
On Linear Equivalence, Canonical Forms, and

Digital Signatures

Tung Chou1, Edoardo Persichetti2, Paolo Santini3

1Academia Sinica, Taiwan.
2Florida Atlantic University, USA.

3 Marche Polytechnic University, Italy.

Contributing authors: blueprint@crypto.tw; epersichetti@fau.edu;
p.santini@staff.univpm.it;

Abstract

Given two linear codes, the code equivalence problem asks to find an isometry
mapping one code into the other. The problem can be described in terms of
group actions and, as such, finds a natural application in signatures derived from
a Zero-Knowledge Proof system.
A recent paper, presented at Asiacrypt 2023, showed how a proof of equivalence
can be significantly compressed by describing how the isometry acts only on an
information set. Still, the resulting signatures are far from being optimal, as the
size for a witness to this relation is still significantly larger than the theoretical
lower bound, which is twice the security parameter.
In this paper, we fill this gap and propose a new notion of equivalence, which
leads to a drastically reduced witness size. For many cases, the resulting size is
exactly the optimal one given by the lower bound. We achieve this by introducing
the framework of canonical representatives, that is, representatives for classes
of codes which are equivalent under some notion of equivalence. We propose
new notions of equivalence which encompass and further extend all the existing
ones: this allows to identify broader classes of equivalent codes, for which the
equivalence can be proved with a very compact witness. We associate these new
notions to a specific problem, called Canonical Form Linear Equivalence Problem
(CF-LEP), which we show to be as hard as the original one (when random codes
are considered), providing reductions in both ways. As an added consequence,
this reduction leads to a new solver for the code equivalence problem, which is
the fastest solver when the finite field size is large enough. Finally, we show that
our framework yields a remarkable reduction in signature size when compared
to the LESS submission. Our variant is able to obtain very compact signatures,
around 2 KB or less, which are among the smallest in the code-based setting.

1

1 Introduction

LESS is a post-quantum signature scheme, first introduced in [9], which relies on the
idea of finding some kind of isomorphism between linear codes. This notion is well
known in coding theory under the name of code equivalence and has been studied
for a very long time. Indeed, determining whether two linear codes are equivalent is
considered a hard task, in general, and thus constitutes a natural problem to construct
cryptographic protocols. Two notions of isomorphisms are traditionally considered,
for the Hamming metric: permutations and monomial maps. These yield the problems
usually referred to as Permutation Equivalence Problem (PEP) and Linear Equivalence
Problem (LEP), respectively.

The equivalence between codes can be seen as a group action, akin to the ubiq-
uitous one behind the Discrete Logarithm Problem (DLP), although showing more
similarities to settings such as the isomorphisms between polynomials, or graphs. It
is in this way that LESS is constructed, following in the steps of well-trodden paths
to construct a Sigma protocol based on the Code Equivalence Problem; this is then
turned into a signature scheme using the Fiat-Shamir transform. The lion’s share of
the signature consists of the protocol responses that are provided by the prover. In
the case of LESS these are, in principle, either ephemeral transformations, or proofs
of equivalence between two codes. The former are conveniently communicated using
seeds of length λ, where λ is the security parameter. For the latter type, instead, the
prover must communicate either a length-n permutation or a length-n monomial map
(depending on which notion of equivalence is employed); with the encoding employed
in [9], this yields the following communication costs:

PEP: n log2(n), LEP: n
(
log2(n) + log2(q − 1)

)
where n and q denote the code length and finite field size, respectively.

In [18], the authors propose a way to reduce the cost for communicating a proof
of equivalence. The idea consists in describing how the isomorphism acts only on an
information set, which is composed of k coordinates; thanks to this technique, [18]
reduces the communication cost for communicating an isometry down to

PEP: Rn log2(n), LEP: Rn
(
log2(n) + log2(q − 1)

)
where R = k/n denotes the code rate. To verify that such a truncated description
indeed leads to an isometry, [18] proposes to commit to an ad-hoc invariant func-
tion, whose role is basically that of compensating for the missing information. This
requires to introduce new notions of equivalence, called Information-Set Permutation
Equivalence and Information-Set Linear Equivalence, leading to the computational
problems IS-PEP and IS-LEP. These problems turn out to be as hard as their tradi-
tional counterparts so that, in the end, one can rely on these new formulations without
introducing additional security assumptions. In particular, IS-LEP has been used for
the specification of LESS [1], as submitted to NIST’s call for additional post-quantum
signatures [17].

2

As is well known, a theoretical lower bound on the size of non-ephemeral responses
in a ZK protocol based on group actions is 2λ. Despite the work in [18], the com-
munication cost for the code equivalence group action is still far from optimal. This
can be easily seen by looking at the proposed LESS instances. Since q = 127, R = 1

2
and n ≈ 2λ, isometries are communicated with approximately λ

(
1 + log2(λ)

)
bits for

IS-PEP and λ
(
8 + log2(λ)

)
for IS-LEP.1 One may argue that a reduction in com-

munication cost could be obtained using an optimal encoding for permutations and
monomials. For instance, considering only the case of PEP, from Stirling’s approxima-
tion we know that permutations can be represented with≈ 2λ·log2(2λ/e)+ 1

2 ·log2(4πλ)
bits (this has been derived assuming n ≈ 2λ). The dominant term is 2λ · log2(2λ),
which is exactly the communication cost according to [9]. For actual parameters, even
the optimal encoding is pretty far from the theoretical lower bound: for instance, for
λ = 128, we obtain 1687 bits which is 6.6 times larger than the theoretical lower bound
256. Analogous considerations hold for the other equivalence relations.

1.1 Our Contributions

We show how to drastically reduce the size of witnesses to the code equivalence
problem: for both PEP and LEP, this becomes just log2

(
n
k

)
bits. Perhaps surpris-

ingly, the size is the same regardless of which notion of equivalence is considered.
For k = Rn, this corresponds to n · h(R) ·

(
1 + o(1)

)
, where h denotes the binary

entropy function. We show that, in many cases, this size corresponds to the optimal
one given by the lower bound. Moreover, we propose a novel attack with running

time Õ
(√(

n
k

))
= 2

1
2n·h(R)·

(
1+o(1)

)
which, when the size of the underlying finite field

is large enough, turns out to be the fastest solver for code equivalence.2 For a secu-
rity parameter of λ, we set 1

2n · h(R) = λ so that the bit size of a witness becomes
n · h(R) ·

(
1 + o(1)

)
= 2λ

(
1 + o(1)

)
and matches the theoretical lower bound.

We apply this machinery to LESS signatures. As expected, the resulting scheme,
which we call CF-LESS, achieves very compact signatures, much smaller than its
predecessors. Indeed, LESS parameters have been chosen using a lower bound on the
cost of attacks based on low-weight codewords finding, with resulting code lengths
n ≈ 2λ. In other words, these instances have been designed considering the cost of
a potential attack which, however, does not exist right now: all known attacks have
a somewhat higher cost. Since all LESS instances have R = 1

2 , our new attack runs

in time 2
1
2n·h(

1
2)·
(
1+o(1)

)
≈ 2λ

(
1+o(1)

)
and thus represents the best currently known

attack on LESS instances.3 Moreover, in this regime, the size for a proof of equivalence
is reduced to n ·h(12) = n ≈ 2λ bits. In practice, this implies that we can reduce LESS
signature sizes as much as possible, ultimately reaching the theoretical lower bound.
Considering the same code and protocol parameters as in the “balanced” parameter
sets from the LESS submission [1] (which uses only 2 generator matrices and aims to

1In the LESS submission, the code lengths are n = 252, n = 400 and n = 548 for the three NIST security
categories 1, 3 and 5.

2This formula holds only if the success probability of the employed canonical form function is non-
negligible. This is exactly what happens for all cases which are relevant for cryptographic applications.

3This is true at least asymptotically. Indeed, the o(1) is due to polynomial factors which, in the end,
increase the cost by 20 ÷ 30 bits.

3

101 102 103 104 105 106 107
0.0625

0.125

0.25

0.5

1

2

4

8

16

Using canonical forms

Public key size (Bytes)

S
ig
n
at
u
re

si
ze

(k
B
)

ALTEQ CROSS Dilithium FAEST Falcon HAWK MAYO
MEDS MIRA Mirith MQOM PERK Raccoon RYDE
SDiTH SPHINCS+ SQIsign UOV WAVE LESS

Fig. 1: Comparison between CF-LESS and some selected schemes from Round 1 of NIST’s
competition (including the current version of LESS), for NIST category 1.

minimize the public key size), we obtain signatures of only 2.4 KB, 5.7 KB, and 9.8 KB
for NIST security categories 1, 3 and 5, respectively. If 4 generator matrices are used,
these sizes are further reduced to 1.8 KB, 4.3 KB and 7.7 KB, respectively. We apply
the same modifications to the ring signature scheme of [3], obtaining a comparable
gain in signature size (depending on the amount of users in the ring).

In practice, the modification to existing schemes can be viewed as tweaks to how
commitments are prepared and later verified: the prover commits to the canonical rep-
resentative of a code where, by canonical representative, we refer to the representative
of some equivalence class. We introduce canonical representative for codes, show how
they can be computed efficiently and how they relate with existing notions of equiv-
alence. In practice, the operations required to compute a canonical representative for
a code boil down to computing a canonical form for a certain equivalence relation on
k × (n − k) matrices. In this paper, we introduce efficient functions to compute such
a canonical form for all relevant equivalence classes.

Our framework leads to a new notion of equivalence and to the associated compu-
tational problem which, in a nutshell, consists in finding an isometry so that the two
input codes lead to the same canonical representative. We show that this new prob-
lem is as hard as the traditional ones, when random codes are employed (as in LESS).
Thus, the new schemes we propose in this paper enjoy the same security guarantees
as their predecessors. Moreover, the modifications we require lead to a computational
overhead which, in the worst case, is comparable with the computational bottlenecks
that these schemes already exhibit. Thus, in the end, our techniques allow to reduce
signatures sizes without any important penalty, for what concerns both security and
computational complexity.

4

The framework we describe in this paper generalizes the one introduced in [18].
Indeed, using the vocabulary of canonical representatives, we can say that IS-PEP
and IS-LEP correspond to special cases of our more general framework. In particular,
these notions are associated with equivalence classes which, however, are not as broad
as they can be. In this paper we enlarge these classes as much as possible and define
canonical representative functions having much stronger invariance properties with
respect to those employed for IS-PEP and IS-LEP: this is a more challenging task than
the one faced in [18], which we solve by providing efficient examples of such functions,
for all relevant cases.

1.2 Paper Organization

The paper is organized as follows. Section 2 specifies our notation and summarizes
some preliminary notions. Section 3 describes the notions of equivalence for codes,
introducing a new formalism, as well as the concept of canonical representatives. This
serves as an important basis for the discussions in the subsequent sections. Section 4
shows concrete ways to define new canonical representatives, expanding on the existing
ones that were described in the previous section; in practice, this is achieved by defining
canonical forms. In Section 5, we first briefly review the Sigma protocol underlying
LESS, and then present a new Sigma protocol, which we refer to as the CF-LESS
Sigma protocol, that makes use of canonical forms to reduce the communication size.
We will see in Section 7 that this has a considerable impact on signature size, allowing
for a drastic reduction which yields the smallest signature sizes among many post-
quantum schemes, and in particular, code-based schemes based on zero-knowledge
proofs. Finally, in Section 6, we discuss the security of our new technique: we first
argue that CF-LESS is secure by showing a security reduction, and then discuss an
application of canonical forms to cryptanalysis, which results in an intuitive attack
against LEP.

2 Notation and Preliminaries

In this section, we settle the notation we are going to use throughout the paper and
recall useful background concepts about linear codes and the code equivalence problem.

Finite Fields, Vectors and Matrices

As usual, Fq denotes the finite field with q elements and F∗
q stands for its multiplica-

tive group. Then, vector and matrix spaces over this field are defined naturally as,
respectively, Fn

q and Fk×n
q . We use bold uppercase (resp., lowercase) letters for matri-

ces (resp., vectors). For a vector v, vi indicates the i-th element; for a matrix A,
ai,j indicates the element in the i-th row and j-th column. For a non ordered set
J ⊆ {1, · · · , n} of size m and a matrix A ∈ Fk×n

q , we use AJ to indicate the k ×m
submatrix formed by the columns of A that are indexed by J . The general linear
group of non-singular k × k matrices over Fq is indicated as GLk(q). We denote by

Fk×n

q ⊂ Fk×n
q , where k < n, the set of k × n matrices having full rank k. Finally, the

identity matrix of size k is indicated as Ik.

5

Permutation and Monomial Maps

We denote by Sn the symmetric group on n elements, comprised of permutations of n
objects. The identity in the group Sn is indicated as idn. Using the two-lines notation,
a permutation π can be expressed as

π :=

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
,

meaning that π moves the j-th element to position π(j). For a vector v = (v1, · · · , vn),
it holds that

π(v) =
(
vπ−1(1), · · · , vπ−1(n)

)
.

As it is well known, each permutation can be represented also as an n× n matrix
such that every row and every column has a unique element equal to 1 while all the
other elements are 0. If P is the permutation matrix associated to π ∈ Sn, we then
have π(v) = v ·P. Sometimes we slightly abuse notation and write P ∈ Sn to imply
that P is a permutation matrix.

The symmetric group can be seen as a subgroup of a more general group Mn

(formally, we express this as Sn ≤ Mn) which corresponds to the group of monomial
maps, that is, functions of the form µ := (π,a) with π ∈ Sn and a ∈ F∗n

q , acting as
follows

µ(v) = π(v) ·


a1

a2
. . .

an

 =
(
a1 · vπ−1(1), · · · , an · vπ−1(n)

)
.

Similarly to the case of permutations, we can represent monomial transformation
with matrices. In particular, each monomial can be associated with an n × n matrix
Q ∈ Fn×n

q such that every row and column has a unique non null element which,
differently from permutations, can be any element from F∗

q . Again, for such matrices,
we will sometimes be flexible with notation and write Q ∈Mn.

We naturally extend the action of monomials on matrices A, i.e., µ(A) indicates
the matrix resulting from the action of µ on the columns of A. In other words, if Q
is the monomial associated with µ, we have µ(A) = G · Q. The group operation in
Mn is indicated as ◦: for two monomials µ, µ′ ∈ Mn, we write µ ◦ µ′ ∈ Mn to denote
the monomial resulting from their combination and have (µ′ ◦ µ)(A) = µ′(µ(A)

)
=

A ·Q ·Q′, with Q and Q′ being the matrix representations of µ and µ′, respectively.
The identity in Mn is denoted as idn.

