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Abstract—Recently proposed lattice-based cryptography algo-
rithms can be used to protect the IoT communication against the
threat from quantum computers, but they are computationally
heavy. In particular, polynomial multiplication is one of the
most time-consuming operations in lattice-based cryptography.
To achieve efficient implementation, the Number Theoretic Trans-
form (NTT) algorithm is an ideal choice, but it has certain
limitations on the parameters, which not all lattice-based schemes
can employ directly. Hence, alternative techniques are proposed
to accelerate polynomial multiplication on lattice-based schemes
that cannot utilize the NTT directly. In this paper, we propose
a parallel Toeplitz matrix-vector product (TMVP) version to
accelerate the polynomial multiplication in PQC algorithms
implemented it on a graphics processing unit (GPU). This is the
first time a TMVP parallel version has been proposed and exper-
imented on different GPU cores (i.e., CUDA-cores and Tensor-
cores). The effectiveness of the proposed solution is validated
on Saber (the NIST post-quantum standardization finalist) and
Sable (an improved version of Saber) schemes. Experimental
results show that TMVP-based polynomial convolution using
CUDA-cores fails to exhibit a significant enhancement compared
to the schoolbook CUDA-core method already proposed by
Hafeez et al. 2023. However, when the TMVP technique is applied
to Tensor-cores, it outperformed state-of-the-art implementations.
The proposed Tensor-core approach outperformed the school-
book Tensor-core method by up to 1.21×, and outperformed the
dot-product-instructions method (Lee et al. 2022) by up to 3.63×.
The proposed TMVP Tensor-cores is also faster than the TMVP
CUDA-cores method by 13.76×.

Index Terms—Toeplitz Matrix-vector Product (TMVP), Cryp-
tography, Tensor-cores, CUDA-cores, Post-quantum Cryptogra-
phy, Lattice-based Cryptography, Matrix Multiplication.

I. INTRODUCTION

SECURE communication is essential for protecting sen-
sitive information and preserving privacy. Cryptography

algorithms are the backbone of secure communication sys-
tems, ensuring data confidentiality, integrity, and authenticity.
However, the emergence of quantum computers (QCs) poses
a significant threat to the security provided by the classical
cryptography schemes relying on the hardness of integer
factorization and discrete logarithms. In response to this threat,
the National Institute of Standards and Technology (NIST) [1]
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started a Post-Quantum Cryptography (PQC) standardization
process in 2016. The goal was to identify cryptography al-
gorithms that could resist attacks from classical and quantum
computers in the long term. After a comprehensive evaluation
process, lattice-based algorithms emerged as the most resilient
option for PQC. The standardization process concluded in
2022 with four candidates: one key encapsulation mechanism
(KEM), CRYSTALS-KYBER [2] and three signature schemes
CRYSTALS-Dilithium [3], FALCON [4], and SPHINCS+ [5].

Although using the Kyber algorithm as the primary standard
for Post-Quantum Cryptography (PQC) is a significant step
forward, it provides a framework for future advancements and
improvements in PQC schemes while also reinforcing the im-
portance of security. During the standardization process, non-
traditional parameter choices, such as the LAC and Round 5
[6], were discouraged to mitigate the potential vulnerabilities
that attackers could exploit. This cautious approach ensures
that the security of PQC systems remains robust.

The use of non-constant-time error correction codes in
lattice-based PQC schemes has raised concerns. Error cor-
rection codes play a crucial role in ensuring the accuracy
and dependability of PQC schemes. However, if these codes
are not implemented in a constant-time manner, they can
become potential sources of side-channel attacks. These at-
tacks can compromise the security of the system by exploiting
information leaked through timing or power consumption.
Therefore, it is essential to evaluate the use of error cor-
rection codes in PQC schemes with care. Researchers and
developers must continually strive to enhance existing PQC
schemes while maintaining their security. This ongoing effort
includes exploring alternative parameter choices, optimizing
error correction codes, and addressing potential side-channel
vulnerabilities, etc. For example, Scabbard (a suite of KEM
schemes proposed by Mera et al. [7]) improves on Saber [8],
the NIST PQC finalist. SMAUG which is a candidate scheme
submitted to the ongoing Korean PQC standardization [9] has
been heavily influenced by the design elements of Scabbard.
Similarly, Liang et al. [10] proposed an enhanced version of
the NTRU KEM [11], which was also a finalist in the NIST
standardization. Cho et al. [12] improved the key size and
bit-security of the first-round pqsigRM signature scheme.

However, most of the lattice-based PQC schemes involve
polynomial multiplication over polynomials with a high de-
gree, making them computationally expensive. To achieve a
better performance, some schemes like Kyber are designed
to have a special ring structure that can utilize the Number
Theoretic Transform (NTT) [13] for computing polynomial
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multiplication. On the other hand, some other lattice-based
schemes (e.g., Saber) do not have a ring structure that is
NTT-friendly. As such, careful consideration should be given
while implementing lattice-based schemes to ensure optimal
performance. Substantial efforts have been directed toward
enhancing the performance of polynomial multiplication for
non-NTT-friendly schemes. For instance, classical techniques
like Toom-Cook [14] and Karatsuba [15] are commonly used
to achieve this. Recently the Toeplitz matrix-vector product
(TMVP) emerged as an alternative method, and its effec-
tiveness was demonstrated in recent works [16], [17]. These
studies showed that the TMVP yields promising results in
terms of performance and efficiency when compared to the
Toom-Cook and Karatsuba methods. However, prior work
was only focused on serial versions of the TMVP; it is still
unclear if such an approach can perform equally well on a
parallel architecture like the graphics processing unit (GPU).
This motivated us to investigate the effectiveness of a parallel
TMVP to speed up polynomial multiplication further.

Paksoy and Cenk [16], [17] proposed several techniques
that target ARM Cortex-M4 microcontrollers to efficiently
utilize the TMVP technique for Saber and NTRU. However,
it is unclear if the TMVP techniques can be applied to a
parallel architecture like the GPU or how to optimize per-
formance on such architectures. Similarly, efforts have been
made to improve the performance of lattice-based schemes on
several alternative platforms such as the latest Intel AVX [18]
instructions, hardware accelerators in a Field Programmable
Gate Array (FPGA) [19], [20], reduced instruction set com-
puter (RISC) [21] or an application-specific integrated circuit
(ASIC) [22] platform. Besides that, massively parallel archi-
tectures like the GPU have attracted attention from the research
community. For instance, Gupta et al. [23] presented early
research on the feasibility of parallelizing PQC on the GPU,
while Lee et al. [24], [25] demonstrated the effectiveness of
using advanced GPU features like Tensor-cores and the dot-
product to speed up polynomial multiplication.

In this paper, our primary aim is to investigate the feasibility
of parallelizing TMVP to analyze its performance on the GPU
platform. We also explore the possibility of utilizing Tensor-
cores in conjunction with the TMVP to further improve the
performance of polynomial multiplication.

1) For the first time, TMVP-based polynomial convolu-
tion on Tensor-cores in a GPU is presented. Parallel
implementation of TMVP on a GPU presents certain
challenges, including memory access patterns, shared
memory limitations, and the choice of parallelization
methods in order to optimally leverage the capability
of GPU architecture. To meet these challenges, we pre-
arrange the matrix following the reduction pattern of the
selected schemes (Saber and Sable), and then apply the
TMVP to break the matrix in a manner that maximizes
parallelism. The experimental results on a RTX 3060Ti
GPU demonstrate that our proposed TMVP-based poly-
nomial convolution using Tensor-cores yields throughput
that is 1.21× and 3.63× higher than the [26] and [25],
respectively.

