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Abstract. Ring signature (RS) allows users to demonstrate to verifiers their
membership within a specified group (ring) without disclosing their identities.
Based on this, RS can be used as a privacy protection technology for users'
identities in blockchain. However, there is currently a lack of RS schemes that
are fully applicable to the blockchain applications: Firstly, users can only spend
a UTXO once, and the current RS schemes are not yet perfect in a one-time
manner. At the same time, the current RS schemes are not sufficiently
developed in terms of regulation. Secondly, the size of the current RS is mostly
linearly related to the number of ring members. When there are many members,
the transaction processing speed is slow.
We propose a one-time and revocable ring signature with logarithmic size in
blockchain based on the Sigma-Protocols. Our scheme compresses the RS size
and enables users to sign in the blockchain transactions. The scheme allows two
RS generated with the same private key for a same UTXO to be linked together.
Additionally, it allows regulatory authority to recover the signer's identity at
any time. A security model was presented, and its security properties, namely,
unforgeability, anonymity, one-time, revocability, and non-slanderability were
proven in the random oracle model.
Our scheme compresses the RS size to �(����) where � is the number of ring
users, enabling blockchain transactions to have better processing speeds. And it
can prevent double-spending attacks in blockchain and allows regulatory
authority to recover the identity of the signer.

Keywords: Ring Signatures, Blockchain, Sigma-Protocols, Revocability, One-
time, Logarithmic Size.

1 Introduction

Blockchain, also known as a distributed ledger, publicly records all transaction
information. As many users do not want to expose their identities, it becomes
particularly important to protect the privacy of users' identities in blockchain. The
definition of identity privacy protection in blockchain is given in paper [1]. RS, a type
of privacy protection technology that allows users to sign a transaction while keeping
their identities hidden within a set (ring), can effectively obscure users' identities.
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Therefore, RS can be employed as a privacy protection measure for users' identities
and incorporated into blockchain transactions. The signature verification process
allows for the authentication of the transaction's reliability, without revealing the
identity of the signer within the ring.

Rivest et al.[2] proposed the concept of the RS. A ring is composed of a group of
potential signers who voluntarily join, while the real signer uses his secret key to
generate a RS. This RS can be verified by everyone, but the verifiers cannot
determine which member of the ring specifically generated the signature. Therefore,
the original motivation of RS is to facilitate anonymous reporting that permits
whistleblowers to refrain from disclosing their identity, while ensuring the credibility
of the report through the verification of the RS.

Linkable ring signature [3,4,5] adds a linkable property to the RS, such that if two
RS are generated by the same signer, they will be linked. Linkable ring signature is
suitable for electronic voting scenarios, where an individual possessing voting rights
can cast votes on behalf of all voters without revealing his identity. However, if a
voter votes twice, he will be linked. The paper [6] introduces a linkable ring signature
scheme with strong anonymity and proves its security in the random oracle model. In
numerous practical applications, the implementation of linkability requires a trade-off
with anonymity, which has led to the emergence of traceable ring signature schemes.

Traceable ring signature, as described in [7], is an extension of RS that provides
traceability. In the event that a legitimate signer generates two RS using the same tag,
his identity becomes exposed. The ID-based RS scheme [8] only reveals the signer's
identity when two RS are linked together.

Revocable ring signature [9] is an extension of RS that incorporates the property of
revocability. The revocation authority has the ability to forcibly recover the signer's
identity at any time.

It is important to apply both linkability and revocability of RS to blockchain
transactions. In addition to extending the properties of RS, the reduction in the size of
RS is very important.

1.1 Related Work

Ring Signature Schemes with Linear-Size. CryptoNote v 2.0 [10] introduced a one-
time RS scheme, where the RS is � = (�, �1, . . . , ��, �1, . . . , ��), and � is called the "key
image" and � represents the number of ring users. The size of the RS increases
linearly with the number of ring users. To reduce the size of the RS, the concept of
Ring Confidential Transaction (RingCT) [11] was proposed, where the RS is � =
(�, �1, �1, . . . , ��) . Although this scheme reduces the signature size by approximately
50% compared to the scheme presented in [10], it still maintains a linear relationship
with the quantity of ring users. Another RS introduced in the paper [12] has both
recoverability and linkability, and similarly, it also exhibits a linear correlation
between the RS size and the number of ring users.



Ring Signature Scheme with Constant-Size. To further reduce the size of
signatures, the concept of RingCT 2.0 was proposed in paper [13]. This scheme uses
accumulators to ensure that the output size of the RS is constant and independent of
the number of ring users. Unfortunately, the combination of accumulators and zero-
knowledge proofs leads to a performance that is unfit for blockchain transactions.
Paper [8] proposed a RS scheme, and the RS has a constant size, but the signer's
identity is only revoked if the two RS are linked. A practical constant-size RS was
proposed in paper [20], and the scheme was based on bilinear pairing and
accumulator.

Ring Signature Scheme with Square-Root Size. In paper [14], a RS with size
�( �) was proposed, where � represented the number of users in the ring.
Nonetheless, this RS lacks the attributes of linkability and revocability, consequently
rendering it unsuitable for addressing the demands of blockchain transactions. The
size of the traceable ring signature proposed in [22] is O( �) , but the real signer's
identity will be revealed only when the two RS are linked and the two signed
messages are different.

Ring Signature Scheme with Logarithmic Size. In paper [15], a RS with
logarithmic size was proposed based on a variant of multi-signature to compress the
size of RS. The Σ-protocols in paper [16] were also modified to compress the size of
the RS to logarithmic size. Nonetheless, the lack of consideration for the linkability
and revocability in the RS scheme precludes direct application of the aforementioned
scheme to our specific blockchain transaction scenario. In paper [17,21], the size of
the RS was reduced to logarithmic size but it did not consider regulatory issues in
blockchain.

1.2 Motivations and Contributions

Motivations. Privacy preservation of the user's identity is necessary in blockchain
transactions, and attaining this privacy through mere anonymous authentication is
inadequate. Actually, identity obfuscation technology is needed to actualize identity
privacy protection. Additionally, the payment process is an imperative component in
blockchain transactions, necessitating the prevention of double-spending by users.
Moreover, in practical applications, the ability for regulatory oversight is typically
needed to prevent excessive anonymity, which can result in transaction review issues
and disputes.

Hence, it is of vital significance to investigate RS schemes that can be applied in
the aforementioned scenario by combining the characteristics of RS. In blockchain
transactions, users possess the autonomy to select a confusion set (a set of ring users)
and hide their identities within this set. To ensure the credibility of the transaction,
verifiers can verify the RS. Additionally, linkability should be integrated to preempt
double-spending by users. When a user repeatedly spends the same UTXO, it will be
linked, leading to suspension of the payment. Revocability needs to be added because
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regulatory agencies may need to recover the identity of the real signer if necessary. In
the instance of a transaction dispute, regulatory agencies can forcibly recover the
identity of the signer. Since blockchain transactions require relatively fast processing
speeds, it is equally vital to reduce the size of RS.

Currently, the existing RS schemes fail to entirely fulfill the above requirements.
Motivated by this, we propose a one-time and revocable RS scheme with logarithmic
size.

Contributions.
(1) We propose a new RS scheme with a one-time and revocable primitive

applicable for privacy protection and reliable supervision in blockchain. It solves the
problem that the current RS schemes are not fully applicable to blockchain. And we
provide security proofs for the scheme in the random oracle model, including five
security properties, namely unforgeability, anonymity, one-time, revocability, and
non-slanderability.

(2) The size of the current RS schemes is mostly linearly related to the number of
ring users. We propose a one-time and revocable ring signature with logarithmic size
based on the new Σ-protocols with logarithmic communication complexity as
espoused in paper [18]. When the number of the ring users is 1024, the RS size of our
scheme is 89% less than the [12].

(3) We present the application process of applying the one-time and revocable ring
signature to the blockchain transactions and provide an instantiation scheme.

1.3 Paper Organisation

In Sect.2, we present two hard problems and detail the prerequisite knowledge of
ElGamal encryption, Σ-Protocols, and others. We outline the security model of a one-
time and revocable ring signature scheme in Sect.3. The specification of our proposed
scheme is provided in Sect.4, where we also prove the security of its five security
attributes. In Sect.5, we instantiate and experimentally verify the scheme, as well as
compare it with other existing RS schemes at the theoretical level.