Finally, for our work, we introduce a special type of permutations: given k < n,
we call Sk,n ⊂ Sn the set of permutations such that

π−1(1) < π−1(2) < · · · < π−1(k), π−1(k + 1) < π−1(k + 2) < · · · < π−1(n).

6

In other words, each permutation π ∈ Sk,n is uniquely associated with a size-k subset
J ⊆ {1, · · · , n} such that indices in J are moved to the first k positions, while indices
outside of J are moved to the last n− k positions. The matrix representation of such
a permutation would be such that:

- i < i′ ≤ k and pi,j = pi′,j′ = 1 implies that j < j′, and
- k < i < i′ and pi,j = pi′,j′ = 1 implies that j < j′.

In fact, once the first k columns of a matrix in Sk,n are defined, the whole matrix is
defined. Note that |Sk,n| =

(
n
k

)
≤ 2n. Examples of permutations from Sk,n are shown

in Figure 2.

1

1

2

4

3

2

4

5

5

3

6

6

)
π :=

(

P =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1



(a)

P =



0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1


1

4

2

1

3

5

4

2

5

3

6

6

)
π :=

(
(b)

Fig. 2: Examples of matrices from Sk,n and their binary representation, for n = 6 and k = 3.
The size-3 sets representing the permutations are {1, 3, 5} for (a) and {2, 4, 5} for (b).

Complexity

We denote the “small o” and “big O” Landau symbols as o(·) and O(·), respectively.
We sometimes relax the notation and, as it is common, use the soft O symbol: we
write O

(
ne1 ·(log n)e2

)
as Õ(ne1) for any positive e1, e2 ∈ R. Each occurrence of a field

addition, a field subtraction, a field multiplication, and a field inversion is considered
to take 1 field operation.

Orderings

We assume that there is a total ordering ≤Fq
defined on Fq, and comparing two

elements in Fq w.r.t. ≤Fq
is considered to take 1 field operation. For an integer d, we

define ≤Fd
q
as the total ordering defined on Fd

q , such that v ≤Fd
q
v′ if and only if 1)

v = v′ or 2) vi ≤Fq
v′
i and vi ̸= v′

i for some i and vj = v′
j for all j < i. We define

a total ordering ≤Fk×(n−k)
q

on Fk×(n−k)
q in a similar way. Comparing two elements in

Fd
q w.r.t. ≤Fd

q
is considered to take O(d) field operations. Comparing two elements in

Fk×(n−k)
q w.r.t. ≤Fk×n−k

q
is considered to take O

(
k(n− k)

)
field operations.

7

For a vector v, we use the notation multiset(v) to indicate the multiset formed by
its entries. We define a partial ordering ≺Fd

q
on Fd

q . For v,v
′ ∈ Fd

q , we have v ≺Fd
q
v′

if and only if w ≤Fd
q
w′ and w ̸= w′, where w,w′ ∈ Fd

q are obtained by sorting

entries in v,v′ w.r.t. ≤Fq
, respectively. Comparing two elements4 in Fd

q w.r.t. ≺Fd
q
is

considered to take Õ(d) field operations. One can view ≺Fd
q
as a way to compare

vectors v,v′ ∈ Fd
q by comparing multiset(v),multiset(v′) w.r.t. a total ordering defined

on all size-dmultisets of elements in Fq. v and v′ are considered incomparable if v ̸= v′

and multiset(v) = multiset(v′), since neither of v = v′, v ≺Fn−k
q

v′, or v′ ≺Fn−k
q

v

holds.

Linear Codes

A linear code C with dimension k > 0 and length n ≥ k is a k-dimensional linear
subspace of Fn

q . Linear codes are typically measured in the Hamming metric, which
defines the weight of a word as the number of its non-zero positions; a notion of
distance between words is then naturally defined as the weight of their difference
(which corresponds to the number of positions in which they differ). The minimum
distance of a code C is by definition the smallest distance among distinct codewords
of C , which can be easily seen to be equivalent to the smallest weight of a non null
codeword of C . Since linear codes are vector spaces, they can be represented compactly
via a choice of basis; typically, such a basis consists of vectors, which are seen as
rows of a full rank matrix G ∈ Fk×n

q , so that C =
{
u ·G | u ∈ Fk

q

}
. This matrix is

called generator matrix. Note that there are several choices for generator matrices for
the same code, corresponding to different choices of basis: any G and S ·G, where
S ∈ GLk(q), generate the same code. Whenever a generator matrix is in the form
(Ik | A), where Ik is the identity of size k, we say it is in systematic form (or standard
form). When {1, · · · , k} is an information set (i.e. the first k columns of G are linearly
independent), this form can be obtained by setting S as the inverse of the leftmost
k×k submatrix inG. Otherwise, one can first compute the Reduced Row Echelon Form
(RREF), i.e., the matrix G−1

J ·G with J being the first information set5, and then
eventually applying a column permutation so that the identity columns are moved
from positions J to {1, · · · , k}. In other words, the systematic form is defined as

SF(G) =
(
Ik | G−1

J G{1,··· ,n}\J
)
, J is the first information set.

Note that this also corresponds to RREF(G)·P for some permutation matrix P ∈ Sk,n,
where RREF : Fk×n

q → Fk×n
q is the function computing the RREF. In the following,

we will use RREF∗ to define the function returning both the systematic form, as well
as the permutation P ∈ Sk,n. If {1, · · · , k} is an information set, then SF and RREF
coincide and P = In. Notice that SF and RREF are invariant under changes of basis:
for any two generator matrices G and S ∈ GLk(q), it holds that SF(G) = SF(SG)
and RREF(G) = RREF(S ·G).

4By this we mean, given two elements v,v′ ∈ Fd
q , determining which of the following cases holds: 1)

v = v′, 2)v ≺Fdq
v′, 3) v′ ≺Fdq

v, or 4) neither of the 3 cases holds.
5We consider the natural ordering defined by the relations {1, · · · , k − 1, k} < {1, · · · , k − 1, k + 1} <

· · · < {1, · · · , k − 1, n} < · · · < {1, · · · , n − 1, n} < · · · < {2, · · · , k, k + 1} < · · · < {n − k + 1, · · · , n}

8

3 Notions of Equivalence for Codes

To describe the various notions of code equivalence, we begin by introducing a unified
framework. To this end, let (E, ◦) be a group of isometries, i.e. maps which preserve
the distances. A map ψ ∈ E acts on codewords, i.e. is an endomorphism of Fn

q . When
ψ is applied to all the codewords of a code C , with some abuse of notation we write
ψ(C), i.e. ψ(C) = {ψ(c) | c ∈ C } . We then have the following definition.

Definition 1. Two linear codes C and C ′ are E-equivalent if there exists ψ ∈ E such
that C ′ = ψ(C); in such a case, we write C ∼E C ′.

In other words, two codes are E-equivalent (or simply “equivalent”) whenever there
is an isometry mapping one code into the other; this isometry is in fact a witness for
the equivalence. Obviously, not all codes are equivalent (and in fact, the distribution
of the weights of the codewords crucially affects the error-correcting capabilities of a
code). It is then natural to ask whether two given codes are equivalent or not, which
leads to the following problem.

Problem 1 (Code Equivalence Problem (CEP)). Given linear codes C and C ′,
determine if C ∼E C ′, i.e., if there exists ψ ∈ E such that C ′ = ψ(C).

The nature of the isometries depends, also, on which metric is considered. As our
formulation is very generic, it could theoretically encompass various metrics besides
the Hamming one, such as the rank metric or the Lee metric, and associated notions
of equivalence. In our work, however, we focus exclusively on the Hamming metric;
we refer the reader interested in a more generic characterization to [11], for example,
where the topic is studied for any group action. In the Hamming metric, an isometry
needs to preserve the number of non-zero positions in a word. In the simplest of cases,
such a map consists of just a permutation, so that E = Sn, which leads to the notion
of permutation equivalence; if instead the map is a monomial one, then E = Mn and
this is usually known as linear equivalence. The most general notion of semilinear
equivalence also includes a field automorphism, i.e. E = Aut(Fq)×Mn; however, this
concept is not relevant for cryptographic applications6, and we do not treat it here.
Furthermore, it is immediate to notice that permutation equivalence is nothing but a
special case of linear equivalence.

According to the above, we have that two codes C ,C ′ ⊆ Fn
q areMn-equivalent, and

write C ∼Mn
C ′ if there exists some µ ∈ Mn such that C ′ = µ(C). This is normally

referred to as linear equivalence and, consequently, the codes are said to be linearly
equivalent. The associated problem of determining whether two codes are linearly
equivalent is normally called Linear Equivalence Problem (LEP). In the special case
in which the isometry is a permutation, we denote the equivalence by C ∼Sn

C ′ and
define the associated problem as Permutation Equivalence Problem (PEP). The codes
are, consequently, said to be permutation equivalent.

Problem 2 (Linear Equivalence Problem (LEP)). Given linear codes C ,C ′ ⊆ Fn
q

with length n and dimension k, determine if C ∼Mn
C ′, i.e., if there exists µ ∈ Mn

such that C ′ = µ(C).

6In the sense that it does not affect security (negatively or positively) and therefore does not influence
choice of parameters.

9

Problem 3 (Permutation Equivalence Problem (PEP)). Given linear codes
C ,C ′ ⊆ Fn

q with length n and dimension k, determine if C ∼Sn C ′, i.e., if there exists
π ∈ Sn such that C ′ = π(C).

Now, recall that codes are typically represented through their generator matrices.7

Consequently, the notion of code equivalence should, in principle, be defined on full-
rank k×n matrices; since we know that each code admits multiple generator matrices,
this means that one would have to account for possible change-of-basis matrices, as
well. Indeed, we have that C and C ′ are linearly equivalent if, for any two generator

matrices G,G′ ∈ Fk×n

q for C and C ′, respectively, there exist S ∈ GLk(q) and µ ∈Mn

(represented via a monomial matrix Q) such that

G′ = S · µ(G) = S ·G ·Q.

Formally, this can be seen as the action of the group GLk(q)×Mn on the set of full-
rank k × n matrices, mapping G to G′ as described above. However, it is immediate
to notice that, when one is not concerned with the specific choice of representative
(i.e. generator matrix), such a view can be simplified, omitting the role of GLk(q).
In other words, if one were to choose a canonical representative for the codes, then
linear equivalence could be fully described using only the associated monomial map.
Indeed, one such representative already exists in coding theory, and it is typically the
systematic form of a generator matrix; however, as it is possible that the leftmost k
columns do not form an invertible submatrix, it is common to relax this notion and
use the RREF instead. Importantly, this is always well defined: it can be computed
efficiently from any given generator matrix and it uniquely identifies a code, in the
sense that if two codes have the same generator matrix in RREF, then they must be
the same code, and viceversa.

For the remainder of this work, we will show how this phenomenon can be general-
ized, and what kind of impact such a generalization has in cryptographic applications,
in particular with respect to the LESS setting.

3.1 Equivalence Classes and Canonical Representatives

To begin, we introduce a subset F ⊆ E, to which we associate the equivalence relation
∼F : we say that C and C ′ are F -equivalent, and write C ∼F C ′, if C ′ = φ(C) for
some φ ∈ F . The associated problem, then, consists in determining whether, given two
codes C and C ′, there exists some φ ∈ F such that C ′ = φ(C). Solving this problem,
i.e., deciding when two given codes are equivalent according to F , should ideally be
computationally easy. We can then define the F -equivalence class of a code.

Definition 2 (F -Equivalence class). Let F ⊆ E. Given a code C ⊆ Fn
q , we define its

equivalence class according to F (or F -equivalence class for short) as

CF (C) = {φ(C) | φ ∈ F} .

7Obviously, one may describe codes using parity-check matrices, instead; our theory applies in the same
way also to this case.

10

At a first glance, we expect that the size of CF (C) would correspond to |F |. How-
ever, this is not guaranteed, as it may be that |CF (C)| < |F |: this happens whenever
two distinct isometries φ and φ′ map C to the same code, which implies that φ−1 ◦φ′

and φ′−1 ◦ φ are automorphisms for C .

If checking whether two codes are in the same F -equivalence class is computation-
ally easy, and F -equivalence classes contain more than one element, it may be possible
to reduce the size of a witness for the E-equivalence relation. Indeed, any isometry
χ ∈ E sending C to the F -equivalence class CF (C ′) will suffice, as it can be efficiently
verified that C ∗ = χ(C) ∼F C ′ and this implies that C and C ′ are E-equivalent.
Indeed, since any isometry in F is also an element of E, the three codes C , C ′ and
C ∗ are all equivalent according to E. Then, among all possibilities for χ, there may
be some choices having a special representation, leading to a compact description.

As we show next, when F is a subgroup (and not a mere subset of E), we can
formalize this framework through a group-theoretic point of view.

A Group-Theoretic Characterization

From now on, we focus on the case in which F ≤ E is a subgroup. For any ψ ∈ E, we
define its (right)8 coset as

Fψ = {φ ◦ ψ | φ ∈ F} .
As is well known, cosets define a partition of E; the number of such cosets is called
index of F in E and is typically indicated as [E : F]. By Lagrange’s theorem, we get

[E : F] =
|E|
|F |

. (1)

Now, let C ′ = ψ(C): to prove that C ′ ∼E C , one can provide any χ ∈ Fψ. Indeed,
χ = φ ◦ ψ with φ ∈ F and

C ∗ = χ(C) = φ ◦ ψ(C) ∼F ψ(C) = C ′.

Note that any two isometries in the same coset map C to the same F -equivalence class.

Assume there exists an efficient way to define a representative for each coset: then,
the bitsize for a witness (recalling (1)) is reduced to

log2[E : F] = log2 |E| − log2 |F |. (2)

The above equation embeds the power of our framework. The larger F , the more
compact is the description of a witness to the E-equivalence relation. Obviously, the
goal here consists in identifying the largest F for which 1) F -equivalences can be easily
verified, and 2) coset representatives can be efficiently computed. Later on, we provide
examples that satisfy both requirements.

8Left cosets are defined analogously.

11

Canonical Representatives for F -equivalence Classes

To verify equivalences according to F , we propose to use canonical representatives.
Namely, we want to define a way so that, given a code, one can efficiently compute a
representative for its F -equivalence class. Below, we give the formal definition.

Definition 3 (Canonical Representatives). Let F ≤ E be a subgroup of isometries
for k-dimensional linear codes. We say CRF is a canonical representative function if:

i) CRF takes as input a code C ⊆ Fn
q with dimension k;

ii) CRF returns either a k-dimensional linear code with length n, or a failure ⊥;
iii) for any input C , CRF runs in time which is polynomial in n and log2(q);
iv) when the canonical representative is well defined, the output is F -equivalent to the

input, i.e., CRF (C) ∼F C for any C such that CRF (C) ̸= ⊥;
v) for any two F -equivalent codes, the output is the same, i.e., CRF (C) = CRF (C ′)

for any two codes C and C ′ such that C ∼F C ′.