2) In addition to Tensor-cores, the proposed TMVP-

based polynomial convolution was also implemented on
CUDA-cores. The findings reveal that the TMVP using
Tensor-cores outperformed its CUDA-cores counterpart
by 6.2× in terms of throughput. This is because there
is insufficient shared memory to hold multiple copies
of vectors in the CUDA-cores TMVP implementation.
In addition, many read/write operations are required
in the CUDA-cores TMVP implementation, limiting its
performance. This shows that the TMVP technique may
not always yield good performance in a parallel archi-
tecture due to limitations in memory. In contrast, the
Tensor-cores version does not use any shared memory
because matrix multiplication is performed directly on
the registers, thus eliminating most of the memory issues
found in the CUDA-cores version.

3) The Saber [8] and Sable [7] KEMs were evaluated
using the proposed techniques. Our Tensor-cores im-
plementation achieved 424,437 encryptions per second
and 6,259,781 decryptions per second implementing the
Saber key exchange (KEX) on an RTX 3060Ti GPU,
which is 2.58× and 6.83× faster, respectively, than
using standard CUDA-cores. The highest throughput
achieved by Saber KEM was 267,720 encapsulations
per second and 294,020 decapsulations per second. For
the Sable KEX, the throughput achieved by the TMVP-
based Tensor-cores implementation was 457,155 encryp-
tions per second and 5,621,925 decryptions per second,
which is 2.67× and 6.22× faster, respectively, than
on standard CUDA-cores. The highest throughput of
the Sable KEM was 250,062 encapsulations per second
and 295,061 decapsulations per second. The Tensor-core
based TMVP implementation for Sable demonstrated
satisfactory performance, wherein the encapsulation and
decapsulation throughput were 4.7% and 4.97% faster
than [26].

4) The source code for the proposed TMVP polynomial
convolution is is publicly available https://github.com/
Muhammad-Asfand/asfand-tmvp. We sincerely hope
that this will enable researchers to easily replicate our
findings. Also, we believe that it can encourage further
studies and research on TMVP-based polynomial con-
volution on GPUs and other parallel accelerators.

This paper is organized as follows. Section II discusses
background information for the proposed study and reviews
related work in the literature. In Section III, we discuss in
detail an implementation of the TMVP using CUDA-cores and
Tensor-cores. In Section IV, we discuss our experiment results.
Finally, Section V concludes the paper.

II. PRELIMINARIES

In this section, an overview of TMVP and its variants are
presented, followed by its applications to reduce the com-
plexity of polynomial convolution for PQC. Two target PQC
schemes that can utilize TMVP for improved performance
are presented next. The first scheme (Saber) is one of the
finalists in the NIST PQC standardization process, and the
second scheme (Sable) is the improved version of Saber.

https://github.com/Muhammad-Asfand/asfand-tmvp
https://github.com/Muhammad-Asfand/asfand-tmvp
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A. The Toeplitz matrix-vector product technique

The TMVP is a technique used in various cryptographic
applications to perform multiplication. It was first introduced
by Fan and Hasan [27] for multiplying binary extension fields.
Since then, many proposals have been suggested by Hasan
et al. [28], [29]. Similarly, in [30] and [31], the TMVP was
used for speeding up the residue multiplication modulo in
integer modular multiplication. It can also be used to calculate
the product of two polynomials modulo a polynomial [32].
The following matrix T is an example of a 5 × 5 Toeplitz
matrix where the elements along a line parallel to the principal
diagonal possess a constant value.

T =


t0 t′1 t′2 t′3 t′4
t1 t0 t′1 t′2 t′3
t2 t1 t0 t′1 t′2
t3 t2 t1 t0 t′1
t4 t3 t2 t1 t0

 (1)

To determine an n × n Toeplitz matrix, only 2n − 1
elements are needed. This means that calculating the sum of
two Toeplitz matrices can be done with just 2n − 1 entry
additions, resulting in another Toeplitz matrix. Additionally,
all submatrices of a Toeplitz matrix are also Toeplitz matrices.
These characteristics make it possible to efficiently compute
Toeplitz matrix-vector multiplication using TMVP formulas
rather than the conventional schoolbook method.

1) TMVP Formulas: Various split formulas are available to
efficiently compute TMVPs (such as two-way, three-way, and
four-way, given in [30], [16], [17]. We use X to denote an
n× n Toeplitz matrix and Y to denote a vector of length n.

Two-way TMVP (TMVP-2): We can define n×n Toeplitz
matrix T using three matrix vectors, (X0, X1, X2) and an n×1
column vector Y = (Y0, Y1). Toeplitz matrix T consists of
three (n/2) × (n/2) Toeplitz matrices, namely P0, P1, and
P2. Equation 2 is the TMVP-2 using three (n/2) × (n/2)
TMVPs [33].

T = X.Y =

(
X1 X0

X2 X1

)(
Y0

Y1

)
=

(
P0 + P1

P0 − P2

)
, (2)

where P0, P1 and P2 represents three TMVPs:

P0 = X1(Y0 + Y1),
P1 = (X0 −X1)Y1,
P2 = (X1 −X2)Y0.

Three-way TMVP (TMVP-3): Like TMVP-2, TMVP-3
allows us to calculate an n dimensional TMVP using six n/3-
dimensional TMVPs. Consider the n× 1 column vector Y =
(Y0, Y1, Y2) and matrix-vector X = (X0, X1, X2, X3, X4),
which is an n×n Toeplitz matrix. Here, Yi (where i = 0, 1, 2)
is an (n/3)×1 column vector, and Xi (where i = 0, 1, 2, 3, 4)
is an (n/3)×(n/3) Toeplitz matrix [33]. By rewriting product
P = XY , we get equation 3:

X.Y =

X2 X1 X0

X3 X2 X1

X4 X3 X2

Y0

Y1

Y2

 =

P0 + P3 + P4

P1 − P3 + P5

P2 − P4 + P5

 , (3)

where P0, P1, P2, P3, P4 and P5 represents six TMVPs:

P0 = (X0 +X1 +X2)Y2,
P1 = (X1 +X2 +X3)Y1,
P2 = (X2 +X3 +X4)Y0,
P3 = X1(Y1 − Y2),
P4 = X2(Y0 − Y2),
P5 = X3(Y0 − Y1).

Four-way TMVP (TMVP-4): To compute an n-
dimensional TMVP, a TMVP-4 formula was proposed in
[17]. This utilizes a combination of seven n/4-dimensional
TMVPs. Assuming that n is divisible by four, we take the
n×1 column vector Y = (Y0, Y1, Y2, Y3) and a matrix-vector
X = (X0, X1, X2, X3, X4, X5, X6), which represents an
n×n Toeplitz matrix. In this case, Yi (where i = 0, 1, 2, 4) is
an n/4×1 column vector, and Xi (where i = 0, 1, 2, 3, 4, 5, 6)
is an n/4×n/4 Toeplitz matrix. We divide the Toeplitz matrix
and the vector, then compute the product as in equation 4:

X.Y =


X3 X2 X1 X0

X4 X3 X2 X1

X5 X4 X3 X2

X6 X5 X4 X3



Y0

Y1

Y2

Y3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 , (4)

where P0, P1, P2, P3, P4, P5 and P6 represents six TMVPs:

P0 = 1
12 (12X6 + 4X5 − 15X4 + 5X3 + 3X2 −X1)Y0,

P1 = 1
12 (12X5+8X4−7X3−2X2+X1)(Y0+Y1+Y2+Y3),

P2 = 1
24 (−12X5+16X4−X3−4X2+X1)(Y0−Y1+Y2−Y3),

P3 = 1
24 (−6X5−X4+7X3+X2−X1)(Y0−2Y1+4Y2−8Y3),

P4 = 1
120 (6X5−5X4−5X3+5X2−X1)(Y0−2Y1+4Y2−8Y3),

P5 = 1
120 (4X5 − 5X3 +X1)(Y0 + 3Y1 + 9Y2 + 27Y3),

P6 = (−12X5 + 4X4 + 15X3 − 5X2 − 3X1 +A0)Y3,

Table I presents the arithmetic complexity of the TMVP-2,
TMVP-3, and TMVP-4 formulas. The expressions in the table
exhibit a recursive nature and reflect the number of operations
required to compute the TMVP for a given size n. These
expressions are defined in terms of the operations involved
in smaller sizes. It is worth noting that, despite TMVP-4
breaking down the n into a smaller matrix compared to the
others, TMVP-2 has the smallest recursive term coefficient
(i.e., 3) among them, hence exhibiting the lowest arithmetic
complexity of the three methods.

