
Threshold Computation in the Head: Improved Framework for
Post-Quantum Signatures and Zero-Knowledge Arguments

Thibauld Feneuil1,2 and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques

de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
{thibauld.feneuil,matthieu.rivain}@cryptoexperts.com

Abstract. The MPC-in-the-Head paradigm is instrumental in building zero-knowledge proof systems
and post-quantum signatures using techniques from secure multi-party computation. In this work, we
extend and improve the recently proposed framework of MPC-in-the-Head based on threshold secret
sharing, here called Threshold Computation in the Head. We first address some limitations of this
framework, namely its overhead in the communication cost, its constraint on the number of parties
and its degradation of the soundness. Our tweak of this framework makes it applicable to the previous
MPCitH schemes (and in particular post-quantum signature candidates recently submitted to NIST)
for which we obtain up to 50% timing improvements without degrading the signature size. Then we
extend the TCitH framework to support quadratic (or higher degree) MPC round functions as well as
packed secret sharing. We show the benefits of our extended framework for several applications. First
we provide post-quantum zero-knowledge arguments for arithmetic circuits which improve the state
of the art in the “small to medium size” regime. Then we apply our extended framework to derive
improved variants of the MPCitH candidates submitted to NIST. For most of them, we save between
5% and 37% of the signature size. We further propose a generic way to build efficient post-quantum
ring signatures from any one-way function. When applying our TCitH framework to this design to
concrete one-way functions, the obtained scheme outperforms all the previous proposals in the state of
the art. For instance, our scheme instantiated with MQ achieves sizes below 6 KB and timings around
10 ms for a ring of 4000 users. Finally, we provide exact arguments for lattice problems. Our scheme is
competitive with state-of-the-art zero-knowledge lattice techniques and achieves proofs around 15 KB
for LWE instances with similar security as Kyber512. We conclude our work by exhibiting strong
connections between the TCitH framework and other proof systems (namely VOLE-in-the-Head and
Ligero) which thus unifies different MPCitH-like proof systems under the same umbrella.

Keywords: Zero-knowledge proofs · MPC-in-the-Head · Threshold secret sharing · Post-quantum sig-
natures · Ring signatures

Table of Contents

1 Introduction . 3
2 Preliminaries . 5

2.1 Secret Sharing . 5
2.2 The MPC-in-the-Head Paradigm . 6
2.3 General Model for MPCitH-Friendly MPC Protocols . 7
2.4 MPCitH Transform based on Additive Sharing and GGM Trees . 7
2.5 Threshold Computation in the Head: Original Framework . 10

3 TCitH with GGM Trees . 10
3.1 General Technique . 10
3.2 Lifting in a Field Extension . 16
3.3 Global Comparison . 19
3.4 Application to NIST Post-Quantum Signature Candidates . 20

4 Degree-Enforcing Commitment for TCitH with Merkle Trees . 20
4.1 Analysis of Ligero’s Proximity Test . 21
4.2 Degree-Enforcing Commitment Scheme . 23
4.3 Benefits of the Degree-Enforcing Commitment Scheme for the TCitH Framework 25

5 Extended TCitH Framework . 26
5.1 MPC Model . 26
5.2 Extended TCitH Framework . 30

6 Application of the Extended TCitH Framework . 40
6.1 Generation of High-Degree Sharings . 40
6.2 Proof System for Polynomial Constraints . 42
6.3 Proof System for Linear and Parallel Polynomial Constraints . 44
6.4 Zero-Knowledge Arguments for Arithmetic Circuits . 48
6.5 Improved Post-Quantum Signature Schemes . 49
6.6 Short Post-Quantum Ring Signatures . 51
6.7 Exact Zero-Knowledge Arguments for Lattices . 54

7 Connections to Other MPCitH-like Proof Systems . 57
7.1 Connections to VOLE-in-the-Head . 57
7.2 Connections to Ligero . 59

A Analysis of Ligero’s Proximity Test . 66

1 Introduction

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] is a versatile paradigm to build zero-
knowledge proof systems from secure multi-party computation (MPC). While not providing (asymptotically)
succinct proofs like SNARKs [BCCT12, Gro16], the MPCitH paradigm is particularly efficient for small
circuits such as those involved to construct (post-quantum) signature schemes. This was first demonstrated
by the Picnic signature scheme, submitted to the NIST PQC process in 2017 [ZCD+17]. In the recent NIST
call for additional post-quantum signatures [NIS22], 7 candidates out of the 40 selected for the first round
rely on the MPCitH paradigm.

The MPCitH paradigm can be summarized as follows. By emulating an MPC protocol verifying a witness
and by opening some (verifier chosen) parties, the prover convinces the verifier that they know the witness
with soundness error around 1/N , for N the number of parties involved in the MPC protocol. In the
traditional MPCitH approach, the bottleneck in running times comes from the emulation of the N parties.
Recent works have shown how this bottleneck can be mitigated. The hypercube technique proposed at
Eurocrypt 2023 [AGH+23] improves the “traditional setting” (additive sharing with GGM tree commitments)
by decreasing the emulation phase to 1 + log2N parties with no extra communication cost. On the other
hand, MPCitH based on threshold secret sharing [FR23b], here called Threshold Computation in the Head
(TCitH), only requires the emulation of a (small) constant number of parties. Specifically, TCitH requires ℓ+1
parties for an (ℓ+ 1, N)-threshold sharing (which is 2 parties for ℓ = 1). Moreover, it enjoys a very efficient
verification, which is logarithmic in N (against linear in N for the traditional and hypercube settings).
However, the original TCitH framework suffers a few downsides. First, using Merkle trees in place of GGM
trees for the commitments of shares implies a communication overhead (this overhead typically represents
2 KB for non-interactive arguments with 128-bit security). Then, the number N of parties (and hence the
achievable soundness) is limited by the size of the finite field on which the witness is defined (N ≤ |F|),
which can be an issue when dealing with small fields. Finally, the soundness of TCitH is degraded by the
ability of the prover to commit sharings that are not valid (ℓ+ 1, N)-threshold sharings.

Our contributions. In this work, we improve the TCitH framework in several ways and put forward
efficient applications of this framework:

1. TCitH with GGM trees. We first address the two aforementioned limitations of TCitH compared to stan-
dard MPCitH (with seed trees and hypercube technique). We show how using techniques from [CDI05],
we can generate and commit Shamir’s secret sharings with the communication cost of a GGM tree (as in
the traditional approach) while benefiting the low-cost MPC emulation of TCitH. In this TCitH-GGM
variant, we further propose a way to mitigate the limitation on the number of parties by lifting the
MPC protocol into a field extension. This lifting does not impact the proof size but slightly increases the
number of party emulations to 1 + ⌈logN/log |F|⌉ (for a soundness error of ≈ 1/N). In terms of compu-
tation, the lifted version of TCitH-GGM is equivalent to the hypercube technique [AGH+23] when the
base field is as small as F2 while it is strictly more efficient for larger fields. We show that our (lifted)
TCitH-GGM framework can improve the computational performance of nearly all the recent NIST post-
quantum signature candidates based on the MPCitH paradigm with savings ranging from 9% to 51%
compared to their hypercube optimized version. In comparison to the original TCitH framework with
commitments based on Merkle trees, using this GGM variant saves the extra communication cost but
loses the advantage of having a very fast verification algorithm inherited from Merkle trees. It hence
essentially provides a new interesting trade-off.

2. Degree-enforcing commitment scheme. In the original TCitH framework, the Merkle tree commitment
allows a malicious prover to commit inconsistent Shamir’s secret sharings, namely sharings which are
not of the right degree. This results in a degradation of the soundness which is further amplified when
using packing and/or high-degree MPC functions. To tackle this issue, we introduce a degree-enforcing
commitment scheme for the Merkle tree variant of the TCitH framework. Such a scheme ensures that the
committed sharings are of the right degree with a tunable soundness error which can be made negligible.

3

Our approach is a tweak of the proximity test for Reed-Solomon codes proposed in Ligero [AHIV17]
which is crucially integrated to the commitment (and not to the MPC protocol) to achieve stronger
guaranties (i.e., exact degree of committed sharings) which allows us to reach a better soundness.

3. Extended TCitH framework. We extend the original TCitH framework in two ways. First, we consider
MPC protocols locally computing quadratic (or higher degree) functions instead of being restricted to
linear functions. This extension allows us to cover richer MPC protocols resulting in smaller proofs
(or signatures). Second, we consider packed secret sharing which consists in packing several witness
coordinates in a single sharing. This extension allows us to compress the size of the witness in the
Merkle tree variant of the TCitH framework and to achieve better proof sizes for “small to medium”
size statements. We thus obtain a versatile framework supporting packing and high-degree MPC and
which comes with two variants depending on the used method to generate and commit the shares: GGM
tree (smaller proofs for “small size” statements) vs. Merkle tree (faster verification, smaller proofs for
“medium size” statements). We provide a tight soundness analysis for these two variants with respect to
the packing and and degree parameters of the MPC protocol.

4. Applications. We demonstrate the efficiency and versatility of the improved TCitH framework with
various applications:

(i) Short zero-knowledge arguments for arithmetic circuits. We provide generic proof systems resulting
in short proofs for arithmetic circuits. For “small to medium” size circuits (with ≤ 216 multiplication
gates), our arguments are (up to twice) smaller compared to Ligero [AHIV17, AHIV23], the state of
the art in terms of post-quantum zero-knowledge arguments in this regime.

(ii) Improved post-quantum signatures. We then apply our extended framework to propose improved
variants of the recent NIST post-quantum signature candidates based on the MPCitH paradigm. We
save between 5% and 37% of the signature size for all of these schemes. In particular, our framework
applied to the non-structured multivariate quadratic (MQ) problem provides signature sizes of 4.2 KB
which is to be compared with the 6.3 KB of MQOM signatures (previously the smallest based on
non-structured MQ) and 4.8 KB of Biscuit signatures (MPCitH scheme based on a structured MQ
instance) [FR23a, BKPV23]. For a small field instance of MQ (specifically on F4), we obtain signature
sizes of 3.8 KB while still using 256 parties.

(iii) Short post-quantum ring signatures. We also apply our TCitH framework to design efficient post-
quantum ring signatures from any one-way function. We propose concrete instances relying on the
MQ and syndrome decoding (SD) problems. For a ring of 4000 users, these schemes have running
times below 10 ms and 20 ms, while achieving sizes around 5 KB (for MQ) and 9 KB (for SD),
which greatly improves the current state of the art. We further apply our scheme to an AES-based
one-way function, which gives us a ring signature smaller that 8 KB that only relies on symmetric
cryptography assumptions (for up to 220 users).

(iv) Exact proofs for lattice problems. We finally show how our framework provides short and exact
zero-knowledge arguments for lattice problems. On toy examples from the literature, our proofs are
between 3 and 5 times smaller than the best previous MPCitH-based proofs. On the Kyber512 (resp.
Dilithium2) LWE instance, we achieve 21 KB (resp. 40 KB), which is competitive with the recent
state of the art [LNP22] achieving 19 KB for a lattice-based statement related to Kyber512 (but
proving the L2 norm whereas we prove the L∞ norm). For custom instances with same security as
Kyber512, our proofs can be lowered to 15 KB.

5. Unifying MPCitH-like proof systems. We conclude our work by exhibiting strong connections between
some variants and/or instantiations of the TCitH framework and other proof systems, namely VOLE-in-
the-Head [BBdSG+23] and Ligero [AHIV17, AHIV23]. While the TCitH framework originates from an
extension of standard MPC-in-the-Head proof systems with (packed) Shamir’s secret sharing, we show
that (a specific instantiation of) the GGM variant can be interpreted as a VOLE-in-the-Head proof
system. On the other hand, the Merkle tree variant of the framework with packed secret sharing can be
seen as a generalization of Ligero which we improve thanks to the degree-enforcing commitment scheme.

4

Our framework thus unifies different MPCitH-like proof systems under the same umbrella, which provides
further insights on these techniques and might foster future improvements.

The benchmarks reported in this paper are based on the libmpcith library available at https://github.
com/CryptoExperts/libmpcith.

2 Preliminaries

In this paper, we shall use the standard cryptographic notions of pseudorandom generator (PRG), collision
resistant hash function, (binding and hiding) commit scheme, Merkle tree, and zero-knowledge proof of
knowledge. While we do not reintroduce these notions here, the reader is referred to [FR23b] for their formal
definitions with similar notations.

Notations for (vector) polynomials. Let F a finite field and P ∈ F[X] a polynomial with coefficients in F.
We shall denote coeffj the function mapping a polynomial P to its degree-j coefficient, so that P (X) =∑degP

j=0 coeffj(P)X
j . We call P = (P1, . . . , Pn) ∈ (F[X])n a vector polynomial. The coeffj function extends

to vector polynomials: for any P ∈ (F[X])n, coeffj(P) ∈ Fn is naturally defined as the tuple of the degree-j
coefficients (coeffj(P1), . . . , coeffj(Pn)).

2.1 Secret Sharing

Along the paper, the sharing of a value v is denoted JvK := (JvK1, . . . , JvKN) with JvKi denoting the share of
index i for every i ∈ [1 : N]. For any subset of indices J ⊆ [N], we shall further denote JvKJ :=

(
JvKi

)
i∈J

.

A (t,N)-threshold secret sharing scheme is a method to share a value v ∈ F into a sharing JvK such that v
can be reconstructed from any t shares while no information is revealed on the secret from the knowledge of
t−1 shares. A linear secret sharing scheme (LSSS) is a secret sharing scheme such that for any two sharings
Jv1K, Jv2K and any two values a1, a2 ∈ F, computing a1 · Jv1K + a2 · Jv2K yields a sharing of a1v1 + a2v2. The

additive secret sharing is an (N,N)-threshold LSSS for which v =
∑N

i=1JvKi.
The techniques proposed in the paper rely on Shamir’s secret sharing [Sha79] and on its packed ver-

sion [FY92], which we formally define below.

Definition 1 (Packed Shamir’s Secret Sharing). Let F be a finite field and let s, d,N ∈ N such that
s ≤ d < N and s + N ≤ |F| + 1, where s is called the pack size, d the degree and N the sharing size.
Let {e1, . . . , eN} and {ω1, . . . , ωd+1} be two public sets3 of distinct elements of F such that {ω1, . . . , ωs} is
disjoint from all ei’s. A (s, d,N)-packed Shamir’s secret sharing of a tuple v ∈ Fs is a tuple

JvK = (JvK1, . . . , JvKN) ∈ FN s.t. JvKi := Pv(ei) ∀i ∈ [1 : N] ,

for some polynomial Pv of degree ≤ d satisfying (Pv(ω1), . . . , Pv(ωs)) = v.

Fresh sharing. A fresh sharing of v with parameter (s, d,N) is generated as follows:

– sample r1, . . . , rℓ uniformly in F where ℓ := d+ 1− s,
– build the polynomial Pv by interpolation as the polynomial of degree ≤ d satisfying Pv(ωi) = vi ∀i ∈ [1 : s]

and Pv(ωi+s) = ri ∀i ∈ [1 : ℓ],
– build the shares JvKi as evaluations Pv(ei) of Pv for each i ∈ [1 : N].

Privacy and reconstructability. The parameter ℓ := d+1−s is the privacy threshold of the sharing: any
set of ℓ shares of a fresh sharing JvK do not reveal any information on v. On the other hand, d + 1 shares
are necessary to fully recover v. For any subset J ⊆ [N], s.t. |J | = d+ 1, the recovery of v from JvKJ works

3 We also consider the “evaluation point” ei = ∞. For this special evaluation point, the evaluation Pv(∞) of a
polynomial Pv ∈ F[X] is defined as the leading degree coefficient of Pv.

5

https://github.com/CryptoExperts/libmpcith
https://github.com/CryptoExperts/libmpcith

by interpolating the polynomial Pv from the d + 1 evaluation points JvKJ = (Pv(ei))i∈J and outputing the
evaluations (Pv(ω1), . . . , Pv(ωs)) = v. The packed Shamir’s secret sharing scheme is hence a (ℓ, d + 1, N)-
quasi-threshold secret sharing scheme since, whenever s > 1, we have a gap between the privacy threshold (ℓ)
and the number of shares (d+ 1 = ℓ+ s) allowing full recovery of v.

Vector sharings. For a tuple v ∈ F|v| of length |v| > s, a (s, d,N)-packed sharing of v is defined as

JvK =

 J(v1, . . . , vs)K
J(vs+1, . . . , v2s)K

...

 ∈ (FN)|v|s , (1)

where |v|s = ⌈ |v|/s⌉ is the number of s-tuples composing v (where v is padded with 0’s or garbage if |v| is
not a multiple of s) and the number of sharings in the vector sharing. (For such a vector sharing the row
vs. column notations of tuples is used interchangeably without effect.) A vector sharing gives rise to a vector

polynomial Pv ∈ (F[X])|v|s defined as Pv(X) = (P
(1)
v (X), P

(2)
v (X), . . .) where P

(i)
v ∈ F[X] is the polynomial

arising in the Shamir’s secret sharing of the ith packed tuple (v(i−1)s+1, . . . , vis).

Linear and multiplicative homomorphisms. The (packed) Shamir’s secret sharing enjoys linear and multi-
plicative homomorphisms. Consider the packed sharings Jv1K, Jv2K of tuples v1, v2 ∈ Fs. Then for any scalars
a1, a2 ∈ F we have that a1 · Jv1K+ a2 · Jv2K is a sharing of a1 · v1 + a2 · v2 (where the scalars ai are multiplied
to each coordinate of the tuple vi). We also have that Jv3K = Jv1K · Jv2K (where the product is sharewise,
namely Jv3Ki = Jv1Ki · Jv2Ki ∀i ∈ [1 : N]) is a sharing of v3 = v1 ◦ v2, where ◦ denotes the coordinate-wise
product. Finally, for two vector sharings Jv1K, Jv2K ∈ (FN)t encoding packed tuples v1, v2 ∈ Fs·t, we denote
by Jv3K = ⟨Jv1K, Jv2K⟩ the “inner product” sharing which is defined as Jv3K =

∑t
j=1Jv1,jK · Jv2,jK where Jv1,jK

(resp. Jv2,jK) denotes the jth packed sharing in the vector sharing Jv1K (resp. Jv2K). The resulting sharing
Jv3K encodes a tuple v3 ∈ Fs for which the ith coordinate is the inner product between the “column tuple”
made of the ith coordinates of the packs of v1 and the “column tuple” made of the ith coordinates of the
packs of v2.

2.2 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm was introduced by Ishai, Kushilevitz, Ostrovsky and Sahai
in [IKOS07] to build zero-knowledge proofs from secure multi-party computation (MPC) protocols. We
first recall the general principle of this paradigm before introducing a formal model for the underlying MPC
protocols and their transformation into zero-knowledge proofs.4

Assume we want to build a zero-knowledge proof of knowledge of a witness w for a statement x such that
(x,w) ∈ R for some relation R. To proceed, we shall use an MPC protocol in which N parties P1, . . . ,PN

securely and correctly evaluate a function f on a secret witness w with the following properties:

– each party Pi takes a share JwKi as input, where JwK is a sharing of w;
– the function f outputs Accept when (x,w) ∈ R and Reject otherwise;
– the protocol is ℓ-private in the semi-honest model, meaning that the views of any ℓ parties leak no

information about the secret witness.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of a witness w satisfying
(x,w) ∈ R. The prover proceeds as follows:

– they build a random sharing JwK of w;
– they simulate locally (“in her head”) all the parties of the MPC protocol;
– they send a commitment of each party’s view to the verifier, where such a view includes the party’s input

share, its random tape, and its received messages (the sent messages can further be deterministically
derived from those elements);

4 The following formalism is heavily borrowed from [FR22].

6

– they send the output shares Jf(w)K of the parties, which should correspond to a sharing of Accept.

Then the verifier randomly chooses ℓ parties and asks the prover to reveal their views. After receiving them,
the verifier checks that they are consistent with an honest execution of the MPC protocol and with the
commitments. Since only ℓ parties are opened, the revealed views leak no information about the secret
witness w, which ensures the zero-knowledge property. On the other hand, the random choice of the opened
parties makes the cheating probability upper bound by 1−

(
N−2
ℓ−2

)
/
(
N
ℓ

)
, which ensures the soundness of the

proof.

The MPCitH paradigm simply requires the underlying MPC protocol to be secure in the semi-honest
model (and not in the malicious model), meaning that the parties are assumed to be honest but curious:
they follow honestly the MPC protocol while trying to learn secret information from the received messages.

2.3 General Model for MPCitH-Friendly MPC Protocols

Several simple MPC protocols have been proposed that yield fairly efficient zero-knowledge proofs and
signature schemes in the MPCitH paradigm, see for instance [KZ20b, BD20, BN20, BDK+21b, FJR22].
These protocols lie in a specific subclass of MPC protocols in the semi-honest model which is formalized
in [FR22]. In this model, an MPC protocol performs its computation on a base finite field F so that all the
manipulated variables (including the witness w) are tuples of elements from F. In what follows, the sizes of
the different tuples involved in the protocol are kept implicit for the sake of simplicity. The parties take as
input an additive sharing JwK of the witness w (one share per party), which is defined as

JwK = (JwK1, . . . , JwKN) s.t. w =

N∑
i=1

JwKi .

Then the parties compute one or several rounds in which they perform three types of actions:

Receiving randomness: The parties receive a random value (or random tuple) ε from a randomness oracle
OR. When calling this oracle, all the parties get the same random value ε.

Receiving hint: The parties receive a fresh sharing JβK (one share per party) from a hint oracle OH . The
hint β can depend on the witness w and the previous random values sampled from OR.

Computing & broadcasting: The parties locally compute JαK := Jφ(v)K from a sharing JvK where φ is
an F-linear function, then broadcast all the shares JαK1, . . . , JαKN to publicly reconstruct α := φ(v).

After t rounds of the above actions, the parties finally output Accept if and only if the publicly re-
constructed values α1, . . . , αt satisfy the relation g(α1, . . . , αt) = 0 for a given function g. As formalized
in [FR22], such an MPC protocol has a false positive probability. Namely, given the sharing of an invalid
witness as input, the protocol might still output Accept with some probability p over the random choice
of the values ε1, . . . , εt from the randomness oracle OR. We refer to [FR22] for a formal definition or to
Section 5 below where we extend this MPC model.

2.4 MPCitH Transform based on Additive Sharing and GGM Trees

Any MPC protocol complying with the above description gives rise to a practical short-communication zero-
knowledge proof in the MPCitH paradigm. The resulting zero-knowledge proof is described in Protocol 1:
after sharing the witness w, the prover emulates the MPC protocol “in her head”, commits the parties’
inputs, and sends a hash digest of the broadcast communications; finally, the prover reveals the requested
parties’ inputs as well as the broadcast messages of the unopened party, thus enabling the verifier to emulate
the computation of the opened parties and to check the overall consistency.

7

1. The prover shares the witness w into a sharing JwK.

2. The prover emulates “in her head” the N parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into a sharing JβjK;
(b) the prover computes the commitments

comj
i :=

{
Com(JwKi, Jβ1Ki; ρ1i) if j = 1

Com(JβjKi; ρji) if j > 1

for all i ∈ {1, . . . , N}, for some commitment randomness ρji ;

(c) the prover sends

hj :=

{
Hash(com1

1, . . . , com
1
N) if j = 1

Hash(comj
1, . . . , com

j
N , Jα

j−1K) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes
JαjK := φj

(εi)i≤j ,(α
i)i<j

(
JwK, (JβiK)i≤j

)
and recomposes αj .

The prover further computes ht+1 := Hash(JαtK) and sends it to the verifier.

3. The verifier picks at random a party index i∗ ∈ [N] and sends it to the prover.

4. The prover opens the commitments of all the parties except party i∗ and further reveals the commitments and broadcast messages of the unopened
party i∗. Namely, the prover sends (JwKi, (JβjKi, ρji)j∈[t])i̸=i∗ , com

1
i∗ , . . . , com

t
i∗ , Jα1Ki∗ , . . . , JαtKi∗ to the verifier.

5. The verifier recomputes the commitments comj
i and the broadcast values JαjKi for i ∈ [N] \ {i∗} and j ∈ [t] from (JwKi, (JβjKi, ρji)j∈[t])i ̸=i∗ in the

same way as the prover.

6. The verifier accepts if and only if:
(a) the views of the opened parties are consistent with each other, with the committed input shares and with the hash digest of the broadcast

messages, i.e. for j = 1 to t+ 1,

hj
?
=

Hash(com1

1, . . . , com
1
N) if j = 1

Hash(comj
1, . . . , com

j
N , Jα

j−1K) if j > 1
Hash(JαtK) if j = t+ 1

(b) the output of the MPC protocol is Accept, i.e.

g(α1, . . . , αt)
?
= 0.

Protocol 1: Zero-knowledge protocol - Application of the MPCitH principle to the general MPC protocol
of [FR22].

8

Soundness. Assuming that the underlying MPC protocol follows the model of Section 2.3 with a false positive
probability p, the soundness error of Protocol 1 is

1

N
+
(
1− 1

N

)
· p . (2)

The above formula results from the fact that a malicious prover might successfully cheat with probability
1/N by corrupting the computation of one party or with probability p by making the MPC protocol produce
a false positive. This soundness has been formally proven in [FR22] for the general MPC model recalled above
as well as for several specific MPC protocols in other previous works – see, e.g., [DOT21, BN20, FJR22].

Pseudorandomness and GGM trees. The communication of Protocol 1 includes:

– the input shares (JwKi, Jβ1Ki, . . . , JβtKi) of the opened parties. In practice, a seed seedi ∈ {0, 1}λ is
associated with each party so that for each committed variable v (among the witness w and the hints
β1, . . . , βt) the additive sharing JvK is built as{

JvKi ← PRG(seedi) for i ̸= N

JvKN = v −
∑N−1

i=1 JvKi.

Thus, instead of committing (JwKi, Jβ1Ki), the initial commitments simply include the seeds for i ̸= N ,
and comj

i becomes useless for j ≥ 2 and i ̸= N . Formally, we have:

comj
i =

Com(seedi; ρ

1
i) for j = 1 and i ̸= N

Com(JwKN , Jβ1KN ; ρ1N) for j = 1 and i = N

∅ for j > 1 and i ̸= N

Com(JβjKN ; ρjN) for j > 1 and i = N

where {ρji}i,j are random commitment tapes that ensure that the commitments are hiding. Some coor-
dinates of the βj might be uniformly distributed over F (remember that the βj are tuples of F elements).
We denote βunif the sub-tuple composed of those uniform coordinates. In this context, the last share
JβunifKN can be built as JβunifKN ← PRG(seedN) so that a seed seedN can be committed in com1

N (in-
stead of committing JβunifKN). This way the prover can save communication by revealing seedN instead
of JβunifKN whenever the latter is larger;

– the messages Jα1Ki∗ , . . . , JαtKi∗ broadcasted by the unopened party. Let us stress that one can some-
times save communication by sending only some elements of Jα1Ki∗ , . . . , JαtKi∗ and use the relation
g(α1, . . . , αt) = 0 to recover the missing ones;

– the hash digests h1, . . . , ht+1 and the unopened commitments com1
i∗ , . . . , com

t
i∗ (as explained above, we

have comj
i∗ = ∅ for j > 1 if i∗ ̸= N).

As suggested in [KKW18], instead of revealing the (N − 1) seeds of the opened parties, one can generate
them from a GGM tree [GGM84] (a.k.a. a tree PRG or seed tree). Such a tree is a pseudorandom generator
that expands a root seed mseed into N subseeds in a structured way. The principle is to label the root of a
binary tree of depth ⌈log2N⌉ with mseed. Then, one inductively labels the children of each node with the
output of a standard PRG applied to the node’s label. The subseeds (seedi)i∈[1:N] are defined as the labels
of the N leaves of the tree. Such a seed tree makes it possible to reveal all the subseeds but one by only
revealing log2(N) labels of the tree. The principle is to reveal the sibling path of the seed seedi∗ which one
wants to keep secret (i.e., all the labels on the siblings of the path from seedi∗ to the root). Those labels
allow the verifier to reconstruct the N − 1 seeds (seedi)i∈[1:N]\{i∗}. Using GGM trees, the prover hence only
needs to communicate log2N λ-bit seeds to the verifier.

9

2.5 Threshold Computation in the Head: Original Framework

In [FR23b], the authors suggest building proof systems from the MPC-in-the-Head framework using a thresh-
old secret sharing scheme instead of using additive sharing as the wide majority of previous works. Their
approach leads to faster running times compared to the rest of the state of the art. For an MPC protocol
complying to the model described in Section 2.3, the first step of the transform consists in replacing the
additive sharings handled by the protocol by (ℓ+1, N)-threshold linear secret sharings (e.g. Shamir’s secret
sharings). Since the MPC protocols in this model only require linearity and ℓ-privacy from the sharings, this
transformation is straightforward. Then, the TCitH transform compiles this MPC protocol into the following
proof of knowledge:

1. The prover generates a (ℓ+1, N)-threshold sharing JwK of w, and they commit each share independently:
for all i ∈ {1, . . . , N}, comi ← Com(JwKi, ρi) where ρi is some commitment randomness. They send a
hash digest h1 of all {comi}i∈[1:N] to the verifier.

2. The prover emulates a subset S ⊂ {1, . . . , N} of ℓ+1 parties and they send a hash digest h2 of the values
which have been broadcast by these parties to the verifier.

