AT. We first estimate the con-
tribution of each party towards total progress, namely, the evolution of the values p associated to partial
transcripts where the last message was sent from that party.7 Then, we argue that (1) the contribution of
the dummy party is likely to be small overall and (2) the total contribution of both parties is fairly large (on
expectation), from which we conclude that the party whose messages contributed the most to increasing the
value p is likely to be the AT sender.

Covert cheating games. We abstract out this recipe as a natural game, that we call a covert cheating
game. A covert cheating game played by two players A and B, who take 2c alternate turns moving a point,
or current state of the game, on the real interval [0, 1]. One player is designed to be a bias inducer, and the
other a neutral party. The initial state is p0, and the final state is p2c is either 0 or 1. We say that a strategy
has success rate pf > p0 if E[p2c] ≥ pf , regardless of the identity of the bias inducer. The neutral party is
restricted to exclusively making randomized moves that do not affect the current state on expectation. The
goal of a third player, the observer C, is to determine, given access to the states of the game, which player
is the bias inducer. Our main technical contribution is to show generic observer strategies for this game. We
refer to Definition 4.1 for a more detailed definition.

We use this abstraction to capture the fact that our attacks use the AT in a specific black-box sense,
namely, only to measure out values p ∈ [0, 1]R, and using all the AT algorithms in a black-box manner.
Overall, our abstraction of attacks on ATs as strategies in a game captures a natural family of black-box
distinguishing algorithms, which we believe capture most reasonable attacks on AT.8 Indeed, it is not clear
how to leverage any non-black-box use of honest user algorithms, as they could potentially be obfuscated
(and indeed, the plausibility result of [ACM22] does rely on obfuscated programs to be run by honest users).
We believe this game to be natural enough to see other applications in the future.

In the rest of the technical overview, we focus on describing generic attacks in the language of covert
cheating games.

A generic “free-lunch” attack. We describe our first attack on the game introduced above, which
corresponds to a proof sketch of Theorem 1.2. Our attack is very simple, and only leverages the fact that,
on expectation over a random move, moves done by the bias inducer bias the outcome by an additive term
(pf − p0)/c, while moves from the neutral party do not add any bias. Suppose the game consists of c rounds
(each consisting of one move from each party A,B), and that party A makes the first move, so that A makes
the odd moves 2k + 1, and B makes the even moves 2k. Our strategy is to pick a random move k ← [c]
from A, whose kth move makes the game evolve from state p2k to p2k+1. We simply output “A is the bias
inducer” with probability p2k+1 (and B with probability 1− p2k+1).

7In an AT, rounds are by default synchronous; for the sake of this general blueprint, any arbitrary sequentialization of the
messages would be meaningful.

8More precisely, strategies are black-box in the AT algorithms, but need to consider full transcripts in a slightly non-black-box
way (namely, by separating messages and considering random continuations).
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The main idea is that if A is the neutral party, then on expectation p2k+1 = p2k, and thus our strategy
outputs A with probability pk. On the other hand, if A is the bias inducer, our strategy outputs A with
probability p2k+1.

9 Because B is then a neutral party, B’s total expected contribution is 0, namely Ek[p2k+2−
p2k+1] = 0, so that the advantage of our algorithm towards determining A is:

Ek[p2k+1 − p2k] = Ek[p2k+1 − p2k + (p2k+2 − p2k+1)︸ ︷︷ ︸
0

] = (pf − p0)/c.

The cost of our attack is the cost of obtaining a single sample with probability p2k+1. Going back to AT,
this corresponds to the cost of running the honest users’ algorithms once (namely, attempting to reconstruct
the message of a random completion of a randomly chosen partial transcript with last message from A). We
conclude no AT can provide security with parameters from Theorem 1.2, in any fine-grained setting (as long
as adversaries are allowed to be in the same complexity class as honest users).

A generic attack with large advantage. We now describe a slightly more involved attack that achieves
stronger advantage, at the cost of running in larger polynomial time. The main inspiration behind this new
attack comes from taking a closer look on the restriction that the neutral party’s moves do not change the
game state on expectation. We observe that this is a more stringent restriction if the current game state
p is close to 0. For concreteness, if the current state of the game is p = 1/2, then the neutral party could
potentially move the state to p′ = 0 or p′ = 1 with probability 1/2 each, inducing a large change of the value
of p. However, starting at p ⪆ 0, Markov’s inequality ensures that p′ cannot be too large.

This motivates us to consider a different quantification of progress where additive progress close to 0 is
weighed more significantly than additive progress at large constants (e.g. 1/2). We do so by considering
a multiplicative form of progress associated to moves and players. Namely, if the ith move of the game
transforms the game state from pi−1 to pi, then we define the multiplicative progress associated with the
move as

ri =
pi

pi−1
.10

The total progress associated with a player would then be the product of the progress associated with its
moves.

Our blueprint still applies in this context. The total progress of all the moves combined is∏
i∈[2c]

ri =
∏

i∈[2c]

pi
pi−1

=
pf
p0

, 11

and so one of the players (on expectation) needs to have progress at least
√

pf/p0. Furthermore, one can
show that the restriction on neutral party’s moves implies that the product of the ri associated to the neutral
party is 1 on expectation. Namely, denoting N the set of indices corresponding to moves made by the neutral
party: E [

∏
N ri] = 1. Markov’s inequality then gives:

Pr

[∏
N

ri ≥
√

pf
p0

]
≤

√
p0
pf

.

9Technically, the quantities pk when A is the neutral party and pk when A is the bias inducer are not necessarily related.
But without loss of generality, the strategies used by the bias inducer and the neutral party are independent of their identity
as A or B, in which case the quantities p2k are equal.

10One technically needs to be careful handling cases where pi = 0 for some i. We largely ignore this technicality in this
overview. For concreteness, it will be enough to output a random guess if this happens, and observe that, for games resulting
from an AT, this happens with probability at most 1− pf , and therefore does not affect our advantage too much. We refer to
Section 4.3 for more details.

11Actually, the total progress is only guaranteed to be pf/p0 on expectation, which induces several technical issues. We will
assume the progress is always equal to pf/p0 for the sake of this overview, and we refer to Section 4.2 for more details on the
issues and a solution.
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Overall, this shows that with good probability 1−
√
p0/pf , the sender has a large total contribution, and the

dummy party has a small contribution, so that an attacker can identify them with at least such a probability.
We are unfortunately not done yet, because observers do not have direct access to the real values p ∈ [0, 1]:

they are only given the ability to sample coins with probability p (going back to AT, recall that this is done
by sampling a random completion of a transcript and testing whether the reconstructed message matched
the sender’s message). This is problematic: from the perspective of a polynomial-time observer, the values
p = negl(λ) and p = 0 are indistinguishable, given only sampling access. How can we then ensure that the
ratios ri = pi/pi−1 are even well-defined (that is, that pi−1 ̸= 0)?

We solve this issue by conditioning our product to be over moves i ≥ i∗, such that for all i > i∗, pi ≥ τ
for some small accuracy threshold p0 < τ < pf (think τ = 1/poly(λ)), and where we set the convention
pi∗ = τ . Now the ratios are well-defined, and the total contribution is now pf/τ . It remains to argue that
the product corresponding to the neutral party is small. While we might have biased the distribution of the
neutral party by conditioning on the product starting at i∗, we argue by a union bound that, with sufficiently
high probability 1 − c

√
τ/pf , all “suffix-products” from the dummy party are small (namely, smaller than√

pf/τ)
Summing up, our final observer strategy estimates all the pi up to some sufficiently good precision (using

Chernoff) so that the product of the ri = pi/pi−1 is ensured to be accurate, as long as all the terms pi that
appear in the product are large enough compared to our threshold τ . We refer to Section 4.4 for more formal
details.

Taking a step back, the major strength of Theorem 1.1 is that the advantage of the associated attack
is independent of the number of rounds: only its running time scales with the number of rounds (in order
to ensure sufficient precision with Chernoff bounds). This is in our eyes a quantitative justification that
multiplicative progress is better suited to identify bias in a covert cheating game.

Extending the Lower Bound to N parties. Last, we sketch how to extend our attack from Theorem 1.1
to the N -party setting, which consists of a sender interacting with N − 1 dummy parties. Our first step is
to observe that our attacks described above directly translate to targeted-predicting attacks, which correctly
identify the sender given the promise that the sender is either party i ∈ [N ] or j ∈ [N ] where i ̸= j are
arbitrary but fixed for the targeted predictor. This follows from [ACM22], which builds a 2-party AT from
any N -party AT, while preserving targeted-predicting security.12 In other words, given the promise that
the sender is either party i or party j, we can correctly identify the sender with the same guarantees as in
Theorem 1.1 (or even Theorem 1.2).