TABLE I
ARITHMETIC COMPLEXITY OF TMVP FORMULAS

TMVP’s Arithmetic Complexity

TMVP-2 MTMV P−2(n) = 3M(n/2) + 3n− 1
TMVP-3 MTMV P−3(n) = 6M(n/3) + 5n− 1
TMVP-4 MTMV P−4(n) = 7M(n/4) + 11n− 1

2) TMVP vs Toom-Cook: TMVP and Toom-Cook-based
multiplications are specialized techniques for optimizing poly-
nomial multiplications and exhibit notable similarities. Nev-
ertheless, the selection of an appropriate method depends
heavily on the distinct computational context and hardware
prerequisites. When considering the utilization of GPUs, it is
recommended to opt for TMVP due to the following reasons.

Parallelism: TMVP allows for a high level of parallelism,
which is a key optimization strategy on GPUs. Different parts
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of the vector can be multiplied in parallel with various sliding
windows of the matrix, increasing function throughput.

Memory Bandwidth: TMVP can lead to reduced memory
bandwidth requirements compared to Toom-Cook-based poly-
nomial multiplications. Toom-Cook algorithms involve more
complex operations and require more memory transfers, which
cause a bottleneck on GPUs, especially for large polynomials.

Data Locality: Toeplitz matrices exhibit a discernible pat-
tern where each diagonal that descends from left to right
maintains a constant value. This structure efficiently manages
memory coherence when storing and manipulating matrices,
particularly in GPUs that support coalesced memory access.

B. Saber and Sable
Saber is a lattice-based KEM that relies on module lat-

tices. Saber stands out for its unique feature of polynomial
convolution without the use of NTT, which can be daunting
for lattice-based cryptography. This approach of Saber has
inspired other cryptography schemes like [7], [34] to adopt
similar methods. It was named a finalist in the third round
of the NIST PQC standardization competition, indicating
its potential as a leading solution in cryptographic security.
The strength of Saber’s security relies on the conjectural
hardness of the Module Learning with Rounding (MLWR)
problem [35]. The security level of the target schemes can
be configured by specifying dimension ℓ of the module with
three distinct values: ℓ = 2 (LightSaber), ℓ = 3 (Saber), and
ℓ = 4 (FireSaber), which correspond to security levels 1,
level 3, and level 5, respectively. Note that in this paper,
we focus on our implementation of Saber for ℓ=3, extending
it to support different ℓ levels is straightforward. Saber’s
arithmetic operations are Rq = R213 = Z213 [x]/⟨x256+1⟩ and
Rp = R210 = Z210 [x]/⟨x256 +1⟩. As with many lattice-based
cryptosystems defined on polynomial rings, the efficiency of
this scheme is heavily impacted by multiplication in these
rings. However, it is important to note that the rings Rq and
Rp utilized by Saber are not directly compatible with the NTT,
which is currently the most efficient polynomial multiplication
algorithm known.

Mera et al. [7] introduced the Sable scheme in Scabbard
as an improved version of Saber based on a hard lattice
problem known as learning with rounding (LWR). In such
schemes, errors are implicitly created through rounding instead
of explicit addition, as seen in LWE. Since errors are crucial
in determining the security of lattice-based schemes, proper
estimation is essential to avoid overestimation or underesti-
mation. By accurately estimating errors, Mera et al. [7] were
able to enhance Saber’s parameters without compromising its
security. This resulted in reduced key sizes and bandwidth,
and this improved version of Saber is known as Sable. The
security level of Sable can be configured in the same way
as Saber. For instance, ℓ = 2 (LightSable), ℓ = 3 (Sable),
and ℓ = 4 (FireSable), correspond to security levels 1, 3,
and 5, respectively. The Saber and Sable KEMs consist of
three algorithms: key generation (Algorithm 1), encapsulation
(Algorithm 2), and decapsulation (Algorithm 3). The values
of different parameters used in the designing of both KEMs
are given in Table II.

Algorithm 1 KEM Key Genreation
Data: nil
Result PK = (seedA, b), SK = (s, H(PK), r)

1: seedA ← U({0, 1}256)
2: r ← U(0, 1)256
3: A← genL×L

N (XOF(seedA)) ∈ (RN
q )L×L

4: s ← βn((RN
q )L)

5: b = bits(A.s + h1, ϵq, ϵp) ∈ (RN
q )L

// Rounding
6: PK← (seedA,b)r ←$ {0, 1}256
7: SK← (s, H(PK),r)
8: return
9: PK= (seedA,b), SK = (s,H(PK), r)

Algorithm 2 KEM Encapsulation
Data: PK = (seedA, b)
Result CT = (c′, b′), key = K

1: m′ ←$ {0, 1}
256

2: m = arrange msg(m′)
3: (K ′, r′)← G(m||H(PK))
4: r′ ← U({0, 1}256)
5: A ← genL×L

N (XOF(seedA)) ∈ (RN
q )L×L

6: s′ ← βη((RN
q )L)

7: b′ =bits(AT .s′ + h1, ϵq, ϵp)
// Rounding

8: u′ = bT .(s′ mod p) ∈ RN
p

9: c′ =bits((u′ + h3 − 2ϵp−Bm), ϵp, (ϵt +B)) ∈ RN
2Bt ▷

HelpDecode
10: K ← H(K ′, H(c′))
11: return

CT = (c′, b′),key = K

Algorithm 1 depicts the generation of a public key (PK)
and a private key (SK) using security parameter N. Algorithm
2 takes the PK as input and produces ciphertext (CT) and a
shared secret key (K). Algorithm 3 performs decapsulation,
taking the PK, CT, and SK as input and returning the shared
secret key as output. In Algorithms 1 to 3, H and G represent
hash functions. The constant polynomials h1, h2, and h3
have coefficients of 2(ϵq−ϵp−1), (2(ϵq−ϵp−1) + 2(ϵq−B−1) -
2(ϵq−ϵt−1)) and 2(ϵq−ϵp−1), respectively.

C. Related work

In recent work, Lee et al. [25] introduced a novel approach
to conduct polynomial convolution using dot-product instruc-

TABLE II
PARAMETERS OF SABER AND SABLE

Parameters ℓ N p q Moduli Key Sizes

Saber 3 256 2048 8192
ϵq :13
ϵp:10
ϵt:4

PK: 992
SK: 1440
CT: 1088

Sable 3 256 512 2048
ϵq : 11
ϵp:9
ϵt:4

PK: 1280
SK: 1728
CT: 1304
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Algorithm 3 KEM Decapsulation
Data: PK = (seedA, b), SK = (s,H(PK),r), CT = (c′,b′)
Result key = K

1: u =b′.(s mod p) ∈ RN
p

2: m′
1 = bits ((u+ h2 − 2ϵp−ϵt−Bm), ϵp, B) ∈ RN

2B ▷
Decode

3: m1 = original msg(m′
1)

4: m2 = arrange msg(m1)
5: (K ′

1, r
′
1)← G(m2||H(pk))

6: A ← genL×L
N (XOF(seedA)) ∈ (RN

q )L×L

7: s′1 ← βη((RN
q )L)

