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Abstract. Threshold signatures are one of the most important cryptographic primitives in distributed
systems. A popular choice of threshold signature scheme is the BLS threshold signature introduced
by Boldyreva (PKC’03). Some attractive properties of Boldyreva’s threshold signature are that the
signatures are unique and short, the signing process is non-interactive, and the verification process
is identical to that of non-threshold BLS. These properties have resulted in its practical adoption in
several decentralized systems. However, despite its popularity and wide adoption, up until recently,
the Boldyreva scheme has been proven secure only against a static adversary. Very recently, Bacho
and Loss (CCS’22) presented the first proof of adaptive security for the Boldyreva scheme, but they
have to rely on strong and non-standard assumptions such as the hardness of one-more discrete log
(OMDL) and the Algebraic Group Model (AGM). In this paper, we present the first adaptively secure
threshold BLS signature scheme that relies on the hardness of DDH and co-CDH in asymmetric pairing
groups in the Random Oracle Model (ROM). Our signature scheme also has non-interactive signing,
compatibility with non-threshold BLS verification, and practical efficiency like Boldyreva’s scheme.
These properties make our protocol a suitable candidate for practical adoption with the added benefit
of provable adaptive security.

1 Introduction

Threshold signatures schemes [Des88, DF89, GJKR07] protect the signing key by sharing it among a group
of signers so that an adversary must corrupt a threshold number of signers to be able to forge signatures.
The increasing demand for decentralized applications has resulted in large-scale adoptions of threshold sig-
nature schemes. Many state-of-the-art Byzantine fault tolerant protocols utilize threshold signatures to lower
communication costs [MXC+16, YMR+19, AMS19, LLTW20, GKKS+22, GHM+17]. Efforts to standardize
threshold cryptosystems are already underway [BP23].

A popular choice of threshold signature is the BLS signature, introduced by Boldyreva [Bol03] building on
the work of Boneh–Lynn–Shacham [BLS01]. Boldyreva’s BLS threshold signature scheme is popular because
its verification is identical to standard non-threshold BLS signature, its signing process is non-interactive,
the signatures are unique and small (a single elliptic curve group element), and the scheme is very efficient
in terms of both computation and communication. These properties have resulted in practical adoptions of
Boldyreva’s BLS threshold signature for applications in the decentralized setting [dra23, ic23, ska23, arp23].

Static vs. Adaptive Security.However, despite its popularity and wide adoption, until recently, Boldyreva’s
scheme has been proven secure only against a static adversary. A static adversary must decide the set of
signers to corrupt at the start of the protocol. In contrast, an adaptive adversary can decide which signers
to corrupt during the execution of the protocol based on its view of the execution. Clearly, an adaptive
adversary is a safer and more realistic assumption for the decentralized setting.

Designing an adaptively secure threshold signature scheme (BLS or otherwise) is challenging, let alone
keeping it compatible with a non-threshold signature scheme. The generic approach to transforming a stati-
cally secure protocol into an adaptive one by guessing the set of parties an adaptive adversary may corrupt
incurs an unacceptable exponential (in the number of parties) security loss. Existing adaptively secure
threshold signature schemes in the literature have to make major sacrifices such as relying on parties to
erase their internal states [CGJ+99, LY13], inefficient cryptographic primitives like non-committing encryp-
tions [JL00, LP01], or strong and non-standard assumptions such as one more discrete logarithm (OMDL)



in the algebraic group model (AGM) [BL22, CKM23]. To make matters worse, for Boldyreva’s variant of
BLS signatures in particular, the recent work of Bacho-Loss [BL22] proves that a strong assumption such as
OMDL is necessary.

Our results. We present an adaptively secure BLS threshold signature scheme. Our scheme retains the at-
tractive properties of Boldyreva’s scheme: signing is non-interactive, verification is identical to non-threshold
BLS, and the scheme is simple and efficient.

The adaptive security proof of our signature scheme assumes the hardness of the decisional Diffie-
Hellman (DDH) problem in a source group and the hardness of the co-computational Diffie-Hellman (co-
CDH) problem in asymmetric pairing groups in the random oracle model (ROM). To put things into perspec-
tive, note that the standard non-threshold BLS signature assumes hardness of computational Diffie-Hellman
(CDH) in pairing groups∗ in the ROM. Thus, our scheme only relies on DDH besides what standard non-
threshold BLS signature already relies on. Moreover, if one is content with proving our scheme statically
secure, we only need CDH in the ROM, as in the standard BLS signature.

In terms of efficiency, our scheme is only slightly more expensive than the Boldyreva scheme [Bol03]. The
signing key of each signer consists of three field elements compared to one in Boldyreva. The threshold public
keys consist of n group elements in total, identical to Boldyreva. Here n is the total number of signers. Our
per-signer signing cost and partial signature verification cost of the aggregator are also small. We implement
our scheme in Golang and compare its performance with Boldyreva’s scheme. Our evaluation confirms that
our scheme adds very small overheads.

We also describe a distributed key generation (DKG) protocol to secret share the signing key of our
scheme. Our DKG adds minimal overhead compared to existing DKG schemes.

All of the above properties combined make our scheme a suitable candidate for a drop-in replacement for
BLS signature in deployment systems and a worthwhile trade-off for the added benefit of provable adaptive
security at modest performance cost.

Paper organization. We discuss the related work in §2 and present a technical overview of our scheme
in §3. In §4, we give the required preliminaries. We then describe our threshold signature scheme in two parts:
First, in §5 we describe our threshold signature scheme assuming a trusted key generation functionality to
generate the signing keys. We then analyze its security in §6. Second, in §7, we describe a DKG protocol,
which signers can use to set up the signing keys for our scheme in a distributed manner. Then in §8, we
prove the adaptive security of our threshold signature when combined with our DKG protocol. We discuss
the implementation and evaluation details in §9, and conclude with a discussion in §10.

2 Related works

Threshold signature schemes were first introduced by Desmedt [Des88]. Since then, numerous threshold
signature schemes with various properties have been proposed. Most of the natural and popular threshold
signature schemes are proven secure only against a static adversary [Des88, GJKR96, GJKR07, Sho00, Bol03,
CGG+20, KG21, CKM21, BCK+22, RRJ+22, CGRS23, TZ23b, Sho23, BHK+24, GS24]. The difficulty in
proving adaptive security usually lies in the reduction algorithm’s inability to generate consistent internal
states for all parties. As a result, the reduction algorithm needs to know which parties will be corrupt, making
the adversary static [BCK+22]. We will next review threshold signatures with adaptive security. We classify
them into interactive and non-interactive schemes.

Interactive threshold signatures. In an interactive threshold signature, signers interact with each other
to compute the signature on a given message. The first adaptively secure threshold signatures were indepen-
dently described by Canetti et al. [CGJ+99] and Frankel et al. [FMY99a, FMY99b]. They prove adaptive
security of their threshold signature scheme by introducing the “single inconsistent player” (SIP) technique.
In the SIP approach, there exists only one signer whose internal state cannot be consistently revealed to the

∗The standard non-threshold BLS signature scheme can also work with symmetric pairing groups and hence the
CDH assumption instead of co-CDH.
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adversary. Since this inconsistent signer is chosen at random, it is only corrupt with probability less than
1/2 for n > 2t. These schemes also rely on secure erasure.

Lysyanskaya-Peikert [LP01] and Abe and Fehr [AF04] use the SIP technique along with expensive crypto-
graphic primitives such as threshold homomorphic encryptions and non-committing encryptions, respectively,
to design adaptively secure threshold signatures without relying on erasures. Later works [ADN06, WQL09]
extend the SIP technique to Rabin’s threshold RSA signature [Rab98] and the Waters [Wat05] signatures. A
major downside of all these works is the high signing cost. For every message, signers need to run a protocol
similar to a DKG protocol. Concurrently and independently, [BLT+24] presents a three-round adaptively
secure threshold signature scheme assuming the hardness of DDH.

Non-interactive threshold signatures. A non-interactive threshold signature requires each signer to
send a single message to sign. Practical, robust, non-interactive threshold signatures were described by
Shoup [Sho00] under the RSA assumption and by Katz and Yung [KY02] assuming the hardness of factoring.
Boldyreva [Bol03] presented a non-interactive threshold BLS signature scheme. Until recently, these schemes
were proven secure against static adversaries only.

Bacho and Loss [BL22] recently proved adaptive security for Boldyreva’s scheme based on the One More
Discrete Logarithm (OMDL) assumption in the Random Oracle Model (ROM) and Algebraic Group Model
(AGM). Their method addresses the challenge of revealing internal states of corrupt nodes to the adversary
by giving the reduction adversary limited access to discrete logarithm oracle. (This approach has since
been extended to the interactive threshold Schnorr signature [CKM23].) Bacho-Loss [BL22] also proves that
reliance on OMDL is necessary for proving Boldyreva’s BLS signature adaptively secure. This implies that
a new protocol is needed to prove adaptive security under more standard assumptions.

Libert et al., [LJY14] presented a pairing-based, non-interactive threshold signature scheme assuming the
hardness of the double-pairing assumption. However, their signature scheme is incompatible with standard
BLS signature verification and thus cannot be a drop-in replacement for BLS in deployment systems. The
signature size of their scheme is also twice as large as a BLS signature. Very recently, [DCX+23, GJM+24] also
present pairing-based non-interactive threshold signatures with adaptive security. However, their signatures
are also incompatible and more than 5× larger than BLS signatures.

3 Technical Overview

We need to introduce several new ideas to design a new BLS threshold signature scheme and prove it
adaptively secure. First, we introduce a new way of embedding the co-CDH input into a simulation of
our scheme. Since we want our final signature to be a standard BLS signature, and BLS signatures are
deterministic, these changes are delicate. Moreover, we embed the co-CDH challenge in such a way that during
simulation, it remains indistinguishable from an honest execution of the protocol. This should hold, even if
we use a DKG to generate the signing keys. We address this as follows. In our security proof, the reduction
adversary can simulate the DKG and the threshold signature scheme to the adversary by faithfully running
the protocol on behalf of all but one honest signer, i.e., we work with the single inconsistent party (SIP)
technique. Second, we use a new approach to program two random oracles in a correlated way while ensuring
that it remains indistinguishable from uniformly random to a computationally bounded adversary. This step
is crucial for the reduction adversary to simulate signing queries.

Boneh-Lynn-Sacham (BLS) signature scheme [BLS01]. Before we describe our techniques, we briefly

recall the non-threshold BLS signature scheme. Let (G, Ĝ,GT ) be a tuple of prime order pairing groups with
scalar field Zp. LetM be the finite message space of the signature scheme. Let g ∈ G be a uniformly random

generator of G and H :M→ Ĝ be a hash function modeled as a random oracle. The signing key sk = s ∈ Zp

is a random field element, and pk = gs ∈ G is the corresponding public verification key. The signature σ
on a message m is then H(m)sk ∈ Ĝ. Any verifier validates a signature σ′ on a message m by checking that

e(pk,H(m)) = e(g, σ′), where e : G× Ĝ→ GT is the bilinear pairing operation. The BLS signature is proven
secure assuming the hardness of CDH in the ROM [BLS01].
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Our core ideas. We will illustrate our core ideas using a simplified threshold signature scheme, which we
do not know how to prove adaptively secure. We describe our final protocol and its adaptive security proof
in §5 and §6, respectively.

Let (G, Ĝ,GT ) be a tuple of prime order asymmetric pairing groups with scalar field Zp. Let g, h ∈ G be

two uniformly random generators of G and ĝ be a generator of Ĝ. As in the non-threshold BLS signature
scheme, let sk = s ∈ Zp be the secret signing key and pk = gs ∈ G be the public verification key. To get an
(n, t) threshold signature scheme, the secret signing key s is then shared among n signers using a degree t
polynomial s(x). Additionally, signers also receive a share on a uniformly random polynomial r(x) with the
constraint that r(0) = 0. Precisely, the signing key of signer i is ski = (s(i), r(i)) and the public verification
key of signer i is pki = gs(i)hr(i) ∈ G.

With this initial setup, signers sign any message m ∈ M, for a finite message space M, as follows. Let
H0,H1 be two random oracles where Hb :M → Ĝ for b ∈ {0, 1}. The partial signature from signer i on a

message m is then σi = H0(m)s(i)H1(m)r(i) ∈ Ĝ. Upon receiving t+ 1 valid partial signatures from a set of
signers T , the aggregator computes the threshold signature by interpolating them in the exponent, i.e., it
computes the aggregated signature σ =

∏
i∈T σLi

i for appropriate Lagrange coefficients Li. It is easy to see
that since r(0) = 0, the interpolation yields a standard BLS signature σ = H0(m)sH1(m)0 = H0(m)s.

An avid reader will note that the partial signatures are no longer verifiable using a pairing check. Indeed,
signers in our protocol instead use a Σ-protocol to prove the correctness of their partial signatures.

Naturally, the important question is how this modified BLS threshold signature helps us prove adaptive
security. (We reiterate that the goal of this section is to give intuition, and we do not know how to prove this
exact scheme adaptively secure.) At a very high level, the additional parameter h, the additional polynomial
r(x), and the additional random oracle H1(·) provide the reduction adversary with extra avenues to embed
the co-CDH input and extract a solution to the co-CDH input from a signature forgery. We will elaborate
on this next.