Remark 1. Requirement iii) is derived considering that linear codes can be represented
using either a generator or a parity-check matrix, taking O

(
n2 · log2(q)

)
bits. We

observe that allowing for a time which is, instead, polynomial in q would have led to
the possible existence of functions taking time which is exponential in the input size.

Our definition for canonical representatives accounts for the possibility that, once
a function CRF is defined, for some F -equivalence classes a representative cannot be
computed; this is captured by the function returning ⊥ and, in such cases, we say that
CRF fails. Since CRF can be computed in polynomial time, one can efficiently verify
that two codes are in the same F -equivalence class (assuming CRF does not fail), and
thus that they are F -equivalent, by verifying that they lead to the same canonical
representative (i.e., the same output of CRF). A visualization of an F -equivalence class
with a canonical representative is given in Figure 3.

Remark 2. The whole framework can be described also in terms of group actions.
Indeed, an equivalence class CF (C) basically corresponds to the orbit of C under the
action of F ; starting from this, many more analogies can be derived. We do not use
such a description this paper and refer the interested reader to [11].

3.2 Revisiting the Notion of Equivalence

Before introducing new concepts, we consider existing notions of equivalence and show
how they fit in our framework.

Linear and Permutation Equivalence

We only treat explicitly the case E =Mn as the case of Sn follows as a special case. Let
F = {idn}; then, equivalence classes contain a unique element, and hence a witness for
the equivalence between two codes can only be the exact monomial mapping one code
to the other. In this case, the definition of a canonical representative is trivial since
CRF is the identity. It is easy to see that the identity function satisfies all requirements
from Definition 3 and is well defined for all input codes.

12

C ′ C
ψ

CRF (C ′)
φ4

χ3

φ1

φ5

φ3

φ2

χ2

χ1

χ5

χ4

Isometry from F Witness: isometry from Fψ

Fig. 3: Equivalence class for a code C ′ = ψ(C) and resulting witnesses. In this case, F =
{idn, φ1, · · · , φ5} hence |CF (C ′)| ≤ 6; in the example, we have exactly |CF (C)| = |F | = 6.
The coset Fψ contains six elements as well, namely, Fψ = {ψ, χ1, · · · , χ5} and each of them
is a witness for the equivalence, according to E, between C and C ′. As shown in the figure,
the canonical representative can be computed from each code in the equivalence class and is
obtained via application of an isometry from F .

Since |F | = 1, we have [E : F] = |E| = n!(q − 1)n and an element is typically
encoded using n log2(n) + n log2(q − 1) bits. Incidentally, this is how witnesses were
described in the original LESS formulation [4, 9].

Clearly, an application of our framework to this simple case would be excessively
formal, yet this line of thought could be useful to lay the ground for less obvious (and
more significant!) choices of F .

Remark 3. A slight reduction in witness size can be obtained by considering that every
code has, as (trivial) automorphisms, the transformations that scale all coordinates
by the same non-zero value. It is easy to verify that all such transformations form a
subgroup of Mn of order q − 1: applying our machinery, we get

[E : F] =
|Mn|
q − 1

= n!(q − 1)n−1.

A convenient representative for each coset can be, for instance, the monomial
transformation whose first coefficient is 1. We observe that each F -equivalence class
contains a unique code also in this case.

Information-Set Linear and Permutation Equivalence

In [18], the authors propose two new notions of code equivalence with associated
computational problems, IS-LEP and IS-PEP. Again, without loss of generality, we
focus on the case of IS-LEP as IS-PEP follows as a special case. Let J ⊆ {1, · · · , n}
be the size-k set corresponding to the pivoted columns in RREF(C ′). Then, according
to [18], equivalence can be verified via any monomial χ ∈ Mn such that C ∗ = χ(C)

13

and C ′ = µ(C) differ only by a monomial map fixing the coordinates indexed by J .
In other words, χ and µ act in the same way on the information set J . Verification
is performed by computing RREFs for both codes C ′ and C ∗ and, then, permuting
and scaling the columns of the non-systematic parts so that the new columns are in
lexicographic ordering.

This new notion of equivalence can, again, be described using the machinery we
have introduced in the previous section. Indeed, let F ≤ Mn be the subgroup of
monomials that fix the coordinates indexed by J . This subgroup is isomorphic to
{idk} ×Mn−k and so |F | = (n− k)!(q − 1)n−k. Recalling (2), the number of cosets is
now given by

[E : F] =
|Mn|
|F |

=
n!(q − 1)n

(n− k)!(q − 1)n−k
= (q − 1)k ·

k−1∏
i=0

(n− i).

Each coset can be represented by the isometry χ that fixes the entries not indexed
by J . Note that all codes in the equivalence class CF (C ′) differ only by a monomial
transformation in the coordinates not indexed by J . Then, we obtain a canonical
representative by considering the code whose generator matrix in RREF is such that
the columns which are not indexed by J are in lexicographic ascending ordering.

We observe that such a definition for a canonical representative satisfies all the
requirements in Definition 3. Moreover, the canonical representative exists for all F -
equivalence classes.

Remark 4. Similarly to the cases of LEP and PEP, we can enrich F by considering
the trivial automorphisms of the code. This would enlarge F by a factor q − 1 and,
consequently, would lead to a reduction in the number of cosets by the same factor.

Going Beyond IS-PEP and IS-LEP

In principle, our framework can be applied to any choice of F . Obviously, the main goal
is to find subgroups F which are as large as possible and, at the same time, guarantee
that canonical representatives can be found efficiently. In this paper, we consider
progressively larger choices of F until we obtain witnesses of size [E : F] =

(
n
k

)
. As

we show later, this choice is optimal in many cases (when q is large enough), in the
sense that any larger set would imply an attack on LEP. We start in the next section
by describing how canonical representatives can be defined and computed.

4 Efficient Canonical Representatives

In this section, we introduce some new canonical representatives and describe how
they can be computed efficiently. For the sake of simplicity, in this section, we focus
only on the case of linear codes for which {1, · · · , k} is an information set. This
assumption allows to simplify the description of how canonical representatives can be
computed efficiently. It is important to point out that any code can be permuted so
that {1, · · · , k} is an information set: hence, our simplification still allows to compute
canonical representatives starting from any code.

14

4.1 Computing Canonical Representatives

The first thing to keep in mind, is that essentially all operations on linear codes boil
down to linear algebra. Thus, it is not surprising that, operatively, we compute a
canonical representative for a code C by performing some operations on a generator
matrix for C . These operations consist in first bringing the matrix in systematic form,
and then scaling and permuting the rows and columns of the non systematic portion
of the matrix. We formalize this with the notion of a canonical form function.

To begin, we fix some notation. Consider an isometry ψ, acting on n elements. As
we said, when ψ acts on codewords, one can see it as a map ψ : Fn

q → Fn
q ; however, it

is common to slightly abuse this notation to describe the application of this map to
other objects. For instance, in the previous section we have used ψ(C) to indicate the
code obtained by applying ψ to all the codewords of C . Furthermore, if G is a k × n
generator matrix for a code C , we have also used ψ(G) to indicate the matrix obtained
by applying ψ to its columns; formally then, we would have ψ : (Fk

q)
n → (Fk

q)
n. Later,

we will need to apply this map to just a selection of the columns of G, which would
again change its definition. All in all, to avoid confusion, we deem it easier, in certain
situations, to represent each map via the associated matrix M, and its action via
multiplication (i.e. ψ(G) = G ·M). This additionally allows us to operate smoothly
on rows, as well as columns, by multiplying the matrix on the left or on the right9.

We focus on subgroups F with the following property: there exist Fr ≤ Mk and
Fc ≤ Mn−k such that any φ ∈ F is associated to a unique pair (φr, φc) ∈ Fr × Fc as
follows: φr acts only the first k elements and φc acts only on the last n−k elements.10

In practice we will often apply φr to the rows of a matrix, and φc to the columns, which
explains the choice of subscripts. We will frequently represent φr and φc via their
corresponding matrices, respectively Mr and Mc. Each isometry in F is associated
with a monomial matrix in the form

M =

(
Mr 0
0 Mc

)
, Mr ∈ Fr, Mc ∈ Fc.

It is easy to see that F is isomorphic to Fr×Fc. Finally, we define the action of Fr×Fc

on the set of k × (n− k) matrices as follows: for A ∈ Fk×(n−k)
q and ψ := (Mr,Mc) ∈

Fr × Fc, we have ψ(A) = Mr ·A ·Mc.

Similarly to equivalence classes for codes, one may define equivalence classes (or

orbits) induced by the action of Fr × Fc on Fk×(n−k)
q . In other words, for any A ∈

Fk×(n−k)
q , the orbit would correspond to {Mr ·A ·Mc | (Mr,Mc) ∈ Fr × Fc}. Then,

a canonical form for a matrix A can be defined to be nothing but a representantive
for such a orbit.

9Provided the dimensions are correct, of course.
10Put it differently, each isometry in F is the combination of a unique pair of isometries, one acting as φc

on the first k coordinates and fixing the last n− k coordinates, the other one fixing the first k coordinates
and acting as φc on the last n − k coordinates.

15

Definition 4 (Canonical Form Function). Let F ≤ Mn be a subgroup of isome-

tries, isomorphic to Fr × Fc as above. We define a function CFF : Fk×(n−k)
q →{

{⊥} ∪ Fk×(n−k)
q

}
such that:

i) the running time is polynomial in n and log2(q);

ii) for any A ∈ Fk×(n−k)
q such that CFF (A) ̸= ⊥, then there exist some ψ ∈ Fr × Fc

such that
CFF (A) = ψ(A);

iii) for any A ∈ Fk×(n−k)
q such that CFF (A) ̸= ⊥, then for all ψ ∈ Fr ×Fc it holds that

CFF (A) = CFF

(
ψ(A)

)
.

We naturally extend the notion of canonical forms to a generator matrix.

Definition 5 (Generator Matrix in Canonical Form). Let C ⊆ Fn
q be a linear code with

dimension k. For F ≤Mn being a group of isometries as above, let CFF be a function
satisfying the requirements in Definition 4. Then, we say that a matrix G ∈ Fk×n

q is
a generator matrix for C in canonical form if:

i) G is in systematic form, i.e., G = (Ik | A) with A ∈ Fk×(n−k)
q ;

ii) A = CFF (A).

We now prove a fundamental result which shows that a well-defined canoni-
cal form function (as per Definition 4) immediately gives a well-defined canonical
representative.

Theorem 1. Let CFF be a canonical form function according to Definition 4. For a
k-dimensional code C ⊆ Fn

q having {1, · · · , k} as an information set, we define the
canonical representative CRF (C) as the function that:

i) computes the systematic generator matrix for C , i.e. the matrix G = (Ik | A);
ii) if CFF (A) = ⊥, returns a failure; else, returns the code generated by

(
Ik | CFF (A)

)
.

Then, CRF satisfies the requirements i) – v) from Definition 3.

Proof. First, observe that requirements i) – iii) from Definition 3 are trivially satisfied.
We now show that requirement iv) is satisfied as well. To this end, we must show that
the code CRF (C) generated by

(
Ik | CFF (A)

)
is F -equivalent to C . This is immediate

since, by definition, there exists ψ = (Mr,Mc) ∈ Fr×Fc such that CFF (A) = ψ(A) =
Mr ·A ·Mc; then(

Ik | CFF (A)
)
=
(
Ik | ψ(A)

)
=
(
Ik |Mr ·A ·Mc

)
= Mr ·

(
M−1

r · Ik | A ·Mc

)
= Mr ·

(
Ik | A

)
·M

where M =

(
M−1

r 0
0 Mc

)
.

16

Now, since Mr represents an invertible map applied to the rows of a matrix, we
have that Mr ·

(
Ik | A

)
= Mr ·G generates the same code as G; on the other hand,

M represents an isometry φ = (φ−1
r , φc) ∈ F , and thus we obtain a code that is

F -equivalent to the one generated by
(
Ik | CFF (A)

)
, which is our thesis.

To conclude the proof, we need to show that for any two codes in the same F -
equivalence class, CRF (C) returns the same code. Now, any code C ′ ∈ CF (C) admits a
generator matrix in the formG′ = S·G·Mφ, whereG = (Ik | A), S ∈ GLk(q) andMφ

is the matrix associated to φ = (φr, φc) ∈ F . It follows that G′ =
(
S ·Mr | S ·A ·Mc

)
.

Bringing G′ into systematic form, we obtain a matrix (Ik | A′) with

A′ = (S ·Mr)
−1 · S ·A ·Mc = M−1

r ·A ·Mc.

Then, by the definition of CFF we have that CFF (A
′) = CFF (A) as desired.

4.2 Failure Probability

Recall that the definition of canonical representatives takes into account that, for some
codes, a representative for the F -equivalence class may not be computed. When CRF

is defined according to Theorem 1, this happens whenever CFF (A) = ⊥, with A being
the non-systematic part of the systematic generator matrix. In the rest of the paper,
we denote with γ the probability that CFF exists, when the input matrix is uniformly

distributed over Fk×(n−k)
q . We use this probability to estimate the ratio between the

number of codes for which the canonical representative exists and the overall number
of codes. Put it differently, γ is an estimate for the probability that, for a uniformly
random code, a canonical representative can be computed. This is coherent since, in
practice, uniform sampling of random codes having {1, · · · , k} as an information set is
achieved by just sampling their systematic generator matrix

(
Ik | A

)
which, in turns,

implies sampling uniformly at random A ∈ Fk×(n−k)
q .

We finally note that, in other contexts, canonical forms are defined similarly to Def-
inition 4 (obviously, using different objects and notions of isometries) but are required
to be defined for all inputs. This is not the case for the canonical forms we consider
in this paper; hence, our canonical forms may be deemed as improper. Nevertheless,
we show that for our canonical forms, γ = Ω(1) when q is sufficiently large (formally,
grows with n): in practice, representatives can be found for the majority of codes hence
our canonical forms are almost proper. For the purposes of this paper, this is sufficient.

It is not hard to see that there is an inherent difficulty in finding a proper canonical
form for the cases we are interested in. For instance, for the very first case (which
we will present in the next subsection), finding a proper canonical form would imply
existence of a polynomial-time algorithm deciding Graph Isomorphism. In other words,
in such a case, finding a canonical form function with γ = 0 is a GI-hard problem.

The following sections show canonical form functions for several F ’s. The remain-
ing sections of the paper explain how to make use of the resulting canonical
representatives.