3. The verifier samples a random subset I ⊂ {1, . . . , N} of ℓ parties.
4. The prover opens the commitment of all the parties in I, namely they send (JwKi, ρi)i∈I . The prover

further sends additional information to enable the verifier to recompute h1. Additionally, the prover
sends broadcast shares of an unopened party i∗ ∈ S\I.

5. The verifier checks that the open commitments are consistent with the corresponding hash and that the
revealed parties are consistent with the hash of the broadcast values.

Since only a small number of commitments need to be open in the TCitH framework, one relies on a
Merkle tree instead of a GGM tree. Namely, the commitment h1 is computed as the root of a Merkle tree
with leaves comi. Then, while opening the commitments, the prover further sends the authentication paths
of the opened leaves {comi}i∈I to allow the verifier to recompute and check h1. In [FR23b], the soundness
error of the obtained proof system is shown to be

1(
N
ℓ

) + p · ℓ(N − ℓ)
ℓ+ 1

, (3)

where p is the false positive probability of the underlying multiparty protocol. Since ℓ is typically a small
constant (for example, ℓ ∈ {1, 2, 3}), the MPC emulation is far cheaper than in the traditional MPCitH
framework in which we used to emulate all the N parties.

The hypercube technique introduced in [AGH+23] already reduces the cost of emulating the MPC protocol
to 1 + log2N parties (instead of N) without impacting the communication cost. On the other hand, the
original TCitH framework [FR23b] decreases the emulation cost even more, to a constant number of parties,
but the communication is slightly larger. This is for two reasons:

– TCitH commitments are based on a Merkle tree for which an opening is twice larger than with a GGM
tree. This is because a Merkle authentication path is made of logN hash digests of 2λ bits while a GGM
sibling path is made of logN seeds of λ bits.

– There is a soundness loss since a malicious prover can commit an invalid sharing (see Equation (3) vs.
Equation (2)).

In the next section, we show how we can use GGM trees for commitments in the TCitH framework, thus
achieving a constant number of party emulations (of ℓ+ 1) without communication penalty.

3 TCitH with GGM Trees

3.1 General Technique

In this section, we only work on the case of the non-packed Shamir’s secret sharing for the sake of simplicity,
namely Shamir’s secret sharing of parameters (s, ℓ,N) with s = 1. The general case of is described later in

10

Section 5.2. So in the context of this section, whenever a tuple w ∈ F|w| is shared, the sharing JwK is to be
interpreted as a tuple of the sharings (JwiK)1≤i≤|w| of the coordinates wi ∈ F. Without loss of generality,
we shall assume that the evaluation point ω1 revealing the secret coordinate is fixed to ω1 = 0, that is by
Pwi

(0) = wi (as in the original Shamir’s scheme).

Sharing generation. We propose to generate the Shamir’s secret sharings involved in TCitH framework in
a pseudorandom way using the technique described in [CDI05]. The first step consists in additively sharing
the secret w into

(
N
ℓ

)
shares, each labelled by a different set from {T ⊂ [1 : N], |T | = ℓ}:

w =
∑

T⊂[1:N],|T |=ℓ

sT .

This is also known as an ℓ-private replicated secret sharing [ISN89, CDI05].

We can optimize the generation of this additive sharing using a GGM seed tree as in the MPCitH
transform with additive sharing described in Section 2.4. Then, for every i ∈ [1 : N], the ith party receives
the additive shares {sT }i ̸∈T and converts them into one Shamir’s share JwKi.

Let us denote SNℓ all the subsets of [1 : N] of size ℓ, and let us take such a subset T0 ∈ SNℓ . We also
denote |w| the length of the secret tuple w. Formally, the sharing generation works as follows:

1. We sample a root seed rseed ∈ {0, 1}λ.
2. We expand this root seed through a GGM tree to obtain

(
N
ℓ

)
leaf seeds {seedT }T∈SN

ℓ
.

3. For all T , we expand sT ∈ F|w| from the seed seedT using a pseudorandom generator:

sT ← PRG(seedT).

4. We compute the auxiliary value ∆w as ∆w := w −
∑

T∈SN
ℓ
sT . We thus have

w = ∆w +
∑

T∈SN
ℓ

sT .

Let us denote PT ∈ F[X] the unique degree-ℓ polynomial5 such that{
PT (0) = 1

PT (ej) = 0 for all j ∈ T

where {ej}j are the parties’ evaluation points of the Shamir secret sharing scheme. For i ∈ [1 : N], we
compute JwKi ∈ F|w| as

JwKi :=
∑

T∈SN
ℓ ,i̸∈T

sT · PT (ei) +

{
∆w · PT0

(ei) if i ̸∈ T0,
0 otherwise.

(4)

Correctness. Let us analyze the sharing {JwKi}i obtained using the above procedure. We define the polyno-

mial Pw(X) ∈
(
F[X]

)|w|
as

Pw(X) := ∆w · PT0(X) +
∑

T∈SN
ℓ

sT · PT (X) , (5)

5 If there is a j ∈ T such that ej =∞, PT is of degree ℓ− 1.

11

such that JwKi = P (ei) for all i. Since all polynomials {PT }T are obtained by interpolation of ℓ+ 1 points,
they are of degree (at most) ℓ. We hence directly have that P is a degree-ℓ polynomial. Moreover, we have

P (0) = ∆w · PT0
(0) +

∑
T∈SN

ℓ

sT · PT (0)

= ∆w +
∑

T∈SN
ℓ

sT = w .

We thus deduce that the shares {JwKi}i forms a valid Shamir’s secret sharing of w, since they are evaluations
of a degree-ℓ polynomial with w as constant term.

Remark 1. As mentioned previously, the generation process can be generalized for any LSSS. For T ∈ SNℓ ,
let us denote v(T) the sharing of 1 such that the ith share is zero for all i ∈ T (it necessarily exists thanks
to the privacy property of the LSSS). Then, we can build a pseudo-random sharing of this sharing scheme
using the same procedure as before except that we compute JwKi as

JwKi := ∆w · v(T0)
i +

∑
T∈SN

ℓ ,i̸∈T

sT · v(T)
i .

Protocol description. We rely on the same zero-knowledge protocol as in the original TCitH framework
tweaked with the above sharing generation. Instead of committing {JwKi}i, the prover commits {seedT }T∈SN

ℓ

and ∆w. To open a party i, the prover then needs to reveal all the seeds {seedT }T∈SN
ℓ ,i̸∈T and ∆w (if i ̸∈ T0),

from which the verifier can recompute the share JwKi thanks to Equation (4). In practice, the prover should
reveal a subset I of ℓ parties, so they will reveal{

all the seeds {seedT }T ̸=I ,

∆w if I ̸= T0.

In other words, it means that the prover should reveal all the seeds except seedI . To proceed, they just need
to reveal the sibling path of the hidden leaf seedI in the GGM tree.

Protocol 2 formally describes the zero-knowledge protocol obtained by applying the above TCitH frame-
work with GGM tree to the general MPC protocol formalized in [FR22] and overviewed in Section 2.3, where
{Φj}j are the functions locally applied to derive the broadcast shares and ψj are the functions defining the
hints.6

Computing on polynomial coefficients. As briefly mentioned in [FR22], instead of emulating a subset of
ℓ+1 parties (i.e. applying the MPC computation for ℓ+1 shares), the prover can directly emulate the MPC
protocol on the ℓ+1 coefficients of the polynomial Pw (underlying the Shamir’s secret sharing JwK). Since the
constant term of the polynomial corresponds to the plain secret value, emulating the MPC protocol on the
constant coefficient is equivalent to computing the function underlying the MPC protocol (the function f in
Equation (11)) on the plain input witness. Such “emulation” is often cheaper than a party emulation, since,
in the MPCitH context, the prover already know some expected values αj (which satisfy g(α1, . . . , αt) =
Accept) and can thus save some computation.

6 A formal description of the general MPC protocol is also provided in Section 5.1 (see Protocol 3). The zero-
knowledge protocol described here (Protocol 2) is an application of our TCitH framework with GGM tree to this
general MPC protocol with the restriction that the Φj round functions are made of inner functions φj,k which are
linear.

12

1. The prover samples a root seed rseed ∈ {0, 1}λ and expands it through a GGM tree to obtain
(
N
ℓ

)
leaf seeds {seedT }T∈SN

ℓ
.

2. The prover expands each leaf seeds, s0T ← PRG(seedT) for all T , builds the auxiliary value ∆w := w −
∑

T s
0
T , and computes

Pw ← GenerateSharingPolynomial(∆w, {s0T }T∈SN
ℓ
).

3. The prover emulates “in her head” the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, {εk}k<j ; r

j)

using fresh uniform random tape rj .

(b) the prover expands more randomness {sjT }T∈SN
ℓ

from the leaf seeds (such that |sjT | = |β
j | for all T), builds the auxiliary value ∆βj := βj −

∑
T s

j
T , and computes

Pβj ← GenerateSharingPolynomial(∆βj , {sjT }T∈SN
ℓ
).

(c) the prover expands some commitment randomness ρjT from the leaf seeds (such that |ρjT | = λ for all T) and computes the commitments

comj
T :=

Com(seedT ; ρ

j
T) if j = 1 and T ̸= T0

Com(seedT ,∆w,∆β
j ; ρjT) if j = 1 and T = T0

∅ if j > 1 and T ̸= T0

Com(∆βj ; ρjT) if j > 1 and T = T0

for all T ∈ SN
ℓ .

(d) the prover sends

hj :=

{
Hash({com1

T }T) if j = 1

Hash({comj
T }T , Pαj−1) if j > 1

to the verifier;

(e) the verifier picks at random a challenge εj and sends it to the prover;

(f) the prover compute the plain broadcast
αj := coeff0(Pαj) = Φj(w, (βk)k≤j

)
.

(g) the prover computes, for i ∈ [1 : ℓ],
coeffi(Pαj) := Φj(coeffi(Pw), (coeffi(Pβk))k≤j

)
.

The prover further computes ht+1 := Hash(Pαt) and sends it to the verifier.

4. The verifier picks at random a subset I ⊂ [1 : N] of ℓ parties (i.e. |I| = ℓ) and sends it to the prover.

5. The prover reveals the views of all the parties in I, namely they send the sibling path of seedI in the GGM tree to the verifier, together with ∆w, {∆βj}j∈[1:t] when I ̸= T0.

The prover further sends the digests of the unopened commitments {comj
I}j∈[1:t] and the plain broadcast values {αj}j∈[1:t].

6. The verifier recomputes the commitments comj
T for T ̸= T0 and j ∈ [1 : t] from the sibling path and the auxiliary values (in the same way as the prover). They expand all the

randomness (s0T , s
1
T , . . . , s

t
T)T ̸=I from seeds and build the share of the open parties: for all i ∈ I,{

JwKi = GeneratePartySharei({s0T }T :i̸∈T ,∆w)

JβjKi = GeneratePartySharei({s
j
T }T :i̸∈T ,∆β

j) for all j ∈ [1 : t]

where ∆w and {∆βj}j are omitted if not provided by the prover. The verifier can emulate the MPC protocol on the open parties: for all i ∈ I and j ∈ [1 : t],

JαjKi := Φj(JwKi, (JβkKi)k≤j

)
Finally, the verifier can recompute the Shamir’s polynomials Pαj of all {JαjK}j : for all j ∈ [1 : t],

Pαj = RecomputeSharingI(α
j , (JαjKi)i∈I).

7. The verifier accepts if and only if:

(a) the views of the opened parties are consistent with each other, with the committed input shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+1,

hj
?
=

Hash({com1

T }T) if j = 1

Hash({comj
T }T , Pαj−1) if 2 ≤ j ≤ t

Hash(Pαt) if j = t+ 1;

(b) the output of the opened parties are Accept, i.e.

g(α1, . . . , αt)
?
= 0 .

Protocol 2: Zero-knowledge protocol: application of the TCitH framework with GGM tree to the general
MPC protocol of [FR22].

13

Protocol routines. Protocol 2 is based on the following three routines that deal with sharings:

– GenerateSharingPolynomial takes as inputs an auxiliary value and the expanded randomness (i.e. the ran-
domness expanded from all the seeds), and outputs the corresponding Shamir’s polynomial (the polyno-
mial involved in the Shamir’s secret sharing). Formally, the call GenerateSharingPolynomial(∆x, (sT)T∈SN

ℓ
)

outputs the polynomial Px defined as

Px(X) = ∆x · PT0(X) +
∑
T

sT · PT (X) ∈
(
F[X]

)|x|
.

– GeneratePartySharei (for some i ∈ [1 : N]) builds the share of the ith party, using Equation (4). It takes
as inputs the randomness (sT)T :i ̸∈T , together with the auxiliary value when necessary. Formally, the call
GeneratePartySharei((sT)T :i̸∈T , ∆x) outputs

JxKi :=
∑

T :i ̸∈T

sT · PT (ei) +

{
∆x · PT0

(ei) if i ̸∈ T0,
0 otherwise.

– RecomputeSharingI builds the Shamir’s polynomial Px from a plain value x and ℓ party shares (JxKi)i∈I .
It simply performs Lagrange interpolation with the points Px(0) = x and Px(ei) = JxKi for all i ∈ I.
Formally, the call RecomputeSharingI(x, (JxKi)i∈I) outputs the polynomial Px ∈

(
F[X]

)|x|
defined as

Px(X) := x ·
∏
j∈I′

X − ej
−ej

+
∑
i∈I′

JxKi ·
X

ei
·
∏

j∈I′,j ̸=i

X − ej
ei − ej

+ c∞ ·X ·
∏
j∈I′

(X − ej)

where i∞ is the index such that ei∞ =∞, and{
I ′ := I \ {i∞} and c∞ := JxKi∞ if i∞ ∈ I,
I ′ := I and c∞ := 0 if i∞ /∈ I.

Soundness and zero-knowledge analysis. Let us analyze the soundness of Protocol 2. From a high-level
point of view, we just changed how the shares of the Shamir’s secret sharing are built. In the original TCitH
framework, one cannot force the prover to commit a valid sharing (i.e., where the shares are the evaluations
of the same degree-ℓ polynomial). This degree of freedom impacts the soundness of the scheme: the false
positive probability p is scaled by a factor ℓ(N − ℓ)/(ℓ+ 1) in the soundness error (see Equation (3)) which
constrains the protocol to have a low p or to suffer an important loss in soundness. The situation is different
here: a malicious prover shall commit

(
N
ℓ

)
seeds {seedT }T with an auxiliary value ∆w. These values always

define a valid Shamir’s secret sharing with underlying polynomial

Pw(X) = ∆w · PT0(X) +
∑
T

sT · PT (X)

where sT ← PRG(seedT) for all T . While this sharing might not correspond to a valid witness, it is a valid
Shamir’s secret sharing of a (possibly invalid) witness w. Namely, all the sets of ℓ + 1 shares among the
JwKi’s encode the same (possibly invalid) witness w. Thus, a malicious prover has no way of committing to
something that is not a valid Shamir’s secret sharing. For this reason, the soundness error ϵ is

ϵ :=
1(
N
ℓ

) + p ·

(
1− 1(

N
ℓ

)) ,
which for ℓ = 1 matches the soundness error of the MPCitH framework with additive sharing (see Equa-
tion (2)). The obtained soundness is hence better than the original TCitH framework for which the soundness

14

error is degraded by the fact that a malicious prover might commit an invalid Shamir’s secret sharing. This
result is formally stated in Theorem 2 in the next section (for an extension of the TCitH framework).

Regarding the zero-knowledge property, it simply holds from the following observation: the seed seedI
remains hidden and the plain witness w is masked by the hidden value sI := PRG(seedI). This ensures that
the proof system leaks no information about the witness (provided that the underlying MPC protocol is
ℓ-private in the semi-honest model).

Performances. Let us analyze the communication cost of Protocol 2. The prover sends

– t+ 1 hash digests h1, . . . , ht+1, which cost (t+ 1) · 2λ bits;
– the sibling path of seedI in a seed tree with

(
N
ℓ

)
, which costs λ · log2

(
N
ℓ

)
bits;

– the auxiliary values (∆x, {∆βj}j∈[1:t]) when I ̸= T0;
– the plain broadcast values α1, . . . , αt;
– some commitment digests {comj

I}j∈[1:t], which cost t · 2λ bits when I = T0 and 2λ bits otherwise (since

comj
I is ∅ for j > 0 and I ̸= T0).

We obtain a total communication cost of

– when I ̸= T0,

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+(inputs︸ ︷︷ ︸
∆w,∆β1,...,

+ comm︸ ︷︷ ︸
α1,...,αt

+λ · log2
(
N

ℓ

)
︸ ︷︷ ︸
seedT for T ̸=I

+ 2λ︸︷︷︸
com1

I

).

– when I = T0,

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+(comm︸ ︷︷ ︸
α1,...,αt

+λ · log2
(
N

ℓ

)
︸ ︷︷ ︸
seedT for T ̸=I

+ t · 2λ︸ ︷︷ ︸
com1

I ,...,com
t
I

).

where inputs denote the bitsize of (∆w,∆β1, . . . ,∆βt), and where comm denotes the bitsize of (α1, . . . , αt).
To achieve a soundness error of 2−λ, one must repeat the protocol τ times such that ϵτ < 2−λ. The

resulting averaged cost (in bits) is the following:

Cost = (t+ 1) · 2λ+ τ ·

((
N
ℓ

)
− 1(

N
ℓ

) · inputs+ comm+ λ · log2
(
N

ℓ

)
+

(
N
ℓ

)
− 1 + t(
N
ℓ

) · 2λ

)
.

Comparison. Let us first consider the case ℓ = 1. We can check that Protocol 2 (with ℓ = 1) achieves
exactly the same communication cost and soundness as the MPCitH transformation with additive sharing
and GGM tree (see, e.g., [FR23b, Section 3.2]). Moreover, in Protocol 2,

– the prover emulates ℓ+ 1 = 2 parties and
– the verifier emulates ℓ = 1 party.

This is to be compared with 1 + log2N (for the prover) and log2N (for the verifier) using the MPCitH
transform with additive sharing speed up with the hypercube technique of [AGH+23]. We thus obtain
a proof system with the same communication and soundness but always faster than the recent MPCitH
schemes accelerated with the hypercube technique (when working on a large field, c.f. Section 3.2).

Moreover, our result can be argued to be optimal in terms of party emulation: the verifier could not verify
less than one party (to get a sound proof) and the prover must emulate strictly more parties than those opened
to the verifier (to achieve the zero-knowledge property). We present in Section 3.3 a detailed comparison
between the TCitH framework using pseudo-random sharings and GGM tree (abbreviated TCitH-GGM in
the following) and the former approach based on a Merkle tree recalled in Section 2.5 (and abbreviated
TCitH-MT in the following).

15

Remark 2. When repeating the protocol τ times to achieve a negligible soundness error, we obtain a proof
system that emulates 2τ parties in total for the prover. However, if the used MPC protocol has a negligible
false positive probability p, we can use the trick proposed in the Limbo proof system [DOT21] which consists
in using the same MPC challenges ε1, . . . , εt across the τ parallel executions. In that case, we get exactly
the same plain values for the hints and the broadcast. Since one of the two party executions per repetition
is the plain MPC computation, we can make it once for all the repetitions. The overall MPC emulations for
the prover thus consist in emulating only 1 + τ parties.

Case of ℓ > 1. To compare the cases ℓ = 1 and ℓ > 1, let us analyze the communication cost and the running
times with respect to a given soundness error 2−λ0 for a single repetition:

– Communication cost. We can assume that(
N
ℓ

)
− 1(

N
ℓ

) ≈ 1 and

(
N
ℓ

)
− 1 + t(
N
ℓ

) ≈ 1

for all ℓ. Moreover, we can observe that the seed trees have 2λ0 leaves in both cases. We thus get that
the communication cost is the same for any ℓ (up to the above approximations).

– Running times. The size of the seed trees is the same in both cases and there is the same number of
commitments. The difference in the computation mainly comes from the MPC emulation: we need to
emulate 1 + ℓ parties (for the prover).

To sum up, taking ℓ > 1 leads to slower schemes while keeping the communication cost unchanged. So the
best choice is always to take the minimal value for ℓ.

The only good reason to take ℓ > 1 would be to bypass the constraint on the number of parties. Remind
that we have the limitation that the number N of parties should be less than the field size (N ≤ |F|) which,
for a small field, might prevent reaching the target per-repetition soundness error 2−λ0 . While increasing ℓ,
we can thus amplify the single repetition soundness with a limited N . While this approach is relevant, we
show another way to handle the case of the small fields in the next section which achieves better soundness-
performance trade-offs.

3.2 Lifting in a Field Extension

As explained previously, the TCitH framework suffers the constraint that the number N of parties should
be smaller than the field size: N ≤ |F| (or N ≤ |F| + 1 in some cases) as long as ℓ < N − 1 (see Lemma
1 in [FR23b]).7 This limitation is an issue when dealing with statements defined over small fields (and in
particular the binary field F2). A natural idea to overcome this limitation is to lift the sharing in a field
extension.

Lifting in a field extension. Let us take η such that N ≤ |F|η and consider the field extension K ≡ F[δ]/f(δ)
where f is a public irreducible degree-η polynomial. We tweak a bit the sharing generation of Section 3.1.
After expanding all sT ∈ F|w| for all T ∈ SNℓ , we still compute the auxiliary value ∆w as

∆w := w −
∑

T∈SN
ℓ

sT ∈ F|w|,

but we compute the shares JwKi using Equation (4) with parties’ evaluation points {ej} living in the field
extension K (instead of living in F). As consequence, the shares {JwKi}i live in K|w| instead of F|w|. Let us
stress that the security properties still hold using this tweak:

– Zero-knowledge: the seed seedI remains hidden as previously, and so the plain value w is masked by the
hidden value sI := PRG(seedI).

– Soundness: the extractor of the proof of Theorem 2 (see Section 5) outputs the witness even if the
polynomials live in a field extension.

7 Note that ℓ = N − 1 is equivalent to a trivial linear secret sharing (e.g., the additive secret sharing) and is not of
interest for the TCitH framework which benefits from small values of ℓ.

16

Performances. The communication cost remains unchanged since the proof transcript only contains auxiliary
values and plain values which still live in the base field F. Regarding the computational cost for the prover,
we can remark that:

– The cost of running the plain protocol (Step 3(f) of Protocol 2) remains unchanged, since the plain values
still live in F;

– The cost of running the MPC protocol on the ℓ other coefficients of the Shamir’s polynomials (Step
3(g) of Protocol 2) is bigger. It is exactly η times bigger as we can decompose this computation into η
smaller independent computations living in the base field. Indeed, by denoting A0, . . . , Aj the matrices
and b the vector underlying the definition of φj , which is φj : (v0, . . . , vj) 7→ A0 · v0 + · · · + Aj · vj + b
and by denoting x|d the F-coordinate of x ∈ K corresponding to the coefficient of the term δd−1 when
decomposing x ∈ K in the F-basis (1, δ, . . . , δη−1), we have:

coeffi(Pαj)|d = φj
(
coeffi(Pw), (coeffi(Pβk))k≤j

)
|d

= (A0 · coeffi(Pw))|d +
∑
k≤j

(Ak · coeffi(Pβk))|d + coeffi(Pb)

= A0 · (coeffi(Pw)|d) +
∑
k≤j

Ak · (coeffi(Pβk)|d) + coeffi(Pb)

= φj
(
coeffi(Pw)|d, (coeffi(Pβk)|d)k≤j

)
which holds since the coefficients of A0, . . . , Aj live in F.

The same analysis also holds for the verifier: emulating the parties is η times more expensive. To sum up,
when lifting in a field extension of degree η, we obtain the same communication cost, but emulating the
MPC protocol is as expensive as emulating

– 1 + ℓ · η parties for the prover,
– ℓ · η parties for the verifier.

We can observe that taking η = 1 corresponds to the zero-knowledge proof system of the previous
section. Taking η larger does not change the communication cost but the emulation phase becomes more
expensive. Despite this overhead, taking η larger than 1 can overcome the limitation of N ≤ |F|. Indeed, we
can now execute the proof system with at most |K| := |F|η parties. For instance, if the witness (and MPC
computation) is defined over F16 and if one wants to take N = 256, one just needs to take η = 2. One then
gets 3 party emulations for the prover (instead of 2) and 2 party emulations for the verifier (instead of 1)
while squaring the affordable number of parties (N ≤ |K| = |F|2 = 162 = 256). Since the proof system is
slower with larger η, the optimal strategy is to choose the minimal η satisfying N ≤ |F|η.

Let us remark that lifting in a field extension of degree η > 1 is more efficient to deal with small fields
than the alternative solution with ℓ > 1 (described in the previous section). Indeed, when targeting the
same soundness error, both cases have similar communication costs, but the lifting tweak requires fewer
emulations. This is illustrated in Figure 1 for the field F13.

We describe hereafter a way to further speed up the lifting tweak with ℓ = 1 using a hypercube structure
for the generation of shares.

Hypercube sharing generation. A straightforward execution of the routine GenerateSharingPolynomial to build
the corresponding Shamir’s polynomial Px(X) = c ·X + x with

c :=
1

eN
∆x+

N∑
i=1

1

ei
si

involves around N scalar multiplications between a value from K and a vector from F|x|, or equivalently
N · η scalar multiplications between a value from F and a vector from F|x|. However, we can pack these

17

2 122 102 82 62 42 2

Soundness error

2

3

4

5

6

7

Nu
m

be
r o

f p
ar

ty
 e

m
ul

at
io

ns
 (p

ro
ve

r)

Lifting in a field extension
Taking > 1

Fig. 1: Emulation cost when working on F13 using lifting and using ℓ > 1.

multiplications by defining the parties’ evaluation points {ej}j as follows. First, we index these points over
[1 : N1] × . . . × [1 : Nη] where N1, . . . , Nη are some parameters satisfying N = N1 · . . . · Nη. Then, for
i ∈ [1 : N1]× . . .× [1 : Nd], we define ei such that

1

ei
=

1

e′i1
+

1

e′i2
· δ + . . .+

1

e′iη
· δη−1 ∈ K,

where {e′j}j are distinct points over F∗ ∪ {∞}. With this definition, we get that c can be computed as

c = −
∑

i∈[1:N1]×...×[1:Nη]

1

ei
si

= −
∑

i∈[1:N1]×...×[1:Nη]

(
1

e′i1
+

1

e′i2
δ + . . .+

1

e′iη
δη−1

)
si

= −
η∑

k=1

 ∑
i∈[1:N1]×...×[1:Nη]

1

e′ik
si

 δk−1

= −
η∑

k=1

Nk∑
j=1

1

e′j

∑
i:ik=j

si

 δk−1

which involved only N1 + . . . + Nη multiplications instead of η · N = η · N1 · . . . · Nη and around η · N
additions. The routine GeneratePartySharei is also impacted: on inputs (sj)j ̸=i and ∆x, GeneratePartySharei
outputs JxKi where

JxKi := ei ·
η∑

k=1

 Nk∑
v=1,v ̸=ik

(
1

e′ik
− 1

e′v

) ∑
j:jk=v

sj

 · δk−1 +

{
∆x · (1− ei

e(N1,...,Nη)
) if i ̸= N,

0 otherwise.

Remark 3. Let us remark that the extreme case of η = log2N and N1 = . . . = Nη = 2 corresponds to
the standard additive-sharing MPCitH framework with hypercube optimization from [AGH+23] (since for

18

(ℓ,N) = (1, 2) a Shamir’s secret sharing is equivalent to an additive sharing). Whenever the base field is
F2, this gives the best we can hope for with our approach. Whenever the field is larger, our “pseudorandom
sharing + lifting” TCitH framework always brings a better trade-off.

Remark 4. One may wonder what is the best choice for N1, . . . , Nη given N and |F|. For instance, working
on F131 with N = 512, one could take (N1, N2) = (32, 16) or (N1, N2) = (128, 4). The only place where
the choice of (N1, . . . , Nη) has an impact is for the computation of the leading coefficient in the routine
GenerateSharingPolynomial. As explained before, this step involves around N1+ . . .+Nη multiplications, thus
the best choice consists in minimizing N1 + . . .+Nη. The AM-GM inequality implies (N1 + . . .+Nη)/η ≥
η
√
N1 · . . . ·Nη which, together with N = N1 · . . . ·Nη, gives us:

N1 + . . .+Nη ≥ η ·
η
√
N .

We deduce that taking Ni as close as possible to η
√
N leads to the optimal computational cost.

3.3 Global Comparison

In Table 1, we compare the following MPCitH/TCitH-based zero-knowledge proof systems:

– the traditional additive-sharing MPCitH framework [KKW18, BN20], where the prover emulates all the
N parties in their head;

– the additive-sharing MPCitH framework with hypercube optimization [AGH+23], where the prover only
emulates 1 + log2N parties;

– the original TCitH framework [FR23b] using Merkle tree commitments;
– the alternative TCitH framework using pseudo-random sharings and GGM trees, proposed in the previous

section.

For all these proof systems, we give the number of party emulations for the prover and the verifier, while
achieving a soundness error of 2−λ with N parties. Moreover, we give the overall complexity of the prover
and the verifier, which includes the emulation cost but also the cost of generation and commitment of the
input sharings.