2 Preliminaries

2.1 Hard Problem

Definition 1 (Discrete Logarithm (DL) Problem). The Discrete Logarithm (DL)
Problem in �� is defined as follows: Given a tuple (y,g)∈��

2 , where �q is a cyclic
group and |��|=q for a prime number q, finding a x such that � = �� (mod q).

Definition 2 (Decisional Diffie-Hellman (DDH) Problem). The Decisional Diffie-
Hellman (DDH) Problem in the cyclic group �� is defined as follows: Given a
quadruple (�, ��, ��, �)∈��

4 where �q is a cyclic group and |�� |=q for a prime
number q, judging whether �=��� is established.



2.2 ElGamal Public Key Encryption

We utilize the ElGamal encryption scheme to encrypt the signer's public key with a
revocation authority's public key, and restore the real signer's public key with a
revocation private key during revocation. The ElGamal encryption scheme is an
algorithmic quadruple (�����、������、����������、����������) :

— ����� ← �����(�): On input a security parameter �, chooses a cyclic group
��, outputs public parameters param = {��, �,�}, where � is a generator in ��.

— (��, ��) ← ������(�����): On input public parameters ����� = {��, �,�},
generates a private/public key pair (��, ��), where ��=���(��� �).

— � ← ����������(�,��� ): On input the message to be encrypted, denoted as
�, and a receiver's public key ��� = �� , the sender randomly chooses a number � ∈
�� and calculates �1 = �� as the first part of the ciphertext �. Then the sender uses ��
to calculate the second part �2 = ���� (mod �). Outputs the result � = {�1, �2}.

— � ← ���������� ( � , ��� ): Takes the input � = {�1, �2} and the receiver's
private key ��� = ��, computes � = �2 \ �1��(mod �) to obtain the message �.

2.3 Pedersen Commitment Based on Elliptic Curve

Pedersen commitment based on elliptic curves consists of two phases: commitment
generation phase and commitment opening phase, and it possesses additive
homomorphism.

The commitment generation phase: Let � and � be two points in an elliptic curve.
The sender randomly picks a blinding factor �, and v represents the information to be
committed. The sender generates a commitment � = � ∗ � + � ∗ � and sends it to the
verifier.

The commitment opening phase: During the opening phase, the sender sends r and
� to the verifier, then verifier calculates �' = � ∗ � + � ∗ � and verifies if �' = �.

Additive homomorphism: If the commitment value of message �1 is �(�1) = �1 ∗
� + �1 ∗ � and the commitment value of message �2 is �(�2) = �2 ∗ � + �2 ∗ � ,
then it satisfies �(�1 + �2) = �(�1)+�(�2).

2.4 Σ-Protocols

In paper [16], the Σ-protocol is a specific category of 3-move interactive proof
system, facilitating the prover's task of persuading the verifier about the truth of a
given statement. Consider a polynomial-time decidable ternary relation, denoted as �.
We define a witness � for a statement � if (��, �,�)∈�. Define the CRS-dependent
language

��� = {�|∃�: (��, �, �) ∈ �} (1)

as the collection of statements � that possess a witness � within the relation �.
A Σ-protocol for � comprises a triplet of stateful interactive algorithms (�, �, �),

each operating within probabilistic polynomial time. The ensuing execution of a Σ-
protocol describes the interaction of the algorithms:
�� ← �(1λ): Generates the commitment key.
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� ← �(��, �, �) : Takes the input (��, �, �) and the prover generates the initial
message �.
� ← {0,1}�: The verifier randomly picks the challenge value �.
� ← �(�): The prover returns � as the answer to �.
� ← �(��, �, �, �, �) : The verifier algorithm, returns 1 if the proof is accepted,
whereas it returns 0 otherwise.

According to the paper [16], we will give respectively a Σ-protocol for
commitment to 0 or 1 and a Σ-protocol for one out of � commitments being a
commitment which opening result is 0.

Σ-protocol for Commitment to 0 or 1. Let �� be a commitment key, which is a set
of public parameters such as { ��, � , � ,h}. � is a commitment value, � is the
information to be committed, � is a random number and � is a relation that indicates
the committed value of m is either 0 or 1:

� = {(��, �(�, �))|� = �����(�; �) ��� � ∈ {0,1} ��� � ∈ ��} (2)

Comck(m; r) is a homomorphic commitment that:

�����(�0; �0)·�����(�1; �1) = �����(�0 + �1; �0 + �1) (3)

�(��, �, (�, �)) �(��, �)

�, �, � ← �� ��, ��
�� = �����0(�; �)
�� = �����0(��; �) � ← {0,1}� Accept if and only if
� = �� + � ��, �� ∈ ���, f, ��, �� ∈ ��
�� = �� + � �, ��, �� cx�� = �����0(�; ��)
�� = �(� − �) + � ��−��� = �����0(0; ��)

Fig. 1. Σ-protocol for Commitment to � is 0 or 1

In Fig. 1, we give a Σ-protocol for �, where �, � are running on �� ← �(1λ). And
��� denotes the commitment space using �� as the commitment key, � ∈ {0,1} and
� ∈ ��. The prover has the capability to demonstrate to the verifier that he possess the
witness � and can effectively persuade the verifier that the � ∈ {0,1}.

This protocol is perfectly complete, meaning that if commitment � represents a
commitment to either 0 or 1, it can be successfully verified. It also possesses
soundness, guaranteeing that the value of m is indeed 0 or 1. Additionally, this
protocol offers perfect zero-knowledge with respect to an honest verifier, denoting
that throughout the execution of this protocol, the verifier is unable to learn the actual
value of �.



Σ-protocol for One Out of � Commitments Containing 0. This protocol is an
extension of the previous protocol, which consists of N commitments, only one of
which is a commitment to 0, and satisfies the following relationship �.

� = {(��, (�0, . . . , ��−1), (�, �))|�0, . . . , ��−1 ∈ ��� ���

� ∈ {0, . . . , � − 1} ��� � ∈ �� ��� �� = �����(0; �)} (4)

�(��, (�0, . . . , ��−1), (�, �)) �(��, (�0, . . . , ��−1))
For j = 1, . . . , n
��, ��, ��, ��, �� ← ��
��� = �����(��; ��)
��� = �����(��; ��)
��� = �����(����; ��) ��1 , ��1 , ��1 , ��0 , . . . ,
��� = �=1

� ��
��,�� �����(0; ��) ��� , ��� , ���, ���−1 Accept if and only if

using k = j - 1 ��1 , . . . , ���−1 ∈ ���
�1, . . . , �� ∈ ��

x = {0,1}� For all j ∈ {1,...,n}
���

� ��� = �����(��; ���)

For j = 1,...n ���
�−����� =

�����(0; ���)
�� = ��� + �� �1, ��1, ��1 , . . . ,

�=1
N ��

�=1
� ��,���

� · �=0
�−1 ���

−��
�

��� = ��� + �� ��, ���, ��� , �� = �����(0; ��)
��� = ��(� − ��) + �� using ��,1 = ��

Fig. 2. Σ-protocol for Commitment to � = 0 in list �0, . . . , ��−1

In Fig. 2, we can see that the protocol expresses indices in binary form � = ���2 � .
The assumption in the protocol is that ��,1 = �� and ��,0 = � − �� , so for each � that
the product �=1

� ��,��� is a polynomial for the form (5), where ��� is Kronecker's delta,
i.e., ��� = 1 when � = � and ��� = 0 when � ≠ �.

��(�) = ����� + �=0
�−1 ��,���� (5)

In the form ��� = �=1
� ��

��,�� �����(0; ��), the ��,� is from (5).
The protocol is perfectly complete, meaning that if one of the commitments in

�0, . . . , ��−1 is a commitment to 0, it can be verified successfully. It also has
soundness, meaning that the protocol guarantees that at least one commitment's
opening result is 0. Additionally, it has zero-knowledge property, indicating that
during running the protocol, the verifier cannot learn the value of the index for the
commitment to 0.
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3 Scheme Definition and Security Model

3.1 Definition of One-time and Revocable Ring Signature with Logarithmic
Size

One-time and Revocable Ring Signature with Logarithmic Size. Within a RS, the
ring is formed by a collection of public keys belonging to the ring users. When
creating a RS, the signer is required to posses the secret key associated with one of the
public keys within the ring. The term 'one-time' in this paper refers to a signer using
his private key to sign an event only once, while revocability refers to the ability of a
revocation authority to recover the signer's identity at any time.