17

4.3 Case 1

We start with the case F1 ≃ Sk × Sn−k. The isometries in this group are of the
form φ = (φr, φc) = (Pr,Pc), where Pr ∈ Sk and Pc ∈ Sn−k are respectively row
permutations, and column permutations. Then, we have

[Mn : F1] =
|Mn|
|F1|

=
n!(q − 1)n

k!(n− k)!
=

(
n

k

)
(q − 1)n.

We simplify notation and refer to the canonical form function for this case as

CF(1).11 The function outputs either ⊥, or a matrix in Fk×(n−k)
q such that the rows are

sorted w.r.t. ≺Fn−k
q

and the columns are sorted w.r.t. ≤Fk
q
, if it exists in the orbit of

the input matrix. Note that such a matrix might not exist in the orbit. This happens
only when there are two distinct rows that cannot be compared (because they lead to
the same multiset).

Algorithm 1: CF(1): Canonical form computation for F1

Input: A ∈ Fk×(n−k)
q

Output: A′ ∈ Fk×(n−k)
q or ⊥

1 Set A′ = A;
/* Sort rows */

2 Sort the rows in A′ w.r.t. ≺Fn−k
q

; if two rows v and v′ are such that v ̸= v′

and multiset(v) = multiset(v′), return ⊥;
/* Sort columns */

3 Sort the columns in A′ w.r.t. ≤Fk
q
;

4 return A′

For any matrix, one can derive the corresponding canonical form by sorting first
the rows using the partial ordering, and then the columns using the total ordering. It
is easy to detect whether the corresponding canonical form exists or not, while sorting
rows. The pseudocode of the algorithm is shown in Algorithm 1. Similarly, one can
instead define the canonical form as the result of sorting first the columns using ≺Fk

q
,

and then sorting the rows using ≤Fn−k
q

, which will lead to a different canonical form

function. An example of how this canonical form is computed is shown in Figure 4.
We analyze the main aspects of this canonical form below.

Correctness

The function is invariant under row and column permutations: if CF(1)(A) = A′ ̸= ⊥,
then A′ = CF(1)(Pr ·A ·Pc), for any Pr ∈ Sk and Pc ∈ Sn−k. Indeed, multiset(v) =
multiset(v · Pc) for any v ∈ Fn−k

q and any Pc ∈ Sn−k. Thus, the multisets formed
by the rows of A and Pr ·A ·Pc are the same, up to a different ordering due to Pr.

11Following the notation we settled in the previous section, this should have been CFF1
.

18

A =

0 0 1
1 0 0
0 1 0

 ·A ·

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 =

1 2 4 7
0 2 3 1
2 3 2 0

 0 2 3 1
2 3 2 0
1 2 4 7

 0 1 2 3
2 0 3 2
1 7 2 4

2 2 0 3
1 4 7 2
0 3 1 2

 0 3 1 2
2 2 0 3
1 4 7 2



Row permutation
according to ≺Fn−k

q

Column permutation
according to ≤Fk

q

Fig. 4: Example of computation of CF(1), for n = 7 and k = 3.

Sorting the rows of A and Pr · A · Pc with respect to ≺Fn−k
q

leads to two matrices

which are equal up to a column permutation. Finally, sorting with respect to ≤Fk
q
is

invariant under column permutation.

Computational Complexity

Algorithm 1 takes Õ(n2) field operations, assuming that the rows and columns are
sorted using a comparison-based sorting algorithm that takes an essentially linear
number of comparisons.

Success Probability

According to Appendix B, the success probability of CF(1) is lower bounded by

γ∗1(q, k, n− k) = 1−
(k−1∏
i=1

1− i ·m
qn−k

)
(3)

where

m =

(n− k)! if n− k ≤ q,
(n−k)!(

v!
)q(v+1)−(n−k)(

(v+1)!
)n−k−qv if n− k > q

and v = ⌊(n− k)/q⌋. A proof for the bound can be found in Appendix B.

Theorem 2. Let k = R · n, with R being constant. Let S be a positive constant
such that q ≥ S · n (which implies that q = Ω(n)) and S/(1 − R) > 1/e. Then,
γ∗1(q, k, n− k) = Ω(1).

Proof. Below, by f ≳ g, we mean g = O(f). We also define [f] as the minimum value
between 1 and f . Consider that

γ∗1 (q, k, n− k) ≥
k−1∏
i=1

1−
[
i · (n− k)!
qn−k

]
≥
(
1−

[
k · (n− k)!

qn−k

])k

19

≥

(
1−

[
Rn ·

(
(1−R)n

)
!

(Sn)(1−R)n

])Rn

.

It is known that n! <
√
2πn · (ne)

n · e 1
12n for all n ≥ 1, hence we continue the above

chain of inequalities as

γ∗1 (q, k, n− k) ≳

1−
Rn ·

√
2π(1−R)n · e

1
12(1−R)n(

eS
1−R

)(1−R)n


Rn

≳

((
1− 1

n

)n)R

= Ω(1),

where we have used that limx→∞((x− 1)/x)x = e−1.

4.4 Case 2

We now move on to the case F2 ≃Mk × Sn−k.
12 Here we have isometries of the form

φ = (φr, φc) = (Q,P), where Q ∈Mk and P ∈ Sn−k. Following the same steps as in
the previous case, we have

[Mn : F2] =
|Mn|
|F2|

=
n!(q − 1)n

k!(n− k)!(q − 1)k
=

(
n

k

)
(q − 1)n−k.

Compared to the previous case, [E : F2] is smaller than [E : F1] by a factor (q − 1)k,
which is exactly the ratio between |F2| and |F1|.

We now define the corresponding canonical form function CF(2). The function

outputs either ⊥ or a matrix in Fk×(n−k)
q with the following properties.

1. For each row v of the form (α, . . . , α), it must be α ∈ {0, 1}.
2. For each row v not of the form (α, . . . , α), it must be either

∑
i vi = 1 or

∑
i vi = 0

and
∑

i v
q−2
i = 1 (here, vi is the i-th element of v).

3. The rows and columns are sorted as in CF(1).

To derive such a canonical form, one can carry out one step to ensure that the first
two constraints hold, and then another to ensure that the third constraint holds. The
second step can be carried out by Algorithm 2. The first step can be carried out as
follows. For each row v ∈ Fn−k

q , if v is of the form (α, . . . , α) where α ∈ F∗
q , replace the

row by (1, . . . , 1). If v is not of the form (α, . . . , α), compute (s, s′) = (
∑

i vi,
∑

i v
q−2
i).

If s ̸= 0, replace the row by s−1 · v. If s = 0 and s′ ̸= 0, replace the row by s′ · v. If
s = s′ = 0, return ⊥.

Pseudocode of the algorithm is shown in Algorithm 2. Figure 5 shows an example
of how the canonical form is computed.

12Note that the case F2 ≃ Sk × Mn−k can be defined and treated analogously.

20

Algorithm 2: CF(2): Canonical form computation for F2

Input: A ∈ Fk×(n−k)
q

Output: C ∈ Fk×(n−k)
q or ⊥

1 Set A′ = A;
2 for i = 1 to k do

3 Set v as row i of A′, compute (s, s′) = (
∑

ℓ vℓ,
∑

ℓ v
q−2
ℓ);

/* Scale row only if it is not (0, · · · , 0) */

4 if v ̸= (0, . . . , 0) then
5 if v = α · (1, . . . , 1) for some α ∈ F∗

q then
6 replace row i of A′ by (1, . . . , 1);
7 else
8 If s ̸= 0, replace row i of A′ by s−1 · v;
9 If s = 0 and s′ ̸= 0, replace row i of A′ by s′ · v;

10 If s = s′ = 0, return ⊥;
11 return CF(1)(A′);

A =

2 3 1 1
2 1 1 1
1 0 3 4

 2−1 0 0
0 1 0
0 0 3−1

 ·
2 3 1 1
2 1 1 1
1 0 3 4

 =

1 4 3 3
2 1 1 1
2 0 1 3



0 1 2 3
1 1 2 1
4 3 1 3


CF(1)

CF(1)

Q ·A ·P =

1 1 1 2
4 2 4 3
4 0 2 3

 1 0 0
0 3−1 0
0 0 4−1

 ·
1 1 1 2
4 2 4 3
4 0 2 3

 =

1 1 1 2
3 4 3 1
1 0 3 2



1st row: (s, s′) = (2, 2)
2nd row: (s, s′) = (0, 1)
3rd row: (s, s′) = (3, 2)

1st row: (s, s′) = (0, 1)
2nd row: (s, s′) = (3, 3)
3rd row: (s, s′) = (4, 4)

Fig. 5: Example of computation of CF(2), for n = 7 and k = 3, over F5. In the example, we

have Q ∈Mk given by
(

0 1 0
1 0 0
0 0 1

)
·
(

4 0 0
0 1 0
0 0 3

)
and P ∈ Sn−k by

(
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

)
.

Correctness

Let A ∈ Fk×(n−k)
q and Ã = Q · A · P, with Q ∈ Mk and P ∈ Sn−k. We show 1)

that CF(2)(A) = CF(2)(Ã) for any choice of Q ∈ Mk and P ∈ Sn−k, and 2) that the
canonical form is obtained by applying a monomial on the left and a permutation

21

on the right. Actually, it suffices to show that, on input A and Ã, instructions 2–
9 will return two matrices A′ and Ã′, obtained just by scaling rows and such that
Ã′ = Pr ·A′ ·Pc for some Pr ∈ Sk and Pc = P. In other words, we can reduce to the
previous instance (Case 1) as by construction we have that CF(1)(A′) = CF(1)(Ã′).

Let di ̸= 0 denote the i-th non-zero scaling factor of Q. Let j be the index which
is moved to position i by Pr: then, if we denote by v and ṽ the j-th row of A and the
i-th row of Ã, respectively, it holds that

ṽ = di · v ·Pc.

We now consider how instructions 2–9 would modify these two rows.

If v is null, then also ṽ is null and the rows are not updated. If v = (α, . . . , α),
then ṽ = di · (α, . . . , α). Both rows are replaced by (1, . . . , 1): for v, this corresponds
to a multiplication by α−1, while for ṽ this is obtained via multiplication by d−1

i ·α−1.
We now consider the case in which both v and ṽ do not fall into the two previous

cases. Let (s, s′) be the values computed in line 6 for row v, and (s̃, s̃′) be the ones
computed for ṽ. We first consider the case in which s ̸= 0, and observe that

s̃ =
∑
ℓ

ṽℓ = di ·
∑
ℓ

vℓ = di · s.

Note that, in the above equation, we have exploited the fact that Pc does not affect
computation of s and s̃ (it only changes the order in which elements are summed).
Since s ̸= 0, also s̃ ̸= 0. The row v is replaced by s−1 · v, while row ṽ is replaced by

s̃−1 · ṽ = (di · s)−1 · di · v ·Pc = s−1 · v ·Pc.

Thus, v and ṽ lead to two rows which are equal, up to the permutation Pc.
The case s = 0, s̃ ̸= 0 is studied analogously, by noticing that

s̃′ =
∑
ℓ

ṽq−2
ℓ = dq−2

i ·
∑
ℓ

vq−2
ℓ = dq−2

i · s′

and
s̃′ · ṽ = dq−2

i · s′ · di · v ·Pc = dq−1
i︸︷︷︸
=1

·s′ · v ·Pc = s′ · v ·Pc.

Note that dq−1
i = 1, for any di, since we are working in a finite field with q elements.

Thus, also in this case, v and ṽ lead to the same row, up to the permutation Pc.

The above reasoning applies to all rows of A and Ã. Since row updates are always
obtained by applying some scaling factor, overall the effect of instructions 2–9 is
described by a diagonal acting on the left.

Finally, if some row of A has s = s′ = 0, then also in Ã there is a row yielding
s̃ = s̃′ = 0 thus CF(2) fails for both A and Ã.

22

Computational Complexity

The loop in Algorithm 2 takes O(n2) field operations. In particular, each iteration of
Line 3 takes O(n) field operations, as xq−2 = x−1 for any x ∈ F∗

q . Line 11 takes Õ(n2)

field operations, so the whole algorithm takes Õ(n2) field operations.

Success Probability

We claim that the success probability of CF(2) is lower bounded by

γ∗2 (q, k, n− k) =
(
1− 1

q

)k

· γ′1(q, k, n− k)

where γ′1(q, k, n−k) =
∏k−1

i=1 1− [i·m·(q−1)
qn−k]. The term (1− 1

q)
k is a lower bound on the

probability that every row v is either of the form (α, . . . , α) or such that
∑

i vi ̸= 0
or
∑

i v
−1
i ̸= 0. The term γ′1(q, k, n − k) is a lower bound on the probability that

CF(1)(A′) ̸=⊥: each row can be scaled in at most q − 1 ways in the loop, so we add
the term q − 1 to account for the possibility that two rows lead to the same multiset
after scaling.
Theorem 3. When the same hypothesis as in Theorem 2 holds, γ∗2 (q, k, n−k) = Ω(1).

Proof. We first observe that

(
1− 1

q

)k

≳

(
Sn− 1

Sn

)Rn

=

((
Sn− 1

Sn

)Sn
)R

S

.

Since limx→∞((x − 1)/x)x = 1/e, we have (1 − 1
q)

k = Ω(1). It is easy to show that

γ′1(q, k, n− k) = Ω(1), by mimicking the proof for γ∗1(q, k, n− k) = Ω(1).

γ∗2(q, k, n− k) is expected to be a loose bound: The probability that ⊥ is returned
in each iteration of the loop in Algorithm 2 should be close to 1/q2. Therefore, we
estimate the success probability of Algorithm 2 as

γ2(q, k, n− k) =
(
1− 1

q2

)k

· γ′1(q, k, n− k).

4.5 Case 3

To conclude, we consider what we deem the most general case, which corresponds to
the largest choice for F , that is F3 ≃Mk×Mn−k. We now have isometries of the form
φ = (φr, φc) = (Qr,Qc), where Qr ∈ Mk and Qc ∈ Mn−k

13. The impact of this last
choice for F is extremely significant, as now the witness size is given by

13In this section, it will be useful to remember that each monomial matrix Q ∈ Mr can be seen as a
product Q = P · D of a permutation P ∈ Sr and a diagonal matrix D ∈ Dr.

23

[Mn : F3] =
|Mn|
|F3|

=
n!(q − 1)n

k!(n− k)!(q − 1)k(q − 1)n−k
=

(
n

k

)
.

We now given an intuition on how a canonical form for this case can be derived.