Additive-sharing MPCitH
TCitH

Merkle tree variant GGM tree variant (ℓ = 1)

Traditional Hypercube ℓ = 1 Any ℓ Basic With lifting

Number of Emulations
(prover)

≈ λ N
log2 N

≈ λ log2 N+1

log2 N
≈ λ 2

log2 N
≈ λ ℓ+1

log2 (
N
ℓ)

λ · 2
log2 N

λ · 1+η
log2 N

Time Complexity
(prover)

O(λ N
log2 N

) O(λN) O(λ N
log2 N

) O(λ N·ℓ
log2 N

) O(λ N
log2 N

) O(λ N·η
log2 N

)

Number of Emulations
(verifier)

≈ λ N−1
log2 N

≈ λ log2 N

log2 N
≈ λ 1

log2 N
≈ λ ℓ

log2 (
N
ℓ)

λ · 1
log2 N

λ · η
log2 N

Time Complexity
(verifier)

O(λ N
log2 N

) O(λN) O(λ) O(λ · ℓ) O(λ N
log2 N

) O(λ N·η
log2 N

)

Restriction - - N ≤ |F| N ≤ |F| N ≤ |F| η
√
N ≤ |F|

Table 1: Computational complexities for the existing MPCitH-based transformations, when achieving a
soundness error of 2−λ (assuming a negligible false positive probability p).

We can make the following observations:

– The smallest emulation costs are achieved by the TCitH framework. In fact, in TCitH, taking N larger
reduces the emulation cost, while it was the opposite in the traditional MPCitH framework.

19

– All the protocols have a prover complexity around O(λ N
log2 N) even when the emulation cost is small

because of the generation and the commitment of sharings. We deduce that the latter shall be the
computational bottleneck for the TCitH framework (unless relying on heavy MPC protocols). When
working on large fields, the hypercube approach has the largest overall asymptotic complexity of O(λN).
We note that for small fields, TCitH has similar asymptotic complexity since one needs to take ℓ ≈ η =
logN .

– The TCitH framework with GGM tree is strictly better than the additive-sharing MPCitH framework
with hypercube optimization as soon as the base field has more than two elements (both are equivalent
on F2).

– The original TCitH framework is the only zero-knowledge proof system achieving fast verification (thanks
to the Merkle trees). However, the original TCitH framework has a slightly larger communication cost
than the other protocols (due to Merkle authentication paths vs. GGM sibling paths as explained in
Section 2.5).

Remark 5. Let us mention that the framework TCitH with GGM trees is compatible with the principle of
MPCitH with rejection proposed in [FMRV22].

3.4 Application to NIST Post-Quantum Signature Candidates

In the recent NIST call for additional post-quantum signature schemes, 7 submissions fit the MPCitH
framework:8 AIMer [KHS+22, CCH+23], Biscuit [BKPV23], MIRA [ABC+23, ABB+23d], MiRitH [ARZV23,
ABB+23b], MQOM [FR23a], RYDE [BCF+23, ABB+23c] and SDitH [FJR22, AFG+23]. We fetched the
source codes of all these submissions, applied our alternative TCitH framework, and compared with the
former approaches. The resulting running times are given in Table 2.

Let us stress that we only fetched the source codes relative to the MPC protocols (and the arithmetic
parts). For the rest of the implementation, we used a factorized source code implementing the MPCitH
transformations. We are thus relying on the same source code for the symmetric components (pseudorandom
generation, commitments, ...), leading to a fairer comparison. In addition, we can rely on exactly the same
transformations for the three compared approaches. For example, in MiRitH, an implementation with the
hypercube optimization is provided but it emulates 2 log2N parties while an optimal implementation only
requires 1+log2N party emulations. In our benchmark, the running times given for MiRitH with hypercube
correspond to an emulation of 1 + log2N parties. In our source code, the pseudo-randomness is generated
using SHAKE and the hash function is instantiated with SHA3. We have benchmarked all the codes on
a 3.8 GHz Intel Core i7 CPU with support of AVX2 and AES instructions. All the reported timings were
measured on this CPU while disabling Intel Turbo Boost.

As expected, we can observe the TCitH framework does not lead to faster algorithms for AIMer and
RYDE, since the latter have the binary field F2 as base field. When working on larger fields, the TCitH
framework with GGM tree always leads to faster timings: the heavier the underlying MPC protocol, the
larger the gain. For instance, for MIRA (which uses the heaviest MPC protocol among the submissions), the
TCitH framework halves the running times.

Let us further stress that the timing improvements obtained thanks to the TCitH framework with GGM
tree tend to flatten the MPC protocol contributions in the NIST candidate timings and hence significantly
lessen the timing differences between the candidates. While the running times are in the range 4.5–344.3 ms
for the traditional approach with N = 256, they are in the range 3.22–9.89 ms with the TCitH framework.

4 Degree-Enforcing Commitment for TCitH with Merkle Trees

The original TCitH framework [FR23b] suffers a soundness loss because a malicious prover can commit to
invalid Shamir’s secret sharings, i.e. sharings for which the underlying polynomials (obtained by interpolation

8 PERK [ABB+23a] follows the shared-permutation framework [FJR23] which differs from the standard MPCitH
framework.

20

Additive MPCitH TCitH (GGM tree)

Scheme N Size Traditional Hypercube η Our scheme Saving

AIMer
16 5 904 0.64 0.52 4 0.52 −0%
256 4 176 4.53 3.22 8 3.22 −0%

Biscuit
16 6 726 2.81 1.71 1 1.44 −16%
256 4 758 17.71 4.65 2 4.24 −9%

MIRA
32 7 376 74.95 15.02 2 8.04 −46%
256 5 640 384.26 20.11 2 9.89 −51%

MiRitH-Ia
16 7 661 6.81 2.59 1 1.52 −41%
256 5 665 54.15 6.60 2 5.42 −18%

MiRitH-Ib
16 8 800 11.22 4.04 1 2.11 −48%
256 6 298 89.50 8.66 2 6.66 −23%

MQOM-gf31
32 7 621 12.88 4.64 1 3.31 −29%
256 6 348 96.41 11.27 2 8.74 −22%

MQOM-gf251
32 7 809 8.56 3.05 1 2.16 −29%
256 6 575 44.11 7.56 1 5.97 −21%

RYDE
32 7 446 2.31 1.14 5 1.14 −0%
256 5 956 12.41 4.65 8 4.65 −0%

SDitH-gf256
32 11 515 16.85 4.90 1 3.07 −37%
256 8 241 78.37 7.23 1 5.31 −27%

SDitH-gf251
32 11 515 4.17 2.17 1 1.79 −18%
256 8 241 19.15 7.53 1 6.44 −14%

Table 2: Benchmark of all the NIST MPCitH-based signature schemes, for the three approaches. The sizes
are in bytes and the timings are in milliseconds. The given timings correspond to the signing time, but
the verification time is always very close to the signing time (since the verifier makes almost the same
computation as the prover).

from the sharings) are not of degree ≤ d = ℓ+ s− 1 as expected. Specifically, for a constant ℓ, the soundness
of the original TCitH framework (given by Equation (3)) has an overhead of O(N · p) compared to the
standard MPCitH soundness (given by Equation (2)) which might be significant in case the false positive
probability p is non-negligible.

In the previous section, we showed how to generate and commit Shamir’s secret sharings using GGM trees
which solves the latter issue since the degree d is “hardcoded” in this technique. However, the complexity
of building such commitments linearly scales with

(
N
ℓ

)
while that of Merkle tree commitments only scales

with N . This prevents using the GGM variant with parameters leading to a large binomial coefficient
(
N
ℓ

)
.

Moreover, as we will see later on, using packed secret sharing (i.e., s > 1) enables us to achieve commitments
and zero-knowledge arguments which are sublinear in the witness size with Merkle trees but not with GGM
trees, making the former more appealing in some contexts. We would thus like to tweak the Merkle tree
commitment of Shamir’s secret sharings in a way that ensures the verifier that the committed sharings are
of valid degrees.

This section provides such a degree-enforcing commitment scheme. We first recall the proximity test
for interleaved codes of Ligero [AHIV17, AHIV23] and analyze its application to the TCitH framework.
Our analysis put forward some limitations of this test in our context which motivates the introduction of
a tweaked version of this test which we integrate to the commitment scheme in order to obtain a better
soundness. We finally provide some comparison of the two approaches.

4.1 Analysis of Ligero’s Proximity Test

Ligero [AHIV17, AHIV23] introduces the idea of proximity test for interleaved codes to test the validity of
(Reed-Solomon) codewords committed with Merkle trees. The idea is the following: let us have n possibly
invalid codewords Jw1K, . . . , JwnK. If at least one of the codewords is e-far from any valid codeword (meaning
that it differs from a valid codeword on at least e positions), then so are nearly all the linear combinations of
Jw1K, . . . , JwnK. So, in order to detect the commitment of invalid codewords, one can request the opening of a

21

random linear combination of the committed codewords and check that it forms a valid codeword. In case of
success, one concludes that all the codewords are (close to) valid codewords with high probability, otherwise
one concludes that there is at least one invalid codeword. Ligero uses such proximity test with Reed-Solomon
codewords. Let us recall that a Reed-Solomon code encodes a word v ∈ Fd+1 into a codeword in FN by
interpolating a degree-d polynomial P such that (P (ω1), . . . , P (ωd+1)) = v, for some fixed evaluation points
{ωi}i and defining the associated codeword formed by N evaluations (P (e1), . . . , P (eN)) for fixed evaluation
points {ei}i disjoints from {ωi}i. In other words, a Shamir’s secret sharing of w = (w1, . . . , ws) ∈ Fs with
privacy threshold ℓ is the Reed-Solomon codeword associated to (w1, . . . , ws, r1, . . . , rℓ) for random elements
r1, . . . , rℓ ∈ F.

Ligero’s proximity test relies on a key lemma (see Lemma 4 in Appendix A) which we can rephrase
with a sharing-based formulation as follows. Let e be a positive integer such that e < N−d

4 . Suppose that
Jw1K, . . . , JwnK differ from n valid Shamir’s secret sharings for strictly more than e parties. We get that the
probability that a linear combination of those sharings differs from a valid sharing for at most e parties is
less than (e+ 1)/|F|:

Pr
γ1,...,γn

$←−F

[∑
i

γi · JwiK differs from a valid sharing for at most e parties

]
≤ e+ 1

|F|
.

This results has been further extended in [BCI+20] (see Theorem 3 in Appendix A) which supports larger
values of e, namely any e < N−d

2 , for which the above probability is upper bounded by N/|F|.
We provide in Appendix A an analysis of the soundness error obtained while using Ligero’s proximity

test in the TCitH framework. We show that, for an MPC protocol with false positive probability p, we obtain
a soundness error ϵ satisfying:

ϵ ≤ max

{
N

|F|
+

(N−⌈ δ
2 ⌉

ℓ

)(
N
ℓ

) }
∪

{
f

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p) ∣∣∣∣∣ 0 ≤ f ≤
⌈
δ

4

⌉
− 1

}

∪

{
N

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p) ∣∣∣∣∣
⌈
δ

4

⌉
≤ f ≤

⌈
δ

2

⌉
− 1

}
(6)

where δ = N − d. In [AHIV17, AHIV23], the authors provide a simpler expression of the above soundness
error by simply summing the largest terms in the above formula:

ϵ ≤ N

|F|
+

(N−⌈ δ
2 ⌉

ℓ

)(
N
ℓ

) + p+
1(
N
ℓ

) ≤ N

|F|
+

(
1−
⌈ δ2⌉
N

)ℓ

+ p+

(
ℓ

N

)ℓ

.

Limitations. The main drawback of Ligero’s and the above analyses using proximity tests is that they require
large values of ℓ for the soundness error to be small whereas small values of ℓ are better to minimize the size
of zero-knowledge arguments for small statements. This merely comes from the term(N−⌈ δ

2 ⌉
ℓ

)(
N
ℓ

) ≈
(N+d

2
ℓ

)(
N
ℓ

)
(reminding that d = s+ℓ−1), which is a lower bound of the right-side quantity of (6). This term is large and
hence implies an important degradation of the soundness whenever ℓ is small. For instance, when ℓ = 1, this
term is around 1/2, meaning that the soundness error is larger than 1/2. Therefore, using Ligero’s approach
is insufficient to improve the soundness error ϵ = 1

N + p · N2 obtained by the analysis of [FR23b] for ℓ = 1
(see Equation (3) for the general formula).

To the best of our knowledge, all the proximity tests in the state of the art target contexts with large-
degree polynomials and large evaluation domains, which are asymptotically better while the statement size
increases. However, with the TCitH framework, we target “small to medium size” statements which might

22

benefit from small-degree polynomials if one can enforce the degree of committed sharings without the above
soundness degradation (with the particular case of ℓ = 1 in some contexts). This motivates our proposal
which we introduce hereafter.

4.2 Degree-Enforcing Commitment Scheme

We now describe our approach to avoid the aforementioned limitations of Ligero’s proximity test. Our tweak
consists in adding an extra atomic round for the proximity test before the MPC protocol emulation, i.e.,
before receiving the MPC randomness from the verifier. With this extra round considered as part of the
commitment, the committed shares can be split into two categories:

1. the shares consistent with the requested linear combinations;
2. the shares inconsistent with the requested linear combinations.

We stress that any opening including some share(s) of the second category leads to a verification failure. So
denoting E the set of share indices belonging to the first category, only the shares from {JwKi}i∈E can be
accepted by the verifier. Our goal is hence to enforce that the shares {JwKi}i∈E form a valid Shamir’s secret
sharing (i.e., a sharing of expected degree d). We show hereafter that our approach ensures this property (i.e.,
enforces the degree of committed shares) with probability at least 1−

(
N
ℓ+2

)
/|F|η, where η is the number of

parallel repetitions of the proximity test. By taking η large enough, our commitment scheme hence enforces
the degree of committed sharings with overwhelming probability.

Let us first formally define the notion of degree-enforcing commitment scheme. (We do not re-introduce
the binding and hiding notions for such a commitment scheme which are similar to the standard notions.)

Definition 2 (Degree-enforcing commitment scheme). Let N, d ∈ N. Let F be a finite field and
{e1, . . . , eN} ⊆ F a set of distinct evaluation points. An interactive degree-enforcing commitment scheme
with parameters (N, d,F) is a triplet (Commit,Open,Verif) defined as follows:

– Commit is a 3-pass 2-party protocol between a (stateful PPT) prover P = (P1,P2) and a (PPT) verifier
V which takes as input a family of degree-d polynomials P1, . . . , Pn ∈ F[X] and outputs a commitment
com = (com1, chal, com2) and an opening key key computed as:

(com1, state)← P1(P1, . . . , Pn) ; chal← V(com1) ; (com2, key)← P2(chal, state)

– Open is a deterministic algorithm which takes as input a commitment com, opening key key and a set
of evaluation points E ⊆ {e1, . . . , eN} and returns a set of evaluations {Pi(e) ; 1 ≤ i ≤ n, e ∈ E} and a
proof π.

– Verif is a deterministic algorithm which takes as input a commitment com, a set of evaluations {Pi(e); 1 ≤
i ≤ n, e ∈ E} and a proof π and returns Accept or Reject.

The scheme is

– correct: for any family of degree-d polynomials P1, . . . , Pn ∈ F[X] and any set of evaluation points
E ⊆ {e1, . . . , eN}, we have:

Pr

[
Verif(com, {Pi(e)}, π) = Accept

∣∣∣∣ (com, key)← Commit({Pi})
({Pi(e)}, π) = Open(com, key, E)

]
= 1 .

– ε-degree-enforcing: for any (stateful PPT) adversary A = (A1,A2) and any J ∈ N, we have:

Pr

∀j ∈ [1, J],

Verif(com, {Pi(e)}i,e∈Ej , πj) = Accept

∧
(
(degP1 > d) ∨ . . . ∨ (degPn > d)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(com1, state)← A1()
chal← Commit.V(com1)(
com2, (Ej , {Pi(e)}i,e∈Ej

, πj)j∈[1,J]

)
← A2(chal, state)

com = (com1, chal, com2)
E = E1 ∪ . . . ∪ EJ

(P1, . . . , Pn) = Interpol(E, {Pi(e)}e∈E)

≤ ε ,

23

where Interpol(E, {Pi(e)}) returns the polynomials P1, . . . , Pn interpolated from the evaluations {Pi(e)},
with e ∈ E. In the above probability, the sets E1, . . . , EJ ⊆ {e1, . . . , eN} returned by the adversary are
disjoint. The above probability is over the randomness of A and Commit.V.

We now describe the degree-enforcing commitment scheme we obtain by composing the Merkle commit-
ment of polynomial evaluations (a.k.a. Shamir’s secret sharings) with an atomic round of proximity test
(which is performed η times in parallel for some parameter η ∈ N):

– Commit: To commit degree-d polynomials P1, . . . , Pn ∈ F[X], the 3-pass commitment protocol runs as
follows:

1. For all j ∈ {1, . . . , N}, let uj = (P1(ej), . . . , Pn(ej)). Commit.P1 computes com1 as the root of the
Merkle tree with leaves u1, . . . , uN and state as the set of polynomials (P1, . . . , Pn).

2. On input com1, Commit.V1 picks random coefficients γ1,1, . . . , γη,n ∈ F and returns chal = {γk,i}.
3. On input chal = {γk,i}, state = (P1, . . . , Pn), Commit.P2 computes polynomials

Rk =

n∑
i=1

γk,i · Pi for all k ∈ {1, . . . , η}

and returns com2 = (R1, . . . Rη) and key = (P1, . . . , Pn).

– Open: On input a commitment com = (com1, chal, com2), an opening key key = (P1, . . . , Pn) and a set
of evaluation points E, returns the evaluations {Pi(e) ; 1 ≤ i ≤ n, e ∈ E} (i.e., the evaluations of the
Merkle leaves {uj ; ej ∈ E}) and the proof π made of the authentication paths of these leaves w.r.t. the
Merkle root com1.

– Verif: On input a commitment com = (com1, chal, com2), with chal = {γk,i} and com2 = (R1, . . . Rη), a
set of evaluations {Pi(e) ; 1 ≤ i ≤ n, e ∈ E} and a proof π, performs the following checks:

1. For all j s.t. ej ∈ E, verify the authentication path from π for uj = (P1(ej), . . . , Pn(ej)) w.r.t. the
Merkle root com1.

2. For all e ∈ E and all k ∈ {1, . . . , η}, verify the equality Rk(e) =
∑n

i=1 γk,i · Pi(e).
3. For all k ∈ {1, . . . , η}, verify the degree degRk ≤ d.

Theorem 1. Assume that an adversary is not able to produce a hash collision. The above commitment
scheme is ε-degree-enforcing with

ε =

(
N

d+2

)
|F|η

.

Proof. Along this proof, we denote vector polynomials P (X) = (P1(X), . . . , Pn(X)) ∈ (F[X])n and R(X) =
(R1(X), . . . , Rη(X)) ∈ (F[X])η and define their degrees to be degP = maxi degPi and degR = maxi degRi.

We consider an adversary A against the degree-enforcing game. We assume A cannot produce hash
collisions which implies that, for any given Merkle commitment com1, A can open a single valid leaf ui =
P (ei) for each index i. Such an adversary win the degree-enforcing game if, after receiving the random
challenge chal = {γk,i}, they can come up with a set of evaluation points E and a vector polynomial R(X)
such that

1. R is consistent with P on E, i.e., R(e) = (γk,i) · P (e), ∀e ∈ E, where (γk,i) is the matrix composed by
the coefficients {γk,i},

2. the interpolation P (E) = Interpol(E, {P (e) ; e ∈ E}) is of degree degP (E) > d.

Consider the set E defined as

E =
{
E ⊆ {e1, . . . , eN}

∣∣∣ |E| = d+ 2 ∧ degP (E) > d
}
.

24

Let us remark that this set is fully defined by the Merkle commitment com1 from the adversary. Let us also
remark that, because of the second condition above, the set of evaluation points returned by the adversary
is necessarily a superset of some E ∈ E . For the adversary to win, there should hence exist a set E ∈ E for
which

R(E) := (γk,i) · P (E)

is of degree degR(E) ≤ d. We can thus upper bound the success probability of the adversary by:

Pr
[
∃E ∈ E : degR(E) ≤ d

]
≤
∑
E∈E

Pr
[
degR(E) ≤ d

]
(7)

≤
∑
E∈E

η∏
k=1

Pr
[
degR

(E)
k ≤ d with R

(E)
k :=

∑n

i=1
γk,i · P (E)

i

]
(8)

≤
∑
E∈E

(
1

|F|

)η

=

(
N

d+2

)
|F|η

(9)

where (7) holds from the union bound, (8) holds by independence of the γi,j ’s and (9) holds because the

probability that a random linear combination R
(E)
k :=

∑n
i=1γk,i · P

(E)
i with at least one P

(E)
i of degree > d

satisfies degR
(E)
k ≤ d with probability at most 1/|F. This concludes the proof. □

4.3 Benefits of the Degree-Enforcing Commitment Scheme for the TCitH Framework

We discuss hereafter the benefits of using the degree-enforcing commitment scheme described in the previous
section in the TCitH framework.

The obtained soundness error can be deduced by noting that in the presence of a malicious adversary,
one of the two following cases occurs:

– Either the set of committed shares {JwKi}i∈E which are consistent with the proximity test do not form
a valid Shamir’s secret sharing. According to Theorem 1, this event occurs with probability at most(

N
ℓ+2

)
/|F|η.

– Or, all the shares {JwKi}i∈E consistent with the proximity test form a valid Shamir’s secret sharing.
In that case, the probability that the verifier accepts the proof (for an incorrect witness w) is at most

1

(Nℓ)
+ p ·

(
1− 1

(Nℓ)

)
.

We thus obtain that the soundness error is upper bounded by:(
N
ℓ+2

)
|F|η

+
1(
N
ℓ

) + p ·

(
1− 1(

N
ℓ

)) . (10)

Let us provide further insights about why adding an extra round of proximity test as part of the commit-
ment allows us to improve the soundness. The crucial aspect of this tweak is that it constrains the malicious
prover to choose the linear combinations {Rk} before receiving the MPC randomness. Without this tweak,
the malicious prover can choose the linear combinations {Rk} depending on the MPC randomness. They can
therefore use the following strategy: (1) commit an invalid JwK such that {JwKJ , |J | = ℓ + 1} encode

(
N
ℓ+1

)
different witnesses, (2) upon receiving the MPC randomness, select one of these sharings JwKJ for which a
false positive event occurs (i.e., for which the MPC randomness is such that the protocol accepts whereas the
witness encoded by JwKJ is incorrect), (3) send a linear combination which is consistent with JwKJ . Assuming
that the false positive events corresponding to the different JwKJ are all disjoint, the probability to obtain
such an event in step (2) is

(
N
ℓ+1

)
·p instead of p. This strategy hence leads to a degradation of the soundness

25

0 50 100 150 200 250

2 234

2 203

2 172

2 141

2 110

2 79

2 48

2 17

So
un

dn
es

s e
rro

r

Ligero
TCitH

(a) Soundness error

0 20 40 60 80 100

24

25

26

Pr
oo

f S
ize

 (i
n

KB
)

Ligero-like
TCitH (degree-enforcing commitment)

(b) Sizes for MQOM

Fig. 2: Comparison between Ligero and TCitH with degree-enforcing commitment scheme (N = 256, η = 1,
p negligible).

error as in the original TCitH framework [FR23b]. By constraining the malicious prover to commit to the
linear combination before receiving the MPC randomness, we thus avoid the latter soundness degradation.

As a particular benefit of our approach, the obtained soundness error (Equation (10)) avoids the bottle-

neck term
(N+ℓ

2
ℓ

)
/
(
N
ℓ

)
arising in Ligero’s soundness error (and which cannot be decreased by increasing the

number η of parallel repetitions of the proximity test). To illustrate this comparison, we draw in Figure 2a
the soundness error of Ligero (according to our refined analysis of Section 4.1) and that of TCitH with
degree-enforcing commitment scheme with respect to an increasing ℓ and for a number of parties N = 256.

Let us further discuss the impact of our approach in terms of proof size. To achieve the optimal TCitH
soundness error, we should take η large to make the term

(
N
ℓ+2

)
/|F|η negligible, i.e., ≤ 2−λ for a security

parameter λ. Namely, we should take η ≥ λ+log2 (
N

ℓ+2)
log2 |F| while communicating η · d elements of F in the proof

for the random linear combinations, where d is the degree of the committed sharings (which is d = ℓ for the
standard case and d = ℓ+ s− 1 when packing is used – see Section 5). Paying this communication overhead
for the improved soundness is not asymptotically optimal when N and ℓ increase. However, for “small to
medium size” statements, our approach achieves better sizes. This is illustrated on Figure 2b for the MQOM
protocol [FR23a] (which verifies an MQ statement) for which the best size obtained by TCitH with degree-
enforcing is about three times smaller than the best size obtained with Ligero. We provide further results in
Section 6.4 which show the same kind of improvements for general arithmetic circuits.

5 Extended TCitH Framework

This section presents our extended TCitH framework. We start by formalizing the MPC model for our
extended framework (as an adaptation of the model from [FR23b]) and then describe our extended TCitH
proof system in two variants (Merkle tree vs. GGM tree).

5.1 MPC Model

We consider an MPC protocol that performs its computation on a base finite field F. We rely on packed
Shamir’s secret sharing with pack size s. All the manipulated variables (including the witness w) are assumed
to be tuples of elements from F. The size of such a tuple v shall be denoted |v| so that v ∈ F|v|. As we shall
make use of packed secret sharing with some fixed pack size parameter s, we shall split such a tuple v into

26

several s-tuples. By convention and according to Definition 1, a sharing JvK of v ∈ F|v| is a vector of packed
sharings: JvK = (J(v1, . . . , vs)K, J(vs+1, . . . , v2s)K, . . .) ∈ (FN)|v|s with |v|s the number of s-tuples composing v
which is |v|s = ⌈ |v|/s⌉.

As in the MPC model formalized in [FR23b] and overviewed in Section 2.3, in our extended MPC model,
the parties jointly run the computation of a function

f(w, ε,β) =

{
Accept if g(α) = 0,

Reject otherwise,
(11)

with ε = (ε1, . . . , εt) the random values from a randomness oracle OR, β = (β1, . . . , βt) the hints from a
hint oracle OH , α = (α1, . . . , αt) := Φ(w, ε,β) the broadcasted and publicly recomputed values (for some
function Φ made explicit below), and g some final check function. The main differences with the previous
model are the following:

1. The considered protocols apply to packed Shamir’s secret sharings of the form

JvK = (JvK1, . . . , JvKN) := (Pv(e1), . . . , Pv(eN))

for v ∈ Fs as defined in Section 2.1. We recall that dv + 1 shares are sufficient to reconstruct Pv and
hence recover (v1, . . . , vs) = (Pv(ω1), . . . , Pv(ωs)) whenever the polynomial Pv is of degree dv = deg(Pv)
(the initial sharings are of degree ≤ s+ ℓ− 1 but the degree can grow throughout the protocol execution
as explained hereafter). Manipulated variables can also be tuple larger than s, i.e. of size |v| > s or
equivalently |v|s > 1, in which case JvK is a |v|s-tuple of packed sharings.

2. The round computation functions Φ1, . . . , Φt (which are used to compute the broadcast values α1, . . . , αt)
are not restricted to be F-linear but can be polynomial functions of higher degrees.

The latter difference implies that the sharings computed by the parties during the protocol can be of higher
degrees than ℓ+ s− 1 (the degree of the input witness sharing). In the following, we denote

deg(JvK) = deg(Pv)

the degree of the polynomial Pv underlying a Shamir’s secret sharing JvK, also called the degree of JvK. While
the input sharing of the protocol is a fresh degree-(ℓ+ s− 1) sharing, the computation of non-linear round
functions φ might produce sharings JαK of higher degrees.

Protocol ingredients. The considered MPC protocol is as follows. At the start, the parties receive as input
a fresh (s, ℓ,N)-packed Shamir’s secret sharing (i.e. a sharing of degree ℓ+ s− 1) JwK of the witness w (one
share JwKi per party). Then the parties process one or several rounds of the following actions:

– Receiving randomness: The parties receive a random value (or random tuple) ε ∈ F|ε| from a random-
ness oracle OR. When calling this oracle, all the parties get the same random value ε. Upon application
of the TCitH transform, these random values are provided by the verifier as challenges.

– Receiving hint: Optionally, the parties receive a sharing JβK from a hint oracle OH . For some function
ψ, the plain hint β is computed as β := ψ(w, ε; r) where ε = (ε1, ε2, . . .) is made of the previous
random values from OR and where r is fresh randomness. A fresh degree-dβ s-packed sharing of β is
then generated and distributed to the parties (one share per party), for some hint degree dβ (which
might be different from s + ℓ − 1). Upon application of the TCitH transform, the hint JβK is generated
and committed by the prover.

– Computing & broadcasting: The parties compute JαK := φ(JwK, JβK, JθK), which means that they
locally compute

JαKi := φ(JwKi, JβKi, JθKi) , ∀i ∈ [1 : N]

27

where JβK = (Jβ1K, Jβ2K, . . .) is made of the previous outputs of OH and JθK is a fixed (publicly known)
sharing. The parties then broadcast JαK and publicly recompute α.