A one-time and revocable ring signature scheme encompasses six algorithms,
denoted as ( ������, ������, ����, ������, �����������, ������ ), which are
detailed as follows.
— �� ← ������(1�) : This is a probabilistic polynomial-time (PPT) algorithm. It
accepts a security parameter � as its input and produces a collection of system public
parameters ��.
—(�� ,��) ← ������(��) : This is a PPT algorithm. It accepts �� as its input and
generates a public and secret key pair (��,��).
—� ← ����(�����, �, ���, �����, �): Takes the input of an event description �����, a
set �={��0 ,...,���−1} containing � public keys, a secret key ��� of a signer which
corresponds to ��� ∈ �, the public key ����� of a revocation authority and a message
�, the algorithm produce a signature �. And one-time tag � ∈ � and � ∈ �.
— 0/1 ← ������(�����, �, ����� , � , �) : Accepts the following inputs: an event
description �����, a set �={��0 ,...,���−1} containing � public keys, the revocation
authority's public key ����� , a message � and the signature � . If � is valid, the
algorithm outputs 1 and adds � ∈ � to the one-time tag list � . Otherwise, the
algorithm outputs 0.
—0/1← �����������(�, �): On input a signature � and a one-time tag list �. If the
one-time tag � exists in � , meaning the private key that produces the � has been
previously used, the algorithm will output 1. If not, it outputs a result of 0.
—��� ← ������(�, �����,�): Takes the input of a set �={��0,...,���−1} containing
� public keys, a revocation private key ����� which corresponds to ����� , a valid
signature �, returns the real signer's public key ���.

A one-time and revocable ring signature scheme should satisfies the ensuing
correctness properties:
· ������������ �����������. When a signature is generated by an honest signer, the
verification process will confirm it as a valid signature, and as a result, the algorithm
������ will produce an output of 1.

1 ← ������(�����, �, �����, �, ����(�����, �, ���, �����, �))
· ��� − ���� �����������. The algorithm outputs 0 when the signature private key
has been employed for generating a RS for the same event.

0 ← �����������(�, �)



· ���������� �����������. If a valid signature is produced by an honest signer, then
the revocation authority can certainly recover the signer's identity.

��� ← ������(�, �����,�)
Here � is a RS produced from the ������ by an honest signer. The ciphertext �

used for revocation is obtained using the public key ����� , allowing the revocation
authority to reinstate the signer's identity by means of the secret key �����.

Below, we will describe the security definition of a one-time and revocable ring
signature scheme. The scheme should satisfy five security properties, namely
unforgeability, anonymity, one-time, revocability, and non-slanderability. Before
providing the definitions of these security properties, we first introduce the following
oracle to simulate the adversary's attack capabilities on the security of the scheme.
· ����������� ������ (��). Adversary � is able to query �� to add a new user to the
system. �� will return the public key of the new user. �� simulates the ability of
adversary � to obtain the public keys of honest users.
· ��������� ������ ������ (��). Adversary � holds the capability to interact with
�� to acquire the secret key ��� corresponding to a certain public key ���. �� accepts
a public key and returns the corresponding secret key while also incorporating the
public key into the set �� . �� simulates � 's ability to control a user's key pair
(���, ���) in the ring.
· ������� ������ (��). Adversary � can query �� by using (�����, �, �����, �) as
input, where ����� is an event description, � is a set of � public keys generated by
������ . ����� is a revocation public key. �� can execute the Sign algorithm to
return to � a valid RS � ← Sign(�����, �, ���, �����, �), where ��� is the secret key
corresponding to ��� in �. �� simulates that adversary � can obtain some valid RS
corresponding to � by observation.

3.2 Security Definitions

Unforgeability. Unforgeability pertains to the attacker's inability to create a valid
signature for a new message without possessing knowledge of any private key within
the ring. We define the unforgeability of the scheme through an interactive game
involving the challenger � and the adversary �:
— � runs the algorithm ������ for generating public parameters for the execution
system, and sends the generated public parameters �� to �.
— � queries �� for a set of public keys �={��0 ,...,���−1 } and adaptively makes
query to ��. A will obtain a valid RS corresponding to the set �.
— � selects a message �, an event description event, the set �'⊆ � of N' public keys
that make up the ring, a revoke public key ����� . Then � constructs a RS � ←
�(�����,�',�����,�) such that each public key in �' has not been previously queried
as an input from �� , and � has not been obtained through querying to �� , i.e., �
entirely generated by �. � sends � to �.
— � runs the Verify algorithm, if ������(�����,�',�����,�,�)=1, � wins the game

We represent the advantage of adversary � in breaking the unforgeability of the
scheme as
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AdvA
Unf(�) = ��[� wins the game].

Definition 3 (Unforgeability). If ����
��� ( � ) is negligible for any probabilistic

polynomial-time (PPT) adversary �, then the one-time and revocable ring signature
scheme is unforgeable.

Anonymity. Anonymity pertains to the likelihood that an attacker can identify the
actual signer of a valid RS with a probability not exceeding 1/N, where N represents
the count of users within the ring. This condition assumes that the private keys of the
ring users remain confidential and undisclosed to the public. We define the anonymity
of the scheme through an interactive game involving the challenger � and the
adversary �:
— � runs the algorithm ������ for generating public parameters for the execution
system, and sends the generated public parameters �� to �.
— � queries �� for a set of public keys �={��0 ,...,���−1 } and adaptively makes
query to ��. � will obtain some valid RS corresponding to the set �.
— � selects a message �, an event description �����, two public keys ��0 ∈ �' and
��1 ∈ �' where � ' ⊆ � , a revoke public key ����� . Then � sends
(����� ,��0, ��1 ,����� ,�) to � . � randomly picks � ∈{0,1} and computes a RS �
using ���. � sends � to �. It is required that the ��0 and ��1 have not been queried to
�� and �� as users of the ring.
— � guesses �' ∈{0,1}, if �'=�, � wins the game.

We represent the advantage of adversary � in breaking the anonymity of the
scheme as

AdvA
Anon(�) = ��[�' = �] − 1

2
.

Definition 4 (Anonymity). If ����
���� ( � ) is negligible for any probabilistic

polynomial-time (PPT) adversary � , then the one-time and revocable ring signature
scheme is anonymous to the signer.

One-time. One-time means that if an attacker uses the same key to sign the same
event twice, the output of the OneTimeLink algorithm will be 0. Applying one-time
to UTXO payment transactions can prevent double-spending. When a verifier detects
that the one-time tag of a payment transaction already exists in the one-time tag list,
the transaction will be blocked from continuing because this indicates that the signer
is attempting to make duplicate payments using the same UTXO . We define the one-
time of the scheme by the interactive game between a challenger � and an adversary
� as follows:
— � runs the algorithm ������ for generating public parameters for the execution
system, and sends the generated public parameters �� to �.



— � queries �� for a set of public keys �={��0 ,...,���−1 } and adaptively makes
query to �� amd �� . � will obtain some valid RS and some private keys associated
with the public keys in �.
— � selects a public key ��� ∈ � and constructs two RS �0 and �1 using the same
private key ���. � sends �0 and �1 to �. It is required that ��� is the output of �� and
�0,�1 are not the output of ��.
— � runs the algorithm ������ and �����������.

� wins the game if
������(�����, �, �����, �, �0)=1, ������(�����, �, �����, �, �1)=1,
and �����������(�0, �)=1 , �����������(�1, �)=1.

We represent the advantage of adversary � in breaking the one-time of the scheme
as

AdvA
OneTime(�) = ��[� wins the game].

Definition 5 (One-time). If ����
������� ( � ) is negligible for any probabilistic

polynomial-time (PPT) adversary � , then the one-time and revocable ring signature
scheme has one-time.
Remark. Consider the following scenario: a signer possesses two signing keys which
can generate different one-time tags for the same transaction. This is allowed as long
as the signer is using different UTXO.

