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Abstract. We consider the problem of creating, or issuing, zero-knowledge proofs obliviously. In
this setting, a prover interacts with a verifier to produce a proof, known only to the verifier. The
resulting proof is transferrable and can be verified non-interactively by anyone. Crucially, the actual
proof cannot be linked back to the interaction that produced it. This notion generalizes common
approaches to designing blind signatures, which can be seen as the special case of proving “knowl-
edge of a signing key”, and extends the seminal work of Camenisch and Stadler (’97). We propose
a provably secure construction of oblivious proofs, focusing on discrete-logarithm representation
equipped with AND-composition.

We also give three applications of our framework. First, we give a publicly verifiable version of the
classical Diffie-Hellman based Oblivious PRF. This yields new constructions of blind signatures
and publicly verifiable anonymous tokens. Second, we show how to ”upgrade” keyed-verification
anonymous credentials (Chase et al., CCS’14) to also be concurrently secure blind signatures on the
same set of attributes. Crucially, our upgrade maintains the performance and functionality of the
credential in the keyed-verification setting, we only change issuance. We observe that the existing
issuer proof that the credential is well-formed may be verified by anyone; creating it with our
framework makes it a blind signature, adding public verifiability to the credential system. Finally,
we provide a variation of the U-Prove credential system that is provably one-more unforgeable with
concurrent issuance sessions. This constitutes a fix for the attack illustrated by Benhamouda et al.
(EUROCRYPT’21).

Beyond these example applications, as our results are quite general, we expect they may enable
modular design of new primitives with concurrent security, a goal that has historically been chal-
lenging to achieve.

1 Introduction

Blind signatures, introduced by Chaum [17], are a fundamental tool in cryptography: they are a key
component of e-voting applications, e-cash systems, anonymous credentials, and privacy-preserving pro-
tocols. Today, Google uses them to provide a VPN service that does not know of its users4, Apple uses
them as iCloud private relay5, GNU for their e-cash system Taler6 [22]. Blind signatures are currently
undergoing standardization within IETF as Blind RSA signatures [21] and publicly-verifiable tokens [21].
With a surge of interest in privacy-preserving technologies, blind signatures have been extended to more
involved use-cases: partially-blind signatures [2] tackle the case where part of the message is meant
to be public; blind signatures with attributes (also known as Anonymous Credentials Light) [3] tackle
issuance of signatures with partial attributes, and U-Prove [36], based on Brands credentials [10], pro-
vides a lightweight anonymous credential system. All these systems can be seen a proving more complex
statements than “knowledge of the preimage of the verification key”: the relation to be proven is more
involved and often times the user also helps selecting the instance in a way that is oblivious to the issuer.
We ask ourselves the following question:

Can proofs be issued obliviously, similarly to blind signatures?

4 https://one.google.com/about/vpn
5 https://developer.apple.com/news/?id=huqjyh7k
6 https://taler.net/
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The common denominator of many blind signature and anonymous credential systems is their resem-
blance to Σ-protocols, a family of zero-knowledge proofs [18] that is being executed between an issuer
(acting as the prover) and a user (acting as a verifier). At the end, a non-interactively verifiable proof
is created by the user. To achieve oblivious issuance of this final proof (i.e., to ensure that it cannot
be linked back by the issuer to the interaction that generated it), the user carefully re-randomizes the
proof transcript. Unfortunately, each of the above provides a different security analysis, which is often
tedious and difficult. In some schemes security proofs are missing, and some others don’t capture some
realistic adversarial scenarios like interleaved open sessions (so-called concurrent security). A recent work
of Benhamouda et al. [6] provided a concrete attack for some of these protocols.

Our contribution. In this work, we introduce the notion of oblivious proofs: these are proofs that are
issued from a prover to the verifier without knowing the full statement. We show that this notion can be
realised and provide a detailed security analysis for our framework.

Theorem 1 (informal). There exists an oblivious proof scheme for algebraic relations.

Algebraic relations are relations of the form (x,X,Y , Z) where Z = Y ·x and X = Mx, for some matrix
M ∈ Gn×m and vectors x,X,Y . The proof size in linear in n. We provide three example applications
for the above protocol:

– In Section 5 we design an efficient, publicly verifiable oblivious unpredictable function based on
pairing-free curves, which is a publicly verifiable version of the classical Diffie-Hellman based Obliv-
ious PRF. This yields, for example, a construction of a pairing-free blind signature scheme with a
unique portion of the signature, as well as new constructions of anonymous tokens.

– In Section 6 we add public verification for CMZ [15] algebraic MACs, which are the basis for an
efficient type of anonymous credential scheme called keyed-verification anonymous credentials. This
type of credential system is used to privately manage group state in the Signal encrypted messaging
application [16]. We provide a protocol for issuing CMZ credentials and a security analysis. Our
protocol makes only modest changes to issuance, and does not require any change to existing keyed
verification features (like credential presentation).

– In Section 7 we provide a variant of the U-Prove [36] issuance protocol from Microsoft Research that
is secure in the concurrent setting. While the previous scheme was affected by a variant of the ROS
attack [6], our variant comes with a proof of security in the concurrent setting.

As our results are quite general, we expect they may also be applicable to mend and thwart the attack
of Benhamouda et al. [6], and also enable modular design of new schemes that are concurrently secure.

Technical Overview. We start from Σ-protocols for linear relations (e.g. as in Boneh–Shoup [9, Ch. 19]),
i.e. relations of the for Mx = X where x ∈ Zm

p is the witness and M ∈ Gn×m is a linear map. The
transcript (T , e, r) satisfies the verification equation

Mr = T + eX.

Inspired by blind Schnorr [42] and Okamoto-Schnorr signatures [35] we blind the transcript with random
(ρ, ε) such that

M(r + ρ) = (T +Mρ+ εX) + (e− ε)X

and thus obtain a proof (T +Mρ+ εX, e− ε, r + ρ) that can be presented obliviously. In other words,
users cannot be tracked in applications exposing these proofs. Two difficulties however arise here: (a)
the instance X must be fully known to the prover, and this restricts the breath of possible applications,
where often times also part of the instance must be re-randomized (e.g. for user-specific attributes in
anonymous credentials, or public metadata in the signature); (b) one-more unforgeability of the resulting
scheme is tricky. Concurrent security hinges on the ROS assumption [40,6] and thus inadequate for most
practical instantiations.

To address the first issue, we consider relations where part of the instance (we call it the argument) is
selected by the user. We consider relations of the form (x,X,Y , Z) where Z = Y ·X and X = Mx. This
allows us to address and extend previous constructions of blind signatures and anonymous credentials.
To address the latter, we use the recent techniques of Tessaro and Zhu [43] for specifically Schnorr blind
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signatures. Roughly speaking, in the commitment phase, the prover commits also to an extra challenge
a ∈ Zp, and engages in a proof for Mx and Z = Y ·x for some Y controlled by the user. Upon receiving
a challenge e from the user, the server produces a response under challenge ae, which is uniformly
distributed and unpredictable for the adversary. The resulting protocol is immune to ROS, but the proof
of unforgeability demands a more tedious analysis for security (the proof is for more involved relations,
and Y is now under control of the adversary), obliviousness (the element Z could be miscomputed), and
correctness (the blinding of X must be multiplicative).

Related works. For more than two decades, it has been folklore in the cryptographic community that
Σ-protocols may be issued obliviously, but this idea has not been investigated or ever formalized. Yet, it
is a natural question to generalize Schnorr blind signatures in a similar way that Schnorr signatures were
generalized to prove relations involving discrete logarithms. In fact, it was also not clear how security
could be guaranteed for more than polylogarithmic concurrent queries due to an underlying assumption
called ROS [38,42,6] that naturally emerges when studying concurrent security of interactive Σ-protocols.

Similar notions have emerged in the past literature. Belenkiy, Camenisch, and Chase [5] introduced the
notion of randomizable zero-knowledge proofs, demanding that a zero-knowledge proof can be interactively
re-randomized without knowing the witness. The notion applies naturally to Groth–Sahai proofs [27] and
can be used to achieve delegatable anonymous credentials. To the best of our knowledge, no pairing-free
randomizable proofs are known. De Santis and Yung [20] developed the concept of meta proofs, in which
the holder of a proof can generate a proof that there exists a proof for the verification statement, however
this is expensive (when it is possible at all), whereas our approach maintains nearly the same costs as
the base Σ-protocol.

In the seminal work of Camenisch and Stadler [12] on proofs for statements about discrete loga-
rithms, we see “blind issuance of Σ-protocols” is left as an open problem. However, proving concurrent
soundness for these protocols has been historically hard due to the so-called ROS assumption, and a
number of mitigations for it have been attempted over the years: Pointcheval [37] provided a variant
of the Okamoto-Schnorr blind signature scheme [35] that boosts security using cut-and-choose to catch
cheating behavior. Roughly speaking, in Pointcheval’s fix, the user commits to two challenges at then
beginning of the protocol and then has to open one of them. The resulting scheme, however requires
the signer to stop issuing signatures to the user caught cheating, which is tricky in scenarios with a
large, potentially anonymous, userbase. Abe [1] used OR-composition for Σ-protocols to yield an ordi-
nary blind signature scheme under the DDH assumption that is secure in the concurrent setting, but
with a tedious security analysis revisited in [31] and with small variations susceptible to attacks [3,6].
Katz, Loss, and Rosenberg [32] revisit the work of Pointcheval [37] and extend the cut-and-choose from
1-out-of-2 to 1-out-of-N , but require the server keep state of size N and increase it with the number of
executions (and thus affecting the concrete communication complexity of the protocol). This line of work
was refined further in recent works [14,28]. Fuchsbauer, Plouviez, and Seurin [24] proposed a framework
for blind issuance of Schnorr signatures, relying on a different computational assumption called modified
ROS (mROS). Roughly speaking, they have the issuer provide two possible commitments, and then give
a response for only one of them, selected at random after the user has sent the challenge. However, the
assumption requires larger parameters for concrete security, discouraging its use in practice. Fuchsbauer
and Wolf [25] proposed a different approach, based on generic zero-knowledge proofs. Roughly speaking,
the user proves that the challenge has been generated correctly while keeping private the blinding factors.
This requires embedding the hash function inside the proof, which is expensive in practice and limits the
provable security (since the hash function may not be formally modelled as a random oracle).

In our generic framework, we instead use Tessaro and Zhu’s approach for mitigating the ROS at-
tack [43]. Roughly speaking, here the issuer commits to a random value a when sending the commitment
message of the Σ-protocol, and after receiving the challenge e from the user, sends a response that is valid
under challenge ea. This effectively re-randomizes the challenges and thwarts ROS attacks making them
statistically negligible [43]. We opt for this approach because, despite the fact that the final transcript is
slightly different from the one of a Σ-protocol, it presents strong security guarantees while only requiring
small changes to the initial Σ-protocol that are easily adoptable by protocol designers.
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Table 1. Summary of variable names in this work. Variables marked with a prime (′) denoted the blinded values.

Variable Domain Description

Γ = (G, p,G) group description

Λ extra relation parameters

x Zm
p witness

X Gn statement

Z G auxiliary statement

(υ) Y G1×m (blinding factor of) auxiliary argument

[Y ;M ] G(n+1)×m Σ-protocol morphism

T Gn+1 Σ-protocol commitment

(ε) e Zp (blinding factor of) Σ-protocol challenge

(ρ) r Zm
p (blinding factor of) Σ-protocol response

(α, β) C= aH + bG G (blinding factors of) Pedersen commitment to a

2 Preliminaries

Notation. We denote by (G, p,G) the description of a group G of prime order p, with with generator G.
We denote group operations additively, and given a scalar x ∈ Zp we denote with xG scalar multiplication.
We are going to use H to denote another group generator whose discrete logarithm base G is not known.
To ease readability, we denote with 0 both the identity element in the group and in the field. We denote
probabilistic algorithms in sans-serif, and by writing y ← M(x) we denote the act of sampling the value
y from the probabilistic algorithm M on input x. The range of M on input x is denoted [M(x)].

The entries of a column vector x are denoted inline as [x1;x2;x3], entries of a row vector xT as
(x1, x2, x3). We use xi..j to denote the subvector of x consisting of elements from i to j. Assignment of
a to the expression b is denoted as a := b; vectors are denoted in bold font. The identity matrix of size
n× n over some field Zp is denoted In (the field will be clear from the context). To ease readability, we
denote with 0 the identity element in the group, in the field, and in the matrix space. It will be clear
from the context which one is meant.

We assume that probabilistic algorithms run in time polynomial in the security parameter λ (ab-
brev p.p.t.) and have the security parameter implicitly as input. A summary of the variable names used
throughout the protocol is available in Table 1.

The Decisional Diffie-Hellman problem. The Decisional Diffie-Hellman (DDH) problem is hard for a
group generator GrGen if it is infeasible, given a group description Γ := (G, p,G) ← GrGen(1λ) and a
tuple (aG, bG,C) ∈ G3, to decide if C = abG or C is a uniformly-random element of G. More formally

AdvddhGrGen,A(λ) :=
∣∣Pr[DDH0

GrGen,A(λ) = true
]
− Pr

[
DDH1

GrGen,A(λ) = true
]∣∣ = negl(λ)

where DDHb
oNIP,R,A(λ) is defined in Figure 2.This assumption is relevant only for one specific application

of our framework described in Section 6.

The Discrete Logarithm problem. The Discrete Logarithm (DL) problem is hard for a group generator
GrGen if it is infeasible, given a group description Γ = (G, p,G) ← GrGen(1λ) and a uniformly-random
group element X ←$ G, to compute x ∈ Zp such that xG = X. More formally, for any p.p.t. adversary A

AdvdlGrGen,A(λ) := Pr
[
DLGrGen,A(λ) = true

]
= negl(λ) .

The q-Strong Discrete Logarithm problem. The q-Strong Discrete Logarithm problem (q-SDL) is hard
for a group generator GrGen if it is infeasible, given a group description Γ := (G, p,G)← GrGen(1λ) and
the q + 1powers G, xG, x2G, . . . , xqG ∈ G, to compute x ∈ Zp More formally, for any p.p.t. adversary A

Advsdlq,GrGen,A(λ) := Pr
[
SDLq,GrGen,A(λ) = true

]
= negl(λ) .

This assumption is solely used for oTZ[GrGen, restr] in Theorem 4.

4



Kernel Matrix Diffie-Hellman. The Kernel Matrix Diffie-Hellman (KMDH) problem [34, Def. 13] is
hard for a group generator GrGen and a matrix distribution D if it is infeasible, given a group description
Γ := (G, p,G) ← GrGen(1λ) and a matrix M ← D(Γ) in Gn×m to find non-trivial elements of the null
space, that is, to exhibit an r ∈ Zn

p such that Mr = 0 and r ̸= 0. More formally, for any p.p.t. adversary
A

Advkmdh
GrGen,D,A(λ) := Pr

[
KMDHGrGen,D,A(λ) = true

]
= negl(λ) .

For the distributions we study, this assumption reduces to DL.