8: b′1 = bits (AT .s′1 + h1, ϵq, ϵp)
// Rounding

9: u′
1 = bT .(s′1 mod p) ∈ RN

p

10: c′1 =bits((u′
1 + h3 − 2ϵp−Bm), ϵp, (ϵt +B)) ∈ RN

2Bt ▷
HelpDecode

11: if c′ = c′1 then
12: return K = H(K ′

1, H(c′))
13: else
14: return K = H(r,H(c′))
15: end if

tions. This method enables execution of MULTIPLY-and-ADD
instructions in a single clock cycle, resulting in significantly
improved throughput when compared to traditional 32-bit
integer units. In other work, Lee et al. [24] utilized Tensor-
cores in a GPU to compute polynomial convolution, which
showed greater efficiency and speed compared to CUDA-
cores. Following this, Hafeez et al. [26] introduced two
techniques to address gaps in previous research. First, they
extended the work of See et al. [36] on a GPU and proposed
a polynomial restructuring technique that enables multiple
polynomials with different public keys to be processed in a
single communication cycle. Secondly, they introduce a new
method to handle the reduction patterns that are not suitable
for parallel implementation. Furthermore, Gao et al. [37], and
Lee and Hwang [38] explored the use of the NTT on a GPU
for implementing NewHope and Kyber, respectively. These
studies revealed the potential for GPUs to effectively handle
polynomial multiplication, which is crucial in many lattice-
based cryptography schemes.

Other researchers have investigated GPU-based implemen-
tations of various cryptography schemes. For instance, Sun
et al. [39] demonstrated an efficient parallel implementation
of SPHINCS on a GPU, while Dai et al. [40] optimized
the NTRU modular lattice signature scheme for parallel
polynomial multiplication on a GPU. Their optimization is
particularly important due to the scheme’s reliance on large
vectors, which can be efficiently processed in parallel on a
GPU. Finally, Gupta et al. [23] analyzed the batch mode and
single mode parallelism available in a GPU and evaluated
implementation in different PQC schemes. The findings of
these studies shed light on the potential from utilizing a
GPU to provide efficient and scalable solutions for various
cryptographic applications.

III. PROPOSED PARALLEL TMVP TECHNIQUE

In this section, we describe how to parallelize the TMVP-
2 formula and its implementation for Saber and Sable, using
Tensor-cores and CUDA-cores.

A. Polynomial convolution using TMVP-2

Saber and Sable schemes both employ an efficient reduction
pattern that resembles a nega-cyclic convolution. To facilitate
matrix-vector multiplication, polynomial A is first transformed
into the nega-cyclic matrix in equation 5 with dimensions of
256×256. Polynomial B is structured into the column-major
matrix in equation 6.

A =



a0 −an−1 −an−2 . . . −a3 −a2 −a1
a1 a0 −an−1 . . . −a4 −a3 −a2
a2 a1 a0 . . . −a5 −a4 −a3
...

...
...

. . .
...

...
...

an−3 an−4 an−4 . . . a0 −an−1 −an−2

an−2 an−3 an−4 . . . a1 a0 −an−1

an−1 an−2 an−3 . . . a2 a1 a0


(5)

B =



b0
b1
b2
...

bn−3

bn−2

bn−1


(6)

Figures 1, 2, and 3 show polynomial convolution using
TMVP-2, TMVP-3, and TMVP-4 respectively. We opted for
TMVP-2 for polynomial convolution in Saber and Sable for
the following reasons.

1) TMVP-2 break the 256×256 matrix into three non-
identical 128×128 matrices as shown in Figure 1. Sim-
ilarly, TMVP-3 and TMVP-4, respectively, produce five
and seven non-identical matrices at 86×86 and 64×64
as depicted in Figure 2 and 3. The matrix size of TMVP-
2 is bigger than the other two, so it provides more
parallelism than TMVP-3 and TMVP-4.

2) Additionally, TMVP-2 performs only the three mul-
tiplication in equation 2 to compute the polynomial
convolution (see Figure 1), while TMVP-3 and TMVP-
4 required six (equation 3) and seven (equation 4)
multiplications, respectively.

3) TMVP-3 is unsuitable for use in Saber and Sable be-
cause the polynomial convolution in these schemes has
a length of 256, which is not divisible by 3. Hence,
we have to create a 258×258 matrix (divisible by 3)
and pad the unused rows and columns with zeroes.
After padding, we can perform polynomial convolution
using TMVP-3, but there will be some unused rows and
columns that waste computational bandwidth.
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Fig. 1. Polynomial convolution using TMVP-2
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Fig. 2. Polynomial convolution using TMVP-3

B. TMVP-2 Implementation using CUDA-cores

For most of the lattice-based cryptography schemes, poly-
nomial convolution is the most time-consuming task. This
particular task entails the manipulation of two distinct poly-
nomials: polynomial a, which typically represents a public or
a private key and polynomial b consisting of random elements
with small coefficients. In the Sable cryptography algorithms,
polynomial b is ternary, i.e., composed of elements b =
{−1, 0, 1}.

However, polynomial convolution in Saber and Sable is
essentially the same, so we present the proposed TMVP im-
plementation for both schemes in Algorithm 4. Note that this
algorithm describes the basic implementation of the TMVP for
polynomial convolution using CUDA-cores commonly found
in a GPU. In the next subsection, we present the more
advanced technique proposed in this work, which utilizes
the Tensor-cores. Referring to Algorithm 4, line 1 rearranges
polynomial A into a nega-cyclic pattern. Following this, line
2 pre-processes polynomials A and B for the three TMVP
multiplications, as given in equation 2. Next, line 3 computes
the matrix-vector product using CUDA-cores, as given in
Algorithm 7. Finally, line 7 post-processes the products and
calculates the final result.

Algorithm 5 is used to convert the polynomial A into a nega-
cyclic pattern. The input is read by N threads and N blocks.
Line 3 yields the difference between threads and blocks to
arrange the elements into a nega-cyclic pattern. In line 5, if
(tid − bid) is greater than the (N-1), the arranged elements
in the rows are converted to negative form. Otherwise, the
elements are arranged without conversion.

In reference to Algorithm 6, it pre-processes the polynomial
A and B into the required matrices and vectors to perform three
TMVP multiplications in CUDA-cores. N/2 threads and N/2
blocks are launched in parallel. Lines 4 and 5 rearrange the

P0

P2

P5

X3
64x64 Y0X2

64x64
X1

64x64
P1

P4

P6

X0
64x64

X4
64x64

X3
64x64

X2
64x64

X1
64x64

X5
64x64

X4
64x64

X3
64x64

X2
64x64

X6
64x64

X5
64x64

X4
64x64

X3
64x64

Y1

Y2

Y3

P3

Fig. 3. Polynomial convolution using TMVP-4

Algorithm 4 CUDA-cores implementation of polynomial con-
volution in parallel on a GPU
Input: Polynomial A, polynomial B, modulus p
Output: 2M×M Matrix c holds the nega-cyclic convolution
of polynomial a with polynomial b.

1: ParNegCyc< N,N > (fp16 A,A) ▷ Alg.5
2: PreArr< N/2, N/2 > (fp16 B,B) ▷ Alg.6
3: CUDACores< N,N > (fp16 A, fp16 B, fp32 C) ▷

Alg.7
4: PostProcess< N/2, N/2 > (c, fp32 C) ▷ Alg.8

elements for the first multiplication and move the elements into
a1 and b1 in U16 format. Similarly, lines 6 and 7 rearrange
the elements for the second multiplication, and then lines 8
and 9 rearrange the elements for the third and store the output
in a2, b2, and in a3, b3 in U16 format, respectively.

After pre-processing, Algorithm 7 describes the proposed
method to execute the three TMVP multiplications. This is
a crucial step in achieving accurate and efficient results in
matrix-vector products. To compute the matrix-vector product,
N threads are launched in parallel, ensuring more parallelism is
exploited. It is worth noting that the three input matrices used
in this process are denoted a1, a2, and a3, while the vectors are
denoted b1, b2, and b3. In lines 3-6 of Algorithm 7, elements
of a1 and b1 are loaded into the shared memory to compute
the product. Loading elements into shared memory is crucial
for efficient implementation. Line 8 initializes the register to
accumulate the product, while lines 9-11 compute the matrix-
vector product. Finally, at line 12, the result is moved from
the register to p1, indicating that one TMVP multiplication
is completed. The second and third multiplications are done
in lines 14–23 and 25–34, respectively, following a similar
approach.