Revocability. Revocability refers to the ability of the revocation authority to restore
the true identity of the signer in any circumstance, regardless of whether the signature
is one-time or not. The attacker wants to achieve the purpose that the signer identity
recovered by the revocation authority is different from that of the attacker. We define
the revocability of the scheme by the interactive game between a challenger � and an
adversary � as follows:
— � runs the algorithm ������ for generating public parameters for the execution
system, and sends the generated public parameters �� to �.
— � queries �� for a set of public keys �={��0 ,...,���−1 } and adaptively makes
query to �� amd �� . � will obtain some valid RS and some private keys associated
with the public keys in �.
— � selects a message � , an event description ����� , the set � '⊆ � contains N'
public keys that make up the ring, a revoke public key ����� and constructs a RS �
which generates by using a private key ��� corresponding to the ���. � sends � to �. It
is required that � is not the output of ��.
— � runs the algorithm ��' ← ������(�', �����,�), if ��'≠���, � wins the game.

We represent the advantage of adversary � in breaking the revocability of the
scheme as

AdvA
Rev(λ) = ��[� wins the game].
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Definition 6 (Revocability). If ����
��� ( � ) is negligible for any probabilistic

polynomial-time (PPT) adversary � , then the one-time and revocable ring signature
scheme is revocable.

Non-Slanderability. Non-Slanderability refers to the impossibility for an attacker to
create a one-time tag that is identical to the one created with another user's private
key. In a transactional context, non-slanderability means that an attacker cannot use
defamatory means to steal the assets of other users. We define the non-slanderability
of the scheme by the interactive game between a challenger � and an adversary � as
follows:
— � runs the algorithm ������ for generating public parameters for the execution
system, and sends the generated public parameters �� to �.
— � queries �� for a set of public keys �={��0 ,...,���−1 } and adaptively makes
query to �� amd ��, especially � can use ��� ={��0,��1,...,���−1,���+1,...,���−1} as
the input of �� and obtain the output ���={��0,��1,...,���−1,���+1,...,���−1}.
— � sends � a message � , an event description �����, a set � '⊆ � containing ���
and a revoke public key ����� . � generates a RS � using ��� as the signer. � sends �
to � and the � containing the one-time tag �� . It is required that ��� has not been
queried to �� as an input and it has not been queried to �� as a ring member.
— � selects a message �, an event description �����, the set �'⊆ � of N' public keys
and ��� ⊆ � ' , a revoke public key ����� and constructs a RS
�∗ ← �(�����,�∗,���,�����,�). �∗ contains a one-time tag I. � sends �∗ to �.
— � runs the algorithm Verify, if the algorithm outputs 1 and I=Ij, A wins the game.

We represent the advantage of adversary � in breaking the non-slanderability of
the scheme as

AdvA
Nons(�)= ��[� wins the game].

Definition 7 (Non-Slanderability). If ����
���� (�) is negligible for any probabilistic

polynomial-time (PPT) adversary � , then the one-time and revocable ring signature
scheme is non-slanderable.

4 Scheme Description

4.1 One-time and revocable ring signature scheme with logarithmic size
description

— �� ← ������(1λ) : On input a security parameter � , chooses a cyclic group �q
with prime order � , � and ℎ are generators of �q . Assuming the discrete logarithm
problem in �� is difficult. Define two cryptographic hash functions: �1: {0,1}∗ → ��

and �2: {0,1}∗ → ��. Outputs the public parameters pp={��,�,ℎ,�,�1,�2}.
— (�� ,��) ← ������(��) : On input the �� . According to the idea in paper [16],
each public key in the set of ring users is a commitment to 0 that is
�� =c= �����(�; �) = �����(0; �) . If we instantiate the scheme with Pedersen



commitment then ��=�����(0; �) = ℎ0�� = �� , the public key of a ring member is
��=c=��. We assume � = 2�. User �, where � ∈[0,N-1], randomly chooses �� ∈ �� as
the private key and computes ��� = ���(mod �) . So the user � has a private/public
key pair (��� , ���) . Assuming the signer is the � -th user, he has key
pair(��� ,���)=(�� ,���). Revocation authority has key pair (�����,�����)=(����, �����).
We denote �� as the set of possible private keys and �� as the set of possible public
keys.
— � ← ����(�����, �, ���, �����, �): It accepts a message �, and a event description
�����, a set � contains N' public keys {��0 ,...,���'−1}, a signer's private key ��� ∈
��, where � ∈ [0, � − 1] corresponding to a ��� ∈ �, a revoke public key ����� ∈ ��
as inputs. In order to facilitate representation, we will assume ���=�� ，���=��，

�����=����，�����=���� and �� ={��0 ,...,���'−1 }. The signer needs to prove its
existence in the ring, but the verifier cannot know which public key secret index it
corresponds to in the ring. Therefore, following the approach described in [16], the
signer needs to prove he/she knows the opening value of one commitment among N
commitments to 0, and this proof is combined with the Fiat-Shamir heuristic to
construct a non-interactive zero-knowledge proof of a RS. The signer with the private
key �� generates a RS according to the following steps:
1. Compute the one-time tag by committing to ��:

(a) � ← �2(�����);
(b) � ← ���.

2. Randomly pick � ∈ �� and encrypt �� using ���� according to the ElGamal
Encryption:
(a) �1 ← ��;
(b) �2 ← �������;
(c) � ← {�1, �2}.

3. Signer generates a RS � based on the interactive zero-knowledge proof PK1 :
(a) The signer needs to prove he possesses the opening result �� of one of the N
commitments to 0:

PK1{(��): �0 = �����(0; �0)⋁�1 = �����(0; �1)⋁. . . ⋁
�� = �����(0; ��)⋁. . . ⋁��−1 = �����(0; ��−1)}.

This is a process of partial knowledge proof. Here, ck represents the public
parameters ��. The PK1 is shown in Fig. 3.
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�1(��, (�0, . . . , ��−1), (�, ��)) �1(��, (�0, . . . , ��−1))

��� � = 1, . . . , �(� = ���2 � )
��, ��, ��, ��, �� ← ��
��� = �����(��; ��)
��� = �����(��; ��)
��� = �����(����; ��) ��1 , ��1 , ��1 , ��0 , . . . ,
��� = �=0

�−1 ��
��,�� �����(0; ��) ��� , ��� , ��� , ���−1 Accept if and only if

using k = j - 1 ��1 , . . . , ���−1 ∈ ���
and ��,� from (1) �1, . . . , �� ∈ ��

x = {0,1}� ��� ��� � ∈ {1, . . . , �}
���

���� = �����(��; ���)

��� � = 1, . . . , �(� = ���2 � ) ���
�−����� = �����(0; ���)

�� = ��� + �� �1, ��1, ��1 , . . . , �=0
�−1 ��

�=1
� ��,���

� · �=0
�−1 ���

−��
�

��� = ��� + �� ��, ��� , ���, �� = �����(0; ��)
��� = ��(� − ��) + �� using ��,1 = ��

�� = ���� − �=0
�−1 ����� and ��,0 = � − ��

Fig. 3. Signer proves that he/she have a witness corresponding to a public key in ��

Let �1={��1 , ��1 , ��1 , ��0 , . . . , ��� , ��� , ��� , ���−1},
�1={�1, ��1 , ��1 , . . . , ��, ���, ��� , ��}.

(b) The signer needs to prove he possesses the private key �� used to generate the
one-time tag �:

PK2{(��): � = �����'(0; �0)⋁� = �����'(0; �1)⋁. . . ⋁
� = �����'(0; ��)⋁. . . ⋁� = �����'(0; ��−1)}.

This is a process of partial knowledge proof. Here, ��' represents the public
parameters{��, �����, �2}. The PK2 is shown in Fig. 4.



