
©IACR 2024. This is the full version of an article that will be published in the proceedings of EUROCRYPT 2024.

Toothpicks:
More Efficient Fork-Free Two-Round Multi-Signatures

Jiaxin Pan 1 Benedikt Wagner 2

February 26, 2024

1 University of Kassel, Kassel, Germany
jiaxin.pan@uni-kassel.de

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany,
Saarland University, Saarbrücken, Germany

benedikt.wagner@cispa.de

Abstract
Tightly secure cryptographic schemes can be implemented with standardized parameters, while

still having a sufficiently high security level backed up by their analysis. In a recent work, Pan and
Wagner (Eurocrypt 2023) presented the first tightly secure two-round multi-signature scheme without
pairings, called Chopsticks. While this is an interesting first theoretical step, Chopsticks is much less
efficient than its non-tight counterparts.

In this work, we close this gap by proposing a new tightly secure two-round multi-signature
scheme that is as efficient as non-tight schemes. Our scheme is based on the DDH assumption without
pairings. Compared to Chopsticks, we reduce the signature size by more than a factor of 3 and the
communication complexity by more than a factor of 2.

Technically, we achieve this as follows: (1) We develop a new pseudorandom path technique, as
opposed to the pseudorandom matching technique in Chopsticks. (2) We construct a more efficient
commitment scheme with suitable properties, which is an important primitive in both our scheme
and Chopsticks. Surprisingly, we observe that the commitment scheme does not have to be binding,
enabling our efficient construction.

Keywords: Multi-Signatures, Tightness, Commitment Scheme, Lossy Identification

1 Introduction
A multi-signature scheme [IN83, BN06] allows a group of signers to jointly sign a message. Naively, every
signer could sign the message locally, and we concatenate the resulting signatures. As the number of signers
grows large, this results in impractical signature sizes, and so we aim for a more clever solution with compact
signatures, potentially at the cost of introducing interaction. Early constructions of multi-signatures
have been presented and analyzed in a variety of models [MOR01, Bol03, LOS+06, DEF+19, CKM21],
mostly differing in how keys are generated, registered, and verified. Nowadays, the accepted de facto
standard for multi-signatures is the plain public key model [BN06], where each signer generates his key
pair independently. In this work, we focus on constructions in the said model, proven in the random
oracle model [BR93] from assumptions over cyclic groups without pairings. We look at this problem from
the perspective of concrete security, which we explain next.
Concrete Security. Cryptographic security proofs follow a common approach: Assuming the existence
of an adversary with advantage εS against the security of a construction S, we construct a reduction
with roughly the same running time that solves some hard underlying problem Π with probability εΠ.
Typically, εΠ and εS are related via a bound of the form εS ≤ L · εΠ, where L is called the security loss.

On the one hand, this bound can be treated as a purely qualitative and asymptotic statement, and any
polynomial (in the security parameter) L is sufficient to show security. On the other hand, interpreting

https://orcid.org/0000-0002-7459-6850
https://orcid.org/0000-0002-4620-7264
mailto:jiaxin.pan@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, benedikt.wagner@cispa.de

the bound as a quantitative statement about the concrete security level, it is desirable to minimize L. In
the optimal case, L is a small constant, and we call the proof tight. There are two ways to interpret the
security bound quantitatively: In the first interpretation, we want to achieve 128 bits of security for S.
Then, we need to set our parameters such that cryptanalytic results suggest that Π is 128 + log(L) bits
hard. Such parameters include, for example, groups over which we implement the scheme. In the second
interpretation, we fix parameters for which we believe that Π is 128-bit hard. Then, we are confident in
having 128− log(L) bits of security for our scheme S, according to the concrete security bound. While
the first interpretation compensates for the security loss and results in more secure schemes in theory,
it is far from what is done in practice, where practitioners use standardized parameters to implement
schemes, because these parameters are well-understood and there are highly optimized implementations
for them. Using a different cyclic group for every scheme is just not feasible. For that reason, we stick to
the second interpretation.
The Price of Tightness. A large body of research is centered around the concept of tightness, and many
primitives have been studied in this regard. Prominent examples include public-key encryption [BBM00,
HJ12, BJLS16, GHKW16, Hof17] and key exchange [BHJ+15, GJ18, LLGW20, HJK+21, DG21], as well
as signatures [KW03, HJ12, AFLT12, BKKP15, BJLS16, BL16, KMP16, DGJL21, PW22] and related
primitives [CW13, BKP14, GHKP18, LP20, PW23]. Unfortunately, tightness often comes at a price in
terms of efficiency. This is particularly true for the first tightly secure constructions of some primitive. For
instance, in the first public-key encryption scheme with tight security against chosen-ciphertext attacks,
due to Hofheinz and Jager [HJ12], ciphertexts contain a linear (in the security parameter) number of
group elements as overhead1, while the respective non-tight scheme [KD04] has a constant ciphertext
overhead. Clearly, such an overhead is not acceptable in practice, and so researchers strive for the holy
grail of concrete security: Tightly secure constructions with minimal efficiency penalty.
Two-Round Multi-Signatures. In their seminal work [BN06], Bellare and Neven not only introduced
the plain public key model but also presented constructions of three-round multi-signatures. Their first
scheme is based on Schnorr identification [Sch91]. As typical for Schnorr-based constructions, a rewinding
and guessing strategy is used to prove security from the Discrete Logarithm Assumption (DLOG), resulting
in a highly non-tight scheme. Their second scheme is tightly secure based on the Decisional Diffie-Hellman
(DDH) Assumption. In subsequent works, three-round schemes with so-called key aggregation have been
proposed [MPSW19, BDN18, FH21]. With this extension, it is possible to compute a short aggregated
key from a set of keys, which can later be used to verify signatures. More recent works concentrate on
two-round signing protocols [NRSW20, NRS21, BD21, AB21, CKM21, DOTT21, BTT22, TZ23]. On
the downside, many of these schemes require interactive assumptions [NRS21, CKM21, AB21], and all of
them fail to provide meaningful concrete security guarantees due to the use of (double) rewinding2.

In a recent result, Pan and Wagner [PW23] constructed the first tightly secure multi-signature scheme,
called Chopsticks II. In particular, their scheme neither relies on rewinding, nor on any guessing argument.
However, the price of tightness is high: Signatures and communication complexity in Chopsticks II are
about 5 times and 3 times as large as in one of the most efficient non-tight two-round schemes, HBMS,
respectively.
Our Goal. We aim to reduce the efficiency gap between tight and non-tight two-round multi-signatures.
Concretely, we aim for two-round multi-signatures in the pairing-free discrete logarithm setting, based on
well-studied assumptions in the random oracle model. Our constructions should have a minimal security
loss, and be efficient in terms of signature size and communication complexity.

1.1 Our Contribution
We reach our goal by constructing a new two-round multi-signature scheme that achieves the best of two
worlds:

• Tightness. Our scheme is tightly secure based on the DDH assumption. When instantiated over a
standardized 128-bit secure group, its security guarantee is 126-bit, which is formally supported by
our proofs. In contrast, non-tight schemes relying on rewinding do not guarantee any meaningful
security level.

1The ciphertext overhead is the size of the ciphertext minus the size of the message.
2We do not consider proofs in the (idealized) algebraic group model [FKL18].

2

Scheme Rounds Key Aggregation Assumption Loss
BN [BN06] 3 7 DLOG Θ(QH/ε)
BN+ [BN06] 3 7 DDH Θ(1)
Musig [MPSW19, BDN18] 3 3 DLOG Θ(Q3

H/ε
3)

Musig+ [FH21] 3 3 DDH Θ(1)
Musig2 [NRS21] 2 3 AOMDL Θ(Q3

H/ε
3)

HBMS [BD21] 2 3 DLOG Θ(Q4
SQ

3
H/ε

3)
TZ [TZ23] 2 3 DLOG Θ(Q3

H/ε
3)

TSSHO [TSS+23] 2 3 DDH Θ(QS)
Chopsticks I [PW23] 2 3 DDH Θ(QS)
Chopsticks II [PW23] 2 7 DDH Θ(1)
Section 4.1 2 3 DDH Θ(QS)
Section 4.2 2 7 DDH Θ(1)

Table 1: Comparison of multi-signature schemes in the discrete logarithm setting without pairings in the
plain public key model. We compare the number of rounds, whether the schemes support key aggregation,
the assumption the schemes rely on, and the security loss, where QH , QS denote the number of random
oracle and signing queries, respectively, and ε denotes the advantage of an adversary against the scheme.
For the security loss, we do not consider proofs in the algebraic group model. We do not list [NRSW20]
as it is prohibitively inefficient due to the use of heavy cryptographic machinery.

• Efficiency. Our scheme is as efficient as the state-of-the-art non-tight schemes. Concretely, the
communication complexity per signer for our scheme is comparable to HBMS [BD21] and about
1.5 times smaller than TZ [TZ23] and Musig2 [NRS21]. The signature size is only about 1.5 times
larger than for the non-tight schemes. Compared to Chopsticks II [PW23], this significantly reduces
the efficiency cost of tightness. Concretely, our scheme outperforms Chopsticks II by a factor of
more than 3 and 2 in terms of signature size and communication complexity, respectively.

In addition, we present a non-tight scheme with an acceptable security loss, namely, linear in the number
of signing queries. The advantage of this scheme is that it supports key aggregation. A similar but much
less efficient scheme, Chopsticks I, has been proposed in [PW23]. We compare our schemes with previous
schemes in terms of security (see Table 1) and asymptotic (see Table 2) and concrete (see Table 3)
efficiency.

From a technical perspective, our first contribution is a new pseudorandom path technique, as opposed
to the pseudorandom matching technique in Chopsticks [PW23]. This new technique allows us to reduce
the size of signatures and communication by a factor of two. Our second technical insight is that,
somewhat surprisingly, we do not need a binding commitment as in Chopsticks [PW23]. Instead, we can
significantly relax the binding property of our commitment to hold up to cosets of a certain subspace.
This enables more efficient instantiations, further improving the efficiency of our schemes. To show that
this relaxation does not introduce problems in terms of security, we identify a strong soundness property
many natural lossy identification schemes [KW03, AFLT12, KMP16] have. We are confident that this
combination of a weak commitment with lossy identification is of independent interest.

1.2 Technical Overview
In this paper, we introduce two major technical improvements to the Chopsticks schemes, namely, a
novel overall construction strategy and a more efficient commitment scheme that can be used both in
Chopsticks and in our schemes.
Background. We start with lossy identification schemes [KW03, AFLT12, KMP16]. In such a scheme,
there are two ways to set up public keys pk. As usual, one can set up pk with a secret key sk. Alternatively,
one can set up pk in lossy mode. In this mode, not even an unbounded prover can make the verifier accept,
which is called lossy soundness. This paradigm turns out to be useful when constructing tighly secure
Fiat-Shamir style signatures [KW03, AFLT12, KMP16] or three-round multi-signatures [BN06, FH21].
To apply it in the two-round setting, Pan and Wagner [PW23] leveraged a homomorphic dual-mode
commitment. Concretely, such a commitment has two ways of setting up commitment keys ck. In the

3

Scheme Rounds Public Key Communication Signature
BN [BN06] 3 1〈G〉 1〈G〉+ 1〈Zp〉+ 2λ 1〈G〉+ 1〈Zp〉
BN+ [BN06] 3 2〈G〉 2〈G〉+ 1〈Zp〉+ 2λ 2〈G〉+ 1〈Zp〉
Musig [MPSW19, BDN18] 3 1〈G〉 1〈G〉+ 1〈Zp〉+ 2λ 1〈G〉+ 1〈Zp〉
Musig+ [FH21] 3 2〈G〉 2〈G〉+ 1〈Zp〉+ 2λ 2〈Zp〉
Musig2 [NRS21] 2 1〈G〉 4〈G〉+ 1〈Zp〉 1〈G〉+ 1〈Zp〉
HBMS [BD21] 2 1〈G〉 1〈G〉+ 2〈Zp〉 1〈G〉+ 2〈Zp〉
TZ [TZ23] 2 1〈G〉 4〈G〉+ 2〈Zp〉 1〈G〉+ 2〈Zp〉
TSSHO [TSS+23] 2 2〈G〉 2〈G〉+ 2〈Zp〉 3〈Zp〉
Chopsticks I [PW23] 2 2〈G〉 3〈G〉+ 1〈Zp〉+ λ 3〈G〉+ 4〈Zp〉
Chopsticks II [PW23] 2 4〈G〉 6〈G〉+ 2〈Zp〉+ λ+ 1 6〈G〉+ 8〈Zp〉+N
Section 4.1 2 2〈G〉 2〈G〉+ 1〈Zp〉+ λ 3〈Zp〉+ 2λ
Section 4.2 2 4〈G〉 2〈G〉+ 1〈Zp〉+ λ+ 1 3〈Zp〉+ 2λ+N

Table 2: Asymptotic efficiency comparison of multi-signature schemes in the discrete logarithm setting
without pairings in the plain public key model. We compare the number of rounds, the size of public
keys, the communication complexity per signer, and the signature size. We denote the size of a group
element by 〈G〉 and the size of a field element by 〈Zp〉. Here, λ is a statistical security parameter, and N
is the number of signers. Schemes below the line have two rounds and avoid rewinding, see Table 1. We
do not list [NRSW20] as it is prohibitively inefficient due to the use of heavy cryptographic machinery.

Scheme Security Public Key Communication Signature
Musig2 9 33 164 65
HBMS -11 33 97 97
TZ 8 33 196 97
TSSHO 106 66 130 96
Chopsticks I 106 66 147 227
Chopsticks II 126 132 278 470
Section 4.1 106 66 114 128
Section 4.2 125 132 114 144

Table 3: Concrete efficiency and security comparison of two-round multi-signature schemes in the discrete
logarithm setting without pairings in the plain public key model. We compare the security level guaranteed
by the security bound in the random oracle model assuming the underlying assumption is 128-bit hard,
the size of public keys, the communication complexity per signer, and the signature size. Sizes are given
in bytes and rounded. We do not list [NRSW20] as it is prohibitively inefficient due to the use of heavy
cryptographic machinery.