The function φ is any multivariate polynomial function over F whose coefficients possibly depend on the
previously broadcasted values and the previous random values from OR. (Similarly, the fixed shares of
JθK possibly depend on these previously broadcasted or random values.) Let dα = deg(JαK), the degree
of the obtained sharing which depends on the degrees of the input sharings JwK, JβK, JθK as well as on the
(multivariate) degree of the function φ. We have that JαK is a (ℓ, dα+1, N)-quasi-threshold packed secret
sharing of α. Upon application of the TCitH transform, the prover computes JαK from the previously
committed shares (as well as previous broadcasted values and random values) and sends dα + 1 shares
of JαK to the verifier (since dα + 1 shares are necessary to fully reconstruct the sharing JαK).

Example 1. A broadcast value could be computed as

JαK := Jw1K · Jw2K

with w1, w2 ∈ Fs two size-s coordinate packs of the witness. Here the function φ is simply the product
of these two coordinate packs: α will be equal to w1 ◦w2, where ◦ is the coordinate-wise multiplication.
This sharing product is computed sharewisely: JαKi := Jw1Ki · Jw2Ki for every i. The obtained sharing
JαK has underlying polynomial Pα := Pw1

· Pw2
, with Pw1

, Pw2
the polynomials underlying the sharings

Jw1K, Jw2K. We hence have deg(JαK) = 2(ℓ+s−1). Upon application of the TCitH framework, the prover
must communicate 2(ℓ+ s− 1) + 1 shares of JαK to allow the verifier to reconstruct the full sharing.

At the end of the protocols, the parties evaluate a function g of the publicly recomputed values α1, . . . , αt.
They output Accept if g(α1, . . . , αt) = 0 and Reject otherwise.

General protocol description. We consider two notions of rounds in our MPC model. The MPC protocol
is composed of one or several outer rounds. The first outer round starts with the parties receiving the input
sharing and possibly a first sharing from the hint oracle. It is then composed of a call to the randomness
oracle and one or several inner rounds of computing and broadcasting. Then the protocol either finishes with
the computation of g, or the parties call the hint oracle. In the latter case, a new outer round begins with a
call to the randomness oracle followed by one or several inner rounds. In the MPCitH or TCitH paradigm, a
new outer round begins each time the prover needs to commit a new sharing (i.e., the sharing of a requested
hint). Namely, an outer round in the MPC protocol translates to a pair of commit-challenge communication
rounds in the zero-knowledge protocol.

Successive rounds of computing and broadcasting are called inner rounds. Each outer round j ∈ [1 : t]

performs t
(in)
j inner rounds of locally computing and broadcasting Jαj,kK = φj,k(JwK, Jβ1K, . . . , JβjK, Jθj,kK)

for k ∈ [1 : t
(in)
j]. This enables each function φj,k to depend on previously recomputed values αj,1, . . . ,

αj,k−1. This notably gives a way to compute or verify non-linear (high degree) functions although the φj,k

functions might be linear (or low degree) – see for instance the product-check protocol of [BN20]. We shall

denote by Φj the global iterative functions obtained from those t
(in)
j inner rounds:

JαjK = (Jαj,1K, . . . , Jαj,t
(in)
j K) = Φj(JwK, Jβ1K, . . . , JβjK) ,

where the fixed sharings Jθj,kK are “hardcoded” in the definition of Φj .

Following this structure, our general MPC protocol is depicted in Protocol 3.

False positive probability. The functionality computed by the protocol deterministically depends on the
broadcasted values α (through the function g), which in turn deterministically depend on the input witness
w, the sampled random values ε, and the hints β. It is formally given by the function f from Equation (11),
with α = Φ(w, ε,β) where Φ is the deterministic function mapping (w, ε,β) to α (defined by the coordinate

28

1. The parties take as input an (s, ℓ,N)-packed Shamir’s secret sharing JwK.

2. For j = 1 to t (outer rounds):

(a) For some function ψj and some sharing degree dβj , the parties get a fresh degree-dβj s-packed sharing

JβjK from the hint oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj . (For this packed sharing generation, the size of the randomness is set to
dβj − s + 1 so that the degree of the generated sharing is dβj . In case dβj = s + ℓ − 1 as for the input

sharings, the size of the randomness is ℓ and JβjK is a fresh (s, ℓ,N)-packed sharing.)

(b) The parties get a common random εj from the oracle OR.

(c) Inner rounds: The parties locally compute and broadcast

JαjK := Φj(JwK, Jβ1K, . . . , JβjK)

and publicly recompute αj .

This step is detailed in Protocol 4.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject otherwise.

Protocol 3: General MPC protocol for extended TCitH framework.

(c) For k = 1 to t
(in)
j (inner rounds):

– For some F-polynomial function φj,k, the parties compute:

Jαj,kK := φj,k(JwK, Jβ1K, . . . , JβjK, Jθj,kK)

where Jθj,kK is some fixed sharing.

– The parties broadcast Jαj,kK and publicly reconstruct αj .

NB: The coefficients of the function φj,k possibly depend on ε1, . . . , εj, α1, . . . , αj−1 and αj,1, . . . , αj,k−1.

NB: We denote JαjK = (Jαj,1K, . . . , Jαj,t
(in)
j K) and Φj = (Jφj,1K, . . . , Jφj,t

(in)
j K), with Jθj,kK “hardcoded” in Φj so

that JαjK := Φj(JwK, Jβ1K, . . . , JβjK).

Protocol 4: General MPC protocol: inner rounds.

functions Φ1, . . . , Φt). This function f aims at checking the validity of a witness w for a statement x with
respect to some relation R, namely checking that (x,w) ∈ R. As in the MPC model of [FR23b], we restrict
our model to MPC protocols for which the function f satisfies the following properties:

– (Correctness) If w is a good witness, namely w is such that (x,w) ∈ R, and if the hints β are genuinely
sampled as βj ← ψj(w, ε1, . . . , εj−1; rj) for every j, then the protocol always accepts. More formally:

Prε,r

[
f(w, ε,β) = Accept

∣∣∣ (x,w) ∈ R
∀j, βj ← ψj(w, ε1, . . . , εj−1; rj)

]
= 1.

– (Soundness) If w is a bad witness, namely w is such that (x,w) /∈ R, then the protocol rejects with
probability at least 1 − p, for some constant probability p which is called the false positive probability.
The latter holds even if the hints β are not genuinely computed. More formally, for any (adversarially
chosen) deterministic functions χ1, . . . , χt, we have:

Prε,r

[
f(w, ε,β) = Accept

∣∣∣ (x,w) ̸∈ R
∀j, βj ← χj(w, ε1, . . . , εj−1; rj)

]
≤ p.

29

We say that a false positive occurs whenever the MPC protocol outputs Accept on input a bad witness w,
which occurs with probability at most p.

Remark 6. We use the terminology of false positive probability to differentiate from the soundness error of
the proof of knowledge which is obtained by applying the MPCitH or TCitH transform to such MPC protocol.
We further stress that the notion of false positive probability is different from the notion of robustness error
existing in the MPC literature. The robustness error corresponds to our false prositive probability in the
presence of an adversary that can actively corrupt a number of parties and usually in the absence of a hint
oracle. In our context, we do not require the MPC protocol to be robust (i.e. it is not required to satisfy
any security property in the presence of an active adversary) but we consider a hint oracle which can be
malicious: the false positive probability holds for any adversarial choice of the hints. Moreover, in contrast
to an MPC context where the robustness error is required to be negligible, we can take advantage of MPC
protocols with non-negligible false positive probability.

5.2 Extended TCitH Framework

We describe hereafter our extended framework of Threshold Computation in the Head (TCitH). The main
difference with the original framework is the support of packed secret sharing and non-linear MPC round
functions. We further propose a tweak of the original TCitH framework in the way to deal with the commit-
ment of hints in protocols with multiple outer rounds. Our extended framework comes in two variants, namely
TCitH with GGM tree (TCitH-GGM) as presented in Section 3 and TCitH with Merkle tree (TCitH-MT)
and degree-enfocing commitment as introduced in Section 4.

Tweaking hint commitments. The proof system described in the original TCitH framework [FR23b]
makes use of a different Merkle tree to commit the witness sharing JwK (together with first hint Jβ1K) and
each hint sharing JβjK in next outer rounds. In total, the resulting proof system thus uses t Merkle trees. We
propose here the following tweak: while generating the sharings JwK and Jβ1K in the first round, the prover

also generates and commits the sharings Jβ̄2K, . . . , Jβ̄tK of uniformly random values β̄2 ∈ F|β2|, . . . , β̄t ∈ F|βt|.
In the TCitH-MT variant, these sharings are committed using the same Merkle tree. In the following rounds,
to generate and commit a sharing of the jth hint βj , the prover just needs to compute a hint correction ∆βj

as ∆βj := βj − β̄j and they can then deduce a sharing JβjK of βj using

JβjK← Jβ̄jK + J∆βjK , (12)

where J∆βjK denotes the “constant sharing” corresponding to the degree-s polynomial P∆βj satisfying

P∆βj (ωi) = ∆βj
i for all i ∈ [1 : s].9

This tweak presents three advantages:

– It only requires one Merkle tree instead of t, the communication cost induced by the authentication paths
is thus decreased by a factor t. However, to reveal JβjKI , the prover now needs to reveal Jβ̄jKI and ∆βj

(instead of just JβjKI). The global communication cost is smaller as soon as sending ∆βj is cheaper than
sending an authentication path, which is often the case in practice.

– It allows to have symmetry between both variants, TCitH-MT and TCitH-GGM. In TCitH-GGM, by
committing the seed tree in the first round, we are naturally committing random sharing Jβ̄2K, . . . , Jβ̄tK.

– The TCitH-MT variant uses the degree-enforcing commitment scheme introduced in Section 4 to enforce
that the committed sharings are of the right degrees. This requires an additional challenge-response
round for each sharing commitment. Using the above tweak, this additional round is performed a single
time (after the initial Merkle tree commitment) instead of t.

9 Here, whenever |βj | > s, the sharings JβjK, Jβ̄jK and J∆βjK are vector sharings and P∆βj is a vector polynomial in

the sense of Definition 1. Then, P∆βj (ωi) = ∆βj
i is to be interpreted as the vector composed of the ith coordinates

of the packs composing ∆βj .

30

Proof system blueprint. For both variants, the proof system arising from our extended framework runs
as follows:

1. The prover generates and commits the witness sharing JwK, a first hint Jβ1K and t − 1 random shar-
ings Jβ̄2K . . . , Jβ̄tK; In the TCitH-MT variant, an additional degree-enforcement round of challenge and
response is performed (as introduced in Section 4 and further detailed below);

2. The verifier generates the randomness ε1 as challenge;

3. The prover runs the inner rounds of computing and broadcasting in their head and commits the broadcast
shares Jα1K to the verifier;

4. For each j from 2 to t:

(a) The prover generates and commits the hint correction ∆βj ;

(b) The verifier generates the randomness εj as challenge;

(c) The prover runs the inner rounds of computing and broadcasting in their head and commits the
broadcast shares JαjK to the verifier;

5. The verifier generates a random subset I ⊆ [1 : N] of cardinality |I| = ℓ as challenge;

6. The prover sends to the verifier: the shares JwKI , Jβ1KI , Jβ̄2KI , . . . , Jβ̄tKI (with hint corrections∆β2, . . . ,∆βt),
the sharings Jα1K, . . . , JαtK.

7. The verifier checks:

– the commitments of the open shares JwKI , Jβ1KI , {Jβ̄jKI , ∆βj}j≥2 and of the broadcast sharing Jα1K,
. . . , JαtK;

– the correct computation of the shares JαKI from JwKI (and Jβ1KI , . . . , JβtKI);
– that g(α1, . . . , αt) = 0 (i.e. that the protocol accepts).

The generation and commitment of shares in Step 1 and their openings in Step 6 depend on the variant
(MT vs. GGM – see details below). In Steps 3 and 4(c), the commitment of the sharing JαjK is done by
hashing the dαj

+1 first shares and sending the obtained hash hj = Hash(JαjK[1:dαj
+1]) to the verifier, where

dαj
= deg(JαjK). Then, in Step 6, the opening of JαjK simply consists in revealing the shares JαjKS for some

set S such that |S| = dαj +1− ℓ and S∩ I = ∅. In Step 7, the verifier recomputes the shares JαjKI from JwKI
(and Jβ1KI , . . . , JβtKI), then reconstructs the shares JαjK[1:dαj

+1] from the shares JαjKI∪S to finally check

the correctness of the hash hj . This process checks at the same time the correct computation of the shares
JαKI and the commitment of the sharing JαjK.

Degree-enforcing commitment scheme (TCitH-MT). As explained in Section 4, in the original TCitH-
MT framework a malicious prover might commit an invalid sharing, i.e., a sharing for which the shares do
not correspond to the evaluations of a degree-(s+ ℓ−1) polynomial. The latter issue results in a degradation
of the soundness which would further amplify in the extended framework due to the use of higher degree
sharings. To avoid this issue in our extended TCitH-MT framework, we tweak the sharing commitment
scheme to make it degree enforcing as described in Section 4. We reformulate this commitment in the syntax
of the extended TCitH framework and tweak it to ensure the zero-knowledge property, support sharings of
different degrees (for hints) and optimize the communication.

We first describe the basic principle ignoring hint commitments for the sake of simplicity. At the beginning,
the witness is extended with a random vector u ∈ F(η·s) so that the extended witness (u,w) is shared and
committed. By definition, the sharing JuK is composed of η packed secret sharings of random s-tuples. Once
JuK, JwK have been committed by the prover, the verifier samples a random matrix Γ = (γj,k)j,k of dimensions
η × |w|s. The prover then computes the sharing

JξK = Γ · JwK + JuK , (13)

namely the sharing defined as JξKi = Γ · JwKi + JuKi for all i ∈ [1 : N], where JwKi ∈ F|w|s is the vector
composed of the ith share of each packed sharing composing JwK and JuKi ∈ Fη is the vector composed of the

31

ith share of each packed sharing composing JuK. The prover commits JξK to the verifier by sending the hash
value of the underlying vector polynomial Pξ. The sharing JξK will be later revealed to the verifier which can
then check that JξK is of right degree s + ℓ − 1 and that the revealed shares well satisfy (13). This ensures
that the committed sharings JuK, JwK were of degree s + ℓ − 1 with high probability as shown in Section 4.
The sharing JuK is used to ensure the zero-knowledge property by masking JξK so that revealing JξK does not
leak any information on w.

When hints are used, we must further ensure that the committed sharings Jβ1K, Jβ̄2K, . . . , Jβ̄tK are of
the right degrees, which might be different for the different hints. Let dβj

denote the degree of the hint JβjK
and let dβ = max(s + ℓ − 1, dβ1

, . . . , dβt
). The degree-enforcing commitment scheme guarantees that the

polynomials Pw, Pβ1
, . . . , Pβt

underlying the committed sharings are of degrees at most dβ . We define the
global vector polynomial Q ∈ (F[X])|Q| as

Q(X) :=
(
Pw(X) | Pβ1(X) | · · · | Pβt(X)

)
(14)

which is of length |Q| = |w|s + |β1|s + · · · + |βt|s. In this general setting, the mask sharing JuK randomly
generated and committed by the prover is of degree dβ and the random matrix Γ generated by the verifier
is of dimensions η × |Q|. The revealed degree-enforcing polynomial Pξ ∈ (F[X])η is then defined as

Pξ := Γ ·Q+ Pu . (15)

In the above equation, the dot product Γ ·Q is to be interpreted coefficient-wise: coeffi(Pξ) = Γ · coeffi(Q)+
coeffi(Pu) for all i ∈ [1 : dβ], where coeffi(Pξ) ∈ Fη (resp. coeffi(Pu) ∈ Fη, coeffi(Q) ∈ F|Q|) is the vector
composed of the ith coefficient of each coordinate polynomial of Pξ (resp. Pu, Q).

To wrap-up, our degree-enforcement commitment scheme works as follows:

1. The prover generates the sharing of the witness JwK, the sharing of the random mask JuK, the sharing of

the first hint Jβ1K and sharings Jβ̄2K, . . . , Jβ̄tK of uniform random vectors β̄j ∈ F|βj | for all j ∈ [2 : t].

2. The prover commits these sharings using a Merkle tree. Specifically, they compute the leaf commitments
comi := Com(JwKi, JuKi, Jβ1Ki, Jβ̄2Ki, . . . , Jβ̄tKi; ρi) and the root h1 := MerkleRoot(com1, . . . , comN) and
send h1 to the verifier.

3. The verifier samples a random matrix Γ of dimensions η× |Q| where |Q| = |w|s + |β1|s + · · ·+ |βt|s and
sends it to the prover.

4. The prover computes the degree-enforcing polynomial Pξ ∈ (F[X])η using Equation (15) and sends
h′1 := Hash(Pξ) to the verifier.

The rest of the protocol runs as overviewed above with the following tweaks. During the opening phase, the
prover further reveal Pξ(ei) for all i ∈ S with S some set of cardinality |S| = dβ + 1 − ℓ and disjoint of I
(the set of opened shares). During the final checks, the verifier computes Pξ(ei) = Γ ·Q(ei) + Pu(ei) for all
i ∈ I from opened shares JwKi, JuKi, Jβ1Ki, Jβ̄2Ki, . . . , Jβ̄tKi (by definition Q(ei) and Pu(ei) are linear functions
of these shares). From {Pξ(ei)}i∈S∪I the verifier reconstructs Pξ by interpolation and check that the hash
h′1 = Hash(Pξ).

Pseudorandom generation of high-degree sharings (TCitH-GGM). In Section 3, we explain how
Shamir’s secret sharings of degree ℓ can be pseudorandomly generated and committed (in a ℓ-private way)
using a GGM tree with

(
N
ℓ

)
leaves. For the extended TCitH-GGM framework, we need to generate and

commit packed Shamir’s secret sharings of degrees possibly greater than ℓ (for the witness and the hints).
We explain hereafter how to adapt this ℓ-private pseudorandom generation to the case of higher degree
sharings.

To generate a pseudorandom degree-d packed sharing JxK of a value x ∈ Fs, the expanded randomness
sT is of length (d− ℓ+ 1) · log2 |F|. Then the underlying polynomial Px is defined as

Px(X) =

s∑
k=1

∆xk · PT0,k(X) +
∑

T∈SN
ℓ

d−ℓ+1∑
k=1

s
(k)
T · PT,k(X) ∈

(
F[X]

)|x|
,

32

while the recovery of the ith party share JxKi from ({sT }T :i ̸∈T , ∆x) is defined as:

JxKi :=
∑

T∈SN
ℓ ,i̸∈T

d−ℓ+1∑
k=1

s
(k)
T · PT,k(ei) +

{∑s
k=1∆xk · PT0,k(ei) if i ̸∈ T0,

0 otherwise.
,

where

– for all T , sT := (s
(1)
T , . . . , s

(d−ℓ+1)
T) ∈ Fd−ℓ+1;

– ∆x := (∆x1, . . . ,∆xs) satisfies ∆xk :=
∑

T∈SN
ℓ
s
(k)
T for all k ∈ [1 : s];

– for all (T, k), PT,k is the degree-d polynomial satisfying
PT,k(e

′
k) = 1

PT,k(e
′
j) = 0 for all j ∈ [1 : d− ℓ+ 1]\{k}

PT,k(ej) = 0 for all j ∈ T

with {ej}j and {e′j}j two disjoint sets of distinct field elements with e′1 = ω1, . . . , e
′
s = ωs.

Protocol description. The zero-knowledge protocol obtained by applying our extended TCitH framework
to the general MPC protocol (Protocol 3) is formally described in Protocol 5. The way the shares are
generated and committed (as well as opened and decommitted) depends on the variant (TCitH-GGM vs.
TCitH-MT). The formal description hence makes use of four variant-dependent routines:

– GenerateAndCommitShares: This routine takes as input the witness w, the first hint β1, and a root seed
rseed, and it generates the sharings JwK, Jβ1K of w and β1, the random sharings JuK, Jβ̄2K, . . . , Jβ̄tK, and
a commitment h1 of these sharings.

– OpenShares: This routine takes as input the witness w, the root seed rseed, the hint β1, the hint corrections
{∆βj}j≥2 and a set I ⊆ [1 : N] such that |I| = ℓ, and it returns viewsI an opening of the shares in I as
well as decomI the necessary data to decommit viewsI (namely to check the consistency of viewsI with
the commitment h1). In the TCitH-GGM framework, viewsI is defined as the sibling path of the leaf with
index I, concatenated with (∆w,∆β1, . . . ,∆βt) when I ̸= T0, and decomI is defined as the commitment
comI (the leaf which cannot be recomputed from the sibling path). In the TCitH-MT framework, viewsI is
defined as all the shares JwKI , Jβ1KI , Jβ̄2KI , . . . , Jβ̄tKI and the hint corrections ∆β2, . . . ,∆βt, and decomI

is defined as the authentication paths of the open commitments {comi}i∈I in the Merkle tree.

– VerifyDecommitment: This routine takes as input an opening viewsI , some associated decommitment data
decomI and the set I and it recomputes the commitment h1.

– RetrieveShares: This routine takes as input an opening viewsI and the associated set I and returns the
witness shares JwKI and the hint shares {JβjKI}j .
The formal description of these routines is given in Figure 3. In the formal description of OpenShares, some

values must be retrieved from (w, β1, rseed) which have been already computed in GenerateAndCommitShares.
We denote this by (w, β1, rseed) 7→ (. . .). Of course, in practice, this computation does not need to be
performed twice. Moreover, the routines in Figure 3 rely on GGM trees and Merkle trees. To handle the
GGM trees, we denote

– TreePRG the subroutine that expands the seed tree from the root seed,
– GetSiblingPathI the subroutine which computes the sibling paths of the leaves indexed by I,
– RetriveLeavesFromPath the subroutine which recomputes all the leaves except those indexed by I from

the corresponding sibling paths.

To handle the Merkle tree, we denote

– MerkleRoot the subroutine which computes the root of the Merkle tree for the given leaves,
– GetAuthPath the subroutine that extracts the authentication paths for the leaves indexed by I,
– RetrieveRootFromPath the subroutine which recomputes the root of the Merkle tree from some leaves

with their authentication paths.

33

1. The prover samples a root seed rseed ∈ {0, 1}λ, compute the plain hint β1 = ψ(w; r1) with r1 ← PRG(rseed), and computes:

(JwK, JuK, Jβ1K, Jβ̄2K, . . . , Jβ̄tK, h1)← GenerateAndCommitShares(w, β1, rseed) .

The prover sends h1 to the verifier.

In the TCitH-MT variant, the prover and verifier additionally perform the following steps:

(a) The verifier samples a random matrix Γ from Fη×|w| and sends it to the prover;

(b) The prover computes Pξ := Γ · Q + Pu where Q is computed from the polynomials of the sharings (JwK, Jβ1K, Jβ̄2K, . . . , Jβ̄tK) using (14) and Pu is the
polynomial of JuK. The prover sends h′

1 := Hash(Pξ) to the verifier.

2. The verifier samples at random a challenge ε1 and sends it to the prover;

3. The prover runs the MPC computation in their head. Specifically, the prover computes the shares

Jα1Ki = Φ1(JwKi, Jβ1Ki) ∀i ∈ [1 : dα1 + 1] .

4. For j = 2 to t:

(a) The prover computes the plain hint βj = ψj(w, ε1, . . . , εj−1; rj) with rj ← PRG(rseed) and deduce the hint correction ∆βj = βj − β̄j and the hint
sharing JβjK = Jβ̄jK+ J∆βjK following Equation (12). The prover then computes the hash hj = Hash(Jαj−1K[1:dαj−1

+1],∆β
j) and sends it to the verifier.

(b) The verifier samples at random a challenge εj and sends it to the prover;

(c) The prover runs the MPC computation in their head. Specifically, the prover computes the shares

JαjKi = Φj(JwKi, Jβ1Ki, . . . , JβjKi) ∀i ∈ [1 : dαj + 1] .

5. The prover computes ht+1 = Hash(JαtK[1:dαt+1]) and sends it to the verifier.

6. The verifier samples at random a subset I ⊂ [1 : N] of ℓ parties (i.e. |I| = ℓ) and sends it to the prover.

7. The prover reveals the views of all the parties in I. Specifically, the prover computes

(viewsI , decomI)← OpenShares(w, rseed, β1, {∆βj}j≥2, I) .

The prover sends viewsI , decomI , {JαjKSj}j∈[1:t] to the verifier, where Sj ⊆ [1 : N] is of cardinality |Sj | = dαj + 1− ℓ and such that Sj ∩ I = ∅, the prover
computes JαKSj from JαK[1:dαj

+1].

In the TCitH-MT variant, the prover further sends {Pξ(ei)}i∈S for a set S ⊆ [1 : N] of cardinality |S| = dβ + 1− ℓ and such that S ∩ I = ∅.

8. The verifier performs the following checks:

– (Shares’ commitment) First, the verifier checks the opened views vs. the commitment h1. Namely it computes:

ĥ1 ← VerifyDecommitment(viewsI , decomI , I) .

If ĥ1 ̸= h1 the verifier stops and outputs Reject.

– (Parties’ computation) Then, the verifier computes

(JwKI , {JβjKI}j)← RetrieveShares(viewsI , I)

and
JαjKi = Φj(JwKi, Jβ1Ki, . . . , JβjKi) ∀i ∈ I ∀j ∈ [1 : t] .

For all j ∈ [1 : t], the verifier recovers the shares JαK[1:dαj
+1] from JαKI∪Sj and checks that hj+1 = Hash(JαjK[1:dαj−1

+1],∆β
j+1) (if j < t) or hj+1 =

Hash(JαjK[1:dαj−1
+1]) (if j = t). If the check fails, the verifier stops and outputs Reject.

In the TCitH-MT variant, the verifier further computes Pξ(ei) = Γ · Q(ei) + Pu(ei) for all i ∈ I from opened shares. From {Pξ(ei)}i∈S∪I the verifier
reconstructs Pξ by interpolation and check that h′

1 = Hash(Pξ). If the check fails, the verifier stops and outputs Reject.

– (Protocol outcome) The verifier recovers the plain broadcast value α from JαKI∪S and checks that g(α) = 0. If one of the checks fails, the verifier stops
and outputs Reject.

If none of the above checks failed, the verifier outputs Accept.

Protocol 5: Zero-knowledge protocol: Application of the extended TCitH framework to the general MPC
protocol (Protocol 3).

34

TCitH-GGM TCitH-MT

GenerateAndCommitShares(w, β1, rseed): GenerateAndCommitShares(w, β1, rseed):
{seedT }T∈SN

ℓ
← TreePRG(rseed) {r0k}k∈[0:ℓ−1] ← PRG(rseed, 0)

For all T , {r1k}k∈[0:dβ1
−s] ← PRG(rseed, 1)

s0T := (s0T,a, s
0
T,b)← PRG(seedT , 0) u, {ruk}k∈[0:dβ−s] ← PRG(rseed,−1)

s1T := (s1T,a, s
1
T,b)← PRG(seedT , 1) Pw(X) = Iw(X) + F (X) ·

∑ℓ−1
k=0 r

0
k ·Xk

∆w ← w −
∑

T s
0
T,a Pβ1(X) = Iβ1(X) + F (X) ·

∑dβ1
−s

k=0 r1k ·Xk

∆β1 ← β1 −
∑

T s
1
T,a Pu(X) = Iu(X) + F (X) ·

∑dβ−s

k=0 ruk ·Xk

JwK← GenerateSharing(∆w, {s0T }T , ℓ) For all j ∈ [2 : t],

Jβ1K← GenerateSharing(∆β1, {s1T }T , dβ1) β̄j , {rjk}k∈[0:dβj
−s] ← PRG(rseed, j)

For all j ∈ [2 : t], Pβ̄j (X) := Iβ̄j + F (X) ·
∑dβj

−s

k=0 rjk ·X
k

sjT := (sjT,a, s
j
T,b)← PRG(seedT , j) For all i ∈ [1 : N]

Jβ̄jK← GenerateSharing(0, {sjT }T , dβj) JuKi ← Pu(ei)
For all T ∈ SN

ℓ : Jβ1Ki ← Pβ1(ei)
If T ̸= T0, JwKi ← Pw(ei)

comT ← Com(seedT ; ρT) Jβ̄jKi ← Pβ̄j (ei) for all j ≥ 2
Else comi := Com(JwKi ∥ JuKi ∥ Jβ1Ki ∥ Jβ̄2Ki ∥ . . . ∥ Jβ̄tKi, ρi)

comT ← Com(seedT ,∆w,∆β
1; ρT) h1 := MerkleRoot(com1, . . . , comN)

h1 ← Hash({comT }T) Return (JwK, JuK, Jβ1K, Jβ̄2K, . . . , Jβ̄tK, h1)
Return (JwK, ∅, Jβ1K, Jβ̄2K, . . . , Jβ̄tK, h1)

OpenShares(w, rseed, β1, {∆βj}j≥2, I): OpenShares(w, rseed, β1, {∆βj}j≥2, I):

(w, rseed, β1) 7→ (∆w,∆β1, comI) (w, rseed, β1) 7→ (JwK, Jβ1K, Jβ̄2K, . . . , Jβ̄tK, {comi}i)
pathI ← GetSiblingPathI(rseed) viewsI ← (JwKI , Jβ1KI , Jβ̄2KI , . . . , Jβ̄tKI ,∆β2, . . . ,∆βt)
viewsI ← (pathI ,∆w,∆β

1, . . . ,∆βt) decomI ← GetAuthPath({comi}i, I)
decomI ← comI Return (viewsI , decomI)
Return (viewsI , decomI)

VerifyDecommitment(viewsI , decomI , I): VerifyDecommitment(viewsI , decomI , I):

(pathI ,∆w,∆β
1, . . . ,∆βt)← viewsI (JwKI , Jβ1KI , Jβ̄2KI , . . . , Jβ̄tKI ,∆β2, . . . ,∆βt)← viewsI

{seedT }T ̸=I ← RetriveLeavesFromPath(pathI)
comI ← decomI For all i ∈ I:
For all T ̸= I: comi := Com(JwKi ∥ Jβ1Ki ∥ Jβ̄2Ki ∥ . . . ∥ Jβ̄tKi, ρi)

If T ̸= T0 h1 ← RetrieveRootFromPath(decomI , {comi}i∈I)
comT ← Com(seedT ; ρT) Return h1

Else
comT ← Com(seedT ,∆w,∆β

1; ρT)
h1 ← Hash({comT }T)
Return h1

RetrieveShares(viewsI , I): RetrieveShares(viewsI , I):
pathI ∥ (∆w,∆β1, . . . ,∆βt)← viewsI sharesI ∥ (∆β2, . . . ,∆βt)← viewsI
{seedT }T ̸=I ← RetriveLeavesFromPath(pathI) (JwKi, Jβ1Ki, Jβ̄2Ki, . . . , Jβ̄tKi)i∈I ← sharesI
For all T ̸= I, For all i ∈ I,

sjT ← PRG(seedT , j) for j ∈ {0, . . . , t} If ei ̸=∞,
For all i ∈ I, JβjKi ← ∆βj + Jβ̄jKi for all j ≥ 2

JwKi ← GeneratePartySharei((s
0
T)T :i ̸∈T ,∆w, ℓ) Else,

For all j ∈ [1 : t]: JβjKi ← Jβ̄jKi for all j ≥ 2

JβjKi ← GeneratePartySharei((s
j
T)T :i ̸∈T ,∆β

j , dβj) Return (JwKI , Jβ1KI , . . . , JβtKI)
Return (JwKI , Jβ1KI , . . . , JβtKI)

Fig. 3: Sharing generation and commitment routines, where the polynomial F (X) is defined as
∏s

k=1(X−ωk)
and Iv is the polynomial defined by interpolation such that ∀i ∈ [1 : s], I(ωi) = vi.