�2(��', �, (�, ��)) �2(��', �)

��� � = 1, . . . , �(� = ���2 � )
��, ��, ��, ��, �� ← ��
��� = �����'(��; ��)
��� = �����'(��; ��)
��� = �����'(����; ��) ��1 , ��1 , ��1 , ��0 , . . . ,

��� = � �=0
�−1 ��,�� �����'(0; ��) ��� , ���, ��� , ���−1 Accept if and only if

using k = j - 1 ��1 , . . . , ���−1 ∈ ���
and ��,� from (1) �1, . . . , �� ∈ ��

x= {0,1}� ��� ��� � ∈ {1, . . . , �}
���

���� = �����'(��; ���)

��� � = 1, . . . , � ���
�−����� = �����'(0; ���)

�� = ��� + �� �1, ��1 , ��1 , . . . , � �=0
�−1

�=1
� ��,���� · �=0

�−1 ���
−��

�
��� = ��� + �� ��, ��� , ��� , �� =�����'(0; ��)
��� = ��(� − ��) + �� using ��,1 = ��

�� = ���� − �=0
�−1 ����� and ��,0 = � − ��

Fig. 4. Signer proves that he/she have the private key used to generate the one-time tag �

Let �2={��1 , ��1 , ��1 , ��0 , . . . , ��� , ��� , ��� , ���−1}
and �2={�1, ��1 , ��1 , . . . , ��, ��� , ��� , ��}.

(c) The signer needs to prove they have the witness �:
PK3{(u): ([�1 = �����0(0; �)⋀(�2 \ �0) = �����1(0; �))]⋁[�1 =
�����0(0; �)⋀(�2 \ �1) = �����1(0; �)]⋁. . . ⋁(�1 = �����0(0; �)⋀(�2 \ ��) =
�����1(0; �))⋁. . . ⋁[�1 = �����0(0; �)⋀(�2 \ ��−1) = �����1(0; �)]}

This proof consists of two parts: the first part conducts a proof of knowledge, while
the second part conducts a partial knowledge proof. Here,��0={�� ,� ,ℎ,� ,�1 ,�2},
��1={��,����,ℎ,�,�1,�2}. The PK3 is shown in Fig. 5.

Let � represent �1 and {�0, . . . , ��−1} represent {(�2 \ �0),...,(�2 \ ��−1)}.
Let �3={��,��,��1 , ��1 , ��1 , ��1 , ��0 , . . . , ���, ���, ��� , ���−1} and

�3={�,��,��,�1, ��1 , ��1 , . . . , ��, ��� , ��� , ��}, �={�1,�2,�3}, �={�1,�2,�3}.
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�3(��0, ��1, (�, �0, . . . , ��−1), (�, �)) �3(��0, ��1, (�, �0, . . . , ��−1))

�, �, � ← ��
�� = �����0(�; �)
�� = �����0(��; �)

��� � = 1, . . . , �(� = ���2 � ) Accept if and only if
��, ��, ��, ��, �� ← �� ��, �� ∈ ����, ��, �� ∈ ��
��� = �����1(��; ��) ���� = �����0(�; ��)
��� = �����1(��; ��) ��, ��, ��−��� = �����0(0; ��)
��� = �����1(����; ��) ��1 , ��1, ��1 , ��0 , . . . , ��1 , . . . , ���−1 ∈ ���

��� = �=0
�−1 ��

��,�� �����1(0; ��) ��� , ���, ��� , ���−1 �1, . . . , �� ∈ ��

using k = j - 1 ��� ��� � ∈ {1, . . . , �}
and ��,� from (1) ���

���� = �����1(��; ���)

x= {0,1}� ���
�−����� = �����1(0; ���)

� = �� + � �=0
�−1 ��

�=1
� ��,���

� · �=0
�−1 ���

−��
�

�� = �� + � �, ��, �� = �����1(0; ��)
�� = �(� − �) + � �1, ��1 , ��1 , . . . , using ��,1 = ��
��� � = 1, . . . , � ��, ��� , ��� , �� and ��,0 = � − ��
�� = ��� + ��

��� = ��� + �� ; ��� = ��(� − ��) + �� ; �� = ��� − �=0
�−1 �����

Fig. 5. Signer proves that he/she have the witness �

Combining the aforementioned interactive zero-knowledge proof with the Fiat-
Shamir heuristic. Let �1, �2, �3 in the Σ -protocol, the initial message M, the event
description �����, a set �, a one-time tag � and the ciphertext � as the inputs of hash
function that is �1(�����,R, M,T,C,�,h,���� ,�1 ,�2 ,�3). And let challenge value � =
�1(�����,R,M,T,C,�,h,���� ,�1 ,�2 ,�3). Combine the aforementioned (a), (b), and (c)
together:

ck={��,�,ℎ,�,�1,�2}, R={�0, . . . , ��−1}, ��=�����(0; ��)
�=�����'(0; ��),
�1 = �, �2 \ ��=��, � ∈[1,N]
��0={��,�,ℎ,�,�1,�2}，��1={��,����, ℎ,�,�1,�2}，��'={��,�����,�2}
�1 ← �1(��, �, (�, ��))
�2 ← �2(��, �, (�, ��))
�3 ← �3(��0, ��1, (�, �0, . . . , ��−1), (�, ��))
�=�1(�����,�,�, �,�,�,h,����,�1,�2,�3)
�1 ← �1(�) �1(��, �, �1, �, �1)
�2 ← �2(�) �=(�1,�2,�3,�1,�2,�3,�,�) �2(��', �, �2, �, �2)
�3 ← �3(�) �3(��0, ��1, �, �1, �2, �3, �, �3)

Fig. 6. The process of generating and validating a ring signature �



So we can get the RS �
�=(�1,�2,�3,�1,�2,�3,�,�).

— 0/1← ������(�����, �, �����,�,�): It accepts inputs (�����, �, �����,�,�) where
� is a message, ����� is an event's description, � is the set of � public keys, ����� is
the revocation authority's public key and � is a RS. The algorithm ������ consists of
three sub-verification algorithms, namely �1 , �2 and �3 . These sub-verification
processes are designed to individually ascertain whether the signer holds the secret
key of a particular ring user, has the private key required for computing a one-time
tag, and possesses the necessary witness for generating the ciphertext C . The
verification of the RS proceeds in accordance with the subsequent steps:
1. �=�1(�����, R, M, T, C,�,����,�1,�2,�3)；
2. Obtain �1, �2 from �={�1, �2};
3. For �1, takes as input {��, �, �1, �, �1}, returns the result �1=0/1;
4. For �2, takes as input {��’, �, �2, �, �2}, returns the result �2=0/1;
5. For �3, takes as input {��0, ��1, �, �1, �2, �3, �, �3}, returns the result �3=0/1;
6. If �1=1, �2=1 and �3=1, Verify outputs 1. Otherwise, the algorithm outputs 0.
— 0/1← �����������(�, �): On input a RS � containing the one-time tag � and a
one-time tag list �. If there is a tag �' in the list � that is the same as �, the algorithm
outputs 0. Otherwise, the result is 1.
— ��� ← ������(�, �����,�): On input a set � of � public keys, a revocation secret
key ����� and a valid RS � . The process for the revocation authority to recover the
genuine signer of a RS involves the following procedures:
1. Have �1 and �3 from �;
2. ∃��� ∈ �(� ∈ [0, � − 1]) such that ���=�2 \ �1

����.
4.2 Correctness Analysis

Verification Correctness. The verifier follows these steps when verifying the
validity of the RS:

The verifier runs the algorithm �1 . Due to � = 2� , for � = 1, . . . , � , if the
commitment corresponding to the signer's secret index is a commitment to 0, then
���

� ��� = �����(��; ���) and ���
�−����� = �����(0; ���) can be verified to pass; Due

to ���
� ��� = �����(��; ��)� · �����(��; ��) = �����(��·� + ��; ��·�+��) =

�����(��; ���) , ���
�−����� = ( ���

� \ ���
��)��� = �����(��(� − ��); ��(� − ��)) ·

�����(����; ��) = �����(��(� − �� + ��); ��(� − ��) + ��) and �� = ��� + �� , the
formula ��(� − �� + ��)=���(1- �� ) established; if��=0，���

� ���=�����(0; ���) can be
verified to pass; If the signer has the private key and his public key is a commitment

to 0, the formula �=1
� ��

�=1
� ��,���

� · �=0
�−1 ���

−��� = �����(0; ��) can be verified to pass,
because

�=0
�−1 ���

−��
� = ��0

−�0
·��1

−�1
·...·���−1

−��−1
=(�1

�1,0·�2
�2,0·. . . ·��

��,0 ·�����(0; �0))·
(�1

�1,1·�2
�2,1·. . . ·��

��,1·�����(0; �1))−�1·...·
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(�1
�1,�−1·�2

�2,�−1·. . . ·��
��,�−1·�����(0; ��−1))−��−1.