The ROS problem. The ROS (Random inhomogeneities in a Overdetermined Solvable system of linear
equations) problem for dimension ℓ asks, given a prime number p and access to a random oracle Hros

with range in Zp, to find (ℓ+ 1) vectors ρ̂j ∈ Zℓ
p for j ∈ [ℓ+ 1], and a vector e = (e1, . . . , eℓ) such that:

Hros(ρ̂j) = ⟨ρ̂j , e⟩ for all j ∈ [ℓ+ 1] .

While ℓ “trivial” solutions are easy to find by setting ρj := (δ1,j , δ2,j , . . . , δℓ,j) (where δi,j is the
Kronecker delta) and e := (H(ρ1), H(ρ2), . . . , H(ρℓ)), the hardness of the problem relies in finding a
non-trivial linear combination of hash functions with range in Zp for which is known a hash preimage.
This problem was originally studied by Schnorr [42] in the context of blind signature schemes. Using a
solver for the ROS problem, Wagner [45] showed that the unforgeability of the Schnorr and Okamoto–
Schnorr blind signature schemes [41,35] can be attacked in subexponential time whenever more than
polylog(λ) signatures are issued concurrently, using a generalization of the birthday paradox. More re-
cently, Benhamouda et al. [6] provide a polynomial-time solver for the ROS problem. At the core of their
attack, there is the observation that Wagner’s attack fixes the vector ρℓ+1 = (1, 1, 1, · · · , 1) while the
ROS problem offers much more flexibility in choosing arbitrary subsets and linear combinations of the
elements in c.

In this work, we study a variant of this problem that is unconditionally hard for fields of large
characteristic, called weighted-fractional ROS [43, Section 3]. We display it in Figure 1, simplified for
expositional purposes. We restate the main result here, for completeness.

Theorem 2 ([43, Theorem 1]). For any q > 0 and prime number p, any p.p.t. adversary A for the
game WFROSq,p,A(λ) making at most qh queries to the random oracle H, we have

Advwfros
q,p,A (λ) ≤

qh(2q + qh)

p− 1
.

Roughly speaking, similarly to ROS the adversary is asked to provide a vector e and ℓ + 1 linear
combinations of its elements for which it is known a hash pre-image. However, here the linear combination
is also re-randomized (weighted) by a random vector s chosen by the challenger whose elements are
available to the adversary only once the corresponding element ei has been set, which makes the problem
unconditionally hard. Similarly to the ROS case, also here ℓ vectors are trivial to find: for j = 1, . . . , ℓ
set aj := bj := (0, δ1,j , δ2,j , . . . , δℓ,j), where δi,j is 1 for i = j and 0 otherwise, and ej := H(aj , bj , j).

Σ-protocols. We briefly recap Σ-protocols, using the standard definition from Cramer [18] (as formalized
by Boneh–Shoup [9]). Given a morphism described by a matrix M ∈ Gn×m, a Σ-protocol for the linear
relation RM = {(x,X) ∈ Zn

p ×Gn : Mx = X} is a 3-message protocol Σ between a prover and a verifier:

– Σ.Prv0(x): the prover chooses a random vector t←$ Zn
p and sends the commitment T := Mt to the

verifier.
– the verifier sends a random challenge e←$ Zp

– Σ.Prv1(st := (x, t), e): computes and sends the response r := t+ ex.

We call T the commitment, e the challenge, and r response. Together, we call the messages sent (T , e, r)
the transcript. The transcript satisfies the verification equation:

Mr = T + eX.

Σ-protocols satisfy 2-special soundness and honest-verifier zero-knowledge (cf. [18] for more information).
The protocol can be compiled into a non-interactive zero-knowledge proof (Prv,Ver) via the Fiat-Shamir
heuristic [23].

In the following, we will study how to issue such proofs obliviously. Since often times, in practical
scenarios, parts of the statement will be decided at issuance time, we will slightly modify the above
syntax to accommodate for more general relations.
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Game WFROSq,p,A(λ)

s←$ Zq
p

e := (⊥)i∈[q]; QH
:= [ ]

{(aj , bj , auxj)}j∈[q+1] ← AH,S(p)

return
(
∀j ∈ [q] : ej ̸= ⊥ and

∀j ̸= k ∈ [q + 1] : (aj , bj , auxj) ̸= (ak, bk, auxk) and

∀j ∈ [q + 1] : bj ̸= 0 and

∀j ∈ [q + 1] : ⟨aj , [1; s ◦ e]⟩ = H(aj , bj , auxj) · ⟨bj , [1; s]⟩
)

Oracle H(a, b, aux)

if (a, b) in QH :

return QH[(a, b, aux)]

δ ←$ Zp

QH[(a, b, aux)] := δ

return δ

Oracle S(i, ϵ)

if ei ̸= ⊥ or i ̸∈ [q] : return ⊥
ei := ϵ

return si

Fig. 1. The WFROSq,p,A(λ) game. The random oracle H has range in Z∗
p.Vectors a, b ∈ Zq+1

p are indexed from
0 to q, and aux ∈ {0, 1}∗. Further, e ◦ s := [e1s1; . . . ; eqsq].

Game SDLq,GrGen,A(λ)

(G, p,G)← GrGen(1λ)

x←$ Zp

x′ ← A(G, p,G, xG, . . . , xqG)

return (x = x′)

Game DDHb
GrGen,A(λ)

(G, p,G)← GrGen(1λ)

a, b, c←$ Zp

if b = 0 : return (A(Γ, (aG, bG, cG)) = 1)

if b = 1 : return (A(Γ, (aG, bG, abG)) = 1)

Fig. 2. Game q-SDLGrGen,A(λ).

3 Oblivious issuance of proofs

Syntax. For a relation R whose elements are tuples of the form (x,X,Y , Z), denote

Core(R) :={(x,X) : ∃ Y , Z such that (x,X,Y , Z) ∈ R} , and
Arg(R) :={Y : ∃ x,X, Z such that (x,X,Y , Z) ∈ R} .

We call Y the argument, and Z the augmented statement. We say R is well-formed if for any (x,X) ∈
Core(R) and Y ∈ Arg(R), there exists Z such that (x,X,Y , Z) ∈ R. As an example, the discrete logarithm
equality (DLEQ) (employed in [13]) relation Rdleq is indexed in the group description Γ = (G, p,G) and
can be seen as a quadripartite relation whose elements (x,X, Y, Z) ∈ Rdleq satisfy x[G;Y ] = [X;Z].

In this paper, we will actually deal with families of relations, i.e. relations Rcrs parametrized by some
common reference string crs ∈ [oNIP.Setup(1λ)]. For those, we assume the proof system is defined over
R = {Rcrs}crs and that the setup algorithm implicitly fixes the relation used during the protocol. For
simplicity, when describing the relation we will sometimes omit the index crs.

Oblivious issuance of (non-interactive) proofs. An oblivious proof oNIP = (Setup,Prv, Iss,Usr,Ver) for a
relation R consists of:

– crs← oNIP.Setup(1λ), the setup algorithm, which generates the public parameters crs.
– π ← oNIP.Prv(crs,x,X,Y , Z) the prover algorithm, that given as input a witness and an instance

of R, produces a non-interactive proof π.
– two interactive p.p.t. algorithms oNIP.Iss (the issuer) and oNIP.Usr (the user) such that, given as

input respectively witness and statement (x,X) ∈ Core(R), the user outputs an augmented statement
Z for the argument Y chosen by the user together witha a non-interactive proof π. Since the argument
Y ∈ Arg(R) is chosen freely by the user, we call the oblivious issuance protocol free and we denote
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Game OBLVb
oNIP,R,A(λ)

crs← oNIP.Setup(1λ)

b0 := b; b1 := 1− b

b′ ← AInit,User0,User1,User2(crs)

return (b′ = 1)

Oracle Init(X̃, Ỹ0, Ỹ1
˜info0, ˜info1 )

sess0 := init; sess1 := init

X := X̃

Y0 := Ỹ0; Y1 := Ỹ1

Require: Arg(R, info0) = Arg(R, info1)

info0 := ˜info0; info1 := ˜info1

Oracle User0(i)

if i ̸∈ {0, 1} or sessi ̸= init : return ⊥
sessi := sign1

(sti,Umsg)← oNIP.Usr0(crs,X, Ybi , infobi )

return Umsg

Oracle User1(i, Imsg1)

if i ̸∈ {0, 1} or sessi ̸= sign1 : return ⊥
sessi := sign2

(sti,Umsg1)← oNIP.Usr1(sti, Imsg)

return Umsg

Oracle User2(i, Imsg2)

if i ̸∈ {0, 1} or sessi ̸= sign2 : return ⊥
sessi := closed

((Ŷbi , Zbi), πbi)← oNIP.Usr2(sti, Imsg2)

if sess0 = closed and sess1 = closed :

if ((Ŷ0, Z0), π0) = (⊥,⊥) or ((Ŷ1, Z1), π1) = (⊥,⊥) :
return (⊥,⊥)

if Ŷ0 ̸= Y0 or Ŷ1 ̸= Y1 : return (⊥,⊥)

return ((Ŷ0, Z0, π0), (Ŷ1, Z1, π1))

return closed

Fig. 3. Game OBLVb
oNIP,R,A(λ). Free-mode (Y is chosen by the user) contains everything but the solid boxes .

Restricted-mode (the user can only choose a public information info related to Y ) contains everything but the

dashed boxes , where we addtionally Arg(R, info0) = Arg(R, info1).

the interaction as:

((Z, π),⊥)← ⟨oNIP.Usr(crs,X,Y ), oNIP.Iss(crs,x,X)⟩

where (x,X,Y , Z) ∈ R. We also consider a more restricted setting, where Y is not chosen by the user
freely but instead distributed uniformly in a set Arg(R, info) determined by some public information
info. We call the protocol restricted and denote the interaction as:

((Y,Z, π),⊥)← ⟨oNIP.Usr(crs,X, info), oNIP.Iss(crs,x,X, info)⟩

where Y ∈ Arg(R, info) and (x,X,Y , Z) ∈ R.
– true/false← oNIP.Ver(crs,X,Y , Z, π) outputs a bit to indicate whether π is a valid proof, that is,
∃x such that (x,X,Y , Z) ∈ R.

Security. Besides the standard notions of completeness and soundness for the tuple (oNIP.Setup, oNIP.Prv, oNIP.Ver),
we also ask that the issuance protocol is correct, that is: every honest execution of the issuance protocol
leads to a verifying proof. Two notions are pivotal for security of oNIP: the issuer cannot link (Y,Z, π)
to its respective issuance (obliviousness); the user does not gain sufficient knowledge of the witness to
produce forgeries (one-more unforgeability). This can be seen as a generalization of blind signatures.

Below, we provide definitions for 2-round protocols both in free and restricted mode, indexing the i-
message functions as oNIP.Usri and oNIP.Issi: the user initiates the protocol via the procedure oNIP.Usr0
that takes as input crs,X, and (respectively) Y and info in free and restricted mode. The procedure
outputs some state stu,0 together with some user message Umsg0. The issuer, in turn, runs oNIP.Iss1
taking as input crs,x and the user message Umsg0, returning Imsg1 along with some state sti,1. The
protocol continues through oNIP.Usr1(stu,0, Imsg1) and oNIP.Iss2(stu,0,Umsg1), returning again a new
state and the next message. Finally, the procedure oNIP.Usr2(stu,1, Imsg2) returns either ⊥ or a proof π.
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Game OMUFoNIP,R,A(λ)

crs← oNIP.Setup(1λ)

(x,X)←$ Core(R)

ℓ := 0; Opn := ∅; Fin := ∅

{(Y ∗
j , Z∗

j , π
∗
j )}j∈[ℓ+1] ← AIssuer1,Issuer2(crs,X)

return
(
∀ j ∈ [ℓ+ 1] : (x,X,Y ∗

j , Z∗
j ) ∈ R, and

// All relations are in the family, and ...

∀ j, k ∈ [ℓ+ 1] j ̸= k : (Y ∗
j , Z∗

j , π
∗
j ) ̸= (Y ∗

k , Z∗
k , π

∗
k), and

// ... all proofs are different, and..

∀ j ∈ [ℓ+ 1] : oNIP.Ver(X,Y ∗
j , Z∗

j , π
∗
j ) = true

)
// ... all proofs verify.

Oracle Issuer1(i,Umsg0, info )

if i ∈ Opn ∪ Fin : return ⊥
Opn := Opn ∪ {i}

(sti, Imsg1)← oNIP.Iss1(crs,x,Umsg0, info )

return Imsg1

Oracle Issuer2(i,Umsg1)

if i ̸∈ Opn : return ⊥
ℓ := ℓ+ 1; Opn := Opn \ {i}
Fin := Fin ∪ {i}
Imsg2 ← oNIP.Iss2(sti,Umsg1)

return Imsg2

Fig. 4. Game OMUFoNIP,R,A(λ). Free-mode (Y is chosen by the user) contains everything but the solid boxes.
Restricted-mode (the user can only choose a public information info) contains everything.

Obliviousness. Obliviousness means that proofs cannot be be linked back to the issuance session that
created them even given the associated arguments. More specifically, a non-interactive proof oNIP with
oblivious issuance for a quadripartite relation R is oblivious if for all p.p.t. adversaries A

AdvoblvoNIP,R,A(λ) :=
∣∣Pr[OBLV0

oNIP,R,A(λ) = true
]
− Pr

[
OBLV1

oNIP,R,A(λ) = true
]∣∣ = negl(λ)

where OBLVb
oNIP,R,A(λ) is defined in Figure 3.

Unforgeability. In one-more unforgeability, we demand that no p.p.t. adversary A can produce ℓ + 1
different valid proofs after seeing ℓ interactions. We denote the advantage of A in winning the game
OMUFoNIP,R,A(λ) by Advomuf

oNIP,R,A(λ). That is:

Advomuf
oNIP,R,A(λ) := Pr

[
OMUFoNIP,R,A(λ) = true

]
= negl(λ)

where OMUFoNIP,R,A(λ) is defined in Figure 4.

4 Oblivious issuance of proofs for algebraic relations

In this section, we will first introduce the notion of algebraic relations, then describe our oblivious issuance
of proofs for the algebraic relations with two modes, and finally analyse the security of our scheme.

4.1 Algebraic relations

For any integers n,m ≥ 1, a family of algebraic relations is a family of quadripartite relations, denoted
as {AlgRΓ,M}(Γ,M), where Γ = (G, p,G) is a group description, M is a matrix in Gn×m, and

AlgRΓ,M :=

{
(x,X,Y , Z) : x ∈ Zm

p , Y ∈ G1×m ,

[
Z

X

]
=

[
Y

M

]
· x

}
.

(Y is considered as a row vector.) In order to make the relation non-trivial, we require M ̸= 0G, where
0 ∈ Zn×m

p is the zero matrix.

Example 1. As an example, consider the Schnorr [39] and Okamoto-Schnorr [35] signature schemes. Both
can be seen as “proofs” that some signing key associated to some verification key. In particular, these
relations are algebraic: for blind Schnorr [39] the algebraic relation proven is indeed:

Rsch := {(x,X,⊥,⊥) : x ∈ Zp , xG = X} ,
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where n = m = 1 and M =
[
G
]
. For Okamoto-Schnorr [35] the algebraic relation would be:

Ros :=
{
(x, X,⊥,⊥) : x ∈ Z2

p , X = [G;W ] · x
}

,

where n = 1, m = 2, M = [G;W ], and W is another generator of G for which the discrete-logarithm
base G is not known.