35

Security. The completeness, soundness, and zero-knowledge properties of the obtained protocol are stated
in the following theorem. The input MPC protocol has the following parameters: the size of the sharings N
(a.k.a. the number of parties), the privacy threshold ℓ, the pack size s, the false positive probability p, and
the degrees dβ , dα, d

′
α defined as follows. Let dw = deg(JwK) = s + ℓ − 1 the degree of the input sharing.

Let dβ1
, . . . , dβt

the degrees of the hint sharings. We define dβ as the maximal degree of the input and hint
sharings, that is:

dβ = max(dw, dβ1
, . . . , dβt

)

Then, we define dα as the maximal degree of the broadcast sharings, that is:

dα = deg(JαK) = max
j

(deg(JαjK)) .

Remember from Section 5.1 that the broadcast α is defined as α = Φ(w, ε,β) where Φ is a deterministic
arithmetic function. This function induces a relation between the degrees: there exists a deterministic function
δΦ (fully determined by Φ) such that dα is defined by:

dα = δΦ(dw, dβ1
, . . . , dβt

) .

For the TCitH-MT variant, the degree-enforcing commitment shall only guarantee that the committed
sharings satisfy:

deg(JwK),deg(Jβ1K), . . . ,deg(JβtK) ≤ dβ .

The soundness shall then depend on the degree d′α ≥ dα defined as:

d′α = δΦ(dβ , dβ , . . . , dβ) = dΦ · dβ ,

where dΦ is the total degree of Φ in the coordinates of w and β. We stress that if all the input and hint
degrees are equal, i.e., dw = dβ1 = · · · = dβt = s+ ℓ− 1, then we have dα = d′α = dΦ · (s+ ℓ− 1).

Theorem 2. Let Π be an MPC protocol of parameters (N, ℓ, s, dα, d
′
α, dβ , p) complying to the format of

Protocol 3. In particular, Π is ℓ-private in the semi-honest model and of false positive probability p. Then,
Protocol 5 built from Π satisfies the three following properties:

– Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

– Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces the honest verifier
V to accept with probability

ϵ̃ := Pr[⟨P̃,V⟩(x)→ 1] > ϵ

where the soundness error ϵ is defined as

ϵ :=

p+ (1− p) · (

dα
ℓ)

(Nℓ)
for the TCitH-GGM variant,

p+ (1− p) · (
d′α
ℓ)

(Nℓ)
+

(N
dβ+2)
|F|η for the TCitH-MT variant.

(16)

Then, there exists a probabilistic extraction algorithm E with time complexity in poly(λ, (ϵ̃ − ϵ)−1) that,
given rewindable black-box access to P̃, outputs either a witness w satisfying (x,w) ∈ R, a hash collision,
or a commitment collision.

– Honest-Verifier Zero-Knowledge. Let the pseudorandom generator PRG used in Protocol 2 be (t, ϵPRG)-
secure and the commitment scheme Com be (t, ϵCom)-hiding. There exists an efficient simulator S which,
given random challenge I outputs a transcript which is (t, ϵPRG + ϵCom)-indistinguishable from a real
transcript of Protocol 2.

36

Proof. The completeness and the zero-knowledge properties directly hold from the correctness and the pri-
vacy of the MPC protocol Π. We sketch the soundness proof hereafter for both variants of the TCitH
framework. Along the proof, we shall denote Succ the event that the malicious prover P̃ succeeds in convinc-
ing the verifier V, that is:

Succ ≡ “⟨P̃,V⟩(x)→ 1”.

In the following, we assume that for any set of successful transcripts received by the extractor, no
commitment collisions or hash collisions occur. Otherwise, the extractor trivially outputs such a collision.
We will thus assume that for any hash or commitment value produced by P̃, a single preimage of this
commitment/hash can be extracted from P̃. In particular, the commitment h1 corresponds to a single
extractable value of the sharing JwK.

Proof of soundness for the TCitH-GGM framework. Since P̃ is malicious, their first message h1 commits a
sharing JwK of an invalid witness w, i.e. which does not satisfy (x,w) ∈ R. While going through the protocol,
two cases can occur:

– A false positive event occurs: the MPC randomness ε1, . . . , εt sampled by the verifier is such that an
honest execution of the MPC protocol produces the output Accept. By definition of the considered
MPC protocol Π, this case occurs with probability p.

– No false positive event occurs. In that case, we show below that the last challenge-response round of the
zero-knowledge protocol can be seen as a

((
dα

ℓ

)
+ 1
)
-special-sound protocol. The probability that the

verifier is convinced after the last round is thus
(
dα

ℓ

)
/
(
N
ℓ

)
, since

(
N
ℓ

)
is the size of the challenge space.

Denoting FP the false positive event, we get that the soundness error satisfies:

ϵ = Pr[FP] + Pr[¬FP] · Pr[Succ | ¬FP] = p+ (1− p) ·
(
dα

ℓ

)(
N
ℓ

) .

We now show how to upper bound Pr[Succ | ¬FP] to obtain the above inequality. Let us assume that the
malicious prover ran all the rounds of the protocol except the last one such that no false positive occurred.
We will show that the remaining challenge (the party opening challenge) and associated response form a((

dα

ℓ

)
+ 1
)
-special-sound protocol. Namely, we will show that if

(
dα

ℓ

)
+ 1 different accepting transcripts can

be obtained from the malicious prover which only differ in their last round of challenge-response (opening of
the parties), then a valid witness w can be extracted from these transcripts, leading to a contradiction. This
shall imply that at most

(
dα

ℓ

)
valid transcripts can be obtained from the malicious prover if no false positive

event occurs, implying Pr[Succ | ¬FP] ≤
(
dα

ℓ

)
/
(
N
ℓ

)
.

Let us consider
(
dα

ℓ

)
+ 1 accepting transcripts {Tk}k∈[1:(dαℓ)+1]. Each of them corresponds to some party

opening set Ik (with Ik ̸= Ik′ for k ̸= k′) and satisfies:

Tk := (h1, ε
1, . . . , ht, ε

t, ht+1︸ ︷︷ ︸
Same for all transcripts

, Ik, σk := (viewsIk , decomIk , {JαjKSj
k
}i∈[1:t])︸ ︷︷ ︸

Prover’s last response

)

where viewsIk = (pathIk , ∆w,∆β
1, . . . ,∆βt) (the ∆’s being omitted if Ik = T0), decomIk = comIk =

Com(seedIk ; ρIk) and Sj
k denotes some set of cardinality |Sj

k| = dαj
+ 1 − ℓ disjoint of Ik (as defined in

Step 7 of Protocol 5). From the revealed {JαjKSj
k
}j and the opened views, one can recover the full sharings

{JαjK}j and the plain broadcast values {αj}j . By assumption, the seed paths, the plain broadcast values
{αj}j , and the auxiliary values in {σk}k are consistent since otherwise we would get a commitment collision
or a hash collision. Since we have at least two transcripts, we have at least two different party challenges,
which means that all the leaves of the seed tree are known. Moreover, one can always recover the auxiliary
values (∆w,∆β1, . . . ,∆βt) from {Tk}k since at most one transcript does not contain those values (if Ik = T0

37

for one of the Tk). We can then build the Shamir’s polynomials Pw, Pβ1 , . . . , Pβt using the Equation (5).
Since {Tk}k are valid transcripts, it means that, for all i ∈

⋃
k Ik and j ∈ [1 : t], we have

Pαj (ei) = Φj
(
Pw(ei), (Pβk(ei))k≤j

)
since JαjKi = Pαj (ei), JwKi = Pw(ei) and JβkKi = Pβk(ei). Since the polynomials in the above relation are of
degree at most dα and since the relations hold for at least dα + 1 evaluation points {ei}⋃

k Ik , we have that

the relations hold directly on the polynomials: Pαj = Φj
(
Pw, (Pβk)k≤j

)
for all j. In particular, the relations

are true when evaluating the polynomials in ω1, . . . , ωs, the evaluation points revealing the packed secrets,
which implies

αj = Φj
(
w, (βk)k≤j

)
.

(In the above equation Φj applies independently on each “slot” of the s-tuples composing the plain values.)
Moreover, since {Tk}k are valid, we have

g(α1, . . . , αt) = 0.

It means that we have an honest execution of the MPC protocol which outputs Accept on the witness w.
Since we assumed that there were no false positive events, we get that w must be a valid witness, which
concludes the proof.

Proof of soundness for the TCitH-MT framework. In the TCitH-MT framework, the first message h1 sent by
the prover is a Merkle tree commitment of the sharings JwK, JuK, Jβ1K, Jβ̄2K, . . . , Jβ̄tK where each leaf of the
tree is a commitment of the ith shares of all the sharings, for i ∈ [1 : N]. Since only ℓ leaves are eventually
open, the malicious prover may commit some sharings that do not form valid Shamir’s secret sharings of the
expected degrees. The second message h′1 sent by the prover is the hash digest of the η polynomials Pξ. We
denote E the set of the indices of the shares which are consistent with Pξ, namely

E := {i ∈ [1 : N] : Pξ(ei) = Γ · J(w ∥ β1 ∥ β̄2 ∥ . . . ∥ β̄t)Ki + JuKi}.

Let us define the polynomials Q and Pu by interpolation of respectively {J(w ∥ β1 ∥ β̄2 ∥ . . . ∥ β̄t)Ki}i∈E and
{JuKi}i∈E , and let us consider the degree-enforcing failure event, defined as

DEF ≡ “Q or Pu is of degree strictly larger than dβ”.

According to Theorem 1, we have

Pr[DEF] ≤

(
N

dβ+2

)
|F|η

.

The soundness error of the protocol then satisfies:

ϵ = Pr[DEF] + Pr[¬DEF] · Pr[Succ|¬DEF] ≤ Pr[Succ | ¬DEF] +

(
N

dβ+2

)
|F|η

.

Let us now focus on Pr[Succ | ¬DEF], namely we consider a valid transcript for which ¬DEF occurs. The
polynomialsQ and Pu are of degree at most dβ , meaning that the shares {JwKi, JuKi, Jβ1Ki, Jβ̄2Ki, . . . , Jβ̄tKi}i∈E

are valid Shamir’s secret sharings of degrees ≤ dβ of unique values w, u, β1, β̄2, . . . , β̄t. The rest of the proof
is similar as the TCitH-GGM case. We also consider two cases:

– A false positive event occurs: the MPC randomness ε1, . . . , εt sampled by the verifier is such that an
honest execution of the MPC protocol produces the output Accept. By definition of the considered
MPC protocol Π, this case occurs with probability p.

– No false positive event occurs. In that case, we show below that the last challenge-response round of the

zero-knowledge protocol can be seen as a
((

d′
α
ℓ

)
+ 1
)
-special-sound protocol. The probability that the

verifier is convinced after the last round is thus
(
d′
α
ℓ

)
/
(
N
ℓ

)
, since

(
N
ℓ

)
is the size of the challenge space.

38

We get that the soundness error satisfies:

ϵ ≤ Pr[FP] + Pr[¬FP] · Pr[Succ | (¬FP) ∧ (¬DEF)] + Pr[DEF]

≤ p+ (1− p) ·
(
d′
α
ℓ

)(
N
ℓ

) +

(
N

dβ+2

)
|F|η

. (17)

We now show how to upper bound Pr[Succ | (¬FP) ∧ (¬DEF)] to obtain the above inequality. Let us
assume that the malicious prover ran all the rounds of the protocol except the last one such that no false
positive occurred. We will show that the remaining challenge (the party opening challenge) and associated

response form a
((

d′
α
ℓ

)
+ 1
)
-special-sound protocol. Namely, we will show that if

(
d′
α
ℓ

)
+ 1 different accepting

transcripts can be obtained from the malicious prover which only differ in their last round of challenge-
response (opening of the parties), then a valid witness w can be extracted from these transcripts, leading

to a contradiction. This shall imply that at most
(
d′
α
ℓ

)
valid transcripts can be obtained from the malicious

prover if no false positive event occurs, implying Pr[Succ | (¬FP) ∧ (¬DEF)] ≤
(
d′
α
ℓ

)
/
(
N
ℓ

)
.

Let us consider
(
d′
α
ℓ

)
+ 1 accepting transcripts {Tk}k∈[1:(d

′
α
ℓ)+1]

. Each of them corresponds to some party

opening set Ik (with Ik ̸= Ik′ for k ̸= k′) and satisfies:

Tk :=
(
h1, Γ, h

′
1, ε

1, . . . , ht, ε
t, ht+1︸ ︷︷ ︸

Same for all transcripts

, Ik, σk := (viewsIk , decomIk , {JαjKSj
k
}i∈[1:t])︸ ︷︷ ︸

Prover’s last response

)

where viewsIk =
(
{JwKi, Jβ1Ki, Jβ̄2Ki, . . . , Jβ̄tKi}i∈Ik , ∆β

2, . . . ,∆βt
)
, decomIk = pathIk and Sj

k denotes some

set of cardinality |Sj
k| = dαj

+1− ℓ disjoint of Ik (as defined in Step 7 of Protocol 5). From these transcripts,
since Ik ̸= Ik′ for all k ̸= k′, we can retrieve at least d′α + 1 ≥ dβ + 1 shares of the committed sharings JwK,
JuK, Jβ1K, Jβ̄2K, . . . , Jβ̄tK (which pass the degree-enforcement test, i.e. which are consistent with Pξ). From
these shares, we can build the Shamir’s polynomials Pw, Pu, Pβ1 , . . . , Pβt by interpolation. The rest of the
proof is similar to the GGM case. Since {Tk}k are valid transcripts, it means that, for all i ∈

⋃
k Ik and

j ∈ [1 : t], we have
Pαj (ei) = Φj

(
Pw(ei), (Pβk(ei))k≤j

)
since JαjKi = Pαj (ei), JwKi = Pw(ei) and JβkKi = Pβk(ei). Since the polynomials in the above relation are
of degree ≤ d′α and since the relations hold for at least d′α + 1 evaluation points {ei}⋃

k Ik , we have that

the relations hold directly on the polynomials: Pαj = Φj
(
Pw, (Pβk)k≤j

)
for all j. In particular, the relations

are true when evaluating the polynomials in ω1, . . . , ωs, the evaluation points revealing the packed secrets,
which implies

αj = Φj
(
w, (βk)k≤j

)
.

(In the above equation Φj applies independently on each “slot” of the s-tuples composing the plain values.)
Moreover, since {Tk}k are valid, we have

g(α1, . . . , αt) = 0.

It means that we have an honest execution of the MPC protocol which outputs Accept on the witness w.
Since we assumed that there were no false positive events (¬FP), we get that w must be a valid witness,
which concludes the proof. □

Dealing with small fields. One of the drawbacks of using the (packed) Shamir’s secret sharing scheme is
that the number N of parties should be smaller than the field size F. It can be an issue when working with
statements based on a small field F0 as the binary field. To handle that, we should share the secret in an
larger field extension F and lift all the multiparty computation in this larger field. The concrete impact on
the proof size depends on the considered variant.

39

With TCitH-MT, each revealed share shall weight more in communication while living in the extension
field ([F : F0] times more expensive, where [F : F0] is the degree of the extension). Moreover, the MPC
protocol should include a test to check that the shared values live in the base field F0 (for example, by
checking that a random F0-linear combination of the shared values is in F0).

With TCitH-GGM, the situation is different. As in Section 3.2, we tweak a bit the sharing generation
of the witness w so that the expanding randomness {sT } and the auxiliary value lie in the small field.

Specifically, after expanding all sT ∈ F|w|
0 for all T ∈ SNℓ , we compute the auxiliary value ∆w ∈ F|w|

0 as

∆w := w −
∑

T∈SN
ℓ

sT ∈ F|w|
0 ,

but we compute the shares JwKi using Equation (4) with parties’ evaluation points {ej} living in the field

extension F (instead of F0). As consequence, the shares {JwKi}i live in F|w| instead of F|w|
0 . Since the proof

transcript contains the auxiliary value ∆w of w, but no shares of JwK, the communication cost induced by
revealing the opened shares is unchanged. The same observation holds for the hint sharings Jβ1K, . . . , JβtK.
However, the lifting impacts the communication cost due to the broadcasted sharings Jα1K, . . . , JαtK.

6 Application of the Extended TCitH Framework

We present hereafter several applications of the TCitH framework. Before describing these applications,
we start by introducing a useful building block which is a protocol to generate high-degree random, par-
tially structured, sharings (Section 6.1). We introduce two general zero-knowledge proof systems obtained
by applying the TCitH framework to simple MPC protocols: the first one, TCitH-Πpc, checks polynomial
constraints on the witness in the non-packed setting (Section 6.2) while the second one, TCitH-Πlppc, checks
global linear constraints and parallel polynomial constraints on the witness in the packed setting (Section 6.3).
We show how these proof systems results in competitive zero-knowledge arguments for (low-degree) arith-
metic circuits (Section 6.4). We further described improved post-quantum (ring) signatures from TCitH-Πpc

(Sections 6.5 and 6.6) as well as zero-knowledge arguments for lattices from TCitH-Πlppc (Section 6.7).

6.1 Generation of High-Degree Sharings

We describe hereafter a protocol to generate a uniformly-random degree-d′ sharing JvK of a random tuple
v ∈ Fs, where d′ is strictly larger than d = s+ ℓ− 1. For the TCitH-GGM variant, such a sharing JvK can be
directly obtained from the hint oracle OH . We note that we could do the same with the TCitH-MT variant
but this implies a penalty in communication (or argument size). Indeed, a degree-d′ hint implies dβ = d′

which increases the communication of the degree-enforcing commitment (compared to dβ = d in the absence
of high-degree hints) and degrade the soundness by further increasing d′α. For this reason, we introduce the
protocol Π$ described below (see Protocol 6). We further introduce variants of this protocol to generate
random sharings of zero and random sharings summing to zero.

Generation of a Random Sharing (Π$). The idea behind our approach is to define the polynomial Pv

underlying the random sharing JvK from lower degree polynomials Pu1 , . . . , Pun as follows:

Pv(X) =

n∑
j=1

Puj
(X) ·X(j−1)δ ,

for some n, δ ∈ N. Here, using polynomials Pu1
, . . . , Pun−1

of degree dβ and Pun
of degree d′− (n− 1)δ ≤ dβ

we get that Pv is of degree d′. Based on this definition of Pv, Π$ is formally defined in Protocol 6.

40

1. The parties get n− 1 random sharings Ju1K, . . . , Jun−1K of degree dβ from the hint oracle OH ,
2. The parties get a random sharing JunK of degree d′ − (n− 1)δ from the hint oracle OH ,
3. The parties locally computes

JvKi =
n∑

j=1

JujKi · (ei)(j−1)δ .

4. The parties now hold a random degree-d′ sharing JvK.

Protocol 6: Π$ – Generation of a random degree-d′ sharing.

Lemma 1. In Protocol 6, let n := ⌈(d′ + 1− ℓ)/(dβ − ℓ+ 1)⌉ and δ := dβ − ℓ+ 1. Then, given the views of
ℓ parties of indices i ∈ I for some set I ⊆ [N] s.t. |I| = ℓ, the sharing JvK is uniformly random of degree d′

conditioned to JvKI being consistent with the views. Namely, for any set J of cardinality |J | ≤ d′ + 1− ℓ s.t.
I ∩ J = ∅, JvKJ is a uniform random tuple of F|J| mutually independent of the views.

Proof. Let us take a set I ⊆ [N] s.t. |I| = ℓ. For all j ∈ [1 : n], the polynomial Puj
can be written as

Puj (X)︸ ︷︷ ︸
of degree

dβ when j<n

d′−(n−1)δ when j=n

= Iuj ,I(X)︸ ︷︷ ︸
of degree ℓ−1

+
∏
i∈I

(X − ei)︸ ︷︷ ︸
of degree ℓ

· Ruj ,I(X)︸ ︷︷ ︸
of degree

dβ−ℓ when j<n

d′−(n−1)δ−ℓ when j=n

,

where

– Iuj ,I is defined by interpolation such that Iuj ,I(ei) = JujKi for all i ∈ I, and
– the distribution of Ruj ,I knowing JujKI is the uniform law distribution over polynomials of degree at

most dβ − ℓ (for Run,I , of degree at most d′ − (n − 1)δ), since Puj
is a uniformly-random polynomial

satisfying Puj (ei) = JujKi for all i ∈ I.

So, we have

Pv(X) =

n∑
j=1

[
Iuj ,I(X) +

∏
i∈I

(X − ei) ·Ruj ,I(X)

]
·X(j−1)δ

=

 n∑
j=1

Iuj ,I(X) ·X(j−1)δ

+
∏
i∈I

(X − ei) ·

 n∑
j=1

Ruj ,I(X) ·X(j−1)δ

By defining I(X) :=

∑n
j=1 Iuj ,I(X) ·X(j−1)δ and R(X) :=

∑n
j=1Ruj ,I(X) ·X(j−1)δ, we have that Pv(X) =

I(X)+
∏

i∈I(X−ei) ·R(X). The distribution of the polynomial R knowing {JujKI}j is a uniform distribution
from the polynomials of degree at most d′ − ℓ, when δ := degRuj

+ 1 = dβ − ℓ + 1. So, Pv(x) is a random
polynomial of degree at most d′ such that Pv(ei) = JvKi for all i ∈ I. □

For a target degree d′ and a target maximal degree dβ for the hints, Lemma 1 gives the parameters n
and δ of the generation protocol Π$. For the TCitH-MT variant, the parameter dβ can then be chosen to
minimize the communication by balancing its impact on the degree enforcement parameter η and the number
n of hints JuiK (both impacting the proof size).

Generation of Sharings of Zero (Π0). Let us now consider the case of the generation of a uniformly-
random degree-d′ sharing of (0, . . . , 0) ∈ Fs. This can be achieved by using the protocol Π$ to generate
a uniformly-random degree-(d′ − s) sharing which is then locally multiplied by the constant sharing J0K
corresponding to the degree-s polynomial P0(X) =

∏s
i=1(X − ωi) (where we recall that the ωi’s are the

evaluation points for the plain coordinates). Formally, the protocol Π0 for the generation of a uniformly-
random degree-d′ sharing of (0, . . . , 0) ∈ Fs performs the following steps:

41

1. The parties run protocol Π$ to obtain a uniformly-random degree-(d′ − s) sharing JvK,
2. The parties locally compute JzKi = J0Ki · JvKi,
3. The parties now hold a random degree-d′ sharing JzK of (0, . . . , 0) ∈ Fs.

In terms of privacy, Lemma 1 implies that given the views of any ℓ parties of indices in J , the generated
sharing JzK is uniformly-random conditioned to (Pz(ω1), . . . , Pz(ωs)) = (0, . . . , 0) and to JzKJ consistent with
the views.

Generation of Sharings Summing to Zero (ΠΣ0). We finally consider the case of the generation of a
uniformly-random degree-d′ sharing JvK of a uniformly-random v = (v1, . . . , vs) ∈ Fs such that

∑s
i=1 vi = 0.

This can be achieved using a tweak version of protocol Π$. In this tweaked version, the sharings Ju1K, . . . ,
JunK returned by the hint oracle OH are not fully random: the constant term of the polynomial Pu1

is defined
w.r.t. the random polynomials {Pui

}i≥2 such that Pv(ω1) + · · ·+ Pv(ωs) = 0. In practice, this tweak simply
involves one hint correction ∆u1 ∈ F to correct one evaluation, say Pu1

(ω1).
10 This tweak of the protocol

Π$ is referred to as the protocol ΠΣ0 in the following. In terms of privacy, Lemma 1 implies that given the
views of any ℓ parties of indices in J , the generated sharing JvK is uniformly-random conditioned to JvKJ
consistent with the views and to

∑s
i=1 vi = 0.

6.2 Proof System for Polynomial Constraints

We instantiate the TCitH framework with an MPC protocol verifying for general polynomial constraints
without using packed sharing, i.e. with s = 1. The communication of the obtained proof system only depends
on the size of the input of the circuit and the circuit degree (and not of its number of multiplications as
many previous MPCitH proof systems).

For a witness w ∈ F|w|, the considered MPC protocol checks that w satisfies some polynomial relations:

∀j ∈ [1 : m], fj(w) = 0

where f1, . . . , fm are polynomials from F[X1, . . . , X|w|] of total degree at most d. The protocol Πpc checking
such polynomial constraints is formally described in Protocol 7.

1. The parties receive a sharing JwK, with s = 1 and degJwK = ℓ.
2. The parties get a uniformly-random degree-(dℓ) sharing JvK of v = 0 ∈ F using Π0 (Section 6.1).
3. The parties receive random values γ1, . . . , γm ∈ F from OR.
4. The parties locally compute

JαK = JvK +
m∑

j=1

γj · fj(JwK) .

5. The parties open JαK to publicly recompute α.
6. The parties output Accept if and only if α = 0.

Protocol 7: Πpc – Verification of polynomial constraints.

Lemma 2. The protocol Πpc is correct, namely it always outputs Accept when w vanishes the polynomials
f1, . . . , fm. The protocol Πpc is also sound with false positive probability 1

|F| and ℓ-private.

10 Specifically, the constant sharing J∆u1K added to Ju1K for correction corresponds to the polynomial P∆u1 such that
P∆u1(ω1) = ∆u1 and P∆u1(ωi) = 0 for all i ∈ [2 : s].

42

Proof. It is easy to check that Πpc outputs Accept when w vanishes the polynomials f1, . . . , fm (and when
the hints are well-formed, i.e. v = 0) since

α = v +

m∑
j=1

γj · fj(w) = 0 .

When w does not vanish the polynomials, there exists j′ such that fj′(w) ̸= 0. In that case, α is uniformly
random in F since γj′ has been chosen uniformly at random in F. We get that Πpc shall output Accept with
probability 1

|F| , which corresponds to its false positive probability. Finally, the ℓ-privacy of the protocol holds

for the following reason. In our MPC model, the protocol is ℓ-private as long as the broadcast sharings do
not leak information on the witness. In the present case, we have that JvK is a uniformly-random degree-(dℓ)
sharing of 0, which implies that JαK is a uniformly-random degree-(dℓ) sharing of

∑m
j=1 γj · fj(w) = 0. The

protocol Πpc is thus ℓ-private. □

Parallel repetitions. The false positive probability can be made arbitrarily small by performing several

repetitions of Πpc in parallel. The obtained protocol Π
(ρ)
pc is similar to Πpc with the following differences:

– ρ sharings Jv1K, . . . , JvρK are generated using Π0 in Step 2,
– ρ batches of m random values (γ1,i)i, . . . , (γρ,i)i are requested from OR in Step 3,
– ρ sharings Jα1K, . . . , JαρK are computed and broadcasted in Step 4, s.t., JαkK = JvkK+

∑m
j=1 γk,j ·fj(JwK),

– the parties output accept iff the ρ recomputed values verify α1 = · · · = αρ = 0.

A simple adaptation of the proof of Lemma 2 implies that Π
(ρ)
pc is sound with false positive probability 1

|F|ρ .

The TCitH-ΠPC proof system. By Theorem 2, when applying the TCitH framework to the protocol

Π
(ρ)
pc we obtain a complete, sound, and HVZK proof system of soundness error

ϵ :=

1

|F|ρ
+

(
1− 1

|F|ρ

)
·
(
dℓ
ℓ

)(
N
ℓ

) for the TCitH-GGM variant,

1

|F|ρ
+

(
1− 1

|F|ρ

)
·
(
dℓ
ℓ

)(
N
ℓ

) + (
N
ℓ+2

)
|F|η

for the TCitH-MT variant.