Compared to the previous case, we now have to deal with an additional scaling
of columns, i.e., column i is now scaled by some non-null coefficient di. For each row
(ai,1, · · · , ai,n−k) which does not contain zeros (i.e., ai,j ̸= 0 for every j ∈ {1, · · · , n−
k}), one can scale column j by a−1

i,j . The effect of extra scaling factors is canceled. To
see this, let us assume that

A = B ·

d1 . . .

dn−k


which implies ai,j = dj · bi,j . When we scale column j by a−1

i,j = d−1
j · b

−1
i,j , we get rid

of the dependence on dj .

Let A(i) be the matrix obtained after columns of A are scaled as we described
above. Note that row i of A(i) is (1, · · · , 1). Then, for each A(i), Algorithm 2 is
applied to obtain a matrix C(i) (if ⊥ is not returned). Finally, return the smallest C(i)

with respect to <Fk×(n−k)
q

. Pseudocode of the algorithm is shown in Algorithm 3. The

resulting canonical form function is denoted as CF(3).

Algorithm 3: CF(3): Canonical form computation for F3

Input: A ∈ Fk×(n−k)
q

Output: C ∈ Fk×(n−k)
q or ⊥

1 Set T ← ∅;// E is initialized as the empty set

2 for i = 1 to k do
/* If row i does not have zeros, use the inverses of its coefficients as scaling factors

and call CF(2) */

3 if 0 ̸∈ {ai,1, . . . , ai,n−k} then
4 A(i) ← A ·D, where D ∈ Dn−k and dj,j = a−1

i,j for j ∈ {1, . . . , n− k};
5 C(i) ← CF(2)(A(i));

6 if C(i) ̸=⊥ then
7 T ← T ∪ {C(i)};

/* If T = ∅, return ⊥; else, CF(3) can be computed */

8 if T = ∅ then
9 return ⊥;

10 else
11 return the smallest element in T w.r.t. ≤Fk×(n−k)

q
;

24

Correctness

To prove correctness of our algorithm, we need two preliminary results.

Proposition 4. Given A,B ∈ Fk×(n−k)
q satisfying B = Dr ·A·Dc for some Dr ∈ Dk,

Dc ∈ Dn−k, such that row i of A (and thus row i of B) consists of only non-zero
elements. Let

A(i) = A ·

a
−1
i,1

. . .

a−1
i,n−k

 , B(i) = B ·

b
−1
i,1

. . .

b−1
i,n−k


Then B(i) = D′

r ·A(i) for some D′
r ∈ Dk.

Proof. Let the elements on the main diagonal ofDr be x1, . . . xk. Analogously, let those
of Dc be y1, . . . yn−k. Then, row j of A(i) is given by (aj,1 · a−1

i,1 , . . . , aj,n−k · a−1
i,n−k),

while row j of B(i) is just a scalar multiple of this row. Indeed, the elements of this
row are given by:(

xj · aj,1 · y1 · (xi · ai,1 · y1)−1︸ ︷︷ ︸
Element 1

, · · · , xj · aj,n−k · yn−k · (xi · ai,n−k · yn−k)
−1︸ ︷︷ ︸

Element n − k

)
=
(
xj · x−1

i · aj,1 · a
−1
i,1 , · · · , xj · x

−1
i · aj,n−k · a−1

i,n−k

)
= (xj · xi) ·

(
aj,1 · a−1

i,1 , · · · , aj,n−k · a−1
i,n−k

)︸ ︷︷ ︸
Row j of A(i)

.

Proposition 5. Given A,B ∈ Fk×(n−k)
q satisfying A = Pr ·B ·Pc for some Pr ∈ Sk,

Pc ∈ Sn−k, such that row i of A consists of only non-zero elements. Let i′ be the
column index of 1 in row i of P−1

r . In other words, the row permutation represented
by P−1

r maps row i′ to row i. Then A(i) = P−1
r ·B(i′) ·P−1

c .

The proof for Proposition 5 is immediate and therefore omitted in the interest of
space. Now, combining the two above propositions, we have

B = Pr ·Dr ·A ·Dc ·Pc =⇒ P−1
r ·B ·P−1

c = Dr ·A ·Dc

=⇒ P−1
r ·B(i′) ·P−1

c = D′
r ·A(i) =⇒ B(i′) = Pr ·D′

r ·A(i) ·Pc.

By applying the algorithm for Case 2 to A(i) and B(i′), we obtain the same

matrix. Thus, the set
{
CF(2)

(
A(i)

)
| i = 1, · · · , k, 0 /∈ {ai,1, · · · , ai,n−k}

}
is equal

to
{
CF(2)

(
B(i)

)
| i = 1, · · · , k, 0 /∈ {bi,1, · · · , bi,n−k}

}
, and we conclude that the

algorithm leads to the same output for any A,B in the same equivalence class.

25

Computational Complexity

The number of field operations taken by Algorithm 3 is dominated by the ones taken by
iterations of Line 5. Therefore, the algorithm takes n · Õ(n2) = Õ(n3) field operations.

Success Probability

The success probability of CF(3) is lower bounded by

γ∗3(q, n, n) =
(q − 1

q

)n−k

· γ∗2(q, k − 1, n− k).

Here, (q−1
q)n−k is the probability that the first row of A is in (F∗

q)
n−k and thus A(1)

is well-defined. γ∗2(q, k − 1, n − k) is a lower bound on the probability that C(1) ̸=⊥,
under the condition that A(1) is well-defined. We consider γ∗2(q, k−1, n−k) instead of
γ∗2(q, k, n− k), as whether C(1) =⊥ depends only on entries not in the first row: The
first row of A(1) is (1, . . . , 1), so Line 10 of Algorithm 2 will be skipped when i = 1;
Also, there cannot be a vector v such that v ̸= (1, . . . , 1) and multiset(v) = {1, . . . , 1}.

Theorem 6. γ∗3(q, k, n− k) = Ω(1), under the assumptions in Theorem 2.

Proof. (q−1
q)n−k = Ω(1) can be proven by mimicking how we show that (1− 1

q)
k = Ω(1)

in the proof of Theorem 3, and γ∗2(q, k − 1, n− k) ≥ γ∗2(q, k, n− k) = Ω(1).

γ∗3 (q, k, n − k) is expected to be a loose bound, as C(1) ̸=⊥ is just a sufficient
condition for Algorithm 3 to succeed. Algorithm 3 succeeds as long as there exists j
such that C(j) ̸=⊥. Therefore, we estimate the success probability of Algorithm 3 as

γ3(q, n, k) := 1−
(
1−

(q − 1

q

)n−k

· γ2(q, k − 1, n− k)
)k

. (4)

5 Application to LESS Signatures

In this section, we introduce the scheme resulting from the application of canonical
forms to LESS, which we call CF-LESS. We first describe the main idea at a high level,
then give full details about the case we are interested in, namely, E =Mn and F = F3.

Let F ≤ Mn and CosetRep be a function that, on input an isometry ψ, returns a
representative for the coset Fψ. By definition, for any two distinct isometries which are
in the same coset, the function returns the same element. The function CosetRep has
at most [Mn : F] = |Mn|/|F | distinct images, hence its output has bitsize log2 |Mn| −
log2 |F |. Later on, for the case F = F3, we give full details about how such a function
can be computed efficiently and how its output can be encoded efficiently.

A graphical representation of how the framework developed in the previous sections
can be incorporated in a Sigma protocol derived from code equivalence is shown in
Figure 6. For the sake of simplicity, we consider only the case in which the challenge
is binary, i.e., the prover is asked to prove either a path from C to cmt, or from C ′ to
cmt; when more linear codes are employed, modifications are analogous.

26

C

τ(C)

C ′

χ(C ′)

cmt

µ

τ
$←−Mn

CRF

χ

CRF

Fig. 6: Visualization of a ZK proof of knowledge based on canonical representatives. The

public key is the pair (C ,C ′), while µ ∈Mn is the secret key and χ = CosetRep
(
τ ◦ µ−1

)
.

As in traditional Sigma protocols derived from group actions, the prover samples
a uniformly random isometry τ ∈Mn and applies it to C . The main difference is that
in our case the prover commits to CRF

(
τ(C)

)
. In practice, cmt is a commitment to

its generator matrix in canonical form.

When the challenge is ch = 0, the prover reveals τ ; when ch = 1, instead, the prover
is asked to show how cmt can be computed, starting from C ′. In this case, thanks to
our framework, the bitsize of the response can be greatly reduced. First, the isometry
τ ◦µ−1 maps C ′ to τ(C). Moreover, any isometry χ from the coset F

(
τ ◦ µ−1

)
brings

C ′ to the same F -equivalence class to which τ(C) belongs. Then, computation of the
canonical representative will lead to the same commitment cmt. In particular, the
prover can reply with χ = CosetRep

(
F (τ ◦µ−1)

)
, since this is enough to fully represent

the coset.

We first recall how the traditional LESS Sigma protocol works then modifies it
according to the above framework, for the case F = F3.

5.1 The LESS Sigma Protocol

To begin we recall, in Figure 7, the Sigma protocol underlying the LESS signature
scheme. As we have already said, there are variants with s > 2 generator matrices in
the public key; for the sake of simplicity, Figure 7 is specific to s = 2.

As shown in [9], the protocol is 2-special sound, with soundness error ε = 1/2. Note
that, if the isometries µ and τ are both permutations, this protocol falls into a special
case, in which security relies exclusively on PEP (as this is a special case of LEP); this
may require some slight changes in how the protocol is actually deployed (for example,
utilizing different parameters or particular choices of codes, such as self-orthogonal
codes).

When ch = 0, the verifier computes the very same matrix τ(G) used by the
prover to generate the commitment. However, when ch = 1, the verifier computes

27

Private Key: µ ∈Mn.

Public Key: Generator matrices G,G′ ∈ Fk×n
q for two linear codes C ,C ′ = µ(C) ⊆ Fn

q .

PROVER VERIFIER

τ
$←−Mn

G̃← τ(G)

cmt← Hash
(
RREF(G̃)

) cmt−−→
ch←−− ch

$←− {0, 1}

If ch = 0 :
rsp← τ

Else:

rsp← τ ◦ µ−1 rsp−−→ If ch = 0:

Verify Hash
(
RREF

(
rsp(G)

))
= cmt

Else:

Verify Hash
(
RREF

(
rsp(G′)

))
= cmt

Fig. 7: The original LESS Sigma protocol for linear equivalence. To generate the version for
permutation equivalence, simply replace Mn by Sn.

(τ◦µ−1)(G′), which is equal to G̃ up to a change of a basis. This is why it is necessary to
use RREF, which as we know is invariant under change of basis, to ensure verification
works. Note that, in the case ch = 0, the response consists of the randomly-generated
isometry τ , and can thus be compressed by transmitting only a seed for a secure
PRNG, as is common practice.

Remark 5. The scheme presented in Figure 7 is simply the “core” element in the
design of the LESS signature scheme. Indeed, to obtain a signature scheme, it is nec-
essary to iterate the protocol, say t times, and apply the Fiat-Shamir transformation.
Furthermore, a variety of optimizations are incorporated into the design, to improve
the overall performance. For instance, the final signature scheme uses a variable num-
ber s of public keys (generating a tradeoff between public key and signature size); an
“unbalanced” challenge string of fixed Hamming weight w (to maximize the reduc-
tion obtained by transmitting seeds for random objects) and a seed tree to compactly
transmit seeds (as described in various previous works such as [7,8]). It is worth clari-
fying that the Fiat-Shamir transformation directly yields EUF-CMA security [13], and
the addition of such standard optimizations does not affect this claim, as shown for
instance in [4,12].

Next, we show how the use of canonical forms can be embedded into the protocol.
The high-level intuition is that using canonical forms, on top of the RREF compu-
tation, enriches the invariance properties we are able to achieve. In practice, we let
the prover and the verifier end up in two codes which are F -equivalent. Leveraging
this fact, the prover can provide multiple responses to verify the same commitment:
among all such choices, we consider the one having the smallest communication cost.

28

5.2 The CF-LESS Sigma protocol

In this section we explain how the CF-LESS Sigma protocol operates. To do that,
we first need to detail how CosetRep is defined; indeed, the availability of an efficient
manner to implement this function is fundamental. We start by introducing a result
which will be fundamental to understand how CosetRep works (the proof is omitted
in the interest of space).

Theorem 7. For every µ ∈Mn, there exists a unique pair (χ, φ) ∈ Sk,n×F3 such that

µ = φ ◦ χ.

The above theorem has a very simple interpretation: every monomial map is essen-
tially the combination of a permutation from Sk,n, which maps to the leftmost k
coordinates, and a map from F3 whose action is split into two sub-maps, one acting
on the resulting first k coordinates, and the other on the rightmost n− k coordinates.
We use the above theorem to give a formal definition of the function CosetRep.

Definition 6 (Coset Representative). We define CosetRep as the function that, on
input an isometry µ ∈ Mn, returns χ ∈ Sk,n, where χ is the unique isometry from
Sk,n such that, as in Theorem 7, we can write µ = φ ◦ χ for φ ∈ F3.

It is easy to see that CosetRep can be computed efficiently. We now show that the
above definition is proper, i.e., that for any isometry in the same coset, the function
outputs the same isometry.

Theorem 8. For any µ ∈ Mn, the function CosetRep, on input any isometry from
the coset F3µ, returns the same value.

Proof. We just need to show that, for every two isometries in the same coset, we obtain
the same representative. To this end, let µ, µ′ ∈ Mn such that µ′ = φ∗ ◦ µ for some
φ∗ ∈ F3. Since µ = φ ◦ χ (as in Theorem 7), we have also

µ′ = φ∗ ◦ µ = φ∗ ◦ φ︸ ︷︷ ︸
φ′

◦ χ = φ′ ◦ χ. (5)

Since F3 is a subgroup, then φ′ ∈ F3. Then, thanks to Theorem 7, the decomposition
in (5) is unique, hence CosetRep(µ′) = CosetRep(µ) = χ.

Remark 6. If one considers Sn instead of Mn and F1 instead of F3, the above
theorems remain valid. Moreover, the function CosetRep is defined in analogous way.

As we have already specified in Section 2, every element of Sk,n can be encoded
as a set J ⊆ {1, · · · , n} of size k. This is exactly how the output of CosetRep can be
encoded: on input some monomial, it decomposes it according to Theorem 7 and then
returns the set J which encodes χ ∈ Sk,n.

We are now ready to show how the protocol depicted in Figure 6 can be turned
into a practical ZK protocol. The formal description of the resulting Sigma protocol is
given in Figure 8. The properties of the protocol (completeness, zero-knowledge and
soundness) are analyzed in the next section.

29

Private Key: µ ∈Mn.