Example 2. As yet another example, consider discrete logarithm equality (DLEQ) proofs used in VOPRF
constructions [13,30]. We can define the DLEQ relations in the framework of the algebraic relations, where

n = m = 1, M =
[
G
]
, and the relation is

Rdleq :=

{
(x,X, Y, Z) : ∀ x ∈ Zp and Y ∈ G,

[
Z

X

]
=

[
Y

G

]
· x

}
.

4.2 Oblivious issuance protocol of proofs

Despite we are unable to show that general classical Σ-protocols described in Section 2 satisfy oblivious
issuance, we can show that this is possible to do so for a small variation of them. We define a new
oblivious issuance protocol of proofs for algebraic relations, denoted oTZ. The protocol actually admits
two possible issuance protocols, or modes (cf. Figures 6 and 7): in free-mode, part of the statement (the
argument Y ) is controlled by the user; in restricted-mode, the argument is selected by the server, possibly
using some public information provided by the user. This results formally in two protocols that, when
composed with a group generator GrGen, we denote oTZ[GrGen, free] and oTZ[GrGen, restr]. The modality
used depends on the concrete real-world scenario and allows to have more exact security guarantees.

All relations R have associated a setup algorithm Setup that takes as input Γ = (G, p,G)← GrGen(1λ)
as input and outputs a relation parameter Λ, which determines M . For restricted-mode, an addi-
tional (randomized) algorithm SampleArg is defined for R, which takes (crs, info) and randomness γ
as input and outputs a row vector Y ∈ G1×m, and Args(R, info) := {vY : v ∈ Zp, γ ←$ R, Y ←
SampleArg(crs, info; γ)}, where R denotes the space of the randomness.

The protocol is identical to non-interactive Σ-protocols described in the previous section, except that
the prover additionally commits to another challenge that is used to re-randomized the one produced
by the random oracle. We illustrate setup and verification procedures in Figure 5. Given (x,X,Y , Z) ∈
AlgRΓ,M proving algorithm oTZ.Prv(x,X,Y , Z) samples a, b ←$ Zp, t ←$ Zn

p and computes C :=
aH + bG, T := Mt. Then, computes the challenge e := H(Y , Z,T , C) and returns (e, a, b, r := t+ eax).
Our oblivious issuance protocol with two modes for an algebraic relation R is showed in Figure 5 (the setup
and verification algorithms) and Figures 6 and 7 (the issuing protocol, in two possible configurations:
free and restricted).

Completeness of the protocol is immediate; knowledge-soundness follows special soundness of the
underlying Σ-protocol. For instance, note that the protocol described in the random oracle model is also
computationally special sound: given two transcripts (T , C, e, a, b, r) and (T , C, e′, a′, b′, r′), then a = a′

is nonzero (by the binding property of the commitment scheme and verification equation), and using the
canonical Σ-protocol extractor for the morphism [Y ;M ] using transcripts (T , ae, r) and (T ′, a′e′, r′) it
is possible the extract the witness x. A transcript (T , C, e, a, b, r) can be simulated sampling a, b, e, r
uniformly at random, and computing T = [Y ;M ]r− eaX and C := aH + bG. Below, correctness of the
issuance protocol.

Lemma 1. The protocol oTZ is correct (in either mode).

Proof. With overwhelming probability, υ ̸= 0. Define

R :=

[
υ 0

0 In+1

]
.

Note that [Y ′;M ] = R[Y ;M ]. By definition, we have:

Y ′ = υY e′ = εα−1e

r′ = εr + ρ a′ = αa

T ′ = εRT + [Y ′;M ]ρ

9



oTZ.Setup(1λ)

(G, p,G) := Γ← GrGen(1λ)

H ←$ G
Λ← R.Setup(Γ)

return crs := (Γ, H,Λ)

oTZ.Ver(crs,X,Y , Z, π = (a, b, e, r))

T := [Y ;M ] · r − ea[Z;X]

C := aH + bG

check a ̸= 0 and Y ̸= 0

return e = H(Y , Z,T , C)

Fig. 5. Setup and verification algorithms for our oblivious zero-knowledge protocol oTZ[GrGen] for relation R. H
is a random oracle with range in Zp.

Therefore, from the definition of r′ as computed by Iss

r′ = t′ + e′a′ · x
=⇒ [Y ′;M ]r′ = [Y ′;M ] (t′ + e′a′x)

=⇒ [Y ′;M ]r′ = T ′ + e′a′ · [Y ′;M ] · x
=⇒ R[Y ;M ](εr + ρ) = εRT +R[Y ;M ]ρ+ (εα−1e)(αa)R[Y ;M ] · x
=⇒ [Y ;M ]r = T + ea · [Y ;M ] · x

which is the verification equation for (Y , Z), (a, b, e, r).

4.3 Security

For security, we only consider simple algebraic relations, which are defined as follows.

Definition 1. An algebraic relation R is simple if there exists an efficient algorithm Setup′ that takes
Γ = (G, p,G) as input and outputs Λ together with a trapdoor td such that the DL of each entry of M to
base G can be efficiently computed given td and the distribution of Λ is identical to that of the original
setup algorithm Setup.

In restricted mode, we additionally require there exists an efficient algorithm SampleArg′ that takes
(crs, info, td) as inputs and outputs Y ∈ G1×m together with its DL y ∈ Zm

p to base G such that the
distribution of Y is identical to that of Setup given (Λ, info) as input.

In addition to the standard requirements of soundness, we show the protocol is one-more unforgeable
and oblivious.

One-More Unforgeability. We show that (i) protocol oTZ[GrGen, free] is one-more unforgeable for the
DLEQ relation Rdleq, and (ii) protocol oTZ[GrGen, restr] is one-more unforgeable for any simple algebraic
relations where the kernel matrix Diffie-Hellman problem (KMDH) (defined in Section 2) is hard for M
with distribution DR, where DR(Γ) denotes the distribution of M after sampling Λ ← R.Setup(Γ). For
the relations we study in Sections 6 and 7, this reduces to the DL assumption. Below, qh denotes the
maximum number of random oracle queries and q denotes the maximum number of signing queries to
Iss1 in the OMUF game.

Theorem 3. If the (q + 1)-SDL assumption is hard for GrGen, the protocol oTZ[GrGen, free] for the
DLEQ relation Rdleq is one-more unforgeable in the algebraic group model and the random oracle model
with advantage

Advomuf
oTZ[GrGen,free],Rdleq

(λ) ≤ Adv
(q+1)-sdl
GrGen (λ) + AdvdlGrGen(λ) +

(qh + 3q)2

p− 1
.

Theorem 4. If DL is hard for GrGen and KMDH is hard for GrGen and R, the protocol oTZ[GrGen, restr]
is one-more unforgeable in the algebraic group model and the random oracle model with advantage

Advomuf
oTZ[GrGen,restr],R(λ) ≤ 2AdvdlGrGen(λ) + Advkmdh

GrGen,DR
(λ) +

(qh + 3q)2

p− 1
.
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oTZ.Usr(crs,X, info ) oTZ.Iss(crs,x,X)

info

Y ′ ← R.SampleArg(crs, info)

Z′ := ⟨Y ′,x⟩
a′ ←$ Z∗

p, b
′ ←$ Zp

C′ := a′H + b′G

t′ ←$ Zm
p

T ′ :=

[
Y ′

M

]
· t′

Y ′, Z′,T ′, C′

υ ←$ Zp; Y := υ−1Y ′

Z := υ−1Z′

α←$ Z∗
p, β ←$ Zp

C := α−1C′ − βG

ε←$ Z∗
p; ρ←$ Zm

p

T := ε−1

[
υ−1 0

0 In

](
T ′ −

[
Y ′

M

]
ρ

)
e := H(Y , Z,T , C )

e′ := ε α−1 e e′

r′ := t′ + e′ a′ · xr′ , a′, b′

check C′ = a′H + b′G and a′ ̸= 0

a := α−1a′

b := α−1b′ − β

check [Y ′;M ] · r′ = e′ a′ [Z′;X] + T ′

r := ε−1(r′ − ρ)

return ((Y , Z), π := ( a, b, e, r))

Fig. 6. Oblivious issuance for the protocol oTZ[GrGen, restr] for relation R in restricted mode (that is, issuer
chooses the full statement). In orange, the ROS mitigation inspired from Tessaro and Zhu [43] for concurrent
security. In blue, the core differences with free issuance. Remaining, a natural extension of blind Schnorr for
representation protocols, with multiplicative blinding for the challenge.

We first show the following lemma before proving the above two theorems.

Lemma 2. In either mode, for any p.p.t. adversary A for the game OMUFoTZ,R,A(λ) making q queries to
Issuer1, there exists a p.p.t. adversary B for the game OMUFoTZ,R,A,q(λ) such that all q signing sessions
are finished and

Advomuf
oTZ,R,A(λ) ≤ Advomuf

oTZ,R,B(λ).

Proof. We construct a p.p.t. adversary B that runs A by forwarding all oracle queries from A to its own
oracles. Assume (without loss of generality) that A makes making q queries to Iss1 and q + qh queries to
the random oracle H. After A returns, suppose ℓ < q. We know |Opn|= q − ℓ. Assume, without loss of
generality, that the open session identifiers are Opn = {ℓ+ 1, . . . , q}. B internally runs the adversary A,
forwarding all signing queries to the challenger. At the end, the adversary returns (Y ∗

j , Z
∗
j ) and π∗

j for
j ∈ [ℓ + 1]. Also, denote them as {(Yj , Zj), πj}j∈[ℓ+1]. For each unfinished session i ∈ Opn, B interacts
with the challenger as described in Usr1 and Usr2 in restricted mode (cf. Figure 8), obtaining a new valid
proof πj = (aj , bj , ej , rj) for (Yj , Zj) and j ∈ [ℓ + 2, q + 1]. If Yj = Yj′ for some j′ < j, repeat this step

11



oTZ.Usr(crs,X, Y ) oTZ.Iss(crs,x,X)

υ ←$ Zp; Y ′ := υY

Y ′

Z′ := ⟨Y ′,x⟩
a′ ←$ Z∗

p, b
′ ←$ Zp

C′ := a′H + b′G

t′ ←$ Zm
p

T ′ :=

[
Y ′

M

]
t′

Z′,T ′, C′

Z := υ−1Z′

α←$ Z∗
p, β ←$ Zp

C := α−1C′ − βG

ε←$ Z∗
p; ρ←$ Zm

p

T := ε−1

[
υ−1 0

0 In

](
T ′ −

[
Y ′

M

]
ρ

)
e := H(Y , Z,T , C )

e′ := ε α−1 e e′

r′ := t′ + e′ a′ · xr′ , a′, b′

check C′ = a′H + b′G and a′ ̸= 0

a := α−1a′

b := α−1b′ − β

check [Y ′;M ] · r′ = e′ a′ [Z′;X] + T ′

r := ε−1(r′ − ρ)

return ((Y , Z), π := ( a, b, e, r))

Fig. 7. Oblivious issuance for the protocol oTZ[GrGen, free] for relation R in free mode, where the argument
is under control of the user. In orange, the ROS mitigation inspired from Tessaro and Zhu [43] for concurrent

security. In blue , the core differences with restricted issuance. Remaining, a natural extension of blind Schnorr
for representation protocols, with multiplicative blinding for the challenge.

until Yj ̸= Yj′ for any j′ < j.7 Using the valid responses obtained so far, B output q + 1 a valid proofs
((Yj , Zj), πj = (aj , bj , ej , rj))j∈[q+1].

Proof. (of Theorem 3 and Theorem 4) Since the proofs of the two theorems are very similar, we prove
them together and highlight where the proofs differ. In free (respectively, restricted) mode, denote with A
an algebraicadversary for OMUFoTZ[GrGen,free/restr],R,A(λ). By Lemma 2, we assume that A makes exactly
q queries to Issuer1 and ℓ = q (i.e., all sessions are finished at the end of A’ s execution). Also, assume
without loss of generality, that each

(
Y ∗
j , Z∗

j , π
∗
j = (a∗j , b

∗
j , e

∗
j , r

∗
j )
)
output by A, a RO queryH(Y ∗

j , Z∗
j ,T

∗
j ,

7 We remark that it’s not really necessary for the challenger to blind the responses. However, this way B can
find a υj such that υjY

′
j ̸= Yj′ for any j′ < j at most repeating the protocol (p− 1)/(p− 1− q) times, which

is a constant.
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oTZ.Setup(1λ)

(G, p,G) := Γ← GrGen(1λ)

H ←$ G
Λ← R.Setup(Γ)

return crs := (Γ, H,Λ)

oTZ.Usr0(crs,X,Y )

υ ←$ Zp

Y ′ := υY

st := (X,Y , υ)

return (st,Y ′)

oTZ.Iss1(crs,x, Y
′

info )

Y ′ ← R.SampleArg(crs, info)

Z′ := ⟨Y ′,x⟩
a′ ←$ Z∗

p, b
′ ←$ Zp

C′ := a′H + b′G

t′ ←$ Zm
p

T ′ :=

[
Y ′

M

]
· t′

st := (x, t′, a′, b′)

return (st, ( Y ′, Z′,T ′, C′))

oTZ.Usr1(st, ( Y ′, Z′,T ′, C′))

(X,Y , υ) := st

X := st

υ ←$ Zp; Y := υ−1Y ′

Z := υ−1Z′

α←$ Z∗
p, β ←$ Zp

C := α−1C′ − βG

ε←$ Z∗
p; ρ←$ Zm

p

T := ε−1

[
υ−1 0

0 In

]

·

(
T ′ −

[
Y ′

M

]
ρ

)
e := H(Y , Z,T , C)

e′ := εα−1e

st := (X,Y , Z, ε,ρ, α, β)

return (st, e′)

oTZ.Iss2(st, e
′)

(x, t′, a′, b′) := st

r′ := t′ + e′a′ · x
return (r′, a′, b′)

oTZ.Usr2(st, (r
′, a′, b′))

(X,Y , Z, ε,ρ, α, β) := st

if C′ ̸= a′H + b′G and a′ ̸= 0 :

return (⊥,⊥)

a := α−1a′

b := α−1b′ − β

if [Y ′;M ] · r′ ̸= e′a′[Z′;X] + T ′ :

return (⊥,⊥)

r := ε−1(r′ − ρ)

return ((Y , Z), π := (a, b, e, r))

oTZ.Ver(crs,X,Y , Z, (a, b, e, r))

T := [Y ;M ] · r − ea[Z;X]

C := aH + bG

return (e = H(Y , Z,T , C))

oTZ.Usr0(crs,X, info)

st := (X)

return (st, info)

Fig. 8. The oblivious zero-knowledge proof protocol oTZ[GrGen] with two modes for the general discrete logarithm
equality relation R, where GrGen denotes a group parameter generator. Free-mode (Y is chosen by the user)
contains everything but the solid boxes. Restricted-mode (the user can only choose a public information info)
contains everything but the dashed boxes. Notation is summarized in Table 1.