Here ��,� is from the polynomial of �=1
� ��, ��� : ��(�) = ����� + �=0

�−1 ��,���� , and

�=0
�−1 ��� (�)=(�0��� + �=0

�−1 �0,���� )·(�1��� + �=0
�−1 �1,���� )...(��−1��� + �=0

�−1 ��−1,����
); The formula

�=1
� ��� (�)= (�1,0�0·�1,1�1·. . . ·�1,�−1��−1)·...·
(��+��,0�0·��,1�1·. . . ·��,�−1��−1)·...·
(��,0�0·��,1�1·. . . ·��,�−1��−1)

established only if � = �; We need to compute �=1
� ��, ��� :

if �� =1, ��,1 = �1��� + �� ,otherwise ��,0 = � − �� = �0��� − �� . So each ��, �� is a
polynomial composed of �, �1, �2 ,...,�� , and the polynomial coefficients calculated in

this way are related to ��(�) : �=1
� ��

�=1
� ��,���

� =�1
�1(�) ·�2

�2(�) · ... ·��
��(�) . So only when

� = �, the formula �=0
�−1 ���

−��
� and �=1

� ��
�=1
� ��,���

� can cancel each other out.
And then only have the formula:

��
��
·�����(0; �0)·�����(0; �1)−�1·...·�����(0; ��−1)−��−1.

Due to
��

��
=�����(0; �)��,

the formula ��
��
·�����(0; �0)·�����(0; �1)−�1·...·�����(0; ��−1)−��−1 is equal to

�����(0; ��� − �0 − �1−�1 − . . . − ��−1−��−1)= �����(0; ��) . Therefore, when the
signer honestly generates a RS, the signature can be verified successfully.

The verifier runs the algorithm �2 . The validation process of equations ���
� ��� =

�����(��; ���) and ���
�−����� = �����(0; ���) is consistent with that in �1 . The

validation process of equation � �=1
�

�=1
� ��,���� · �=0

�−1 ���
−��� is also consistent with that of

equation �=1
� ��

�=1
� ��,���

� · �=0
�−1 ���

−��� = �����(0; ��), but due to �1 = �2 = . . . = �� = �,

�=1
� ��

�=1
� ��,���

� is written in the form of � �=0
�−1

�=1
� ��,���� .

The verifier runs the algorithm �3 . The validation process of equations ���
� ��� =

�����1(��; ���), ���
�−����� = �����1(0; ���) and �=1

� ��
�=1
� ��,���

� · �=0
�−1 ���

−���
= �����1(0; ��) is consistent with that in �1 ; If the signer has the witness u , the
equations ���� = �����0(�; ��) and ��−��� = �����0(0; ��) can be verified
successfully. Only if � ∈ {0,1}, the equation
���� = �����0(�; �)� · �����0(�; �) = �����0(�� + �; �� + �) = �����0(�; ��) ，
��−���=(�� \ ��)��=�����0(��(1 − �); �(� − �) + �).

If (1), (2), and (3) can all be verified, then the RS generated by an honest signer
must be verified.



One-time Correctness. If the signer can calculate the one-time tag according to the
following formulas and add the one-time tag of the valid RS to the one-time tag list
during the verification stage, it can ensure the correctness of the one-time:

� ← �2(�����);

� ← ���. (6)

So the signer can only use his private key to sign once. When the private key is
used again, the one-time tag already exists in the one-time tag list, and the algorithm
OneTimeLink will output 0.

Revocation Correctness. If the signer uses the revocation authority's public key of
the revocation authority to encrypt the signer's public key according to the ElGamal
Encryption, then the revocation private key must be used to revoke the signer's
identity according to the following algorithm, that is, restore the signer's identity:

���=�2 \ �1
����=������� \ ������=��. (7)

4.3 Size Analysis

Our scheme constructs a RS with N users as

�=(�1,�2,�3,�1,�2,�3,�,�) (8)

where �1, �2, �3 are the elements generated during the commitment stage of NIZK
proof, with a quantity of 4logN, 4logN, and 4logN+2, respectively. �1, �2 and �3 are
the elements generated during the response stage to the challenge, with a quantity of
3logN+1, 3logN+1, and 3logN+4, respectively. Hence, the size of the RS is
(21logN+8)� where � is the security parameter.

5 Security Analysis

5.1 Unforgeability

Theorem 1 (Unforgeability). In the random oracle model, if the discrete logarithm
(DL) problem is hard, then the scheme satisfies unforgeability.
Proof. If we consider the presence of an adversary � within the security model,
capable of undermining the unforgeability of the scheme, it becomes feasible to
devise a simulator � aimed at addressing the �� problem. Given an instance of the
problem (�, ��) on a cyclic group (��,g,q) as input, and B provides oracles to run the
game defined in Definition 3.

� can provide the oracles as follows:
— ������ ������ �1 : � establishes a list �1 to keep record of all queries and

responses. If a query already exists in �1 , � will return the corresponding response.
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Otherwise, � randomly picks � ∈ �� and returns � , while also recording the query
and � in �1.

— ������ ������ �2 : � establishes a list �2 to keep record of all queries and
responses. If a query already exists in �2 , � will return the corresponding response.
Otherwise, � randomly selects � ∈ �� and returns �� , while also recording the query
and �� in �2.

— ����������� ������ �� : When the adversary makes the first � queries, the
oracle returns the public key, forming the set of public keys �={��0 ,...,���−1 } (�
does not know the private keys). If the adversary continues to query, � executes the
algorithm ������ to generate public and private key pairs and returns the generated
public key.

— ��������� ������ ������ ��: � queries with the ��� which was an output of
��. If ��� ∈ �, � halts. Otherwise, � returns the ��� corresponding to ���.

— ������� ������ �� : On input a signing query with a message � , an event
description �����, a set � of � public keys, a signer's public key �� and a revocation
authority's public key ��rev , if �� ∉ � , � can directly generates the ring signature
using the private key. Otherwise, � computes as follows:

(a) If ����� has not been made, � queries �2 with ����� and gets � = �2(�����),
where � = �� and � knows �. Otherwise, � returns the corresponding response in
the �2. � computes � = ���.
(b) � randomly picks � ∈ �� and computes �1 = ��, �2 = �����

���, and generates
� = {�1, �2}.
(c) If ����� has been made, � uses the corresponding response as the challenge
value �. Otherwise, � queries �1 to obtain the challenge value �. Then � randomly
picks �1, . . . , �� ← �� , ��1 , . . . ��� , ��0 , . . . ���−1 ← �����(0). And � computes ��� =
���

−������(��; ���) , ��� = ���
�−������(0; ���) for � =1,..., n , and ��� =

�=0
�−1 ��

�=1
� ��,���

� · �=1
�−1 ���

−��
� ·�����(0; − ��) where �� ∈ � and � is the secret index

of the signer's public key in � ; � randomly picks �1
' , . . . , ��

' ← �� ,
��1

' , . . . ���
' , ��0

' , . . . ���−1
' ← �����(0) . Then � computes ���

' = ���
' −������'(��

' ; ���
' ) ,

���
' = ���

' �−������'(0; ���
' ) , ���

' = �=0
�−1 � �=1

� ��,��� '� · �=1
�−1 ���

'−��� ·�����'(0; − ��
' ) ;

Finally, � randomly picks �, ��, �� ← �� , and �
computes �� = �−������0(�; ��) ， �� = ��−������0(0; ��) where � = �1 . �
randomly picks �1

'' , . . . , ��
'' ← �� , ��1

'' , . . . ���
'' , ��0

'' , . . . ���−1
'' ← �����1(0) and �

computes ���
'' = ���

'' −�
�����1(��

''; ���
'' ) , ���

'' = ���
'' �−������1(0; ���

'' ) , ���
'' =

�=0
�−1 ��

'' �=1
� ��,��� ''