However, we ideally wish to obtain general predicting attacks that do not rely on any additional informa-
tion to correctly output the identity of the sender. We generically upgrade any targeted-predicting attack
to a standard predicting attack, while preserving the advantage δ, as follows. The attack simply runs the
targeted-predicting attack on all pairs of distinct indices {(i, j) | i, j ∈ [N ], i ̸= j}, and outputs as the sender
the party i∗ that got designated as the sender in all the runs (i∗, j), j ̸= i∗.13 Now, if i∗ is the sender of
the N -party AT, an union bound implies that the probability that all the internal runs (i∗, j), j ̸= i∗ of the
targeted-predicting attack correctly point out to i∗ as the sender is at least δ′ ≥ 1−N(1− δ). Starting with
the attack from Theorem 1.1 with α′ = N · α,14 we obtain the same lower bound as Theorem 1.1 in the
N -party setting, at the cost of a poly(N) overhead in the runtime of our attack.15

12This is done by considering all the messages sent by parties k ̸= i, j as part of the CRS of the new 2-party protocol.
13Note that there is at most one such index. If no such index exist, our attack, say, outputs party 1.
14This corresponds to setting δ = 1− 1/α′, conditioned on executions where the message can be correctly reconstructed. We

refer to Section 5.3 for more details.
15The overhead arises from both the O(N2) calls to the internal distinguisher, and the runtime of the internal distinguisher

itself which is poly(α′) = poly(N) · α.
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3 Preliminaries and Definitions

Notations. When X is a distribution, or a random variable following this distribution, we let x ← X
denote the process of sampling x according to the distribution X. If X is a set, we let x ← X denote
sampling x uniformly at random from X; if Alg is a randomized algorithm, we denote by x ← Alg the
process of sampling an output of Alg using uniformly random coins. We use the notation [k] to denote the
set {1, . . . , k} where k ∈ N, and [0, 1]R to denote the real interval {x ∈ R | 0 ≤ x ≤ 1}. We denote by negl(λ)
functions f such that f(λ) = 1/λω(1).

Chernoff Bound. We will use the following (multiplicative) form of Chernoff-Hoeffding inequality.

Lemma 3.1 (Multiplicative Chernoff.). Suppose X1, · · · , Xn are independent Bernouilli variables with com-
mon mean p. Then, for all t > 0, we have:

Pr

[
n∑

i=1

Xi /∈ [(1− t) · np, (1 + t) · np)]

]
≤ 2e−2t

2p2n.

3.1 Anonymous Transfer

We recall here the notion anonymous transfer, introduced in [ACM22]. Throughout most of this work, we
focus the two-party setting, involving a sender, a dummy non-sender and a (silent) receiver.16

Definition 3.2 ((Two-Party, Silent-Receiver) Anonymous Transfer); adapted from [ACM22]). A two-party
anonymous transfer (AT) Πℓ

AT , with correctness error ε ∈ [0, 1]R, anonymity δ ∈ [0, 1]R, consisting of
c ∈ N rounds and message length ℓ ∈ N (all possibly functions of λ), is a tuple of PPT algorithms
(Setup,Transfer,Reconstruct) with the following specifications:

• Setup(1λ) takes as input a unary encoding of the security parameter λ and outputs a common reference
string crs.

• Transfer(crs, b, µ) takes as input a common reference string crs, the index of the sender b ∈ {0, 1}, the
message to be transferred µ ∈ {0, 1}ℓ, and outputs a transcript π. Transcripts π consists of c rounds of
interaction between the sender and the dummy party, where the dummy party (with index 1− b) sends
uniform and independent messages at each round, and the each message from the sender depends on
the partial transcript so far, with a next message function implicitly defined by Transfer(crs, b, µ).

By default, we assume that the receiver does not send any messages (namely, the receiver is silent).17

• Reconstruct(crs, π) takes as input a common reference string crs, a transcript π and outputs a message
µ′ ∈ {0, 1}ℓ.
By default, we assume that Reconstruct is deterministic.18

We require that the following properties are satisfied.

ε-Correctness. An anonymous transfer Πℓ
AT has correctness error ε if, for all large enough security pa-

rameter λ, index b ∈ {0, 1}, message length ℓ ∈ poly(λ) , and all message µ ∈ {0, 1}ℓ, we have:

Pr

 crs←− Setup(1λ)
π ←− Transfer(crs, b, µ)
µ′ ← Reconstruct(crs, π)

: µ′ ̸= µ

 ≤ ε.

16The work of [ACM22] more generally considers a setting with N parties, namely a sender and N − 1 dummy parties. Our
work focuses on the two-party case, but our main result extend to the N -party case: see Remark 3.6 and Section 5.3 for more
details.

17This is without loss of generality; see Remark 3.4.
18This is without loss of generality; see Remark 3.5
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δ-Anonymity. An anonymous transfer Πℓ
AT is δ-anonymous if, for all PPT algorithm D, all large enough

security parameter λ, message length ℓ ∈ poly(λ), and all message µ ∈ {0, 1}ℓ,∣∣∣∣ Pr[π(0) ←− Transfer(crs, 0,m) : D(π(0)) = 1]
- Pr[π(1) ←− Transfer(crs, 1,m) : D(π(1)) = 1]

∣∣∣∣ ≤ δ, (1)

where the probability is over the randomness of Setup, Transfer, and the internal randomness of D.
We alternatively say that Πℓ

AT is δ-anonymous with respect to a class of adversaries C, if Eq. (1) holds
instead for all distinguishers D ∈ C.

Remark 3.3 (Comparison with [ACM22]). Our notation and definitions are slightly different but equivalent
from the ones from [ACM22]. With our conventions, ε denotes a correctness error, and δ denotes a (bound
on a) distinguishing advantage, and therefore an AT has stronger correctness (resp. stronger anonymity)
guarantees as ε, δ decrease. This is the opposite of [ACM22], where guarantees gets better as their parameters
ε, δ tend to 1.

Our definition of correctness error is over the random choice of crs ← Setup, while it is worst case over
crs in [ACM22]. Because this defines a larger class of protocols, ruling out the definition above makes our
lower bounds stronger.

Our definition of δ-anonymity is formulated specifically for the two-party case, and is worded differently
from theirs, which states, up to the mapping δ 7→ 1− δ discussed above:∣∣∣∣ Pr

b←{0,1}

[
π(b) ← Transfer(crs, b,m) : D(π(b)) = b

]
− 1

2

∣∣∣∣ ≤ δ

2
. (2)

However one can easily show that both definitions correspond to the same value δ .

Remark 3.4 (Silent Receivers). As noted in [ACM22], without loss of generality, the receiver in an anony-
mous transfer can be made silent, namely, does not send any messages in the protocol execution. This is
because its random tape can be hard-coded in the CRS.

Remark 3.5 (Deterministic reconstruction). We observe that Reconstruct can be assumed to be determin-
istic without loss of generality; this is because random coins for Reconstruct can be sampled and included in
the common reference string crs.

Remark 3.6 (AT with larger number of parties). [ACM22] more generally defines anonymous transfer with
a larger number of participants N ∈ N. We refer to [ACM22, Definition 3] for a formal definition.19 The
main difference (in the silent receiver case), is that δ is defined as an advantage over random guessing among
the N participants. Namely, Eq. (2) becomes:∣∣∣∣ Pr

k←[N ]

[
π(k) ← Transfer(crs, k,m) : D(π(k)) = k

]
− 1

N

∣∣∣∣ ≤ δ · N − 1

N
.

In particular, while the indistinguishability-based definition in Eq. (1) and the predicting-based definition
in Eq. (2) are equivalent in the two-party setting, it is not immediately clear that this holds in the N -party
setting. Looking ahead, in order to extend our results from the 2-party to the N -party setting, our main
observation is to show that this equivalence in fact holds, up to some mild loss in the parameters. We refer
to Section 5.3 for more details.

4 Identifying Covert Cheaters

In this section, we introduce our abstraction of the covert cheating games, and then show generic strategies
for the game.

19We remind the reader that the quantity δ in [ACM22] corresponds to 1 − δ for us. Additionally, in this version of the
definition, we do not include the receiver in the count for the number of parties.
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4.1 Covert Cheating Game

We define a covert cheating game as follows.

Definition 4.1 (Covert Cheating Game). Let c ∈ N, p0 ∈]0, 1[R be parameters.