C∗
j ) is made, where

T ∗
j :=

[
Y ∗
j

M

]
rj − e∗ja

∗
j

[
Z∗
j

X

]
, (1)

C∗
j := b∗jG+ a∗jH . (2)

In restricted mode, without loss of generality, we assume M1,1 ̸= 0G and denote µ as the DL matrix of
M which satisfies M = µG. Denote the k-th RO query as (Yk, Zk,Tk, Ck). Since A is algebraic, A also
provides the algebraic representations of the query with respect to all the group elements received by A.
Denote the transcript of signing session i as (Y ′

i , Z
′
i,T

′
i , C

′
i, e

′
i, r

′
i, a

′
i, b

′
i), and we have Z ′

i = ⟨Y ′
i ,x⟩ and

T ′
i = [Y ′

i ;M ]r′i − e′ia
′
i[Z

′
i;X].

Let h := logG H, µ := logG M , and y′
i := logG Y ′

i . We first show the following lemma .

Lemma 3. For each RO query, we can represent

Tk,2 = (αk(x1) + α′
k(x1) · h)G ,

Ck = (βk(x1) + β′
k(x1) · h)G ,

(3)

where αj(X), α
′
j(X), βj(X), β

′
j(X) ∈ Zp[X] can be computed efficiently when A returns given µ, {y′

i}i∈[q]

(only in restricted mode), and (x2, . . . , xm).
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Proof. In free mode for Rdleq, we have the length of x is 1 and therefore we just use x to denote x1. We
first show how to compute ηi(·), η′i(·) for each i ∈ [q] such that

Y ′
i = (ηi(x) + η′i(x) · h)G . (4)

– For i = 1, since A is algebraic, we know Y ′
1 = ξ(G)G + ξ(X)X + ξ(H)H where ξ(G), ξ(X), ξ(H) are

constants given by A, and we let η1(X) := ξ(G) + ξ(X)X and η′1(X) := ξ(H).

– For 1 < i ≤ q, since A is algebraic, we know Y ′
i = ξ(G)G + ξ(X)X + ξ(H)H +

∑
j∈[i−1](ξ

(T ′
j,1)T ′

j,1 +

ξ(T
′
j,2)T ′

j,2 + ξ(C
′
j)C ′

j + ξ(Y
′
j )Y ′

j + ξ(Z
′
j)Z ′

j), where ξ(·) are given by A. Since T ′
j,1 = (r′j − e′ja

′
jx)Y

′
j ,

T ′
j,2 = (r′j − e′ja

′
jx)G, C ′

j = (b′j + a′jh)G, and Z ′
j = xY ′

j , we let

ηi(X) := ξ(G) + ξ(X)X+
∑

j∈[i−1]

(
ξ(Tj,2)

′
(r′j − e′ja

′
jX) + ξ(C

′
j)b′j

+ (ξ(T
′
j,1)(r′j − e′ja

′
jX) + ξ(Y

′
j ) + ξ(Z

′
j)X)ηj(X)

)
,

η′i(X) :=ξ(H) +
∑

j∈[i−1]

(
ξ(C

′
j)a′j + (ξ(T

′
j,1)(r′j − e′ja

′
jX)ξ

(Y ′
j ) + ξ(Z

′
j)X)η′j(X)

)
.

(5)

Then, for the k-th RO query (Yk, Zk,Tk, Ck), since A is algebraic, we know a representation of Tk,2 and Ck

as a linear combination ofG,X,H, {T ′
i,1, T

′
i,2, C

′
i, Y

′
i , Z

′
i}i∈[q]. Thus, we can compute αj(·), α′

j(·), βj(·), β′
j(·)

using the same argument as in the previous step.

In restricted mode, since A is algebraic, for the k-th RO query, we know Tk,2 and Ck as a linear
combination of G,X, H, {T ′

i , C
′
i,Y

′
i , Z

′
i}i∈[q]. Since T ′

i = [Y ′
i ;M ](r′i − a′ie

′
ix), C

′
i = a′iH + b′iG, Z ′

i =

⟨Y ′
i ,x⟩, and we are given µ, {y′

i}i∈[q] and (x2, . . . , xm), we can compute {α̃j , β̃j}j∈[q+3] ∈ Zp such that

Tk,2 = (α̃1 + α̃2x+ α̃3h)G+
∑
i∈[q]

α̃i+3(r
′
i,1 − a′ie

′
ix)G ,

Ck = (β̃1 + β̃2x+ β̃3h)G+
∑
i∈[q]

β̃i+3(r
′
i,1 − a′ie

′
ix)G .

(6)

Thus, we can compute αj(·), α′
j(·), βj(·), β′

j(·) from {α̃j , β̃j}j∈[q+3]. ⊓⊔

We proceed by means of a hybrid argument.

Hyb1 this is the original game, described above

Hyb2 We replace the procedures R.Setup and R.SampleArg with (respectively) R.Setup′ and R.SampleArg′,
which will provide µ and y′

i whenever it also outputs a new argument Y ′
i during the i-th query. Since

the relation is simple, this change is perfectly indistinguishable from the previous one.

Hyb3 we strengthen the game and add another condition before returning. Let us index in kj ∈ [qh] the
random oracle query that the adversary makes associated with the j-th forgery. If, among the proofs
returned by the adversary, ∃j ∈ [q + 1] such that β′

kj
(x1) ̸= a∗j , the game immediately aborts and

the adversary loses.

This hybrid is computationally indistinguishable from the first one and follows from the binding
property of the commitment scheme. We consider an adversary B for the game BINDCom[GrGen],B(λ)
that, upon receiving a group description Γ = (G, p,G) and a commitment key H, computes Λ ←
R.Setup(Γ), samples x ←$ Zm

p , runs A on input ((Γ, H,Λ), X := Mx). B responds to the signing
queries just as the challenger in the game OMUFoTZ,R,A(λ). Once the adversary returns, if ∃j ∈
[q + 1] such that β′

kj
(x1) ̸= a∗j , then B outputs the commitment Ck along with two valid openings

(aj , bj), (β
′
kj
(x1), βkj (x1)). In fact, (aj , bj) are valid if the proof π∗

j verifies, while the second opening
is correctly given by any algebraic adversary. Therefore, the distinguishing advantage between Hyb2
and Hyb3 is bounded by AdvdlGrGen(λ).

Hyb4 we add one additional condition before returning. If there exists j ∈ [q + 1] such that coe1(αkj
(X) +

α′
kj
(X) · h) ̸= −µ1,1e

∗
ja

∗
j , where coe1(f(X)) denotes the coeffcient of the first degree term X in

polynomial f , the game immediately aborts and the adversary loses.
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– In free mode for the DLEQ relation Rdleq, this hybrid is computationally indistinguishable from
the previous if the (q + 1)-strong DL assumption is hard for GrGen.
We show the above by constructing an adversary B for (q + 1)-SDLB,GrGen(λ). Initially, B initial-
izes i := 0 and Opn as in the previous hybrid. After B receives a group description Γ together
with a challenge W = (xG, x2G, . . . , xq+1G) from the game (q + 1)-SDLGrGen,B(λ), B generates
a commitment key H := hG and a trapdoor h ←$ Zp. Then, B runs A on input ((Γ, H,Λ),W1)
and replies to the oracle queries as follows:

• Oracle Issuer1(i, Y
′
i ): B samples r′i, b̂i ←$ Zp and âi ←$ Z∗

p and sets T ′
i,2 := (r′i − âix)G =

r′iG − âiW1 and C ′
i := b̂iG. For computing T ′

i,1 and Zi, since A is algebraic, B will have a
representation of Y ′

i as a linear combination of G,W1, H, {T ′
k,1, T

′
k,2, C

′
k, Y

′
k, Z

′
k}k∈[i−1]. For

i = 1, since H = hG, the adversary B knows a representation of Y ′
i as a linear combination

of G,W1. For i > 1, B knows a representation of Y ′
i as a linear combination of G,W1, . . . ,Wi,

since for each k ∈ [i − 1], T ′
k,0 = r′kG − a′kW1, C

′
k = (âkh + b̂k)G, T ′

k,1 = (r′k − âkx)Y
′
k,

Z ′
k = xY ′

k, and B knows a representation of Y ′
k as a linear combination of G,W1, . . . ,Wk,

Therefore, B can compute Z ′
i := xY ′

i and T ′
i,1 := (r′i− âkx)Yi using G,W1, . . . ,Wi+1. Finally,

B returns (Z ′
i,T

′
i , C

′
i).

• Oracle Issuer2(i, e
′
i): B equivocates the commitment setting a′i := âi/e

′
i and b′i := b̂i − a′i · h.

Note that

Ci; = b̂iG = a′iH + b′iG.

B returns (r′i, a
′
i, b

′
i).

• Oracle H: Same as in the OMUFoTZ,Rdleq,A(λ): if the query has been previously formulated,
reply with the same value, otherwise sample a uniformly random element from Zp and return
it.

– In restricted mode, this hybrid is computationally indistinguishable from the previous one if DL
is hard for GrGen.
We show the above by constructing an adversary B for DLB,GrGen(λ). The adversary B, upon
receiving as input a group description Γ and a DL challenge W ∈ G, it generates a trapdoor
h ←$ Zp and commitment key H = hG. Also, B runs (Λ, td) ← R.Setup′(Γ) and computes
M with its DL matrix µ ∈ Zn×m

p such that M = µG. It samples x2, . . . , xm ←$ Zp and sets
X = µ · [W ;x2G; . . . ;xmG]. It internally runs A((Γ, H,Λ),X) and replies to the oracles queries
as follows:

• Oracle Issuer1(i, info): B runs (Y ′
i ,y

′
i) ← R.SampleArg′(crs, info), where Y ′

i = y′
iG. Then,

it computes Z ′
i := ⟨y′

i, [W ;x2G; . . . ;xmG]⟩. B creates a valid (simulated) transcript: sample

r′i ←$ Zp and âi ←$ Z∗
p, b̂i ←$ Zp and computes

C ′
i := b̂iG

T ′
i := [Y ′

i ;M ]r′i − âi[Z
′
i;X]

Finally, B returns (Y ′
i , Z

′
i, C

′
i,T

′
i ).

• Oracle Issuer2(i, e
′
i) and H: Same as in free mode described above.

At the end of the execution of B, if ∃j ∈ [q + 1] such that coe1(αkj
(X) + α′

kj
(X)) ̸= −µ1,1e

∗
ja

∗
jX.

Since (αkj (x1) + α′
kj
(x1) · h)G = T ∗

j,2 =
∑m

i′=1 M1,i′(r
∗
j,i′ − e∗ja

∗
jxi′), B can computes x1, which is

the discrete logarithm of the challenge, by computing one of the roots of the non-zero polynomial
f(X) = αkj

(X) + α′
kj
(X) · h−

∑m
i′=2 µ1,i′(r

∗
j,i′ − e∗ja

∗
jxi′)− µ1,1r

∗
j,1 + µ1,1e

∗
ja

∗
jX. Note that the above

analysis directly works for the DLEQ relation Rdleq in free-mode too, where we have m = 1, x = x1,
and µ1,1 = 1. Therefore, in free mode, the distinguishing advantage between Hyb3 and Hyb4 is

bounded by Adv
(q+1)-sdl
GrGen (λ), and in restricted mode, the advantage is bounded by AdvdlGrGen(λ).

Hyb5 we add another condition before returning. We first define introduce some notation and a lemma
before defining the condition. Denote Opnk the set of sessions open (i.e., a query to Issuer1 for
a session i was made but no query to Issuer2 for i was made yet) during the k-th random oracle

query. Denote b̂i as the DL of C ′
i to base G and t′i as the DL of T ′

i to base G. Denote a polynomial
PS(X) :=

∏
i∈S(r

′
i,1 − e′ia

′
iX) for each S ⊆ [q]. In particular, P∅(X) := 1.
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Lemma 4. For each j ∈ [qh], αj(·), α′
j(·), β′

j(·) have the following form

αj(X) + α′
j(X) · h =

∑
S⊆Opnj

α̃
(S)
j (X)PS(X) ,

β′
j(x1) = β̃

(0)
j +

∑
i∈[q]

β̃
(i)
j a′i ,

where each β̃
(i)
j and the coefficients of each α

(S)
j (X) can be efficiently computed when the j-th RO

query is made given µ, {y′
i}i∈[q] (only in restricted mode), (x2, . . . , xm), h, and {t′i, b̂i}i∈[q].

Proof. In restricted mode, we know the lemma holds by Equation (6). In free mode for Rdleq, we first
show how to compute η̂i(·), η̃i for each i ∈ [i− 1] such that

ηi(X) + η′i(X) · h =
∑

S⊆[i−1]

η̂
(S)
i (X)PS(X) ,

η′i(x) = η̃
(0)
i +

∑
j∈[i−1]

η̃
(j)
i aj ,

where ηi and η′i from Equation (4).
– For i = 1, since η1(X) = ξ(G) + ξ(X)X and η′1(X) = ξ(H) where ξ(G), ξ(X), ξ(H) are constants

given by A, we let η̂(∅)(X) := ξ(G) + ξ(H)h + ξ(X)X and η̃
(0)
1 := ξ(H). All other η̂(S) and η̃

(i)
1 are

set to 0.
– For 1 < i ≤ q, by Equation (5), since t′i′ = r′i′ − e′i′a

′
i′ and b̂i′ = bi′ + ai′h for each i′ ∈ [q], we let

η̂
(S)
i (X) :=


ξ(G) + ξ(X)X+ ξ(H)h+

∑
i′∈[i−1]

(
ξ(C

′
i′ )b̂i′ + (ξ(Y

′
i′ ) + ξ(Z

′
i′ )X)η̂

(∅)
i′ (X)

)
, for S = ∅

ξ(T
′
j,2) + ξ(T

′
j,1)η̂

(∅)
j (X) +

∑
i′∈[i−1](ξ

(Y ′
i′ ) + ξ(Z

′
i′ )X)η̂

(S)
i′ (X) , for S = {j}, j ∈ [i− 1]∑

i′∈[i−1](ξ
(Yi′ ) + ξ(Zi′ )X)η̂

(S)
j (X) +

∑
i′∈S ξ(T

′
i′,1)η̂

(S\{i′})
i′ (X) , for S ⊆ [i− 1], |S|> 1

0 , o.w.

,

η̃
(k)
i :=


ξ(H) +

∑
i′∈[i−1](ξ

(T ′
i′,1)ti′ + ξ(Y

′
i′ ) + ξ(Z

′
i′ )x)η̃

(0)
i′ , j = 0

ξ(Cj) +
∑

i′∈[i−1](ξ
(T ′

i′,1)ti′ + ξ(Y
′
i′ ) + ξ(Z

′
i′ )x)η̃

(j)
i′ , j ∈ [i]

0 , o.w.

.