It is worth noting that we can compute the matrix-vector
product by launching different numbers of threads (e.g., 128,
256, 512, and 1024) to increase the parallelism. However,
there is very little increase in throughput because we cannot
make multiple copies of vectors due to the limited amount
of shared memory. The available shared memory in the RTX
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Algorithm 5 ParNegCyc: arrange polynomial A into a nega-
cyclic pattern
Input: N-length polynomial in
Output: Matrix out of N×N dimensions, with a polynomial
arranged in a nega-cyclic pattern.

1: tid = thread ID
2: bid = block ID
3: idx = tid− bid

// Launch N blocks and N threads in
// parallel

4: if tid < N then
5: if idx > (N − 1) then
6: out[bid+ tid×N ] = in[(idx)%N ] × (−1)
7: else
8: out[bid+ tid×N ] = in[(idx)%N ]
9: end if

10: else
11: out[bid+ tid×N ] = 0
12: end if

Algorithm 6 PreArr: Pre-arrangements of elements for matrix-
vector product.
Input: N × N -length polynomial in1 and N -length polyno-
mial in2

Output: Matrix a1, a2, a3 and vector b1, b2, b3 in U16 format
1: tid = thread ID
2: bid = block ID

// Launch N/2 blocks and N/2 threads in
// parallel

3: if tid < N then
4: a1[bid×N/2 + tid] = in1[bid×N/2 + tid]
5: b1[tid] = in2[tid] + in2[N/2 + tid]
6: a2[bid×N/2+ tid] = in1[bid×N/2+ (N ×N/4)+

tid]− in1[bid×N/2 + tid]
7: b2[tid] = in2[N/2 + tid]
8: a3[bid×N/2+tid] = in1[bid×N/2+tid]+in1[bid×

N/2 + (N ×N/2) + tid]
9: b3[tid] = in2[tid]

10: else
11: a1, a2, a3[bid×N/2 + tid] = 0
12: b1, b2, b3[tid] = 0
13: end if

3060Ti GPU is 48KB, but each element in the matrix and
vector is represented using 16 bits (two bytes). The number
of elements for both matrix and vector is 128×128=16384.
The total number of elements combined in both matrix and
vector is 16,384×2=32,768. So, the total memory required by
both matrix and vector is 32,768×2=65,536 bytes (64KB),
which exceeds the available shared memory of 48KB (49,152
bytes) on the RTX 3060Ti GPU. Therefore, lines 10, 21, and
32 perform the modulus operation to find the exact element on
the vector side. The modulus value for 128, 256, 512, and 1024
are 1,2,4 and 8, respectively. Nevertheless, it is imperative to
note that this operation hinders the multiplication process and
ultimately decreases throughput.

Algorithm 7 Polynomial multiplication of the n/2-dimensional
TMVP using 256 threads
Input: N/2 × N/2−length Matrix a1, a2, a3 and N−length
vector b1, b2 and b3
Output: N−length vectors, p1, p2, and p3

1: tid = thread ID
2: bid = block ID

// Copy elements into shared memory for
1st TMVP p1 in parallel

3: for k from 0 to N/4 do
4: a shared[tid+ k × (N)] = a1[tid+ k × (N)]
5: end for
6: b shared[tidx] = b1[tidx]
7: syncthreads() ▷ Synchronize all the threads

// Accumulate each column in parallel
with N threads

8: sum1 = 0 ▷ Use register to accumulate
9: for i from 0 to N/4 do

10: sum1 += a shared[tid × (N/4) + i] ×
b shared[(tid%2)× (N/4) + i]

11: end for
12: p1[bid+ tid] = sum1
13: syncthreads() ▷ Synchronize all the threads

// Copy elements into shared memory for
2nd TMVP p2 in parallel

14: for k from 0 to N/4 do
15: a shared[tid+ k × (N)] = a2[tid+ k × (N)]
16: end for
17: b shared[tidx] = b2[tidx]
18: syncthreads()
19: sum2 = 0
20: for i from 0 to N/4 do
21: sum2 += a shared[tid × (N/4) + i] ×

b shared[(tid%2)× (N/4) + i]
22: end for
23: p2[bid+ tid] = sum2
24: syncthreads() ▷ Synchronize all the threads

// Copy elements into shared memory for
3rd TMVP p3 in parallel

25: for k from 0 to N/4 do
26: a shared[tid+ k × (N)] = a3[tid+ k × (N)]
27: end for
28: b shared[tidx] = b3[tidx]
29: syncthreads()
30: sum3 = 0
31: for i from 0 to N/4 do
32: sum3 += a shared[tid × (N/4) + i] ×

b shared[(tid%2)× (N/4) + i]
33: end for
34: p3[bid+ tid] = sum3

Moreover, the shared memory restriction mandates that
we can only load into shared memory the elements of one
multiplication at a time, preventing us from performing three
multiplications in parallel. This limits to performing one
multiplication at a time. As a result, this factor adds another
drawback to the implementation of TMVP in CUDA-cores,
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Algorithm 8 PostProcess: Parallel algorithm to process the
polynomial coefficients via three N-dimensional TMVPs and
modulo p

Input: N−length vectors, p1, p2 and p3
Output: Matrix out of N -length degree, with elements in U16
format and modulo p

1: tid = thread ID
2: bid = block ID

// Launching N threads at maximum
3: if tid < N then
4: out[bid+tid]+ = (p1[bid+(tid×2)]+p1[bid+(tid×

2)+ 1]+ p2[bid+(tid× 2)] + p2[bid+(tid× 2)+ 1])%p
5: out[bid+tid]+ = (p1[bid+(tid×2)]+p1[bid+(tid×

2)+ 1]− p3[bid+(tid× 2)]− p3[bid+(tid× 2)+ 1])%p
6: else
7: out[bid+ tid] = 0
8: end if

which significantly decreases throughput. However, if a GPU
increases shared memory in the future, it could be possible
to overcome these limitations. With more shared memory, we
could potentially have access to more data, which helps to
store multiple copies of vectors and would allow us to perform
three multiplication in parallel. This, in turn, would lead to
faster processing and improved overall performance.

After computing the matrix-vector product, we need to do
some post-processing to get the final result. In Algorithm 8,
input polynomials are read by N/2 threads in parallel. Lines 4
and 5 show the post-processing steps given in equation 2 and
we then perform the modulo p to get the final result.

C. TMVP-2 implementation using Tensor-cores

The implementation of TMVP on CUDA-cores can be
improved by utilizing Tensor-cores, the technique for which
is presented in Algorithm 9. Lines 1, 2, and 3 in Algorithm
9 calculate the required numbers of threads and blocks to
perform multiplication in Tensor-cores. Line 4 rearranges
polynomial A into the same nega-cyclic pattern discussed in
Section III-A and described in Algorithm 5. After this, line
5 pre-processes polynomials A and B for the three TMVP
multiplications in equation 2.

The arrangement of matrices and vectors is described in
Algorithm 10. Similarly, line 6 executes Algorithm 11, which
computes the matrix-vector product using Tensor-cores. Fi-
nally, line 7 post-processes the products and calculates the final
result. Note that although the pre-processing steps for CUDA-
cores (algorithms 5 and 6) and Tensor-cores (algorithms 5 and
10) are similar, the format of the output from Algorithms 6
and 10 differs. In CUDA-cores, the output is the same U16
format, whereas in Tensor-cores, the format changes to FP16.