• Setup, players and roles. A covert cheating game is played by two (randomized) players A and B,
who can agree on a strategy in advance. They play against an observer C. During setup, one party is
(randomly) designated as the bias inducer while the other is designated as the neutral party.

• Execution and states of a game. An execution of the game consists of players A and B take
alternate moves making moves in the game, with the convention that player A makes the first move.
The game consists of c rounds (that is, 2c total moves, c moves from A and c moves from B), where
c ∈ N is a parameter of the game. At any point during the game, the current state of a game is
represented by a real number p ∈ [0, 1]R. The final state of the game is a bit p2c ∈ {0, 1} (where one
can consider 1 as a winning outcome for the players A,B, and 0 as a losing outcome).

For k ∈ [c], if A is the bias inducer, we will use either of the notations X2k−1 = X
(A)
2k−1 (resp.

X2k = X
(B)
2k ), to denote the random variable associated to the state resulting from A (resp. B) making

its kth move. In other words, the superscript in X
(A)
2k−1 (resp. X

(B)
2k ) is a redundant notation to make

remind the reader that A (resp. B) made the (2k − 1)st (resp. (2k)th) move of the game.

Similarly, for k ∈ [c], if B is the bias inducer, we will use either of the notations Y2k−1 = Y
(A)
2k−1

(resp. Y2k = Y
(B)
2k ), to denote the random variable associated to the state resulting from A (resp. B)

making its kth move. Again, the redundant superscript is used to make the player associated to the
move explicit.

The initial state of the game is defined as p0 ∈]0, 1[R, where p0 is a parameter of the game. In other
words, X0 = Y0 = p0.

We say that a strategy for A and B has success rate pf if E[X2c] ≥ pf and E[Y2c] ≥ pf .

• Rules on moves. The neutral party is restricted to making moves that do not change the state of the
game on expectation, namely, the moves behave as martingales with respect to the current game state.
More formally, with our notation, for all k ∈ [c], we have:20

E[X(B)
2k |X2k−1, · · · , X0] = X2k−1. (3)

E[Y (A)
2k−1|Y2k, · · · , Y0] = Y2k−2. (4)

where the first equation (resp. second equation) corresponds to A (resp. B) being the bias inducer.

• Objective of the game. The goal of the game is, for the bias inducer, to be covert with respect to
the observer C, while maintaining a high success rate pf (namely, a high probability of ending up at
1 in the final state). The observer C has access to intermediate states of the execution pi ← Xi (if
A is the bias inducer, or pi ← Yi otherwise) via a (distribution of) oracles O. In each oracle O is
hard-coded a sequence of 2c states of the game pi, i ≤ 2c induced by an execution of the game. We will
respectively denote by O(A) (resp. O(B)) (the distribution of) oracles corresponding to when A (resp. B)
is designated as the bias inducer. We consider the following variants of the oracles O ∈ {O(A),O(B)}.

– Sampling access. We say that the observer C gets sampling access to game states pi ∈ [0, 1]R, if
oracles O are probabilistic oracles such that, for all i ∈ [2c], O(i) = 1 with probability pi, and
O(i) = 0 with probability 1 − pi, where the randomness is uniformly and independently sampled
at each oracle call. This is our default notion of access.

20We technically are also conditioning the expectations X,Y on all the prior moves instead, but are omitting them for ease
of notation. See Remark 4.2.
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– Direct access. We say that an observer gets direct access to game states pi ∈ [0, 1]R, if oracles O
are defined as Odirect(i) = pi ∈ [0, 1]R for all i ∈ [2c].

We say that the bias inducer successfully δ-fools a class C of observers with respect to sampling access
if for every algorithm C ∈ C, we have:∣∣∣Pr [CO(A)

= 1
]
− Pr

[
CO

(B)

= 1
] ∣∣∣ ≤ δ,

where CO
(X)

, where X ∈ {A,B}, denotes the experiment of sampling O ← O(X ) (which is defined as
sampling a random execution of the game when X is the bias inducer, yielding states pi, i ≤ 2c, and
defining O with respect to {pi}), and giving C oracle access to O.
We say that the bias inducer successfully δ-fools a class C of observers with respect to direct access if
the observer C gets oracle access to Odirect instead.

• (Optional Property): Symmetricity. We say that a strategy for players A and B is symmetric if:

∀k ∈ [c],E [X2k] = E [Y2k] , (5)

that is, the state of the game is (on expectation) independent of the identity of the bias inducer, whenever
the bias inducer and the neutral party made an identical number of moves (which happens after an even
number of total moves).

• (Optional Property): Absorption. We say that a strategy is absorbent (implicitly, with respect to
states 0 and 1) if, for all i ∈ [2c] and bit b ∈ {0, 1}:

{Xi = b} =⇒ {∀j ≥ i,Xj = b}. (6)

Remark 4.2 (Implicit Conditioning on Prior Moves.). We allow the strategies from A and B to be adaptive,
namely, to depend on prior moves. As a result, all the expectations on random variables Xi, Yi are technically
always considered conditioned on all the prior moves. For ease of notation, we will not make this conditioning
explicit, and will always implicitly consider the conditional version of expectations for these variables (and
resulting variables defined as a function of Xi, Yi).

4.2 Attack 1: Free-Lunch Attack with Weak Distinguishing Guarantees

We show here that there exists a very efficient generic observer strategy given sampling access to game states
with small but non-negligible distinguishing advantage. Namely:

Theorem 4.3 (Free-Lunch Distinguisher). For any covert cheating game , consisting of 2c total moves,
with starting state p0 and satisfying symmetricity (see Definition 4.1, Eq. (5)), and any strategy for that
game with success rate pf > p0, there exists an observer strategy C∗ that determines the identity of the bias

inducer with advantage δ =
pf−p0

c , by making a single call to the sampling oracle O.
In other words, the strategy does not δ-fool the class of observers making a single sampling oracle call.

Proof. We build our observer strategy as follows:

Observer C∗:

• Pick a random k ← [c]. Output O(2k − 1) ∈ {0, 1}.

In other words, C∗ picks a random move from A, and outputs 1 with probability the state of the game
after A’s kth move. Let us analyze the advantage of C∗.

Suppose A is the bias inducer. Then:

Ek←[c]

[
O(A)(2k − 1)

]
= E [X2k−1] ,

12



and we furthermore have by Eq. (3) that for all k ∈ [c]:

E
[
X

(B)
2k −X

(A)
2k−1

]
= 0, 21 (7)

namely, B’s moves do not change X on expectation.
Suppose now that B is the bias inducer. Then, Eq. (4) gives that for all k ∈ [c]:

E
[
Y

(A)
2k−1 − Y

(B)
2k−2

]
= 0, (8)

namely, A’s moves do not change Y on expectation. This gives:

Ek←[c]

[
O(B)(2k − 1)

]
= E [Y2k−1]

= E [Y2k−2]

= E [X2k−2] ,

where the second equality comes from Eq. (8), and the last equality follows by symmetry if k > 1 (Eq. (5)),
or as X0 = Y0 = p0 if k = 1.

Overall, we obtain that the advantage of C∗ is, by telescoping:∣∣∣Pr [CO(A)

= 1
]
− Pr

[
CO

(B)

= 1
] ∣∣∣

≥ Pr
[
CO

(A)

= 1
]
− Pr

[
CO

(B)

= 1
]

= E
k

$←[c]

[
X

(A)
2k−1 − Y

(A)
2k−1

]
= E

k
$←[c]

[
X

(A)
2k−1 −X

(B)
2k−2

]
=

∑
k∈[c]

E
[
X

(A)
2k−1 −X

(B)
2k−2

]
c

+
E
[
X

(B)
2k −X

(A)
2k−1

]
c︸ ︷︷ ︸

=0 (Eq. (7))

=
E [X2c −X0]

c

=
pf − p0

c

which concludes the proof.

Remark 4.4 (Correct predictions). Our attack provides a slightly better guarantee than stated in Theo-
rem 4.3: it correctly outputs the identity of the bias inducer (say by associating output 1 to A being the
bias inducer), as opposed to simply distinguishing them. In other words, we have:

Pr
[
CO

(A)

= 1
]
− Pr

[
CO

(B)

= 1
]
=

pf − p0
c

.