For the TCitH-MT variant (and the underlying protocol Π$ of Section 6.1), the above formula is obtained
by fixing the maximal degree of the hint sharings to be dβ = ℓ (i.e., same as for the input sharing) so that
d′α = dα = dℓ.

To obtain a zero-knowledge non-interactive argument of knowledge, we perform τ parallel repetitions
of the protocol and apply the Fiat-Shamir transform. Since the proof system has 5 rounds (with TCitH-
GGM) or 7 rounds (with TCitH-MT) and uses parallel repetitions, one must be careful while selecting the
parameters to avoid potential KZ-like forgery attacks [KZ20a].

About KZ-like forgery attacks. The KZ-like forgery attacks are attacks against non-interactive arguments
(or signature schemes) built through the Fiat-Shamir transformation of a multi-round (at least 5-round)
interactive proof system repeated several (τ) times in parallel. Let us denote R the number of verifier
challenges, i.e. the interactive proof has 2R + 1 rounds, and by ϵ1, . . . , ϵR the successive round soundness
errors, i.e. ϵi is the probability of cheating by guessing the ith challenge (for a single repetition). To succeed
a forgery attack, one should cheat in one of the R rounds (i.e. guess one of the R challenges) for each of
the τ parallel repetitions. A KZ-like attack consists in guessing the first challenge for τ1 repetitions, then
guessing the second challenge for τ2 among the τ − τ1 repetitions, and so on until the final round for which
one must guess the challenge for the remaining τR = τ − (τ1 + · · ·+ τR−1) repetitions. The attack has rough
complexity of ϵ−τ1

1 + · · ·+ ϵ−τR
R .

43

Selection of parameters. To achieve λ bits of security in the non-interactive setting, we propose to select:

– the parameter η of the degree-enforcing commitment in TCitH-MT such that
(

N
ℓ+2

)/
|F|η ≤ 2−λ,

– the number ρ of MPC repetitions in the protocol Π
(ρ)
pc such that 1

/
|F|ρ ≤ 2−λ,

– the number τ of PoK repetitions such that

(
(d·ℓℓ)
(Nℓ)

)τ

≤ 2−λ.

Due to the first two items, any KZ-like attack that consists of cheating on one of the first R − 1 challenges
–namely in either the degree-enforcing challenge or one of the MPC randomness challenge– for at least one
of the τ repetitions has complexity (greater than) 2λ. The only remaining attack consists of cheating on the
last challenge for all the τ repetitions, and, due to the last item, the cost of this attack is also (greater than)
2λ.

The initial selection of the parameters N and ℓ is flexible. They can be chosen to optimize the proof size,
with η, ρ, and τ subsequently determined from N and ℓ to meet the above constraints.

Proof size. The proof transcript includes:

– The opened shares JwKI of the witness w ∈ F|w|, for each of the τ PoK repetitions.
– The opened shares of the hints used to build the sharing JvK, for each of the ρ MPC repetitions of the τ

PoK repetitions. With the variant TCitH-GGM, these shares are communication-free.
– The degree-(dℓ) sharing JαK, for each of the ρMPC repetitions of the τ PoK repetitions. Since JαKI can be

recomputed by the verifier and since the α should be zero, the prover just needs to send (dℓ+1)−ℓ−1 =
(d− 1)ℓ shares.

– The sibling paths in the GGM tree in the variant TCitH-GGM together with the unopened seed com-
mitments, or the authentication paths in the variant TCitH-MT.

– In TCitH-MT, the communication cost due to the sharing degree enforcing, which consists in the opened
shares JuKI used to mask the output of the sharing-degree test (where u ∈ Fη·s) together with one
additional share of JξK (where ξ ∈ Fη·s), for each of the τ PoK repetitions.

We obtain the following proof size when applying TCitH-GGM:

SizeGGM = 4λ+ τ ·

|w| · log2 |F|︸ ︷︷ ︸
∆w

+(d− 1)ℓ · ρ · log2 |F|︸ ︷︷ ︸
JαK

+λ · log2
(
N

ℓ

)
︸ ︷︷ ︸

GGM tree

+2λ

and when applying TCitH-MT:

SizeMT = 6λ+ τ ·

ℓ · (|w|+ nhints · ρ) · log2 |F|︸ ︷︷ ︸
JwKI ,JvKI

+(d− 1)ℓ · ρ · log2 |F|︸ ︷︷ ︸
JαK

+2λ · ℓ · log2
N

ℓ︸ ︷︷ ︸
Merkle tree

+(ℓ+ 1) · η · log2 |F|︸ ︷︷ ︸
degree enforcing

where nhints = (d− 1) · ℓ.

6.3 Proof System for Linear and Parallel Polynomial Constraints

We now introduce a general MPC protocol to efficiently instantiate the TCitH framework with packed secret
sharing (s > 1). We consider a witness w = (w1, . . . , wns) ∈ Fns arranged in n packs:

w =

 w1, . . . , ws,
ws+1, . . . , w2s,

...
...

 s.t. JwK =

J(w1, . . . , ws)K
J(ws+1, . . . , w2s)K

...

44

following the formalism of Section 2.1. We shall further denote w(1), . . . , w(s) the “column tuples” of the
arranged witness, namely w(k) = (wk, ws+k, . . . , w(n−1)s+k) for every k ∈ [1 : s].

The MPC protocol we introduce here checks polynomial constraints in parallel on each pack slot as well
as global linear constraints. With m1 the number of (parallel) polynomial constraints and m2 the number of
(global) linear constraints, the protocol Πlppc checks that w verifies:

1. (parallel polynomial constraints) the w(k)’s satisfy some polynomial relations:

∀j ∈ [1 : m1], ∀k ∈ [1 : s], fj(w
(k)) = 0

where f1, . . . , fm1
are polynomials from F[X1, . . . , Xn] of total degree at most d;

2. (global linear constraints) w satisfies a linear relation A · w = t where A is a matrix from Fm2×(ns) and
t is a vector from Fm2 .

Checking the polynomial constraints works as previously: the fj ’s are locally applied to the shares and
the protocol checks that the fj(JwK) are (high degree) sharings of (0, . . . , 0) ∈ Fs in the same way as
protocol Πpc. To check the global linear constraints, we use a similar approach as Ligero [AHIV17]. Each
row Aj = (Aj,1, . . . , Aj,ns) of the matrix gives rise to a constant sharing JAjK defined as:

JAjK =

J(Aj,1, . . . , Aj,s)K
J(Aj,s+1, . . . , Aj,2s)K

...

where each packed sharing J(Aj,1, . . . , Aj,s)K, . . . is a constant degree-(s−1) sharing (a sharing interpolated
from the s matrix coefficients and without randomness). Let JbjK := ⟨JAjK, JwK⟩, we have that the jth linear
constraint ⟨Aj , w⟩ = tj is satisfied if and only if JbjK shares a tuple bj = (bj,1, . . . , bj,s) ∈ Fs satisfying∑s

i=1 bj,i = tj . The m2 linear constraints are batched by computing Jα′K = Jv′K +
∑m2

j=1 γ
′
jJbjK, for Jv′K a

random degree-(2s+ ℓ− 2) sharing of a random tuple v′ = (v′1, . . . , v
′
s) ∈ Fs satisfying

∑s
i=1 v

′
i = 0. We then

have A ·w = t if Jα′K is such that
∑s

i=1 α
′
i =

∑m2

j=1 γ
′
jtj with high probability (specifically with false positive

probability 1/|F|). The obtained protocol Πlppc is formally described in Protocol 8.

1. The parties receive a sharing JwK, with pack size s and degree ℓ+ s− 1.
2. The parties get a uniformly-random degree-(d·(s+ℓ−1)) sharing JvK of v = (0, . . . , 0) ∈ Fs using Π0 (Section 6.1).
3. The parties get a uniformly-random degree-(2s + ℓ − 2) sharing Jv′K of a random tuple v′ = (v′1, . . . , v

′
s) ∈ Fs

satisfying
∑s

i=1 v
′
i = 0 using ΠΣ0 (Section 6.1).

4. The parties receive random values γ1, . . . , γm1 ∈ F and γ′
1, . . . , γ

′
m2
∈ F from OR.

5. The parties locally compute

JαK = JvK +
m1∑
j=1

γj · fj(JwK)

Jα′K = Jv′K +
m2∑
j=1

γ′
j · JbjK with JbjK = ⟨JAjK, JwK⟩

6. The parties open JαK and Jα′K to publicly recompute α, α′ ∈ Fs.
7. The parties output Accept if and only if α = (0, . . . , 0) and

∑s
i=1 α

′
i =

∑m2
j=1 γ

′
jtj .

Protocol 8: Πlppc – Verification of linear & parallel polynomial constraints.

Lemma 3. The protocol Πlppc is correct, namely it always outputs Accept when w satisfies the parallel
polynomial constraints and the global linear constraints described above. The protocol Πlppc is also sound
with false positive probability 1

|F| and ℓ-private.

45

Proof. It is easy to check that Πlppc outputs Accept when the witnesses satisfy the desired properties and
when the hints are well-formed, since

∀i ∈ [1 : s], αi = vi +

m1∑
j=1

γjfj(w
(i)) = 0 +

m∑
j=1

γi · 0 = 0 ,

s∑
i=1

α′
i =

s∑
i=1

v′i +

s∑
i=1

m2∑
j=1

γ′jbj,i = 0 +

m2∑
j=1

γ′j

(s∑
i=1

bj,i

)
=

m2∑
j=1

γ′jtj .

On the other hand, when w does not satisfy one of the constraints:

– Either there exists (j′, k′) ∈ [1 : m1] × [1 : s] such that fj′(w
(k′)) ̸= 0. In that case, αk′ is uniformly

random in F since γj′ has been chosen uniformly at random in F.
– Or there exists j′ ∈ [1 : m2] such that ⟨Aj , w⟩ ≠ tj . In that case,

∑s
i=1 α

′
i is uniformly random in F since

γ′j′ has been chosen uniformly at random in F.

In both cases, we get that Πlppc shall output Accept with probability 1/|F|, which corresponds to its false
positive probability. In our MPC model, the protocol is ℓ-private as long as the broadcast sharings do not leak
information on the witness. In the present case, we have that JvK is a uniformly-random degree-(d ·(s+ℓ−1))
sharing of (0, . . . , 0) ∈ Fs, which implies that JαK is a uniformly-random degree-(d · (s + ℓ − 1)) sharing of(∑m

j=1 γj · fj(w(k))
)
k
= (0, . . . , 0). Moreover, we have that Jv′K is a uniformly-random degree-(2s + ℓ − 2)

sharing of v′ ∈ Ks satisfying
∑s

j=1 v
′
j = 0, which implies that Jα′K is a uniformly-random degree-(2s+ ℓ− 2)

sharing of α′ = v′ +
∑m2

j=1 γ
′
jbj . Thanks to the randomness of v′, α′ is a uniformly-random tuple of Fs

conditioned to
∑s

i=1 α
′
i =

∑m2

j=1 γ
′
j · tj . The protocol Πlppc is thus ℓ-private. □

Parallel repetitions. As for the protocol Πpc, the protocol Πlppc gives rise to a parallel-repetition version

Π
(ρ)
lppc which lowers the false positive probability to 1

|F|ρ . Here again, the principle is to compute and broadcast

ρ version of the sharings JαK and Jα′K (as when the protocol Πlppc was executed ρ times in parallel) and
check that the ρ versions all satisfy the final checks.

The TCitH-ΠLPPC proof system. By Theorem 2, when applying the TCitH framework to Π
(ρ)
lppc we

obtain a complete, sound, and HVZK proof system of soundness error

ϵ :=

1

|F|ρ
+

(
1− 1

|F|ρ

)
·
(
d·(s+ℓ−1)

ℓ

)(
N
ℓ

) for the TCitH-GGM variant,

1

|F|ρ
+

(
1− 1

|F|ρ

)
·
(
d·(s+ℓ−1)

ℓ

)(
N
ℓ

) +

(
N

s+ℓ+1

)
|F|η

for the TCitH-MT variant.

For the TCitH-MT variant (and the underlying protocol Π$ of Section 6.1), the above formula is obtained
by fixing the maximal degree of the hint sharings to be dβ = s + ℓ − 1 (i.e., same as for the input sharing)
so that d′α = dα = d · (s+ ℓ− 1).

To obtain a zero-knowledge non-interactive argument of knowledge, we perform τ parallel repetitions
of the protocol and apply the Fiat-Shamir transform. Since the proof system has 5 rounds (with TCitH-
GGM) or 7 rounds (with TCitH-MT) and uses parallel repetitions, one must be careful while selecting the
parameters to avoid potential KZ-like forgery attacks [KZ20a] (whose principle is recalled in the previous
subsection).

Selection of parameters. We proceed in the same way as for the TCitH-ΠPC proof system (see previous
subsection). To achieve λ bits of security in the non-interactive setting, we propose to select:

– the parameter η of the degree-enforcing commitment in TCitH-MT such that
(

N
s+ℓ+1

)/
|F|η ≤ 2−λ,

46

– the number ρ of MPC repetitions in the protocol Π
(ρ)
lppc such that 1

/
|F|ρ ≤ 2−λ,

– the number τ of PoK repetitions such that

(
(d·(s+ℓ−1)

ℓ)
(Nℓ)

)τ

≤ 2−λ.

The initial selection of the parameters N and ℓ is flexible. They can be chosen to optimize the proof size,
with η, ρ, and τ subsequently determined from N and ℓ to meet the above constraints.

Proof size. The proof transcript includes:

– The opened shares JwKI of the witness w ∈ Fns, for each of the τ PoK repetitions.
– The opened shares of the hints used to build the sharings JvK and Jv′K, for each of the ρ MPC repetitions

of the τ PoK repetitions. With the variant TCitH-GGM, these shares are communication-free except for
the correction term ∆u1 ∈ F arising in the generation of Jv′K (see Section 6.1).

– The degree-(d · (s+ ℓ− 1)) sharing JαK and the degree-(2s+ ℓ− 2) sharing Jα′K, for each of the ρ MPC
repetitions of the τ PoK repetitions. Since JαKI and Jα′KI can be recomputed by the verifier, since the
α ∈ Fs should be zero, and since the sum of the coordinates of α′ ∈ F should be equal to a public
value (which is

∑
j γ

′
jtj), the proof just needs to include (d · (s + ℓ − 1) + 1) − ℓ − s shares for JαK and

((2s+ ℓ− 2) + 1)− ℓ− 1 shares for Jα′K.
– The sibling paths in the GGM tree in the variant TCitH-GGM together with the unopened seed com-

mitments, or the authentication paths in the variant TCitH-MT.
– In TCitH-MT, the communication cost due to the sharing degree enforcing, which consists in the opened

shares JuKI used to mask the output of the sharing-degree test (where u ∈ Fη·s) together with s additional
shares of JξK (where ξ ∈ Fη·s), for each of the τ PoK repetitions.

We obtain the following proof size (in bits):

SizeGGM = 4λ+ τ ·

(ns+ ρ) · log2 |F|︸ ︷︷ ︸
∆w,∆u1

+

(d− 1) · (s+ ℓ− 1)︸ ︷︷ ︸
JαK

+(2s− 2)︸ ︷︷ ︸
Jα′K

 · ρ · log2 |F|+ λ · log2
(
N

ℓ

)
︸ ︷︷ ︸

GGM tree

+2λ

for TCitH-GGM, and

SizeMT = 6λ+ τ ·

(s+ ℓ) · η · log2 |F|︸ ︷︷ ︸
degree enforcing

+ℓ · (n+ nhints · ρ) · log2 |F|︸ ︷︷ ︸
JwKI ,JvKI ,Jv′KI

+

(d− 1) · (s+ ℓ− 1)︸ ︷︷ ︸
JαK

+(2s− 2)︸ ︷︷ ︸
Jα′K

 · ρ · log2 |F|+ 2λ · ℓ · log2
N

ℓ︸ ︷︷ ︸
Merkle tree

 (18)

for TCitH-MT, where nhints :=
⌈
(d−1)·(s+ℓ−1)

s

⌉
+
⌈
2s−1

s

⌉
.

Remark 7. One could try to optimize the above protocol by batching JαK and Jα′K into a single broadcasted
sharing. But to keep the soundness of the protocol in doing so, the unique broadcast would be of higher
degree dα = d · (s + ℓ − 1) + (s − 1) which, on one hand, would not reduce the number of field elements in
the proof transcript, and, on the other hand, would increase the soundness error of a single repetition (see
Equation (16)). Therefore, such an optimization is not interesting here.

47

Remark 8. The protocol Πlppc can be seen as a generalization of the protocol Πpc. Indeed, Πlppc with s = 1
is equivalent to Πpc. To see this, observe that the broadcast sharing of α′ is communication-free (since its
cost per iteration was (2s− 2) field elements) and it can be removed since the global linear constraints can
be handled by the polynomial constraints (which are also global when s = 1).

Remark 9. We can observe that SizeGGM is linearly impacted by the size of the witness |w| = ns (to
communicate the correction term ∆w). On the other hand, SizeMT is only linearly impacted by n (the
number of packs) and by s (the pack size). This size can hence be sublinear in the witness size by taking,
e.g., n ≈ s ≈

√
|w|. For this reason, using packed secret sharing is particularly interesting for the Merkle

tree variant. Moreover, while the GGM variant has a “smaller tree” (because a sibling path made of seeds is
twice smaller than a Merkle path made of hash digests for the same number of parties N), the overhead of
the Merkle tree is compensated by the packing while moving from “small size” witnesses to “medium size”
witnesses. The two variants hence offer two interesting tradeoffs with the best choice (in terms of proof size)
depending on the size of the underlying statement.

6.4 Zero-Knowledge Arguments for Arithmetic Circuits

In this section, we apply the previous zero-knowledge arguments TCitH-Πpc and TCitH-Πlppc to general
(low-degree) arithmetic circuits.

Arguments for Low-Degree Arithmetic Circuits. TCitH-Πpc is particularly efficient when applied
to an arithmetic circuit C of low degree d (i.e. a circuit for which the output coordinates are degree-d
polynomials in the input coordinates). We obtain a zero-knowledge argument of knowledge of a witness w
satisfying C(w) = y for a public output y. We get m = |y| polynomial constraints fj(w) = Cj(w) − yj ,
where yj ∈ F denotes jth coordinate of the output y and Cj denotes the subcircuit computing this output
coordinate. From the analysis of Section 6.2, the size of the obtained argument is independent of the number
of gates in the circuit (and in particular on the number of multiplications) and mainly depends on its degree
d.

Arguments for General Arithmetic Circuits. TCitH-Πlppc can be used to get a sublinear arguments
for arithmetic circuits without restrictions on the circuit degree. For this purpose, an arithmetic circuit
statement C(x) = y can be expressed as an LPPC instance as in the Ligero proof system [AHIV17].

The witness w is defined as the concatenation of three vectors a, b and c whose coordinates aj , bj and cj
are respectively the first operand, the second operand and the result of the jth multiplication gate of C on
input x. Then proving C(x) = y is similar to proving c = a◦ b, where ◦ is the coordinate-wise multiplication,
and proving the linear constraints of the circuit, which can be expressed as a = A1 · w, b = A2 · w and
y = A3 · w for some matrices A1, A2, A3.

11

Denoting |C| the number of multiplication gates in C and assuming that |C| is a multiple of s, the witness
(of size |w| = 3|C|) is easily arranged so that we have m1 = |C|/s quadratic polynomial constraints of the
form f(a, b, c) = c− a · b to verify (each of them verifying s multiplication gates in parallel). We further have
m2 = 2|C| + |y| global linear constraints to verify (for the computation of a, b and y). For this particular
LPPC instance, the MPC protocol Πlppc is a slightly optimized version of the Ligero MPC protocol, which
we therefore denote ΠLigero here.12 The zero-knowledge argument obtained when applying our framework is
denoted TCitH-ΠLigero.

Remark 10. Let us mention that the TCitH-Πlppc proof system can deal with circuits with higher-degree
gates instead of just considering multiplication gates. This could provide significant gain for some applications
but highly depends on the topology of the underlying circuit.
11 Here, the linear constraints of A1 and A2 are not trivial (e.g., forwarding the a-part of w to a through an identity

matrix A1) but encode the linear relations between the input and the multiplication operands.
12 Compared to the original Ligero MPC protocol, ΠLigero relies on an optimized arithmetization: a textbook ap-

plication of the Ligero arithmetization includes the input x and all the outputs of the addition gates of C in the
witness w, which we avoid here by an alternative definition of the linear constraints.

48

Comparison. Figures 4a and 4b compare our two schemes TCitH-Πpc and TCitH-ΠLigero to other MPCitH-
based proof systems performing well on small-to-medium size arithmetic circuits, namely Ligero [AHIV17]
and Limbo [DOT21]. For completeness, we further plot an optimized version of Ligero (curve “Ligero (opt.)”)
which uses the opened shares to interpolate the broadcast polynomials, instead of sending the entire poly-
nomials (this optimization being natively integrated in the TCitH framework).

From those figures, we observe that TCitH-Πpc achieves very competitive cost when the circuit degree is
small (below 50). For general circuits, both Ligero and our scheme quickly outperform Limbo when the circuit
size increases, and our scheme performs better than Ligero for small-to-medium size circuits, specifically
circuits with ≤ 216 multiplication gates. The following table further provides concrete parameters for Ligero
vs. TCitH-ΠLigero for a circuit with 256 multiplications:

Scheme |F| |x| |C| τ N ℓ s η ρ Size

Ligero
8192 100 256

1 975 219 106 − 10 49.2 kB
TCitH-ΠLigero 1 924 50 28 40 10 19.2 kB

Ligero
232 100 256

1 975 219 106 − 4 54.9 kB
TCitH-ΠLigero 1 924 50 28 17 4 22.6 kB

28 210 212 214 216

Number of multiplications

0

50

100

150

200

250

300

350

A
rg

u
m

en
t

si
ze

(i
n

ky
lo

by
te

s)

Ligero

Ligero (opt.)

Limbo

TCitH-ΠLigero

TCitH-ΠPC , deg=2

TCitH-ΠPC , deg=10

TCitH-ΠPC , deg=25

TCitH-ΠPC , deg=50

(a) Over the field F8192

28 210 212 214 216

Number of multiplications

0

50

100

150

200

250

300

350

A
rg

u
m

en
t

si
ze

(i
n

ky
lo

by
te

s)
Ligero

Ligero (opt.)

Limbo

TCitH-ΠLigero

TCitH-ΠPC , deg=2

TCitH-ΠPC , deg=10

TCitH-ΠPC , deg=25

TCitH-ΠPC , deg=50

(b) Over the field F232

Fig. 4: Comparison of TCitH-Πpc, TCitH-ΠLigero, Ligero [AHIV17] and Limbo [DOT21] for arithmetic cir-
cuits (with input x ∈ F100), while achieving a 128-bit security level for non-interactive arguments.

6.5 Improved Post-Quantum Signature Schemes

A standard way to build a post-quantum signature scheme is as follows. First, select an (allegedly) post-
quantum secure one-way function F . For a random input w of F , the private key is defined as w and the
public key is defined as y = F (w). Then use an (allegedly) post-quantum secure zero-knowledge argument
to prove knowledge of w satisfying y = F (w) (in a non-interactive message-dependent way). We follow this
approach hereafter with our general proof system for polynomial constraints (without packing) TCitH-Πpc

(Section 6.2) for classical post-quantum one-way functions, namely the multivariate quadratic problem, as
used in MQOM [FR23a] and on the syndrome decoding problem, as used in SDitH [FJR22, AFG+23]. In
both cases, we explain how to transform the relation y = F (w) into low-degree polynomial constraints. We
further show how TCitH-Πpc can apply to other MPCitH-based schemes submitted to the recent NIST call
for additional post-quantum signatures.

49

Multivariate Quadratic (MQ) problem over Fq. Given matrices A1, . . . , Am ∈ Fn×n
q , vectors b1, . . . , bm ∈ Fn

q

and scalars y1, . . . , ym ∈ Fq, the MQ problem consists in finding a vector x such that, for all j, xTAjx+b
T
j x =

yj . Applying the proof system to this problem is straightforward since it is naturally expressed as degree-2
polynomials. We just need to define the polynomials f1, . . . , fm as

∀j ∈ [1 : m], fj(x) = xTAjx+ bTj x− yj .

Syndrome Decoding (SD) problem over Fq. Given a matrixH = (H ′|In−k) ∈ F(n−k)×n
q and a vector y ∈ Fn−k

q ,
the SD problem consists in finding a vector x such that y = Hx and such that x has at most ω non-zero
coordinates. Using the arithmetization of the SDitH scheme [FJR22], the SD problem consists in finding a

vector xA ∈ Fk
q and a monic degree-ω polynomial Q(X) := Xω+

∑ω−1
i=0 QiX

i ∈ Fq[X] such that xj ·Q(ej) = 0
for all j where x = (xA ∥ y−H ′xA) and {ej} are distinct public points of Fq (requiring that q ≥ n). We can
use the proof system by defining the polynomials f1, . . . , fm as

∀j ∈ [1 : m], fj(xA, Q) =

(
eωj +

ω−1∑
i=0

Qi · eij

)
·

{
(xA)j if j ≤ k,
(y −HxA)j−k if j > k.

Performances. Table 3 summarizes the obtained signature sizes and running times (benchmarked on the
same platform as before) for the proposed MQ-based and SD-based signature schemes (when taking ℓ = 1)
and compares them to MQOM and SDitH. Our extended TCitH-GGM framework saves 35% and 11% of size
for MQOM and SDitH respectively. In particular, our MQ-based scheme achieves signatures of size 4.2 KB
for similar (non-structured) MQ instances as the MQOM scheme. This also outperforms Biscuit [BKPV23]
which is yet based on a structured MQ problem.

TCitH-GGM TCitH-MT
Size Signing Verif Size Signing Verif

MQ over F251 MQOM 6575 B 5.97 ms 5.57 ms ≈ 13000 B - -
(m = n = 43) Our scheme 4 257 B 5.23 ms 4.77 ms 7 177 B 3.55 ms 0.63 ms

SD over F251 SDitH 8 241 B 6.44 ms 6.11 ms 10 117 B 1.55 ms 0.17 ms
(n = 230, k = 126, k = 79) Our scheme 7 335 B 6.73 ms 6.45 ms 10 255 B 4.85 ms 0.30 ms

Table 3: Benchmark for the signature schemes based on MQ and SD problems over F251. The timings
of MQOM and SDitH when using TCitH-GGM correspond to the running times of these schemes when
integrating the optimization of Section 3 (see Section 3.4 for details). The timings of SDitH using TCitH-
MT correspond to the running times of the official (optimized) implementation on the same platform. The
authors of MQOM did not propose a variant of their scheme using TCitH-MT, but we give in Table 3 the
signature size they would obtain.

To complete the overview, we give in Table 4 the sizes we would obtain with the TCitH-GGM framework
using alternative parameter sets than those of MQOM and SDitH, namely the multivariate quadratic problem
over F4 and the binary syndrome decoding problem (with the split variant proposed in [FJR22]). In each
case, we give the size of the former scheme which led to the best signature size with the considered security
assumption.

Application to other NIST post-quantum signature candidates. As explained in Section 3.4, several MPCitH-
based schemes relying on different hardness assumptions have been proposed in the new NIST call for
additional post-quantum signatures. We already deal with the case of MQOM and SDitH above (the F251

instance in both cases) but our proof system can also be applied to the other schemes. We provide in Table 5
a list of NIST candidates for which an application of our TCitH-Πlc proof system (GGM variant) provides an

50

Hardness Assumption n m k w Former size TCitH-GGM Saving

MQ over F4 88 88 - - 8 609 B [Wan22] 3 858 B −55%
SD over F2 1280 - 640 132 11 160 B [FJR22] 8 409 B −25%

6-split SD over F2 1536 - 888 120 12 066 B [FJR22] 7 829 B −35%

Table 4: Signature sizes using alternative MQ and SD problems.

improvement of the signature size, namely all the MPCitH-based candidates except PERK [ABB+23a] (which
is based on the shared-permutation technique [FJR23] and does not fit our framework) and AIMer [CCH+23].

As it was the case for the non-structured MQ problem, adapting the NIST candidate Biscuit [BKPV23]
is straightforward since it relies on a structured variant of the MQ problem, called the PowAff2 problem,
which is directly expressed as degree-2 polynomial constraints on the witness. MiRitH [ABB+23b] relies on
the MinRank problem which consists, given k + 1 matrices M0,M1, . . . ,Mk, in finding x such that the rank
of E :=M0+

∑k
j=1 xj ·Mj ∈ Fm×n

q is smaller than a public bound r. The idea of MiRitH is to show that the
n− r last columns ER of E := (EL | ER) can be expressed as a linear combination of the r first columns EL,

namely there exists a matrix A ∈ Fr×(n−r)
q such that ER = EL ·A. The latter relation provides us the degree-2

polynomial constraints we can use, assuming A is part of the witness (together with x). MIRA [ABB+23d]
is another NIST candidate that relies on the MinRank problem, but using another verification circuit (based

on q-polynomials). The idea of MIRA is to show that there exists β ∈ Fr
qm such that xq

r

j +
∑r−1

i=0 βi · x
qi

j = 0

for all j, where xj is the jth column of E := M0 +
∑k

j=1 xj ·Mj ∈ Fm×n
q written as a field element of Fqm .