� · �=1
�−1 ���

''−��� ·�����1(0; − ��
''), where ��

'' = �2/��(� ∈ [0, � − 1]).
(d) � returns the RS �=(�1,�2,�3,�1,�2,�3,�,�) where

�1={��1 , . . . , ��� , ��1 , . . . , ��� , ��1 , . . . , ��� , ��0 , . . . , ���−1},
�1={�1, . . . , ��, ��1 , . . . , ��� , ��1, . . . , ��� , ��},

�2={��1
' , . . . , ���

' , ��1
' , . . . , ���

' , ��1
' , . . . , ���

' , ��0
' , . . . , ���−1

' },
�2={�1

' , . . . , ��
' , ��1

' , . . . , ���
' , ��1

' , . . . , ���
' , ��

' },



�3={��1
'' , . . . , ���

'' , ��1
'' , . . . , ���

'' , ��1
'' , . . . , ���

'' , ��0
'' , . . . , ���−1

'' },
�3={�1

'' , . . . , ��
'' , ��1

'' , . . . , ���
'' , ��1

'' , . . . , ���
'' , ��

''}.
Due to the � is valid, it is indistinguishable for � whether this is a simulated

algorithm or a real algorithm.
(1) � sends the public parameters �� to �, and set ��=��, �� = �.
(2) � queries �� for a set of public keys �={�0 ,...,��−1 } and adaptively makes
query to ��.
(3) � starts to forge a RS. Assume � forges a RS
�(0)=(�1

(0),�2
(0),�3

(0),�1
(0),�2

(0),�3
(0),�(0),�(0)) using the set �'⊆ � and �'

contains �' public keys. � again drives � to obtain � RS through the same query
for � different challenges and �+1 RS contain �1

(0), . . . , ��
(0),...,�1

(�), . . . , ��
(�). Due to

the same query, the answers to ��1,...,���−1 in �1 are all the same. Following the
idea in paper [4], � can calculate the private key � according to the following
formula:

�� = �� = �=0
� (��

(�(�))�· �=0
�−1 �∗�

(�(�))�
� )��� =�����(0; �=0

� �'
�� ��

(�))
(4) � can compute �= �=0

� �'
�� ��

(�) , which means � can obtain the solution to the
DL problem instance.
Assume ε is the probability that � can successfully forge a RS, according to the

forking lemma [19], the successful rewind simulation is ε/2�. � can solve �� problem
with a non-negligible probability, which contradicts the original hypothesis, so this
scheme satisfies unforgeability.

The definition of the DDH assumption in the paper [12] is as follows:

Definition 8 (A Different Decisional Diffie-Hellman (DDH) Assumption). Let �q
be a cyclic group where the order of |�q| = � . On input uniformly random
(�0, �1,�2,�0

' ,�1
' ,�2

' )∈ �q6. Assume that �0 = ��0 , �0 = ��1 , �0 = ��2 , �1 = ��0
'
, �0 =

��1
'
and �0 = ��0

' �1
'
. The adversary � takes a guess of � ←{0,1}; (�,�,�)=(��,��,��).

Define the probability of � guess being acccurate as ��[�(�, �, �) = �]=1
2

+ 1
�(�)

,
where �(�) is a polynomial related to security parameter �.

5.2 Anonymity

Theorem 2 (Anonymity). In the random oracle model, if the DDHP is hard, then the
scheme satisfies anonymity.
Proof. If we consider the presence of an adversary � within the security model,
capable of undermining the anonymity of the scheme, it becomes feasible to devise a
simulator � aimed at addressing the DDHP. Given an instance of the problem (α,β,γ)
as input, and � provides oracles to run the game defined in Definition 4. Let ��=α ,
�2(�')=β and �=γ.

— � sends the public parameters �� to �.
— � queries �� for a set of public keys �={�0 ,...,��−1 } and adaptively makes
query to ��.
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— � sends � a message � , an event description �����, two public keys �0 ∈ �'
and �1 ∈ �' where �'⊆ � and a revoke public key ����. � randomly picks � ∈{0,1}
and computes a RS � corresponding ��:
(1) � randomly picks � ∈ �� and computes �1 = ��, �2 = �����

���, and generates
� = {�1, �2}.
(2) If ����� has been made, � uses the corresponding response as the challenge
value �. Otherwise, � queries �1 to obtain the challenge value �. � randomly picks
�1, . . . , �� ← �� , ��1 , . . . ��� , ��0 , . . . ���−1 ← �����(0) . And � computes ��� =
���

−������(��; ���) , ��� = ���
�−������(0; ���) for � =1,..., n , and ��� =

�=0
�−1 ��

�=1
� ��,���

� · �=1
�−1 ���

−��� ·�����(0; − ��) where �� ∈ �' and � is the secret index
of the signer's public key in �' ; � randomly picks �1

' , . . . , ��
' ← �� ,

��1
' , . . . ���

' , ��0
' , . . . ���−1

' ← �����(0) . Then � computes ���
' = ���

' −�
�����'(��

' ; ���
' ) ,

���
' = ���

' �−������'(0; ���
' ) , ���

' = �=0
�−1 ��

' �=1
� ��,��� '

� · �=1
�−1 ���

'−��
� ·�����'(0; − ��

' ) ,
where �1

' = �2
' = , . . . , ��

' =� = γ; Finally, � randomly picks �, ��, �� ← �� , and �
computes �� = �−������0(�; ��) ， �� = ��−������0(0; ��) where � = �1 . �
randomly picks �1

'' , . . . , ��
'' ← �� , ��1

'' , . . . ���
'' , ��0

'' , . . . ���−1
'' ← �����1(0) and �

computes ���
'' = ���

'' −������1(��
''; ���

'' ) , ���
'' = ���

'' �−������1(0; ���
'' ) , ���

'' =

�=0
�−1 ��

'' �=1
� ��,��� ''

� · �=1
�−1 ���

''−��� ·�����1(0; − ��
''), where ��

'' = �2/��(� ∈ [0, � − 1]).
(3) � returns the RS �=(��,��,��,��,��,��,�,�) where

�1={��1, . . . , ��� , ��1 , . . . , ��� , ��1 , . . . , ��� , ��0, . . . , ���−1},

�1={�1, . . . , ��, ��1 , . . . , ��� , ��1 , . . . , ��� , ��},

�2={��1
' , . . . , ���

' , ��1
' , . . . , ���

' , ��1
' , . . . , ���

' , ��0
' , . . . , ���−1

' },

�2={�1
' , . . . , ��

' , ��1
' , . . . , ���

' , ��1
' , . . . , ���

' , ��
' },

�3={��1
'' , . . . , ���

'' , ��1
'' , . . . , ���

'' , ��1
'' , . . . , ���

'' , ��0
'' , . . . , ���−1

'' },

�3={�1
'' , . . . , ��

'' , ��1
'' , . . . , ���

'' , ��1
'' , . . . , ���

'' , ��
''}.

(4) � guesses the secret index of the signer. � returns �(�) = �'(�' ∈ {0.1}). If �'=�,
� returns 1. Otherwise � returns 0/1 with equal probability. The probability of �
solving the DDHP can be shown that:

1
2

+ ��[1|���� ∈ ����] − ��[1|���� ∉ ����] = 1
2

+ ��[�' = �|���� ∈
����] + ��[�' ≠ �|���� ∈ ����]·��[� = 1] − ��[�' = �|���� ∉ ����]

− ��[�' ≠ �|���� ∉ ����]·��[� = 0]

= 1
2

+ 1
2

+ 1
Q(�)

+(1−(1
2

+ 1
Q(�)

))·1
2

− 1
2

−(1− 1
2
)·1

2

= 1
2

+ 1
2Q(�)



If � can guess the secret index of the real signer with a probability 1
2

+ 1
Q(λ)

, � can

solve the DDHP with the probability 1
2

+ 1
2Q(λ)

, which contradicts the original

hypothesis, so this scheme satisfies anonymity.

5.3 One-time

Theorem 3 (One-time). In the random oracle model, if the discrete logarithm (��)
problem is hard, then the scheme satisfies one-time.
Proof. If we consider the presence of an adversary � within the security model,
capable of undermining the one-time of the scheme, it becomes feasible to devise a
simulator � aimed at addressing the �� problem. Given an instance of the problem
(�q,�,�) as input, and � provides oracles to run the game defined in Definition 5. Let
��=α and ��=�.