4.3 Attack 2.1: A Strong Attack given Direct Access to States

Next, we describe a generic attack with large advantage, given direct access to game states. We refer to the
technical overview (Section 2) for an intuition of the attack. Compared to the exposition in the technical
overview, the main difference is that we have to deal with games where the end state is not consistently
pf , but rather 0 or 1 with expectation pf . This does lead to technical complications. Indeed, one crucial
argument in our proof is that the (multiplicative) contribution of the neutral party is 1 on expectation, which

21Recall that each expectation is implicitly conditioned on prior moves (Remark 4.2).
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allows us to call Markov’s inequality. However, switching to the expectation statement, conditioning on the
end state being 1 might skew the contribution of the neutral party, which might prevent us from concluding.
Instead, we carefully define several useful events, which allows us to compute the advantage of our strategy
without ever conditioning on successful runs. More precisely, we now prove the slightly stronger statement
that for all winning executions (that is, such that p2c = 1), we only fail to identify the sender with small
probability

√
p0.

22

Last, there is a minor technicality in how to handle denominators being equal to 0 (again, where we do
not wish to condition on denominators not being equal to 0), which we solve by requiring a stronger, but
natural “absorption” property of the covert cheating game (Definition 4.1, Eq. (6)).

Theorem 4.5 (Strong Distinguisher given Direct Access). For any covert cheating game satisfying absorp-
tion (Definition 4.1, Eq. (6)), consisting of 2c total moves, with starting state p0 > 0, and any strategy for
that game with success rate pf > 2

√
p0, there exists an observer strategy C∗ that determines the identity of

the bias inducer with advantage at least pf − 2
√
p0 given 2c oracle calls to the direct access oracle Odirect

(Definition 4.1).

Proof. We describe the observer strategy.

Observer C∗:

• Compute for all i ∈ [2c]: pi = Odirect(i). If p2c = 0, output a random bit β ← {0, 1} .
Otherwise, compute:

t(A) =

c∏
k=1

p2k−1
p2k−2

,

t(B) =

c∏
k=1

p2k
p2k−1

,

with the convention that t(A) = 1 (resp. t(B) = 1) if p2k−2 = 0 for some k ∈ [c] (resp. if p2k−1 = 0 for
some k ∈ [c]).

• Output 1 (that we associate to outputting “A”) if t(A) ≥
√

1
p0
. Otherwise, if t(B) ≥

√
1
p0
, output 0

(that we associate to outputting “B”). Otherwise, output ⊥.23

Let us analyze the advantage of C∗.

Case 1: A is the bias inducer. Suppose A is the bias inducer. We define the following events:

CORRECTA := {X2c = 1} ;

LARGE
(A)
A :=

{
t(A) ≥

√
1

p0

}
;

SMALL
(B)
A :=

{
t(B) <

√
1

p0

}
;

GOODA := CORRECTA ∧ LARGE
(A)
A ∧ SMALL

(B)
A .

Note that if GOODA occurs, our algorithm is correct when A is the bias inducer. We argue that GOODA

occurs with high probability. We start by analyzing the contribution t(B) of B.

22This is a stronger statement in the sense that observers can test whether an execution is winning, and therefore can output
an arbitrary bit p2c ̸= 1.

23Technically, ⊥ can be replaced by any arbitrary output, e.g. 0; but considering this output separately is in our eyes
conceptually cleaner.
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Lemma 4.6. We have:
Pr[SMALL

(B)
A ] ≥ 1−√p0.

Proof. For k ∈ [c], let us define the partial product of ratios associated to B:

P
(B)
k =

k∏
j=1

X
(B)
2j

X
(A)
2j−1

,

with the convention that P
(B)
k = 1 if p2j−1 = 0 for some j ∈ [k], and observe that:

t(B) ← P (B)
c .

First, observe that

E[P (B)
1 ] =

E[X(B)
1 ]

p0
= 1,

by Eq. (4).

Let k ∈ {2, · · · , c}; suppose that E[P (B)
k−1] = 1. We have:

E[P (B)
k ] = EY0,···Y2k−1

[
E[P (B)

k |Y0, · · · , Y2k−1]
]

= Ep0,···p2k−1

[
E

[
P

(B)
k−1 ·

X
(B)
2k

X
(A)
2k−1

∣∣∣∣∣Y0 = p0, · · · , Y2k−1 = p2k−1

]]

= Ep0,···p2k−1

[
E

[
P

(B)
k−1 ·

X
(B)
2k

p2k−1

∣∣∣∣∣Y0 = p0, · · · , Y2k−1 = p2k−1

]]

= Ep0,···p2k−1

 t
(B)
k−1 ·

E
[
X

(B)
2k

]
p2k−1

∣∣∣∣∣∣Y0 = p0, · · · , Y2k−1 = p2k−1


= Ep0,···p2k−1

[
t
(B)
k−1

∣∣∣Y0 = p0, · · · , Y2k−1 = p2k−1

]
= P

(B)
k−1,

where we define t
(B)
k−1 = t

(B)
k−1(p0, · · · , p2k) as: t

(B)
k−1 =

∏k−1
j=1

p2j

p2j−1
, and where the second to last equality

follows by Eq. (4), and with the convention that a fraction with denominator 0 is equal to 1. Therefore, for
all k ∈ [c] (and in particular k = c− 1), we have:

E[P (B)
k ] = 1. (9)

Markov’s inequality thus gives:

Pr[¬SMALL
(B)
A ] = Pr

[
P

(B)
k ≥

√
1

p0

]
≤ √p0,

which concludes the proof of Lemma 4.6.

Next, by definition of success rate and pf , we have Pr[CORRECTA] ≥ pf . Thus:

Pr
[
CORRECTA ∧ SMALL

(B)
A

]
≥ Pr [CORRECTA]− Pr

[
¬SMALL

(B)
A

]
≥ pf −

√
p0.

Last, we observe that CORRECTA∧SMALL
(B)
A implies CORRECTA∧LARGE(A)

A ∧SMALL
(B)
A . Indeed, suppose

CORRECTA occurs. By absorption of the game Eq. (6), none of the terms used in a denominator equal 0

15



(otherwise the final state would be 0). Furthermore, whenever CORRECTA occurs, we have by a telescoping
product:

t(A) · t(B) = 1,

and therefore, t(B) <
√
1/p0 (given by SMALL

(B)
A ) implies that t(A) ≥

√
1/p0, namely that LARGE

(A)
A occurs.

Overall, this ensures:

Pr[GOODA] ≥ Pr[CORRECTA ∧ SMALL
(B)
A ] ≥ pf −

√
p0,

and therefore C∗ will be correct with probability at least pf −
√
p0 when A is the bias inducer when

CORRECTA occurs, and correct with probability 1/2 when ¬CORRECTA occurs (which occurs with proba-
bility 1− pf by definition of pf ). In other words, when A is the bias inducer, C∗ outputs 1 with probability
at least pf −

√
p0 + (1− pf )/2.

Case 2: B is the bias inducer. Suppose now B is the bias inducer. We can similarly define:

CORRECTB := {Y2c = 1} ;

LARGE
(B)
B :=

{
t(B) ≥

√
1

p0

}
;

SMALL
(A)
B :=

{
t(A) <

√
1

p0

}
;

GOODB := LARGE
(A)
A ∧ SMALL

(B)
A .

An almost identical analysis (using random variables X instead of Y , and shifting the indices appropriately)
shows that

Pr[GOODB ] ≥ pf −
√
p0,

and therefore C∗ will be correct with probability at least pf −
√
p0 + (1− pf )/2 when B is the bias inducer.

Wrapping up. Overall, the advantage of C∗ is∣∣∣Pr [CO(A)

= 1
]
− Pr

[
CO

(B)

= 1
] ∣∣∣ ≥ Pr

[
CO

(A)

= 1
]
− Pr

[
CO

(B)

= 1
]

≥ 2(pf −
√
p0)− 1 + (1− pf ) = pf − 2

√
p0,

which concludes the proof.

4.4 Attack 2.2: A Strong Attack given Sampling Access to States

Next, we port our attack from Section 4.3 to the much weaker sampling setting. Overall, this new attack

• works in the much weaker sampling setting, and does not require the game to satisfy absorption
(Eq. (6)),

• but has slightly weaker advantage ≈ pf −1/poly(λ) while requiring p0 to be fairly small (the advantage
holding for any poly(λ) of our choice, as long as p0 is small enough), and has a quite larger polynomial
sample complexity q ≈ c6 · poly(λ) with respect to the sampling oracle.24

Our new analysis is more involved, as to carefully estimate the multiplicative progress of the players
despite having imperfect access to the game states pi. The main problem arises when the state of the game
becomes (say, exponentially close or even equal to) 0. Indeed, such states are indistinguishable from the

24Looking ahead, this large sample complexity is a result of the techniques we use in our analysis which require us compute
precise estimations for each game state.
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state being actually 0 from the view of a polynomial-time observer with only sampling access to the state.
However, they cannot be treated using an absorption argument (Eq. (6)), like in Theorem 4.5: this is because
Eq. (6) only holds for the two states 0 and 1. We solve this by thresholdizing the (partial) products, and
only considering “suffix-products” (that is, over indices i ≥ i∗ for some index i∗) when all the probabilities
handled are large enough (say ≳ 1/c2). We refer to Section 2 for an intuition for the attack.