4

normal

lossy

pk0

pk1

ck0

ck1

binding

hiding

bm = 0

bm = 0

bm = 0

bm = 0

bm = 1 bm = 1

normal

lossy

pk0

pk1

ck
binding

hiding

b∗ = 0

b∗ = 0

bm = 0

bm = 1

bm = b∗

bm 6= b∗

b∗ = 1

Figure 1: Visualization of the pseudorandom matching technique from Chopsticks [PW23] (top), and our
new pseudorandom path technique (bottom). Here, b∗ is a random bit sampled by the game, bm is the
pseudorandom bit that the signer chooses for message m, normal edges indicate how keys are paired in
the scheme, and dotted edges indicate how keys are set up in the proof.

hiding mode, ck is generated in combination with a (weak) equivocation trapdoor. In the other mode,
commitments are statistically binding. Given such a commitment and a lossy identification scheme, a
signature for a message m contains transcripts of the lossy identification scheme, where some parts are
given in a committed form. For these parts, the signature also contains the respective opening information.
Importantly, the commitment key is derived from m, e.g., as ck := H(m), where H is a random oracle.
Abstractly, Pan and Wagner [PW23] identified the following properties:

• Simulation via Secret Keys. A reduction can simulate the signing oracle using the secret key if pk is
in the normal mode. The mode of ck is not relevant.

• Simulation via Trapdoors. A reduction can simulate the signing oracle using the trapdoor if ck is in
the hiding mode. The mode of pk is not relevant.

• Forgery. To show security without rewinding, the adversary must output a forgery with respect to
a lossy pk and a binding ck.

The Chopsticks Approach: Pseudorandom Matching. In the proof of their first scheme, Pan and
Wagner [PW23] use these properties by sampling all commitment keys with a trapdoor, allowing them to
simulate signing even if the public key is lossy. Only for the forgery message the associated commitment
key ck∗ is set up to be binding. Then, the proof can be finished without rewinding. On the downside,
this approach requires guessing the query defining ck∗, leading to a security loss.

A well-known trick to avoid such a guessing argument is the Katz-Wang approach [GJKW07]. Here,
each message would specify two commitment keys ck0 := H(0,m) and ck1 := H(1,m), and a signer
individually would pick a pseudorandom bit bm for each message and then use ckbm . It turns out that this
trick is not applicable here, as each signer has to use the same commitment key.

To overcome this obstacle, Pan and Wagner proposed the pseudorandom matching technique. Namely,
each signer has two public keys pk0, pk1, and both message-dependent commitment keys ck0 and ck1 are
used. That is, the protocol is run twice in parallel and the signature now contains two transcripts instead
of one. Importantly, each signer uses the pseudorandom bit bm to decide which public key to match with
which commitment key. We illustrate the pseudorandom matching technique in Figure 1 (top). In the
proof, one can set pk1 to lossy and always match it with the trapdoor commitment key ck1−bm for signing
queries. In this way, it is possible to simulate the (pk1, ck1−bm) side via the trapdoor, and the (pk0, ckbm)
side via the secret key. At the same time, with probability 1/2, the adversary will match the lossy pk1
with the binding ckbm for the forgery, finishing the proof. While this is an elegant trick, it introduces a
significant overhead for both signature size and communication complexity.
Our Approach: Pseudorandom Paths. We avoid this overhead by using our new pseudorandom path
technique, as illustrated in Figure 1 (bottom). Our first observation is that for the argument used to finish
the proof in Chopsticks, only one of the two paths, namely the (pk1, ckbm) path, is used. Instead of simply
omitting one of the paths, which leads to problems similar to the naive Katz-Wang approach, let us see
what happens if we go back to a solution in which there is only one commitment key ck per message m.
If we also reduce the number of keys per signer back to one, we end up with the guessing-based solution
again. So, we keep the two keys pk0, pk1 per signer, and let each signer pseudorandomly decide which key
pkbm to use in the signing interaction. In our proof, we can set up ck with a trapdoor if the lossy key

5

pk1 is used, and we can set it up in binding mode if the normal key pk0 is used. Unfortunately, without
additional tricks, this strategy is doomed: The adversary could always use pk0 in its forgery, which is
not lossy. In our final solution, we therefore pick a bit b∗ at random at the beginning of our simulation.
Then, we set pkb∗ to normal and pk1−b∗ to lossy. We adapt the sampling of ck accordingly. By carrying
out all arguments in the correct order, we can argue that in one of four cases, the adversary used the
lossy key pk1−b∗ with a binding commitment key in its forgery. Let us explain the idea for that with our
illustration (Figure 1, bottom) at hand. Every signature corresponds to a pseudorandom path from the
left to the right. The bits are set up in a way that ensures the following:

• Simulation of Signing. If pkbm is used, the path connects the lossy vertex to the trapdoor vertex, or
the normal vertex to the binding vertex. In both cases, we can simulate.

• Forgery. The probability that the path associated with the forgery starts at the lossy vertex is 1/2
and conditioned on that, the probability that the path ends at the binding vertex is also 1/2.

With this technique, communication and signatures now only consist of one transcript of the lossy
identification scheme, as opposed to two transcripts in the pseudorandom matching technique.
The Chopsticks Commitment. So far, we have reduced the size of signatures and communication by a
factor of two. At this point, the size is mostly dominated by the size of commitments com and openings ϕ.
It is therefore instructive to recall the commitment instantiation from [PW23] and see if we can optimize
it. The instantiation from [PW23] allows to commit to pairs of group elements (R1, R2) ∈ G2 via the
equation

com = (C0, C1, C2) ∈ G3, where

C0
C1
C2

 :=

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R2· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 .

Here, ϕ = (α, β, γ) ∈ Z3
p is the commitment randomness and the Ai,j ∈ G form the commitment key. In

terms of exponents, the commitment has the form

E ·

αβ
γ

+

 0
r1
r2


for a matrix E ∈ Z3×3

p that determines the commitment key. Now, one can prove that this is statistically
hiding if E has full rank, and it is statistically binding if E has rank 1. It is one of the main technical
contributions of [PW23] to introduce a weak equivocation trapdoor for this commitment, i.e., a trapdoor
that allows to open commitments to messages (R1, R2) of a certain structure.
Strawman Commitment. In terms of efficiency, note that the 3× 3 commitment key leads to three
group elements per commitment and three exponents per opening. To improve it, our naive idea is to
replace this 3 × 3 structure with a 2 × 2 structure, thereby saving one group element and exponent.
Concretely, we could try to drop the first row of the commitment equation, leading to

E ·
(
β
γ

)
+
(
r1
r2

)
for a matrix E ∈ Z2×2

p . Implemented carefully, this is still perfectly hiding with a weak equivocation
trapdoor if E has full rank. Unfortunately, we fail when analyzing the statistically binding mode3 if E
has rank 1. Concretely, an (unbounded) adversary against binding could output (r1, r2) with opening
(β, γ) on the one hand, and (r1, r2) + (β, γ)Et with opening (0, 0) on the other hand. The first row in the
3× 3 scheme prevents this. To save our 2× 2 construction without reintroducing such a first row, we
thus need additional insights.
Coset Binding. As we have seen, our 2× 2 scheme is not (statistically) binding, and as such it is not
suitable to instantiate the multi-signature construction. However, we make the crucial observation that
the scheme is binding up to a difference in the span of E. In other words, if we interpret the commitment
as a commitment to cosets of the span of E, the scheme is binding. We call this property coset binding. It

3If we only have a computationally binding mode, the resulting multi-signature scheme needs to rely on rewinding.
Therefore, we have to insist on a statistically binding mode.

6

is instructive to pinpoint where the overall multi-signature proof fails if we relax binding to coset binding:
In the proof of our multi-signature construction, binding shows up in combination with lossy soundness in
the very last proof step. To recall, lossy soundness states that even an unbounded prover can not make a
verifier of the lossy identification scheme accept, given that pk is in lossy mode. An accepting transcript
of the identification scheme has the form (R, c, s) and satisfies F(s)− c · pk = R for a linear function F4.
Roughly, when constructing an unbounded reduction that breaks lossy soundness, we first guess5 the
random oracle query associated with the forgery. On this query, assume now that the adversary sends a
commitment com for R with respect to a binding commitment key. In this case, the reduction would
non-efficiently extract the committed pair of group elements R = (R1, R2) from com and output it in the
lossy soundness game. Further, it would appropriately embed the challenge c from the lossy soundness
game. Finally, if the guess was correct, the adversary’s forgery contains a valid response s, which the
reduction can output. Now, it is clear why coset binding is not enough: The adversary is not bound to
R = (R1, R2), and it can output a response s that is valid for R′ = (R′1, R′2) 6= R, which is of no use for
the reduction.
Coset Lossy Soundness to the Rescue. While coset binding seems to be insufficient at first glance,
it still gives us a guarantee we may leverage. Namely, by coset binding, (R1 = gr1 , R2 = gr2) and
(R′1 = gr

′
1 , R′2 = gr

′
2) as above have to satisfy that (r1, r2)t − (r′1, r′2)t is in the span of E. We want to

understand the impact of this guarantee on the lossy soundness game. For that, imagine a modified
lossy soundness game where the final equation F(s)− c · pk = R only has to hold up to a difference in
the span of E. We call this stronger notion of lossy soundness coset lossy soundness. In fact, if we can
argue that coset lossy soundness holds, then the reduction sketched above goes through assuming coset
binding. For that, our main idea is to set up the binding commitment keys such that the span of E is
always contained in the image of F. In this case, we observe that coset lossy soundness is implied by the
original lossy soundness notion. This is because, roughly, if F(s)− c · pk equals R up to a difference in
the span of E, it means that F(s)− c · pk = R+ F(δ) for some δ, and so one can just treat s− δ as the
new s. To summarize our optimized commitment construction, we have seen that lossy soundness of the
identification scheme at hand is strong enough to compensate for the relaxed binding notion. We are
confident that this insight is applicable in other contexts as well.

2 Preliminaries
By [L] := {1, . . . , L} ⊆ N we denote the set of the first L natural numbers. Let S be a finite set, D a
distribution, and A be a probabilistic algorithm. The notation s $← S means that s is sampled uniformly
at random from S, and x← D means that x is sampled according to D. The notation s := A(x; ρ) means
that A outputs s on input x with random coins ρ, and when we write s ← A(x), we mean that ρ is
sampled uniformly at random. We write s ∈ A(x) to indicate that there are coins ρ such that A outputs
s on input x with these coins ρ. Throughout the paper, λ will denote the security parameter, and all
algorithms get it (in unary) as input. We use standard cryptographic notions like PPT and negligible.
Multi-Signatures. We define the syntax and security of multi-signatures in the plain public key
model [BN06]. Following previous works, e.g., [CKM21, DOTT21, PW23], we assume the public keys
participating in the signing protocol are given by a set, and we assume that sets can be ordered canonically,
e.g. lexicographically. Thus, we can uniquely encode sets P = {pk1, . . . , pkN}, and we denote such an
encoding by 〈P〉 throughout the paper. Further, we assume that the honest public key in our security
definition is the entry pk1 in such a set, which is without loss of generality and for simplicity of presentation.
In terms of syntax and security, we use the definition from [PW23]. We postpone a formal definition of
key aggregation to Appendix A.

Definition 1 (Multi-Signature Scheme). A (two-round) multi-signature scheme is a tuple of PPT
algorithms MS = (Setup,Gen,Sig,Ver) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters
par. We assume that par implicitly defines sets of public keys, secret keys, messages and signatures,
respectively. All algorithms related to MS take par at least implicitly as input.

4We use additive notation when talking about lossy identification from such linear functions in general, and multiplicative
notation for the concrete instantiation of the linear function and commitment.

5Recall that lossy soundness is a statistical notion, and so guessing is not a problem in terms of tightness at this point.

7

Alg MS.Exec(P,S,m)
01 parse {pk1, . . . , pkN} := P, {sk1, . . . , skN} := S
02 for i ∈ [N] : (pm1,i, St1,i)← Sig0(P, sk,m)
03 M1 := (pm1,1, . . . , pm1,N)
04 for i ∈ [N] : (pm2,i, St2,i)← Sig1(St1,i,M1)
05 M2 := (pm2,1, . . . , pm2,N)
06 for i ∈ [N] : σi ← Sig2(St2,i,M2)
07 if ∃i 6= j ∈ [N] s.t. σi 6= σj : return ⊥
08 return σ := σ1

Figure 2: Algorithm MS.Exec for a multi-signature scheme MS = (Setup,Gen,Sig,Ver). The algorithm
specifies an honest execution of the signing protocol Sig among N signers with public keys pk1, . . . , pkN
and secret keys sk1, . . . , skN for a message m.

• Gen(par)→ (pk, sk) takes as input system parameters par, and outputs a public key pk and a secret
key sk.

• Sig = (Sig0,Sig1,Sig2) is split into three algorithms:

– Sig0(P, sk,m) → (pm1, St1) takes as input a set P = {pk1, . . . , pkN} of public keys, a secret
key sk, and a message m, and outputs a protocol message pm1 and a state St1.

– Sig1(St1,M1)→ (pm2, St2) takes as input a state St1 and a tupleM1 = (pm1,1, . . . , pm1,N)
of protocol messages, and outputs a protocol message pm2 and a state St2.

– Sig2(St2,M2)→ σi takes as input a state St2 and a tupleM2 = (pm2,1, . . . , pm2,N) of protocol
messages, and outputs a signature σ.

• Ver(P,m, σ)→ b is deterministic, takes as input a set P = {pk1, . . . , pkN} of public keys, a message
m, and a signature σ, and outputs a bit b ∈ {0, 1}.

We require that MS is complete in the following sense. For all par ∈ Setup(1λ), all N = poly(λ), all
(pkj , skj) ∈ Gen(par) for j ∈ [N], and all messages m, we have

Pr
[
Ver(P,m, σ) = 1

∣∣∣∣ P = {pk1, . . . , pkN},S = {sk1, . . . , skN},
σ ← MS.Exec(P,S,m)

]
= 1,

where algorithm MS.Exec is defined in Figure 2.