Public Key: Generator matrices G,G′ ∈ Fk×n
q for two linear codes C ,C ′ = µ(C) ⊆ Fn

q .

PROVER VERIFIER
do:

τ
$←−Mn(

(Ik | A), π
)
← RREF∗

(
τ(G)

)
while CF(3)(A) =⊥
cmt← Hash

(
CF(3)(A)

) cmt−−→
ch←−− ch

$←− {0, 1}

If ch = 0:
rsp := τ

Else:

rsp := J = CosetRep(π ◦ τ ◦ µ−1)
rsp−−→ If ch = 0:(

Ik | A
)
← SF

(
τ(G)

)
Else:

A← G′−1
J ·G′

{1,··· ,n}\J
Verify Hash

(
CF(3)(A)

)
=cmt

Fig. 8: The CF-LESS Sigma protocol for linear equivalence. To generate the version for
permutation equivalence, simply replace Mn by Sn.

Remark 7. For k = Rn, we have log2
(
n
k

)
= n · h(R) ·

(
1 + o(1)

)
and, in particular,

log2
(
n
k

)
≤ n · h(R), with the bound being asymptotically tight. If R = 1

2 , one has

h (R) = 1, hence log2
(
n
k

)
asymptotically approaches n (from below). In such a case, one

can simplify the encoding of cosets and utilize just a binary string of length n, where
the ones correspond to the coordinates that are moved to the leftmost k coordinates.
This allows to consider a very simple and asymptotically optimal encoding for cosets
as a binary string with length n and weight n/2, with the positions corresponding to
the coordinates that are moved to the k leftmost positions.

5.3 Properties of the CF-LESS Sigma Protocol

We are now ready to show that the CF-LESS Sigma protocol achieves the three funda-
mental properties for a ZK proof of knowledge, that is, completeness, zero-knowledge
and special soundness. The first two properties are immediate; nonetheless, we prove
them for the sake of absolute clarity. For what concerns special soundness, we show
that it reduces to finding solutions to the following problem.

Problem 4 (Canonical Forms Linear Equivalence Problem (CF-LEP)). Let
CRF3 and CFF3 be canonical representative function and canonical form functions,
respectively. Given two linear codes C ,C ′ ⊆ Fn

q , find χ, χ
′ ∈ Sk,n such that

CRF3

(
χ(C)

)
= CRF3

(
χ′(C)

)
.

30

Equivalently, given two generator matrices G,G′ ∈ Fk×n

q , find two size-k sets J, J ′ ⊆
{1, · · · , n} such that

CFF3

(
G−1

J ·G{1,··· ,n}\J
)
= CFF3

(
G′−1

J′ ·G′
{1,··· ,n}\J′

)
For analogy with the traditional case, we refer to the above problem as CF-LEP ;

we will carefully analyze its hardness in Section 6.

Completeness and Zero-Knowledge

Zero-knowledge follows immediately from the fact that τ is uniformly distributed over
Mn. We now proceed by showing that the protocol is complete.

The prover commits to the generator matrix (in canonical form) of the canonical

representative of the F3-equivalence class CF3
(C̃), with C̃ = π ◦ τ(C). Notice that if

{1, · · · , k} is an information set for τ(C), then π = idn otherwise π ̸= idn.

When ch = 0, the prover responds with τ so the verifier repeats the very same
operations performed by the prover. When instead ch = 1, the prover replies with
the representative of the coset F3(π ◦ τ ◦ µ−1). Observe that τ ′ = π ◦ τ ◦ µ−1 is such

that τ ′(C ′) = C̃ . The prover responds with a representative χ for the coset F3τ
′: the

verifier computes χ(C ′) which is F3-equivalent to C̃ hence has the very same canonical
representative.

In the protocol, all the above operations are detailed in terms of linear algebra.
For the sake of completeness, we review completeness also using linear algebra. Let
G̃ = π ◦ τ(G) and write G′ = S · µ(G) for some S ∈ GLk(q). Let χ ∈ Sk,n be the
permutation represented by the set J ; then,

(G′
J | G′

{1,··· ,n}\J) = χ(G′) = S · G̃ ·
(
Qr 0
0 Qc

)
= S · (Ik | A) ·

(
Qr 0
0 Qc

)
,

with Qr ∈Mk and Qc ∈Mn−k. Then

G′−1
J ·G′

{1,··· ,n}\J = (S ·Qr)
−1 · S ·A ·Qc = Q−1

r ·A ·Qc.

Then, CF(3)
(
G′−1

J ·G′
{1,··· ,n}\J

)
= CF(3)(A).

Special Soundness

We show that the protocol is 2-special sound, i.e., that there exists a polynomial
time algorithm that, on input two accepting transcripts with same commitment but
different challenge, computes the secret. Given that we are considering a Sigma pro-
tocol with binary challenge (i.e., the challenge space has size 2), it follows that it has
soundness error ε = 1/2.

Proposition 9. The protocol in Figure 8 is 2-special sound.

31

Proof. We consider two accepting transcripts τ ∈Mn and J ⊆ {1, · · · , n}, respectively
for ch = 0 and ch = 1, and commitment cmt.

We first focus on the transcript for ch = 0. From the knowledge of τ , one can

obtain π ∈ Sk,n such that SF
(
τ(G)

)
= RREF

(
π
(
τ(G)

))
. Indeed, π is just the per-

mutation that moves the information set used for RREF computation to the first k
coordinates. Let J∗ = CosetRep(π ◦ τ): then, A∗ = G−1

J∗ · G{1,··· ,n}\J∗ is such that

Hash
(
CF(3)(A∗)

)
= cmt.

We now focus on the transcript for ch = 1. Since it is accepting, then A = G−1
J ·

G{1,··· ,n}\J is such that Hash
(
CF(3)(A)

)
= cmt. Either CF(3)(A) ̸= CF(3)(A′) and we

found a hash collision, or CF(3)(A) = CF(3)(A′) and we found a solution to Problem
4. In particular, the solution corresponds to the two permutations from Sk,n which
are represented by J∗ and J .

Remark 8. The protocol is zero-knowledge , complete and 2-special sound also for
the permutation case since, again, this is just a special case of our analysis. The
corresponding hard problem is defined as Problem 4, with the only difference that one
should employ functions computing canonical representatives and forms for case F1.

5.4 Computational Complexity

We briefly comment on the computational cost of the protocol in Figure 8. To this end,
we rely on a heuristic which is commonly employed when studying code-based prob-
lems (e.g., in papers about information-set decoding). Most importantly, numerical
simulations confirm the heuristic.

Heuristic 1. Let G ∈ Fk×n
q be the generator matrix for a code with dimension k and

length n. For any set J ⊆ {1, · · · , n} of size k, we consider that GJ is a k× k matrix
sampled according to the uniform distribution over Fq. Analogously, also G{1,··· ,n}\J
is a k × (n− k) matrix sampled according to the uniform distribution over Fq.

Under this heuristic, we have that the average number of isometries τ the prover
has to test, before a valid matrix is found, corresponds to 1/γ. Note that the heuristic
is here employed since we consider that, for each choice of τ , τ(G) behaves as a
uniformly random matrix. For each τ the prover executes RREF∗ and then computes
CF(3).Let TRREF∗ and TCF be the costs of these functions, respectively; then, computing
the commitment comes with cost TRREF∗+TCF

γ . As we have already seen, γ is in practice

very high, so that 1/γ ≈ 1: the first choice of Q̃ is successful with overwhelming
probability.

Computing the response takes a much smaller time so, for simplicity, we do not
consider it. Analogously, verification is predominated by performing Gaussian elimi-
nation and then computing the canonical form. So, on the verifier’s side, the cost can
be estimated as TRREF∗ + TCF.

Whenever TCF has a cost which is less than or, at the very least, comparable with
TRREF∗ , the use of canonical forms does not lead to significant computational overhead.
Indeed, as it is well known, a crude but realistic estimate for TRREF∗ is O

(
n3
)
field

operations. As we have already seen in Section 4, it is possible to define canonical

32

forms whose time complexity is much better than or comparable with that of TRREF∗ .
Indeed, among the functions we have defined, the most time consuming one is that
for Case 5, taking Õ(n3) field operations.

6 Hardness Analysis and Implications

In this section we provide strong evidences that the new formulation of code equiva-
lence, using canonical forms, still leads to a hard problem. We give all our reductions
considering the most general case of LEP and F = F3, but the reductions trivially
extend to other choices for F . We provide reductions between LEP and CF-LEP which
hold given that:

- canonical forms can be computed in polynomial time;
- from the computation of CFF3(A), one also obtains (in polynomial time) transfor-

mations Mr,Mc ∈ Fr × Fc such that CFF3(A) = Mr ·A ·Mc;
- for the pair of considered codes, canonical representatives are well defined.

The first two conditions are trivially verified. For instance, the function CF(3) runs in
polynomial time and implicitly builds the transformations Mr and Mc. In the follow-
ing, to make this requirement clear, we indicate by CF∗

F3
a canonical form function

that returns both the canonical form and the pair (Mr,Mc).

For what concerns the last requirement, we prove that, under Heuristic 1, all but
a negligible portion of random codes do not admit a canonical representative if γ is
large enough (say, it does not decrease exponentially with n).

As we show later, for parameters that are relevant for cryptographic applications,
the fraction of codes for which the reduction fails is negligible, hence, our reductions
are applicable and CF-LEP is indeed as hard as LEP.

We furthermore show that the reductions may be used to mount a practical attack
on code equivalence. Given access to canonical forms that are efficiently computable
(as those in Section 4) and have sufficiently low failure probability, we can exploit

the birthday paradox and devise a simple attack running in time Õ
(√(

n
k

))
. In some

regimes (e.g., when q is large enough), this attack appears to be faster than all pre-
viously known solvers. Moreover, it does not depend on some code properties such
as the hull dimension, differently from [19] and [2], or the minimum distance [6, 16].
Regardless of the type of equivalence considered (permutation vs linear), the procedure
remains exactly the same, with the only difference being in the employed canonical
form function. Finally, we note that the only dependence on the finite field size is in
the cost and success probability of the employed canonical form function, which are
expected to be very mild. This is another remarkable difference with other solvers, for
instance, those based on finding low weight codewords [6, 16]: when q increases, the
minimum distance of random codes increases as well, so these attacks become slower.

33

6.1 Reductions between LEP and CF-LEP

In this section we show that, whenever a solution to CF-LEP exist (i.e., whenever
computation of canonical representative functions do not fail), LEP and CF-LEP are
equivalent. Later on we deal with failures and show that, for random codes, canonical
representatives exist with extremely large probability. Putting everything together,
the reductions we give in this section show that, for random codes, LEP and CF-LEP
are basically the same problem (as solving one problem allows to solve the other).

We first show that CF-LEP reduces to LEP. Let C ,C ′ ⊆ Fn
q be the two codes

defining the LEP instance and let µ ∈ Mn be a solution. Then, obtaining a solution
for CF-LEP is trivial. Let π ∈ Sk,n be the permutation provided as output by RREF∗

on input any generator matrix for C . Then, a solution for CF-LEP can be obtained
as χ := π and χ′ = CosetRep(π ◦ µ−1). Indeed,

χ′(C ′) ∼F3
π ◦ µ−1 ◦ µ(C) = π(C) = χ(C).

If, after computation of systematic forms, canonical forms can be computed, then
the reduction is done. Otherwise, one can row reduce with respect to a different
information set (and update accordingly π), until a canonical form can be computed.

The other direction, i.e., showing that LEP reduces to CF-LEP is more interesting.
The way to map a CF-LEP solution into a LEP solution is described in Algorithm 4;
its correctness is detailed in the next Proposition.

Proposition 10. If (C ,C ′) admits a solution for CF-LEP, then a solution for LEP
on input C ,C ′,can be found in polynomial time.

Proof. Algorithm 4 obviously takes polynomial time, since all it does is computing
canonical forms (which takes polynomial time by hypothesis), performing matrix mul-
tiplications/inversions and computing RREFs. Hence, we only need to show that the
algorithm is correct, i.e., that the output µ ∈ Mn is indeed an isometry between C
and C ′.

Let G̃ = G ·P and G̃′ = G′ ·P′, and(
Ik | A

)
= RREF(G̃),

(
Ik | A′) = RREF(G̃′).

Notice that this means there exist S,S′ ∈ GLk(q) such that(
Ik | A

)
= S ·G ·P,

(
Ik | A′) = S′ ·G′ ·P′

Let (Qr,Qc) ∈Mk ×Mn−k such that

CFF3(A) = Qr ·A ·Qc,

and (Q′
r,Q

′
c) ∈Mk ×Mn−k such that

CFF3
(A′) = Q′

r ·A′ ·Q′
c.

34

Algorithm 4: Building LEP solution from CF-LEP solution

Data: CF∗
F3

: Fk×(n−k)
q 7→

{
{⊥} ∪ Fk×(n−k)

q

}
: a canonical form function for F3

Input: matrices G,G′ ∈ Fk×n
q , solution χ, χ′ ∈ Sk,n for CF-LEP

Output: solution µ ∈Mn for LEP

/* Apply χ and χ′ so that both matrices have {1, · · · , k} as information set, compute

systematic forms */

1 Set P,P′ ∈ Sk,n as the permutation matrices associated to χ and χ′,
respectively;

2 Compute G̃ = G ·P and G̃′ = G′ ·P′;

3 Compute
(
Ik | A

)
= SF(G̃) and

(
Ik | A′) = SF(G̃′);

/* Compute the transformations bringing A and A′ to the canonical forms */

4 Compute B, (Qr,Qc) = CF∗
F3
(A);

5 Compute B′, (Q′
r,Q

′
c) = CF∗

F3
(A′);

/* Build solution for LEP */

6 Set Q̃r = Q′−1
r ·Qr;

7 Set Q̃c = Q′
c ·Q−1

c ;
8 Set µ ∈Mn as the monomial associated with the matrix

P′ ·

(
Q̃r 0

0 Q̃c

)
·P−1

return µ

Since CFF3
(A) = CFF3

(A′), it holds that

Qr ·A ·Qc = Q′
r ·A′ ·Q′

c =⇒ A = Q−1
r ·Q′

r︸ ︷︷ ︸
Q̃−1

r

·A′ ·Q′
c ·Q−1

c︸ ︷︷ ︸
Q̃c

.

Then

S ·G ·P =
(
Ik | A

)
=
(
Ik | Q̃−1

r ·A′ · Q̃c

)
= Q̃−1

r ·
(
Ik | A′) ·(Q̃r 0

0 Q̃c

)

= Q̃−1
r · S′ ·G′ ·P′ ·

(
Q̃r 0

0 Q̃c

)
.