Since we know a representation of Tk,2 and Ck as a linear combination of G,X,H, {Ti,1, Ti,2, Ci, Yi,

Zi}i∈[q], we can compute ᾱk and β̃k using a similar way as computing η̂ and η̃ in the previ-

ous step, where ᾱk satisfies αk(X) + α′
k(X) · h =

∑
S⊆[q] ᾱ

(S)
k (X)PS(X). Since for each i ∈ [q] \

Opnk, the values r′i, e
′
i, a

′
i are known when the k-the RO query is made, we compute α̃

(S)
j (X) :=∑

S′⊆[q]\Opnj
ᾱ
(S′∪S)
j (X)

∏
i∈S′(r′i − e′ia

′
iX) for each S ⊆ Opnk. ⊓⊔

After A returns, the game aborts and A immediately loses, if there exists j ∈ [q + 1] such that

αkj
(·), α′

kj
(·) does not satisfy αkj

(X) + α′
kj
(X) · h = α̃

(∅)
kj

(X) +
∑

i∈Opnkj

α̃
({i})
kj ,0

· (r′i,0 − e′ia
′
iX), where

α̃
({i})
kj ,0

denotes the constant term of the polynomial α̃
({i})
kj

(X). This hybrid change is indistinguishable

from the previous hybrid by constructing a p.p.t. adversary B that wins WFROSq,p,B(λ) (defined
in Figure 1) every time that A wins in Hyb4 but not in Hyb5.
We now show how B is constructed. Initially, B initializes i := 0,Opn := ∅ as described in the
OMUFoTZ,R,A(λ) game. B runs Γ ← GrGen(1λ) and (Λ, td) ← R.Setup′(Γ). B samples x ←$ Zm

p .
Then, it creates a new commitment key by sampling h ←$ Zp and setting H := hG. B runs A on
input ((Γ, H,Λ),X := Mx). It replies to each oracle query using its own oracles S and Hwfros as
follows:
– Oracle Issuer1(i,Y

′
i ) in free mode: same as the OMUFoTZ,Rdleq,A(λ) game except B samples a

new variable b̂i ←$ Zp, and sets C ′
i = b̂iG.
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– Oracle Issuer1(i, info) in restricted mode: same as the OMUFoTZ,R,A(λ) game except B runs

(Y ′
i ,y

′
i) ← R.SampleArg(crs, info, td) to generate Y ′

i and samples a new variable b̂i ←$ Zp, and

sets C ′
i = b̂iG.

– Oracle queries Issuer2(i, e
′
i): if i ̸∈ Opn or e′i = 0, B returns ⊥. Otherwise, B makes a query

(i, e′i) to S and uses its output as the value a′i. Also, B sets b′i = b̂i − a′i · h. With the value
(r′i, a

′
i, b

′
i), the rest of Issuer2 proceeds as Iss2 in the OMUFoTZ,R,A(λ) game.

– Oracle queries H(Y , Z,T , C): if H(Y , Z,T , C) ̸= ⊥, the value H(Y , Z,T , C) is returned. Oth-

erwise, suppose this is the k-th query. B computes α̃
(∅)
k,1, {α̃

({i})
k,0 }i∈Opnk

and {β̃(i)
k }i∈{0}∪[q] where

α̃
(S)
k and β̃

(i)
k are defined in Lemma 4 and α̃

(S)
k,i′ represents the coefficient of Xi′ in α̃

(S)
k (X). Then,

B issues the query (α̂k, β̂k, k) to Hwfros, where α̂j , β̂j ∈ Zq+1
p are such that

α̂k,i =


α̃
(∅)
1 /µ1,1 , i = 0

−α̃({i})
0 /µ1,1 , i ∈ Opnj

0 , o.w.

,

β̂k,i = −β̃(i)
k , for i = 0, . . . , q .

(7)

After receiving the output δk, B returns H(Yk, Zk,Tk, Ck) := δk.

After A returns, B outputs {(α̂kj
, β̂kj

, kj)}j∈[q+1], where kj is defined in Hyb3.
We now show B wins if A wins in Hyb4 but not in Hyb5. We first show for any j1 ̸= j2 ∈ [q + 1],
(α̂kj1

, β̂kj1
, kj1) ̸= (α̂kj2

, β̂kj2
, kj2). Suppose there exists j1 ̸= j2 ∈ [q + 1] such that kj1 = kj2 ,

which implies (e∗j1 ,Y
∗
j1
, Z∗

j1
,T ∗

j1
, C∗

k1
) = (e∗j2 ,Y

∗
j2
, Z∗

j2
,T ∗

j2
, C∗

j2
) are the same RO query. From the

previous hybrids, we have a∗j1 = β′
kj1

(x) = β′
kj2

(x) = a∗j2 , which also implies b∗j1 = b∗j2 . Since

[Y ∗
j1
;M ]r∗j1 = T ∗

j1
− e∗j1y

∗
j1
X = T ∗

j2
− e∗j2y

∗
j2
X = [Y ∗

j2
;M ]r∗j2 , we have Mr∗j1 = Mr∗j2 . In free mode for

Rdleq, we have r
∗
j1

= r∗j2 . In retricted mode, r∗j1 = r∗j2 is implied by the kernel Diffie-Hellman hardness
of R. Thus, we have (Y ∗

j1
, Z∗

j1
, π∗

j1
) = (Y ∗

j2
, Z∗

j2
, π∗

j2
), which contradicts with the winning condition of

A. Since e∗k1
= δjk1

= δjk1
= e∗k2

, we have (Y ∗
k1
, Zk∗

1
= xY ∗

k1
, π∗

k1
= (r∗k1

, e∗k1
, a∗k1

, b∗k1
)) = (Y ∗

k2
, Zk∗

2
=

xY ∗
k2
, π∗

k2
= (r∗k2

, e∗k2
, a∗k2

, b∗k2
)), which contradicts the winning condition of A.

Also, since A wins in Hyb4 but not in Hyb5, we have for each j ∈ [q + 1],

−µ1,1e
∗
ka

∗
k = coe1(αkj

(X) + α′
kj
(X) · h)

= coe1

α̃
(∅)
kj

(X) +
∑

i∈Opnkj

α̃
({i})
kj

(X)(r′i,1 − e′ia
′
iX)


= α̃

(∅)
kj ,1
−

∑
i∈Opnkj

α̃
({i})
kj ,0

e′ia
′
i ,

β̃
(0)
jk

+
∑
i∈[q]

β̃
(i)
jk

a′i = a∗k ,

which implies α̂kj ,0 +
∑

i∈[q] α̂kj ,ie
′
ia

′
i = e∗j (β̂kj ,0 +

∑
i∈[q] β̂kj ,ia

′
i). Since e∗k = H(Y ∗

k , Z∗
k ,T

∗
k , C

∗
k) =

Hwfros(α̂kj
, β̂kj

, kj), B wins the game WFROSq,p,B(λ). By Theorem 2, the distinguishing advantage

between Hyb4 and Hyb5 is bounded by qh(2q+qh)
p−1 in free mode, and is bounded by Advkmdh

GrGen,D(λ) +
qh(2q+qh)

p−1 in restricted mode.

Finally, we can conclude the theorems by Lemma 5. ⊓⊔

Lemma 5. Pr[A wins Hyb5] ≤
(qh+q)q

p−1 .

Proof. Denote hdk := max
S⊆Opnk,α̃

(S)
k (X)̸=0

(deg(α̃
(S)
k + |S|) for each k ∈ [qh]. Suppose A wins Hyb5. We

have there exists k ∈ [qh] such that either there exists S ⊆ Opnk such that |S|= 1 and deg(α̃
(S)
k ) ≥ 1 or
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there exists S ⊆ Opnk such that |S|≥ 2 and α̃
(S)
k (X) ̸= 0. Therefore, we have hdk ≥ 2. It is not hard to

see that the coefficient of Xhdk of αk(X) + α′
k(X) · h is

δk =
∑

S⊆Opnk,|S|≤hdk

α̃
(S)
k,hdk−|S|

∏
i∈S

e′ia
′
i ,

where α̃
(S)
k,d denotes the coefficient of Xd in α̃

(S)
k (X). Denote

Qk({Yi}i∈Opnk
) :=

∑
S⊆Opnk,|S|≤hdk

α̃
(S)
k,hdk−|S|

∏
i∈S

Yi .

Qj is a polynomial over {Yi}i∈Opnj
with degree at most hdk. Since the abort condition of Hyb4 does not

occur, we have Qk({Yi = e′ia
′
i}i∈Opnk

) = δk = 0. Since Qk is determined when the k-th RO query is made,

we know {e′ia′i}i∈Opnk
are uniformly distributed over (Z∗

p)
|Opnj | given Qj . Therefore, by Schwartz-Zippel

lemma, we know for any k ∈ [qh], Pr[Qk({Yi = e′ia
′
i}i∈Opnk

) = 0] ≤ q
p−1 . By the union bound, we have

Pr[A wins Hyb5] ≤ Pr[∃ k ∈ [qh] : Qk({Yi = e′ia
′
i}i∈Opnk

) = 0] ≤ (qh+q)q
p−1 . ⊓⊔

Remark 1. Our scheme oTZ can be extended for proofs with a label attached to the statement, to serve
as a message (known only to the user) for a more general blind signature. This would require to slightly
change the syntax and accommodate for an additional input τ ∈ {0, 1}∗ in the use algorithm, that is
oTZ.Usr(crs,X,Y , τ) (in free mode) and oTZ.Usr(crs,X,Y , τ) (in restricted mode), and compute the
challenge from (Y , Z,T , C, τ). The tag τ would be appended to the final proof. We denote this protocol
variant as oTZτ .Unforgeability immediately follows from our main theorems (Theorems 3 and 4).

Corollary 1. Advomuf
oTZτ ,R(λ) ≤ Advomuf

oTZ,R(λ)

Proof. Given an adversary A for the game OMUFoTZτ ,R,A(λ), we construct an adversary B for the game
OMUFoTZ,R,B(λ). Assume, without loss of generality, that any forgery from A will have an associated
random oracle query. Any query to the oracles Issuer1 and Issuer2 is forwarded to the oracles provided
by the challenger. Any query to the random oracle (with tag) of the form Hτ (Y , Z,T , C, τ) is dealt lazily
as follows: if the input is already present in the hash table Hτ , then just return it; otherwise sample a
fresh ã, b̃←$ Z×

p and return ã−1 ·H(Y , Z,T , ãC + b̃G).
Once A returns forgeries {(Yi, Zi), (ai, bi, ei, ri, τi)}i, which can be converted into valid forgeries for

oTZ: return
{
(Yi, Zi), (aiãji , ãjibi + b̃ji , ei, ri)

}
i
, where ãji , b̃ji denote the randomness used in the ran-

dom oracle query associated to the i-th forgery. ⊓⊔

Given the above, one-more unforgeability for the blind Schnorr variant given in [43] is immediate. Recall
the relation Rsch that contains all tuples (x,X, 0, 0) ∈ Zp ×G3, where Y , Z are trivial and always fixed
to zero (even when sampled via SampleArg), and also the morphism is trivially M = [G]. Then

Corollary 2 ([43]). The protocol oTZ[GrGen, restr] for relation Rsch is one-more unforgeable.

Obliviousness. We show our scheme is oblivious under the discrete logarithm assumption.

Theorem 5. If DL is hard for GrGen, the protocol oTZ[GrGen, free] for the DLEQ relation Rdleq is
oblivious with advantage

AdvoblvoTZ[GrGen,free],Rdleq
(λ) ≤ 2

√
AdvdlGrGen(λ) +

2

p
,

and the protocol oTZ[GrGen, restr] for any simple algebraic relation R is oblivious with advantage

AdvoblvoTZ[GrGen,restr],R(λ) ≤ 2

√
AdvdlGrGen(λ) +

2

p
.

To prove the above theorem, we first consider a special class of adversary, referred to as argument-
honest adversary, that always sends Z ′ = ⟨Y ′,x⟩. We show our schemes are perfectly oblivious for any
simple algebraic relations against any argument-honest adversary. Then, for oTZ, we can reduce the
obliviousness against any argument-honest adversary to the obliviousness against any adversary under
the DL assumption.
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Proof. (of Theorem 5)We only prove the second half of the statement, i.e., obliviousness of oTZ[GrGen, restr],
since the first half is simpler and follows from a similar proof. Let A be an adversary playing the OBLV
game for any simple algebraic relation R in restricted mode. Without loss of generality, we assume the
randomness of A is fixed. We assume that A always finishes both signing sessions and receives valid proofs
(π0, π1) from User2. (Otherwise, obliviousness are trivially holds, since the output of User0 and Usr1 is
either Y ′ and e′ in free mode for Rdleq or info and e′ in restricted mode, where Y ′ is uniformly random
over G∗ and e′ is uniformly random over Z∗

p.)

Denote a bad event Bad as in one of the signing sessions A sends Z ′ ̸= ⟨Y ′,x⟩, where x denotes the
discrete logarithm of X and Y ′ ← R.SampleArg(crs, info). We can show that the probability that the
bad event occurs is bounded by the advantage of solving the discrete logarithm problem. Suppose the
bad event occurs. Since the session does not abort, we obtains a transcript (Y ′, Z ′,T ′, C ′, e′, r′, a′, b′)
such that C ′ = a′H + b′G and [Y ′;M ] · r′ = e′a′[Z ′;X] + T ′. By rewinding on the second-round
message e′, we can obtains another transcript (Y ′, Z ′,T ′, C ′, e′′, r′′, a′′, b′′) such that C ′ = a′′H + b′′G
and [Y ′;M ] · r′′ = e′′a′′[Z ′;X] + T ′. Since Z ′ ̸= ⟨Y ′,x⟩, it must hold that e′′a′′ = a′e′. Therefore,
if e′ ̸= e′′, we have a′ ̸= a′′ and thus we can extract the discrete logarithm to the base G of H as

(b′′ − b′)/(a′ − a′′). By the forking lemma, we have Pr[Bad] ≤ 2
√
AdvdlGrGen(λ) +

2
p .

We now show that the protocol is perfectly oblivious given the bad event does not occur.

Let VA denote the set of all possible views of A that can occur after finishing both signing ses-
sions. In particular, any such view ∆ ∈ VA takes form ∆ = (X,Y0, Z0,Y1, Z1, τ0, τ1, π0, π1). (We
can ignore info for restricted mode since it is fixed given A is fixed.) Here, πi = (ai, bi, ri, ei), where
ei = H(Yi, Zi, [Yi;M ]ri, aiH + biG). Moreover, τ0 and τ1 are the issuing protocol transcripts for session
0 and 1, respectively, and take form

τi = (Y ′
i , Z

′
i,T

′
i , C

′
i, e

′
i, r

′
i, a

′
i, b

′
i) .

We need to show that the distribution of the actual adversarial view, which we denote as vA, is the
same when b = 0 and b = 1. Because we assume the randomness of A is fixed, the distribution of vA
only depends on the randomness η = (υ0, ε0, α0, β0,ρ0, υ1, ε1, α1, β1,ρ1) required to respond to User0,
User1 and User2 queries, and we write vA(η) to make this fact explicit.

Concretely, fix some ∆ ∈ VA. We now show that there exists a unique η that makes it occur, i.e,
vA(η) = ∆, regardless of whether we are in the b = 0 or in the b = 1 case. In particular, we claim that,
in both cases b = 0, b = 1, vA(η) = ∆ if and only if for i ∈ {0, 1}, η satisfies

Y ′
ωi

= υiYi

αi = a′ωi
/ai

βi = α−1
i b′ωi

− bi

εi = αie
′
ωi
ei

ρi = rωi
− εiri

(8)

where ω0 = b and ω1 = 1 − b. It is hard to see that there exists unique (υ0, υ1) and thus a unique η
satisfies Equation (8). In free mode for Rdleq, υi must be equal to logG Y ′

ωi
/logG Yi. In restricted mode,

since A is argument-honest, such υi must exist and both Y ′
0 and Y ′

1 are not 0, which implies the uniqueness
of υi.