Definition 2 (MS-EUF-CMA Security). Let MS = (Setup,Gen,Sig,Ver) be a multi-signature scheme and
consider the game MS-EUF-CMA defined in Figure 3. We say that MS is MS-EUF-CMA secure, if for
all PPT adversaries A, the following advantage is negligible:

AdvMS-EUF-CMA
A,MS (λ) := Pr

[
MS-EUF-CMAAMS(λ)⇒ 1

]
.

Assumptions. In this work, we base our constructions on the well-known DDH assumption over a
(family of) cyclic groups G of prime order p with generator g. To recall, the assumption states that
it is infeasible to distinguish (g, h, ga, ha) ∈ G4 from (g, h, u, v) ∈ G4 for h, u, v $← G and a $← Zp. For
convenience, we define its multi-instance variant Q-DDH. It is well-known that Q-DDH is tightly implied
by DDH using random self-reducibility [EHK+13].

Definition 3 (DDH Assumption). Let GGen be an algorithm that on input 1λ outputs the description of
a prime order group G of order p with generator g. We say that the DDH assumption holds relative to
GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣Pr
[
A(G, p, g, h, ga, ha) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a $← Zp

]
−Pr

[
A(G, p, g, h, u, v) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h, u, v $← G

] ∣∣∣∣.
8

Game MS-EUF-CMAAMS(λ)
01 par← Setup(1λ)
02 (pk, sk)← Gen(par)
03 Sig := (Sig0,Sig1,Sig2)
04 (P∗,m∗, σ∗)← ASig(par, pk)
05 if pk /∈ P∗ : return 0
06 if (P∗,m∗) ∈ Queried : return 0
07 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
08 parse {pk1, . . . , pkN} := P
09 if pk1 6= pk : return ⊥
10 Queried := Queried ∪ {(P,m)}
11 ctr := ctr + 1, sid := ctr
12 round[sid] := 1
13 (pm1, St1)← Sig0(P, sk,m)
14 (pm1[sid], St1[sid]) := (pm1, St1)
15 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
16 if round[sid] 6= 1 : return ⊥
17 parse (pm1,1, . . . , pm1,N) :=M1
18 if pm1[sid] 6= pm1,1 : return ⊥
19 round[sid] := round[sid] + 1
20 (pm2, St2)← Sig1(St1[sid],M1)
21 (pm2[sid], St2[sid]) := (pm2, St2)
22 return pm2[sid]

Oracle Sig2(sid,M2)
23 if round[sid] 6= 2 : return ⊥
24 parse (pm2,1, . . . , pm2,N) :=M2
25 if pm2[sid] 6= pm2,1 : return ⊥
26 round[sid] := round[sid] + 1
27 σ ← Sig2(St2[sid],M2)
28 return σ

Figure 3: The game MS-EUF-CMA for a (two-round) multi-signature scheme MS and an adversary
A. To simplify the presentation, we assume that the canonical ordering of sets is chosen such that pk is
always at the first position if it is included.

Definition 4 (Q-DDH Assumption). Let GGen be an algorithm that on input 1λ outputs the description
of a prime order group G of order p with generator g. We say that the Q-DDH assumption holds relative
to GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvQ-DDH
A,GGen(λ) :=

∣∣∣∣Pr

A(G, p, g, h, (gai , hai)Qi=1

)
= 1

∣∣∣∣∣∣
(G, g, p)← GGen(1λ),
h $← G,
∀i ∈ [Q] : ai

$← Zp


−Pr

A(G, p, g, h, (ui, vi)Qi=1

)
= 1

∣∣∣∣∣∣
(G, g, p)← GGen(1λ),
h $← G,
∀i ∈ [Q] : ui, vi

$← G

 ∣∣∣∣.
3 Our Building Blocks
In this section, we introduce two building blocks we will use in our constructions. Namely, we make use
of linear function families and a special kind of commitment scheme. This is similar to what is done
in [PW23]. However, compared to [PW23], a crucial observation is that we can weaken the requirements
for the commitment scheme, thereby enabling a more efficient instantiation. To compensate, we strengthen
the requirements for the linear function family in terms of soundness, which is for free in terms of efficiency.

3.1 Linear Functions
Our first building block is a family of linear functions with suitable properties. Linear function families
are a widely used abstraction [HKL19, KLR21, CAHL+22, PW23, TZ23] that allows us to describe our
protocols in a modular and uncluttered fashion. In terms of syntax, we use the definition given in [PW23].

Definition 5 (Linear Function Family). A linear function family (LFF) is a tuple of PPT algorithms
LF = (Gen,F) with the following syntax:

• Gen(1λ)→ par takes as input the security parameter 1λ and outputs parameters par. We assume
that par implicitly defines the following sets:

– A set of scalars Spar, which forms a field.
– A domain Dpar, which forms a vector space over Spar.

9

– A range Rpar, which forms a vector space over Spar.

We omit the subscript par if it is clear from the context, and naturally denote the operations of these
fields and vector spaces by + and ·. We assume that these operations can be evaluated efficiently.

• F(par, x)→ X is deterministic, takes as input parameters par, an element x ∈ D, and outputs an
element X ∈ R. For all parameters par, F(par, ·) realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : F(par, s · x+ y) = s · F(par, x) + F(par, y).

We omit the input par if it is clear from the context.

In [PW23], key indistinguishability and lossy soundness are defined to capture the set of properties
that makes linear function families amenable for the use in lossy identification [AFLT12]. We recall these
definitions from [PW23]. Further, we introduce strengthened definitions, which allow us to weaken the
properties for other building blocks. Concretely, we relax the winning condition for lossy soundness, such
that it has to hold up to an arbitrary shift in the image of the linear function, leading to coset lossy
soundness. In Appendix A, we also adapt the definition of aggregation lossy soundness from [PW23]
accordingly, leading to coset aggregation lossy soundness. Importantly, we show in Lemmata 1 and 8 that
the strengthened definitions come for free.

Definition 6 (Key Indistinguishability). Let LF = (Gen,F) be a linear function family. We say that LF
satisfies key indistinguishability, if for any PPT algorithm A, the following advantage is negligible:

Advkeydist
A,LF (λ) := |Pr

[
A(par, X) = 1

∣∣ par← Gen(1λ), x $← D, X := F(x)
]

−Pr
[
A(par, X) = 1

∣∣ par← Gen(1λ), X $← R
]
|.

Definition 7 (Lossy Soundness). Let LF = (Gen,F) be a linear function family. We say that LF satisfies
εl-lossy soundness, if for any unbounded algorithm A, the following probability is at most εl:

Pr

F(s)− c ·X = R

∣∣∣∣∣∣
par← Gen(1λ), X $← R,
(St,R)← A(par, X),
c $← S, s← A(St, c)

 .
Definition 8 (Coset Lossy Soundness). Let LF = (Gen,F) be a linear function family. We say that LF
satisfies εl-coset lossy soundness, if for any unbounded algorithm A, the following probability is at most
εl:

Pr

F(s)− c ·X ∈ R+ F(D)

∣∣∣∣∣∣
par← Gen(1λ), X $← R,
(St,R)← A(par, X),
c $← S, s← A(St, c)

 .
Lemma 1. Let LF be a linear function family, such that for any par ∈ Gen(1λ), the domain Dpar can be
enumerated. Then, if LF satisfies εl-lossy soundness, it also satisfies εl-coset lossy soundness.

Proof. To prove the claim, it is sufficient to describe an (unbounded) reduction B, that turns any algorithm
A running in the coset lossy soundness game into an algorithm in the lossy soundness game. The reduction
B gets as input parameters par and an element X ∈ R from the lossy soundness game. It runs A on
input par and X and gets an output R in return, which it passes to the lossy soundness game. In return,
it receives c ∈ S, and forwards it to A, which outputs s ∈ D. If A breaks coset lossy soundness, i.e,
F(s)− c ·X ∈ R+ F(D), then there is a δ ∈ D such that F(s)− c ·X = R+ F(δ). By enumerating D, the
reduction B finds such a δ and returns s− δ to the lossy soundness game. As we have F(s− δ)− c ·X = R,
B breaks lossy soundness with the same probability as A breaks coset lossy soundness, and the claim
follows.

10

3.2 Weaker Commitments
In this section, we formally define the syntax and properties of the commitment scheme we require for our
construction. Namely, we weaken the commitment definition given in [PW23]. To recall, the commitment
scheme in [PW23] allows to homomorphically commit to elements in the range of a linear function family.
In addition to a statistically binding mode, there is an indistinguishable way of generating commitment
keys together with a weak equivocation trapdoor. This trapdoor allows to open commitments to all
messages of a certain structure. In comparison to [PW23], we now also weaken the binding property
of the scheme. Concretely, in the binding mode, we only require the commitment to be binding up to
any shift in the image of the linear function. Except for this change, we take the definition of [PW23]
verbatim.

Game Q-KEYDISTA0,CMT(λ)
01 par← LF.Gen(1λ), x $← D
02 if (par, x) /∈ Good : return 0
03 for i ∈ [Q] : cki ← BGen(par)
04 β ← A(par, x, (cki)i∈[Q])
05 return β

Game Q-KEYDISTA1,CMT(λ)
06 par← LF.Gen(1λ), x $← D
07 if (par, x) /∈ Good : return 0
08 for i ∈ [Q] : cki $← Kpar
09 β ← A(par, x, (cki)i∈[Q])
10 return β

Figure 4: The games KEYDIST0,KEYDIST1 for the definition of a weakly equivocable coset commit-
ment Scheme CMT and an adversary A.

Definition 9 (Weakly Equivocable Coset Commitment Scheme). Let LF = (LF.Gen,F) be a linear function
family and G = {Gpar},H = {Hpar} be families of subsets of abelian groups with efficiently computable
group operations ⊕ and ⊗, respectively. Let K = {Kpar} be a family of sets. An (εb, εg, εt)-weakly
equivocable coset commitment scheme for LF with key space K, randomness space G and commitment
space H is a tuple of PPT algorithms CMT = (BGen,TGen,Com,TCom,TCol) with the following syntax:

• BGen(par)→ ck takes as input parameters par, and outputs a key ck ∈ Kpar.

• TGen(par, X)→ (ck, td) takes as input parameters par, and an element X ∈ R, and outputs a key
ck ∈ Kpar and a trapdoor td.

• Com(ck, R;ϕ)→ com takes as input a key ck, an element R ∈ R, and a randomness ϕ ∈ Gpar, and
outputs a commitment com ∈ Hpar.

• TCom(ck, td)→ (com, St) takes as input a key ck and a trapdoor td, and outputs a commitment
com ∈ Hpar and a state St.

• TCol(St, c)→ (ϕ,R, s) takes as input a state St, and an element c ∈ S, and outputs randomness
ϕ ∈ Gpar, and elements R ∈ R, s ∈ D.

We omit the subscript par if it is clear from the context. Further, the algorithms are required to satisfy
the following properties:

• Homomorphism. For all par ∈ LF.Gen(1λ), ck ∈ Kpar, R0, R1 ∈ R and ϕ0, ϕ1 ∈ G, the following
holds:

Com(ck, R0;ϕ0)⊗ Com(ck, R1;ϕ1) = Com(ck, R0 +R1;ϕ0 ⊕ ϕ1).

• Good Parameters. There is a set Good, such that membership to Good can be decided in
polynomial time, and

Pr
[
(par, x) /∈ Good | par← LF.Gen(1λ), x $← D

]
≤ εg,

• Uniform Keys. For all (par, x) ∈ Good, the following distributions are identical:

{(par, x, ck) | ck $← Kpar} and {(par, x, ck) | (ck, td)← TGen(par,F(x))}.

11

• Weak Trapdoor Property. For all (par, x) ∈ Good, and all c ∈ S, the following distributions T0
and T1 have statistical distance at most εt:

T0 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
r $← D, R := F(r), ϕ $← G,
com := Com(ck, R;ϕ),
s := c · x+ r, tr := (ϕ,R, s)

 ,

T1 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
(com, St)← TCom(ck, td),
tr← TCol(St, c)

 .

• Multi-Key Indistinguishability. For every Q = poly(λ) and any PPT algorithm A, the following
advantage is negligible:

AdvQ-keydist
A,CMT (λ) :=

∣∣∣Pr
[
Q-KEYDISTA0,CMT(λ)⇒ 1

]
− Pr

[
Q-KEYDISTA1,CMT(λ)⇒ 1

]∣∣∣ ,
where games KEYDIST0,KEYDIST1 are defined in Figure 4.

• Statistical Coset Binding. There exists some (potentially unbounded) algorithm Ext, such that
for every (potentially unbounded) algorithm A the following probability is at most εb:

Pr

 Com(ck, R′;ϕ′) = com
∧ R′ /∈ R+ F(D)

∣∣∣∣∣∣
par← LF.Gen(1λ),
ck← BGen(par), (com, St)← A(ck),
R← Ext(ck, com), (R′, ϕ′)← A(St)

 .
4 Our Constructions
In this section, we present two constructions of efficient two-round multi-signatures that do not rely on
rewinding. Both constructions rely on the building blocks introduced before.

4.1 Our Construction with Key Aggregation
In [PW23], a multi-signature scheme Chopsticks I supporting key aggregation is presented, with a security
loss proportional to the number of signing queries and without rewinding. In Appendix B, we show that
if we instantiate Chopsticks I with our new building blocks, we get the same properties while improving
efficiency.

4.2 Our Tight Construction
Here, we present our construction of a tightly secure two-round multi-signature scheme. For that,
let LF = (LF.Gen,F) be a linear function family. Let CMT = (BGen,TGen,Com,TCom,TCol) be an
(εb, εg, εt)-weakly equivocable coset commitment scheme for LF with key space K, randomness space G
and commitment space H. Finally, let H : {0, 1}∗ → K, Hb : {0, 1}∗ → {0, 1}, and Hc : {0, 1}∗ → S be
random oracles. We give a verbal description of our scheme Tooth[LF,CMT] = (Setup,Gen,Sig,Ver). In
addition, we present it as pseudocode in Figure 6.
Setup and Key Generation. Our scheme makes use of public parameters par← LF.Gen(1λ), which
define the linear function F = F(par, ·). Keys are generated by sampling elements x0, x1

$← D and a seed
seed $← {0, 1}λ. Then, the keys are

sk := (x0, x1, seed), pk := (X0, X1) := (F(x0),F(x1)).