Algorithm 11 shows the Tensor-cores polynomial convolu-
tion that computes all three multiplications in TMVP form.
The matrix multiplication in Tensor-cores is performed as
16×16 having 32 threads in a warp. For larger matrices,
multiple warps can be used to compute separate portions of the
matrix. The results are then aggregated repeatedly to produce
the final results. For example, to multiply a 32×32 matrix,

Algorithm 9 Tensor-cores implementation of polynomial con-
volution in parallel on the GPU
Input: Polynomial A, polynomial B, modulus p||q
Output: 2M×M Matrix c holds the nega-cyclic convolution
of polynomial a with polynomial b.

// Calculate total number of threads
// required

1: threads tot = 32× 2× (N/32)2

// Calc. number of blocks
2: tc blocks = threads tot/max threads

// Number of thread
3: tc threads = max threads
4: ParNegCyc< N,N > (fp16 A,A) ▷ Alg.5
5: ParU16toFP16< N/2, N/2 > (fp16 B,B) ▷ Alg.10
6: TensorCore< tc blocks, tc threads >

(fp16 A, fp16 B, fp32 C) ▷ Alg.11
7: FP32toU16< N/2, N/2 > (c, fp32 C) ▷ Alg.12

Algorithm 10 ParU16toFP16: Pre-processing elements for the
matrix-vector product converting from U16 to FP16
Input: N × N -length polynomial in1 and N -length polyno-
mial in2

Output: Matrix a1, a2, a3 and vector b1, b2, b3 in FP16 format
1: tid = thread ID
2: bid = block ID

// Launch N/2 blocks and N/2 threads in
// parallel

3: Algorithm 6 steps.

four warps are launched in parallel to perform 16×16 matrix
multiplication as shown in Figure 4. The other four warps
compute the other half of the matrix in parallel. This means
the process requires two iterations to perform 32×32 matrix
multiplication. The final results are stored in Matrix C in
parallel. However, for TMVP polynomial convolution in both
Saber and Sable, (128/16)2 warps and 128/16 iterations are
required to perform the operation.

In Algorithm 11, matrix a1, a2, and a3 are comprised
of public/private keys arranged and pre-processed in nega-
cyclic form, and matrix b1, b2 and b3 represent polynomial
B. All matrices are stored in the global memory. Note that
in this article, we use fragment to denote the temporary
storage used to hold the matrices involved in Tensor-cores
computations. First, Algorithm 11 initializes nine fragments:
three for the 16× 16 sub-matrices, three for sub-vectors, and
three for collecting results of the multiplication of matrices and
vector fragments (lines 1-9). The first multiplication, iterates
through matrix a1 (row-major) and matrix b1 (column-major)
to multiply in parallel (lines 18-22). In each iteration, 16×16
sub-matrices are loaded from matrix a1 and matrix b1 (in
global memory) for concurrent matrix multiplication. (N/32)
Each warp operates on separate regions of matrix a1 and
matrix b1. The collected results are transferred to matrix p1
in global memory (line 24) in column-major form to ensure
correctness. This is repeated for the other two multiplications
(lines 26–40) and the outputs are stored in p2 and p3.
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Algorithm 11 Tensor-cores: TMVP based parallel polynomial
convolutions.
Input: N/2 × N/2−length matrices a1, a2, a3 and
N/2−length vector b1, b2, b3, where N is a multiple of
16.
Output: N/2 × N/2−length matrix, p1, p2, and p3
holds the nega-cyclic convolution of distinct polynomials
(a1, b1), (a2, b2), and (a3, b3).

// 16 × 16 with precision FP16 initializa-
tion of fragment (a1, b1), (a2, b2), & (a3, b3)

1: fragment < a1, 16, 16, 16, half, row major > a1 frag
2: fragment < b1, 16, 16, 16, half, col major > b1 frag
3: fragment < a2, 16, 16, 16, half, row major > a2 frag
4: fragment < b2, 16, 16, 16, half, col major > b2 frag
5: fragment < a3, 16, 16, 16, half, row major > a3 frag
6: fragment < b3, 16, 16, 16, half, col major > b3 frag

// 16 × 16 with precision FP32 initializa-
tion of fragment C

7: fragment < accumulator, 16, 16, 16, f loat > c1 frag
8: fragment < accumulator, 16, 16, 16, f loat > c2 frag
9: fragment < accumulator, 16, 16, 16, f loat > c3 frag

// Compute the warp ID and indices
10: tid = thread ID
11: bid = block ID
12: blockDim = block dimension
13: id warp = (bid× blockDim+ tid)/32
14: row idx = (id warp%(N/32))× 16
15: col idx = (id warp/(N/32))× 16
16: acc idx = row idx+ col idx×N/2
17: for i from 0 to (N/32) do
18: a1 id = row idx×N/2 + i× 16
19: b1 id = col idx×N/2 + i× 16
20: load matrix sync(a1 frag, a1 + a1 id,N/2)
21: load matrix sync(b1 frag, b1 + b1 id,N/2)
22: mma sync(c1 frag, a1 frag, b1 frag, c1 frag)
23: end for

// Store c1 frag output in p1
24: store matrix sync(p1+acc idx, c1 frag,N/2, col major)
25: for i from 0 to (N/32) do
26: a2 id = row idx×N/2 + i× 16
27: b2 id = col idx×N/2 + i× 16
28: load matrix sync(a2 frag, a2 + a2 id,N/2)
29: load matrix sync(b2 frag, b2 + b2 id,N/2)
30: mma sync(c2 frag, a2 frag, b2 frag, c2 frag)
31: end for

// Store c2 frag output in p3
32: store matrix sync(p2+acc idx, c2 frag,N/2, col major)
33: for i from 0 to (N/32) do
34: a3 id = row idx×N/2 + i× 16
35: b3 id = col idx×N/2 + i× 16
36: load matrix sync(a3 frag, a3 + a3 id,N/2)
37: load matrix sync(b3 frag, b3 + b3 id,N/2)
38: mma sync(c3 frag, a3 frag, b3 frag, c3 frag)
39: end for

// Store c3 frag output in p3
40: store matrix sync(p3+acc idx, c3 frag,N/2, col major)
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Fig. 4. Matrix multiplication in Tensor-cores of 32×32 having warps (w)
running in parallel

Finally, referring to Algorithm 12, output matrix p1, p2,
and p3 combine to get the final result (lines 4 and 5), and the
format is converted from FP16 to U16. This whole process is
done by using N/2 threads.

Algorithm 12 FP32toU16: process polynomial coefficients
from FP32 to U16 via three n/2-dimensional TMVPs and
modulo p

Input: N/2×N/2 matrix p1, p2 and p3 with elements in FP32
format
Output: Matrix out of N -length degree, with elements in U16
format and modulo p

1: tid = thread ID
2: bid = block ID

// Launching N/2 threads at maximum
3: if (tid < N/2) then
4: out[bid+ tid]+ = (int32 t) (p1[bid+ tid]+ p2[bid+

tid])%p
5: out[bid +N/2 + tid]+ = (int32 t) (p1[bid + tid] −

p3[bid+ tid])%p
6: else
7: out[bid+ tid] = 0
8: end if

IV. EXPERIMENT RESULTS AND DISCUSSION

This section presents a series of experiments to assess the ef-
ficacy of our proposed methodology. These experiments were
conducted on a workstation equipped with a 2.10GHz Intel
Core i7-12700F CPU with 16GB of RAM and an NVIDIA
RTX3060 Ti GPU having a 1410 MHz frequency and 8 GB
GDDR6 memory.