Let Aco-cdh be the reduction algorithm and A be the adversary that breaks the unforgeability of our
scheme. Aco-cdh will run our threshold signature scheme with a rigged public key pk = gshr ∈ G with r ̸= 0.
Concretely, we work with r = 1, i.e., pk = gsh, but any non-zero value of r will also work. Aco-cdh will
carefully interact with A so that A does not realize that the public key is rigged. Then, by definition, A will
forge a BLS signature on some message m, i.e., e(pk,H0(m)) = e(g, σ). Now given a co-CDH input tuple
(g, ĝ, ga, ĝa, ĝb), if we set h = ga and program the random oracle in a way such that H0(m) = ĝb, then
σ = ĝ(s+a)b. This implies that if s ∈ Zp is known, then we can efficiently compute ĝab given σ.

Let s(x), r(x) be degree t polynomials for Shamir secret sharing of s = s(0) and r(0) = 1. We will
discuss in §6 how Aco-cdh interacts with A while ensuring that Aco-cdh knows s(x) and r(x), and r(0) = 1.
Furthermore, in Appendix 8, we will discuss how Aco-cdh achieves this even when we use a DKG key to
generate the signing keys while relying on just a single inconsistent party. This implies that since Aco-cdh

knows both s(x), r(x), it can reveal the internal state of any party that A corrupts, except the inconsistent
party to A. Unless A corrupts the inconsistent party, A’s view in a real protocol instance and an instance
rigged by Aco-cdh are computationally indistinguishable.

The final part of our protocol is how Aco-cdh simulates the signing queries under the rigged public key.
Consider a naive approach where we use the signing procedure of Boldyreva’s scheme, i.e., the partial
signature of signer i is H0(m)s(i). Then, the unique aggregated signature is σ = H0(m)s. However, since r(0) =

1, unless H0(m) = 1Ĝ, i.e., the identity of the group Ĝ, it will always be the case that e(pk,H0(m)) ̸= e(g, σ),
so A realizes that it is in a rigged instance. This is why we bring in an additional random oracle H1 and have
the partial signatures as σi = H0(m)s(i)H1(m)r(i). The final aggregated signature is now σ = H0(m)sH1(m).
If Aco-cdh programs the two random oracles in a correlated manner, the pairing check e(pk,H0(m)) = e(g, σ)
will pass. Crucially, the correlated programming of the two random oracles must be undetectable to A. In §6,
we will prove this is indeed the case for our final scheme, assuming the hardness of DDH in Ĝ.
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4 Preliminaries

Notations. For any integer a, we use [a] to denote the ordered set {1, 2, . . . , a}. For any set S, we use s←$ S
to indicate that s is sampled uniformly randomly from S. We use |S| to denote the size of set S. Throughout
the paper, we will use “←” for probabilistic assignment and “:=” for deterministic assignment. We use λ
to denote the security parameter. A machine is probabilistic polynomial time (PPT) if it is a probabilistic
algorithm that runs in poly(λ) time. We also use negl(λ) to denote functions negligible in λ. We use the
terms party (resp. parties) and signer (resp. signers) interchangeably.

4.1 Model

We consider a set of n signers denoted by {1, 2, . . . , n}. We consider a PPT adversary A who can corrupt
up to t < n out of the n signers. Corrupted signers can deviate arbitrarily from the protocol specification.
Note that with t ≥ n/2, i.e., with a dishonest majority, it is impossible to achieve both unforgeability
and guaranteed output delivery [KL07]. We focus on unforgeability over guaranteed output delivery for the
dishonest majority case.

When the signing keys of our signature scheme are generated by a trusted setup, we assume the network
is asynchronous. However, for simplicity, we will assume lock-step synchrony for our DKG protocol, i.e.,
parties execute the protocol in synchronized rounds, and a message sent at the start of a round arrives by
the end of that round. Moreover, our DKG assumes an honest majority, i.e., t < n/2. Furthermore, during
DKG, we let signers access a broadcast channel to send a value to all signers. We can efficiently realize such a
broadcast channel by running a Byzantine broadcast protocol [LSP82, DS83, BGP92, MR21]. We note that
the synchrony assumption is not necessary since asynchronous DKG protocols exist [KKMS20, DYX+22].
Similarly, we can remove the honest majority assumption using ideas from [CL24].

4.2 Shamir Secret Sharing, Bilinear Pairing, and Assumptions

Shamir secret sharing. The Shamir secret sharing [Sha79] embeds the secret s in the constant term of
a polynomial p(x) = s + a1x + a2x

2 + · · · + adx
d, where other coefficients a1, · · · , ad are chosen uniformly

randomly from a field Zp. The i-th share of the secret is p(i), i.e., the polynomial evaluated at i. Given d+1
distinct shares, one can efficiently reconstruct the polynomial and the secret s using Lagrange interpolation.
Also, s is information-theoretically hidden from an adversary that knows d or fewer shares.

Definition 1 (Bilinear Pairing). Let G, Ĝ and GT be three prime order cyclic groups with scalar field Zp.

Let g ∈ G and ĝ ∈ Ĝ be generators. A pairing is an efficiently computable function e : G×Ĝ→ GT satisfying
the following properties.

1. bilinear: For all u, u′ ∈ G and v̂, v̂′ ∈ Ĝ we have

e(u · u′, v̂) = e(u, v̂) · e(u′, v̂), and e(u, v̂ · v̂′) = e(u, v̂) · e(u, v̂′)

2. non-degenerate: gT := e(g, ĝ) is a generator of GT .

We refer to G and Ĝ as the source groups and refer to GT as the target group.

We require that the decisional Diffie-Hellman (DDH) assumption holds for Ĝ and the co-computational

Diffie-Hellman (co-CDH) assumption holds for (G, Ĝ).

Assumption 1 (DDH) Let GGen be a group generation algorithm, which takes as input 1λ and outputs the

description of a prime order group Ĝ. The description contains the prime order p, a generator ĝ ∈ Ĝ, and
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a description of the group operation. We say that the decisional Diffie-Hellman (DDH) assumption holds
relative to GGen, if for all PPT adversary A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣∣Pr
[
A(Ĝ, p, ĝ, ĝa, ĝb, ĝab) = 1

∣∣∣∣∣ (Ĝ, p, ĝ)← GGen(1λ),

a, b←$ Zp

]

− Pr

[
A(Ĝ, p, ĝ, ĝa, ĝb, ĝc) = 1

∣∣∣∣∣ (Ĝ, p, ĝ)← GGen(1λ),

a, b, c←$ Zp

]∣∣∣∣∣ = εddh

Assumption 2 (co-CDH) Let GGen′ be a group generation algorithm, which takes as input 1λ and outputs

the description of prime order groups (G, Ĝ,GT ). The description contains the prime order p, generators

(g, ĝ) ∈ G × Ĝ, the description of the group operation, and the bilinear pairing operation e : G × Ĝ → GT .
We say that the co-computational Diffie-Hellman (co-CDH) assumption holds relative to GGen′, if for all
PPT adversary A, the following advantage is negligible:

AdvCDH
A,GGen′(λ) := Pr

[
A(G, Ĝ, p, g, ĝ, ga, ĝb, ĝb) = ĝab

(G, Ĝ,GT , p, g, ĝ)← GGen′(1λ),

a, b←$ Zp

]
= εcdh

Remark on pairing group types. Looking ahead, the final threshold signatures in our schemes are in
Ĝ, and hence, we require DDH to be hard in Ĝ. This implies that the pairing groups must be asymmetric,
i.e., G ̸= Ĝ. There are two types of asymmetric pairing groups: type-II and type-III [GPS08]. A type-II
pairing group supports one-directional efficient homomorphism. In our context, we can work with a type-II
group (G, Ĝ,GT ) with bilinear pairing operation e : G× Ĝ→ GT that supports an efficient homomorphism

Φ : G→ Ĝ, but not the other way around. Note that even with such one-directional efficient homomorphism,
DDH can still be hard in Ĝ. Thus, we can use both type-II and type-III pairing groups for our threshold
signature scheme.

4.3 Threshold Signature

In this section, we introduce the syntax and security definitions for threshold signature schemes. We focus on
schemes that have non-interactive signing and deterministic verification. Our security definitions are based
on those of [BS23].

Definition 2 (Non-Interactive Threshold Signature). Let t, n with t < n be natural numbers. A non-
interactive (n, t)-threshold signature scheme TS for a finite message space M is a tuple of polynomial time
algorithms TS = (Setup,KGen,PSign,PVer,Comb,Ver) defined as follows:

1. Setup(1λ)→ pp : The setup algorithm takes as input a security parameter and outputs public parameters
pp (which are given implicitly as input to all other algorithms).

2. KGen()→ pk, {pki, ski}i∈[n] : The key generation algorithm outputs a public key pk, a vector of threshold
public keys {pk1, . . . , pkn}, and a vector of secret key shares {sk1, . . . , skn}. The j-th signer receives
(pk, {pki}i∈[n], skj).

3. PSign(ski,m) → σi : The paritial signing takes as input a secret key share ski, and a message m ∈ M.
It outputs a signature share σi.

4. PVer(pki,m, σi, ) → 0/1 : The partial signature verification takes as input a threshold public key share
pki, a message m, and a signature share σi. It outputs 1 (accept) or 0 (reject).

5. Comb(S,m, {(pki, σi)}i∈S) → σ/⊥ : The combine algorithm takes as input a set S with |S|≥ t + 1, a
message m, and a set of tuples (pki, σi) consisting of public keys and signature shares of signers in S. It
outputs either a signature σ or ⊥.

6. Ver(pk,m, σ)→ 0/1 : The signature verification algorithm takes as input a public key pk, a message m,
and a signature σ. It outputs 1 (accept) or 0 (reject).
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Game UF-CMAA
TS:

1: pp← Setup(1λ)
2: pk, {pki, ski}i∈[n] ← KGen(pp)
3: Let C := ∅,H := [n]
4: inp := pp, pk, {pki}i∈[n]

// Q[m], initially {}, denotes the set of signers A
queries for the partial signatures on m

5: (m,σ)← ACorr,PSig(inp)
6: if |Q[m] ∪ C| ≤ t ∧ Ver(m, pk, σ) = 1 :
7: return 1
8: return 0

Oracle Corr(i):

9: if C ≥ t : return ⊥
10: C := C ∪ {i}; H := H \ {i}
11: return ski

Oracle PSig(i,m):

12: if i ∈ H :
13: Q[m] := Q[m] ∪ {i}
14: Let σi ← PSign(m, ski)
15: return σi

16: return ⊥

Game RB-CMAA
TS:

17: pp← Setup(1λ)
18: pk, {pki, ski}i∈[n] ← KGen(pp)
19: Let C := ∅,H := [n]
20: inp := pp, pk, {pki}i∈[n]

// Verification of honest partial signatures are al-
ways successful

21: i,m← ACorr,PSig(inp)
22: σi ← PSign(ski,m)
23: if PVer(pki,m, σi) ̸= 1 :
24: return 1

// Combining valid partial signature must yield
valid threshold signatures

25: S,m′, {σi}i∈S ← ACorr,PSig(inp)
26: assert |S|≥ t + 1
27: assert PVer(pki,m

′, σi) = 1, ∀i ∈ S
28: σ := Comb(S,m′, {pki, σi}i∈S)
29: if Ver(pk,m′, σ) ̸= 1 :
30: return 1
31: return 0

Fig. 1: The unforgeability security game UF-CMAATS and the robustness security game RB-CMAATS for a non-
interactive (n, t)-threshold signature TS = (Setup,KGen,PSign,Comb,Ver) with an adaptive adversary A.

We require a non-interactive (n, t)-threshold signature scheme to satisfy Unforgeability and Robustness
properties we describe next.

We formalize the unforgeability property using the UF-CMAATS game in Figure 1. Let A be the adversary
in the UF-CMAATS game. A gets as input the public parameters pp, an honestly generated public key pk and
threshold public keys {pki}i∈[n]. At any point in time, A can query the partial signature on a message m
from any honest signer i by querying the oracle PSig(i,m). The game also maintains a list Q to store the
subset of parties A has queried for partial signatures, i.e., for any message m, Q[m] stores the subset of
honest signers A has queried for partial signatures on m. Initially, Q[m] = {} for every message m.
A can corrupt up to t signers throughout the protocol using the Corr oracle. Upon corrupting any party,

say party i ∈ [n], A learns its signing key ski. Our protocol also has the property that the internal state used
in all partial signings by a signer is efficiently computable from the signing key of the signer and the public
messages sent by the signer. Thus, upon corruption, revealing only the signing key of the signer is sufficient.

Finally, when A outputs a valid forgery (m∗, σ∗), we say that A wins if A queried for partial signatures
on m∗ from at most t− |C| signers, i.e., |Q[m] ∪ C|≤ t.

With the UF-CMAATS game defined in Figure 1, we define the unforgeability under chosen message attack
property as follows.

Definition 3 (Unforgeability Under Chosen Message Attack). Let TS = (Setup,KGen,PSign,Comb,Ver)
is a (n, t)-threshold signature scheme. Consider the game UF-CMAATS defined in Figure 1. We say that TS is
UF-CMAATS secure, if for all PPT adversaries A, the following advantage is negligible, i.e.,

εσ := AdvUF-CMA
A,TS (λ) := Pr[UF-CMAATS(λ)⇒ 1] = negl(λ) (1)

We formalize the robustness property using the RB-CMAATS game in Figure 1. Intuitively, the robustness
property ensures that the protocol behaves as expected for honest parties, even in the presence of an adaptive
adversary that corrupts up to t parties. More precisely, it says that: (i) PVer should always accept honestly
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generated partial signatures; and (ii) if we combine t+1 valid partial signatures (accepted by PVer) using the
Comb algorithm, the output of Comb should be accepted by Ver, except with a negligible probability. The
latter requirement ensures that maliciously generated partial signatures cannot prevent an honest aggregator
from efficiently computing a threshold signature (except with a negligible probability). Note that A can
generate the partial signatures in an arbitrary manner. Also, looking ahead, our scheme achieves robustness
even if A corrupts all parties.