Signing Protocol. We consider the setting of a set of N signers with public keys P = {pk1, . . . , pkN}.
Let m ∈ {0, 1}∗ denote the message that should be signed. In the following, we describe the signing
protocol, i.e., algorithms Sig0,Sig1,Sig2, from the perspective of the first signer. This signer holds a secret
key sk1 = (x1,0, x1,1, seed1) for public key pk1 = (X1,0, X1,1).

12

1. Commitment Phase. First, a commitment key ck := H(〈P〉,m) is derived from the set of public keys
and the message. Further, the signer computes a bit b1 := Hb(seed1, 〈P〉,m). The signer computes

r1
$← D, R1 := F(r1).

Then, the signer commits to R1 using the commitment key ck, i.e., it computes

ϕ1
$← G, com1 := Com(ck, R1;ϕ1).

Finally, it sends pm1,1 := (b1, com1) as its first message of the protocol to all signers.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N) be the list of messages output by the signers in the
commitment phase. That is, the message pm1,i is sent by signer i and has the form pm1,i = (bi, comi).
The signer aggregates these messages by setting

B := b1 . . . bN ∈ {0, 1}N , com :=
⊗
i∈[N]

comi.

Next, a signer specific challenge c1 is derived and a response s1 is computed. This is done via

c1 := Hc(pk1, com,m, 〈P〉, B), s1 := c1 · x1,b1 + r1.

Observe that the signer uses bit b1 to determine which part of the secret key is used. Finally, the
signer sends pm2,1 := (s1, ϕ1) as its second message of the protocol to all signers.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N) be the list of messages output by the signers in
the response phase. That is, the message pm2,i is sent by signer i and has the form pm2,i = (si, ϕi).
The signers aggregate the responses and commitment randomness received in the previous messages
via

s :=
∑
i∈[N]

si, ϕ :=
⊕
i∈[N]

ϕi.

Finally, the signature is defined as σ := (com, ϕ, s, B).

Verification. Assume we have a set of public keys P = {pk1, . . . , pkN}, a message m ∈ {0, 1}∗, and
a signature σ := (com, ϕ, s, B). To verify σ, write B = b1 . . . bN ∈ {0, 1}N and each public key pki
as pki = (Xi,0, Xi,1). Then, reconstruct the commitment key ck := H(〈P〉,m) and the signer specific
challenges ci := Hc(pki, com,m, 〈P〉, B) for each i ∈ [N]. The signature is valid, i.e., the verification
outputs 1, if and only if

com = Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi ;ϕ
)
.

Lemma 2. Let LF be a linear function family. Let CMT be an (εb, εg, εt)-weakly equivocable coset
commitment scheme for LF. Then Tooth[LF,CMT] is complete.

Proof. To show completeness of Tooth[LF,CMT], consider N users and let P = {pk1, . . . , pkN} be the
set of their public keys, where pki = (Xi,0, Xi,1) = (F(xi,0),F(xi,1)) for each i ∈ [N]. Let m ∈ {0, 1}∗

be a message, and let σ = (com, ϕ, s, B) for B = b1 . . . bN ∈ {0, 1}N be a signature computed honestly
in the signing protocol. We have to show that verification outputs 1 on input P,m, σ. For that, let
ck = H(〈P〉,m) and ci = Hc(pki, com,m, 〈P〉, B) for each i ∈ [N] be as in the verification algorithm. We
have to show that

com = Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi ;ϕ
)
.

Using definition of s and the Xi,bi
, and linearity of F, we get

F(s)−
N∑
i=1

ci ·Xi,bi
= F

(
N∑
i=1

si

)
−

N∑
i=1

ci · F(xi,bi
) =

N∑
i=1

F(si − ci · xi,bi
).

13

Now, we use the definition of the si as si = ci · xi,bi
+ ri, where ri ∈ D is the element that the ith signer

samples in the first step, and get

N∑
i=1

F(si − ci · xi,bi
) =

N∑
i=1

F(ri) =
N∑
i=1

Ri,

where Ri = F(ri) is the element to which each signer commits in the first step. In combination, we get

Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi
;ϕ
)

= Com

ck,
N∑
i=1

Ri;
⊕
i∈[N]

ϕi

 ,

where we used the definition of ϕ. We can now apply the homomorphism property of the commitment
and get

Com

ck,
N∑
i=1

Ri;
⊕
i∈[N]

ϕi

 =
N⊗
i=1

Com (ck, Ri;ϕi) =
N⊗
i=1

comi = com,

where the comi are what each signer sends in the first message. This proves the claim.

Theorem 1. Let LF be a linear function family that satisfies key indistinguishability and εl-coset lossy
soundness. Let CMT be an (εb, εg, εt)-weakly equivocable coset commitment scheme for LF. Further,
let H : {0, 1}∗ → K,Hb : {0, 1}∗ → {0, 1},Hc : {0, 1}∗ → S be random oracles. Then Tooth[LF,CMT] is
MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHb
, QHc

, QS queries to oracles
H,Hb,Hc,Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,Tooth[LF,CMT](λ) ≤ QHb

2λ + 8εg + 4QSεt + 4QHQHcεb + 4QHcεl

+ 4 · AdvQH-keydist
B,CMT (λ) + 4 · Advkeydist

B′,LF (λ).

Proof. Let A be an adversary against the security of Tooth[LF,CMT]. To prove the statement, we give a
sequence of games G0, . . . ,G8. We present the games formally in Figures 7 to 9, and we verbally describe
and analyze them here.
Game G0: This is defined to be the original security game MS-EUF-CMAATooth[LF,CMT], but we omit
the oracle Sig2 from the game. Observe that this is without loss of generality for the scheme at hand, as
this oracle can be run publicly based on the outputs of the other oracles and does not make use of any
secret state or key. More concretely, for any adversary A that calls this oracle, we can build a wrapper
adversary that internally simulates the game including oracle Sig2 for A and forwards everything else to
G0. This wrapper adversary has the same advantage and running time as A. We now recall the game to
fix notation. First, system parameters par← LF.Gen(1λ) are generated. In addition, the secret and public
key of an honest user are generated. Namely, the game samples seed1

$← {0, 1}λ and x1,0, x1,1
$← D and

sets X1,0 := F(x1,0) and X1,1 := F(x1,1). It sets pk∗ := (X1,0, X1,1) and runs A on input par, pk∗, with
access to the following oracles

• Signing oracles Sig0 and Sig1: The signing oracles simulate an honest signer in a signing interaction.
More precisely, if A queries Sig0(P,m), a new signing interaction for message m with respect to
P = {pk1, . . . , pkN} is started, where we assume that pk1 = pk∗. For that, first (P,m) is added to
list Queried. Then, the game runs algorithm Sig0 in the natural way and outputs the result to the
adversary. Similarly, when A calls Sig1, algorithm Sig1 is run.

• Random oracles H and Hc: The game simulates random oracles H and Hc for A by standard lazy
sampling. For that, it holds maps h and hc which map the inputs to their outputs. For example, if
A queries H(x), the game checks if h[x] is defined. If it is not yet defined, it is sampled at random
from the output domain of H, i.e., from K. Then, the game returns h[x].

14

• Random oracle Hb: For Hb, we additionally introduce a level of indirection. This will allow us
to distinguish queries to Hb that the game itself issues from the queries that A issues directly.
Concretely, when Hb is queried, the game forwards the query to a random oracle H̄b with the same
interface. Oracle H̄b is simulated using a map h̄b via lazy sampling. We emphasize that this oracle
H̄b is not provided to A. Further, the convention for all games will be that the game itself only
queries H̄b and not Hb, for example in oracle Sig0.

Finally, A outputs a forgery (P∗,m∗, σ∗). Write P∗ as P∗ = {pk1, . . . , pkN} and σ∗ = (com∗, ϕ∗, s∗, B∗).
Further, write B∗ = b∗1 . . . b

∗
N ∈ {0, 1}

N . Then, the game outputs 0 if pk∗ /∈ P∗ or (P∗,m∗) ∈ Queried.
Otherwise, we assume that pk∗ = pk1, and the game outputs 1 if and only if Ver(P∗,m∗, σ∗) = 1. By
definition, we have

AdvMS-EUF-CMA
A,Tooth[LF,CMT](λ) = Pr [G0 ⇒ 1].

Before we continue, we give an overview of the remaining games and our strategy. In our first step (games
G1 and G2), we will ensure that for the forgery it holds that b∗1 = 1− b∗ and H̄b(seed1, 〈P∗〉,m∗) = b∗,
for a random bit b∗. Once this is established, we change how we simulate the signing oracles (games G3
to G6). Namely, in the case H̄b(seed1, 〈P〉,m) = b∗, we embed a binding commitment key and simulate
signing for (P,m) honestly, whereas for the other case, we embed a commitment key with a trapdoor and
simulate signing by using the trapdoor. The result is that we no longer need x1,1−b∗ . Now, we switch
X1,1−b∗ to lossy mode and use the binding property to reduce to lossy soundness (games G7 and G8).
This works, because the forgery is with respect to a lossy key and a binding commitment key.
Game G1: This game is the same as G0, but we introduce a bad event on which the game aborts.
Namely, the game sets bad := 1 if A queries Hb(seed1, x) for any x ∈ {0, 1}∗. Once A terminates, the
game outputs 0 if bad = 1. Otherwise, it behaves as G0. It is clear that games G0 and G1 only differ if A
makes such a query. Further, the only information about seed1 that A gets are the values of Hb(seed1, ·).
As seed1 is sampled uniformly at random from {0, 1}λ, we can bound the probability that a fixed query
of A has the form Hb(seed1, x) by 1/2λ. With a union bound over the queries of A we obtain

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ QHb

2λ .

Game G2: In this game, we introduce a random bit b∗ $← {0, 1} that is sampled at the beginning of
the game. Further, we change the winning condition as follows. When A outputs the forgery, the game
outputs 0, if b∗1 = b∗ or H̄b(seed1, 〈P∗〉,m∗) = 1− b∗. Otherwise, it continues as G1 does. In other words,
game G2 outputs 1 if G1 outputs 1 and the following event occurs:

• Event RightBits: This event occurs, if for A’s final output (P∗,m∗, σ∗) with P∗ = {pk1 =
pk∗, . . . , pkN}, σ∗ = (com∗, ϕ∗, s∗, B∗), and B∗ = b∗1 . . . b

∗
N ∈ {0, 1}

N , it holds that b∗1 = 1− b∗ and
H̄b(seed1, 〈P∗〉,m∗) = b∗.

If we condition on G1 ⇒ 1, then we claim that b∗ and H̄b(seed1, 〈P∗〉,m∗) are uniformly random and
independent, and independent of A’s view. In particular, they are independent of b∗1. This is because bit
b∗ is hidden from A by construction, and H̄b(seed1, 〈P∗〉,m∗) is hidden from A due to (P∗,m∗) /∈ Queried
and the change introduced in G1. Therefore, we have

Pr [RightBits | G1 ⇒ 1] = Pr
b,b∗

$←{0,1}
[b∗1 = 1− b∗ ∧ b = b∗] = 1

4 .

With this, we obtain

Pr [G2 ⇒ 1] = Pr [RightBits ∧G1 ⇒ 1]

= Pr [RightBits | G1 ⇒ 1] · Pr [G1 ⇒ 1] = 1
4 · Pr [G1 ⇒ 1].

Game G3: This game is the same as G2, but we add another abort. Namely, once the game sampled par
and x1,0, x1,1 at the beginning of the game, it returns 0 and terminates if (par, x1,1−b∗) /∈ Good, where
Good is as in the definition of the weakly equivocable coset commitment scheme. Otherwise, it continues
as in G2 does. By the good parameters property of CMT, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [(par, x1,1−b∗) /∈ Good] ≤ εg.

15

Game G4: In this game, we change how random oracle H is simulated. Recall that until now, when H is
queried on an input (〈P〉,m) and the output of H is not yet defined, it samples a random commitment
key ck $← K uniformly at random and defines the output to be this key. From now on, we sample ck
differently, distinguishing two cases depending on the bit b := H̄b(seed1, 〈P〉,m) and the bit b∗. Namely,
if b = 1 − b∗, then ck is sampled in hiding mode with a trapdoor, i.e., (ck, td) ← TGen(par, X1,1−b∗).
Further, the trapdoor td is stored in a map tr by setting tr[〈P〉,m] := td. On the other hand, if b = b∗,
then ck is sampled in binding mode, i.e., ck← BGen(par). We now show indistinguishability of G3 and
G4. First, note that keys sampled in the first case are distributed identically in G3 and G4. This follows
from the uniform keys property of CMT, which we can apply due to the previous change that ensures that
(par, x1,1−b∗) ∈ Good. Second, keys sampled in the second case are indistinguishable by the multi-key
indistinguishability property of CMT. More precisely, there is a reduction B that gets as input par, x1,1−b∗ ,
and commitment keys ck1, . . . , ckQH . It then simulates game G4 for A, but embedding the commitment
keys cki whenever random oracle H needs to be simulated and b = b∗ as above. In the end, B outputs
whatever the game outputs. Clearly, B’s running time is determined by the running time of A and it
perfectly simulates G4 if the keys ck1, . . . , ckQH are generated via algorithm BGen. Otherwise, if the keys
are sampled uniformly at random, it perfectly simulates G3 for A. For this, it was important that we
introduced the indirection via oracle H̄b as otherwise the simulation would not be perfect. Concretely, if
B itself had queried Hb instead of H̄b, then the game would always have output 0, see the change in G2.
We have

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ AdvQH-keydist
B,CMT (λ).