A. Performance of TMVP-2 polynomial convolution

In this section, we compare the performance of TMVP
polynomial convolution using both CUDA-cores and Tensor-
cores. We launched (N/32)2 warps and N threads per block
for polynomial convolution using Tensor-cores and CUDA-
cores, respectively. Based on the results presented in Figure
5 and Table III, it is evident that the proposed TMVP poly-
nomial convolution with Tensor-cores outperformed CUDA-
cores. Although the difference is small at the initial batch sizes,
the throughput on CUDA-cores starts to saturate when the
batch size exceeds 64. The difference between Tensor-cores
and CUDA-cores versions becomes significant as the batch
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TABLE III
PERFORMANCE COMPARISON OF TMVP-BASED POLYNOMIAL

CONVOLUTION USING TENSOR-CORES AND CUDA-CORES

Batch size (K) CUDA-cores Tensor-cores

Throughput (1000 multiplications per second)

1 9.91 13.8
8 91.326 110.558

32 310.89 443.89
64 461.56 893.348

128 577.2 1844.34
256 738.497 3654.79
512 811.230 6740.39
1024 851.13 10861.83

TABLE IV
READ/WRITE OPERATIONS ON SHARED MEMORY FOR THE TMVP IN

CUDA-CORES

TMVP Multiplications Tot. Read
Elements

Tot. Write
Elements

Tot. Read/Write
Operations

P1 16640 16640 33280
P2 32896 16640 49536
P3 32896 16640 49536

Total Operations 82432 49920 132352

size increases beyond 64. For instance, at a batch size of 1,
Tensor-cores is only 1.39× faster than CUDA-cores. However,
this difference increases to 8.31× and 12.76× at batch sizes
of 512 and 1024, respectively.

The low performance from CUDA-cores is due to the
limited shared memory in the GPU and the large number of
read/write operations required for polynomial multiplication.
As mentioned in Section III-B, the limited shared memory is
insufficient to hold multiple copies of vectors. Consequently,
to locate the precise element in the vector for matrix multipli-
cation, the modulo operation must be employed. Nonetheless,
this operation acts as a conditional statement for each thread,
resulting in a reduction in performance. Secondly, as seen
in Algorithm 7, we are conducting three TMVP multipli-
cations in a single kernel. Table IV depicts the number of
read/write operations executed in one CUDA-cores kernel.
Overall, 82,432 reads and 49,920 writes were performed in one
kernel to accomplish three TMVP polynomial convolutions.
According to Table II, when using Saber and Sable, the value
of ℓ = 3. This means that in order to complete one polynomial
convolution, 82,432×3 read operations and 49,920×3 write
operations are required. However, the TMVP in Tensor-cores
does not have the same memory limitations and is capable of
processing multiple copies of vectors simultaneously, resulting
in high throughput compared to the TMVP in CUDA-cores.

B. Performance breakdown for TMVP Tensor-core and
CUDA-core based implementations

Table V provides the performance breakdown of polynomial
convolution in Saber and Sable by utilizing the proposed
techniques on Tensor-cores and CUDA-cores. The analysis of
execution times was conducted using a batch size of K = 128,
with both CUDA-cores and Tensor-cores given a sufficient
workload. In the tensor-cores version, organizing poly a into

a nega-cyclic matrix takes up about 35% of the overall time,
whereas pre-arrangement of poly A and poly B takes up 15%
of the total time. Matrix-vector multiplication in Tensor-cores
is the most time-consuming operation (about ≈ 37%), which
is close to the nega-cyclic arrangement of poly a. Converting
the format from FP32 to U16 and simultaneously performing
reduction requires the least amount of time (about ≈ 12%).
The performance breakdown in CUDA-cores shows that nega-
cyclic rearrangement of poly a consumes only ≈ 11% of
the total time, whereas pre-arrangement of both polynomials
only takes 5% of the time. Matrix-vector multiplication in
CUDA-cores consumes the most time (about ≈ 79%). Post-
arrangements of elements and performing modulo consume
the least amount of time (nearly 4%).

Based on the above discussion, it becomes apparent
that polynomial convolution using Tensor-cores requires less
shorter multiplication time compared to CUDA-cores. This can
be attributed to the superior capabilities provided by Tensor-
cores in executing matrix-vector multiplications more effi-
ciently than CUDA-cores. Moreover, as elucidated in Section
IV-A, the large number of read/write operations on shared
memory required by CUDA-cores also needs more time for
multiplication. This duration increases in proportion to larger
batch sizes. In contrast, Tensor-cores do not use shared mem-
ory because most of the computations are performed directly
in the registers.

C. Comparing KEX and KEM performance on a GPU

This section presents the KEX and KEM experiment re-
sults from Saber and Sable after implementing the TMVP
techniques as proposed. The experiments take into account
different batch sizes (K) and utilize two types of GPU:
CUDA-cores and Tensor-cores. The KEX performance for
both schemes is given in Table VI. Implementation of Saber
encryption using TMVP on CUDA-cores and Tensor-cores
yielded impressive results.

At a batch size of 16, Tensor-cores achieved 45,625 and
237,869 encryption and decryption operations per second,
respectively, whereas CUDA-cores achieved only 35,358 and
179,921 operations per second. Notably, Tensor-cores was
1.2× faster for encryption and 1.3× faster for decryption than
the CUDA-cores. We determined that increasing the batch size
led to higher throughput for both schemes due to the increased
workload in fully occupying a GPU. However, the difference
in throughput between Tensor-cores and CUDA-cores also
increased, with the highest throughput occurring at K = 512. In
fact, Tensor-cores achieved 424,437 and 6,259,781 encryption
and decryption operations per second, respectively, which were
2.6× and 6.8× faster than CUDA-cores. Similar results were
observed with our implementation of Sable encryption and
decryption. Initially, the difference between CUDA-cores and
Tensor-cores encryption and decryption was small. At K =
512, Tensor-cores achieved 457,155 and 5,621,925 encryption
and decryption operations per second, respectively, which were
2.7× and 6.2× faster than the CUDA-cores.

Table VII shows the throughput from Saber and Sable
KEMs on a GPU using the TMVP on Tensor-cores and
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Fig. 5. Performance Comparison of TMVP-based polynomial convolution using Tensor-cores and CUDA-cores

TABLE V
PERFORMANCE BREAKDOWN OF THE TMVP POLYNOMIAL CONVOLUTION USING TENSOR-CORES AND CUDA-CORES AT K=128

Operation Tensor-cores CUDA-cores

Time (µs) % Time (µs) %

ParNegCyc (Poly A → Algorithm 5) 25.74 35.08 25.83 11.64
ParU16toFP16 (Pre-arrangement of Poly A & B → Algorithm 10) 11.52 15.6 - -
PreArr (Pre-arrangement of Poly A & B → Algorithm 6) - - 11.82 5.33
Tensor-cores (Matrix-vector multiplication → Algorithm 11) 27.18 37.04 - -
CUDA-cores (Matrix-vector multiplication → Algorithm 7) - - 175.29 79.04
FP32toU16 (Post arrangement → Algorithm 12) 8.94 12.18 - -
PostProcess (Post arrangement → Algorithm 8) - - 8.82 4.00

Total 73.38 100 221.76 100

TABLE VI
COMPARING THE THROUGHPUT OF SABER AND SABLE KEX WITH THE TMVP CUDA-CORES AND TENSOR-CORES IMPLEMENTATIONS AT DIFFERENT

BATCH SIZES

Batch size (K)

Saber Sable

Throughput (encryptions/decryptions per second)

CUDA-cores Tensor-cores CUDA-cores Tensor-cores

Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt

16 35358 179921 45625 237869 37838 170706 45183 235404
32 66401 338410 86821 498256 70546 316055 87412 457456
64 98068 505945 155436 957854 102838 483675 156678 896861
128 127218 647564 257583 1912960 129941 629029 263695 1757469
256 153852 824997 359680 3546473 161075 811112 374619 3218020
512 164670 916223 424437 6259781 170956 902628 457155 5621925

CUDA-cores. It is important to note that KEM is an extension
of KEX and involves additional hashing operations, which
results in lower throughput compared to KEX. At batch size K
= 512, the throughput of Saber on Tensor-cores technique was
2.0× faster (encapsulation) and 2.37× faster (decapsulation)
than on CUDA-cores implementation. For Sable, the through-
put for encapsulation and decapsulation was 1.9× and 2.35×
higher than on CUDA-cores implementation, respectively.