Definition 4 (Robustness Under Chosen Message Attack). Let TS = (Setup,KGen,PSign,Comb,Ver)
is a (t, n)-threshold signature scheme. Consider the game RB-CMAATS defined in Figure 1. We say that TS is
RB-CMAATS secure, if for all PPT adversaries A, the following advantage is negligible, i.e.,

AdvRB-CMA
A,TS (λ) := Pr[RB-CMAATS(λ)⇒ 1] = negl(λ) (2)

4.4 Boldyreva’s BLS threshold signature scheme [Bol03]

For a security parameter λ, let (G, Ĝ,GT , p, g) ← GGen(1λ) with bilinear pairing operation e : G × Ĝ →
GT . The public parameters of Boldyreva’s (n, t)-threshold signature scheme for a message space M are

(G, Ĝ, p, g,H), where H : M → Ĝ is a hash function modeled as a random oracle. The signature scheme
works as follows:

– KGen() samples a uniformly random polynomial s(x) ∈ Zp[X] of degree t. The signing key of i-th signer
is ski := s(i), the public key pk := gs(0), and the threshold public keys are {pki := gski}i∈[n].

– PSign(ski,m) computes the partial signature with respect to secret key ski as σi := H(m)ski ∈ Ĝ.
– PVer(pki,m, σi) retruns 1 if e(pki,H(m)) = e(g, σi), and 0 otherwise.
– Comb(S,m, {(pki, σi)}) first checks that |S|≥ t+1 and then runs PVer(pki, σi,m) for all i ∈ S. If any one

of these calls outputs 0, then return ⊥. Otherwise, return σ :=
∏

i∈S σ
Li,S

i , where Li,S :=
∏

i∈S

(
j

j−i

)
is

the i-th Lagrange coefficient for the set S.
– Ver(pk,m, σ) returns 1 if e(pk,H(m)) = e(g, σ), and 0 otherwise.

Boldyreva’s scheme is secure in the presence of a static adversary assuming hardness of computational
Diffie-Hellman assumption in the random oracle model [Bol03, BCK+22].

5 Adaptively Secure BLS Threshold Signature

In this section, we will describe our adaptively secure (n, t)-threshold signature scheme assuming that KGen
is run by a trusted party.

Setup(1λ): Let (G, Ĝ,GT , p, g)← GGen(1λ) be pairing groups of prime order p, generator g ∈ G, and bilinear

pairing operation e : G× Ĝ→ GT . Let h, v ∈ G be two additional uniformly random independent generators
of G. Let H0,H1 : M → Ĝ and HFS : {0, 1}∗ → Ĝ be three distinct hash functions modeled as random

oracles. The public parameters of our scheme are then (G, Ĝ, g, h, v,H0,H1,HFS).As we discussed earlier, we
assume that all the algorithms below implicitly take the public parameters as input.

KGen(): Sample three uniformly random polynomials s(x), r(x) and u(x) of degree t each with the constraint

that r(0) = u(0) = 0. The signing key of signer i is then ski := (s(i), r(i), u(i)). Let pk := gs(0)hr(0)vu(0) =
gs(0) be the public verification key, and pki := gs(i)hr(i)vu(i) be party i’s threshold public key.

PSign(ski,m): The partial signature of signer i on a messagem is the tuple (σi, πi), where σi := H0(m)s(i)H1(m)r(i),
and πi is a non-interactive zero-knowledge (NIZK) proof of the correctness of σi with respect to pki. Signer i
computes πi using the Σ-protocol in Figure 3. We use the Fiat-Shamir heuristic to make the signing phase
non-interactive.

PVer(pki,m, σi): On input the threshold public key pki and the partial signature tuple (σi, πi), and the
message m validates σi by running the Σ-protocol verifier V, and accepts if and only if V accepts.
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Setup(1λ):

1: (G, Ĝ,GT , p) ← GGen(1λ) be pairing groups
(G, Ĝ,GT ) of prime order p, scalar field Zp and bi-
linear pairing operation e : G× Ĝ→ GT .

2: Let g, h, v ∈ G be three uniformly random indepen-
dent generators of G.

3: Let H0,H1 :M→ Ĝ and HFS : {0, 1}∗ → Zp be three
hash functions modeled as random oracle.

4: return (G, Ĝ, p, g, h, v,H0,H1,HFS).

// We assume all algorithms implicitly take the output of
Setup as input. We use HFS in SigmaProve and SigmaVer.

KGen():

5: Let s(·), r(·), u(·) ←$ Zp[X] be three polynomials of
degree t with r(0) = u(0) = 0.

6: Let pk := gs(0)hr(0)vu(0) = gs(0)

7: for each i ∈ [n] :
8: Let ski := (s(i), r(i), u(i))
9: Let pki := gs(i)hr(i)vu(i)

10: return (pk, {pki}i∈[n], skj) to signer j for all j ∈ [n]

PSign(ski = (si, ri, ui),m):

11: Let σi := H0(m)siH1(m)ri

12: Let πi := SigmaProve(pki,m, σi, ski)
13: return σi, πi

PVer(pki,m, (σi, πi)):

14: return SigmaVer(pki,m, σi, πi)

Comb(S,m, {(pki, (σi, πi))}i∈S :

15: assert |S|≥ t + 1
16: for each i ∈ S :
17: assert PVer(pki,m, (σi, πi))

18: Let Li,S be the i-th Lagrange coefficients for S

19: return σ :=
∏

i∈S σ
Li,S

i

Ver(pk,m, σ):

21: if e(pk,H0(m)) = e(g, σ) :
22: return 1
23: return 0

Fig. 2: Adaptively secure (n, t) BLS threshold signature with trusted key generation.

Input: (g, h, v, pk) ∈ G4, (ĝ0, ĝ1) = (H0(m),H1(m)) for some m ∈M, σ ∈ Ĝ
Witness: (s, r, u) ∈ Z3

p

The prover P wants to convince the verifier V that it knows s, r, u ∈ Zp such that pk = gshrvu and σ = ĝs0 ĝ
r
1 .

// We assume that both algorithms implicitly take of g, h, v,H0,H1 as input

SigmaProve(pk,m, σ, (s, r, u)):

1: Let ĝ0 := H0(m) and ĝ1 := H1(m)
2: Sample as, ar, au ←$ Zp. Let x := gasharvau , and y := H0(m)asH1(m)ar .
3: Let c := HFS(x, y, pk, σ, ĝ0, ĝ1), for hash function HFS : {0, 1}∗ → Zp modeled as a random oracle.
4: Let zs := as + s · c, zr := ar + r · c and zu := au + u · c.
5: return π := (x, y, zs, zr, zu).

SigmaVer(pk,m, σ, π = (x, y, zs, zr, zu)):

6: Let ĝ0 := H0(m) and ĝ1 := H1(m)
7: Let c := HFS(x, y, pk, σ, ĝ0, ĝ1)
8: if gzshzrvzu = x · pkc and ĝzs0 ĝzr1 = y · σc :
9: return 1

10: return 0

Fig. 3: Σ-protocol for computing and verifying the correctness proof for partial signatures.

Comb(S,m, {(pki, (σi, πi))}i∈S : Upon receiving a set of signers S with |S|≥ t + 1, a message m, and the
corresponding threshold public-key and partial signatures tuples {(pki, (σi, πi))}i∈S , first validates each of
the partial signature using PVer. If any of these partial signatures verification fails, i.e., returns 0, the Comb
algorithm returns ⊥. Otherwise, the Comb algorithm computes the threshold signature σ as:

σ :=
∏
i∈T

σ
Li,S

i (3)

where Li,S is the i-th Lagrange coefficient with respect to the set S.

Ver(pk,m, σ): The verification procedure of our scheme is identical to that of the standard BLS signature:
on input the public key pk and the signature σ on a message m, a verifier accepts if e(pk,H0(m)) = e(g, σ).
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Remark. Note that signers do not use u(i) while computing σi. It is in the public verification key (and
hence used in computing πi) as an artifact to make our adaptive security proof go through.

6 Proofs of Adaptive Security

We first analyze the properties of the Σ-protocol in Figure 3, which we then use to prove the robustness and
adaptive security of our threshold signature scheme.

6.1 Properties of the Σ-protocol

We require the Σ-protocol to satisfy the standard completeness, knowledge-soundness, and zero-knowledge
properties [Dam02]. Briefly, the completeness property guarantees that an honest prover will always be able to
convince an honest verifier about true statements. The knowledge soundness property ensures that, for every
prover who convinces an honest verifier about a statement with a non-negligible probability, there exists an
efficient extractor who interacts with the prover to compute the witness. Finally, the zero-knowledge property
ensures that the proof reveals no information other than the statement’s truth. We remark that achieving
zero-knowledge against honest verifiers is sufficient for our purposes. The completeness of our Σ-protocol
is straightforward. The knowledge soundness and honest-verifier zero-knowledge properties also follow from
standard Σ-protocol analysis.

Knowledge soundness. We prove knowledge soundness by extractability. For any PPT prover P, let E be
the extractor. Then E interacts with P with two different challenges c and c′ on the same first message to
receive two pairs of valid responses (zs, zr, zu) and (z′s, z

′
r, z
′
u). Then, we have:

gzs−z
′
shzr−z′

rvzu−z
′
u = pkc−c

′
and H0(m)zs−z

′
sH1(m)zr−z

′
r = σc−c′

=⇒ s =
zs − z′s
c− c′

; r =
zr − z′r
c− c′

; u =
zu − z′u
c− c′

Let εext be the success probability of the extractor E . Then, it follows from the generalized forking
lemma [BN06] that εext ≥ ε2/qFS − ε/p where ε is the probability that an adversary A outputs a valid
response while making at most qFS random oracle queries to HFS.

Honest verifier zero-knowledge (HVZK). Let S be the simulator. S samples uniformly random (c, zs, zr, zu) ∈
Z4
p and computes x and y as

x := gzshzrvzu · pk−c and y =: H0(m)zsH1(m)zr · σ−c (4)

S then programs the random oracle such that HFS(x, y, pk, σ,m) = c and outputs π = (c, zs, zr, zu) as the
proof. Clearly, the simulated transcript is identically distributed to the real-protocol transcript.

6.2 Robustness

Before we prove the robustness of our scheme, we prove the following helper lemma.

Lemma 1. If any signer i with threshold public key pki = gs(i)hr(i)vu(i) outputs a partial signature σi on
a message m along with a valid Σ-protocol proof πi as per Figure 3, then assuming hardness of discrete
logarithm in G, σi is well-formed, i.e., σi = H0(m)s(i)H1(m)r(i).

Proof. For valid Σ-protocol proof πi, let E be the extractor from §6.1 and let s′, r′, u′ be the extracted
witness. We need to prove (s′, r′, u′) = (s(i), r(i), u(i)).

For the sake of contradiction, assume this is not the case. Then, we can construct an adversary Adl that
breaks the discrete logarithm in G as follows. On input a discrete logarithm instance (g, y) ∈ G2, Adl samples
θ ∈ {0, 1} and sets either h = y or v = y depending on the value of θ. Adl picks the other parameter as
gα for some α ←$ Z∗p. Adl next faithfully emulates the trusted key generation with A with some chosen
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polynomials s(·), r(·), v(·). Adl also faithfully emulates the corruption, partial signature queries, and random
oracle queries.

Now (s′, r′, u′) ̸= (s(i), r(i), u(i)) for any signer i implies that

gs
′−s(i)hr−r(i)vu

′−u(i) = 1G (5)

where 1G is the identity element of G.
Say h = gαh and v = gαv for some αh, αv ∈ Z∗p, and let δs := s′− s(i), δr := r′− r(i), and δu := u′−u(i).

Then, equation (5), implies that δs + δrαh + δuαv = 0. If either δr or δu is non-zero, then we can compute
αh or αv, respectively, as:

δr ̸= 0 =⇒ αh = (−δs − αvδu) · δ−1r ; δu ̸= 0 =⇒ αv = (−δs − αhδr) · δ−1u (6)

Finally, (δr, δu) = (0, 0), implies that δs = 0. Since Adl uses y as either h or v uniformly at random, it
implies that if the extractor E outputs (s′, r′, u′) ̸= (s(i), r(i), u(i)) with probability εext, then Adl outputs
the discrete logarithm of y with respect to g, with probability at least εext/2. ⊓⊔

We will now prove that robustness, i.e., any PPT adversary A wins the RB-CMAATS game in Figure 1 only
with a negligible probability. More formally,

Theorem 3 (Robustness). The non-interactive (n, t)-threshold signature scheme TS = (Setup,KGen,PSign,
PVer,Comb,Ver) in Figure 2 is RB-CMAATS secure.

Proof. There are two possible winning cases for an adversary A in the RB-CMAATS game: (1) honestly com-
puted partial signatures do not satisfy the validation check PVer (line 23 in the RB-CMAATS game in Figure 1),
and (2) every partial signature passes PVer but the honestly aggregated full signature does not satisfy the
validation check Ver (line 29 in Figure 1).