To prove the above claim, in the “only if” direction, from Figures 6 and 7, it is clear that when
vA(η) = ∆, then η satisfies all constraints in Equation (8).

To prove the “if” direction, assume that η satisfies all constraints in Equation (8). We need to show
that vA(η) = ∆. This means in particular verifying that in free mode, User0 indeed outputs Y ′

0 and
Y ′
1 , and in both modes, the challenges output by User1 and the proofs output by User2 are indeed

(e0, (Y0, Z0), π0) and (e1, (Y1, Z1), π1). It is clear that the output Y
′
0 , Y0, Z0, Y

′
1 , Y1, Z1 are consistent with

∆.

For the challenges, note that because we only consider ∆’s that result in Usr2 not producing output
(⊥,⊥), we have

ei = H(Yi, Zi, [Yi;M ] · ri − eiai[Zi;X], aiH + biG) .
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oVuf.Usr(crs, pk,m) oVuf.Iss(crs, sk)

Y := H1(m)

st, Y ′ ← oTZ.Usr0(crs, pk, Y )

Y ′

st, (Z′,T ′, C′)← oTZ.Iss1(crs, sk, pk, Y
′)Z′,T ′, C′

e′ ← oTZ.Usr1(st, (Z
′,T ′, C′)) e′

(r′, a′, b′)← oTZ.Iss2(st, e
′)r′, a′, b′

return (Y,Z), π := (a, b, e, r)← oTZ.Usr2(st, (r
′, a′, b′))

Fig. 9. The issuance protocol for the OVUF protocol oVuf from Section 5.2.

Since

Ti = ε−1
i

(
υ−1
i 0

0 In

)(
T ′
ωi
−MY ′

ωi
ρi

)
= ε−1

i

(
υ−1
i 0

0 In

)(
[Y ′

ωi
;M ] · r′ωi

− e′ωi
a′ωi

[Z ′
ωi
;X]− [Y ′

ωi
;M ]ρi

)
= [Yi;M ] · ε−1

i (ri − ρi)− ε−1
i e′ωi

a′ωi
[Zi;X] ,

= [Yi;M ] · ri − eiai[Zi;X] ,

Ci = α−1
i C ′

ωi
− βiG

= α−1
i (a′ωi

H + b′ωi
G)− βiG

= α−1
i a′ωi

H + (α−1
i b′ωi

− βi)G

= aiH + biG ,

the challenge output by User1 are indeed e′i. Then, by Equation (8), it is clear that the output proof
are indeed πi. ⊓⊔

5 Oblivious Verifiable Unpredictable Functions

We rely on oblivious zero-knowledge proofs to build an Oblivious Verifiable Unpredictable Function
(OVUF) from pairing-free groups of prime order. As in a verifiable unpredictable function (VUF), a
weakening of a VRF [33], we consider a setting where an issuer holds a secret key sk, the user knows a
public key pk, and they engage in an interactive protocol to jointly evaluate a function Z = F(sk,m) of an
input m chosen by the user. The user learns Z, along with a proof π that attests that Z = F(sk,m), which
is verified with help of the public key. Crucially, however, we require this evaluation to be oblivious–the
issuer does not learn anything about m, Z, and π during the execution. We note that this notion is
stronger than that of a (verifiable) OPRF, in that the latter only provides verifiability to the user, as
the issuer provides a linkable proof of evaluation which cannot be made public.

Before we turn to the formal treatment of OVUFs, and our construction, we observe that an OVUF
directly yields a blind signature scheme producing signatures σ = (F(sk,m), π) for a messagem–therefore,
the first part of the signature is unique in that it only depends on m and sk. This is a natural weakening
of the notion of unique signatures [26], which suffices in many of their applications. To the best of our
knowledge, no unique signatures, or partially unique ones, are known in the pairing-free setting, let alone
blind ones. This is contrast to the pairings setting, where BLS signatures [8] and their blind version [7]
are unique. We expand on this further below.

5.1 Syntax and security

An OVUF protocol consists of a tuple of p.p.t. algorithms oVuf = (Setup,KeyGen, Iss,Usr,F,Ver), with
the following functionalities:
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– crs← oVuf.Setup(1λ), the setup algorithm, generates the public parameterscrs
– (sk,pk) ← oVuf.KeyGen(crs), the key generation algorithm, generates a secret key sk and a public

verification key pk
– The interactive algorithms oVuf.Iss (the issuing algorithm) and oVuf.Usr (the user algorithm) take

as input (sk,pk), and (pk,m), respectively, along with crs. The interaction and the outputs of the
issuer and user are denoted as:

((Z, π),⊥)← ⟨oVuf.Usr(crs,pk,m), oVuf.Iss(crs, sk,pk)⟩

where m ∈ {0, 1}∗ is a string. Moreover, we require that Z = F(crs, sk,m) is the unique output of
the associated key function F.

– true/false ← oVuf.Ver(crs,pk,m,Z, π) outputs a bit to indicate whether π is a valid proof that
Z = F(crs, sk,m).

We require a number of security properties for an OVUF, which we state here only informally. (A
proper formalization follows along the lines of Section 3.)

– Soundness. Any p.p.t. adversary playing the role of a malicious user, given crs and pk, should not be
able to interact with an honest issuer (in an a-priori unbounded polynomial number of concurrent
executions) and generate a triple (m∗, Z∗, π∗) such that oVuf.Ver(crs,pk,m∗, Z∗, π∗) is true, but
F(crs, sk∗,m∗) ̸= Z∗.

– One-more unforgeability. The security game initially runs oVuf.Setup(1λ) to generate crs and (sk,pk)←
oVuf.KeyGen(crs). The p.p.t. adversary, given crs and pk, can then interact concurrently over ℓ ses-
sions with oVuf.Iss(crs, sk). It wins if it outputs ℓ+ 1 distinct triples {(mj , Zj , πj)}j∈[ℓ+1] such that
oVuf.Ver(crs,pk,mj , Zj , πj) = true for all j ∈ [ℓ+ 1].

– One-more unpredictability. The security game initially runs oVuf.Setup(1λ) to generate crs and
(sk,pk)← oVuf.KeyGen(crs). The adversary, given crs and pk, interacts with oVuf.Iss(crs, sk) in ℓ con-
current sessions. It wins if it outputs ℓ+1 distinct pairs {(mi, Zi)}i∈[ℓ+1] such that F(crs, sk,mi) = Zi

for all i ∈ [ℓ+ 1].
– Obliviousness. We can define obliviousness with respect to a cheating issuer in a way very similar

to that of what done in Section 3, which guarantees that any triple (m,Z, π) output by an honest
user cannot be linked back to which issuance session that generates it. We omit the formal definition
here.

One-more unpredictability is a natural relaxation (to the oblivious setting) of unpredictability for VUFs.
It captures the fact that only ℓ evaluations of F(sk, ·) are learnt through ℓ interactions with the issuer.
It is not implied by one-more unforgeability, as it may be easier to break it if we are not asked to also
generate a proof. The converse is not true either since we may be able to break one-more unforgeability
by presenting ℓ+ 1 proofs for a single pair (m,Z).

5.2 An OVUF protocol and its security

An OVUF protocol oVuf[GrGen] is easily obtained from oTZ = oTZ[GrGen, free] for the DLEQ relation
Rdleq. We give it for completeness:

Rdleq :=

{
(x,X, Y, Z) : ∀ x ∈ Zp and Y ∈ G,

[
Z

X

]
=

[
Y

G

]
· x

}
.

The relation-specific setup is empty, i.e.: Rdleq.Setup(Γ) = ⊥.

– The Setup algorithm, on input 1λ, runs (G, p,G) ←$ GrGen(1λ), and samples a second generator
H ←$ G. It also implicitly defines two hash functions H1 : {0, 1}∗ → G and H : {0, 1}∗ → Z∗

p. Finally,
it returns crs := (G, p,G,H). (Λ is empty.) We stress here that the particular choice of the hash
functions is not spelled out further, as we will assume them to be random oracles in our security
analysis.

– The KeyGen algorithm, on input crs = (G, p,G,H), picks sk ← Zp and sets pk := sk · G. It returns
(sk,pk).
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– We define F(crs, sk, x) = sk ·H1(x).
– The Iss and Usr algorithms are derived from those of oTZ = oTZ[GrGen, free]. (Note in particular

that (sk,pk) are a sample from Core(Rdleq).) In particular,

Usr(crs,pk,m) = oTZ.Usr(crs,pk,H1(m)) ,

Iss(crs, sk) = oTZ.Iss(crs, sk,pk = sk ·G) .
(9)

The original user algorithm oTZ.Usr would return a tuple (Y,Z, π := (a, b, e, r)), but Y = H1(m) is
redundant here, and therefore only (Z, π := (a, b, e, r)) is returned by Usr(crs,pk,m). Clearly, in an
honest execution, Z = F(crs, sk,m). We provide a self contained description of the protocol in ??.

– The verification algorithm, given m,Z, and π = (a, b, e, r), first computes Y := H1(m), and then
verifies that π is a valid proof for (sk,pk, Y, Z) ∈ Rdleq. This is done by computing

C := aH + bG ,

as well as T := r[Y ;G]− ea[Z;pk]. Then, we check that H(Y,Z,T , C) = e.

Security. It is not hard to see that the obliviousness of oVuf is implied the obliviousness of oTZ. We
show other security guarantees in the following lemmas.

Lemma 6. oVuf achieves soundness if H is a random oracle.

Proof (Proof Sketch). By the soundness of oTZ, it follows by standard techniques that an unbounded
adversary, on input crs and pk = sk · G, querying H a polynomial number of times, cannot output
(m,Z, π = (a, b, e, r)) such that π is valid and (sk,pk,H1(m), Z) /∈ Rdleq. (For this argument, the hash
function H1 can be fixed, and does not need to be a random oracle.) Clearly for such a prover access to
the issuer does not help, as the unbounded prover knows sk without loss of generality, and can simulate
the issuer on its own.

Lemma 7. oVuf is one-more unforgeable under the (q+1)-SDL assumption in the algebraic group model
and in the random oracle model.

Proof (Proof sketch.). Here, we assume that both H and H1 are random oracles. The high-level idea is
simple: A winning adversary A against one-more unforgeability of oVuf, on input crs,pk, would output
{(m∗

j , Z
∗
j , π

∗
j )}j∈[ℓ+1] such that oVuf.Ver(crs,m∗

j , Z
∗
j , π

∗
j ) = true for all j ∈ [ℓ+ 1]. This yields an adver-

sary B against OMUF security of oTZ[GrGen, free], which, on input X = xG and crs, runs A on input
crs and X, simulates the issuer of oVuf with its oracles. Finally, it outputs {(H1(m

∗
j ), Z

∗
j , π

∗
j )}j∈[ℓ+1].

Clearly, B wins if A wins, or if a collision for H1 was found.
To use Theorem 3, however, we need to make sure that B is an algebraic adversary of the right format.

The problem is that A can supply algebraic representations of elements that also depend on the outputs
of H1–as B has no access to a second oracle H1, such representations cannot be output by B. This is
easy to overcome, however, by letting B simulate H1 to A so that the discrete logarithm hm of the result
H1(m) = hmG of each query m is known to B. This then allows B to convert all representations supplied
by A in terms of the group elements input to B only.

Lemma 8. oVuf is one-more unpredictable under the one-more gap-DH assumption in the random oracle
model.

Here, we do not state explicitly the one-more gap DH assumption, but note that this is the exact
assumption needed to prove one-more unpredictability in the random oracle model in a setting where
the issuer merely provides sk · Y ′ on input Y ′, without generating a proof. (This follows from [7].) The
proof of the lemma then uses the specific structure of our proof to simulate the proof issuance without
knowledge of sk by ensuring that the reduction generates the generator H with a known discrete log.

Proof (Proof sketch). It is well known that if an adversary B is only given access to an issuer which
returns Z ′ := skY ′ on input Y ′, then one-more unpredictability holds under the one-more gap-DH
assumption in the random oracle model [7]. However, in our setting, the adversary A interacts with the
full issuer, which also engages into the issuance of a proof π, and we need to prove that it does not help.
Here, we argue that the adversary B can run A and simulate the full issuance by setting up parameters
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such that the discrete logarithm H = αG of the second generator H is known to B. In particular, when
A starts an interaction with the issuer with value Y ′, B call its oracle to obtain Z ′ := sk · Y ′. Then, it
also generates

η, t′, r′, c∗ ← Zp , C ′ := η ·G , T ′ := r′

[
Y ′

G

]
− c∗

[
Z ′

pk

]
, .

It returns Z ′,T ′, C ′ to A. If A then continues this session with a challenge e′, B computes a′ := e′ ·(c∗)−1.
It also compute b′ such that αa′ + b′ = η, and returns r′, a′, b′ to A.

Remark 2. Given sk ·H1(m) is a pseudorandom function in the ROM, one may wonder whether we could
obtain the stronger object of an oblivious verifiable random function (OVRF), instead. However, we note
that existing proofs for the weaker notion of VOPRF security [30,44] all extend the above PRF with an
outer hash, which would interfere with our ability of generating efficient proofs.

5.3 Applications

Partially unique blind signatures. We can think of the above OVUF protocol as a blind signature scheme,
with signatures of form σ = (sk ·H(m), π), where π is a proof that ensures correctness of the first portion
of the signature, which is verified with the public key pk = sk · G. One-more unforgeability directly
implies one-more unforgeability of the blind signature. Further, soundness guarantees that for any valid
signature we indeed have Z = sk ·H1(m), i.e., the Z part is a deterministic function of m and sk. Such
signatures (as in unique signatures) can save verification costs by avoiding verifying multiple signatures
for the same message over and over. Once σ = (sk ·H(m), π) is verified, every following signature on m
will also contain the same sk ·H(m) portion.

From a theoretical perspective, the resulting scheme offers an alternative to existing blind signature
schemes (e.g. [1,29,24,43]) in pairing-free groups. While we rely on four messages, as opposed to three in
these schemes, this difference is immaterial as three-message schemes also require two round trips.

Hybrid publicly/privately verifiable tokens. Our construction also gives new approaches to anonymous
tokens, as e.g. in PrivacyPass [19,13]. The original protocol [19] relies on privately verifiable tokens
functionally equivalent to (r, sk · H1(r)) for a random r. (The 2HashDH OPRF [30] was used instead,
but it is easy to see that pseudorandomness is not needed.) However, many situations call for publicly
verifiable tokens, and in practice, PrivacyPass usually relies on a blind signature on r instead.

Our solution offers a hybrid approach, where the token (r, sk · H1(r)) is issued with an unlinkable
publicly verifiable proof π. If the token verifier knows the secret key, it can use it to very quickly verify
(r, skH1(r)). Unpredictability still guarantees that these (privately-verifiable) tokens are secure. However,
third parties that only know the public key can also, less efficiently, verify the token with the help of π.