Since · 7→ ·qi is a Fq-linear application, the previous relations lead to degree-2 polynomial constraints. Let
us remark that the transcript size of our proof system only depends on the size of the witness (and not on
the number of multiplications involved in the constraints). In MiRitH, the witness is composed of x ∈ Fk

q

and of the matrix A ∈ Fr×(n−r)
q . In MIRA, the witness is composed of x ∈ Fk

q and of a vector of Fr
qn (which

represents a monic degree-qr q-polynomial of Fqn [X]). We thus have that adapting MIRA will lead to larger
signature sizes than adapting MiRitH (for the same MinRank parameters). Finally, RYDE [ABB+23c] relies

on the syndrome decoding problem in the rank metric which consists, given a matrix H ∈ F(n−k)×n
qm and a

vector y ∈ Fn−k
qm , in finding x ∈ Fn

qm such that the rank of x is smaller than a public bound r and y = Hx.
As for MIRA, RYDE relies on q-polynomials. The idea is to show that x satisfies the desired linear relation

and that there exists β ∈ Fr
qm such that xq

r

j +
∑r−1

i=0 βi · x
qi

j = 0 for all j.

Original size Our variant Saving

Biscuit [BKPV23] 4 758 B 4 048 B −15%
MIRA [ABB+23d] 5 640 B 5 340 B −5%
MiRitH-Ia [ABB+23b] 5 665 B 4 694 B −17%
MiRitH-Ib [ABB+23b] 6 298 B 5 245 B −17%
MQOM (over F251) [FR23a] 6 575 B 4 257 B −35%
MQOM (over F31) [FR23a] 6 348 B 4 027 B −37%
RYDE [ABB+23c] 5 956 B 5 281 B −11%
SDitH (over F251 & F256) [FJR22, AFG+23] 8 241 B 7 335 B −11%

Table 5: Signature sizes for NIST MPCitH-based candidates.

6.6 Short Post-Quantum Ring Signatures

As another application of TCitH-Πpc (Section 6.2), we introduce a new ring signature scheme. Such a scheme
allows a user to sign a message on behalf of a group of people (called a ring) without revealing which member

51

of the ring signed the message. We denote r the size of the ring and consider r public keys y1, . . . yr (one per
ring member). The important security property of the scheme (beyond the unforgeability) is the anonymity
of the signer. Let us denote j∗ the secret index of the signer within the ring. To build a ring signature scheme
with our framework, we need to build an MPC protocol that checks that the input sharing JwK is the private
key which corresponds to one public key of the ring, namely yj∗ , while keeping j∗ private. A way to proceed
is to input to the protocol (in addition to the witness sharing JwK) a sharing JsK of a one-hot encoding
s ∈ {0, 1}r of j∗. That is ∀j ∈ [1 : r], sj = 1 if j = j∗ and sj = 0 otherwise. Then the MPC protocol starts
by securely computing a sharing of the right public key as

Jyj∗K =
r∑

j=1

JsjK · yj

and next checks that JwK corresponds to Jyj∗K using some existing protocol (depending on the underlying
one-way function). The main drawback of this strategy is that the signature includes some shares of JsK and so
its size scales linearly with the size r of the ring. To handle this issue, we propose to use a “multidimensional
one-hot encoding” which is composed of d one-hot vectors s(1), . . . , s(d) of size d

√
r such that

s
(1)
j∗1

= s
(2)
j∗2

= · · · = s
(d)
j∗d

= 1

while the other coordinates of the s(j)’s equal zero, where (j∗1 , . . . , j
∗
d) is the base- d

√
r decomposition of j∗

“shifted by one” (which means that (j∗1 − 1, . . . , j∗d − 1) is the standard base- d
√
r decomposition of j∗− 1; we

use this translation because vector indices start from 1). Here d is a parameter of the scheme that we can
tune to optimize the signature size. Then we can compute a sharing of the standard one-hot encoding JsK
from the sharings Js(1)K, . . . , Js(d)K by

∀j, JsjK = Js(1)j1
K× . . .× Js(d)jd

K , (19)

with (j1, . . . , jd) the base- d
√
r decomposition of j “shifted by one”. Computing JsK with the above method

involves a large number of multiplications, but fortunately, using of our proof system of Section 6.2, the
obtained signature size is independent of this number of multiplications but solely depends on d. The MPC
protocol should further check that the Js(j)K corresponds to the sharing of a one-hot vector with d

√
r−1 zeros

and 1 one. To this purpose, we further extend the input of the protocol with secret values {pj}j encoding
the position of the non-zero coordinates in the vectors {s(j)}j :

∀j ∈ [1 : d], ∀k ∈ [1 : d
√
r], s

(j)
k ̸= 0 ⇔ pj = ek

where {ek}k are public distinct points of F. Then the protocol first checks

∀j ∈ [1 : d], ∀k ∈ [1 : d
√
r], s

(j)
k · (ek − pj) = 0, (20)

which guarantees that each of the s(j)’s has a single non-zero coordinate and hence that s has a single
non-zero coordinate, then the protocol checks

r∑
j=1

sj = 1 , (21)

to verify that this non-zero coordinate of s equals 1.

To sum up, the MPC protocol takes as input the sharing JwK of the witness, the sharings Js(1)K, . . . , Js(d)K
of the one-hot vectors, and the sharings Jp1K, . . . , JpdK of the non-zero position encodings, then runs the
following steps:

1. Compute JsK from Js(1)K, . . . , Js(d)K using Equation (19);

52

2. Compute Jyj∗K as
∑r

j=1JsK · yj ;
3. Check that JwK is a valid witness for Jyj∗K;
4. Check that JsK is in the right form by checking Equations (20) and (21).

Using this method, we can build a ring signature from any one-way function. We propose hereafter
concrete schemes relying on the MQ and SD problems by adapting the polynomial constraints of the schemes
described in Section 6.5 to handle the one-hot vector s. We also propose two additional ring signature schemes
based on one-way functions relying on AES.

In what follows, we shall denote gj the degree-d function defined as

gj(s
(1), . . . , s(d)) =

d∏
i=1

s
(i)
ji
.

Ring signatures from MQ. We shall use the same quadratic equations {Aj , bj}j for all the users of the ring
so that only the solution y of the system shall differ between the different public keys. In that case, we can
define the functions as polynomial constraints:

fj(x, s
(1), . . . , s(d), p) = xTAjx+ bTj x−

∑r

h=1
gh(s

(1), . . . , s(d)) · yh ∀j ∈ [1 : m] ,

f ′j,k(x, s
(1), . . . , s(d), p) = s

(j)
k · (γk − pj) ∀j ∈ [1 : d] ∀k ∈ [1 : d

√
r] ,

f ′′(x, s(1), . . . , s(d), p) =
∑r

h=1
gh(s

(1), . . . , s(d))− 1 .

All these polynomials have degrees at most max{d, 2}, and we can apply the proof system of Section 6.2
(with the Fiat-Shamir transformation) to get the desired signature scheme.

Ring signatures from SD. We shall use the same matrix H for all the users of the ring so that only the
syndrome y = Hx shall differ between the different public keys. In that case, we can define the functions as
polynomial constraints:

fj(xA, Q, s
(1), . . . , s(d), p) =

(
zωj +

∑ω−1

i=0
Qi · zij

)
×

{
(xA)j if j ≤ k,
(
∑r

h=1gh(s
(1), . . . , s(d)) · yh −HxA)j−k if j > k.

∀j ∈ [1 : m] ,

f ′j,k(x, s
(1), . . . , s(d), p) = s

(j)
k · (γk − pj) ∀j ∈ [1 : d] ∀k ∈ [1 : d

√
r] ,

f ′′(x, s(1), . . . , s(d), p) =
∑r

h=1
gh(s

(1), . . . , s(d))− 1 .

All these polynomials have degrees at most d + 1, and we can apply the proof system of Section 6.2 (with
the Fiat-Shamir transformation) to get the desired signature scheme.

Ring signatures from AES. We rely on the same arithmetization as the FAEST scheme [BBD+23]: we
include the outputs of the S-boxes (splitted in bits) in the witness and prove the correctness of each S-box
by checking a multiplication between two linear combinations of the witness. The exact constraints depend
on the considered one-way function:

– When considering pk := (x,AESsk(x)), we also include the signer’s public key in the witness. The
polynomial constraints are split in two categories: ones checks the correctness of the S-boxes using the
shared signer’s public key, while the other checks that the shared signer’s public key is consistent with
the one-hot encoding of the signer’s index. All the constraints have degree at most max{d, 2}. We could
avoid including the signer’s public key in the witness, but in that case, the polynomial constraints would
be of degrees d+ 1 (d to reconstruct pk from the one-hot encoding and +1 for the multiplications with
linear combinations of the witness checking the last s-box layer).

53

– When considering the Even-Mansour (EM) construction pk := (x,AESx(sk)⊕ sk), we shall use the same
AES key x for all the users of the ring so that only AESx(sk) ⊕ sk shall differ between the different
public keys. With this variant, we only include the block-cipher output AESx(sk)⊕ sk in the witness to
avoid an increase of the constraint degree. As in the previous case, the polynomial constraints are split
in two categories: some check the correctness of the S-boxes, while the other check the correctness of the
signer’s public key w.r.t. the one-hot encoding of the signer’s index. All the constraints have degree at
most max{d, 2}.

Remark 11. Let us mention that we do not consider multi-user attacks over the private key in this article
for the sake of simplicity (to have simpler polynomial constraints). Taking the same coefficients for the MQ
instances, the same matrix for the SD instances, or the same AES key for a given ring would degrade the
overall security vs. multi-user attacks if a large ring is considered. To prevent this type of attacks, one should
use independent public keys (i.e. different coefficients for the MQ instances, different AES key x for the
EM variant, etc.). This would slightly increase the signature size because the witness and/or the constraint
degree would be larger. For example, a MQ-based ring signature scheme secure againts multi-user attacks
has size around 9.7 KB (instead of 8.2, see Table 6) for 220 users when relying on F251. This would also
slightly increase the signing/verification time since the MPC protocol would be heavier.

Benchmark. The obtained MQ-based and SD-based signature sizes and running times are depicted in Figure 5
with respect to an increasing ring size. We use the same MQ and SD parameters as in the previous section.
However, the sizes depend on the field structure:

– when using F251 (no subfield), we need to share the coordinates of s(1), . . . , s(d) over F251. Sending such
a share costs log2(251) bits per coordinate.

– when using F256 (for which the smallest subfield is F2), we can share the coordinates of s(1), . . . , s(d) over
F2, so sending such a share only costs 1 bits per coordinate.

For this reason, we obtain smaller sizes when working on a field extension, but we obtain very competitive
sizes in both cases. We benchmarked the MQ-based and SD-based schemes over F251 on the same platform
as the previous sections. Signing and verification for a ring of 1000 users takes less than 10 ms, which is
very competitive compared to the state of the art of post-quantum ring signatures. Running times with F256

would be similar, up to the fact that a multiplication over F256 is slower than a multiplication over F251 on
the considered platform (the field multiplication time is the bottleneck of the scheme). Let us stress that we
only implemented and benchmarked the TCitH-GGM variant here. The TCitH-MT variant would give close
results in terms of timings (since the bottleneck is the emulation of the MPC protocol which is similar in
both variants) but would suffer an increased signature size (of roughly 2KB for a 128-bit security) due to
the Merkle tree vs. GGM tree trade-off.

We compare our schemes with the previous post-quantum ring signatures from the state of the art in
Table 6. We can remark that we achieve the smallest signature sizes in all the cases with our MQ-based
scheme.

6.7 Exact Zero-Knowledge Arguments for Lattices

We now present an application of our generic proof system TCitH-Πlppc (Section 6.3) to obtain short and
exact zero-knowledge arguments for lattice problems. Previous tries using the MPC-in-the-Head paradigm
lead to large proof transcripts. This comes from the fact that an MPCitH-based proof includes a share of
the secret vector and that the latter lives in a large space. In [FMRV22], the authors use sharing over the
integers with rejection in order to lower the communication cost of the shares of the secret vector since the
latter is known to be small (i.e. of a small norm). Another option to reduce this cost is to use packed secret
sharing with our TCitH-MT framework, which we develop here.

In what follows, we show how to apply TCitH-Πlppc to check an instance of an Inhomogeneous Short
Integer Solution (ISIS) problem. Such a scheme proves the knowledge of a vector e ∈ Fn

q such that ∥e∥∞ ≤ β
and t = A · e, where A ∈ Fm×n

q and t ∈ Fm
q are publicly known. We stress that the Learning With Error

54

22 24 26 28 210 212 214 216

Ring size

0

2

4

6

8

10

12
Si

gn
at

ur
e

siz
e

(in
 K

B)

MQ-251 (TCitH-GGM)
MQ-256 (TCitH-GGM)
SD-251 (TCitH-GGM)
SD-256 (TCitH-GGM)

22 24 26 28 210 212 214 216

Ring size

101

102

Ru
nn

in
g

tim
e

(in
 m

s)

MQ-251 (TCitH-GGM, Signing)
SD-251 (TCitH-GGM, Signing)
MQ-251 (TCitH-GGM, Verif)
SD-251 (TCitH-GGM), Verif

Fig. 5: Benchmark of the proposed ring signature schemes

Table 6: Signature size (KB) for different post-quantum ring signature schemes.

#users 23 26 28 210 212 220 Assumption Security

Our scheme 2023 4.41 4.60 4.90 5.48 5.82 8.19 MQ over F251 NIST I
Our scheme 2023 4.30 4.33 4.37 4.45 4.60 5.62 MQ over F256 NIST I
Our scheme 2023 7.51 8.40 8.72 9.36 10.30 12.81 SD over F251 NIST I
Our scheme 2023 7.37 7.51 7.96 8.24 8.40 10.09 SD over F256 NIST I
Our scheme 2023 7.87 7.90 7.94 8.02 8.18 9.39 AES128 NIST I
Our scheme 2023 6.81 6.84 6.88 6.96 7.12 8.27 AES128-EM NIST I

KKW [KKW18] 2018 - 250 - - 456 - LowMC NIST V
GGHK [GGHAK22] 2021 - - - 56 - - LowMC NIST V
Raptor [LAZ19] 2019 10 81 333 1290 5161 - MSIS / MLWE 100 bit
EZSLL [EZS+19] 2019 19 31 - - 148 - MSIS / MLWE NIST II
Falafl [BKP20] 2020 30 32 - - 35 - MSIS / MLWE NIST I
Calamari [BKP20] 2020 5 8 - - 14 - CSIDH 128 bit
LESS [BBN+22] 2022 11 14 - - 20 - Code Equiv. 128 bit
MRr-DSS [BESV22] 2022 27 36 64 145 422 - MinRank NIST I

(LWE) problem (as well as its ring or module variants) can be expressed as a particular form of ISIS with
A = (A′|In).

Let us denote s the pack size of the used secret sharing and assume that n is a multiple of s (otherwise
we shall pad e and A with zeros). We decompose e as k := ⌈log2(2β+1)⌉ vectors (e(0), . . . , e(k−1)) of {0, 1}n
such that

e =

k−2∑
i=0

2ie(i) + (2β − 2k−1 + 1)e(k−1) − β (22)

where β = (β, . . . , β) ∈ Fn
q . If all vectors e

(i) belong to {0, 1}n, the above relation gives that ∥e∥∞ ≤ β. So,

as in [FMRV22], we give the sharing JwK of the witness w = (e(0) ∥ · · · ∥ e(k−1)) to the MPC protocol instead
of JeK. The latter can then check that JwK is the sharing of a binary vector and that A · JeK corresponds to
t modulo q where JeK is recovered by linearity of (22). This can be expressed as an instance of the Πlppc

protocol (Section 6.3) with the following global linear constraints:

A ·
(
In | 2In | · · · | 2k−2In | (2β − 2k−1 + 1)In

)
·

 e(0)

...
e(k−1)

︸ ︷︷ ︸

e+β

= t+A · β

55

and the following parallel polynomial constraints:

∀j ∈ {0, . . . , k − 1}, e(j) ◦ (e(j) − 1) = 0 ,

where 0 = (0, . . . , 0) ∈ Fn
q , 1 = (1, . . . , 1) ∈ Fn

q and ◦ is the coordinate-wise multiplication. By applying the
TCitH-Πlppc proof system of Section 6.2, with the variant TCitH-MT, the size of the proof transcript is
given by Equation (18), where the degree d is 2 and the packed witness size is k · ⌈n/s⌉.

We apply this proof system on toy ISIS instances with q ≈ 232 and q ≈ 261 from the lattice zero-
knowledge literature as well as on Kyber [ABD+21] and Dilithium [BDK+21a] instances. The results are
depicted in Table 7. We further compare our results on the toy instances to previous works in Table 8. Our
arguments are 3 to 5 times smaller than the previous best MPCitH-based arguments [FMRV22]. Let us
remark than [FMRV22] supports ISIS instances with any value of q while we require a prime q (due to the
use of Shamir’s secret sharing), which is not a strong restriction in practice. Previous works relying on lattice
techniques [LNS21, LNP22] achieve better sizes on the first toy instance (33 KB and 15 KB vs. 41 KB) but
either rely on NTT-friendly fields [LNS21] or prove the L2 norm [LNP22] (instead of proving the L∞ norm
as the other schemes). Regarding the Kyber512 instance, our size (21 KB) is close to the 19 KB obtained
by [LNP22] on a slightly different instance arising in a verifiable encryption use case (and still for the L2

norm against L∞ in our case).

Table 7: Proof sizes when applied on some SIS/LWE instances. “β = 1/2” means that the secret is a binary
vector.

ISIS/LWE Instance q n m β N τ ℓ s η ρ Proof Size

Toy Example 1 ≈ 232 2048 1024 1 1024 1 43 32 17 4 38 081 B

Toy Example 2 ≈ 261 4096 512 1/2 1024 1 47 41 10 3 57 409 B

Kyber512 3329 (2 + 2)× 256 2× 256 3 1024 1 37 19 38 11 21 185 B

Kyber768 3329 (3 + 3)× 256 3× 256 2 1024 1 39 23 40 11 24 938 B

Kyber1024 3329 (4 + 4)× 256 4× 256 2 1024 1 41 27 42 11 28 241 B

Dilithium2 8380417 (4 + 4)× 256 4× 256 2 1024 1 43 32 23 6 40 100 B

Dilithium3 8380417 (6 + 5)× 256 6× 256 4 1024 1 45 37 24 6 57 526 B

Dilithium5 8380417 (8 + 7)× 256 8× 256 2 1024 1 45 37 24 6 58 088 B

Table 8: Comparison with the existing exact protocols which prove the knowledge of the solution of a ISIS
instance. (⋆): All the schemes prove the infinity norm, except [LNP22] that proves the L2-norm.

Scheme Year Any q
Toy Example 1 Toy Example 2

Proof Size Rej. Rate Proof Size Rej. Rate

[LNSW13] 2013 ✓ 3600 KB 0 8988 KB 0

Ligero [AHIV17] 2017 q prime + NTT 157 KB 0 - -

Aurora [BCR+19] 2019 q prime + NTT 71 KB 0 - -

[BLS19] 2019 q prime + NTT 384 KB 0.92 - -

[BN20] 2020 q prime - - 4077 KB 0

[Beu20] 2020 q prime 233 KB 0 444 KB 0

[ENS20] 2020 q prime + NTT 47 KB 0.95 - -

[LNS21] 2021 q prime + NTT 33.3 KB 0.85 - -

[FMRV22] (batching) 2022 ✓ 291 KB 0.04 291 KB 0.04

[FMRV22] (C&C) 2022 ✓ 184 KB 0.05 184 KB 0.05

[LNP22]⋆ 2022 q prime 14.7 KB 0.86 - -

Our scheme 2023 q prime 38 KB 0 57 KB 0

56

Remark 12. Let us remark that we can directly check that the ISIS secret e satisfies the relation (e − β) ◦
(e− β + 1) ◦ . . . ◦ (e+ β) = 0, which is a (2β + 1)-degree constraint (instead of decomposing the secret). We
can also a mix: decompose e in a larger base to have constraints between 2 and 2β + 1. According to our
tests, we obtain similar or higher argument sizes.

We also apply our proof system to custom instances of LWE. The selected parameters have similar
security than Kyber512 according to the lattice estimator [APS15]. In our experiments, we observed that
taking a smaller q led to shorter arguments up to a point where the constraint on the number of parties
(N + s ≤ q+1) became detrimental to efficient packing. Table 9 provides the selected prameters for q = 251
and q = 1021 (β = 1/2 means that the small vectors are binary). For the latter, we achieve argument sizes
around 15-16 KB.

Table 9: Proof sizes for LWE instances.

LWE Instance q n m β N τ ℓ s η ρ Proof Size

LWE over F1021 1021 561 561 1/2 1000 1 34 11 40 13 15 527 B

LWE over F251 251 473 473 1/2 240 4 10 6 27 17 18 217 B

Remark 13. It would be interesting to investigate the application of our proof system to FrodoKEM [ABD+23].
The security of FrodoKEM relies on unstructured lattice assumptions, unlike the security of Kyber [ABD+21]
and Dilithium [BDK+21a] which relies on module lattice assumptions. However, FrodoKEM is defined over
Z/2kZ for k in {15, 16}. Therefore, our techniques are not directly applicable since Shamir’s secret sharing
requires working on a field, or at least on a ring for which there exists a large subset E such that x − y is
invertible for all (x, y) ∈ E2. To apply our proof system to FrodoKEM, one could try to adapt techniques
from [BdSGJ+24]. Such an adaptation is left for future work.

7 Connections to Other MPCitH-like Proof Systems

This section compares our framework to other MPCitH-like proof systems, namely VOLE-in-the-Head [BBdSG+23]
and Ligero [AHIV17, AHIV23]. While the TCitH framework consists in an extension of standard MPC-in-
the-Head proof systems with (packed) Shamir’s secret sharing, we establish strong connections between some
of its variants and/or instanciations and these proof systems. Those connections are illustrated in Figure 6.

7.1 Connections to VOLE-in-the-Head

The VOLE-in-the-Head (VOLEitH) framework [BBdSG+23] was published at CRYPTO 2023 concurrently
to the early stages of our work. This framework provides a way to compile any zero-knowledge protocol in the
VOLE-hybrid model into a publicly verifiable protocol. As mentioned by the authors “like MPCitH, VOLE-
in-the-head proofs are based on standard symmetric cryptographic primitives and are publicly verifiable.”
An interesting question is how much VOLEitH is related to MPCitH? We show hereafter that VOLEitH can
be interpreted as an MPCitH construction, more precisely, as a particular case of our TCitH framework.

Let us recall that a VOLE (for vector oblivious linear evaluation) is a multiparty gadget, where one party
called prover, learns a pair u ∈ Fℓ

p, v ∈ Fℓ
pk , while the verifier learns a random ∆ ∈ Fpk and q = u·∆+v ∈ Fℓ

pk .
The key idea of the VOLEitH construction consists in proposing a method to commit a random vector u
through a VOLE for which the verifier will be enabled to get a VOLE correlation (∆, q = u ·∆ + v). The
used technique consists in transforming a vector commitment with all-but-one opening into a VOLEitH
correlation. We can observe that a VOLE gadget can be seen as a (non-packed) (ℓ + 1 = 2, N)-threshold
Shamir’s secret sharing of u, for which the secret is stored at Pu(∞) (i.e., for evaluation point ω1 = ∞
instead of the usual ω1 = 0). Namely, to share u,

57

MPCitH with additive
sharing, e.g.

[KKW18,BN20,DOT21]

Original TCitH
framework

[FR23b]

Application of Shamir’s
secret sharing with

Merkle tree commitments

General TCitH
framework
(this work)

 + GGM variant
 + packed secret sharing
 + non-linear round functions
 + degree-enforcing MT commitment

VOLE-in-the-Head
[BBDG+23]

Ligero
[AHIV17,AHIV23]

VOLEitH = TCitH with
 and large field

embedding
s = ℓ = 1

TCitH with =
optimised version of the
Ligero concrete scheme

ΠLigero

Fig. 6: The TCitH framework in the landscape of MPCitH-like proof systems.

– one samples a random degree-1 polynomial P such that Pu(∞) = u, i.e. one samples a random v ∈ F
and defines Pu(X) := uX + v,

– the ith party share is defined as
JuKi := Pu(ei) = u · ei + v,

where {ei}i are public evaluation points.

In this setting, each share corresponds to a VOLE correlation. Then, the technique of [BBdSG+23] to generate
a VOLE correlation through a GGM tree is equivalent to the pseudo-random generation of a Shamir’s secret
sharing with ℓ = s = 1 derived from [CDI05] (see Section 3.1). Let us stress that the techniques developed
in our article do not specifically require storing the secret in P (0), this is just the most common choice. In
Equation (4), if we want to store the plain value at the infinity point, we just need to adapt the definition
of PT : PT is here the unique degree-ℓ polynomial such that{

PT (∞) = 1 (instead of PT (0) = 1)

PT (ej) = 0 for all j ∈ T.

In that case, if we restrict Equation (4) with ℓ = 1, we obtain (up to the auxiliary value)

JwKi =
∑
j ̸=i

s{j} · P{j}(ei)

=
∑
j ̸=i

s{j} · (ei − ej)

which exactly corresponds to the formulae from [BBdSG+23] (see Equation 2 in [BBdSG+23] for example).
Once we made this observation (committing a VOLE gadget is equivalent to committing a (2, N)-threshold
Shamir’s secret sharing), we may wonder what would be the equivalent MPC protocol used in [BBdSG+23].
In fact, [BBdSG+23] relies on a variant of the QuickSilver VOLE-based protocol [YSWW21], and it can be
equivalent to the MPC protocol Πpc of Section 6.2 adapted to the case where the plain values are stored at
the infinity point in the sharing. To sum up, the VOLE-in-the-Head construction can be interpreted as an
instantiation of the TCitH-GGM framework with ℓ = s = 1 applied to Πpc.

58

Large field embedding. Compared to the TCitH-GGM-Πpc proof system, the VOLEitH construction
relies on an additional optimization which we shall call large field embedding. In what follows, we explain this
optimization under our formalism (i.e., ℓ = s = 1 Shamir’s secret sharings rather than VOLE correlation),
thereby showing that it can also be applied to the TCitH framework. Let us assume that we have τ sharings

JuK(1), . . . , JuK(τ) of the same value u ∈ F. We denote P
(1)
u (X) := u ·X+v(1), . . . , P

(τ)
u (X) := u ·X+v(τ) the

corresponding Shamir’s polynomials (while assuming the shared value is stored to the infinity point). Let us
consider an isomorphism ϕ between Fτ

q and Fqτ . Then, the N
τ -sharing JuK(ϕ) defined as

∀(i1, . . . , iτ) ∈ [1 : N]τ , JuK(ϕ)1+i1·N+...+iτ ·Nτ−1 = ϕ(JuK(1)i1
, . . . , JuK(τ)iτ

)

is a (2, Nτ)-threshold Shamir’s secret sharing of u ∈ F, with polynomial

P (ϕ)
u (X) = u ·X + ϕ(v(1), . . . , v(τ)).

Indeed, we have

∀(i1, . . . , iτ) ∈ [1 : N]τ , JuK(ϕ)1+i1·N+...+iτ ·Nτ−1 = P (ϕ)
u (ϕ(ei1 , . . . , eiτ)).

So, τ N -sharings of the same value can be seen as a single Nτ -sharing of this value (living in the field
extension Fqτ). Then, instead of executing τ times the MPC protocol on these τ sharings, we can merge them
and execute the MPC protocol only once in the field extension. The main advantage is that the resulting
soundness error will be around dα

Nτ instead of (dα

N)τ , where dα is the maximal degree of the broadcasted
sharings. However, it implies executing the MPC protocol in Fqτ instead of executing it τ times in Fq,
which represents an extra computational cost. So this tweak actually provides new trade-offs between the
communication cost and the signature size (shorter size, but larger running times). Let us further remark
that to use this tweak the prover must additionally prove that these τ sharings encode the same value u,
which can be easily handled by adding an additional verifier challenge (increasing the number of rounds)
and short fixed-size communication cost.

Let us compare a pure usage of TCitH-GGM (with ℓ = s = 1) and VOLEitH (featuring the large field
embedding). We provide in Tables 10 and 11 the sizes we obtain when applying TCitH-GGM and VOLEitH
to the MPCitH-based candidates to the new NIST call for post-quantum signatures, which we adapt as
explained in Section 6.5. In Table 10, the estimated sizes are obtained when using seed trees with 256 leaves
(most common choice in the NIST MPCitH-based submissions), while in Table 11, the estimated sizes are
obtained when using seed trees with 2048 leaves (let us remark that the short version of FAEST [BBD+23],
the VOLEitH-based candidate to the NIST call, relies on seed trees with 2048 to 4096 leaves). In the first
case, the size differences are smaller than 600 bytes (except for SDitH), and they are even smaller in the
second case (less than 250 bytes). However, with a pure application of TCitH, we do not rely on a large
field extension as in VOLEitH, as stressed in the columns “Computat. Field” of those tables. For example,
for MQOM-251 in Table 11, we run 13 times the MPC protocol over F2512 while VOLEitH run the MPC
protocol only once, but in the field extension F25124 . We thus expect the overall computation cost for the MPC
emulation to be smaller with a pure usage of TCitH-GGM. This difference will be particularly significant
when for use cases where the MPC emulation is the bottleneck as, e.g., the ring signatures presented in
Section 6.6.