35

Hence

G = S−1 · Q̃−1
r · S′︸ ︷︷ ︸

∈GLk(q)

·G′ ·P′ ·

(
Q̃r 0

0 Q̃c

)
·P−1

︸ ︷︷ ︸
∈Mn

.

6.2 Existence of solutions to CF-LEP for random codes

We proceed by analyzing the probability that a random code admits a canonical
representative, assuming we have a canonical form function that exists with probability
γ < 1. We are able to show that, unless γ is negligible, canonical representatives exist
with overwhelming probability.

For a set J ⊆ {1, · · · , k}, we denote by ζ the probability that J is an information
set, that is, the probability that the columns indexed by J form a non singular matrix.
Under Heuristic 1, we study this matrix as it is uniformly random over Fq. Then, the
probability ζ is the same for all sets J and, moreover (see e.g [14, Section 2]), it holds
that ζ ≥ 1− 1/q − 1/q2. According to the heuristic, after RREF, the non systematic
part behaves as a uniformly random k×(n−k) matrix over Fq, so it admits a canonical
form with probability γ. Consequently, the probability that canonical forms cannot

be defined for all sets J is (1− ζγ)(
n
k). Taking the logarithm of this quantity and

considering that log2(x) ≤ 1
ln(2) (x− 1) for all positive x ∈ R, we further get

log2 (1− ζγ)(
n
k) ≤

(
n

k

)
(1− ζγ)− 1

ln(2)
= −

(
n

k

)
ζγ

ln(2)
≤ −γ

(
n

k

)
(1− 1/q − 1/q2)

ln(2)
.

Thus, according to our analysis, the probability that for a random code a canonical

representative cannot be defined is less than 2−γ(nk)
(1−1/q−1/q2)

ln(2) : this is always negligible,
unless γ is negligible, as well.

Remark 9. For CF-LESS, we consider instances having rate 1/2 and canonical forms
that succeeds with probability at least 1 − 2−83. In such a case, the probability that a

canonical representative does not exist is well approximated by 2−
1

ln(2)
2n : the probability

that the reduction does not apply is negligible.

Remark 10. For (some of) the canonical forms we defined in Section 4, the success
probability gets smaller when q gets lower. In such a regime, there may exist different
ways to define canonical forms with sufficiently large success probability. We view
the task of finding canonical forms that work better, even when q is smaller, as an
interesting open question.

6.3 Canonical Forms as a Solver for LEP

We now show how the reduction in Algorithm 4 can be used to mount a practical attack
on code equivalence. Again, we focus on the case of LEP but the attack obviously works
also when considering PEP. The core of our proposed procedure is shown in Algorithm

36

5. Essentially, the procedure first solves CF-LEP using a meet-in-the-middle strategy;
then, it calls the reduction in Algorithm 5 to reconstruct the equivalence between G
and G′.

Algorithm 5: Solving code equivalence via canonical forms

Input: matrices G,G′ ∈ Fk×n
q , lists size m

Output: equivalence between G and G′, or failure

1 Set L = ∅, L′ = ∅;

// Populate first list

2 while |L| < m do

3 Sample χ
$←− Sk,n;

4 Compute G̃ = χ(G);

5 if G̃{1,··· ,k} has rank k then

6 Compute A = G̃−1
{1,··· ,k} · G̃{k+1,··· ,n};

7 Compute B = CFF3
(A);

8 if B ̸=⊥ then
9 Add

(
χ,B

)
to L;

// Populate second list

10 while |L′| < m do

11 Sample χ′ $←− Sk,n;

12 Compute G̃′ = χ′(G′);

13 if G̃′
{1,··· ,k} has rank k then

14 Compute A′ = G̃′−1
{1,··· ,k} · G̃

′
{k+1,··· ,n};

15 Compute B′ = CFF3(A
′);

16 if B′ ̸=⊥ then
17 Add

(
χ′,B′) to L′;

// Find solution for CF-LEP, then reconstruct the equivalence

18 Search for collisions, i.e., pairs (χ,B) ∈ L, (χ′,B′) ∈ L′ such that B = B′;
19 If a collision is found, call Algorithm 4 on input G,G′ and χ, χ′

The analysis of the resulting time complexity is very simple. First, because of the
birthday paradox, the algorithm has success probability which is approximately 1/2.
For each candidate χ (resp., χ′), the probability that it corresponds to a computable
canonical form is ζγ. Thus, the number of distinct χ (and χ′) leading to a canonical
form can be estimated as γζ

(
n
k

)
. Exploiting the birthday paradox, we can set the lists

size as m =
√
γζ
(
n
k

)
. Since each candidate for χ (and χ′) leads to a failure in the

canonical form computation with probability γζ, the average number of candidates

we have to test, for each list, is given by 1√
γζ
·
√(

m
k

)
. Indeed, on average, this yields

37

lists of size

γζ · 1√
γζ
·

√(
n

k

)
=
√
γζ ·

√(
n

k

)
.

Thus, we get an overall cost of

O

(
1√
γζ
· TCF ·

√(
n

k

))
.

As we have already seen, ζ is lower bounded by a constant which increases
with q. Hence, using canonical forms that can be computed in polynomial time,
asymptotically, we get an overall cost of

Õ

(
1
√
γ
·

√(
n

k

))
= 2

1
2n·h(R)·

(
1+o(1)

)
+ 1

2 log2(1/γ).

In all the cases in which γ is non-negligible in n, the factor log2(1/γ) gets absorbed

by the o(1) term and we get an attack with complexity 2n·h(R)·
(
1+o(1)

)
.

Appendix A briefly compares the cost of Algorithm 5 with other known attacks.
For solvers based on short codewords [5,6,16], we use a rough but simplified analysis:
essentially, we consider that finding a single codeword with minimum weight is enough.
These preliminary results show that, when q is large enough, Algorithm 4 becomes
faster than all the other state-of-the-art attacks.

The existence of some non-null failure rate for canonical forms impacts the com-
plexity of the attack very mildly. Indeed, the factor log2(1/γ) becomes relevant only
when γ is negligible in n (i.e., when 1/γ is exponential in n). This is very unlikely.

For the regime in which q is large enough, we have already shown that canonical
forms that can be computed in polynomial time and have a sufficiently large success
probability exist. The canonical forms we have defined may not be the best choice for
small q but we believe it is very plausible that, in this regime, other good canonical
forms exist. We leave this as an interesting open question.

In particular, our analysis holds for the CF-LESS instances that we propose in the
next section since we show that, for all of them, the success probability is always at
least 1− 2−83.

7 Concrete Instantiations

In this section, we discuss the practical impact of our technique on concrete instances.

7.1 Optimal Signature Sizes

In all the cases in which the collision attack we presented in the previous section is the
fastest solver for code equivalence, our framework allows to achieve optimal signature

38

sizes when F ≃ Sk × Sn−k, i.e. Case 1, if permutation equivalence is considered, or
F ≃ Mk ×Mn−k, i.e. Case 3, if linear equivalence is considered. To guarantee that
the collision attack has the desired complexity, we must choose the code length so
that 1

2 · n · h(R) = λ, that is, n · h(R) = 2λ. Since Sk,n has size
(
n
k

)
, its elements are

represented with binary size

log2

(
n

k

)
= log2

(
n

Rn

)
= n · h(R) ·

(
1 + o(1)

)
= 2λ ·

(
1 + o(1)

)
.

In particular, this applies to the instances that we recommend for CF-LESS. Indeed,
the code parameters are inherited from those of the LESS NIST submission [1], for
which R = 1

2 and the resulting n is approximately equal to 2λ. As we shall see next,

our collision attack has an asymptotic running time ≈ 22λ ≈ 2
1
2n. This even means

that, as we already said, the encoding of permutations from Sk,n as binary vector of
length n and weight n/2, despite being very simple and efficient, yields an optimal
strategy for representing elements of Sk,n.

7.2 CF-LESS Instances

Table 1 shows the results obtained when applying canonical forms to the LESS param-
eters, for the case s = 2; the original is included in the top row of each cell, for ease
of comparison. The parameter t stands for the total number of rounds. The parame-
ter w stands for the number of rounds where the challenge is nonzero. Whenever the
challenge is zero, the response is just a short seed, so keeping w small compared to t
helps to save signature size.

The main purpose of this table is to illustrate the impact of our technique; there-
fore, we report sizes corresponding to the various choices of F defined in our work,
indicating which one was considered in the column “Case”. The column “Attack Fac-

tor” indicates log2 of the largest factor
√(

n
k

)
in the cost of the attack in Section 6.3.

Note that the number of bit operations taken by the attack is more than
√(

n
k

)
, as

there are other nontrivial factors such as TCF. Giving the exact bit operation counts
is out of the scope of this paper.

NIST Type Code Params Prot. Params Attack Case pk sig Failure
Cat. n k q s t w Factor (B) (B) Rate

1
Mono

252 126 127 2 247 30 123.84
[18]

13939
8624 0

Mono Case 3 2481 ≈ 10−24

Perm Case 1 2481 ≈ 10−49

3
Mono

400 200 127 2 759 33 197.67
[18]

35074
17208 0

Mono Case 3 5658 ≈ 10−19

Perm Case 1 5658 ≈ 10−63

5
Mono

548 274 127 2 1352 40 271.56
[18]

65792
30586 0

Mono Case 3 10036 ≈ 10−14

Perm Case 1 10036 ≈ 10−69

Table 1: Parameter sets for CF-LESS with s = 2. All sizes in bytes (B).

39

“Failure Rate” indicates the probability that the corresponding canonical form
function returns ⊥, and numbers for Case 1 and Case 3 are derived using Equation 3
and Equation 4, respectively. Note that the numbers for Case 1 are actually proven
upper bounds on the failure rates.

The signature sizes in the column “sig” are computed as

w · ⌈n/8⌉+N (t, w) · ℓtree seed + ℓsalt + ℓdigest.

The value N (t, w) indicates the number of seeds (in the tree) that need to be released,
and is estimated by 2⌈log2 w⌉ +w · (⌈log2 t⌉ − ⌈log2 w⌉ − 1), as in [10,15]. The symbols
ℓtree seed, ℓsalt and ℓdigest stand for the respective lengths of seeds, salt and digest.
These values have been specified in [1, Table 2].

Of course, one can achieve even smaller signature sizes by increasing s, at the cost
of larger public keys. We report these in Table 2.

NIST Type Code Params Prot. Params Attack Case pk sig Failure
Cat. n k q s t w Factor (B) (B) Rate

1
Mono

252 126 127 4 244 20 123.84
[18]

41785
5941 0

Mono Case 3 1846 ≈ 10−24

Perm Case 1 1846 ≈ 10−49

3
Mono

400 200 127 4 895 24 197.67
[18]

105174
12768 0

Mono Case 3 4368 ≈ 10−19

Perm Case 1 4368 ≈ 10−63

5
Mono

548 274 127 4 907 34 271.56
[18]

197312
25237 0

Mono Case 3 7769 ≈ 10−14

Perm Case 1 7769 ≈ 10−69

Table 2: Parameter sets for CF-LESS with s = 4. All sizes in bytes (B).

7.3 Advanced Signatures.

It is important to point out that our technique can, in principle, be applied to any
other scheme based on code equivalence. To this end, we report in Table 3 the results
concerning the ring signature scheme presented in [3]; as above, the original value is
included in the top row of each cell. This scheme was built on top of the original
LESS-FM protocol, and therefore did not feature any optimization for representing
matrices, which explains the “-” in this row. Also, the authors in [3] only propose
parameters for the permutation case (to minimize signature size), and for the lowest
security level, roughly equivalent to NIST Category 1. The column r indicates the size
of the ring of users.

It is worth noting that the scheme of [3] already compares extremely well with
the rest of the literature for post-quantum ring signatures, due to the logarithmic
signature size and reasonable computation cost. Thanks to the use of canonical forms,
the scheme is able to beat even isogeny-based protocols such as Calamari [7], which
is quite a remarkable feat. For example, for r = 23, the Calamari scheme yields a
signature size of 5.4 KB, which is more than the 4522 bytes reported above.

40

NIST Type Code Params Attack pk Prot. Params Case sig Failure
Cat. n k q Factor (B) t w r (B) Rate

1 Perm 230 115 127 112.87 11571 233 31

23
- 10761 0

Case 1 4522 ≈ 10−49

26
- 13737 0

Case 1 7498 ≈ 10−49

212
- 19689 0

Case 1 13450 ≈ 10−49

221
- 28617 0

Case 1 22378 ≈ 10−49

Table 3: Parameter sets for ring signatures using canonical forms, and resulting sizes in
bytes (B).

Acknowledgements

The authors wish to thank the anonymous reviewers for their insightful comments and
suggestions which have greatly helped us in improving the paper.

The work of Paolo Santini was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU. The work of Edoardo Persichetti was partially
supported via NSA grant H98230-22-1-0328. The work of Tung Chou was partially
supported by Academia Sinica Grand Challenge Program Project AS-GCP-114-M01.