Game G5: In this game, we change the signing oracle. The result will be that we can simulate the
signing oracle without x1,1−b∗ , but using trapdoors for commitment keys instead. First, we explain
how we change oracle Sig0, which runs Sig0 in previous games. Recall from the definition of Sig0, that
this means that the oracle on input P and m samples r1

$← D, defines R1 := F(r1), computes a bit
b1 := Hb(seed1, 〈P〉,m) and a commitment key ck := H(〈P〉,m), and commits to R1 by sampling ϕ1

$← G
and setting com1 := Com(ck, R1;ϕ1). Now, if b1 = b∗, we don’t change anything and G5 behaves as
previous games do. However, if b1 = 1 − b∗, the game computes com1 differently. It computes it as
(com1, St1)← TCom(ck, tr[〈P〉,m]). Here, recall that if b1 = 1− b∗, then ck has been generated with a
trapdoor that is stored in tr, see G4. Next, we explain how we change oracle Sig1, which runs Sig1 in
previous games. To recall, this means that first, a challenge c1 is computed using the random oracle Hc
and all messages of the first round. Then, a response s1 := c1 · x1,b1 + r1 is computed, and s1 and ϕ1
is returned to A. Again, we only change the case where b1 = 1 − b∗. Namely, in this case, the game
runs (ϕ1, R1, s1)← TCol(St1, c1) to compute s1 and ϕ1 instead. Due to the change introduced in G3, we
know that (par, x1,1−b∗) ∈ Good, and thus we can apply the weak trapdoor property of CMT for every
signing query. We get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ QSεt.

Game G6: In this game, we undo the change from G3, namely, we no longer require that (par, x1,1−b∗) ∈
Good. With a similar argument as in G3, we get

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ εg.

Game G7: In this game, we change how X1,1−b∗ is generated. Recall that until now, it is generated by
sampling x1,1−b∗

$← D and setting X1,1−b∗ := F(x1,1−b∗). From now on, we sample it in lossy mode, i.e.,
as X1,1−b∗

$← R. Observe that x1,1−b∗ is used nowhere else during the game, due to our previous changes.
Therefore, we can easily bound the distinguishing advantage between G6 and G7 by a reduction B′ that
runs in the key indistinguishability game of LF and embeds its input in X1,1−b∗ . We have

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ Advkeydist
B′,LF (λ).

Game G8: In game G8, we make use of the statistical coset binding property of CMT. Concretely, we
change oracle Hc and the winning condition. Recall that until now, a query Hc(pk, com,m, 〈P〉, B) is
answered in the standard way using lazy sampling. In game G8, this is still the case, but additionally the
extractor Ext for the statistical coset binding property of CMT is run in certain cases. Namely, write
P = {pk1, . . . , pkN} and B = b1 . . . bN . Further, set b := H̄b(seed1, 〈P〉,m). If pk∗ is part of P, i.e.,
pk∗ = pk1, and b = b∗, then we know that the commitment key ck := H(〈P〉,m) is generated in binding
mode by algorithm BGen. This is due to the change in G4. Now, game G8 runs R← Ext(H(〈P〉,m), com)

16

and stores R in a map r[·] as r[com,m, 〈P〉, B] := R. Other than that, the oracle Hc does not change. Next,
we describe how the winning condition is changed. For that, assume that A outputs a forgery A outputs
a forgery (P∗,m∗, σ∗) with P∗ = {pk1, . . . , pkN}, σ∗ = (com∗, ϕ∗, s∗, B∗), and B∗ = b∗1 . . . b

∗
N ∈ {0, 1}

N .
Assume that game G7 does not return 0. Especially, we have pk1 = pk∗ and (P∗,m∗) /∈ Queried, and
H̄b(seed1, 〈P∗〉,m∗) = b∗ (see G2). Further, the game parses pki = (Xi,0, Xi,1) for every key pki in P∗
and defines challenges c∗i := Hc(pki, com∗0,m∗, 〈P∗〉, B∗) for all i ∈ [N] as the verification algorithm does.
In particular, now we know, due to H̄b(seed1, 〈P∗〉,m∗) = b∗, that r[com∗,m∗, 〈P∗〉, B∗] is defined. Next,
the game defines R∗ := F(s∗)−

∑N
i=1 c

∗
i ·Xi,b∗

i
as the verification algorithm does. The game outputs 0 if

R∗ /∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D). Otherwise, it behaves as G7 does. Note that if G7 outputs 1, but
G8 does not, then we know that com∗ = Com(ck, R∗;ϕ∗), where ck := H(〈P〉∗,m∗). In other words, G7
and G8 only differ, if for the forgery, the value r[com∗,m∗, 〈P∗〉, B∗] that the extractor extracted from
commitment com∗ is in a different coset than the value to which A successfully opens com∗ in its forgery.
We can easily bound the probability of this using the statistical coset binding property of CMT. For that,
we sketch an (unbounded) reduction that gets as input the parameters par of the linear function, and a
commitment key ck← BGen(par). Then, it first samples indices iH $← [QH] and iHc

$← [QHc] uniformly at
random, and then simulates the game G8 honestly for A, except the iHth query to H and the iHcth query
to Hc. In the iHth query to H, if it has to sample a binding key, it embeds ck. Otherwise, it aborts. In
the iHc

th query to Hc, if it had to run Ext, it instead outputs the commitment com and its state to the
statistical coset binding game. Otherwise, it aborts. Finally, when A outputs its forgery, and the iHth
query to H and the iHc

th query to Hc are the queries of interest, and R∗ /∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D),
the reduction outputs R∗ and ϕ∗, thereby winning the statistical coset binding game. It is easy to see
that this shows

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ QHQHc
εb.

To finish the proof, we bound the probability that G8 outputs 1 using coset lossy soundness of LF.
For that consider the following unbounded reduction:

• The reduction gets as input parameters par and an element X ∈ R.

• It picks a random index î $← [QHc]. It then simulates game G8 for A until A outputs its forgery,
using parameters par and defining X1,1−b∗ := X instead of picking it randomly from R. Further,
the reduction handles the îth query to Hc differently.

• Let Hc(pk, com,m, 〈P〉, B) be the îth query to Hc. If the hash value for this query is already defined,
the reduction continues as G8 would do. Otherwise, let P = {pk1, . . . , pkN}, B = b1 . . . bN , and
b := H̄b(seed1, 〈P〉,m). The reduction also continues as G8 would do if pk∗ is not in P. Otherwise,
assume that pk∗ = pk1 as usual. If pk 6= pk∗ or b 6= b∗, the reduction also continues as G8 would
do. In other words, the reduction only differs in the case in which G8 would run the extractor
Ext. In this case, the reduction runs Ext as G8 would do, i.e., it runs R̂← Ext(H(〈P〉,m), com) and
sets r[com,m, 〈P〉, B] := R̂. In addition, the reduction sets ci := Hc(pki, com,m, 〈P〉, B) for each
i ∈ [N] \ {1}, and computes

R := R̂+
N∑
i=2

ci ·Xi,bi .

Then, the reduction outputs R to the coset lossy soundness game, and in return it receives a
challenge c ∈ S. Finally, the reduction programs hc[pk, com,m, 〈P〉, B] := c and returns this hash
value.

• When A outputs its forgery (P∗,m∗, σ∗), the reduction does all the verification checks as in G8. As-
suming all of these checks pass, write P∗ = {pk1 = pk∗, . . . , pkN}, σ∗ = (com∗, ϕ∗, s∗, B∗), and B∗ =
b∗1 . . . b

∗
N ∈ {0, 1}

N . Additionally, the reduction aborts if the hash value Hc(pk1, com∗,m∗, 〈P∗〉, B∗)
has not been defined during the îth query to Hc. Otherwise, the reduction returns s := s∗ to the
coset lossy soundness game.

One can easily see that the view of A is independent of the index î until a potential abort, and that,
assuming the reduction does not abort, the simulation of G8 is perfect. Now, we want to argue that the
reduction breaks coset lossy soundness if G8 outputs 1, and the index î is guessed correctly. Once this is
shown, we can conclude with

Pr [G8 ⇒ 1] ≤ QHc
εl.

17

To show this claim, we assume that G8 outputs 1 and the index î is guessed correctly. Now, it follows
from the condition H̄b(seed1, 〈P∗〉,m∗) = b∗ introduced in G2 that the reduction output R as above to the
coset lossy soundness game, received c, and programmed Hc(pk1, com∗,m∗, 〈P∗〉, B∗) to be c. It remains
to argue that F(s)− c ·X ∈ R+ F(D). For that, first recall that the change introduced in G8 ensures that

F(s∗)−
N∑
i=1

c∗i ·Xi,b∗
i
∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D).

Using the assumption that the index î is guessed correctly, this implies

F(s∗)− c ·X1,b∗1 −
N∑
i=2

ci ·Xi,b∗
i
∈ R̂+ F(D).

Now, we rearrange terms and use the condition b∗1 = 1− b∗ introduced in G2, and get

F(s∗)− c ·X1,1−b∗ ∈ R̂+
N∑
i=2

ci ·Xi,b∗
i

+ F(D).

If we recall the definition of s∗ = s, X1,1−b∗ = X, and the definition of R, then this is exactly the
statement we want to show. Concluded.

5 Our Instantiations
In this section, we instantiate the building blocks introduced in Section 3. We present a linear function
family and a commitment scheme, both based on DDH.

5.1 Linear Function Family
We use the same linear function family as in [PW23], which is a linear function family LFDDH = (Gen,F)
based on the DDH assumption. For that, we assume an algorithm GGen, that outputs the description
of a prime order group G of order p with generator g on input 1λ. Algorithm Gen runs GGen, samples
h $← G, and outputs parameters par := (g, h) ∈ G2. The description of G is also contained in par and left
implicit for the sake of a concise presentation. These parameters define the set of scalars, domain, range,
and the function F(par, ·), which are as follows:

S := Zp, D := Zp, R := G×G, F(par, x) := (gx, hx).

One can easily verify that this is a linear function family. Further, it is shown in [PW23] that LFDDH
satisfies key indistinguishability, lossy soundness, and aggregation lossy soundness. Using Lemmata 1
and 8, we conclude that LFDDH satisfies coset lossy soundness and coset aggregation lossy soundness. The
following lemma summarizes this.

Lemma 3. Assuming that the DDH assumption holds relative to GGen, the linear function family LFDDH
satisfies key indistinguishability. Concretely, for any PPT algorithm A there is a PPT algorithm B with
T(B) ≈ T(A) and

Advkeydist
A,LFDDH

(λ) ≤ AdvDDH
B,GGen(λ).

Further, the linear function family LFDDH satisfies εl-coset lossy soundness and εal-coset aggregation lossy
soundness for

εl ≤ 3/p, εal ≤ 4/p.

18

5.2 Commitment Scheme
In this section, we present our instantiation of the weakly equivocable coset commitment scheme for the
linear function family LFDDH introduced before. Our commitment scheme shares similarities with the
commitment scheme from [PW23], which uses a 3×3 matrix of group elements as a commitment key. Our
crucial observation is that if we replace this 3× 3 structure with a more efficient 2× 2 structure, we obtain
a scheme that is still binding on cosets. We now describe our commitment scheme CMTDDH = (BGen,
TGen,Com,TCom,TCol) for LFDDH. Assume parameters of LFDDH are given, specifying a group G. Then,
the commitment scheme has key space K := G2×2, message space D = G×G, randomness space G = Z2

p,
and commitment space H = G2. The spaces D,G, and H are associated with the natural componentwise
group operations. Next, we describe the algorithms of the commitment scheme verbally.

• BGen(par)→ ck: Parse par = (g, h). Sample a, b $← Zp and set

ck := A :=
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
ga gb

ha hb

)
∈ G2×2.

• TGen(par, X = (X1, X2))→ (ck, td): Sample exponents di,j $← Zp for all (i, j) ∈ [2]× [2]. Set

ck := A :=
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
X
d1,1
1 X

d1,2
1

X
d2,1
2 X

d2,2
2

)
∈ G2×2.

Further, set td := (D, X1, X2) for

D :=
(
d1,1 d1,2
d2,1 d2,2

)
∈ Z2×2

p .

• Com(ck, R = (R1, R2);ϕ)→ com: Let ϕ = (α, β) ∈ Z2
p. Compute com := (C1, C2) for(

C1
C2

)
:=
(
R1· Aα1,1 ·A

β
1,2

R2· Aα2,1 ·A
β
2,2

)
.

• TCom(ck, td)→ (com, St): Sample ρ1, ρ2, s
$← Zp. Set St := (td, τ, ρ1, ρ2, s) and compute com :=

(C1, C2) for (
C1
C2

)
:=
(
Xρ1

1 · gs
Xρ2

2 · hs
)
.

• TCol(St, c) → (ϕ,R, s): Set R := (R1, R2) :=
(
gs ·X−c1 , hs ·X−c2

)
. Then, if D is not invertible,

return ⊥. Otherwise, compute ϕ := (α, β) for(
α
β

)
= D−1 ·

(
ρ1 + c
ρ2 + c

)
.

Theorem 2. If the DDH assumption holds relative to GGen, then CMTDDH is an (εb, εg, εt)-weakly
equivocable coset commitment scheme for LFDDH, with

εb = 0, εg ≤ 2/p, εt ≤ 2/p.

Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ Adv2Q-DDH
A,GGen (λ)..

The proof of Theorem 2 is split into a sequence of lemmas, showing the required properties of a weakly
equivocable coset commitment scheme separately. The homomorphism property is easy to verify. For the

19

remaining properties, we first have to define a set Good. We define it as the set of non-zero parameters
and domain elements, i.e.,

Good =
{

((g, h), x) ∈ G2 × Zp
∣∣ (g, h) ∈ LFDDH.Gen(1λ) ∧ h 6= g0 ∧ x 6= 0

}
.

It is clear that membership in Good can be decided efficiently. Further, for (g, h)← LFDDH.Gen(1λ) and
x $← Zp, the probability that ((g, h), x) /∈ Good is at most 2/p by a union bound over the two events
h = g0 and x = 0. This shows εg ≤ 2/p. We proceed by showing that the commitment scheme satisfies
the uniform keys property, the weak trapdoor property, multi-key indistinguishability, and is statistically
coset binding. The proofs of the uniform keys property and the weak trapdoor property are similar to
the proofs of the corresponding statement in [PW23].

Lemma 4. The scheme CMTDDH satisfies the uniform keys property of an (εb, εg, εt)-weakly equivocable
coset commitment scheme for LFDDH.