6 Public verification for algebraic MACs

Keyed-verification anonymous credentials (KVACs) [15] are typically constructed with an algebraic MAC,
(this is a direct analog of anonymous credentials constructed from blind signatures). In this approach,
the issuer creates a MAC σ on a list of attributes m, sends σ to the user. Since the user is not able to
verify σ (unlike the blind signature case), the issuer also provides an issuance proof π that proves σ is
well-formed with respect to a commitment to the MAC key and m. This is important for unlinkability
of the credential, since otherwise σ may be invalid in a way that is unique to the issuance session.

Here we apply our transform to blind π, effectively making it a blind signature onm. This is interesting
for three reasons. First, since π can be verified by anyone, we can upgrade a KVAC to have some of
the public verifiability present in traditional anonymous credential systems, while still retaining the very
efficient KVAC protocols for cases when public verifiability is not required. Second, there are many
KVAC constructions (based on different algebraic MACs) we can potentially upgrade in this way, with
different features, tradeoffs and assumptions. Third, this construction provides some of the functionality
of anonymous credentials with concurrent security.
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Technical Overview. We use a specific, efficient MAC, called MACGGM in [15], to describe our approach
but we believe that a similar reasoning applies also toMACDDH (another MAC from [15]). We describe the
case of a single attribute. The setup algorithm generates the public parameters (Γ = (G, p,G),W ) where
W is a generator of G whose discrete logarithm w.r.t. G is not known. The secret key is x := [x−1;x0;x1]
and the public parameters are (X0, X1) = (x0G + x−1W,x1W ). To compute a MAC on message m,
sample Y ′ at random in G, then output σ = (Y ′, Z ′) = (Y ′, (x0 + x1m)Y ′). To verify (σ,m), use Y ′ and
(x0, x1) to recompute Z ′′ and accept if Z ′′ = Z ′. The proof π is proof of knowledge of (x−1, x0, x1) such
that

Z ′ = (x0 + x1m)Y ′ ∧ X1 = x1W ∧ X1 = x0G+ x−1W

which can be realized with a generalized Schnorr proof, amenable to our transform. We also note that a
MAC (Y ′, Z ′) can be re-randomized to a MAC (Y, Z) = (υY ′, υZ ′) where υ is a random value.

6.1 Syntax

Syntax for Algebraic MACs. A generic algebraic MAC with public issuance, denoted MAC, has the
following algorithms. Denote withMAC.Setup(crs) be the setup algorithm that, given as input the security
parameter in unary form 1λ, outputs some common reference string crs. MAC.KeyGen(crs) generates a
key pair (sk,pk) where sk is the secret key, and pk are the public parameters (used only when proving
statements about an authentication tag).MAC.MAC(crs, sk,m) outputs an authentication tag µ, on input
message m (which we allow to be a vector of messages, also called attributes). MAC.sVer(crs, sk,m, µ)
verifies that µ is a valid authentication tag for m.

Syntax for Publicly Verifiable Algebraic MACs. The setup algorithm is run by a trusted party and outputs
crs, describing a group description Γ for a group G of order p and three non-trivial generators G, H (the
commitment key for Ped), and W (the crs of MAC) . The signer uses KeyGen(crs) to create a keypair
(sk,pk). Signature generation (or issuance) is a three-message protocol between the User and Issuer. In
its basic instantiation, both parties share pk, and the signer also knows sk. The user shares the message
vector m (denoted info in the generic protocol) with the issuer. 8 The output is a first message Imsg1,
sent from issuer to user, and we write (Imsg1, st)← MAC.Sign1(crs, sk,pk,m) (where st is state required
by the Issuer for the rest of the protocol) to denote the first message produced by the issuer. In the second
step the user has input Imsg1, sends a message Umsg to the issuer via the user algorithm MAC.Usr1,
which in turn creates a response, denoted Imsg2 ← MAC.Sign2(st, e

′). Then the User locally computes the
proof π, from (Imsg1, Imsg2) and their state. The signature is verified with MAC.Ver(crs,pk,m, π). (We
stress that oCMZ.sVer denotes secret-key verification, while oCMZ.Ver denotes public-key verification.)
In our constructions we have the property that from π it is always possible to parse out an algebraic
MAC µ on the same message. This is necessary to allow the dual-use feature of the credential (both as
a KVAC and a blind signature).

We informally define security of publicly verifiable algebraic MACs with the following two properties:

– Unlinkability. The challenger sets up the public parameters crs and internally runs the p.p.t. adversary
A(crs) and returns a public-key pk, with a message vector m. The challenger samples b ←$ {0, 1},
and lets the adversary interact with two user session Usr(pk,m), with the same m, potentially
interleaving messages across different rounds. Finally, if neither instances failed, A gets the resulting
proofs in a random order π(b), π(1−b) and outputs a guess b′ ∈ {0, 1}. If b = b′, the adversary wins the
game. The adversary has also at disposal a verification oracle Verify that internally runs MAC.sVer
for secret-key verification.

– Unforgeability for n attributes. Here, the adversary A engages in polynomially many (in λ) adaptive
interactive protocols with the issuer (implemented by the challenger). The challenger and A proceed
for ℓ issuance sessions, for arbitrary messages chosen by the adversary. At the end of its execution,
A outputs a set of proofs and corresponding attributes {(πj ,mj)}j , and wins the game if:
(a) (one-more forgery) A outputs at least ℓ+ 1 proofs that are all valid and different, or
(b) (attribute forgery) one of proofs output by A is valid and has an associated attribute vector m

that was not queried during issuance.

8 This is also a simplification; in Section 6.3 we describe how m may be (partially) hidden during issuance
(Section 7.3).
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oCMZ.Usr(crs,X,m) oCMZ.Iss(crs,x,X)

m

st, (Z′,T ′, C′)← oTZ.Iss1(crs,x,X,m)Z′,T ′, C′

st, e′ ← oTZ.Usr1(crs,X,m, (Z′,T ′, C′)) e′

r′, a′, b′ ← oTZ.Iss2(st, e
′)r′, a′, b′

return ((Y,Z), (a, b, e, r))← oTZ.Usr2(st, (r
′, a′, b′)))

Fig. 10. Oblivious issuance protocol for CMZ credentials.

Both security properties are inspired from the notion of blind signatures with attributes in [3, Def. 6
and Def. 7]. When extended to handle private attributes (cf. Section 6.3), the differences are in: (1) the
syntax for the algorithms, which is slightly different than [3]; (2) in unlinkability, where we do not require
the key pair to be honestly generated; (3) in the unlinkability property, we clarify that unlinkability can
hold only for attributes whose public information is the same.

6.2 Oblivious issuance proof

We now define the new issuance proof for CMZ credentials, denoted oCMZ. As the original protocol, it
provides a proof π attesting the validity of the given credential, but now π is created with our oblivious
ZK proof framework. The procedure oCMZ.Setup(1λ) invokes the setup for the relation RMAC.Setup(Γ)
which samples and returns the generator W ∈ G such that its DL w.r.t. G and H is not known. In other
words, crs = (Γ, H,W )← oCMZ.Setup(1λ). The key generation algorithm oCMZ.KeyGen(crs) outputs a
new key pair (sk,pk), where the secret key is sk := x := [x−1;x0;x1; . . . ;xn] chosen at random and the
public key is pk := X ∈ Gn+1 is constructed as X0 := x0G+x−1W , Xi = xiW for 1 < i ≤ n. A MAC on
a (public) vector m is generated via the procedure oCMZ.Sign that internally runs the generic restricted
protocol oTZ[GrGen] (illustrated in Figure 6, and re-stated in Figure 10) by setting info := m ∈ Zn

p to
be the message vector to be signed m and the relation to be proven as

RCMZ := {(x,X,Y = (0, Y,m · Y ), Z) ∈ Zn+2
p ×Gn+1 ×Gn+2 ×G : [Y ;M ] · x = [Z;X0; . . . Xn] and

X0 = x0G+ x−1W and Xi = xiW for i ∈ [1, n]}

where the morphism is

[
Y

M

]
:=



0 Y m1Y m2Y · · · mnY

W G 0 0 · · · 0

0 0 W 0 · · · 0

0 0 0 W · · · 0

0 0 0 0
. . . 0

0 0 0 0 · · · W


. (10)

The setup algorithm RCMZ.Setup(Γ) samples W uniformly from G∗ and returns Λ = (Γ,W ). The ar-
gument sampling procedure RCMZ.SampleArg(crs,m) returns a tuple Y := (0, Y,m · Y ) = (0, Y,m1Y,
m2Y, . . . ,mnY ) for some Y randomly sampled from G∗. However, we assume oCMZ.Sign does not send
the whole vector Y , and instead simply sends Y as the other elements can be reconstructed from the
message vector m.

It is clear that RCMZ is a simple algebraic relation (cf. Definition 1), since one generates M and Y
with their DLs to base G and fixed (Λ,m), any Y1,Y2 ∈ Arg(RCMZ) is such that ∃r ∈ Zp such that
rY1 = Y2. Also, the kernel Diffie-Hellman problem is hard for RCMZ, since finding non-zero r ∈ Zn+2

p

such that Mr = 0 implies solving the DL of W to base G.
At the end of the issuance protocol, the user has a MAC µ := (Y,Z) and an unlinkable proof

π := (a, b, e, r) on m. The public verification algorithm oCMZ.Ver takes as input X, the message m,
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oCMZ.Ver(crs,X,m, (Y,Z), (a, b, e, r))

Y := (0, Y,m1Y,m2Y, . . . ,mnY )

// Defined in Figure 5

return oTZ.Ver(crs,X,Y ,Z, (a, b, e, r))

oCMZ.sVer(crs,x,m, (Y,Z))

// MACGGM.Ver from [15]

return
(
(
∑

i ximi + x0)Y = Z
)

Fig. 11. The public and secret-key verification algorithm for our MAC-based anonymous credentials.

together with the MAC (Y, Z) and the proof π. It derives Y = (0, Y,m · Y ) and internally invokes
our generic verifier in restricted mode (Figure 5). The following lemma follows from correctness and
obliviousness (cf. Theorem 5) of the generic protocol oTZ[GrGen].

Lemma 9. The algebraic MAC with public verification oCMZ is correct and unlinkable.

Unforgeability. We prove security of our construction in two parts: we first study (pure) one-more un-
forgeability, corresponding to the winning event (a), and then attribute unforgeability, corresponding to
the winning event (b) on Page 24. The case (a) follows from the main theorem (cf. Theorem 3), while
the case (b) is more involved and requires a reduction to the standard unforgeability of algebraic MACs.

Lemma 10. If MACGGM is uf-cmva secure [15, Def. 1] and DL is hard for GrGen, then oCMZ satisfies
attribute-based unforgeability in the random oracle model and the algebraic group model.

Proof. The proof is by reduction to the unforgeability of MACGGM, with one hybrid change strengthening
the game AUFoCMZ,A(λ).

We consider a p.p.t. adversary A for the game AUFoCMZ,A(λ) that takes as input the pair (crs,pk)
and returns a forgery σ∗ for the message m∗. We add one extra winning condition: in addition m∗ ̸∈ Q
and oCMZ.Ver(crs,X,m∗, σ∗) = true, we demand that also secret-key verification is satisfied, that is:

oCMZ.sVer(crs,x,m∗, σ∗) = true.

This game can be distinguished with at most negligible probability if oTZ for the relation RCMZ is
adaptive sound. Consider a p.p.t. adversary B for the game SNDoTZ,B(λ), that, given as input (Γ,Λ)
samples H ←$ G and sets crs = (Γ, H,Λ). Then, sets (x,X) ← oCMZ.KeyGen(crs) and internally runs
A(crs,X), replying to the oracle queries just as illustrated in Figure 12. Upon receiving the output of
A, that is: m∗, (Y ∗, Z∗), (a∗, b∗, e∗, r∗), B outputs the witness x, the statement (X,Y ∗ = (m∗ · Y ), Z∗)
and the proof (a∗, b∗, e∗, r∗). The two games have a different outcome only if the verification algorithm
suceeds and yet the secret-key verification algorithm doesn’t. In other words, if:

(Y ∗, Z∗) ̸= (Y ∗, (x0 +
∑

i ximi)Y
∗)

which in turn implies that (X,Y , Z) ̸∈ RCMZ and oCMZ.Ver succeds. Therefore, B has returned a valid
forgery.

From the above game, we can build a reduction B that will act as an attacker in the uf-cmva game for
MACGGM, and use the attribute-based forger A as a subroutine (A is the attacker in Figure 12). As part of
the oCMZ setup, B constructs the committer key ck by sampling h←$ Z∗

p and computing H := hG, and
can therefore equivocate the commitment C. For the i-th signing query Issuer1(mi) for a message vector
mi, B queries the MAC oracle of the uf-cmva game with m, obtaining a MAC (Y ′, Z ′) on mi. Then, B

samples âi ←$ Z∗
p, b̂i ←$ Zp, and ri ←$ Zn

p and computes T ′
i := [Y ′

i ;M ]r′i − âiX, and C ′ := âiH + b̂iG.
Upon receiving queries of the form Issuer2(i, e

′
i), B equivocates the commitment setting a′ := âi/e

′
i and

b′ := b̂i − (âi − a′i) · h and returns ((a′, b′),T ′, e′, r′). For any new query to the random oracle of the
form H((0, Y,m · Y ), Z,T , C) if the oracle was previously queried on the same input, then B returns
the previously-stored value; otherwise it samples a fresh challenge e←$ Zp, internally stores it in a hash
table with key (Y , Z,T , C), and returns e. Any query to the verification oracle Verify is forwarded to
the verification oracle of the uf-cmva game.
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Game AUFMAC,A(λ)

crs← MAC.Setup(1λ)

(sk, pk)← MAC.KeyGen(crs)

ℓ := 0; Q := ∅; Opn := ∅

(σ∗,m∗)← AH,Issuer1,Issuer2,Verify(crs, pk)

return (MAC.Ver(crs, pk,m∗, σ∗) = true

and m∗ ̸∈ Q)

Oracle Verify(µ,m)

return MAC.Ver(crs, sk, µ,m)

Oracle Issuer1(m)

i := i+ 1; Opn := Opn ∪ {i}
Q := Q ∪ {m}
(π1, sti)← MAC.Sign1(crs, sk, pk,m)

return π1

Oracle Issuer2(i, e
′
i)

if i ̸∈ Opn return ⊥
ℓ := ℓ+ 1; Opn := Opn \ {i}
π2 ← MAC.Sign2(sti, e

′
i)

return π2

Fig. 12. The attribute unforgeability (AUF) game for blind signatures from algebraic MACs. H is the random
oracle with range over Zp.

At the end of its execution, the adversary A returns a signature (Y ∗, Z∗), (a∗, b∗, e∗, r∗) and a mes-
sage m∗ such that MAC.sVer(crs,x,m∗, (Y ∗, Z∗)) = true and which therefore constitutes a forgery for
MACGGM.