Let us first analyze the first winning case. Note that the PVer algorithm in our protocol runs the verifier
of the Σ-protocol in Figure 3. Then, the completeness property of the Σ-protocol guarantees that the Σ-
protocol verifier always accepts honestly generated proofs. This implies that the winning condition in line 8
in Figure 1 never occurs for our protocol.

Now let us consider the second winning case. Lemma 1 ensures that assuming hardness of discrete
logarithm in G, the aggregator only aggregates well-formed partial signatures. Thus, we get

σ =
∏
i∈S

σLi,S =
∏
i∈S

H0(m)s(i)Li,SH1(m)r(i)Li,S

= H0(m)
∑

i∈S s(i)Li,SH1(m)
∑

i∈S r(i)Li,S = H0(m)sH1(m)0 = H0(m)s.

Note that σ = H0(m)s always satisfies the final verification check Ver.
Thus, we get that assuming the hardness of discrete logarithm in G, any PPT adversary A wins the

RB-CMAATS game only with a negligible probability. ⊓⊔

6.3 Helper Lemmas for Unforgeability

Our unforgeability proof crucially relies on the following lemma from Naor-Reingold [NR04, Lemma 4.4].
We refer the reader to [NR04] for its proof.

Lemma 2 (Lemma 4.4 in [NR04]). For any security parameter λ, let (Ĝ, p, ĝ)← GGen(1λ) be a cyclic

group of prime order p and generator ĝ ∈ Ĝ. For all qH ≤ poly(λ), assuming hardness of decisional Diffie-

Hellman (DDH) assumption in Ĝ, the following two distributions are indistinguishable.

D0 := ĝ, ĝα, {(ĝβi , ĝγi)}i∈[qH] for α←$ Zp and ∀i ∈ [qH] (βi, γi)←$ Z2
p (7)

D1 := ĝ, ĝα, {(ĝβi , ĝα·βi)}i∈[qH] for α←$ Zp and ∀i ∈ [qH] βi ←$ Zp (8)

More precisely, if an adversary A can distinguish between a sample from D0 and D1 with probability ε, then
A can break the DDH assumption with probability at least ε− 1/p. This implies ε ≤ εddh + 1/p.
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We use the abovementioned lemma to prove the following.

Lemma 3. For security parameter λ, let (Ĝ, p, ĝ) ← GGen(1λ) be a cyclic group of prime order p and

generator ĝ ∈ Ĝ. For any η with 0 ≤ η ≤ 1, let Berη be the Bernoulli distribution with parameter η, i.e.,

Pr
b←Berη

[b = 1] = η (9)

For all qH ≤ poly(λ) let the distribution D1,η be defined as follows:

D1,η := ĝ, {(ĝβi , gγi)}i∈[qH] for α←$ Zp, {bi ← Berη}i∈[qH] where

{
if bi = 0, βi ←$ Zp, γi := α · βi

otherwise, (βi, γi)←$ Z2
p

Then, assuming hardness of DDH in Ĝ, the distributions D0 (defined in Lemma 2) and D1,η are indistin-
guishable except with probability at most εddh + 1/p.

Proof. Define D0,η to be identical to D0 for notational convenience. Given a sample (ĝ, ĝα, {(ĝβi , ĝγi)}i∈[qH]
from Dθ for either θ ∈ {0, 1} we can get a sample from Dθ,η as follows:

1. For each i ∈ [qH], sample bi ← Berη

2. If bi = 0, then substitute ĝγi in the given sample with a uniformly random element in Ĝ.

3. Drop the term ĝα.

Looking ahead, our proof also relies on the following simple probabilistic lemma.

Lemma 4. Let (X0, Y0) and (X1, Y1) be two tuple of discrete random variables where X0 is independent of
Y0 and X1 is independent of Y1. For every function f(Xθ, Yθ) for either θ ∈ {0, 1}, if X0 ≡ X1 and Y0 ≡
Y1, where ≡ indicates that the two random variables are identically distributed, then (X0, Y0, f(X0, Y0)) ≡
(X1, Y1, f(X1, Y1)).

Proof. To prove this lemma, we prove that for all (x, y, z), it is the case that:

Pr[X0 = x ∧ Y0 = y ∧ f(X0, Y0) = z] = Pr[X1 = x ∧ Y1 = y ∧ f(X1, Y1) = z]

For any fixed (x, y, z) we have that:

Pr[X0 = x ∧ Y0 = y ∧ f(X0, Y0) = z] = Pr[X0 = x] · Pr[Y0 = y ∧ f(x, Y0) = z | X0 = x]

= Pr[X0 = x] · Pr[Y0 = y ∧ f(x, Y0) = z]

Here the last equality follows from the fact that X0 is independent of Y0.

Using a similar argument as above, we also get that:

Pr[X1 = x ∧ Y1 = y ∧ f(X1, Y1) = z] = Pr[X1 = x] · Pr[Y1 = y ∧ f(x, Y1) = z]

Now, since X0 ≡ X1 and Y0 ≡ Y1, we get that:

Pr[X0 = x ∧ Y0 = y ∧ f(X0, Y0) = z] = Pr[X1 = x ∧ Y1 = y ∧ f(X1, Y1) = z].

Since the above holds for arbitrary (x, y, z), we get (X0, Y0, f(X0, Y0)) ≡ (X1, Y1, f(X1, Y1)). ⊓⊔
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Input: co-CDH tuple (g, ga, ĝ, ĝa, ĝb) ∈ G3 × Ĝ.

KGen simulation:
1. Let αv ←$ Z∗

p. Let h := ga and v := gαv .
2. Let s, u ←$ Zp. Sample three uniformly random degree t polynomials s(x), r(x), u(x) ∈ Zp[x] with the

constraints s(0) = s, u(0) = u and r(0) = 1. Here 1 is the multiplicative identity element of the field Zp.
3. Compute pk := gs(0)hr(0)vu(0) = gshvu, and for each i ∈ [n], pki := gs(i)hr(i)vu(i)

4. For each i ∈ [n], let ski := (s(i), r(i), u(i)). Send pk, {pkj}j∈[n] to A.

Corruption simulation:
5. Let H and C = [n] \ H be the set of honest and malicious parties, respectively.
6. When A submits a corruption query i, if |C|≥ t, respond with ⊥. Otherwise, send ski to A. UpdateH := H\{i}

and C := C ∪ {i}.

Threshold signature simulation:
7. For each query to HFS on input x, Return HFS(x) if HFS(x) ̸= ⊥. Otherwise, return HFS(x) := y ←$ Zp.
8. Let α := a + αvu, thus ĝα := ĝa · ĝαvu. // Aco-cdh does not know α.
9. Let qs be an upper bound on the number of signature queries.

10. Maintain a bit-map bit-map :M→ {0, 1} that maps messages m to bit-map[m].
11. On k-th random oracle query to Hθ for either θ ∈ {0, 1} on message mk:

(a) If Hθ(mk) ̸= ⊥, return Hθ(mk). Otherwise,
(b) Sample the value of bit-map[mk] from a Bernoulli distribution Berη with parameter η = 1/(qs + 1), i.e.,

bit-map[mk] = 1 with probability η.
(c) If bit-map[mk] = 0, program the random oracles as follows and return Hθ(mk).

H0(mk) := ĝβk ; H1(mk) := (ĝα)βk for βk ←$ Zp (10)

(d) If bit-map[mk] = 1, set the random oracles as follows and return Hθ(mk).

H0(mk) := ĝβk·b; H1(mk) := ĝk for βk ←$ Zp, ĝk ←$ Ĝ (11)

12. Upon a signature query on message mk:
(a) If bit-map[mk] = 0, honestly respond to partial signing queries.
(b) Alternatively, if mk is the unique message with bit-map[mk] = 1 for whichA has queried partial signatures,

honestly respond to up to t − |Cfin| partial signing queries for mk. Here, Cfin with |Cfin|≤ t is the set of
parties A corrupts by the end of its interaction with Aco-cdh.

(c) Otherwise, if A queries for more than t− |Cfin| partial signatures on mk or has already queried for partial
signatures on m′ ̸= mk with bit-map[m′] = 1, abort.

Compute co-CDH output:

13. When A outputs a valid forgery (mk, σ) for a message mk with bit-map[mk] = 1, output σβ−1
k · (ĝb)−(s+αvu)

as the co-CDH solution.

Fig. 4: Aco-cdh’s interaction with A to compute the co-CDH solution, when signers use the KGen functionality
to setup the signing keys.

6.4 Unforgeability with an Adaptive Adversary

We will prove the unforgeability assuming the hardness of the DDH in Ĝ and the hardness of co-CDH in (G, Ĝ).
Let Aco-cdh be the reduction adversary. Upon input a co-CDH instance (g, ĝ, ga, ĝa, ĝb), Aco-cdh interacts with
A such that when A forges a signature, Aco-cdh uses the forgery to compute ĝab. We summarize Aco-cdh

interaction with A in Figure 4 and describe it next.

Simulating the public parameters. On a co-CDH input (g, ĝ, ga, ĝa, ĝb), Aco-cdh samples αv ←$ Z∗p, sets
h := ga, v := gαv , and sends (g, h, v) to A. Aco-cdh provides A access to the random oracles using lazy
programming, i.e., Aco-cdh programs random oracles on any input only upon a query.

Simulating the KGen functionality. Aco-cdh samples s, u ←$ Zp and three uniformly random degree t
polynomials s(·), r(·), u(·) ∈ Zp[x], but crucially with the constraints s(0) = s, u(0) = u, and r(0) = 1 for the
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multiplicative identity 1 in Zp. Aco-cdh then computes the public key and threshold public keys as follows:

pk := gs(0)hr(0)vu(0) = gshvu; and
{
pki := gs(i)hr(i)vu(i)

}
i∈[n]

(12)

Aco-cdh then sends pk, {pki}i∈[n] to A.
Simulating corruption queries. Let H and C = [n] \ H be the set of honest and malicious parties,
respectively. Anytime during the signing phase, if A corrupts signer i ∈ [n], Aco-cdh checks whether |C|< t or
not. If the check is successful, Aco-cdh faithfully reveals the secret signing key ski := (s(i), r(i), u(i)) of signer
i, and updates C := C ∪ {i} and H := H \ {i}. Aco-cdh lets A only corrupt up to t signers. Otherwise, Aco-cdh

outputs ⊥.
Simulating signing queries. Let qs be the upper-bound on the number of signature queries. To simulate
the signature queries, Aco-cdh maintains a bit-map bit-map : M → {0, 1} that maps messages m to bits
bit-map[m]. Concretely, for each query Hθ(m) with a new message m for either θ ∈ {0, 1}, Aco-cdh samples
bit-map[m] from a Bernoulli distribution Berη with parameter η = 1/(qs + 1). That is, bit-map[m] is set to
1 with probability 1/(qs + 1) and to 0 otherwise. Note that for each message m, Aco-cdh samples bit-map[m]
only once, when the Aco-cdh queries either queries H0(m) or H1(m) for the first time.
Aco-cdh simulates the signing queries by programming the random oracles as follows. Let α := a + αvu.

Note that H0 is always queried on the forged message, at least by Aco-cdh during the signature verification.
Moreover, whenever A queries Hθ for either θ ∈ {0, 1} on any message, Aco-cdh internally queries H1−θ on
the same message. Next, on the k-th random oracle query Hθ(mk) for either θ ∈ {0, 1}, unless Hθ(mk) ̸= ⊥,
depending upon the value of bit-map[mk], Aco-cdh programs the random oracles as follows.

bit-map[mk] = 0 =⇒ H0(mk) := ĝβk ; H1(mk) := ĝα·βk for βk ←$ Zp

bit-map[mk] = 1 =⇒ H0(mk) := ĝβk·b; H1(mk) := ĝk for βk ←$ Zp, ĝk ←$ Ĝ

Then, upon a signature query on a message mk, if bit-map[mk] = 0, Aco-cdh always responds to partial
signing queries as per the honest protocol. However, Aco-cdh aborts if A queries for partial signatures for more
than one messages with bit-map set to 1. Also, if there exists any message mk such that bit-map[mk] = 1
and A queries for partial signatures on mk, then, Aco-cdh faithfully responds to up to t− |Cfin| partial signing
queries and aborts if A queries for more partial signatures on message mk. Here, Cfin with |Cfin|≤ t is the set
of parties, A corrupts by the end of its interaction with Aco-cdh.

Computing the co-CDH solution. When A outputs a valid forgery (mk, σ) for any message mk with
bit-map[mk] = 1, Aco-cdh uses its knowledge of (s, u, γk) and computes the co-CDH solution as follows:

ĝcdh := σβ−1
k · (ĝb)−(s+αvu) (13)

Lemma 5. If (mk, σ) is a valid forgery with bit-map[mk] = 1, then ĝcdh is the valid co-CDH solution.

Proof. Since (mk, σ) is a valid forgery, the following holds.

e(pk,H0(mk)) = e(g, σ) =⇒ e(gshvu, ĝβk·b) = e(g, σ) (14)

Let ĥ = ĝa and v̂ = ĝαv . Then, from equation (14), we get that:

σ =
(
ĝsĥv̂u

)βk·b
=⇒ σβ−1

k · ĝ−b(s+αvu) = ĥb = ĝab = ĝcdh ⊓⊔

Next, we illustrate that assuming the hardness of DDH in Ĝ, if A forges a signature in the UF-CMAATS
game, then A also forges a signature during its interaction with Aco-cdh, just with a slightly lower probability.