One difference with the overview in Section 2 is, again, that the strategy from the players A,B do not
necessarily finish at state p2c ≥ pf ; this guarantee only holds on expectation. We solve this issue similarly
to Theorem 4.5, by defining several useful events, and argue that products associated to the neutral party
are small with high probability without (significantly) conditioning. And similarly to Theorem 4.5, we prove
a slightly stronger result: for all winning executions of the game (that is, such that p2c = 1), we only fail to
identify the sender with probability ≈ 1/poly(λ).

Overall, we present an attack with guarantees comparable with the ones from Theorem 4.5. Even if the
analysis is quite tedious and notation-heavy, it is still very similar in spirit to the one of Theorem 4.5.

Theorem 4.7 (Strong Distinguisher given Sampling Access). Let α(λ) ≥ 1 be a polynomial. For all covert
cheating game satisfying p0 ≤ O

(
1

c2α2

)
, and any strategy with success rate pf ≥ 1/α(λ), there exists an

observer C∗ that determines the identity of the bias inducer with advantage at least pf − 1/α− negl(λ).
Furthermore, the observer makes c6α4ω(log2 λ) calls to the sampling oracle O.
In particular, if p0 = negl(λ), there is, for all polynomial α, an observer strategy with advantage at least

pf − 1/α− negl(λ), with a query complexity of c6α4ω(log2 λ).

Proof. Suppose the covert cheating game satisfies the constraints on p0 and pf ; observe that in particular
p0 ≤ pf .

We describe our attack, which uses the following parameters:

• τ = τ(λ, c) ∈ [0, 1]R, a threshold precision for our estimation procedure. We will use τ = 1/(64c2 ·α2(λ))
where α is specified in Theorem 4.7.

• t = t(λ, c) ∈ [0, 1]R, a multiplicative approximation factor for our estimation. We will use t = 1/2c.

• s = poly(λ, c, τ, t), a number of repetitions for our estimation. We will set s = c6 · poly(λ), so that

s = log c·ω(log λ)
τ2t2 .

Observer C∗:

1. (Estimation of pi’s):

• Set p̃0 = p0.

• For i = 1 to 2c:

– For j = 1 to s, sample bj ← O(i).
– Compute p̃i =

1
s

∑s
j=1 bj .

• If p̃2c ≤ 1− τ , output a random bit β ← {0, 1}.25

• Otherwise, let i∗ be the largest index in [0, 2c] such that p̃i ≤ τ (which exists as we set p0 = p̃0 ≤ τ).

2. (Estimation of partial numerator and denominator): Compute

t̃(A)
num =

c∏
k | 2k−2≥i∗

p̃2k−1. t̃(B)
num =

1

p̃2c

c∏
k | 2k−1≥i∗

p̃2k

t̃(A)
denom = K(A) ·

c∏
k | 2k−1≥i∗

p̃2k−2, t̃(B)
denom = K(B) ·

c∏
k | 2k≥i∗

p̃2k−1,

25The choice of the specific output doesn’t matter for the sake of the analysis, as long as is the same distribution whenever
A or B is the bias inducer.
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where K(A) =

{
1 if i∗ is odd

τ if i∗ is even,
and K(B) =

{
τ if i∗ is odd

1 if i∗ is even.

In other words, this computes partial products starting at i∗ with the convention p̃i∗ = τ (which only
appears in one denominator, according to the parity of i∗), and p̃2c = 1.

3. Output: Output 1 (that we associate to outputting “A”) if

t̃(A) :=
t̃
(A)
num

t̃
(A)
denom

≥
√

1

τ
.

Otherwise, output 0 (that we associate to outputting “B”) if

t̃(B) :=
t̃
(B)
num

t̃
(B)
denom

≥
√

1

τ
.

Otherwise, output ⊥.26

Let us analyze the advantage of C∗.

Case 1. A is the bias inducer. We define the following events, similar to the proof of Theorem 4.5,
adapted to the approximate setting:

CORRECTA := {p̃2c ≥ 1− t} ;

LARGE
(A)
A :=

{
t̃(A) ≥

√
1

τ

}
;

SMALL
(B)
A :=

{
t̃(B) <

√
1

τ

}
;

GOODA := CORRECTA ∧ LARGE
(A)
A ∧ SMALL

(B)
A .

We furthermore define the following auxiliary events related to the accuracy of the estimation procedure:

BAD0 := {∀i s.t. pi ≥ τ, p̃i /∈ [(1− t) pi, (1 + t) pi]} ;
BAD1 := {pi∗ ≤ 2τ} .

We first argue that these auxiliary events only hold with negligible probability.

Lemma 4.8. We have: Pr[¬BAD0 ∧ ¬BAD1] = negl(λ).

Proof. This follows from routine Chernoff bounds. Define:

BAD2 := {∃i > i∗, pi ≤ τ/2} .

Combining Chernoff (Lemma 3.1 with t = 1) with an union bound over the at most 2c indices i gives

Pr[BAD2] ≤ 2c · e−8sτ2

. Whenever BAD2 does not occur, we have Pr[BAD0 ∧ ¬BAD2] ≤ 4c · e−2τ2t2s by
another combination of Chernoff and an union bound, which overall yields:

Pr[BAD0] ≤ 6c · e−8τ
2t2s ≤ negl(λ),

as long as τ2t2s ≥ log(c)ω(log λ), which holds by our setting of s.

Similarly, a Chernoff bound with t = 2 gives Pr[BAD1] ≤ e−8τ
2s, which is negligible as long as τ2s ≥

ω(log λ).

26Again, ⊥ can be replaced by any arbitrary output, e.g. 0; but considering this output separately is in our eyes conceptually
cleaner.

18



We want to prove two main claims, namely:

(1) Whenever GOODA occurs, C∗ correctly outputs 1.

(2) GOODA occurs with sufficiently high probability (Claim 4.9).

Claim (1) follows, similarly to the case in the proof of Theorem 4.5, from the claim that CORRECTA ∧
SMALL

(B)
A holding implies CORRECTA ∧ LARGE

(A)
A

∧ SMALL
(B)
A holds except with negligible probability. Indeed, whenever

CORRECTA and BAD0 occur, we have

t̃(A) · t̃(B) = 1,

and therefore t̃(B) < 1
2 ·

√
1/τ (given by SMALL

(B)
A ) implies that t(A) ≥ 2

√
1/τ , namely that LARGE

(A)
A

occurs, and Lemma 4.8 concludes the claim.
It therefore suffices to prove (2).

Claim 4.9. We have:
Pr[GOODA] ≥ pf − 4c ·

√
τ − negl(λ).

We first show a few intermediate lemmas.

Proof of Claim 4.9. We proceed similarly as in Section 4.3. We start by showing that:

Pr[SMALL
(B)
A ] ≥ Pr[SMALL

(B)
A ∧ ¬BAD0 ∧ ¬BAD1] ≥ 1− c ·

√
τ − negl(λ). (10)

By a similar analysis to Section 4.3, using Eq. (4), we have that for any fixed i ∈ [2c]:

Pr

 c∏
k|2k−1≥i

p
(B)
2k

p
(A)
2k−1

≥ 1

4
·
√

1

τ

 ≤ 4
√
τ .

A union bound over i = 2k − 1 ∈ [2c], (there are c different such products), then gives:

Pr

∃i ∈ [2c],

c∏
k|2k−1≥i

p
(B)
2k

p
(a)
2k−1

≥ 1

4
·
√

1

τ

 ≤ 4c ·
√
τ .