References

[1] Baldi, M., Barenghi, A., Beckwith, L., Biasse, J.F., Esser, A., Gaj, K., Moha-
jerani, K., Pelosi, G., Persichetti, E., Saarinen, M.J.O., Santini, P., Wallace, R.:
LESS: Linear Equivalence Signature Scheme (2023), https://www.less-project.
com/LESS-2023-08-18.pdf

[2] Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation code equivalence is not
harder than graph isomorphism when hulls are trivial. In: 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT). pp. 2464–2468. IEEE (2019).
https://doi.org/10.1109/ISIT.2019.8849855

[3] Barenghi, A., Biasse, J.F., Ngo, T., Persichetti, E., Santini, P.: Advanced signa-
ture functionalities from the code equivalence problem. International Journal of
Computer Mathematics: Computer Systems Theory 7(2), 112–128 (2022)

[4] Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: LESS-FM: Fine-Tuning
Signatures from the Code Equivalence Problem. In: Post-Quantum Cryptography:
12th International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20–22,
2021, Proceedings 12. pp. 23–43. Springer (2021). https://doi.org/10.1007/978-3-
030-81293-5

[5] Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hard-
ness of the code equivalence problem in cryptography. Advances in Mathematics
of Communications 17(1), 23–55 (2023). https://doi.org/10.3934/amc.2022064

[6] Beullens, W.: Not enough less: An improved algorithm for solving code equiva-
lence problems over Fq. In: Selected Areas in Cryptography: 27th International
Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised

41

https://www.less-project.com/LESS-2023-08-18.pdf
https://www.less-project.com/LESS-2023-08-18.pdf

Selected Papers. pp. 387–403. Springer (2021). https://doi.org/10.1007/978-3-
030-81652-0

[7] Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: International Conference on
the Theory and Application of Cryptology and Information Security. pp. 464–492.
Springer (2020). https://doi.org/10.1007/978-3-030-64834-3

[8] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-Fish: efficient isogeny based
signatures through class group computations. In: International Conference on the
Theory and Application of Cryptology and Information Security. pp. 227–247.
Springer (2019). https://doi.org/10.1007/978-3-030-34578-5

[9] Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is More:
Code-based Signatures Without Syndromes. In: Progress in Cryptology -
AFRICACRYPT 2020: 12th International Conference on Cryptology in Africa,
Cairo, Egypt, July 20–22, 2020, Proceedings 12. pp. 45–65. Springer (2020).
https://doi.org/10.1007/978-3-030-51938-4

[10] Boyar, J., Erfurth, S., Larsen, K.S., Niederhagen, R.: Quotable signatures for
authenticating shared quotes. In: Progress in Cryptology – LATINCRYPT 2023.
pp. 273–292. Springer (2023). https://doi.org/10.1007/978-3-031-44469-2, https:
//arxiv.org/pdf/2212.10963.pdf

[11] D’Alconzo, G., Meneghetti, A., Signorini, E.: Group Factorisation for Smaller
Signatures from Cryptographic Group Actions. Cryptology ePrint Archive, Paper
2024/1510 (2024), https://eprint.iacr.org/2024/1510

[12] De Feo, L., Galbraith, S.: SeaSign: Compact Isogeny Signatures from Class Group
Actions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT
2019. Lecture Notes in Computer Science, vol. 11478, pp. 759–789. Springer
(2019). https://doi.org/10.1007/978-3-030-17659-4

[13] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Advances in Cryptology — CRYPTO’ 86. pp. 186–
194. Springer (1986). https://doi.org/10.1007/3-540-47721-7

[14] FULMAN, J., GOLDSTEIN, L.: Stein’s method and the rank distribution of
random matrices over finite fields. The Annals of Probability 43(3), 1274–1314
(2015). https://doi.org/10.1214/13-AOP889

[15] Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signature
scheme from zero-knowledge proofs with trusted setup. Cryptography 6(1), 5
(2022). https://doi.org/10.3390/cryptography6010005

[16] Leon, J.: Computing automorphism groups of error-correcting codes.
IEEE Transactions on Information Theory 28(3), 496–511 (1982).
https://doi.org/10.1109/TIT.1982.1056498

[17] NIST: Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process (2023), https://csrc.nist.gov/projects/
pqc-dig-sig/standardization/call-for-proposals

[18] Persichetti, E., Santini, P.: A New Formulation of the Linear Equivalence Problem
and Shorter LESS Signatures. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 351–378. Springer (2023)

[19] Sendrier, N.: Finding the permutation between equivalent linear codes: The

42

https://arxiv.org/pdf/2212.10963.pdf
https://arxiv.org/pdf/2212.10963.pdf
https://eprint.iacr.org/2024/1510
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals

support splitting algorithm. IEEE Transactions on Information Theory 46(4),
1193–1203 (2000). https://doi.org/10.1109/18.850662

[20] Sendrier, N., Simos, D.E.: The Hardness of Code Equivalence over Fq and
Its Application to Code-Based Cryptography. In: Post-Quantum Cryptography:
5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013.
Proceedings 5. pp. 203–216. Springer (2013). https://doi.org/10.1007/978-3-642-
38616-9

A Comparison with Other Solvers

In this section, we consider various solvers for the code equivalence problem, and
compare their running time with the one of our algorithm from Section 6.3.

SSA, [19]: this algorithm can efficiently solve PEP when the hull of the considered
codes is small. However, the attack takes exponential time when the hull is large, as
is the case for self-orthogonal codes (i.e. contained in their dual); in such a case, it
has time complexity TSSA = O(qk) = O(2Rn·log2(q)). Thanks to a reduction in [20],
SSA can also be used to solve LEP; however, whenever q ≥ 5, the reduction maps any
code into a self-orthogonal code with dimension k (so, it has time complexity O(qk)).

BOS, [2]: this algorithm reduces PEP to graph isomorphism. While the technique is
efficient for codes whose hull is either trivial or has small dimension, it yields super-
exponential running time TBOS = O(nRn) when self-orthogonal codes are considered.

Leon, Beullens, BBPS, [5,6,16]: each of these algorithms exhibits some peculiar aspects
and may work only in certain regimes. For instance, while Leon’s algorithm works
regardless of q, Beullens’ algorithm is very likely to fail when q is too small. Both of
these algorithms can solve both PEP and LEP, while the BBPS algorithm improves
upon Beullens’ LEP algorithm by exploiting short codewords instead of subcodes. A
precise estimate for the time complexity of each of these algorithms would depend
on several factors which are sometimes hard to take into account. For instance, Leon
requires to find all codewords whose weight is not greater than some value w which
(heuristically) can be set slightly larger than the minimum distance: however, to the
best of our knowledge, a formula to set w a priori is not known. In any case, these three
algorithms follows a common principle, since they do not depend on the hull dimension
and require to find a sufficiently large number of short codewords (or subcodes). For
the sake of simplicity, for these three algorithms we consider the cost of finding a
unique low-weight codeword using Prange’s algorithm1415 Hence, for these algorithms

14The choice of Prange’s ISD is meaningful since, for large finite fields, modern algorithms such as
Lee-Brickell and Stern seem to perform worse.

15Even though this provides only a very broad estimate of the actual time complexity, this allows us to
compare with these algorithms in a simple and concise way. We point out that cryptanalysis is not the focus
of this paper and the aim of this section is merely to show that canonical forms can be a useful tool not only
for the design of cryptographic schemes, but also for the cryptanalysis of the code equivalence problem.

43

we consider a time complexity given by

T = O

(
2τPrange(R,q)

(
1+o(1)

))
where

τPrange(R, q) = h2(R)−
(
1− h−1

q (1−R)
)
· h2

(
R

1− h−1
q (1−R)

)
and hq denotes the q-ary entropy function.

We are now ready to compare the above algorithms with Algorithm 5; to this
end, consider Figure 9. We are considering code equivalence instances for which both
SSA and BOS are no efficient (i.e., PEP with self-orthogonal codes or LEP with
q ≥ 5). Note that SSA and BOS have been omitted from the comparison since their
performance would have not been competitive: BOS runs in time which is super-
exponential in the code length n while SSA is sometimes faster than our algorithm
only if q ≤ 7. We see that, when q is small, our algorithm is significantly slower than
those based on codeword finding. Instead, when q grows, our algorithm becomes much
more competitive and becomes faster then Prange.

We remark that this analysis holds given that efficiently computable canonical
forms are considered. The ones introduced in this paper work whenever q is large
enough, while they may yield a small success probability when q gets lower: this may
make our attack slower. We have not analyzed how these canonical forms work when
q gets lower; we see this, and even the question of whether new canonical forms may
exist, as interesting research perspectives.

Observe that the time complexity of Prange deteriorates quickly. This is due to the
fact that, as q grows, the minimum distance approaches n−k (since random codes meet
the Singleton’s bound with high probability). Hence, there is a unique information set
which would result in a success for Prange’s ISD: this is corroborated by the fact that
h−1
q (1−R)→ 1−R as q grows and τPrange(R, q)→ h2(R). Note that this complexity

coefficient is twice the one which is achieved by our algorithm.

Asymptotic cost of Prange’s ISD. A random code of length n and rate R
has with overwhelming probability minimum distance d = δn, where δ = h−1

q (1− R)
(where hq is the q-ary entropy function). The average number of iterations which are
performed by the algorithm is(

n
k

)(
n−d
k

) =

(
n
Rn

)(
n(1−δ)

Rn

) = 2n·(h2(R)−(1−δ)·h2(R
1−δ))

(
1+o(1)

)
.

The cost of each iteration is that of one Gaussian elimination: this is a polynomial term
so we do not consider it. Then, for the algorithm we assume a complexity coefficient
given by

τPrange(R, q) = h2(R)− (1− δ) · h2
(

R

1− δ

)
.

44

0.1 0.2 0.3 0.4 0.5
0

0.25

0.5

0.75

R

C
o
m
p
le
x
it
y
co
effi

ci
en
t

q = 2

q = 23

q = 26

q = 28

q = 212

Fig. 9: Comparison between the complexity coefficients for Prange (dashed lines) and Algo-
rithm 5 (continuous red line), as a function of the code rate.

B A Lower Bound on the Success Probability of the
Canonical Form for Case 3

We derive a closed form, lower bound for the success probability of the canonical from
Section 4, case 3.

Proposition 11. For A ∈ Fk×(n−k)
q chosen uniformly at random, the canonical form

for case F1 exists with probability at least
∏k−1

i=1 1− im
qn−k , where

m =

(n− k)! if n− k ≤ q,
(n−k)!(

v!
)q(v+1)−(n−k)(

(v+1)!
)n−k−qv if n− k > q,

where v = ⌊(n− k)/q⌋.

Proof. We use ai to indicate the i-th row of A and S(ai) to denote the set of vectors
whose multiset is equal to that of ai. In other words, S(ai) contains all vectors that
one can obtain by permuting the entries of ai. Remember that the canonical form
computation, in this case, does not fail if the multisets of the rows A are all distinct.
We now lower bound this probability with a simple iterative reasoning.

Let us consider a1 and a2 (the first two rows of A): the probability that this pair
of rows is valid is

Pr [{a1,a2} is valid] =
∑

ai∈Fn
q

Pr [a2 is valid | a1] · Pr [a1]

45

=
1

qn−k

∑
ai∈Fn

q

(
1− |S(a1)|

qn−k

)

where Pr [a1] is the probability that the first row is equal to a1 and is equal to q−(n−k)

for each a1 (since A is sampled according to the uniform distribution). Now, let m
such that |S(a1)| ≤ m for each possible a1: we get

Pr [{a1,a2} is valid] ≥
1

qn−k

∑
ai∈Fn

q

(
1− m

qn−k

)
= 1− m

qn−k
.

We now consider a3 and, with analogous reasoning, get that for any valid pair {a1,a2},
a new vector a3 is valid only if it does not belong to S(a1) ∪ S(a2). Using the upper
bound m for both sets, we get that a3 is valid with probability at least 1 − 2m

qn−k . If
we iterate the reasoning up to the k-th row, we obtain the following probability:

k−1∏
i=1

1− im

qn−k
.

Now we just need to derive useful values for m. To this end, we consider that, when
n−k ≥ q, then we can set m = (n−k)!: indeed, |S(a1)| = (n−k)! holds only if a1 has
all distinct entries while, otherwise |S(a1)| contains fewer vectors. When n−k > q, we
can refine the bound by taking into account that each ai must necessarily have some
repeated entries. The proof on how m is derived, in this case, is reported below.

Maximum Number of Permutations for Vectors with Repeated
Entries.

We study the following problem: find the maximal value that |S(a)| can have, when
a is a length-z vector over Fq. Let ℓi denote the number of entries of a with value
equal to xi ∈ Fq (we are writing the field as {x0 = 0, x1 = 1, x2, · · · , xq−1}); note that
it must be

∑q−1
i=0 ℓi = z. The values ℓi allow us to take into account the number of

permutations with repetitions, so that

|S(a)| = z!∏q−1
i=0 ℓi!

=
z!

f(ℓ0, . . . , ℓq−1)
.

Maximizing |S(a)| means minimizing f(ℓ0, . . . , ℓq−1): as we show next, this is achieved
when all values ℓi are balanced, i.e., the difference between any pair of values ℓi, ℓj is
not greater than 1.
Proposition 12. For any (ℓ0, · · · , ℓq−1) ∈ Nq such that

∑q−1
i=0 ℓi = z, it holds that

f(ℓ0, · · · , ℓq−1) ≥ (v!)
q(v+1)−z

((v + 1)!)
z−qv

,

where v =
⌊
z
q

⌋
.

46

Proof. The proof is crucially based on the simple observation that

∀x, y ∈ N, it holds y!x! > (y − 1)!(x+ 1)! if y − x > 1.

Let us consider an arbitrary tuple (ℓ0, · · · , ℓq−1), summing to z, and assume there are
two values ℓj , ℓu such that ℓj − ℓu > 1. Then, there exists a new tuple (ℓ′0, · · · , ℓ′q−1)
such that ℓ′i = ℓi for any i ̸= j, u, ℓ′j = ℓj − 1 and ℓ′u = ℓu +1. First, this configuration
is valid since the sum of all the ℓ′i is still equal to z. Also, because of (B), we have that

f(ℓ0, · · · , ℓq−1)

f(ℓ′0, · · · , ℓ′q−1)
=

∏q−1
i=0 ℓi!∏q−1
i=0 ℓ

′
i!

=
ℓj !ℓu!

ℓ′j !ℓ
′
u!

=
ℓj !ℓu!

(ℓj − 1)!(ℓu + 1)!
> 1.

We can iterate the procedure until we end up with a tuple where, for each pair of
values, the difference is at most 1. This implies that there are only two possible values

in the tuple, v =
⌊
z
q

⌋
and v + 1. Let w denote the number of entries with value v:

since it must be vw+ (q−w)(v+1) = z, we find w = q(v+1)− z. So, the number of
entries with value equal to v + 1 is q − w = z − qv.

It follows that

∀a ∈ Fz
q , |S(a)| ≤

z!(
⌊z/q⌋!

)q(⌊ z
q ⌋+1)−z(

(⌊z/q⌋+ 1)!
)z−q⌊ z

q ⌋
.

47

	Introduction
	Our Contributions
	Paper Organization

	Notation and Preliminaries
	Finite Fields, Vectors and Matrices
	Permutation and Monomial Maps
	Complexity
	Orderings
	Linear Codes

	Notions of Equivalence for Codes
	Equivalence Classes and Canonical Representatives
	Revisiting the Notion of Equivalence

	Efficient Canonical Representatives
	Computing Canonical Representatives
	Failure Probability
	Case 1
	Correctness
	Computational Complexity
	Success Probability

	Case 2
	Computational Complexity
	Success Probability

	Case 3
	Correctness
	Computational Complexity
	Success Probability

	Application to LESS Signatures
	The LESS Sigma Protocol
	The CF-LESS Sigma protocol
	Properties of the CF-LESS Sigma Protocol
	Completeness and Zero-Knowledge
	Special Soundness

	Computational Complexity

	Hardness Analysis and Implications
	Reductions between LEP and CF-LEP
	Existence of solutions to CF-LEP for random codes
	Canonical Forms as a Solver for LEP

	Concrete Instantiations
	Optimal Signature Sizes
	CF-LESS Instances
	Advanced Signatures.

	Comparison with Other Solvers
	A Lower Bound on the Success Probability of the Canonical Form for Case 3