We will illustrate this via a sequence of games. Game G0 is the real protocol execution, and game G7 is
the interaction of A with Aco-cdh. Here on, for any game Gi, we will use “Gi ⇒ 1” as a shorthand for the
event that a PPT adversary A forges a signature in game Gi.
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Game G0: This game is the security game UF-CMAATS for our threshold signature scheme, where the game
follows the honest protocol. Here, the game provides A access to any random oracle using the standard lazy
simulation technique.

We also make a purely conceptual change to the game. Let (m∗, σ∗) be the forgery. Then, we assume
that A always queries H0(m

∗) before outputting the forgery. This is without loss of generality and does not
change the advantage of A because one could build a wrapper adversary that internally runs A but queries
H0(m

∗) before outputting. Then by definition, we have:

AdvUF-CMA
A,TS (λ) = Pr[G0 ⇒ 1] = εσ.

Game G1: Let qs be the upper-bound on the number of signing queries. In this game, we introduce a bit-map
b[·] that maps messages m to bits bit-map[m] ∈ {0, 1}. Concretely, for each query Hθ(m) with a new message
m for either θ ∈ {0, 1}, the game samples bit-map[m] from a Bernoulli distribution Berη with parameter
η = 1/(qs + 1). That is, bit-map[m] is set to 1 with probability 1/(qs + 1) and to 0 otherwise.

The game aborts if A queries for partial signatures two or more messages for which bit-map is set to 1.
Stating differently, the game aborts if there exits two messages (m,m′) with bit-map[m] = bit-map[m′] = 1,
where m ̸= m′ and A has queried for partial signatures on both messages m and m′. The game also aborts,
if bit-map[m∗] = 0 for the forged message m∗ or if A queries for more than t− |Cfin| partial signatures on the
forged message m∗. Here, Cfin is the set of signers A corrupts by the end of the game. Clearly, if no abort
occurs, games G0 and G1 are the same. Further, the view of A is independent of the map b. We obtain:

Pr[G1 ⇒ 1] = η(1− η)qs · Pr[G0 ⇒ 1]

Now, using an analysis similar to [Cor00, BLS01], we get that

Pr[G1 ⇒ 1] ≥ 1

4qs
· Pr[G0 ⇒ 1].

Game G2: This game is identical to G1, except that we sample αh, αv ←$ Z∗p and set h := gαh and v := gαv .
Clearly, the view of A in G1 is identical to its view in G2, hence Pr[G1 ⇒ 1] = Pr[G2 ⇒ 1].

Game G3: In this game, we change how we program the random oracles H0 and H1. In particular, we
program the random oracles H0,H1 in a correlated manner to ensure a distribution identical to how Aco-cdh

programs these random oracles in Figure 4. The rest of the steps are identical to game G2.
More specifically, in game G3, we sample α ←$ Zp. Then, for the k-th random oracle query to Hθ on

input mk for either θ ∈ {0, 1}, if Hθ(mk) ̸= ⊥, depending upon the value of bit-map[mk], we program the
random oracles as follows:

bit-map[mk] = 0 =⇒ H0(mk) := ĝβk ; H1(mk) := ĝα·βk for βk ←$ Zp (15)

bit-map[mk] = 1 =⇒ H0(mk) := ĝβk ; H1(mk) := ĝk for βk ←$ Zp, ĝk ←$ Ĝ (16)

We next bound the probability Pr[G3 ⇒ 1] as follows.

Lemma 6. Let εddh be the advantage of breaking DDH in Ĝ as defined in Assumption 1, then |Pr[G2 ⇒
1]− Pr[G3 ⇒ 1]|≤ εddh + 1/p.

Proof. Observe that, in game G2, we program the random oracles H0 and H1 with a sample from D0 defined
in Lemma 2. Similarly, in game G3, we program the random oracles H0 and H1 with a sample from the
distribution D1,η for η = 1/(1 + qs) defined in Lemma 3. Apart from the output of the random oracles H0

and H1, the rest of the view is identically distributed in G2 and G3. Therefore, from Lemma 3, assuming
hardness of DDH in Ĝ, samples from distributions D0 and D1,η are computationally indistinguishable, and

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ εddh +
1

p
(17)
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Game G4: In this game, we change how we sample βk for all H0 queries on message mk where bit-map[mk] =
1. More specifically, in game G4, we sample a β ←$ Z∗p once at the beginning of the game and program the
random oracles as follows:

bit-map[mk] = 1 =⇒ H0(mk) := ĝβk·β for βk ←$ Zp (18)

Clearly, since β ̸= 0, and βk for all k are uniformly random and independent, βk · β are also uniformly
random and independent. Therefore, the view of A in game G4 is identically distributed as its view in game
G3, i.e., Pr[G3 ⇒ 1] = Pr[G4 ⇒ 1].

Game G5: In this game, we change how we sample α. More specifically, in game G5, we sample u ←$ Zp

and compute α := αh + αvu. The rest of the steps are identical to game G5. Since, u is uniformly random
and independent of (αh, αv), α in game G4 is also uniformly random and independent of (αh, αv). Therefore,
the view of A in game G5 is identically distributed as its view in game G5, i.e., Pr[G5 ⇒ 1] = Pr[G4 ⇒ 1].

Game G6: This game is identical to G5, except that for each honest signer we use simulated NIZK proofs
for correctness of partial signatures instead of actual NIZK proofs. Looking ahead, we switch to simulated
NIZK proofs in this game to later argue in game G8 that the NIZK proofs do not reveal any information
about the secret signing keys. This is crucial to argue the indistinguishability between game G7 and G8.

During the NIZK simulation, the game programs the random oracle HFS on input (x, y, pk, σ, ĝ0, ĝ1) at a
choice of its challenge. The game aborts if HFS is already programmed at (x, y, pk, σ, ĝ0, ĝ1). Note that the
NIZK protocol we use is perfect honest-verifier zero-knowledge (HVZK). Hence, conditioned on the successful
programming of the random oracle HFS, i.e., if the game does not abort, A’s view in games G5 and G6 are
identically distributed. Next, we will formally analyze the abort probability.

Let Coll be the event that at least one of our HFS query collides with A’s HFS query. Since, the view of A
in games G5 and G6 only differ if the event Coll occurs, i.e, Pr[G5 ⇒ 1|¬Coll] = Pr[G6 = 1|¬Coll], we get:

|Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]| = |Pr[G5 ⇒ 1|Coll]− Pr[G6 ⇒ 1|Coll]| · Pr[Coll] ≤ Pr[Coll]

Here, we also use the fact that |Pr[G5 ⇒ 1|Coll]− Pr[G6 ⇒ 1|Coll]| ≤ 1.

We now analyze the probability of event Coll. For each NIZK simulation, the game needs to program HFS

at a input (x, y, pk, σ, ĝ0, ĝ1) for some uniformly random x, y ←$ G. Since A makes at most qFS queries to
the random oracle HFS, the probability that the game aborts during each NIZK simulation is at most qFS/p

2.
Since A makes at most qs signing queries and we need to simulate at most n partial signatures per signing
query, using a simple union bound, we get

Pr[Coll] ≤ qFS · qs · n
p2

= εcoll. (19)

Hence, we get |Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]|≤ εcoll.

Game G7: In this game, we change how we sample the signing keys. To illustrate our modification, we will
distinguish between the signing key polynomials of game G6 and G7. More precisely, let s6(x), r6(x), u6(x)
and s7(x), r7(x), u7(x) be the signing key polynomials in game G6 and game G7, respectively. Then, in game
G7 we sample the signing key polynomial s7(x) := s6(x) + α where α = αh + αvu. The other two signing
key polynomials remain unchanged, i.e., r7(x) := r6(x) and u7(x) := u6(x).

Note that, for any fixed α, since s6(x) is a random degree t polynomial, s7(x) = s6(x) + α is also a
random degree t polynomial. Therefore, A’s view in game G6 and game G7 are identically distributed, and
hence we get Pr[G6 ⇒ 1] = Pr[G7 ⇒ 1].

Game G8: In this game, we change how we sample the signing keys again. More precisely, we sample signing
key polynomials such that s8(x) := s6(x), r8(x) := r6(x) + 1 and u8(x) := u6(x) + u for uniformly random
u ∈ Zp we used to define α = αh + αvu.

The indistinguishability between A’s view in game G7 and game G8 is another crucial step of our proof.
To prove this indistinguishability, we will use Lemma 4.
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Lemma 7. Pr[G7 ⇒ 1] = Pr[G8 ⇒ 1].

Proof. We will prove this lemma using the H-coefficient technique [Pat08, CS14]. Since we want to prove
that G7 and G8 are identically distributed, we can assume, without loss of generality, that the optimal
distinguisher is unbounded and deterministic.

Let T0 and T1 be the two random variables denoting the transcripts of the interaction of A in games G7

and G8, respectively. Then, for any potential value τ of Tθ, where θ ∈ {0, 1}, let p0(τ) and p1(τ) be the
interpolation probabilities, i.e., the probabilities that we pick randomness in the respective game that would
lead to transcript τ if the corruption set, the signing queries, and the random oracle queries are fixed [TZ23a].
These probabilities are independent of A and only depend on τ and the randomness of the game. Therefore,
by the H-coefficient technique, to argue that the adversary’s view in G7 is identically distributed to its view
in G8, it is sufficient to show that for all transcripts τ , p0(τ) = p1(τ).

Since the interpolation probabilities are independent of A, instead of working with the random variables
T0 and T1, we can work with the following marginal transcript random variables W0 and W1. Here, W0 and
W1 are the random variables that affect the view of A for any fixed query made by A. We will later show
that for any fixed queries by A, W0 and W1 uniquely determine A’s view in games G7 and G8, respectively.

W0 := (

X0︷ ︸︸ ︷
αh, αv, α, s6(0), u, {s7(i), r7(i), u7(i)}i∈C}, Y0, f(X0, Y0)) (20)

W1 := (αh, αv, α, s6(0), u, {s8(i), r8(i), u8(i)}i∈C}︸ ︷︷ ︸
X1

, Y1, f(X1, Y1)) (21)

Here, we use Y0 (resp. Y1) to denote the random variable for the bit-map, the simulated NIZK proofs, and
the output of the random oracle queries that are independent of X0 (resp. X1) in game G7 (resp. G8). Here,
the random oracle outputs consists of ĝβ , ĝβ·βk for all k ∈ [qH] and ĝk for all k ∈ [qs] with bit-map[mk] = 1.
Clearly, Y0 (resp. Y1) is independent of X0 (resp. X1). Also, Y0 and Y1 are identically distributed.

We now show that for any fixed A’s queries, given (Xθ, Yθ) for either θ ∈ {0, 1}, the rest of A’s view is a
deterministic function of (Xθ, Yθ), which we denoted as f(·, ·). We also show the function f(·, ·) is the same
in both games.

– Let α := αh + u · αv. Then, all random oracle queries to Hb for either b ∈ {0, 1} are a deterministic
function of (α, Yθ).

– The discrete logarithm of the public key in both games G7 and G8 is the same and is equal to s6(0)+α.
More precisely, pkG7

= gs6(0)+α by definition. Similarly, we have that:

pkG8
= gs8(0)hr8(0)vu8(0) = gs6(0)hvu = gs6(0)+αh+αvu = gs6(0)+α

Now, since |C|= t, given s6(0) + α and the signing keys of parties in C, the threshold public keys of
all parties are deterministic functions of these values. The signature σ on any queried message m is
σ = H0(m)s6(0)+α, and is hence fixed given (Xθ, Yθ). Similarly, the partial signatures of all parties are
fixed and computable from σ and signing key shares of parties in C.

– The random oracle query outputs of HFS is a deterministic function of Yθ, the public keys of signers, and
their partial signatures.

Next, given Lemma 4, to prove that games G7 and G8 are identically distributed, it remains to show
that X0 and X1 are identically distributed, i.e., X0 ≡ X1. Concretely, for any potential value τ of Xθ for
θ ∈ {0, 1}, which we denote as

τ =
(
¯
αh,

¯
αv,

¯
s,
¯
u, {

¯
si,

¯
ri,

¯
ui}i∈

¯
C
)
,

let pθ(τ) = Pr[Xθ = τ ] for either θ ∈ {0, 1}. For p0(τ), note that the randomness consists of αh, αv ←$ Z∗p
and s6(0), u←$ Zp.

To generate a particular transcript τ , we need:

αh =
¯
αh, αv =

¯
αv, u =

¯
u, s6(0) =

¯
s.
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Since (αh, αv, s6(0), u) are chosen independently, this is true with probability: 1
p−1 ·

1
p−1 ·

1
p ·

1
p .