The following lemma states that the matrix of Equation (10) is such that KMDH is as hard as DL:
in fact, finding a non-zero r such that Mr = 0G implies solving the DL of W to base G (cf. second row):
Since Mr = 0, then r0 ̸= 0 or r1 ̸= 0 (otherwise one of the rows 1..n is non-zero) and the reduction to
DL is immediate.

Lemma 11. If DL is hard for GrGen, then for any p.p.t. adversary A,

Advkmdh
GrGen,RCMZ,A(λ) = AdvdlGrGen,A(λ) .

Corollary 3. If MACGGM is uf-cmva secure [15, Def. 1] and DL is hard for GrGen, then oCMZ is un-
forgeable for n ∈ poly(λ) attributes.

Remark 3 (Somewhat selective disclosure). So far we have considered public verification of oCMZ when
the verifier is given all of the attribute values. This is the behavior of blind signatures, but as a single-
use unlinkable credential with public verifiability oCMZ is less capable than alternatives like AC Light
and U-Prove, which can selectively disclose subsets of the attributes, and keep undisclosed attributes
unconditionally hidden. Referring to oCMZ.Ver (Figure 11), we see that of the inputs the verifier gets,
only Z depends on the attributes m. We first note that Z hides m when one of the attributes is
uniformly random and kept hidden (this is the case even when the verifier knows the secret key x).
Now we argue that verification remains correct Now consider oCMZ.Ver′, where we replace m by Y =
(0, Y,m1Y,m2Y, . . . ,mnY ). Since the first step of oCMZ.Ver is to compute Y , oCMZ.Ver′ remains correct
if Y is well-formed. Thus if we additionally require a knowledge-sound proof πY that Y is well-formed,
calls to oCMZ.Ver′ can be reduced directly to oCMZ.Ver by extracting m from πY and calling oCMZ.Ver.
Unfortunately, miY is not perfectly hiding, so using oCMZ.Ver′ still reveals some attribute information,
however, this is sufficient for use-cases where attributes have high entropy. When deploying oCMZ it will
usually be essential to have at least one attribute be random, kept private during issuance (Section 6.3)
and always kept hidden; otherwise oCMZ.Ver obtains the MAC value (Y,Z) and the attributes m, they
can then start presenting the credential unlinkably as a MAC. Designing a richer credential system on
top of oCMZ is interesting future work.

Signature size. The signature size is 2|G|+(3 + n)|Zp| bits, which is linear in the number of attributes
(as is usually the case for attribute-based credentials). To put this in perspective, we can compare to
other credentials constructed in prime order groups, in particular AC Light and U-Prove. We caveat that
the comparison is not direct since neither supports the keyed-verification feature of our scheme, and the
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public verification in our scheme does not (directly) support the rich presentation proofs of the other
two. Finally, the security properties of all three schemes vary.

We compare the size of presenting a credential by counting the number of elements, assuming for
simplicity that |G|≈ |Zp| (as in elliptic curve groups). In AC Light, the signature size is eight elements, to
show that a ninth is a fresh commitment to the n attributes. Therefore, the cost of credential presentation
when all attributes are revealed is 9+n elements. For U-Prove the cost is 6+n elements. Both are slightly
more than the 5 + n elements required by our scheme.

Remark 4. An interesting question is to what extent our approach translates to other algebraic MACs
used to construct KVAC schemes such as in [4,11,16]. For example, the same idea easily translates
to MACDDH [15, Section 3.2, 4.3], and we expect the security analysis to be similar. When comparing
MACDDH and MACGGM, the main difference is that the witness becomes a matrix instead of a simple
vector. The secret-key is defined as

(x,u,v) := ((x−1, x0, . . . , xn), (u−1, u0, . . . , un), (v−1, v0))←$ Zn+2
p × Zn+2

p × Z2
p

while the public key is

X = (x0G+ x−1W,x1W,x2W, . . . , xnW ),

U = (u0G+ u−1W,u1W,u2W, . . . , unW ),

V = (v0G+ v−1W ),

A MAC is computed as:

(µ0, µ1, µ2, µ3) := (Y, (x0 +
∑
i

mixi)Y, (u0 +
∑
i

miui)Y, v0Y )

which, written in the language of generic algebraic relations when instantiating our generic protocol is:

[
Y

M

] [
x u v

]
=



0 Y m1Y m2Y · · · mnY

W G 0 0 · · · 0

0 0 W 0 · · · 0

0 0 0 W · · · 0

0 0 0 0
. . . 0

0 0 0 0 · · · W

0 0 0 0 · · · 0





x−1 u−1 v−1

x0 u0 v0

x1 u1 0

x2 u2 0
...

...
...

xn yn 0


=

[
µ1 µ2 µ3

X Y Z

]

6.3 Supporting private attributes

In [15], an alternative issuance protocol is described that allows the user to keep some attributes private
during issuance. This feature is commonly referred to as “blind issuance” in the literature on anonymous
credentials. It is possible to extend oCMZ issuance support private attributes as well. Let Hid ⊂ [1, n]
denote the set of indices of the attributes to be kept private, and consider a linearly-homomorphic
encryption scheme over Γ. For the rest of this section, we set the scheme to be Elgamal, and denote it
as E . The user generates an Elgamal keypair (s ∈ Zp, S = sG ∈ G) ← E .KeyGen(crs) and computes an
Elgamal encryption of each i ∈ Hid

ctxmi
:= (Ei,1, Ei,2) := (riG,miG+ riS)← E .Enc(S,mi)

with ri ←$ Zp. For simplicity, we denote the vector encryption of mhid = {mi}i∈Hid as ctxmhid
. Instead of

sending the plain vector of messages m in the algorithm oCMZ.Usr0, now the user sends the ciphertexts
ctxmhid

= {(Ei,1, Ei,2)}i to the issuer along with a zero-knowledge proof of knowledge of (ri,mi).
9 The

issuer, instead of computing Y ′, Z ′ according to the protocol description above, samples y′ ←$ Zp and

9 In this step, the user generally also proves that mi satisfies some constraint, e.g. is of 8 bits.
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oCMZ.Usr(crs,X, (Hid,mpub,mhid)) oCMZ.Iss(crs,x)

(s, S)← E .KeyGen(crs)

ctxmhid ,πhid := E .Enc(s,mhid) S, ctxmhid ,πhid,mpub

y′ ←$ Zp; Y ′ := y′G

// If Hid = ∅, compute and send

// Z
′ := (x0 + ⟨x1..n,mpub⟩) · Y ′

// Otherwise:

Hom. compute ctxZ′ as per Equation (11)
Y ′, ctxZ′

υ ←$ Zp

Y := υ−1Y ′ t′ ←$ Zn+2
p

// If Hid = ∅, skip this step // If Hid = ∅, compute and send

Z′ := E .Dec(s, ctxZ′) // T
′ := [Y

′
;M ] · t′

Z := υ−1Z′ // Otherwise:

Hom. compute ctxT ′
0
as per Equation (12)

Compute T ′
1..n+1 as per Equation (13)

(a′, b′)←$ Z2
p

C′ := a′H + b′G
ctxT ′

0
,T ′

1..n, C
′

// If Hid = ∅, skip this step

T ′ := [E .Dec(s, ctxT ′
0
);T ′

1..n+1]

ε←$ Zp; ρ←$ Zn+2
p

T := ε−1

υ
−1 0 · · ·
0 1 · · ·
· · · 1

 ·(T ′ −

[
Y ′

M

]
ρ

)

(α, β)←$ Z2
p

C := α−1C′ − βG

e := H(Y,Z,T , C)

e′ := εα−1e e′
r′ := t′ + e′a′ · x

r′, a′, b′

check Y ′ ̸= 0G

check [Y ′;M ] · r′ = e′a′ · [Z′;X0;X1; . . . ;Xn] + T ′

check C′ = a′H + b′G and a′ ̸= 0

r := ε−1(r′ − ρ)

a := α−1a′

b := α−1b′ − β

return (Y,Z), (a, b, e, r)

Fig. 13. Issuance protocol for algebraic MAC-based blind signatures. E denotes the Elgamal encryption scheme.

computes Y ′ := y′G and computes an encryption of Z ′ using the linearity of the encryption scheme.
Sample a←$ Zp and compute

ctxZ′ := (E′
1, E

′
2) := (aG+

∑
i∈Hid xiy

′Ei,1, aS + x0y
′G+

∑
i∈Hid xiy

′Ei,2 +
∑

i∈[1,n]\Hid mixiy
′G).

(11)

The server also proves that the ciphertext is well-formed: the resulting ciphertext is (E′
1, E

′
2 = E′

1 +
x0Y

′ + ⟨x1..n,m⟩Y ′), which is a valid encryption of Z ′. The user decrypts Z ′ and stores it internally.

Despite it is not possible to compute the matrix Y ′ directly, it is still possible to compute the matrix-
vector product using (again) linearity of E . Given a list of index attributes Hid, an encryption of the
element T ′

1 is computed as follows:

ctxT ′
1
:= E .Enc(S, T ′

1) := (aG+
∑

i∈Hid tiy
′Ei,1, aS + t0y

′G+
∑

i∈Hid tiy
′Ei,2 +

∑
i∈[1,n]\Hid mitiy

′G).

(12)
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The remaining elements T ′
2..n+2 are computed using the rows [2, n+ 1] of Equation (10)

T ′
1..n+2 :=



W G 0 0 · · · 0
0 0 W 0 · · · 0
0 0 0 W · · · 0

0 0 0 0
. . . 0

0 0 0 0 · · ·W

 t′ (13)

Since Elgamal is perfectly correct, correctness follows immediately from the correctness of the oCMZ
protocol.

Unlinkability follows straightforwardly from the argument of the previous section, since the cipher-
texts E .Enc(S,mpriv) are indistinguishable from uniformly random samples over G2 if DDH is hard for
GrGen, by IND-CPA of Elgamal encryption. The tuple (µ′, µ) = (Y ′, Z ′, Y, Z) = (υY, υZ, Y, Z) is in-
distinguishable from uniformly random if DDH is hard for GrGen. (Note: differently from the previous
proof, here the messages may be different.)

A similar reasoning to the analysis of the previous section also applies to one-more unforgeability:
since all private attributes are followed by a valid zero-knowledge proof of knowledge, it is always possible
to extract the private messages from the proof thus reducing to the (simpler) experiment with public
attributes only. Similarly, attribute unforgeability still holds when some attributes are hidden. Consider
an adversary A that, after interacting ℓ times with the issuer, outputs a single signature (Y ∗, Z∗), (a∗, b∗,
e∗, r∗) and a message vector m that has not been signed before. Considering [3], this game is stronger
than Definition 7, where only the multiset of public attributes are taken into account. However, we can
extract the private messages from the proof and any forgery for a private attribute constitutes a break
for soundness.

7 A secure variant of U-Prove

U-Prove is a cryptographic protocols initially designed by Stefan Brands that allows users to minimally
disclose information about what attributes are encoded in a token. Each token is unlinkable, preventing
tracking of users. We focus on the issuance of a U-Prove token, which is illustrated in [36, Fig. 7].
We provide a mitigation for the attack from Benhamouda et al. [6] for the case where U-Prove tokens
are generated using identical common inputs and the computation is shared among parallel protocol
executions. The resulting protocol is almost identical to the previous one, except for the additional
elements in the proof transcript arising from the Tessaro-Zhu transform. The tokens themselves are left
unchanged.

7.1 Syntax and Definition

A abstraction of U-Prove issuance protocol consists of a tuple of p.p.t. algorithms UProve = (Setup,KeyGen,
Iss,Usr,Ver), with the following functionalities:

– crs← UProve.Setup(1λ), the setup algorithm, generates the public parameterscrs
– (sk,pk)← UProve.KeyGen(crs), the key generation algorithm, generates a secret key sk and a public

verification key pk
– The interactive algorithms UProve.Iss (the issuing algorithm) and UProve.Usr (the user algorithm)

take as input (sk,pk), and (pk,m), respectively, along with crs. The interaction and the outputs of
the issuer and user are denoted as:

(cred,⊥)← ⟨UProve.Usr(crs,pk,m),UProve.Iss(crs, sk,pk,m)⟩

where m ∈ (M)n denotes a list of n attributes each from a set M and cred denotes the resulting
token.

– true/false← UProve.Ver(crs,pk,m, cred) outputs a bit to indicate whether cred is a valid token for
attributes m.
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UProve.Usr(crs,pk,m) UProve.Iss(crs, sk, pk,m)

m

st, (Z′,T ′, C′)← oTZ.Iss1(crs, sk,m)Z′,T ′, C′

st, e′ ← oTZ.Usr1(crs, pk,m, (Z′,T ′, C′); υ) e′

(r′, a′, b′)← oTZ.Iss2(st, e
′)r′, a′, b′

((Y,Z), (a, b, e, r))← oTZ.Usr2(st, (r
′, a′, b′))

return (υ, Y, Z, (a, b, e, r))

Fig. 14. A secure variant of U-Prove issuance protocol.

We consider only one-more unforgeability for UProve here, since it is the only security guarantee af-
fected by the ROS attack. Informally, one-more unforgeability is defined by the following security game.
The security game initially runs UProve.Setup(1λ) to generate crs and (sk,pk) ← UProve.KeyGen(crs).
The p.p.t. adversary, given crs and pk, can then interact concurrently over ℓ sessions with UProve.Iss(crs, sk).
It wins if it outputs ℓ+1 distinct pairs {(mj , credj)}j∈[ℓ+1] such that UProve.Ver(crs,pk,mj , credj) = true
for all j ∈ [ℓ+ 1].

7.2 Our Construction

Our construction UProve is obtained from oTZ[GrGen, restr] for the following DLEQ relation:

Rup :=

{
(x,X, Y, Z) : x ∈ Zp, Y ∈ G, x

[
Y

G

]
=

[
Z

X

]}
,

The relation specific setup Rup.Setup(Γ) returns generators G with G := (G0, G1, . . . , Gn) ∈ Gl whose
discrete logarithm is not known. The setup algorithm for the overall protocol outputs (Γ, H,G) ←
UProve.Setup(Γ). We regard m ∈ Zn

p as info, and the Rup.SampleArg is deterministic algorithm that
takes (crs,m ∈ Gn) as input and outputs Y ′ =

∑
miGi +G0. Then, the protocol UProve is constructed

as follows.

– The setup algorithm UProve.Setup is the same as the setup algorithm of oTZ[GrGen, restr] for Rup.
– The key generation algorithm UProve.KeyGen, given crs, samples sk←$ Zp and sets pk← sk ·G.
– The issuance algorithms UProve.Iss and UProve.Usr are the same as those of oTZ[GrGen, restr] except

the user also outputs the random coins υ generated by the user protocol together with the tuple
(Y,Z, π = (a, b, e, r)). We also present the algorithms in Figure 14.

– The verification algorithm, given pk, m and cred = (υ, Y, Z, π), first checks Y = υ(
∑

miGi + G0)
and then outputs oTZ[GrGen, restr].Ver(pk, Y, Z, π).

Highlighted in orange the changes with the cryptographic specification.10

The pair (υ, Y ) is the token private and public key, which should be unique to each token, and required
to present the token. The stated purpose of the token private key is to prevent replay of the token. One-
more unforgeability of UProve follows immediately from one-more unforgeability of the underlying oTZ
protocol.
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