Furthermore, whenever ¬BAD1 occurs, we have p∗i ≤ 2τ , that is 1/p∗i ≥ 2/τ , so that, using Lemma 4.8:

Pr

1

2
·

c∏
k|2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

≥ 1

4
·
√

1

τ

 ≤ 4c ·
√
τ + negl(λ),

where p′ are defined as p′i∗ = τ , and p′i = pi for all i ̸= i∗.
Last, whenever ¬BAD0 additionally occurs, we have:

t̃
(B)
num

t̃
(B)
denom

=
1

K(B)
· 1

p̃2c
·
∏c

k | 2k−1≥i∗ p̃2k∏c
k | 2k≥i∗ p̃2k−1

≤
(
1 + t

1− t

)c c∏
k | 2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

≤ 2 ·
c∏

k|2k−1≥i∗

p
′(B)
2k

p
′(A)
2k−1

,
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whenever t ≤ 1/2c. Therefore:

Pr[¬SMALL
(B)
A ] = Pr

 t̃
(B)
num

t̃
(B)
denom

≥
√

1

τ

 ≤ 4c ·
√
τ + negl(λ).

Next, we have that if ¬BAD0 holds, then Pr[CORRECTA] ≥ pf (by definition of pf ), and therefore
Pr[CORRECTA] ≥ pf − negl(λ), and thus

Pr
[
CORRECTA ∧ SMALL

(B)
A ∧ LARGE

(B)
A

]
≥ Pr

[
CORRECTA ∧ SMALL

(B)
A

]
− negl(λ)

≥ Pr [CORRECTA]− Pr
[
¬SMALL

(B)
A

]
− negl(λ)

≥ pf − 4c
√
τ − negl(λ),

which concludes the proof of Claim 4.9.

Overall, if A is the bias inducer, given C∗ outputs 1 with probability 1/2 whenever ¬CORRECTA occurs,
we have:

Pr
[
CO

(A)

= 1
]
≥ pf − 4c

√
τ +

1− pf
2
− negl(λ).

Case 2. B is the bias inducer. Similarly to Section 4.3, we define and analyze the analogues of the
events when B is the bias inducer, and conclude that in this case, C∗ outputs 0 with probability at least
pf − 4c

√
τ +

1−pf

2 − negl(λ).

Wrapping up. Overall, the advantage of C∗ is∣∣∣Pr [CO(A)

= 1
]
− Pr

[
CO

(B)

= 1
] ∣∣∣

≥ Pr
[
CO

(A)

= 1
]
− Pr

[
CO

(B)

= 1
]

≥ pf − 4c
√
τ +

1− pf
2
− 1 + (pf − 4c

√
τ +

1− pf
2

)− negl(λ)

= pf − 8c
√
τ − negl(λ), (11)

and plugging in the parameters in the beginning of the proof gives 8c
√
τ = 1/α, which concludes the

proof.

Remark 4.10 (Correct predictions). Again, our attack provides a slightly better guarantee than stated in
Theorem 4.7: it correctly outputs the identity of the bias inducer (say by associating output 1 to A being
the bias inducer), as opposed to simply distinguishing them. In other words, we have:

Pr
[
CO

(A)

= 1
]
− Pr

[
CO

(B)

= 1
]
= pf − 8c

√
τ − negl(λ).

Looking ahead, we will crucially use this fact to extend our result to the many-party case.

Remark 4.11 (Cost of the Attack, and Fine-grained Guarantees). The sampling complexity of our strategy
C∗ is a large, but fixed polynomial c6 ·α4 ·ω(log2 λ). Concretely, in the setting where pf ≥ K for a constantK,
and p0 = negl(λ), we obtain attack with constant advantage (or even advantage 1−1/poly if pf = 1−1/poly)
which has a fixed overhead sampling cost as a function of c.

In other words, our attack rules out combinations of games and strategies that δ-fool fine-grained observers
with sample complexity m(c), if m is allowed to be a large enough polynomial.27

27Here, we implicitly take the convention that, because players make c moves, they have complexity at least c. This is
informal, and there is a mismatch: we are comparing sample complexity of C∗ against standard complexity of A and B. The
translation to AT lower bounds will make this statement more precise.
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5 Lower Bounds on Anonymous Transfer

In this section, we tie the attacks on covert cheating games in Section 4 to impossibility results for anonymous
transfer, thus obtaining Theorem 5.2 and Theorem 5.5. Last, we show how to extend Theorem 5.2 to the
N -party setting in Section 5.3.

5.1 Reducing Anonymous Transfer to Covert Cheating Games

Theorem 5.1. Let Πℓ
AT be a two-party anonymous transfer protocol, with correctness error ε ∈ [0, 1]R,

anonymity δ ∈ [0, 1]R with respect to a class C of adversaries, consisting of c ∈ N rounds and message
length ℓ ∈ N (all possibly functions of λ) and satisfying deterministic reconstruction (which is without loss
of generality, see Remark 3.5).

Then there exists a covert cheating game, along with player strategy, where the game consists of c rounds,
the initial state of the game is 2−ℓ, the expected final state is pf = 1 − ε and the player strategy δ-fools
observers in C.

Moreover, the covert cheating game satisfies absorption (Definition 4.1, Eq. (6)), and is symmetric if
Πℓ

AT is symmetric (Definition A.2).

Proof. Let Πℓ
AT = (Setup,Transfer,Reconstruct) be an AT with the notation of Theorem 5.1. We define our

game as follows.

• Players and roles. The players of the game are the participants of the AT. The bias inducer is the
sender of the AT using a uniformly random message µ← {0, 1}ℓ, the neutral party is the dummy party
of the AT, and observers are distinguishers.

• Execution and states. Moves in the covert cheating game are messages sent in the AT. In other
words, a full execution of the game is a full AT transcript. Because moves in the covert cheating game
are sequential, we sequentialize the messages of the AT by consider player A to move first within the
round. This induces an order of messages, indexed by i ∈ [2c].

Let us fix an execution of the game, that is a full AT transcript π ← Transfer(crs, b, µ), where crs ←
Setup(1λ) and µ ← {0, 1}ℓ. The associated states of the game pi, where i ∈ [2c], are defined as
follows. Let π[i] denote the partial transcript consisting of the first i messages of the protocol Transfer
(with the sequential order from above). Let π[i] denote the distribution of randomly completed partial
transcripts, where π[i] is completed with 2c − i uniformly sampled random message to obtain a full
transcript. We then define:

pi = p(crs, π[i]) := Pr
[
µ′ ← Reconstruct(crs, π[i]) : µ′ = µ

]
,

where µ← {0, 1}ℓ is the input to the AT sender. The probability is over the randomness of the random
completion (recall that Reconstruct is deterministic).

The initial state of the game is p0 = 1/2ℓ, over the sole randomness of µ← {0, 1}ℓ.
Πℓ

AT having correctness error ε implies that the resulting covert cheating strategies have success rate
pf = 1 − ε. Furthermore, the final state satisfies p2c ∈ {0, 1} by determinism of Reconstruct and
definition of p2c (as there is no randomness in Reconstruct(crs, π)).

• Restriction on the neutral party. We argue that Eqs. (3) and (4) hold. This is because in an
AT, dummy messages are sampled uniformly at random, and are therefore identically distributed as its
counterpart obtained from random completion. More formally, supposing A is the bias inducer/sen-
der, we have for all k ∈ [c] that the completions (π[2k − 1]∥msg) where msg is a random AT protocol

21



message, and π[2k − 1] are identically distributed by definition of completion, so that

E[X(B)
2k |X2k−1, · · · , X0] = Emsg

[
Pr

[
µ′ ← Reconstruct(crs, (π[2k − 1]∥msg)) : µ′ = µ

]]
= Pr

[
µ′ ← Reconstruct(crs, π[2k − 1]) : µ′ = µ

]
= X2k−1,

and similarly when B is the bias inducer/sender.

• Observers and security. Given an AT transcript, we implement a sampling oracle as follows. On
input i, sample π[i] and compute µ′ ← Reconstruct(crs, π[i]) Output 1 if µ′ = µ, and 0 otherwise. By
definition, this procedure tosses a coin with probability pi.

Overall, if an observer strategy distinguishes O(A) from O(B) in time t, with q sampling oracle queries
and advantage δ, then there exists a distinguisher for the AT running in time t + q · (n + ρ(c)) with
advantage δ, where n is the complexity of computing Reconstruct and ρ(c) is the complexity of sampling
c uniformly random protocol messages.

• Absorption. Because completions are sampled uniformly random from the whole message space of
the protocol, by definition of pi, pi = 1 implies that all completions of π[i] recover µ, which implies
that all possible continuations of π[i] satisfy p = 1. Similarly, pi = 0 implies that all completions of
π[i] fail to recover µ, so that all continuations of π[i] satisfy p = 0.