Next, we need to ensure that {s7(i), r7(i), u7(i)}i∈
¯
C = {

¯
si,

¯
ri,

¯
ui}i∈

¯
C . Now note that since |C|= t, condi-

tioned on (αh, αv, s6(0), u) = (
¯
αh,

¯
αv,

¯
s,
¯
u), there exists a unique set of three polynomials of degree at most

each, with constant terms (
¯
s+

¯
α, 0, 0) for

¯
α :=

¯
αh+

¯
u·

¯
αv, such that the above equality holds. Since we sample

the t additional coefficients of each of these polynomials uniformly at random in game G7, the equality holds
with probability 1/p3t. Therefore, we get:

p0(τ) =
1

p− 1
· 1

p− 1
· 1
p
· 1
p
· 1

p3t

Using a similar argument for p1(τ), we can show that:

p1(τ) =
1

p− 1
· 1

p− 1
· 1
p
· 1
p
· 1

p3t

Since the above holds for all transcript τ , this implies that X0 ≡ X1. Then, by Lemma 4, the view of A
in game G7 and G8 are identically distributed. ⊓⊔

Game G9: This game is identical to G8, except that we use actual NIZK proofs for partial signatures. We
switch back to real proofs in this game because Aco-cdh in Figure 4 uses real proofs during its interaction
with A. Finally, using an argument similar as in the advantage of A between G5 and G6, we get that:

|Pr[G8 ⇒ 1]− Pr[G9 ⇒ 1]| ≤ εcoll. (22)

Observe that, if game G9 does not abort, then A’s view in game G9 is identically distributed as its view
in its interaction with Aco-cdh, where Aco-cdh uses (ga, gb) from co-CDH input (g, ga, gb, ĝa) as (h, gβ) in game
G9. Additionally, Aco-cdh uses ĝa, ĝβ to compute the random oracle outputs in step 11 in Figure 4. Hence,
from the above sequence of games, we get that:

|Pr[G0 ⇒ 1]− Pr[G9 ⇒ 1]|≤ εddh +
1

p
+ 2εcoll +

(
1− 1

4qs

)
· Pr[G0 ⇒ 1]

=⇒ Pr[G9 ⇒ 1] ≥ 1

4qs
· εσ − εddh −

1

p
− 2εcoll. (23)

This implies that if an adversary A outputs a forgery in the UF-CMAATS game of our signature scheme
(i.e., G0) with probability εσ, then A outputs a forgery on mk̂ during its interaction with Aco-cdh (i.e., in G9)
with probability at least εσ/4qs − εddh − 1/p− 2εcoll. Moreover, Lemma 5 implies that Aco-cdh can efficiently
compute the co-CDH solution using the forgery on mk̂. Combining all the above, we get our main theorem,
as stated below.

Theorem 4 (Adaptively secure BLS threshold signature). Let λ be the security parameter, and let

(G, Ĝ,GT , p) ← GGen(1λ) be pairing groups of prime order p. For any n, t for n = poly(λ) and t < n,

assuming hardness of DDH in Ĝ, and hardness of co-CDH in (G, Ĝ) in the random oracle model, any PPT
adversary making at most qH random oracle queries to H0 and H1 combined, qFS queries to the random oracle
HFS, and at most qs signature queries wins the UF-CMAATS game Figure 1 for our scheme in Figure 2 with
probability at most εσ where:

εσ ≤ 4qs ·
(
εddh +

1

p
+ 2 · qFS · qs · n

p2
+ εcdh

)
,

εddh and εcdh are the advantages of an adversary running in T ·poly(λ, qH, n) time in breaking DDH in Ĝ and

co-CDH in (G, Ĝ), respectively. This implies that εσ is negligible, and hence, our threshold signature scheme
in §5 is unforgeable.

Remark. Note that the unforgeability property of our threshold signature scheme does not rely on the
soundness property of the Σ-protocol signers use to prove the correctness of the partial signatures. We only
rely on the knowledge-soundness property to achieve robustness of our scheme (see §6.2).
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6.5 Unforgeability with static adversary

We now briefly argue that if we are content with proving our signature scheme statically secure, then we
only need the hardness of CDH assumption in a pairing group (G, Ĝ) in the ROM. For static security, we

do not require asymmetric pairing groups. Thus, we will assume G = Ĝ in this analysis, and hence the CDH
assumption instead of co-CDH. Moreover, we will only consider the TS-UF-0 threat model from [BCK+22].
Our security proof is similar to the static security proof of Boldyreva’s scheme. We want to note that assuming
the hardness of CDH in the random oracle model, Boldyreva’s scheme has only been proven TS-UF-0 secure.
We adopt TS-UF-0 for simplicity since static security is not the main focus of the paper.

Let Astatic be the static adversary that breaks the unforgeability of our signature scheme, and let Acdh

be the CDH adversary. Let C be the set of signers Astatic corrupts at the beginning of the protocol, and
H = [n] \ C be the set of honest signers. Also, let S ⊂ H be the subset of honest signers Astatic will query for
partial signatures on the forged message. By the definition of a static adversary, we require that |C ∪ S|≤ t
and Astatic declare the sets C,S to Acdh. Acdh on input a CDH input (g, ga, gb) ∈ G3 simulates the KGen
functionality and the signature scheme with Astatic as follows.

Simulating the KGen functionality. For simplicity, let us assume |C∪S|= t. Acdh samples h, v ←$ G. Next,
Acdh samples two random degree t polynomials r(x), u(x) with the constraint r(0) = u(0) = 0. To compute
the polynomial s(x), Astatic samples s(j)←$ Zp for each j ∈ C ∪ S. Acdh sets the public key as pk = ga and
computes threshold public keys {pki} = {gs(i)hr(i)vu(i)}i∈[n] using interpolation in the exponent. Acdh then
sends pk, {pki}i∈[n], {ski}i∈C to Astatic.

Simulating the signing queries. Throughout the simulation Acdh always faithfully responds to queries to
H1. Note that H0 is always queried on the forged message, at least by Acdh during the signature verification.
Let qH be an upper bound on the number of random oracle queries to H0, including the query during the
signature verification. For static security, the number of queries to H1 can be unbounded. Acdh samples
k̂ ←$ [qH]. On the k-th random oracle query on message mk, depending upon the value of k, Acdh programs
the random oracle as follows:

k ̸= k̂ =⇒ H0(mk) = gβk for βk ←$ Zp; and k = k̂ =⇒ H0(mk) = gb;

Let qs be the maximum number of signing queries made by Astatic. We have qs ≤ qH. Then, whenever
k ̸= k̂, Acdh uses its knowledge of βk and polynomial r(·) to respond to partial signing queries correctly.

Alternatively, when k = k̂ and let mk̂ be the corresponding message, Acdh correctly responds to partial
signing queries for each signer j ∈ C ∪ S, using its knowledge of s(j). If Astatic queries for partial signatures
on mk̂ from signers not in C ∪ S, Acdh aborts.

Now, whenever Astatic outputs a valid forgery (mk̂, σ
∗), Acdh outputs σ∗ as the CDH solution. It is easy

to see that σ∗ = gab. We want to note that the tightness of the security analysis can be improved using by
now the standard Coron’s technique [Cor00].

7 Distributed Key Generation (DKG) Definitions and Analysis

In our discussion so far, we proved the adaptive security of our threshold signature scheme assuming a trusted
party generates the signing keys. In this section, we present a distributed key generation (DKG) protocol
that signers can run to set up the signing keys of our threshold signature scheme instead of relying on the
trusted party. DKG has the following interface.

DKG(): For any (n, t) non-interactive threshold signature scheme TS with t < n/2, DKG is an interactive
protocol among n parties, which all take some public parameters as inputs. At the end of the protocol,
signers output a public key pk, a vector of threshold public keys {pk1, . . . , pkn}. Each signer i additionally
outputs a secret key share ski.

As in §5, concretely, in our DKG protocol, ski = (s(i), r(i), u(i)), {pkj = gs(j)hr(j)vu(j)}j∈[n], and the

public verification key pk = gs(0)hr(0)vu(0). Here, s(·), r(·) and u(·) are three degree t polynomials with
r(0) = 0 and u(0) = 0. This implies that pk = gs(0).
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First, we require the DKG protocol to satisfy robustness, which states that the keys output by the DKG
protocol are well-formed, even in the presence of an adaptive adversary that can corrupt up to t out of n
signers. More formally,

Definition 5 (DKG Robustness). A DKG protocol DKG for any (n, t) non-interactive threshold signature
scheme TS with t < n/2 is robust, if for all security parameters λ and all PPT adversary A that can adaptively
corrupt up to t parties during the DKG protocol, the following holds:

Pr


∃ s(x), r(x), u(x) ∈ Zp[x]

t s.t.

r(0) = u(0) = 0 ∧ pk = gs(0)∧
ski = (s(i), r(i), u(i)),

pki = gs(i)hr(i)vu(i),∀i ∈ [n]

pk, {pki, ski}i∈[n] ← DKG(n, t)

 ≥ 1− negl(λ)

Here, the probability is over the choice of the randomness of both A and the honest parties.

We also require the DKG protocol to satisfy the single inconsistent party (SIP) simulatability. Recall that
the security proof of our threshold signature used a rigged public key with r(0) = 1 and uniformly random
u(0). However, with DKG, we do not have a trusted entity to set up the rigged public key. Instead, we will
rely on the SIP technique [CGJ+99, FMY99a, FMY99b] to set up a rigged public key. In more detail, we
will let one honest party deviate from the specified DKG protocol so that the final DKG output has the
rigged structure we need. For this to go through, we need to ensure that A cannot distinguish between the
execution with a single inconsistent party and the real execution of the protocol where all parties are honest.
The SIP simulatability property below captures this.

Definition 6 (SIP Simulatability). For security parameter λ, for all (n, t) with t < n/2 and all PPT
adversary A that adaptively corrupts up to t parties, let SDKG be an efficient simulator that runs a DKG
protocol with A with a single inconsistent party (SIP) such that the DKG output is rigged. A DKG protocol is
SIP simulatable if A’s view ViewAreal of the real protocol execution is indistinguishable from its view ViewAsim
in its interaction with SDKG.

We remark that the precise notion of rigged can vary depending upon the application. For our purpose,
we require the simulated protocol to output a public key pk = gshvu for s, u←$ Zp.

7.1 Design of our DKG protocol

We design our DKG protocol by augmenting the classic Pedersen DKG protocol, also referred to as the
JF-DKG protocol [GJKR07]. We pick JF-DKG due to its simplicity and popularity. We believe we can use
many other DKG protocols using a similar modification (see our discussion at the end of this section). We
summarize our protocol in Figure 5 and describe it next.

Let g, h, v ∈ G be three uniformly random generators of G with a scalar field Zp. We will describe our
DKG protocol in three phases: Sharing, Agreement and Key Derivation.

Sharing phase. During the sharing phase, each party i, as a verifiable secret sharing (VSS) dealer, samples
three random degree-t polynomials si(x), ri(x), ui(x) with ri(0) = ui(0) = 0 such that

si(x) := si,0 + si,1x+ · · ·+ si,tx
t; ri(x) := ri,1x+ · · ·+ ri,tx

t; ui(x) := ui,1x+ · · ·+ ui,tx
t

Party i then computes a commitment cmi ∈ Gt+1 to these polynomials

cmi := [gsi,0 , gsi,1hri,1vui,1 , · · · , gsi,thri,tvui,t ] (27)

and a proof of knowledge π of discrete logarithm of cmi[0] = gsi,0 with respect to the generator g using the
Schnorr identification scheme [Sch90] (steps 2 and 3).
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Public parameters: (g, h, v) ∈ G3,Zp

Sharing phase:
1. Each party i (as a dealer) chooses random polynomials si(x), ri(x) and ui(x) over Zp of degree t each, where

si(x) := si,0 + si,1x + · · ·+ si,tx
t; ri(x) := ri,1x + · · ·+ ri,tx

t; ui(x) := ui,1x + · · ·+ ui,tx
t (24)

2. Party i computes cmi := [gs0 , gs1hr1vu1 , . . . gsthrtvut ].
3. Party i computes πi, the NIZK proof of knowledge of si,0 with respect to gsi,0 .
4. Party i broadcasts (cmi, πi) to all.
5. Party i privately sends si(j), ri(j), ui(j) to party j.

Agreement phase:
6. Each party j verifies the shares it receives from other parties by checking for i = 1, . . . , n:

gsi(j)hri(j)vui(j) =
∏

k∈[0,t]

cmi[k]j
k

(25)

7. If the check fails for an index i, party j broadcasts a complaint against Pi

8. Party i (as a dealer) reveals si(j), ri(j), ui(j) matching eq. (25). If any of the revealed shares fails this equation,
party i is disqualified. Let Q be the set of non-disqualified parties.

Key-derivation phase:
9. The public key pk is computed as pk :=

∏
i∈Q cmi[0]. The threshold public keys pkj for each j ∈ [n] are

computed as:

pkj :=
∏
i∈Q

∏
k∈[0,t]

cmi[k]j
k

(26)

10. Each party j sets its signing key as skj := (
∑

i∈Q si(j),
∑

i∈Q ri(j),
∑

i∈Q ui(j)).
11. The shared secret key is s =:

∑
i∈Q si.

Fig. 5: Our DKG protocol which is a modification of the JF-DKG [GJKR07].

Party i then publishes (cmi, πi) (step 4) using a broadcast channel. Intuitively, the proof πi ensures that
the constant terms of ri(x) and ui(x) are zero, except with a negligible probability. Also, party i sends each
party j, via a private channel, the tuple (si(j), ri(j), ui(j)).

Agreement phase. The purpose of the agreement phase is for parties to agree on a subset of dealers, also
referred to as the qualified set, who correctly participated in the sharing phase. To agree on the qualified
set, each party j, upon receiving from dealer i the tuple (s′, r′, u′) (via the private channel) and (cmi, πi)
(via the broadcast channel), accepts them as valid shares if πi is a valid proof and the following holds:

gs
′
hr′vu

′
=

∏
k∈[0,t]

cmi[k]
jk (28)

If either of the validation checks fails for any dealer i, the party broadcasts a complaint against the dealer
i (step 7). The dealer i then responds to all the complaints against it by publishing the shares of all the
complaining parties. All parties then locally validate all the revealed shares for all the complaints. If any
dealer i publishes an invalid response to any complaint or does not respond at all, then dealer i is disqualified
(step 8). Let Q be the set of qualified dealers. Note that all honest parties will always be part of Q.
Key-derivation phase. With a qualified set Q, the final public key is pk =

∏
i∈Q cmi[0]. The threshold

public key pkj of every party j is computed as in equation (26). The signing key skj of each party j is the sum
of the j-th share of all dealers in Q as shown in step 10 of Figure 5. Let s(x), r(x), u(x) be the polynomials
defined as:

s(x) :=
∑
i∈Q

si(x); r(x) :=
∑
i∈Q

ri(x); u(x) :=
∑
i∈Q

ui(x). (29)

Once the DKG protocol finishes, each party i outputs its signing key ski := (s(i), r(i), u(i)), the public key
pk := gs(0)hr(0)vu(0) = gs(0), and the threshold public keys {pkj := gs(j)hr(j)vu(j)}j∈[n].
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Input: co-CDH tuple (g, ga, ĝ, ĝa, ĝb) ∈ G3 × Ĝ.