Let us stress that VOLEitH when interpreted as a particular case of the TCitH-GGM variant is limited
to Shamir’s secret sharings with ℓ = s = 1. In some contexts, it might be interesting to use the TCitH-GGM
variant with greater values of s and ℓ. Moreover, while the large field embedding of VOLEitH only supports
ℓ = s = 1, it could also be used in the TCitH-MT variant hence benefiting from a faster verification.

7.2 Connections to Ligero

As in Ligero, our framework with packed secret sharing, the TCitH-MT variant, relies on committing Shamir’s
secret sharings (a.k.a. randomized Reed-Solomon codewords) using a Merkle tree and opening some shares

59

TCitH-GGM VOLEitH

Size Comput. Field Size Computat. Field

AIMer [CCH+23] 4 352 B 19× GF (28) 3 938 B GF (2128)

Biscuit [BKPV23] 4 048 B 19× GF (162) 3 682 B GF (162×16)

MIRA [ABB+23d] 5 340 B 19× GF (162) 4 770 B GF (162×16)

MiRitH-Ia [ABB+23b] 4 694 B 19× GF (162) 4 226 B GF (162×16)

MiRitH-Ib [ABB+23b] 5 245 B 19× GF (162) 4 690 B GF (162×16)

MQOM (over F251) [FR23a] 4 257 B 19× GF (251) 3 858 B GF (25116)

MQOM (over F31) [FR23a] 4 027 B 19× GF (312) 3 660 B GF (312×16)

RYDE [ABB+23c] 5 281 B
19× GF (28)

4 720 B GF (2128)
19× GF (231)

SDitH (over F251) [AFG+23] 7 335 B 19× GF (251) 6 450 B GF (25116)

SDitH (over F256) [AFG+23] 7 335 B 19× GF (256) 6 450 B GF (25616)

Table 10: Comparison between TCitH-GGM and VOLEitH using GGM trees of 256 leaves.

TCitH-GGM VOLEitH

Size Comput. Field Size Computat. Field

AIMer [CCH+23] 3 639 B 13× GF (211) 3 546 B GF (2128)

Biscuit [BKPV23] 3 431 B 13× GF (163) 3 354 B GF (163×12)

MIRA [ABB+23d] 4 314 B 13× GF (163) 4 170 B GF (163×12)

MiRitH-Ia [ABB+23b] 3 873 B 13× GF (163) 3 762 B GF (163×12)

MiRitH-Ib [ABB+23b] 4 250 B 13× GF (163) 4 110 B GF (163×12)

MQOM (over F251) [FR23a] 3 567 B 13× GF (2512) 3 486 B GF (2512×12)

MQOM (over F31) [FR23a] 3 418 B 13× GF (313) 3 338 B GF (313×12)

RYDE [ABB+23c] 4 274 B
13× GF (211)

4 133 B GF (2128)
13× GF (231)

SDitH (over F251) [AFG+23] 5 673 B 13× GF (2512) 5 430 B GF (2512×12)

SDitH (over F256) [AFG+23] 5 673 B 13× GF (2562) 5 430 B GF (2562×12)

Table 11: Comparison between TCitH-GGM and VOLEitH using GGM trees of 2048 leaves.

60

(a.k.a. codeword coordinates) requested by the verifier. Although conceptually close, our framework is less
restrictive in the covered MPC protocols and it achieves smaller proof sizes for “small to medium size”
statements.

As our framework, Ligero first address a “general case” which provides a generic transformation from an
MPC protocol to a zero-knowledge proof system. Our framework distinguishes itself from this transformation
in several key aspects. Firstly, our framework eliminates the need for the robustness property from the MPC
protocol and simply requires the latter to be secure against a passive adversary. In addition, unlike the
“general case” of Ligero, we consider MPC protocols that might have non-negligible false positive probability
and which might rely on hints (obtained through a hint oracle). This makes our framework compatible with
many existing protocols from the MPC-in-the-Head literature which commonly rely on hints and usually have
non-negligible false positive probability. Finally, the soundness error achieved by our general transformation
is about

(
dα

ℓ

)/(
N
ℓ

)
, where dα is the maximal degree of broadcast shares (which is much smaller than N)

against (1− tr/N)ℓ for the general Ligero transformation, where tr is the robustness threshold, which gives
us better sizes for “small to medium size” circuits given the selection of the parameters dα and tr in this
regime.

Ligero also provides a concrete zero-knowledge proof system for arithmetic circuits. As shown in Sec-
tion 6.4, our framework can be applied to the MPC protocol ΠLigero which is an optimized version of the
Ligero protocol to check an arithmetic circuit. The obtained specific instantiation of our framework, TCitH-
ΠLigero, is close to this concrete proof system but achieves smaller proof sizes (see Figures 4a and 4b) for
circuits with ≤ 216 multiplication gates. One key ingredient to this improvement is our degree-enforcing
commitment scheme described in Section 4 (and further detailed in Section 5.2) and the related soundness
analysis. The concrete scheme of Ligero includes a proximity test ensuring that the committed sharings are
“close” to sharings of degree d. Here close means that the distance between the sharing and the closest
degree-d sharing is lower than (N−d)/2 (i.e., less than (N−d)/2 non-equal evaluations). This leaves a lot of
room to a malicious prover for cheating by committing inconsistent sharings and answering MPC challenges
in a way to maximize their cheating probability. In comparison, our degree-enforcing commitment scheme
ensures that the committed sharings are exactly of the expected degree (which can be d = s+ℓ−1 or larger)
by adding an additional prover-verifier interaction, with a tunable soundness error (which is usually made
negligible in practical instanciations).

To conclude, the TCitH framework provides a versatile framework to build zero-knowledge arguments and
post-quatum signatures from (passively secure) MPC protocols. Surprisingly, this framework originated by
applying (packed) Shamir’s secret sharing to standard MPC-in-the-Head constructions bridges this paradigm
to other proof systems such as VOLE-in-the-Head and Ligero while offering further genericity and improve-
ment which we showcase through different applications. We hope this unification will foster further innovation
in the area of short hash-based (or symmetric cryptography-based) zero-knowledge arguments.

Acknowledgements. This work was partly supported by the RESQUE project, Bpifrance, France national
quantum strategy. The authors would like to thank Löıc Bidoux and Philippe Gaborit for fruitful discussions
regarding the small field handling in the TCitH framework.

References

ABB+23a. Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor Dyseryn, Andre Esser, Philippe
Gaborit, Mukul Kulkarni, Victor Mateu, Marco Palumbi, Lucas Perin, and Jean-Pierre Tillich. PERK,
2023. https://pqc-perk.org/assets/downloads/PERK_specifications.pdf.

ABB+23b. Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa, Carlo Sanna, Javier
Verbel, and Floyd Zweydinger. MiRitH (MinRank in the Head). 29st May 2023, 2023. https://

pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf.
ABB+23c. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor Dyseryn, Thibauld

Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vinçotte.
RYDE Specifications, 2023. https://pqc-ryde.org/assets/downloads/ryde_spec.pdf.

61

https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-ryde.org/assets/downloads/ryde_spec.pdf

ABB+23d. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor Dyseryn, Thibauld
Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich. MIRA Specifica-
tions, 2023. https://pqc-mira.org/assets/downloads/mira_spec.pdf.

ABC+23. Nicolas Aragon, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Thibauld Feneuil, Philippe Gaborit, Romaric
Neveu, and Matthieu Rivain. Mira: a digital signature scheme based on the minrank problem and the
mpc-in-the-head paradigm, 2023.

ABD+21. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crypstals-kyber – algorithm specifications
and supporting documentation. Version 3.02 – August 4, 2021, 2021. https://pq-crystals.org/kyber/
data/kyber-specification-round3-20210804.pdf.

ABD+23. Erdem Alkim, Joppe W. Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick Longa,
Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, and Dou-
glas Stebila. Frodokem: Learning with errors key encapsulation. March 14, 2023, 2023. https:

//frodokem.org/files/FrodoKEM-standard_proposal-20230314.pdf.
AFG+23. Carlos Aguilar Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron, James Howe, David Joseph,

Antoine Joux, Edoardo Persichetti, Tovohery H. Randrianarisoa, Matthieu Rivain, and Dongze Yue. The
Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme – Algorithm Specifications and
Supporting Documentation. Version 1.0 – 31st May 2023, 2023. https://sdith.org/docs/sdith-v1.

0.pdf.
AGH+23. Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze Yue.

The return of the SDitH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 564–596. Springer, Heidelberg, April 2023.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, October / Novem-
ber 2017.

AHIV23. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
lightweight sublinear arguments without a trusted setup. DCC, 91(11):3379–3424, 2023.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169–203, 2015.

ARZV23. Gora Adj, Luis Rivera-Zamarripa, and Javier A. Verbel. MinRank in the head - short signatures
from zero-knowledge proofs. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors,
AFRICACRYPT 23, volume 14064 of LNCS, pages 3–27. Springer Nature, July 2023.

BBD+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Christian Ma-
jenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence
Roy, and Peter Scholl. FAEST: Algorithm Specifications – Version 1.1, 2023. https://faest.info/

faest-spec-v1.1.pdf.
BBdSG+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini,

Lawrence Roy, and Peter Scholl. Publicly verifiable zero-knowledge and post-quantum signatures
from vole-in-the-head. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, pages 581–615, Cham, 2023. Springer Nature Switzerland.

BBN+22. Alessandro Barenghi, Jean-François Biasse, Tran Ngo, Edoardo Persichetti, and Paolo Santini. Ad-
vanced signature functionalities from the code equivalence problem. International Journal of Computer
Mathematics: Computer Systems Theory, 7(2):112–128, 2022.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again. In Shafi Goldwasser, editor, ITCS
2012, pages 326–349. ACM, January 2012.

BCF+23. Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Thibauld Feneuil, Philippe Gaborit, Antoine Joux, Matthieu
Rivain, and Adrien Vinçotte. Ryde: A digital signature scheme based on rank-syndrome-decoding
problem with mpcith paradigm, 2023.

BCI+20. Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps for
reed-solomon codes. In 61st FOCS, pages 900–909. IEEE Computer Society Press, November 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

BD20. Ward Beullens and Cyprien Delpech de Saint Guilhem. LegRoast: Efficient post-quantum signatures
from the Legendre PRF. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020, pages 130–150. Springer, Heidelberg, 2020.

62

https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://frodokem.org/files/FrodoKEM-standard_proposal-20230314.pdf
https://frodokem.org/files/FrodoKEM-standard_proposal-20230314.pdf
https://sdith.org/docs/sdith-v1.0.pdf
https://sdith.org/docs/sdith-v1.0.pdf
https://faest.info/faest-spec-v1.1.pdf
https://faest.info/faest-spec-v1.1.pdf

BDK+21a. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. Crypstals-dilithium – algorithm specifications and supporting docu-
mentation. Version 3.1 – February 8, 2021, 2021. https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf.
BDK+21b. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and

Greg Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor, PKC 2021,
Part I, volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.

BdSGJ+24. Lennart Braun, Cyprien Delpech de Saint Guilhem, Robin Jadoul, Emmanuela Orsini, Nigel P. Smart,
and Titouan Tanguy. Zk-for-z2k: Mpc-in-the-head zero-knowledge proofs for Z2k . In Elizabeth A.
Quaglia, editor, Cryptography and Coding, pages 137–157, Cham, 2024. Springer Nature Switzerland.

BESV22. Emanuele Bellini, Andre Esser, Carlo Sanna, and Javier Verbel. Mr-dss – smaller minrank-based (ring-
)signatures. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography, pages
144–169, Cham, 2022. Springer International Publishing.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 183–211. Springer,
Heidelberg, May 2020.

BKP20. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 464–492. Springer, Heidelberg, December 2020.

BKPV23. Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Biscuit: Shorter MPC-based Sig-
nature from PoSSo, 2023. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

round-1/spec-files/Biscuit-spec-web.pdf.
BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) ex-

act lattice-based zero-knowledge proofs. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 176–202. Springer, Heidelberg, August 2019.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits
and their application to lattice-based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 495–526. Springer,
Heidelberg, May 2020.

CCH+23. Jihoon Cho, Mingyu Cho, Jincheol Ha, Seongkwang Kim, Jihoon Kwon, Byeonghak Lee, Joohee Lee,
Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin Yoon. The AIMer Signa-
ture Scheme – Submission to the NIST PQC project. Version 1.0 – 1st June 2023, 2023. https:

//aimer-signature.org/docs/AIMer-NIST-Document.pdf.
CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and

applications to secure computation. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
342–362. Springer, Heidelberg, February 2005.

DOT21. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-
knowledge MPCitH-based arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 3022–3036. ACM Press, November 2021.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from lattices:
New techniques to exploit fully-splitting rings. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 259–288. Springer, Heidelberg, December 2020.

EZS+19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. MatRiCT:
Efficient, scalable and post-quantum blockchain confidential transactions protocol. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 567–584. ACM
Press, November 2019.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter signa-
tures from zero-knowledge proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 541–572. Springer, Heidelberg, August 2022.

FJR23. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syndrome decoding: new
zero-knowledge protocol and code-based signature. Des. Codes Cryptogr., 91(2):563–608, 2023.

FMRV22. Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien Vergnaud. Zero-knowledge protocols
for the subset sum problem from MPC-in-the-head with rejection. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS, pages 371–402. Springer, Heidelberg,
December 2022.

FR22. Thibauld Feneuil and Matthieu Rivain. Threshold linear secret sharing to the rescue of MPC-in-the-
head. Cryptology ePrint Archive, Report 2022/1407, 2022. https://eprint.iacr.org/2022/1407.

63

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Biscuit-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Biscuit-spec-web.pdf
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://eprint.iacr.org/2022/1407

FR23a. Thibauld Feneuil and Matthieu Rivain. MQOM: MQ on my Mind – Algorithm Specifications and
Supporting Documentation. Version 1.0 – 31st May 2023, 2023. https://mqom.org/docs/mqom-v1.0.

pdf.
FR23b. Thibauld Feneuil and Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-

the-Head. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology - ASIACRYPT 2023 -
29th International Conference on the Theory and Application of Cryptology and Information Security,
Guangzhou, China, December 4-8, 2023, Proceedings, Part I, volume 14438 of Lecture Notes in Computer
Science, pages 441–473. Springer, 2023.

FY92. Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended
abstract). In 24th ACM STOC, pages 699–710. ACM Press, May 1992.

GGHAK22. Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. Efficient set membership
proofs using mpc-in-the-head. Proceedings on Privacy Enhancing Technologies, 2022:304–324, 04 2022.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

ISN89. Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access structure.
Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 72(9):56–64,
1989.

KHS+22. Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae Moon, Joohee Lee, Sangyup
Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon, and Jooyoung Lee. AIM: Symmetric primitive for shorter
signatures with stronger security. Cryptology ePrint Archive, Report 2022/1387, 2022. https://eprint.
iacr.org/2022/1387.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

KZ20a. Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20,
volume 12579 of LNCS, pages 3–22. Springer, Heidelberg, December 2020.

KZ20b. Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic signature scheme. IACR
TCHES, 2020(4):154–188, 2020. https://tches.iacr.org/index.php/TCHES/article/view/8680.

LAZ19. Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based (linkable) ring signature.
In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS 19, volume
11464 of LNCS, pages 110–130. Springer, Heidelberg, June 2019.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-based zero-knowledge proofs
and applications: Shorter, simpler, and more general. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 71–101. Springer, Heidelberg, August 2022.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based zero-knowledge
proofs via one-time commitments. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS,
pages 215–241. Springer, Heidelberg, May 2021.

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
PKC 2013, volume 7778 of LNCS, pages 107–124. Springer, Heidelberg, February / March 2013.

NIS22. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Stan-
dardization Process, 2022. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

call-for-proposals-dig-sig-sept-2022.pdf.
Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,

22(11):612–613, November 1979.
Wan22. William Wang. Shorter signatures from MQ. Cryptology ePrint Archive, Report 2022/344, 2022.

https://eprint.iacr.org/2022/344.
YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and affordable zero-

knowledge proofs for circuits and polynomials over any field. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 2986–3001. ACM Press, November 2021.

64

https://mqom.org/docs/mqom-v1.0.pdf
https://mqom.org/docs/mqom-v1.0.pdf
https://eprint.iacr.org/2022/1387
https://eprint.iacr.org/2022/1387
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://eprint.iacr.org/2022/344

ZCD+17. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, and Daniel Slamanig. Picnic. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions.

65

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

A Analysis of Ligero’s Proximity Test

In the following, ∆(v, w) denotes the distance between any two vectors v, w ∈ FN , namely the number of
non-zero coordinates in v − w. We further denote ∆(v, L) the minimal distance minw∈L∆(v, w) for a set
L ⊆ FN . We say that v is e-far from w (resp. L) if ∆(v, w) ≥ e (resp. ∆(v, L) ≥ e) and that v is e-close to
w (resp. L) if ∆(v, w) ≤ e (resp. ∆(v, L) ≤ e).

Let us recall that a Reed-Solomon code encodes a word v ∈ Fd+1 into a codeword in FN by interpolating
a degree-d polynomial P such that (P (ω1), . . . , P (ωd+1)) = v, for some fixed evaluation points {ωi}i and
defining the associated codeword formed byN evaluations (P (e1), . . . , P (eN)) for fixed evaluation points {ei}i
disjoints from {ωi}i. In other words, a Shamir’s secret sharing of w = (w1, . . . , ws) ∈ Fs with privacy threshold
ℓ is the Reed-Solomon codeword associated to (w1, . . . , ws, r1, . . . , rℓ) for random elements r1, . . . , rℓ ∈ F.
Let us denote L the Reed-Solomon code with the above parameters and Ln the interleaved code composed
of n-row matrices whose rows are elements of L. Let us denote U∗ the matrix where the ith row corresponds
to the possibly-invalid ith committed sharing JwiK. We denote ∆(U∗, Ln) the minimal distance between U∗

and Ln, i.e. the minimal number of columns of U∗ which should be changed to obtain an element of Ln. We
have the following result from [AHIV17, Lemma 4.2]:

Lemma 4 ([AHIV17]). Let e be a positive integer such that e < δ/4, with δ = N−d. Suppose ∆(U∗, Ln) >
e. Then, for a random w∗ in the row-span of U∗, we have

Pr[∆(w∗, L) ≤ e] ≤ e+ 1

|F|
.

Let us rephrase this result with a sharing-based formulation. Let e be a positive integer such that e < N−d
4 .

Suppose that Jw1K, . . . , JwnK differ from n valid Shamir’s secret sharings for strictly more than e parties. We
get that the probability that a linear combination of those sharings differs from a valid sharing for at most
e parties is less than (e+ 1)/|F|:

Pr
γ1,...,γn

$←−F

[∑
i

γi · JwiK differs from a valid sharing for at most e parties

]
≤ e+ 1

|F|
.

We can use this approach to fix the soundness degradation of the original TCitH framework [FR23b].
After generating and committing the shares, the prover would receive random coefficient γ1, . . . , γn from the
verifier (e.g., together with some challenge for the MPC protocol) and return a response supposedly equal
to w∗ =

∑
i γi · JwiK before receiving the party opening challenge. In the final check, the verifier would check

this response to be of the right degree and to be consistent with the opened parties. We analyze hereafter
how such a tweak improves the soundness of the original TCitH framework. Let us recall that in the absence
of false positive event a malicious prover against the original TCitH framework is left with cheating on the
computation of exactly N−ℓ parties, which yields an acceptance probability of 1/

(
N
ℓ

)
.13 Let us denote accept

the event that the verifier accepts the proof transcript. Against this tweaked TCitH framework, a malicious
prover has three possible strategies:

13 This comes from the fact that the malicious prover should choose broadcasted sharings in the MPC emulation
which are valid, meaning that they correspond to the evaluations of degree-ℓ polynomials (since we consider linear
multiparty computation as in [FR23b], all the sharings involved in the MPC protocol corresponds to the evaluations
of degree-ℓ polynomials; we consider a more general setting in the next section). Let us denote Q1, . . . , Q|α| those
polynomials and Q′

1, . . . , Q
′
|α| the degree-ℓ polynomials which correspond to the broadcasted sharing in a honest

MPC emulation with Jw1K′, . . . , JwnK′. Since there is no false positive event, we get that there is (at least) one
index j∗ such that Qj∗ ̸= Q′

j∗ . The probability that the verifier is convinced is the probability that Qj∗ and Q′
j∗

match for the evaluation points of the ℓ opened parties. Since there are of degree ℓ, these polynomials can match
on at most ℓ points according to the Schwartz-Zippel Lemma, and so the verifier accepts the proof transcript if
and only if these evaluation points are exactly those of the opened parties.

66

1. They commit valid secret sharings of the witness (i.e. ∆(U∗, Lm) = 0). In that case, the optimal cheating
strategy consists in trying to obtain a false positive events in the MPC protocol (namely, the MPC
protocol fails to detect that the witness does not satisfy the proved statement), and in the absence of
false positive, cheating on the computation of N − ℓ parties. We get

Pr[accept] ≤ 1(
N
ℓ

) + p ·

(
1− 1(

N
ℓ

)) .
2. They commit invalid secret sharings which are f -far from valid sharings, with f ≥ δ

4 . According to
Lemma 4 with e = ⌈δ/4⌉− 1, the probability that a random linear combination is (⌈δ/4⌉− 1)-close from

a valid sharing is at most
⌈ δ
4 ⌉
|F| . When this event does not occur, we know that there are at least ⌈ δ4⌉

invalid parties, and so the probability that the malicious prover convinces the verifier corresponds to the
probability that the ℓ open parties are not among those invalid parties. Let us denote f ′ = ∆(w∗, L),
where w∗ =

∑
i γi · JwiK is the requested random linear combination of the committed sharings. We thus

have

Pr[accept] ≤ Pr[f ′ < δ/4] + Pr[accept | f ′ ≥ δ/4] ≤
⌈ δ4⌉
|F|

+

(N−⌈ δ
4 ⌉

ℓ

)(
N
ℓ

) .

3. They commit invalid secret sharings which are f -far from valid sharings, with 1 ≤ f < δ
4 . According to

Lemma 4 with e = f − 1, the probability that a random linear combination is (f − 1)-close from a valid
sharing is at most f

|F| . Since we are below the unique decoding bound (f < δ
2), there exist unique valid

sharings Jw1K′, . . . , JwnK′ which are f -close from Jw1K, . . . , JwnK. As above, let us denote f ′ = ∆(w∗, L),
where w∗ =

∑
i γi · JwiK is the requested random linear combination of the committed sharings. Let

us further denote ŵ the actual response from the prover. Whenever f ′ ≥ f , we have f ′ = f (since by
definition f ′ ≤ f) and

∑
i γi · JwiK′ is the closest valid sharing to w∗ (which is precisely f -close to w∗).

Assume the prover always choose to reply ŵ :=
∑

i γi · JwiK′. we then have

Pr[accept] ≤ Pr[f ′ < f] + Pr[accept | f ′ ≥ f,FP] · Pr[FP]
+ Pr[accept | f ′ ≥ f,¬FP] · Pr[¬FP]

≤ f

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p)
with FP the false positive event occurring for the witness encoding in Jw1K′, . . . , JwnK′. The left probability
is bounded using Lemma 4. Then if f ′ ≥ f , we have at least f invalid parties, implying Pr[accept | f ′ ≥
f,FP] ≤

(
N−f

ℓ

)
/
(
N
ℓ

)
. Finally, if f ′ ≥ f and no false positive event occurs, the prover must cheat on

exactly N − ℓ parties as explained above and we have Pr[accept | f ′ ≥ f,¬FP] = 1/
(
N
ℓ

)
.

Now (still whenever f ′ ≥ f), assume the prover does not respond ŵ :=
∑

i γi · JwiK′. This means that the
prover replies with a ŵ which distance to

∑
i γi · JwiK′ is δ (the minimal distance of the RS code). Since

we have ∆
(
w∗,

∑
i γi · JwiK′

)
= f , we deduce ∆(w∗, ŵ) ≥ δ− f > 3δ/4. In that case, we know that there

are at least 3δ/4 invalid parties, and so the probability that the malicious prover convinces the verifier
corresponds to the probability that the ℓ open parties are not among those invalid parties. We deduce

Pr[accept] ≤ Pr[f ′ < f] + Pr[accept | f ′ ≥ f] < δ/4

|F|
+

(N− 3δ
4

ℓ

)(
N
ℓ

) .

The above probability is strictly smaller than the probability obtained with the second strategy. There-
fore, we assume that the adversary always respond with ŵ =

∑
i γi · JwiK′ while using the third strategy

(since otherwise they would rather use the second strategy).

67

We can remark that the upper bound on Pr[accept] in the first cheating strategy corresponds to the upper
bound of the third strategy with f = 0. From these upper bounds, we obtain the following global upper
bound on the soundness error:

ϵ ≤ max

{
⌈ δ4⌉
|F|

+

(N−⌈ δ
4 ⌉

ℓ

)(
N
ℓ

) }
∪

{
f

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p) ∣∣∣∣∣ 0 ≤ f ≤
⌈
δ

4

⌉
− 1

}
.

As noted in the updated version of Ligero [AHIV23], Lemma 4 has been improved in recent works. In
particular, [BCI+20, Theorem 1.2] provides a result for greater values of e (up to δ/2):

Theorem 3 ([BCI+20]). Let e be a positive integer such that e < δ/2, with δ = N−ℓ. Suppose ∆(U∗, Ln) >
e. Then, for a random w∗ in the row-span of U∗, we have

Pr[∆(w∗, L) ≤ e] ≤ N

|F|
.

The above result might improve the soundness w.r.t. a malicious prover committing f -far sharings with
f ≤ δ

2 or δ
4 ≤ f <

δ
2 , as follows:

– If f ≥ δ
2 and by analogy to the second strategy: According to Theorem 3 (with e = ⌈δ/2⌉ − 1), the

probability that a random linear combination is f ′-far from a valid sharing with f ′ < δ
2 is at most

N
|F| . When this event does not occur, we know that there are at least ⌈ δ2⌉ invalid parties, and so the

probability that the malicious prover convinces the verifier corresponds to the probability that the ℓ
parties the verifier asks to open are not among those parties. We thus have:

Pr[accept] ≤ Pr[f ′ <
δ

2
] + Pr[accept | f ′ ≥ δ

2
] ≤ N

|F|
+

(N−⌈ δ
2 ⌉

ℓ

)(
N
ℓ

) .

– If δ
4 ≤ f <

δ
2 and by analogy to the third strategy: The probability that a random linear combination is

f ′-far from a valid sharing with f ′ < f is at most N
|F| , according to Theorem 3 (with e = f − 1). Using

the same reasoning than in the third case above, we have:

Pr[accept] ≤ N

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p).
This analysis refines the above soundness error, which now satisfies

ϵ ≤ max

{
N

|F|
+

(N−⌈ δ
2 ⌉

ℓ

)(
N
ℓ

) }
∪

{
f

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p) ∣∣∣∣∣ 0 ≤ f ≤
⌈
δ

4

⌉
− 1

}

∪

{
N

|F|
+

(
N−f

ℓ

)(
N
ℓ

) · p+ 1(
N
ℓ

) · (1− p) ∣∣∣∣∣
⌈
δ

4

⌉
≤ f ≤

⌈
δ

2

⌉
− 1

}
. (23)

In [AHIV17, AHIV23], the authors provide a simpler expression for the soundness error simply by sum-
ming the largest terms in the above formula:

ϵ ≤ N

|F|
+

(N−⌈ δ
2 ⌉

ℓ

)(
N
ℓ

) + p+
1(
N
ℓ

) ≤ N

|F|
+

(
1−
⌈ δ2⌉
N

)ℓ

+ p+

(
ℓ

N

)ℓ

.

Let us mention that, instead of a single random linear combination of the input sharings, the test can
involve η independent random linear combinations to amplify the soundness. In that case, the terms ·

|F| in

Lemma 4, Theorem 3, Equation (23) and the above inequality are replaced by terms ·
|F|η (with numerator

unchanged).

68

	Introduction
	Preliminaries
	Secret Sharing
	The MPC-in-the-Head Paradigm
	General Model for MPCitH-Friendly MPC Protocols
	MPCitH Transform based on Additive Sharing and GGM Trees
	Threshold Computation in the Head: Original Framework

	TCitH with GGM Trees
	General Technique
	Lifting in a Field Extension
	Global Comparison
	Application to NIST Post-Quantum Signature Candidates

	Degree-Enforcing Commitment for TCitH with Merkle Trees
	Analysis of Ligero's Proximity Test
	Degree-Enforcing Commitment Scheme
	Benefits of the Degree-Enforcing Commitment Scheme for the TCitH Framework

	Extended TCitH Framework
	MPC Model
	Extended TCitH Framework

	Application of the Extended TCitH Framework
	Generation of High-Degree Sharings
	Proof System for Polynomial Constraints
	Proof System for Linear and Parallel Polynomial Constraints
	Zero-Knowledge Arguments for Arithmetic Circuits
	Improved Post-Quantum Signature Schemes
	Short Post-Quantum Ring Signatures
	Exact Zero-Knowledge Arguments for Lattices

	Connections to Other MPCitH-like Proof Systems
	Connections to VOLE-in-the-Head
	Connections to Ligero

	Analysis of Ligero's Proximity Test