• Symmetricity. Suppose the AT is symmetric (Definition A.2), and let k ∈ [c]. Then (1) by symmetry
of Reconstruct, Reconstruct(crs, π[2k]) is identically distributed as Reconstruct(crs,Mirror(π[2k])), where
Mirror flips the identities of the participants in the transcript and (2) by symmetry of Transfer, the un-

ordered set (dummy(A),msg(B)) is identically distributed as (dummy(B),msg(A)). We can therefore re-

place all the consecutive pairs of messages (2j−1, 2j) from {dummy
(A)
2j−1,msg

(B)
2j } to {msg

(A)
2j−1, dummy

(B)
2j },

for all j ≤ k, without changing the distribution of the outcome of Reconstruct. Doing so 2k times gives:

E[X2k] = E[Y2k].

5.2 Lower Bounds on Anonymous Transfer

We first rule out the existence of AT with non-trivial correctness error ε and anonymity δ, that are secure
against arbitrary polynomial-time adversaries. We do so by combining Theorem 4.7 with Theorem 5.1, which
gives the following:

Theorem 5.2. Suppose Πℓ
AT is a (two-party, silent receiver) anonymous transfer satisfying deterministic

reconstruction, and with ℓ ≥ ω(log λ)-bit messages, with correctness error ε, and δ-anonymous against all
polynomial-time adversaries. Then, for all polynomial α = α(λ):

δ ≥ 1− ε− 1/α(λ).

We observe that the relation between δ and ε is almost tight (up to 1/poly(λ) factors), namely matches
a trivial construction, (Claim A.1).

Remark 5.3 (Ruling out other versions of AT). Thanks to the transformations in Section 3, Theorem 5.2
also rules out other versions of AT, including (all combinations of) the following: AT with non-silent receiver,
AT with randomized reconstruction, AT with a large number N of parties (by considering δ′ = (N − 1) · δ).
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Remark 5.4 (Ruling out strong fine-grained results.). In fact, denoting n = n(λ) the running time of
Reconstruct, the attack obtained by combining Theorem 4.7 with Theorem 5.1 runs in time m(λ) = n · c6 ·
ω(log2(λ)), and therefore Theorem 5.2 further rules out schemes that are secure against adversaries running
in fixed polynomial overhead over honest users m ≤ n7. In other words, fine-grained results for non-trivial
parameters will at most provide security against adversaries running in time m.

Next, we rule out the existence of fine-grained AT, but for a smaller set of parameters. We do so by
combining Theorem 4.3 with Theorem 5.1. Note that Theorem 4.3 requires the AT to be symmetric; this is
without loss of generality by Claim A.3. This overall gives the following:

Theorem 5.5. There are no fine-grained AT with ℓ-bit messages, correctness error ε, and anonymity δ,
such that:

δ · c ≥ 1− ε− 1/2ℓ.

More precisely, denoting n = n(λ) the maximum runtime of Transfer,Reconstruct, and ρ(c) is the cost of
sampling c uniformly random protocol messages, combining Theorem 4.3 with Theorem 5.1 gives an attack
with complexity n(λ) + ρ(c) ≤ 2n(λ).

5.3 Extension to Anonymous Transfer with Many Parties

In this section, we show that Theorem 5.2 extends to rule out anonymous transfer with any polynomial
number N of parties.28 More precisely, we prove the following result.

Theorem 5.6. Let N = N(λ) be any polynomial. Suppose Πℓ
AT is an N -party (silent receiver) anonymous

transfer satisfying deterministic reconstruction, with ℓ ≥ ω(log λ)-bit messages, with correctness error ε, and
δ-anonymous against all polynomial-time adversaries. Then, for all polynomial α = α(λ):

δ ≥ 1− ε− 1/α(λ).

Our proof follows two main steps. In a first step, we observe in Claim 5.9 that the attack underlying
Theorem 5.2 directly extends to an attack in the N -party case, given the promise that the sender’s identity is
restricted to two parties.29 Then, in Lemma 5.10, we show that such an attack generically implies a standard
attack on anonymity (without the promise mentioned above).30

We formalize the first step by introducing an alternate definition of anonymity, which is weaker than the
original one of [ACM22].

Definition 5.7 (Targeted-predicting anonymity). We say that an N -party anonymous transfer Πℓ
AT is δT -

targeted-predicting anonymous, if there exists {i, j} ∈ [N ] with i ̸= j such that, for all PPT algorithm A,31

all large enough security parameter λ, message length ℓ ∈ poly(λ), and all message µ ∈ {0, 1}ℓ:

Pr[π(i) ←− Transfer(crs, i,m) : A(π(i), {i, j}) = i]− Pr[π(j) ←− Transfer(crs, j,m) : A(π(j), {i, j}) = j] ≤ δT ,
(12)

where the probability is over the randomness of Setup, Transfer, and the internal randomness of A.

Intuitively, Definition 5.7 ensures that no polynomial-time adversary can infer who the sender is, even
given the promise that the sender is either party i or party j.32 In other words, Definition 5.7 is conceptually

28Looking ahead, doing so comes at a mild loss in the resulting anonymity δ. While this loss is mild starting from Theorem 5.2
yielding the main result of the section, it is quite significant when starting from Theorem 5.5, in which case the anonymity
guarantees we obtain are similar to the ones of [ACM22]. We therefore focus on Theorem 5.2 in this section.

29In fact, the same holds for the attack of Theorem 5.5.
30This step results in a loss of advantage that the attack of Theorem 5.5 does not handle well — it would result in a similar

final statement than the N -party lower bound proven in [ACM22].
31In terms of syntax, A, on input (π, {i, j}), outputs either i or j.
32For technical simplicity, we consider a weak notion of anonymity which requires indistinguishability for some pair of parties

{i, j}.
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similar to indistinguishability-based notion of Definition 3.2, Eq. (1),33 while the original predicting-based
notion of Remark 3.6 from [ACM22] is the analogue of Definition 3.2, Eq. (2).

[ACM22] furthermore showed that any N -party AT can be transformed into a 2-party AT. This is done
by hard-coding the randomness of extra dummy parties into the CRS. We observe that this transformation
directly preserves targeted-predicting anonymity.34

Lemma 5.8 ([ACM22], Section 4.3, rephrased). Any N -party anonymous transfer with correctness error
ε and targeted-predcting-based anonymity δT can be transformed into a 2-party protocol with correctness
error ε′ = ε and anonymity δT . Furthermore, the number of rounds and message length are preserved, and,
moreover, if the original AT is targeted-predicting secure against a class C of adversaries, then the 2-party
protocol is also secure against C.

Given that our attacks underlying Theorem 5.2 (resp. Theorem 5.5) correctly predict the identity of the
senders with high probability (Remark 4.10, resp. Remark 4.4), Theorem 5.2 (resp. Theorem 5.5) directly
extend to the targeted-predicting notion above, by giving an explicit attack for all pairs {i, j}. We now state
the claim resulting from Theorem 5.2.

Claim 5.9 (Lower bound for targeted-predicting AT). Suppose Πℓ
AT is an N -party (silent receiver) anony-

mous transfer satisfying deterministic reconstruction, and with ℓ ≥ ω(log λ)-bit messages, with correctness
error ε, and δT -targeted-predicting anonymous against all polynomial-time adversaries. Then, for all poly-
nomial α = α(λ):

δT ≥ 1− ε− 1/α(λ).

Next, we show how standard anonymity implies targeted-predicting anonymity (albeit with some loss in
the parameters).

Lemma 5.10 (Standard anonymity implies targeted-predicting anonymity). Suppose Πℓ
AT is an N -party

(silent receiver) anonymous transfer satisfying δ-anonymity against all polynomial-time adversaries (Re-
mark 3.6).

Then, Πℓ
AT is δT -targeted-predicting anonymous whenever δ ≥ 1−N · (1− δT )/2, against all polynomial-

time adversaries.

Proof. Let A be a PPT attack against the targeted-predicting anonymity of Πℓ
AT , that is, A satisfies for all

{i, j} ∈ N such that i ̸= j:

Pr[π(i) ←− Transfer(crs, i,m) : A(π(i), {i, j}) = i]− Pr[π(j) ←− Transfer(crs, j,m) : A(π(j), {i, j}) = j] ≥ δT .

We build a (standard) predictor P as follows. Given a transcript π, P runs A(π, {i, j}) for all i, j ∈ N, i ̸= j.
If there exists some index i∗ such that A(π, {i∗, j}) = i∗ for every j ̸= i∗, P outputs i∗. Otherwise, P outputs
say party 1 as the sender.