DKG simulation:
1. Sample αv ←$ Z∗

p. Let h := ga and v := gαv .

2. Let C and H be the set of honest and malicious parties, respectively. Sample î←$ H, and let H := H \ {̂i}.
3. For each honest party i ∈ H, maintain its internal state sti of the DKG protocol. The internal state consists

of the private messages party i receives and secret values party i samples throughout the DKG protocol.
4. On behalf of each i ∈ H

−ˆ
i
, run the DKG protocol as per the specification.

5. Let u←$ Zp. On behalf of î, sample three degree t uniformly random polynomial sî(x), rî(x), uî(x) ∈ Zp[x]
with the constraint that rî(0) = 1 and u(0) = u. Compute the commitment cmî as:

cmî := [g
s
î,0h

r
î,0v

u
î,0 , g

s
î,1h

r
î,1v

u
î,1 , . . . , g

s
î,th

r
î,tv

u
î,t ] (30)

here sî,j , rî,j , and uî,j for each j ∈ [0, t] is are the coefficient of xj in sî(x), rî(x), and uî(x), respectively.
6. Compute πî, the proof of knowledge of exponent cmî[0] with respect to g, by running the NIZK simulator.
7. For the of rest of the DKG protocol, follow the honest protocol specification on behalf of every honest party.
8. Let Q be the qualified set of parties in the DKG protocol. Note that, since we are working in a synchronous

network, H ⊆ Q and hence î ∈ Q.

Corruption simulation.
8. When A corrupts a signer i ∈ H:

(a) If i = î, rewind A to step 2 and rerun.
(b) Otherwise, send (sti, ski), the internal state and the signing key of party i to A, and update H := H\{i}

and C := C ∪ {i}.

Fig. 6: Simulator SDKG for our DKG protocol in Figure 5.

Using other DKG protocols. In Figure 5, we augment the JF-DKG protocol for our signature scheme. Our
augmentation techniques are generic and can be used with many existing DKG protocols that follow the
same three-phase structure [Ped91, CGJ+99, CS04, FS01, GJKR07, Gro21, KHG12, KKMS20, DYX+22].
Specifically, we can augment any such DKG protocol by having each VSS dealer: (i) share two additional
zero-polynomials r(·) and u(·); and (ii) publish a NIZK proof π for the correctness of the zero-polynomial.
Similarly, each VSS recipient will validate the shares it receives with the updated check in Figure 5.

7.2 Analysis of our DKG

We now prove that our DKG protocol satisfies the robustness and SIP simulatibility properties we define.

Lemma 8 (Robustness). Assuming the hardness of discrete logarithm (DL) in G, our DKG protocol in
Figure 5, is robust as per Definition 5.

Proof. An argument similar to the correctness analysis of [GJKR07, Theorem 1] ensures that assuming
hardness of discrete logarithm in G, individual signing keys ski = (s(i), r(i), u(i)) output by honest parties
lies on some degree t polynomials s(x), r(x) and u(x). We will now argue that assuming hardness discrete
logarithm in G, r(0) = u(0) = 0.

Let Adl be the discrete logarithm (DL) adversary. On input a DL instance (g, y) ∈ G2, Adl samples
θ ∈ {0, 1} and sets either h = y or v = y depending on the value of θ. Adl picks the other parameter as gα

for some known α ←$ Z∗p. Without loss of generality, let h = gαh and v = gαv for some αh, αv ∈ Z∗p. Adl

next faithfully runs the DKG protocol with A.
Let C ⊂ [n] be the set of corrupt parties and Q be the set of qualified parties. For each i ∈ C ∩ Q,

let si(x), ri(x) and ui(x) be the degree t polynomials shared by party i. Let si := si(0), ri := ri(0) and
ui := ui(0). Then, we will prove that assuming the hardness of discrete logarithm, for all parties i ∈ C ∩ Q,
(ri, ui) = (0, 0) except with a negligible probability.

For the sake of contradiction, assuming it is not the case, i.e., there exists an i ∈ C ∩ Q such that
(ri, ui) ̸= (0, 0). Then, Adl solves the discrete logarithm for y as follows. Let cmi be the commitment
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vector output by party i, along with a NIZK proof-of-knowledge πi. Adl then extracts the witness w such
that gw = cmi[0] from A using the NIZK proof-of-knowledge extractor. Also, let si(x), ri(x), ui(x) be the
polynomial party i shares during the DKG protocol. Then, since n− t > t, Adl can extract si(x), ri(x), ui(x)
using a straight-line extractor. Let si := si(0), ri := ri(0) and ui := ui(0). Then, since i ∈ Q, it is also the
case that cmi[0] = gsihrivui . Therefore,

w = si + αhri + αvui. (31)

Now, depending on whether ri ̸= 0 or ui ̸= 0, Adl computes either αh or αv as:

ri ̸= 0 =⇒ αh = (w − si − uiαv) · r−1i ; ui ̸= 0 =⇒ αv = (w − si − riαh) · u−1i (32)

We will now analyze the success probability of Adl assuming parties use the Schnorr identification scheme
in G with Fiat-Shamir heuristic as the proof-of-knowledge protocol [Sch90, FS86]. Let Hpok be the random
oracle used in the proof-of-knowledge protocol and let qpok be the upper bound on the number of queries A
makes to the random oracle Hpok. This implies that, from generalized forking lemma [BN06], if A outputs an
accepting proof πi for a party i ∈ C ∩Q with probability ε, then Adl successfully extracts w with probability
at least εext := ε2/qpok − ε/p.

Since Adl uses y as either h or v uniformly at random, it implies that if A successfully uses (ri, ui) ̸= (0, 0)
with probability ε, then Adl outputs the discrete logarithm of y with respect to g, with probability at least
εext/2. Hence, assuming the hardness of discrete logarithm, r(0) = u(0) = 0.

Lemma 9 (SIP Simulatability). The DKG protocol in Figure 5 is SIP simulatable as per Definition 6.

Proof. We will prove this via a sequence of games, where game G0 is the real protocol execution and G4 is
the simulated protocol.

Game G0: This is the real execution of our DKG protocol. Hence, A’s view in this game is ViewAreal.

Game G1: This game is identical to G0, except that we sample αh, αv ←$ Z∗p and set h := gαh and v := gαv .
Clearly, the view of A in G0 is identical to its view in G1.

Game G2: This game is identical to G1, except that we compute the proof-of-knowledge πî for party î
using the NIZK simulator. Note that the statement we want to simulate is independent of A. Hence, we can
compute the simulated proof before A makes any random oracle query. This implies that we can output the
simulated NIZK proof, even if our random oracle query collides with A’s random oracle queries. Combining
this with the fact that Σ-protocols are perfect HVZK, we get that A’s view in game G1 is identical to its
view in game G2.

Game G3: In this game, we change how we sample the secrets of party î during the sharing phase. To

illustrate this change, we will distinguish between the polynomials party î shares in game G2 and G3. More
precisely, let (sî,2(x), rî,2(x), uî,2(x)) and (sî,3(x), rî,3(x), uî,3(x)) be the polynomials party î shares during
the sharing phase of the DKG protocols in game G2 and G3, respectively.

Let α := αh + αvu for some u←$ Zp. Then, in game G3, party î shares polynomials such that:

sî,3(x) := sî,2(x) + α; rî,3(x) := rî,2(x); uî,3(x) := uî,2(x)

Note for any fixed α, since sî,2(x) is a uniformly random polynomial of degree t, sî,3(x) is also uniformly
random. Hence, A’s view in game G3 is identical to its view in game G2.

Game G4: In this game, we change how party î samples its secret polynomials again. More specifically, now

party î sample secret key polynomials as below:

sî,4(x) := sî,2(x); rî,4(x) := rî,2(x) + 1; uî,4(x) := uî,2(x) + u (33)

Based on a similar argument as Lemma 7, A’s view in game G4 is identically distributed as its view in G3.
Note the view of A in game G4 identically distributed as its view in its interaction with SDKG, and hence

A’s view in G4 is ViewAsim. This implies that ViewAreal and ViewAsim are identically distributed. ⊓⊔
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Running time of SDKG. It is easy to see that, during each iteration of the simulation, SDKG runs in
polynomial time. We will now argue that SDKG runs for more than λ iterations with probability at most 2−λ.

During every iteration of the simulation, all honest dealers (including the SIP) will be part of the qualified
set, and the probability that A does not corrupt the SIP, i.e., î ̸∈ C is at least:

Pr[̂i ̸∈ C] ≥
(
n−1
t

)(
n
t

) =
n− t

n
≥ 1/2 (34)

where the last inequality follows from the fact that n > 2t.
Equation (34) implies that in each iteration SDKG needs to rewind A with probability at most 1/2. This

implies that SDKG runs for more than λ iterations with probability at most 2−λ.

Lemma 10 (Rigged Public Key). Let s(x), r(x), u(x) be the signing key polynomials in the simulated
DKG protocol as per Figure 6. Then, assuming hardness of DL in G, (r(0), u(0)) = (1, u) and pk = gshvu,
for s and u as defined in Figure 6.

Proof. In Lemma 8, we prove that assuming hardness of DL in G, in the real execution of the DKG protocol,
for every party j ∈ C ∩ Q, (rj(0), uj(0)) = (0, 0). Moreover, Definition 6 implies that ViewAreal and ViewAsim
are identically distributed. Hence, we get that for every j ∈ C, (rj(0), uj(0)) = (0, 0) even in the simulated

protocol. Lastly, since î ∈ Q, we get that (r(0), u(0)) = (1, u), and hence pk = gshvu for some s = s(0). ⊓⊔

7.3 Signature Scheme with DKG.

Our threshold signature scheme with a DKG protocol is identical to Figure 2, except that signers generate
their signing keys by running the DKG protocol in Figure 5.

8 Proof of Adaptive Security with DKG

The robustness of our threshold signature scheme with DKG follows from the DKG robustness (see Lemma 8)
and an argument similar to the proof of Theorem 3. We focus on unforgeability next.

Similar to §6, we prove the unforgeability assuming the hardness of the DDH in Ĝ and the hardness
of co-CDH in (G, Ĝ). Let Aco-cdh be the reduction adversary. On input a co-CDH instance (g, ĝ, ga, ĝa, ĝb),
Aco-cdh simulates the DKG and threshold signature protocol for a PPT adversary A, such that when A forges
a signature, Aco-cdh uses the forgery to compute ĝab. As we mentioned earlier, our security reduction will
use the single inconsistent party (SIP) technique [CGJ+99, FMY99a, FMY99b] where there exists only one
signer whose internal state cannot be consistently revealed to A. We summarize Aco-cdh’s interaction with A
in Figure 7 and describe it next.

The main idea again is that Aco-cdh will set up a rigged public key during the DKG protocol by running the
simulator SDKG, where: (i) lemma 9 ensures that A’s view of the simulated protocol is indistinguishable from
its view of the real protocol; and (ii) lemma 10 ensures that the simulated keys are rigged with pk = gshvu

for some uniformly random s and u. Finally, using the same argument as Lemma 5, whenever A forges a
signature with the rigged public key, Aco-cdh will solve the co-CDH challenge.

Simulating the DKG protocol.Aco-cdh simulates the DKG protocol withA by running the DKG simulator
SDKG. Let C be the set of parties A has corrupted so far, and let H := [n] \ C be the set of honest parties.
Also, let î ∈ H be the SIP chosen by SDKG during the simulation.

Let Q be the qualified set of parties during the DKG simulation. Since H ⊆ Q, we have î ∈ Q. Let
s(·), r(·), u(·) be the degree t polynomials defined as in step 2 of Figure 7:

s(x) :=
∑
i∈Q

si(x); r(x) :=
∑
i∈Q

ri(x); u(x) :=
∑
i∈Q

ui(x) (36)

Since 2t < n, Aco-cdh can extract the polynomials s(·), r(·) and u(·) in its entirety using a straight-line
extractor. Moreover, lemma 10 implies that assuming hardness of DL, we r(0) = 1 and u(0) = u.
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Input: co-CDH tuple (g, ga, ĝ, ĝa, ĝb) ∈ G3 × Ĝ.

DKG simulation: // We use the notations from Figure 6.
1. Run the DKG simulator SDKG. Let î ∈ H be the SIP, and let rî(x) and uî(x) be the polynomial î chooses

during the DKG simulation, with rî(0) = 1 and uî(0) = u for some uniformly random u←$ Zp.
2. Let Q be the resulting qualified set as a result of simulating the DKG. Let s(x), r(x), and u(x) be degree t

polynomials where:

s(x) =
∑
i∈Q

si(x); r(x) =
∑
i∈Q

ri(x); u(x) =
∑
i∈Q

ui(x); (35)

Note that by design, the resulting keys of party i are ski = (s(i), r(i), u(i)) and pki = gs(i)hr(i)vu(i).
Moreover, lemma 10 implies that (r(0), u(0)) = (1, u) and pk = gshvu where s = s(0).