Through a thorough analysis, it was found that the matrix-
vector multiplication on CUDA-cores is the most time-
consuming, particularly when handling large batch sizes. This
is primarily attributed to the fact that when K exceeds 64,
CUDA-cores are fully loaded, where adding more work-

load (i.e., increasing the batch size) does not increase the
throughput. To achieve optimal performance from GPU im-
plementation, it is critical to utilize fast shared memory, but
transferring between global and shared memory also have
significant overhead. In contrast, Tensor-cores offer faster
processing times owing to their accelerated matrix operations
and smaller matrices available for multiplication in the TMVP.
Although we require three TMVPs with 128×128 matrices
(see Algorithm 11) instead of one 256×256 multiplication,
the total number of operations executed for three TMVPs is
still less than that in one 256×256 multiplication, resulting a
faster polynomial convolution. Detailed explanation of these
points can be found in sections III-A and III-C.
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TABLE VII
COMPARING THE THROUGHPUT AT DIFFERENT BATCH SIZES FOR THE SABER AND SABLE KEM TMVPS IN CUDA-CORES AND TENSOR-CORES

Batch size (K)

Saber Sable

Throughput (encaps/decaps per second)

CUDA-cores Tensor-cores CUDA-cores Tensor-cores

Encaps Decaps Encaps Decaps Encaps Decaps Encaps Decaps

16 25264 24919 29860 30628 25604 25697 29472 30376
32 46803 46572 55878 58268 46790 47221 53395 57336
64 74206 71411 101569 105983 73118 71648 96950 102769
128 102249 94271 171248 179163 97370 93989 156109 173205
256 123648 115786 229200 245263 121304 115829 212816 241560
512 133919 124261 267720 294020 130675 125340 250062 295061

D. Comparison with State-of-the-Art implementations

The graphs in Figure 6 show the performance comparison
of proposed TMVP CUDA-cores and Tensor-cores polynomial
convolution with schoolbook polynomial convolution proposed
by Hafeez et al. [26]. The results indicate that the schoolbook
technique implemented on CUDA-cores (SB-CUDA) initially
demonstrated impressive performance. However, as the batch
size surpassed 64, performance began to saturate, and the
Tensor-cores implementation surpassed CUDA-cores. Both
Tensor-cores approaches exhibited similar performance until
K=256. However, at K ≥512, the proposed TMVP approach
outperformed the schoolbook Tensor-cores (SB-TC) approach.
It is worth noting that the performance of the TMVP on
CUDA-cores was even slower than SB-CUDA [26]. This
shows that the TMVP may not always provide performance
superior to the schoolbook approach because memory move-
ment plays a critical role in the achieved performance.

Table VIII presents a throughput comparison of our
proposed technique, with Schoolbook Tensor-cores im-
plementation (SB-TC) [26] and dot-product instructions
(DPSaber) [25]. Hafeez et al. [26] proposed SB-TC for Sable,
and Lee et al. [25] proposed DPSaber for Saber. Note that
Sable KEM is an improvement over Saber becuase it employs
polynomial convolution for efficient inner product and matrix-
vector multiplication calculations. DPSaber [25] incorporates
dot-product instructions found in GPUs to implement Saber,
and SB-TC uses Tensor-cores for the schoolbook method for
polynomial convolution in Sable. We conducted experiments
on the same GPU used in the SB-TC [26] and directly adopted
source code available in the public domain. Similarly, since the
source code for DPSaber is open, we utilized that code and
experimented on the same GPU for a fair comparison.

Table VIII provides insight into the performance of our
proposed TMVP-TC version in comparison to SB-TC and
DPSaber. Sp-up 1 denotes the ratio of TMVP-TC to SB-TC,
while Sp-up 2 denotes the ratio of TMVP-TC to DPSaber.
Referring to matrix-vector multiplication, our findings show
that DPSaber performed better when K ≤ 64. However, SB-
TC achieved almost the same throughput as TMVP-TC. At
K ≥128, TMVP-TC outperformed DPSaber and achieved
4.24× higher throughput at K = 1024. Similarly, in compar-
ison to S-TC, TMVP-TC achieved 1.12× higher throughput.
Furthermore, our TMVP-TC achieved at least 3.63× higher

throughput than DPSaber for the inner product at K = 1024,
but with SB-TC, we achieved 1.21× higher throughput. These
results demonstrate that our approach is more advantageous
than SB-TC and DPSaber when the batch size is sufficiently
large. This is due to the small matrices and fewer multiplica-
tion operations in the TMVP approach, as well as the higher
instruction throughput on Tensor-cores in comparison to the
dot-product instructions and the SB-TC approach.

E. IoT Applications

The efficient implementation of PQC algorithms plays a
critical role in the rapidly expanding ecosystem of the In-
ternet of Things (IoT). Edge devices, which are an essential
component of this system, often operate under constrained
environments that require low-power and resource-saving im-
plementations for KEM and KEX operations. To address these
requirements, the proposed TMVP technique is a promising
solution, offering reduced storage requirements and algorith-
mic simplicity for polynomial convolution in lattice-based
cryptography.

In addition, gateway servers typically handle the bulk of
the data traffic and require high-throughput solutions. The
proposed TMVP-based polynomial convolution using Tensor-
cores provides significant enhancements over other methods
in literature and is particularly well-suited for such scenarios,
ensuring secure, fast, and efficient cryptographic operations.
Furthermore, TMVP’s dual adaptability makes it a versatile
solution that can address the distinct needs of both edge
devices and gateway servers in the varied landscape of IoT. By
leveraging this approach, one can optimize the cryptographic
operations and ensure the safety and security of their IoT
ecosystem.

V. CONCLUSION

Our research demonstrated the effectiveness of parallel
TMVP computations utilizing Tensor-cores and CUDA-cores
in accelerating the execution of KEX and KEM algorithms.
By applying this technique to the post-quantum KEMs (Saber
and Sable), we achieved significant improvements in system
performance where high throughput is required, especially for
IoT applications. In the case of Sable, our proposed Tensor-
cores implementation outperformed traditional CUDA-cores
implementations in terms of encryption and decryption speeds.
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Fig. 6. Performance comparison of TMVP and Schoolbook based polynomial convolution using Tensor-cores and CUDA-cores

TABLE VIII
PERFORMANCE COMPARISON OF TMVP ON TENSOR-CORES FOR INNER-PRODUCT AND MATRIX-VECTOR MULTIPLICATION IN THE SABER AND SABLE

KEM VERSUS SCHOOLBOOK TENSOR-CORES [26] AND DPSABER [25] APPROACHES

Batch size (K) Inner Product (thousand of operations per second) Matrix-vector (thousand of operations per second)

TMVP-TC SB-TC [26] DPSaber [25] Sp-up 11 Sp-up 22 TMVP-TC SB-TC [26] DPSaber [25] Sp-up 11 Sp-up 22

64 893 957 1161 0.93 0.77 366 353 445 1.03 0.82
128 1844 1910 1926 0.96 0.96 762 711 734 1.07 1.07
256 3655 3746 2598 0.97 1.41 1495 1362 1001 1.09 1.49
512 6740 6465 2832 1.04 2.38 2795 2553 1034 1.09 2.70
1024 10861 9681 2991 1.21 3.63 4643 4144 1096 1.12 4.24

1 TMVP-TC / SB-TC; 2 TMVP-TC / DPSaber

Specifically, we achieved a minimum of 1.1× faster encryp-
tion and 1.07× faster decryption. Moreover, our approach
demonstrated 1.7× higher throughput for encryption and an
impressive 3.1× higher throughput for decryption in KEX
operations.
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