We argue that P correctly outputs the sender with probability at least 1 − (N − 1)(1 − δT ). Suppose
that i∗ is the sender. By δT -targeted-predicting anonymity, we have for all j ̸= i∗:

Pr[A(π, {i∗, j}) = i∗]− Pr[A(π, {i∗, j}) = j] ≥ δT ,

and thus Pr[A(π, {i∗, j}) = i∗] ≥ 1/2 + δT /2. An union bound then gives that

Pr[∀j ̸= i∗, A(π, {i∗, j}) = i∗] ≥ 1− (N − 1)(1/2− δT /2).

Noting that P outputs i∗ whenever the above occurs (regardless of the calls to A not involving i∗), we have

Pr[P (π) = i∗] = Pr[∀j ̸= i∗, A(π, {i∗, j}) = i∗] ≥ 1− (N − 1)(1/2− δT /2)

33The main difference between these notions is that we require targeted-predicting attacks to correctly output the sender, as
opposed to only distinguish the settings, namely, Eq. (12) doesn’t have any absolute values.

34The original work of [ACM22] showed that any N -party AT with standard (predicting-based) anonymity δ can be trans-
formed into a 2-party protocol with anonymity δ′ ≤ N · δ.
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and so, calling δ the advantage of P in breaking anonymity (Remark 3.6):

δ ≥ N

N − 1

[
Pr[P (π) = i∗]− 1

N

]
≥ 1−N · 1− δT

2
,

which proves the lemma.

To conclude the proof of Theorem 5.6, we note that the attack proving Theorem 5.2 has advantage
1 − 1/α(λ) conditioned on reconstruction succeeding on its input transcript π, and therefore so are the
attacks corresponding to Claim 5.9. Combining Claim 5.9 with α′ = N ·α/2 and Lemma 5.10 concludes the
proof.

Remark 5.11 (Overhead of the extension). The cost of our attack for Theorem 5.6 has a large polynomial
overhead in N in its runtime compared to the 2-party case in Theorem 5.2. This is both due to the predictor
making O(N2) calls to the 2-party attack, and setting a smaller distinguishing error α′ = N · α/2 for the
2-party attack itself (due to the loss in advantage), which incurs an additional O(N4) overhead.

Remark 5.12 (Towards a milder overhead inN). We succinctly describe here another, slightly more involved
reduction, from the N -party case to the 2-case with run-time overhead O(N4 · logN) instead of the O(N6)
from above.

The reduction, given a N -party anonymous transfer, builds a 2-party AT as follows. It samples as part
of the CRS a random index k ← [N ]. Then, party 0 in the 2-player AT acts as parties E0 := {k, · · · , k +
⌊N/2⌋ mod N} in the N -player AT, and party 1 acts as parties E1 := {k + ⌊N/2⌋ + 1 mod N, k + (N −
1) mod N}. The sender b in the 2-party AT chooses a random index i∗ ← Eb he owns, and acts as the
sender for the N -party AT at index i∗, and emulates dummy parties for Eb \ {i∗}. The dummy party acts
as dummy parties for all parties in E1−b.

Correctness follows directly from the correctness of the N -party AT. For security, we start with our attack
on 2-party AT, which breaks anonymity for all k with probability δT ≥ 1− ε− 1/α. Given a transcript, our
reduction searches for i∗ using binary search over k. An union bound over the N possible values of k gives
that all the internal calls to the 2-party attack succeed with probability at least 1− ε−N(1− δT )/2,

35 and
thus our attack has the same probability of success as in the previous “duel-based” approach. However, this
reduction now only calls the 2-party distinguisher ⌈logN⌉ times as opposed to N2 times.
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A Additional Constructions and Transformations for Anonymous
Transfer

We present here a construction of a weak form of AT in Appendix A.1, and show in Appendix A.2 a
transformation from any AT into one such that its next message functions are symmetric.
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A.1 A “Trivial” Anonymous Transfer

We show here a simple family of constructions of anonymous transfer (in the two-party, silent receiver case)
that achieves, given δ ∈ [0, 1]R, anonymity δ and correctness ε ≥ 1− δ − negl(λ).

Claim A.1. For all δ ∈ [0, 1]R, there exists a single-round anonymous transfer protocol satisfying δ-
anonymity and correctness error ε = 1− δ − negl(λ).

Proof. We define our protocol as follows. The CRS consists of a random bitstring k ← {0, 1}λ.
Given an input µ, the sender flips a coin b that outputs 1 with probability δ. If b = 1, the sender sends the

message (µ∥k), and otherwise sends a random message. The reconstruction algorithm parses both messages
as (µ0∥k0) and (µ1∥k1). If kβ = k for some β, it outputs µβ (where β is chosen arbitrarily if this holds for
both 0 and 1). Otherwise it outputs a random bit.

The protocol is δ-anonymous: this is because, the distribution of sender messages is different from the
one of the dummy party with probability δ (namely, when b = 1). Correctness follows as the probability for
the dummy party β that kβ = k is negligible in λ.

A.2 Symmetric Anonymous Transfer

In this section, we show that without loss of generality for the sake of lower bounds, protocol specifications
for the sender do not depend on its identity.

Definition A.2. We say that an anonymous transfer is symmetric if the next message function of the
sender, implicitly defined by Transfer(crs, b, µ) where b is the sender, does not depend on b, and if Reconstruct
does not depend on the identities of the participants.

Claim A.3. Any 2-party anonymous transfer with polynomial-time algorithms, with correctness error ε and
anonymity δ can be transformed into a symmetric anonymous transfer with correctness error ε−negl(λ) and
anonymity δ. Furthermore, the number of rounds and message lengths are preserved.

Proof. Let (Setup,Transfer,Reconstruct) be an anonymous transfer with correctness error ε and anonymity
δ. We define (Setup′,Transfer′,Reconstruct′) as follows. Let us call P0, P1 the participants of the transfer.

A CRS from Setup′ consists of a CRS from Setup along a one-time information theoretic MAC key
k.36 The next-message function of the new sender, on input µ, works as follows. Sample b ← {0, 1},
and use the next-message function defined by Transfer(crs, b, (µ,MAC(k, µ)), where the message to be sent is
(µ,MAC(k, µ)); this results in a transcript π. Reconstruct′(crs, π) calls Reconstruct two times: once by parsing
π normally, obtaining a message (µ0, t0), and once parsing π after flipping the identities of P0, P1, obtaining
a message (µ1, t1). It uses the MAC key k to verify the MAC tags Verify(k, µ0, t0) and Verify(k, µ1, t1), and
outputs any µb such that verification output accept, and any arbitrary message otherwise.

First, the resulting protocol is symmetric by construction.
We argue anonymity as follows. The distributions of the transcripts induced by P0 sampling b = 0 and

P1 sampling b = 1 are δ-indistinguishable by anonymity of the base AT; and similarly distributions of the
transcripts induced by P0 sampling b = 1 and P1 sampling b = 0 are also δ-indistinguishable by anonymity
of the base AT, but with identities reversed. So the new AT satisfies δ-anonymity.

Correctness follows by perfect correctness and unforgeability of the one-time MAC, and correctness of the
base AT. Namely, because Transfer(crs, b, (µ,MAC(k, µ)) and (µ0, t0), (µ1, t1) can be computed in polynomial
time given MAC(k, µ), the probability that some (µb, tb) satisfies µb ̸= µ and Verify(k, µb, tb) = accept is
negligible by one-time security of the MAC. In other words, with overwhelming probability, only tags for
message µ verify and are potentially output by Reconstruct. Then, correctness of the base AT ensures
that if the sender Pβ flips a bit b, then flipping identities if b ̸= β (and doing nothing otherwise) before

36Looking ahead, the CRS is perhaps surprisingly reusable. This is because we use MAC security for correctness; our
adversary for the MAC will be the base AT protocol, which only ever sees a single tag.
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calling Reconstruct recovers (µ,MAC(k, µ)) with probability 1− ε. Overall, the new AT has correctness error
ε− negl(λ).

28


	Introduction
	Technical Overview
	Preliminaries and Definitions
	Anonymous Transfer

	Identifying Covert Cheaters
	Covert Cheating Game
	Attack 1: Free-Lunch Attack with Weak Distinguishing Guarantees
	Attack 2.1: A Strong Attack given Direct Access to States
	Attack 2.2: A Strong Attack given Sampling Access to States

	Lower Bounds on Anonymous Transfer
	Reducing Anonymous Transfer to Covert Cheating Games
	Lower Bounds on Anonymous Transfer
	Extension to Anonymous Transfer with Many Parties

	Additional Constructions and Transformations for Anonymous Transfer
	A ``Trivial'' Anonymous Transfer
	Symmetric Anonymous Transfer