(1) � sends the public parameters �� to �.
(2) � queries �� for a set of public keys �={�0 ,...,��−1 } and adaptively makes
query to �� and �� . In Theorem 1, � does not possess the private keys
corresponding to the first � public keys. In order to enable � to satisfy the
condition of possessing a private key � in Definition 4, it is allowed for � to
possess one private key and send it to � when � requests the ��.
(3) � constructs two RS �0

(0) and �1
(0) using the same private key �� and sends them

to �. And the �0
(0) and �1

(0) are valid. Assume that the one-time tags corresponding
to �0

(0) and �1
(0) are respectively denoted as �1 = E�� and �2 = E��

‘
. Here, E is used

by � to query the result of �2 for �����.
(4) For �0

(0), � again drives � to obtain � RS �0
(1), . . . , �0

(�) through the same query
for � different challenges. And then � can get the signer's private key
�= �=0

� ��� ��
(�); Similarly, for �1

(0), � can drives � to obtain � �1
(1), . . . , �1

(�) RS and
get the signer's private key �'= �=0

� ��
'� ��

'(�).
As � only has one private key, the two private keys extracted by � are equal.

Furthermore, because the same ����� corresponds to the same result from �2 , the
two one-time tags �1and �2 are identical. Therefore, once �1 is added to list �, �2 will
not pass verification and the scheme is one-time. Additionally, during the
aforementioned process, � extracts the private key and obtains the solution to the
problem instance, solving the �� problem and contradicting the original hypothesis.
Thus, this scheme satisfies the one-time.

5.4 Revocability

Theorem 4 (Revocability). In the random oracle model, if the the scheme satisfies
unforgeability, then the scheme satisfies revocability.
Proof. � sends the public parameters �� to � . � queries �� for a set of public keys
� ={ �0 ,...,��−1 } and adaptively makes query to �� and �� . � constructs a ring
signature � using �� which is corresponding to ��(�� ∈ �'). � sends � to �.
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As the scheme satisfies unforgeability, ring signature � is valid. Assuming �
obtains the signer's public key �� '≠ �� during the execution of algorithm ������ ,
meaning � wins the game, then � includes ciphertext �={�1, �2}, where �1 = g� and
�2 ← �������' . In this case, � possesses the private key corresponding to public key
�� ', but the � is generated by using �� . On the other hand, if � could possess another
private key to win the game, � could also drive � to forge a ring signature to obtain
the private key (as in Theorem 1), i.e., � could solve the �� problem. Therefore, the
scheme satisfies revocability.

5.5 Non-Slanderability

Theorem 5 (Non-Slanderability). In the random oracle model, if the discrete
logarithm (DL) problem is hard, then the scheme satisfies non-slanderability.
Proof. Assuming that there is an adversary � in the security model that can break the
Non-Slanderability of the scheme, we can construct a simulator � to solve the ��
problem. In the game defined in Definition 7, � can query �� to get
��={�0 ,�1 ,...,��−1 ,��+1 ,...,��−1}, but � cannot obtain the private key �� of the user
they desire to slander. � sends � an event description �����, a message �, a set � of
public keys, a signer's public key � and a revocation authority's public key ���� . �
simulates a ring signature �(� = ���) and sends it to �. � can continue to adaptively
query the oracle to obtain ring signatures. Then � starts to construct a ring signature
�∗ which contains �∗. � sends �∗ to �.

� runs the algorithm ������ . Assume � can win the game, i.e., �∗ is valid and
�=���=���

'
=�∗ . Because the same ����� corresponds to the same result from �2 , we

can get the conclusion ��=��
' , i.e., � has the private key of user �, and this contradicts

the original hypothesis. If � could possess the private key of user �, � could also drive
� to forge a ring signature to obtain the private key, i.e., � could solve the ��
problem. Therefore, the scheme satisfies non-slanderability.

6 Instantiation and Experiments

6.1 Comparison with Other Schemes

In this section, we compare our scheme and state of the art schemes, with respect to
parameters such as size, one-time, and revocability, on a theoretical level. The
solutions we choose to compare satisfy at least one of linkability and revocability.

Table 1. Comparison with different schemes.

Scheme Linkability Revocability Size
[10] √ × (2N+1)�
[11] √ × (N+1)�
[12] √ √ (2N+4)�



Our scheme √ √ (21logN+8)�
We conducted theoretical comparisons of the schemes [10], [11], [12], and our
scheme in terms of linkability, revocability, and the size of RS, as shown in Table 1.
N represents the number of users in the ring, and � is the security parameter. For the
scheme [10] and our scheme, when N ≥ 128, the RS size of our scheme is smaller
than [10], and our scheme possesses revocability that scheme [10] does not have. For
the scheme [11] and our scheme, when N ≥ 256, the size of our scheme is smaller
than [11], and our scheme possesses revocability that scheme [11] does not have. For
the scheme [12] and our scheme, when N ≥ 128, the size of our scheme is smaller.

When N = 1024, the RS size of our scheme is 89% less than the RS size of [12].
It can be seen that our scheme has significant advantages in terms of RS size,

which helps reduce the communication overhead of blockchain transactions.

6.2 Scheme Instantiation and Experiments

Applying our RS scheme to blockchain transactions, the transaction process is as
follows:
(1) The user (signer) applies for a private/public key pair from the registration system.
The registration system runs ������ to generate a public key �� and a secret key ��
for the user and returns (��, ��) to the user.
(2) The user's public key is registered on the blockchain. The blockchain initializes a
public key list �1 and a one-time tags list �2 . When a new user registers, his public
key is added to �1.
(3) Before initiating a transaction, the user needs to obtain a collection of public keys
(ring) from the blockchain and includes the user's public key in this ring. The user
then executes the algorithm ���� , signing the transaction with �� and sending the
generated RS to the blockchain.
(4) The verifier validates the signature by running ������ . If the signature is valid,
then verifier checks for double-spending attacks by executing ����������� . If
double-spending behavior is detected, the transaction is halted; otherwise, the one-
time tag in the signature is added to �2 and the RS is added on the blockchain.
(5) In the case of transaction disputes or other situations, regulatory authorities can
retrieve the RS from the blockchain and use their private key to recover the signer's
identity, by running ������.

The process of a user making a transaction on the blockchain is shown in Fig. 7,
during which the user uses a RS to protect the privacy of his identity.
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Fig. 7. The process of a blockchain transaction by using our scheme

An instantiation of our scheme and experiments. We use pedersen commitment
based on Curve25519 in KUNLUN Library [23] to instantiate our RS scheme.
(1) System initialization, generating public parameters. Generates two generators of
�� is � =
046B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898
C2964FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB640683
7BF51F5 and � =
042F9D894478F2DECAC4EC8799958733726541CA94CFBBE0CC6DAE59B89EC
C08BB52609ED4A60EA6AD5DE66DB79FCB4F49059B1174ABC129BAE674279
F77A1D953.
(2) Assume user's private key is �� , we compute the public key �� = �� * � . And
Generates the regulatory authority's public key and secret key pair (����, ����).
(3) We randomly picks some users' public keys as the ring users of �.
(4) To generate a one-time tag, we take signer's private key and the ����� as inputs to
the function in KUNLUN Library to get �.
(5) To generate a C={C1, C2}, we first pick a random number as u, and then computes
C1 = u*G and C2 = yrev*u+yl.
(6) To generate a RS �, we also need to compute �1,�2,�3 and �1,�2,�3 where �1,�2,�3
are all commitments such as ��� = �����'(��; ��) = ��*�+��*�. Then we use SM3 hash
function to generate the challenge value � . And use � and �� to compute �1 , �2 , �3
where the calculations are all operations of BigInt. Then we can generate the RS �.
(7) The validation algorithms are generated in a similar way. We define the functions
�1，�2 and �3 using the parameters generated in (6).
(8)We define the ����������� and ������ algorithms where the �����������
is to iterate through the one-time tags list and determine whether a once-time tag



exists in the list. We compare the real signer's public key use � and ���� : �=�2 \
�1

����.
By running experiments, it was verified that our RS scheme was correct and valid.
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