Corruption simulation:
3. When A corrupts a signer i ∈ H.

(a) If i = î, rewind A to step 1 and rerun.
(b) Otherwise, send (sti, ski), the internal state from the DKG protocol and the signing key of party i to
A, and update H := H \ {i} and C := C ∪ {i}.

Threshold signature simulation:
// Identical to the threshold signature simulation in steps 7 to 13 of Figure 4.

Compute co-CDH output:
4. Let (mk̂, σ) be the valid forgery A outputs. Output σ · ĝ−b(s+αvu) as the co-CDH solution.

Fig. 7: Aco-cdh’s interaction with A to compute the co-CDH solution, when signers use the DKG protocol in
Figure 5 to generate the signing keys.

Simulating threshold signature. Aco-cdh simulates the threshold signing phase exactly as in §6.4, except
how it responds to additional corruption queries. More precisely, if A corrupts any party i ∈ H

−ˆi
anytime

during the signing phase, Aco-cdh reveals the (sti, ski) to A for DKG internal state sti of party i. Aco-cdh also
updates C := C ∪ {i} and H = H \ {i}. Alternatively, if A corrupts party î, Aco-cdh rewinds A to the start of
the simulation and restarts the simulation, including re-running SDKG with fresh randomness.

Breaking the co-CDH assumption. Let (mk̂, σ) be a forgery output by A. Recall that the public key in
the simulated protocol is gshvu where Aco-cdh knows (s, u). Aco-cdh computes the co-CDH solution ĝcdh as

ĝcdh := σ · ĝ−b(s+αvu) (37)

The correctness of ĝcdh follows from an argument similar to Lemma 5.

Next, we illustrate that assuming the hardness of DDH in Ĝ, if A forges a signature in the UF-CMAATS
game when the signing keys are generated by using our DKG protocol from Figure 5, then A also forges a
signature during its interaction with Aco-cdh, where Aco-cdh uses the DKG protocol in Figure 5 to generate
the signing keys, just with a slightly lower probability.

As in §6.4, we will illustrate this via a sequence of games. Game G0 be the UF-CMAATS game, and game
G6 is the interaction of A with Aco-cdh as per Figure 7. Also, as in §6.4, for any game Gi, we will use
“Gi ⇒ 1” as a shorthand for the event that a PPT adversary A forges a signature in game Gi.

Game G0 to Game G4: Similar to game G0 to G4 in §6.4, except the game runs the DKG protocol in
Figure 5 with A instead of the KGen functionality to generate the signing keys. Hence, by a similar argument
as in §6.4, we get that:

Pr[G4 ⇒ 1] ≥ εσ
4qs
− 1

p
− εddh − εcoll. (38)

Here, εσ is the winning probability of A in the UF-CMAATS game.

Game G5: This game is identical to G4 except that we run the DKG simulator SDKG to set up the signing
keys. Lemma 9 ensures that A’s interaction with SDKG is identically distributed as its view in the real protocol
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execution. Moreover, an argument similar to Lemma 7 implies that A’s view of the rest of the signing phase
is identically distributed in the game G4 and G5. Combining these, we get that Pr[G4 ⇒ 1] = Pr[G5 ⇒ 1].

Game G6: This game is identical to G5, except that we use actual NIZK proofs for partial signatures. As in
§6.4, we switch back to real proofs in this game because Aco-cdh in Figure 7 uses real proofs in its interaction
with A. Therefore, using an argument similar as in the advantage between G3 and G4 in §6.4, we get that:

|Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]| ≤ εcoll. (39)

Observe that, if game G6 does not abort, then A’s view in game G6 is identically distributed as its view
in its interaction with Aco-cdh in Figure 7, where Aco-cdh uses (ga, gb) from co-CDH input (g, ga, gb, ĝa) as
(h, gβ) in game G6. Additionally, Aco-cdh uses ĝa to compute the random oracle outputs in step 11(b) in
Figure 4. Hence, from the above sequence of games, we get that:

Pr[G6 ⇒ 1] ≥ εσ
4qs
− εddh −

1

p
− 2εcoll. (40)

This implies that if adversary A outputs a forgery in the UF-CMAATS game of our signature scheme (i.e.,
G0) with probability εσ, then A outputs a forgery on mk̂ during its interaction with Aco-cdh in Figure 7
(i.e., in G6) with probability at least εσ/(4qs)− εddh − 1/p− 2εcoll. Moreover, Lemma 5 implies that Aco-cdh

can efficiently compute the co-CDH solution using the forgery on mk̂. Combining all the above, we get our
second main theorem, as stated below.

Theorem 5 (Adaptively secure BLS threshold signature with DKG). Let λ be the security param-

eter, and let (G, Ĝ,GT , p)← GGen(1λ) be pairing groups of prime order p. For any n, t for n = poly(λ) and
t < n/2, let DKG be a DKG protocol that satisfies the properties we describe in §7.1. Then, assuming the

hardness of DDH in Ĝ, and hardness of co-CDH in (G, Ĝ) in the random oracle model, any PPT adversary
making at most qH random oracle queries to H0 and H1 combined, qFS queries to the random oracle HFS, and
at most qs signature queries wins the UF-CMAATS game Figure 1 for our signature scheme in Figure 2 with
probability at most εσ where:

εσ ≤ 4qs ·
(
εddh +

1

p
+ 2 · qFS · qs · n

p2
+ εcdh

)
.

Here, εddh and εcdh are the advantages of an adversary running in T · poly(λ, qH, n) time in breaking DDH in

Ĝ and co-CDH in (G, Ĝ), respectively. This implies that εσ is negligible, and hence, our threshold signature
scheme in §5 is unforgeable.

8.1 Unforgeability with static adversary

We now briefly argue that if we are content with proving our signature scheme statically secure, then we
only need the hardness of CDH assumption in a pairing group (G, Ĝ) in the ROM. Let Astatic be the static
adversary that breaks the unforgeability of our signature scheme, and let Acdh be the CDH adversary. Then,
except for the DKG simulation, Acdh interacts with Astatic exactly as in §6.5. Acdh simulates the DKG
protocol as follows.

Simulating the DKG protocol. For simplicity, let us assume |C ∪S|= t. Acdh samples h, v ←$ G. Next, on
behalf of each honest node i ∈ H, Acdh picks random degree t polynomials ri(x), ui(x) with ri(0) = ui(0) = 0.
To compute the polynomial si(x), Astatic samples αi ←$ Zp and si(j) ←$ Zp for each j ∈ C ∪ S. Acdh then
uses si(0) = s · αi as the secret of dealer i. Acdh computes the DKG commitments as: cmi[0] = gsi(0)

and cmi[j] = gsi,j for each j ∈ [t], using interpolation in the exponent. Acdh then continue the rest of the
simulation as per the standard approach [GJKR07].
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Table 1: Comparison of BLS threshold signatures using BLS12-381 elliptic curve. We assume that public
keys are in G and signatures are in Ĝ.

Scheme
Partial signing
time (in ms)

Partial signature
verification time (in ms)

Partial Signature
size (in bytes)

Aggregation time
for t = 64 (in ms)

Boldyreva-I 0.81 1.12 96 74.01
Boldyreva-II 1.20 0.76 160 55.43

Ours scheme 3.92 2.16 224 149.52

9 Implementation and Evaluation

9.1 Evaluation Setup

We implement our threshold signature scheme in Go. Our implementation is publicly available at https:

//github.com/sourav1547/adaptive-bls. We use the gnark-crypto library [BPH+23] for efficient finite
field and elliptic curve arithmetic for the BLS12-381 curve. We also use (for both our implementation and
the baselines) the multi-exponentiation of group elements using Pippenger’s method [BDLO12] for efficiency.
We evaluate our scheme and baselines on a t3.2xlarge Amazon Web Service (AWS) instance with 32 GB
RAM, 8 virtual cores, and 2.50GHz CPU.

Baselines. We implement two variants of Boldyreva’s BLS threshold signatures as baselines. The variants
differ in how the aggregator validates the partial signatures. The Boldyreva-I variant is the standard variant
we describe in §4.4. In Boldyreva-II, along with the partial signatures, signers also attach a Σ-protocol proof
attesting to the correctness of the partial signatures. Instead of pairings, the aggregator uses the Σ-protocol
proof to check the validity of the partial signatures, resulting in faster verification time. We refer readers
to Burdges et al. [BCLS22] for more details on Boldyreva-II. For Σ-protocols in both Boldyreva-II and our
scheme, we use the standard optimization where the proof omits the first message of the prover and instead
includes the Fiat-Shamir challenge [CS97].

We evaluate the signing time and partial signature verification time of our scheme. The signing time
refers to the time a signer takes to sign a message and compute the associated proofs. The partial signature
verification time measures the time the aggregator takes to verify a single partial signature. Note that after
partial signature verification, the aggregation time of our threshold signature is identical to the aggregation
time of Boldyreva’s scheme, but for completeness, we also measure the total aggregation time. Our final
verification time is identical to Boldyreva’s scheme (and standard BLS).

9.2 Evaluation Results

We report our results in Table 1. Through our evaluation, we seek to illustrate that our scheme only adds a
small overhead compared to Boldyreva’s scheme [Bol03] to achieve adaptive security.

Signing time. As expected, the per signer signing time of Boldyreva-II is slightly higher than Boldyreva-I,
since a signer in Boldyreva-II also computes the Σ-protocol proof. Similarly, our per signer signing cost is
3.3× higher than Boldyreva-II as our Σ-protocol involves more computation than Boldyreva-II.

Partial signature verification time. The verification time of Boldyreva-II is less than Boldyreva-I, since
pairings operations are much slower than group exponentiations. As expected, our partial signature verifi-
cation time is 2.84× longer than Boldyreva-II due to more expensive Σ-protocol verification. Compared to
Boldyreva-I, our partial signature verification is 1.92× slower.

Partial signature size. The partial signature size only depends on the underlying elliptic curve group we
use. For the BLS12-381 elliptic curve, Zp,G and Ĝ elements are 32, 48, and 96 bytes, respectively. The partial

signature in Boldyreva-I is a single Ĝ element, which is 96 bytes. In Boldyreva-II, the partial signature also
includes a Σ-protocol proof that is (c, z) ∈ Z2

p, using the standard optimization of including the Fiat-Shamir
challenge [CS97]. Hence, the partial signatures in Boldyreva-II are 64 bytes longer than Boldyreva-I. Finally,
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our partial signature includes a Σ-protocol proof (c, zs, zr, zu) ∈ Z4
p, and hence is 224-byte long in total. If

we assume that parties are semi-honest, then partial signatures of all three schemes will be identical.

Total aggregation time. We measure the total signature aggregation time for t = 64. Recall during ag-
gregation, the aggregator, apart from verifying the partial signatures, performs O(t log2 t) field operations to
compute all the Lagrange coefficients and a multi-exponentiation of width t [TCZ+20]. Since field operations
are orders of magnitude faster than group exponentiations, for moderate values of t such as 64, the partial
signature verification costs dominate the total aggregation time. Thus, the aggregation time of all three
schemes we evaluate is approximately t times the single partial signature verification time.

Common case optimization of aggregation time. Note that it is possible to optimize the aggregation time
of both the baselines and our scheme in the common case. More specifically, the aggregator can optimisti-
cally aggregate the partial signatures without verifying them individually and then verify the aggregated
signature. If the final verification is successful, the aggregator outputs the aggregated signature. Otherwise,
the aggregator validates the partial signature individually, identifies the invalid ones, discards them, and re-
computes the aggregated signature. Moreover, the aggregator discards the partial signatures from the signers
who sent invalid partial signatures in all future aggregations. We refer to the latter as the fall-back path.

Our evaluation illustrates that with this optimization, the aggregation in the optimistic case is 7.7 mil-
liseconds (in AWS t3.2xlarge machine) for both the baselines and our scheme. Also, the robustness property
implies that the aggregator will always identify at least one malicious party in case of the fall-back path and
will never blame an honest party. This implies that the aggregator needs to run the fall-back path at most
t times in total. Thus, we believe that in a long-running system, our added overhead is very minimal.

10 Discussion and Conclusion

In this paper, we presented a new adaptively secure threshold BLS signature scheme and a distributed
key generation protocol for it. Our scheme is adaptively secure assuming the hardness of decisional Diffie
Hellman (DDH) and co-computational Diffie Hellman assumption (co-CDH) in asymmetric pairing groups
in the random oracle model (ROM). The security of our scheme gracefully degenerates: in the presence of a
static adversary, our scheme relies only on the hardness of CDH in pairing groups in the ROM, which is the
same assumption as in the standard non-threshold BLS signature scheme.

Our scheme maintains the non-interactive signing, compatible verification, and practical efficiency of
Boldyreva’s BLS threshold signatures. We implemented our scheme in Go, and our evaluation illustrates
that it has a small overhead over the Boldyreva scheme.

Future research directions. Our scheme only works with type-II and type-III asymmetric pairing groups.
This is because the security of our signature scheme assumes the hardness of DDH. Removing the reliance on
the DDH assumption on a source group is a fascinating open problem. Another exciting research direction is
to extend our ideas to prove the adaptive security of other threshold signature or encryption schemes such
as threshold Schnorr, ECDSA, and RSA.
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