Proof. Let ((g, h), x) ∈ Good and define (X1, X2) ∈ G2 to be the image of x under F, i.e., X1 = gx and
X2 = hx. We have to argue that the distribution of ((g, h), x,A) for a commitment key A as output by
algorithm TGen is the same as for a random A $← G2×2. Recall that A output by TGen has the form

A =
(
A1,1 A1,2
A2,1 A2,2

)
=
(
X
d1,1
1 X

d1,2
1

X
d2,1
2 X

d2,2
2

)
∈ G2×2,

where the di,j are sampled uniformly at random from Zp. As ((g, h), x) ∈ Good, we know that X1 and
X2 are generators of G, and therefore A is uniformly random over G2×2.

Lemma 5. The scheme CMTDDH satisfies the weak trapdoor property of an (εb, εg, εt)-weakly equivocable
coset commitment scheme for LFDDH, where εt ≤ 2/p.

Proof. Fix parameters g, h ∈ G and x ∈ Zp and a challenge c ∈ Zp such that ((g, h), x) ∈ Good. Define
(X1, X2) ∈ G2 to be the image of x under F, i.e., X1 = gx and X2 = hx. According to the definition of
the weak trapdoor property, we have to consider two different distributions T0 and T1 of tuples

((g, h),A, (D, X1, X2), x, c, (C1, C2), ((α, β), (R1, R2), s))

Here, g, h, x, c,X1, X2 are fixed as above and A,D, X1, X2 are output by TGen in both distributions T0
and T1. In distribution T1, the remaining components (C1, C2), ((α, β), (R1, R2), s are sampled via

((C1, C2), St)← TCom(ck, td), ((α, β), (R1, R2), s)← TCol(St, c).

In distribution T0, the remaining components (C1, C2), ((α, β), (R1, R2), s are sampled as

r $← Zp, R1 := gr, R2 := hr, s := c · x+ r,
α, β $← Zp, (C1, C2) := Com(A, (R1, R2); (α, β)).

We will now gradually change this distribution T0 until we arrive at the distribution T1. Before we do that,
we assume that in both distributions T0 and T1, the matrix D ∈ Z2×2

p has full rank. As D is sampled
uniformly at random over Z2×2

p , we know that it has full rank except with probability 1/p. Thus, this
assumption will add 2/p to our final bound.

In our first step, we remove the dependence on r and x. That is, we define a new distribution, in
which the remaining components (C1, C2), ((α, β), (R1, R2), s are samples as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,
α, β $← Zp, (C1, C2) := Com(A, (R1, R2); (α, β)).

It is clear that T0 and this new distribution are identical6. Next, we want to make (C1, C2) independent
of (R1, R2). For that, we consider the mapping from (α, β) to (C1, C2) induced by Com, namely,

Ψ: Z2
p → G2, (α, β) 7→ (C1, C2) = (R1 ·Aα1,1 ·A

β
1,2, R2 ·Aα2,1 ·A

β
2,2).

6Essentially, we used the special honest-verifier zero-knowledge property of the Chaum-Pedersen identification
scheme [CP93, KW03, KMP16] here.

20

Using the assumption that D has full rank, that g, h,X1, X2 are generators of G, and the definition of
the Ai,j , we see that Ψ is a bijection, and (C1, C2) is uniformly random over G2. Therefore, we can
equivalently write the distribution as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,
ρ1, ρ2

$← Zp, (C1, C2) := (Xρ1
1 · gs, X

ρ2
2 · hs), (α, β) := Ψ−1(C1, C2).

We claim that this is exactly the distribution T1. For that, it is sufficient to argue that the way algorithm
TCol computes (α, β), i.e., as (α, β)t := D−1(ρ1 + c, ρ2 + c)t, is identical to Ψ−1. By definition of Ψ, the
expression (α, β) = Ψ−1(C1, C2) is equivalent to(

C1
C2

)
=
(
R1· Aα1,1· Aβ1,2
R2· Aα2,1· Aβ2,2

)
.

Using our definition of A, C1, C2, and R1, R2, this is equivalent to(
Xρ1

1 · gs
Xρ2

2 · hs
)

=
(
gs ·X−c1 · X

d1,1α
1 · X

d1,2β
1

hs ·X−c2 · X
d2,1α
2 · X

d2,2β
2

)
.

The gs and hs terms cancel out, and this is equivalent to(
ρ1 + c
ρ2 + c

)
= D ·

(
α
β

)
which concludes the proof.

Lemma 6. The scheme CMTDDH satisfies the statistical coset binding property of an (εb, εg, εt)-weakly
equivocable coset commitment scheme for LFDDH, where εb = 0.

Proof. To show that the scheme is statistically coset binding, we have to present an algorithm Ext
that outputs (R1, R2) on input A ∈ Z2×2

p and com = (C1, C2) ∈ G2. Algorithm Ext just outputs
(R1, R2) := (C1, C2). It remainst to show that Ext satisfies the conditions of the statistical coset binding
property. Concretely, we have to consider the following experiment for any adversary A: First, parameters
par := (g, h) ← LFDDH.Gen(1λ) and a commitment key ck := A ← BGen(par) are generated. Then, A
gets par and ck and outputs a commitment com = (C1, C2) ∈ G2. The extractor Ext is run, outputting
R1 = C1, R2 = C2. Finally, A outputs (R′1, R′2) ∈ G2 and (α′, β′) ∈ Z2

p. We have to bound the probability
of the event

Com(ck, (R′1, R′2); (α′, β′)) = com ∧ ∀δ ∈ Zp :
(
R′1
R′2

)
6=
(
R1 · gδ
R2 · hδ

)
.

Now, we rewrite the first condition according to the definition of Com, taking into account the definition
of A in algorithm BGen. Further, we use (R1, R2) = (C1, C2). Then, this is equivalent to(

R′1· ga·α
′ · gb·β′

R′2· ha·α
′ · hb·β′

)
=
(
R1
R2

)
∧ ∀δ ∈ Zp :

(
R′1
R′2

)
6=
(
R1 · gδ
R2 · hδ

)
.

Now, by taking δ = −(a · α′ + b · β′), it is easy to see that this can never hold, and therefore the event we
have to bound can never occur.

Lemma 7. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ Adv2Q-DDH
A,GGen (λ).

Proof. To prove multi-key indistinguishability based on the 2Q-DDH assumption, we assume the existence
of an adversary A against the multi-key indistinguishability of CMTDDH, and turn it into an algorithm
that breaks the 2Q-DDH assumption. That is, we construct a reduction B that simulates the multi-key
indistinguishability game for A and runs in the 2Q-DDH game. Reduction B is as follows:

1. B gets as input G, p, g, h and 2Q group elements (ui, vi)2Q
i=1.

21

2. B defines par := (g, h) and samples x $← Zp. If ((g, h), x) /∈ Good, B returns 0 and terminates.

3. Otherwise, B defines Q commitment keys ck1, . . . , ckQ ∈ G2×2 via

cki :=
(
u2i−1 u2i
v2i−1 v2i−1

)
for all i ∈ [Q].

4. B runs A on input par, x and (cki)i∈[Q]. It returns whatever A returns.

It is clear that the running time of B is dominated by the running time of A. Further, assume that B’s
input satisfies ui = gai , vi = gai for random ai ∈ Zp. In this case, the commitment keys are distributed
as if they are generated by BGen, and B perfectly simulates game Q-KEYDISTA0,CMT(λ) for A. On the
other hand, if ui, vi $← G for all i ∈ [2Q], then the resulting commitment keys cki are distributed uniformly
over G2×2, and B perfectly simulates game Q-KEYDISTA1,CMT(λ) for A. This shows the claim.

6 Efficiency
Here, we analyze the efficiency of our schemes. We first explain minor optimizations that improve
signature size and communication complexity. Then, we focus on the asymptotic and concrete efficiency
of our schemes.
Further Optimizations. We describe the optimizations for our tight construction in Section 4.2, but
they also apply to our other scheme. Our first optimization is to reduce the communication complexity by
deriving the commitment randomness ϕ, which consists of two field elements, from a short seed of length
λ bit using a random oracle H̄ : {0, 1}∗ → Z2

p. Then, instead of sending ϕ in the second round, each signer
sends its seed, and the signers locally derive all ϕ’s and aggregate them. By the unpredictability of the
random oracle, the scheme stays secure. Our second optimization allows us to remove the commitment
com, which consists of two group elements, from the final signature. The idea is to replace it by a
hash of com of length 2λ using another random oracle Ĥ : {0, 1}∗ → {0, 1}2λ. Concretely, the signers
first complete the signing protocol as before, but to define signer specific challenges, they compute
ci := Hc(pki, h,m, 〈P〉, B) for all i ∈ [N], where h := Ĥ(com). In the end, the signature is σ := (h, ϕ, s,B).
The signature is verified by first recomputing the ci’s as before (using h instead of com) and by checking
the commitment after hashing, i.e., using the equation

h = Ĥ
(

Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi
;ϕ
))

.

In a security proof, we would use the collision-resistance and observability of Ĥ to reduce this equation to
the original verification equation.
Asymptotics. In Table 2, we compare the asymptotic sizes of public keys and signatures and the
communication complexity per signer for our schemes with previous schemes in the pairing-free setting.
We see that our schemes are much more efficient than the schemes in [PW23]. Especially, the asymptotic
efficiency of our schemes is comparable with most non-tight or three-round schemes.
Concrete Parameters. We compare the concrete efficiency and security level of two-round multi-
signatures in the pairing-free setting in Table 3. The numbers are computed using a Python script, see
Appendix C. Our comparison assumes that all constructions are instantiated with the secp256k1 curve,
and we assume security parameter λ = 128. We compute the concrete security level based on the security
bounds (see Table 1) assuming the underlying assumption is 128 bit hard, and assuming QH = 230 hash
queries and QS = 220 signing queries. We see that our tightly secure scheme outperforms Chopsticks II,
the only other two-round scheme with comparable security level, by a factor of more than 3 in a signature
size, and more than 2 in the communication complexity. Finally, we also remark that our scheme is at
least twice as efficient as Chopsticks II in terms of computation.

Acknowledgments. Benedikt Wagner was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 507237585.

22

References
[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via

delinearized witnesses. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 157–188, Virtual Event, August 2021. Springer, Heidelberg.
(Cited on page 2.)

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-
secure signatures from lossy identification schemes. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 572–590. Springer,
Heidelberg, April 2012. (Cited on page 2, 3, 10.)

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 259–274. Springer, Heidelberg, May 2000. (Cited on page 2.)

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 650–678. Springer, Heidelberg, December 2021. (Cited on page 2, 3, 4.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 435–464. Springer, Heidelberg, December 2018. (Cited on
page 2, 3, 4.)

[BHJ+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-secure
authenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part I, volume 9014 of LNCS, pages 629–658. Springer, Heidelberg, March 2015. (Cited on
page 2.)

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of tight
cryptographic reductions. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 273–304. Springer, Heidelberg, May
2016. (Cited on page 2.)

[BKKP15] Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan. Tightly-secure signatures from
chameleon hash functions. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS,
pages 256–279. Springer, Heidelberg, March / April 2015. (Cited on page 2.)

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption from affine
message authentication. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 408–425. Springer, Heidelberg, August 2014. (Cited on
page 2.)

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short signature and id-based
encryption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 404–434. Springer, Heidelberg, December 2016. (Cited on
page 2.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.
(Cited on page 1, 2, 3, 4, 7.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 31–46. Springer, Heidelberg, January 2003. (Cited on page 1.)

23

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. (Cited
on page 1.)

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 276–305. Springer, Heidelberg, August
2022. (Cited on page 2.)

[CAHL+22] Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya, and
Benedikt Wagner. PI-cut-choo and friends: Compact blind signatures via parallel instance
cut-and-choose and more. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part III, volume 13509 of LNCS, pages 3–31. Springer, Heidelberg, August 2022. (Cited on
page 9.)

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375,
2021. https://eprint.iacr.org/2021/1375. (Cited on page 1, 2, 7.)

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg,
August 1993. (Cited on page 20.)

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual system groups. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 435–460. Springer, Heidelberg, August 2013. (Cited on page 2.)

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium
on Security and Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019. (Cited
on page 1.)

[DG21] Hannah Davis and Felix Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In Kazue Sako and Nils Ole Tippenhauer, editors, ACNS 21, Part II, volume
12727 of LNCS, pages 448–479. Springer, Heidelberg, June 2021. (Cited on page 2.)

[DGJL21] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. More efficient digital signatures with
tight multi-user security. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS,
pages 1–31. Springer, Heidelberg, May 2021. (Cited on page 2.)

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-
of-n and multi-signatures and trapdoor commitment from lattices. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 99–130. Springer, Heidelberg, May 2021.
(Cited on page 2, 7.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013. (Cited on page 8.)

[FH21] Masayuki Fukumitsu and Shingo Hasegawa. A tightly secure ddh-based multisignature with
public-key aggregation. Int. J. Netw. Comput., 11(2):319–337, 2021. (Cited on page 2, 3, 4.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 2.)

[GHKP18] Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan. More efficient (almost) tightly
secure structure-preserving signatures. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 230–258. Springer, Heidelberg,
April / May 2018. (Cited on page 2.)

24

https://eprint.iacr.org/2021/1375

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly CCA-secure encryption
without pairings. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 1–27. Springer, Heidelberg, May 2016. (Cited on page 2.)

[GJ18] Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure digital signatures and authen-
ticated key exchange. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 95–125. Springer, Heidelberg, August 2018. (Cited on
page 2.)

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature schemes
with tight reductions to the Diffie-Hellman problems. Journal of Cryptology, 20(4):493–514,
October 2007. (Cited on page 5.)

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 590–607. Springer, Heidelberg, August 2012. (Cited on page 2.)

[HJK+21] Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven Schäge.
Authenticated key exchange and signatures with tight security in the standard model. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
670–700, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 2.)

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019. (Cited on
page 9.)

[Hof17] Dennis Hofheinz. Adaptive partitioning. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 489–518. Springer,
Heidelberg, April / May 2017. (Cited on page 2.)

[IN83] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, (71):1–8, 1983. (Cited on page 1.)

[KD04] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 426–442. Springer,
Heidelberg, August 2004. (Cited on page 2.)

[KLR21] Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature
schemes. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV,
volume 13093 of LNCS, pages 468–492. Springer, Heidelberg, December 2021. (Cited on
page 9.)

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from
identification schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 33–61. Springer, Heidelberg, August 2016. (Cited on
page 2, 3, 20.)

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 2003, pages 155–164. ACM Press, October 2003. (Cited on page 2, 3, 20.)

[LLGW20] Xiangyu Liu, Shengli Liu, Dawu Gu, and Jian Weng. Two-pass authenticated key exchange
with explicit authentication and tight security. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 785–814. Springer, Heidelberg,
December 2020. (Cited on page 2.)

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer, Heidelberg, May / June
2006. (Cited on page 1.)

25

[LP20] Roman Langrehr and Jiaxin Pan. Unbounded HIBE with tight security. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages
129–159. Springer, Heidelberg, December 2020. (Cited on page 2.)

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures:
Extended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 245–254. ACM Press, November 2001. (Cited on page 1.)

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.
(Cited on page 2, 3, 4.)

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-
signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 189–221, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 2,
3, 4.)

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1717–1731. ACM Press, November 2020.
(Cited on page 2, 3, 4.)

[PW22] Jiaxin Pan and Benedikt Wagner. Lattice-based signatures with tight adaptive corruptions
and more. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022,
Part II, volume 13178 of LNCS, pages 347–378. Springer, Heidelberg, March 2022. (Cited
on page 2.)

[PW23] Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Heidelberg, April 2023. (Cited on
page 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 18, 19, 20, 22, 27, 29, 30.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991. (Cited on page 2.)

[TSS+23] Kaoru Takemure, Yusuke Sakai, Bagus Santoso, Goichiro Hanaoka, and Kazuo Ohta. More
efficient two-round multi-signature scheme with provably secure parameters. Cryptology
ePrint Archive, Report 2023/155, 2023. https://eprint.iacr.org/2023/155. (Cited on
page 3, 4.)

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Heidelberg, April 2023. (Cited on page 2, 3, 4, 9.)

26

https://eprint.iacr.org/2023/155

Appendix

A Omitted Background on Key Aggregation
In this section, we give some background needed to understand the construction with key aggregation,
formally presented in Appendix B. For the definition of key aggregation, we follow [PW23].

Definition 10 (Key Aggregation). A multi-signature scheme MS = (Setup,Gen,Sig,Ver) is said to
support key aggregation, if the algorithm Ver can be split into two deterministic polynomial time
algorithms Agg,VerAgg with the following syntax:

• Agg(P) → p̃k takes as input a set P = {pk1, . . . , pkN} of public keys and outputs an aggregated
key p̃k.

• VerAgg(p̃k,m, σ) → b is deterministic, takes as input an aggregated key p̃k, a message m, and a
signature σ, and outputs a bit b ∈ {0, 1}.

That is, algorithm Ver(P,m, σ) can be written as VerAgg(Agg(P),m, σ).

In addition to this definition, we need to adjust the definition of lossy soundness to the setting of
aggregated keys. For this, we first recall the definition of aggregation lossy soundness from [PW23], and
then define our new notion of coset aggregation lossy soundness.

Definition 11 (Aggregation Lossy Soundness). Let LF = (Gen,F) be a linear function family. We
say that LF satisfies εal-aggregation lossy soundness, if for any unbounded algorithm A, the following
probability is at most εal:

Pr

F(s)− c · X̃ = R

∣∣∣∣∣∣∣∣∣∣
par← Gen(1λ), X1

$← R,
(St, (X2, a2), . . . , (XN , aN))← A(par, X1),
a1

$← S, (St′, R)← A(St, a1),
c $← S, s← A(St′, c),
X̃ :=

∑N
i=1 aiXi

 .
Definition 12 (Coset Aggregation Lossy Soundness). Let LF = (Gen,F) be a linear function family.
We say that LF satisfies εal-coset aggregation lossy soundness, if for any unbounded algorithm A, the
following probability is at most εal:

Pr

F(s)− c · X̃ ∈ R+ F(D)

∣∣∣∣∣∣∣∣∣∣
par← Gen(1λ), X1

$← R,
(St, (X2, a2), . . . , (XN , aN))← A(par, X1),
a1

$← S, (St′, R)← A(St, a1),
c $← S, s← A(St′, c),
X̃ :=

∑N
i=1 aiXi

 .
Lemma 8. Let LF be a linear function family, such that for any par ∈ Gen(1λ), the domain Dpar can
be enumerated. Then, if LF satisfies εal-aggregation lossy soundness, it also satisfies εl-coset aggregation
lossy soundness.

Proof. The proof is almost identical to the proof of Lemma 1, and details are left to the reader.

B Construction with Key Aggregation
Here, we present the construction of two-round multi-signatures with key aggregation. Essentially, the
construction is the same as in [PW23], but we show that it can be instantiated with our weaker notion
of commitments. Before looking at the construction, we encourage the reader to consult Appendix A
for necessary definitions regarding key aggregation. Let LF = (LF.Gen,F) be a linear function family
and CMT = (BGen,TGen,Com,TCom,TCol) be an (εb, εg, εt)-weakly equivocable coset commitment
scheme for LF with key space K, randomness space G and commitment space H. Let H : {0, 1}∗ → K,
Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ → S be random oracles. We verbally describe the multi-signature
scheme ToothKA[LF,CMT] = (Setup,Gen,Sig,Ver) here, and give a more formal description in Figure 5.

27

Setup and Key Generation. The public parameters of the scheme are par ← LF.Gen(1λ). These
parameters specify the linear function F = F(par, ·). To generate a pair of keys, a signer samples a secret
key sk := x $← D and computes its public key as pk := X := F(x).
Key Aggregation. Given a set P = {pk1 = X1, . . . , pkN = XN} of public keys, the aggregate public
key p̃k is computed as p̃k := X̃ :=

∑N
i=1 ai ·Xi, where ai := Ha(〈P〉, pki) for each i ∈ [N].

Signing Protocol. Let m ∈ {0, 1}∗ be the message to be signed by a set of N signers. Each signer
i ∈ [N] holds a secret key ski = xi ∈ Zp. Let P = {pk1 = X1, . . . , pkN = XN} be the set of respective
public keys. We describe the signing protocol, i.e., algorithms Sig0,Sig1,Sig2, from the perspective of the
first signer, holding secret key sk1 = x1.

1. Commitment Phase. The signer computes the aggregated key p̃k := Agg(P) and a commitment
key ck := H(p̃k,m). The signer samples an element r1

$← D and computes R1 := F(r1). The
signer commits to R1 by sampling ϕ1

$← G and computing com1 := Com(ck, R1;ϕ1). Then, it sends
pm1,1 := com1 to all other signers.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N) be the list of messages output by the signers in the
commitment phase. Here, the message pm1,i is sent by signer i and has the form pm1,i = comi. The
signer computes an aggregated commitment com :=

⊗
i∈[N] comi and a challenge c := Hc(p̃k, com,m).

It computes a response s1 := c · a1 · x1 + r1, where a1 := Ha(〈P〉, pk1) is as in the key aggregation
algorithm. It sends pm2,1 := (s1, ϕ1) to all other signers.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N) be the list of messages output by the signers in
the response phase, where message pm2,i is sent by signer i and has the form pm2,i = (si, ϕi). The
signers aggregate the responses and commitment randomness received in the previous messages via

s :=
∑
i∈[N]

si, ϕ :=
⊕
i∈[N]

ϕi.

The final signature is σ := (com, s, ϕ).

Verification. Let m ∈ {0, 1}∗ be a message, P = {pk1 = X1, . . . , pkN = XN} be a set of public keys, and
σ = (com, s, ϕ) be a signature. To verify σ with respect to m and P, one first computes the aggregated
key p̃k = X̃ as above. Then, one computes the commitment key ck := H(p̃k,m) and c := Hc(p̃k, com,m).
The signature is valid, i.e., the verification outputs 1 if and only if the following equation holds:

com = Com
(
ck,F(s)− c · X̃;ϕ

)
.

Lemma 9. Let LF be a linear function family. Let CMT be an (εb, εg, εt)-weakly equivocable coset
commitment scheme for LF Then ToothKA[LF,CMT] is complete.

The proof of Lemma 9 is a similar calculation as in the proof of Lemma 2, and we leave it to the
reader.

Theorem 3. Let LF be a linear function family that satisfies key indistinguishability and εal-coset
aggregation lossy soundness. Let CMT be an (εb, εg, εt)-weakly equivocable coset commitment scheme for
LF. Further, let H : {0, 1}∗ → K, Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ → S be random oracles. Then, the
scheme ToothKA[LF,CMT] is MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHa , QHc , QS queries to oracles
H,Ha,Hc,Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,ToothKA[LF,CMT](λ) ≤ εg + 4Q2

Sεt + 4QSεg + 4QSQHQHc
εb

+ 4QS
|R|

+ 4QSQHa
QHc

|S|
+ 4QSQHa

QHc
εal

+ 4QS
(

AdvQH-keydist
B,CMT (λ) + Advkeydist

B′,LF (λ)
)
.

28

Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 sk := x $← D
03 pk := X := F(x)
04 return (pk, sk)

Alg Agg(P)
05 parse {pk1, . . . , pkN} := P
06 for i ∈ [N] : parse Xi := pki
07 for i ∈ [N] : ai := Ha(〈P〉, pki)
08 return p̃k := X̃ :=

∑N
i=1 ai ·Xi

Alg VerAgg(p̃k,m, σ)
09 parse X̃ := p̃k, (com, s, ϕ) := σ
10 c := Hc(p̃k, com,m)
11 R := F(s)− c · X̃
12 ck := H(p̃k,m)
13 if com 6= Com(ck, R;ϕ) : return 0
14 return 1

Alg Ver(P,m, σ)
15 p̃k := Agg(P)
16 return VerAgg(p̃k,m, σ)

Alg Sig0(P, sk1,m)
17 parse x1 := sk1
18 p̃k := Agg(P), ck := H(p̃k,m)
19 r1

$← D, R1 := F(r1), ϕ1
$← G

20 pm1,1 := com1 := Com(ck, R1;ϕ1)
21 St1 := (p̃k, x1, r1, ϕ1,m)
22 return (pm1,1, St1)

Alg Sig1(St1,M1)
23 parse (pm1,1, . . . , pm1,N) :=M1

24 parse (p̃k, x1, r1, ϕ1,m) := St1
25 for i ∈ [N] : parse comi := pm1,i
26 com :=

⊗
i∈[N] comi

27 c := Hc(p̃k, com,m)
28 a1 := Ha(〈P〉, pk1)
29 s1 := c · a1 · x1 + r1
30 pm2,1 := (s1, ϕ1)
31 return (pm2,1, St2 := com)

Alg Sig2(St2,M2)
32 parse com := St2
33 parse (pm2,1, . . . , pm2,N) :=M2
34 for i ∈ [N] : parse (si, ϕi) := pm2,i

35 s :=
∑N
i=1 si, ϕ :=

⊕N
i=1 ϕi

36 return σ := (com, s, ϕ)

Figure 5: The multi-signature scheme ToothKA[LF,CMT] = (Setup,Gen,Sig,Ver) with key aggregation
for a linear function family LF = (LF.Gen,F) and a weakly equivocable coset commitment scheme
CMT = (BGen,TGen,Com,TCom,TCol) for LF. The construction is the same as in [PW23], instantiated
with our new building blocks.

Proof. The proof is an adaptation of the proof of Theorem 1 in [PW23] to our new building blocks. At
the same time, we can think of the proof as a simplification of the proof of Theorem 1. For these reasons,
we only sketch the proof informally. The proof is identical to the proof of Theorem 1 in [PW23] except
for G7 and the fact that the final reduction reduces to coset aggregation lossy soundness instead of
aggregation lossy soundness.
Game G0: This is the original security game MS-EUF-CMAAToothKA[LF,CMT]. As in the proof of Theo-
rem 1, we can omit signing oracle Sig2 without loss of generality. We have

AdvMS-EUF-CMA
A,ToothKA[LF,CMT](λ) = Pr [G0 ⇒ 1].

Game G1: We let the game abort if (par, x1) /∈ Good, where x1 is the secret key of the signer that is
simulated by the game. As in the proof of Theorem 1 (game G3), we can argue that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G2: We introduce a map b mapping inputs (p̃k,m) to random oracle H to bits. For each such
input for which b[p̃k,m] is not yet defined, we set it to 1 with probability 1/(QS + 1), and to 0 otherwise.
The game additionally aborts if b[p̃k,m] = 1 for a signing query or b[p̃k,m] = 0 for the forgery. We can
argue that

Pr [G2 ⇒ 1] ≥ 1
4QS

· Pr [G1 ⇒ 1].

Game G3: We change how commitment keys ck output by random oracle H on inputs (p̃k,m) are
sampled. Namely, if b[p̃k,m] = 0, then we sample ck with a trapdoor via (ck, td)← TGen(par, X1), where
X1 is the public key of the signer simulated by the game. Otherwise, if b[p̃k,m] = 1, we sample ck in

29

binding mode via ck← BGen(par). Indistinguishability can be argued using the uniform keys property of
CMT and the multi-key indistinguishability property of CMT. We get a reduction B with

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ AdvQH-keydist
B,CMT (λ).

Game G4: In this game, we use the trapdoor td generated in random oracle H to simulate the signing
oracle. This works out because due to the changes in G2 and G3, the commitment key ck used in signing
queries has been sampled with a trapdoor. We can argue that

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ QSεt.

Game G5: We undo the change from G1 and no longer require that (par, x1) ∈ Good. As before, we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G6: We change how public key X1 is generated. Before, it was generated by sampling the secret
key x1

$← D and setting X1 := F(x1). Now, we sample X1
$← R. Note that the secret key x1 is not used

anymore, due to the previous changes. Now, we can use the key indistinguishability of LF and get a
reduction B′ with

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Advkeydist
B′,LF (λ).

Game G7: We use the statistical coset binding property of CMT as follows. For oracle queries of
the form Hc(p̃k, com,m), we set ck := H(p̃k,m), and extract from the commitment com using the
extractor Ext from the statistical coset binding property of CMT if ck has been sampled in binding
mode, i.e., if b[p̃k,m] = 1. Concretely, we run R ← Ext(ck, com) and store R in another map r as
r[p̃k, com,m] := R. We continue the simulation of Hc as before. Later, when A outputs its forgery
(P∗,m∗, σ∗) for a signature σ∗ = (com∗, s∗, ϕ∗), we compute the aggregated key p̃k := X̃ := Agg(P∗) and
c∗ := Hc(p̃k, com∗,m∗) and R∗ := F(s∗)− c∗ · X̃ as in the verification algorithm. Then, the game outputs
0 if R∗ /∈ r[p̃k, com∗,m∗] + F(D). Otherwise, it continues as before. Observe that compared to G7 in the
proof of Theorem 1 in [PW23], we weaken this new winning condition by allowing a difference in the span
of F. This is necessary as we only have statistical coset binding, and not statistical binding as in [PW23].
We will see that this is compensated by coset aggregation lossy soundness. Using a reduction as given in
G7 in the proof of Theorem 1 in [PW23], we can argue that

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ QHQHc
εb.

Game G8: We ensure that Ha and Hc are always queried in the correct order. Namely, if there is a
query Ha(〈P〉, pk) for pk = X1 and the hash value is not yet defined, but for p̃k := Agg(P) the hash
value Hc(p̃k, com,m) is already defined for some com,m, then the game aborts. As in G8 in the proof of
Theorem 1 in [PW23], we get that

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ 1
|R|

+ QHa
QHc

|S|
.

Finally, we reduce from coset aggregation lossy soundness to finish the proof. In contrast to the final
reduction in the proof of Theorem 1 in [PW23], it is important to use coset aggregation lossy soundness
and not aggregation lossy soundness due to the modified change in G7. We get

Pr [G8 ⇒ 1] ≤ QHa
QHc

εal.

30

Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 x0, x1

$← D, seed $← {0, 1}λ
03 X0 := F(x0), X1 := F(x1)
04 pk := (X0, X1), sk := (x0, x1, seed)
05 return (pk, sk)

Alg Ver(P,m, σ)
06 parse {pk1, . . . , pkN} := P
07 parse (com, ϕ, s, B) := σ

08 parse b1 . . . bN := B ∈ {0, 1}N
09 for i ∈ [N] :
10 parse (Xi,0, Xi,1) := pki
11 ci := Hc(pki, com,m, 〈P〉, B)
12 R := F(s)−

∑N
i=1 ci ·Xi,bi

13 ck := H(〈P〉,m)
14 if com 6= Com(ck, R;ϕ) : return 0
15 return 1

Alg Sig0(P, sk1,m)
16 parse (x1,0, x1,1, seed1) := sk1
17 ck := H(〈P〉,m)
18 b1 := Hb(seed1, 〈P〉,m)
19 r1

$← D, ϕ1
$← G, R1 := F(r1)

20 com1 := Com(ck, R1;ϕ1)
21 pm1,1 := (b1, com1)
22 St1 := (sk1, r1, ϕ1)
23 return (pm1,1, St1)

Alg Sig1(St1,M1)
24 parse (pm1,1, . . . , pm1,N) :=M1
25 parse (sk1, r1, ϕ1) := St1
26 for i ∈ [N] :
27 parse (bi, comi) := pm1,i

28 B := b1 . . . bN ∈ {0, 1}N
29 com :=

⊗
i∈[N] comi

30 c1 := Hc(pk1, com,m, 〈P〉, B)
31 s1 := c1 · x1,b1 + r1
32 pm2,1 := (s1, ϕ1)
33 St2 := com
34 return (pm2,1, St2)

Alg Sig2(St2,M2)
35 parse com := St2
36 parse (pm2,1, . . . , pm2,N) :=M2
37 for i ∈ [N] : parse (si, ϕi) := pm2,i

38 s :=
∑N
i=1 si, ϕ :=

⊕N
i=1 ϕi

39 return σ := (com, ϕ, s, B)

Figure 6: The multi-signature scheme Tooth[LF,CMT] = (Setup,Gen,Sig,Ver) for a linear function family
LF = (LF.Gen,F) and a weakly equivocable coset commitment scheme CMT = (TGen,Com,TCom,TCol).

31

Game G0-G8
01 b∗ $← {0, 1} // G2-G8

02 par← LF.Gen(1λ)
03 seed1

$← {0, 1}λ
04 x1,0, x1,1

$← D, X1,0 := F(x1,0), X1,1 := F(x1,1) // G0-G6

05 x1,b∗
$← D, X1,b∗ := F(x1,b∗), X1,1−b∗

$← R // G7-G8

06 if (par, x1,1−b∗) /∈ Good : return 0 // G3-G5

07 pk∗ := (X1,0, X1,1)
08 (P∗,m∗, σ∗)← AH,Hb,Hc,Sig0,Sig1(par, pk∗)
09 if pk∗ /∈ P∗ ∨ (P∗,m∗) ∈ Queried : return 0
10 parse (com∗, ϕ∗, s∗, B∗) := σ∗, b∗1 . . . b

∗
N := B∗ ∈ {0, 1}N

11 if bad = 1 : return 0 // G1-G8

12 if b∗ = b∗1 ∨ H̄b(seed1, 〈P∗〉,m∗) = 1− b∗ : return 0 // G2-G8

13 parse {pk1 = pk∗, . . . , pkN} := P∗ // G8

14 for i ∈ [N] : // G8

15 parse (Xi,0, Xi,1) := pki // G8

16 c∗i := Hc(pki, com∗0,m∗, 〈P∗〉, B∗) // G8

17 R∗ := F(s∗)−
∑N
i=1 c

∗
i ·Xi,b∗

i
// G8

18 if R∗ /∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D) : return 0 // G8

19 return Ver(P∗,m∗, σ∗)

Figure 7: The games G0-G8 used in the proof of Theorem 1. Lines with highlighted comments are only
executed in the respective games. The signing oracles are defined in Figure 8, and the random oracles are
defined in Figure 9.

32

Oracle Sig0(P,m)
01 parse {pk1, . . . , pkN} := P
02 if pk1 6= pk∗ : return ⊥
03 Queried := Queried ∪ {(P,m)}, ctr := ctr + 1, sid := ctr, round[sid] := 1
04 ck := H(〈P〉,m)
05 b1 := H̄b(seed1, 〈P〉,m)
06 r1

$← D, ϕ1
$← G, R1 := F(r1,b1)

07 com1 := Com(ck, R1;ϕ1)
08 St1 := (r1, ϕ1)
09 if b1 = 1− b∗ : (com1, St1)← TCom(ck, tr[〈P〉,m]) // G5-G8

10 (pm1[sid], St1[sid]) := (pm1,1 := (b1, com1), St1)
11 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
12 if round[sid] 6= 1 : return ⊥
13 parse (pm1,1, . . . , pm1,N) :=M1
14 if pm1[sid] 6= pm1,1 : return ⊥
15 round[sid] := round[sid] + 1, St1 := St1[sid]
16 parse (r1, ϕ1) := St1 // G0-G4

17 for i ∈ [N] : parse (bi, comi) := pm1,i

18 B := b1 . . . bN ∈ {0, 1}N
19 com :=

⊗
i∈[N] comi

20 c1 := Hc(pk1, com,m, 〈P〉, B)
21 s1 := c1 · x1,b1 + r1 // G0-G4

22 if b1 = 1− b∗ : (ϕ1, R1, s1)← TCol(St1, c1) // G5-G8

23 if b1 = b∗ : s1 := c1 · x1,b1 + r1 // G5-G8

24 St2 := com
25 (pm2[sid], St2[sid]) := (pm2,1 := (s1, ϕ1), St2)
26 return pm2[sid]

Figure 8: The signing oracles that are used in the proof of Theorem 1. Lines with highlighted comments
are only executed in the respective games.

Oracle H(〈P〉,m) // G0-G3

01 if h[〈P〉,m] = ⊥ :
02 h[〈P〉,m] $← K
03 return h[〈P〉,m]

Oracle H(〈P〉,m) // G4-G8

04 if h[〈P〉,m] = ⊥ :
05 b := H̄b(seed1, 〈P〉,m)
06 if b = 1− b∗ :
07 (ck, td)← TGen(par, X1,1−b∗)
08 tr[〈P〉,m] := td
09 if b = b∗ :
10 ck← BGen(par)
11 h[〈P〉,m] := ck
12 return h[〈P〉,m]

Oracle H̄b(seed, 〈P〉,m)
13 if h̄b[seed, 〈P〉,m] = ⊥ :
14 h̄b[seed, 〈P〉,m] $← {0, 1}
15 return h̄b[seed, 〈P〉,m]

Oracle Hc(pk, com,m, 〈P〉, B) // G0-G7

16 if hc[pk, com,m, 〈P〉, B] = ⊥ :
17 hc[pk, com,m, 〈P〉, B] $← S
18 return hc[pk, com,m, 〈P〉, B]

Oracle Hc(pk, com,m, 〈P〉, B) // G8

19 if hc[pk, com,m, 〈P〉, B] = ⊥ :
20 parse {pk1, . . . , pkN} := P
21 parse b1 . . . bN := B
22 b := H̄b(seed1, 〈P〉,m)
23 if pk = pk∗ = pk1 ∧ b = b∗ :
24 R← Ext(H(〈P〉,m), com)
25 r[com,m, 〈P〉, B] := R
26 hc[pk, com,m, 〈P〉, B] $← S
27 return hc[pk, com,m, 〈P〉, B]

Oracle Hb(seed, 〈P〉,m)
28 if seed = seed1 : bad := 1 // G1-G8

29 return H̄b(seed, 〈P〉,m)

Figure 9: The random oracles that are used in the proof of Theorem 1. Lines with highlighted comments
are only executed in the respective games. Algorithm Ext is the (unbounded) extractor for the statistical
coset binding property of CMT.

33

C Scripts for Parameter Computation

Listing 1: Python Script to compute concrete security levels and efficiency of two-round multi-signatures.
More explanation is given in Section 6.
#!/ usr/bin/env python

PURPOSE #OF#THIS# SCRIPT
For each scheme , we estimate the security level
that is guaranteed by the security bound .
We also compute the concrete sizes of public keys ,
signatures , and communication complexity per signer .
We assume a certain number of hash and signing
queries ; we assume that secp256k1 is used and the
underlying assumptions / problems offer a security
level of 128 bit.
###

import math
from tabulate import tabulate

number of hash queries and signing queries
log_q_h = 30
log_q_s = 20

hardness of the underlying assumption
kappa = 128

sizes of group elements , exponents , and statistical security parameter +
#we assume secp256k1 and all sizes in bits
secpar = 128
sizege = 33*8
sizefe = 256

Define Schemes
Note: we estimate an upper bound on epsilon , assuming unit time
One can see that this favors schemes with rewinding due to the sqrt#
###

musigtwo = {
"name": " Musig2 ",
" level ": 0.25 * (kappa -2 -3* log_q_h),
"pk": sizege ,
"comm": 4* sizege +sizefe ,
"sig": sizege +sizefe ,

}

hbms = {
"name": "HBMS",
" level ": 0.25 * (kappa -2 -3* log_q_h - 4* log_q_s),
"pk": sizege ,
"comm": sizege +2* sizefe ,
"sig": sizege +2* sizefe ,

}

tz = {
"name": "TZ",
" level ": 0.25 * (kappa -3 -3* log_q_h),
"pk": sizege ,
"comm": 4* sizege +2* sizefe ,
"sig": sizege +2* sizefe ,

}

tssho = {
"name": " TSSHO ",
" level ": kappa - 2 - log_q_s ,
"pk": 2* sizege ,
"comm": 2* sizege +2* sizefe ,
"sig": 3* sizefe ,

}

chopsticksone = {
"name": " Chopsticks 1",
" level ": kappa - 2 - log_q_s ,
"pk": 2* sizege ,
"comm": 3* sizege +1* sizefe +secpar ,
"sig": 3* sizege +4* sizefe ,

}

chopstickstwo = {
"name": " Chopsticks 2",
" level ": kappa - 2,
"pk": 4* sizege ,
"comm": 6* sizege +2* sizefe + secpar +1,
"sig": 6* sizege +8* sizefe +secpar , # assuming number of signers <= secpar

}

toothone = {
"name": " Toothpicks 1",
" level ": kappa - 2 - log_q_s ,
"pk": 2* sizege ,
"comm": 2* sizege +1* sizefe +secpar ,
"sig": 3* sizefe +2* secpar ,

}

toothtwo = {
"name": " Toothpicks 2",
" level ": kappa - 3,
"pk": 4* sizege ,
"comm": 2* sizege +1* sizefe + secpar +1,
"sig": 3* sizefe +2* secpar +secpar , # assuming number of signers <= secpar

34

}

schemes = [musigtwo ,hbms ,tz ,tssho , chopsticksone , chopstickstwo ,toothone , toothtwo]

Main Part

def bytes (x):
return int(round (x/8.0 ,0))

data = [[" Scheme ", " Security Level ", "Pk", " Communicaton ", " Signature "]]

for s in schemes :
data. append ([s["name"],int(s[" level "]) ,bytes (s["pk"]) ,bytes (s["comm"]) ,bytes (s["sig"])])

print (tabulate (data , headers =’ firstrow ’,tablefmt =’ fancy_grid ’))
print (tabulate (data , headers =’ firstrow ’))
print (tabulate (data , headers =’firstrow ’,tablefmt =’latex_raw ’,disable_numparse =True))

35

	Introduction
	Our Contribution
	Technical Overview

	Preliminaries
	Our Building Blocks
	Linear Functions
	Weaker Commitments

	Our Constructions
	Our Construction with Key Aggregation
	Our Tight Construction

	Our Instantiations
	Linear Function Family
	Commitment Scheme

	Efficiency
	Omitted Background on Key Aggregation
	Construction with Key Aggregation
	Scripts for Parameter Computation

