
A New Perspective on Key Switching for BGV-like Schemes

Johannes Mono Tim Güneysu
johannes.mono@rub.de tim.gueneysu@rub.de
0000-0002-0839-058X 0000-0002-3293-4989

Ruhr University Bochum, Bochum, Germany
DFKI GmbH, Bremen, Germany

Fully homomorphic encryption is a promising approach when computing on
encrypted data, especially when sensitive data is involved. For BFV, BGV,
and CKKS, three state-of-the-art encryption schemes, the most costly ho-
momorphic primitive is the so-called key switching. While a decent amount
of research has been devoted to optimizing other aspects of these schemes,
key switching has gone largely untouched. One exception has been a recent
work [26] introducing a new double-decomposition technique. Its contribu-
tions are a great addition to the current state-of-the-art with one flaw: The
authors take a skewed perspective on key switching parameters and their
asymptotic complexity leading to incorrect conclusions about how effective
their approach really is. In this work, we deep dive into key switching and
correct, enhance, and improve the current state-of-the-art. We provide a new
perspective on the key switching parameters P, ω, and ω̃ resulting in the
asymptotic bounds O(ω`) and O(ω`/ω̃ + ω̃`/ω) for the single- and double-
decomposition technique, respectively. We also revisit an idea by Gentry,
Halevi, andSmart [18] to reduce thenumber ofmultiplications,which speeds
up key switching by up to 63% and up to 11.6 %, respectively.

mailto:johannes.mono@rub.de
mailto:tim.gueneysu@rub.de
https://orcid.org/0000-0002-0839-058X
https://orcid.org/0000-0002-3293-4989

Introduction
Section 1

Cryptography originally had one goal in mind: encrypting messages and en-
suring the confidentiality of the encrypted data. Since then, it passed many
generations and branched out to a variety of other applicable areas. One such
area was first envisioned in the late 1970s under the name privacy homo-
morphism, a hopeful possibility of arbitrary computations on encrypted data
[29]. It is a rather simple idea: A user encrypts (sensitive) data and sends it
to a powerful server, the servermanipulates the ciphertext to compute on the
encrypted data, and then the user decrypts the ciphertext recovering the re-
sult. As simple as the idea sounds, realizing it proved to be a tough challenge
for many years. Some constructions supported multiplications on encrypted
numbers, but no additions. Others supported unlimited additions, but only
one multiplication; others many additions, but only a few multiplications.
For arbitrary computations, however, any amount of additions and multipli-
cations was needed.

In 2009, Gentry introduced an ingenious idea, bootstrapping, and gave
birth to the first ever encryption scheme for privacy homomorphism [16].
Over the years, many more and more efficient schemes have been conceived.
Today, they are known as fully homomorphic encryption (FHE) schemes
and, at their heart, are still rooted in Gentry’s idea of bootstrapping. Con-
ceptually, a ciphertext in any modern FHE scheme has an associated error
which grows for each addition or multiplication. Once this error reaches a
certain threshold, no further operations are possible without destroying the
encrypted numbers. Gentry noticed that, given an encryption of the secret
key, we can bootstrap the ciphertext and essentially refresh the associated
error. By interleaving operations and bootstrappings appropriately, a server
can perform any amount of additions and multiplications on the underlying
numbers.

Today’s schemes fall into two groups: Boolean-based schemes encrypt
single bits or small bit groups, and word-based schemes encrypt large vec-
tors of numbers. While the former enjoys relatively fast bootstrapping and
high computational flexibility, the latter suffers frommuch slower bootstrap-
ping and less flexibility. For highly parallelizable arithmetic, however, word-
based schemes outshine their Boolean-based companions. Consider vector
arithmetic: In word-based schemes, homomorphic addition and multiplica-
tionmap to the component-wise addition andmultiplication of the encrypted
vectors of numbers. In Boolean-based schemes, each bit of a vector element
would require its own ciphertext and a vast number of homomorphic opera-
tions for a vector addition or multiplication. Word-based schemes also sup-
port a third primitive, somewhat increasing their computational flexibility:
rotations of the encrypted vector. Using rotations, we can map unencrypted

Page 2

algorithms to the homomorphic realm even if vector elements at different po-
sitions need to interact with each other. An example is homomorphic matrix
multiplication which requires only two ciphertexts for word-based schemes,
one for eachmatrix operand [23]. In Boolean-based schemes, wewould need
a seperate ciphertext for every single bit of every matrix element and many
homomorphic operations.

Our work focuses on the word-based schemes BFV [5, 14], BGV [6], and
CKKS [10]. They are also known as BGV-like due to their similar structure
and base their security on the Learning with Errors over Rings (RLWE) as-
sumption. For a ciphertext modulus q and a power-of-two degree N, the ring
Rq = Zq[X]/

(
XN + 1

)
serves as the mathematical foundation of a ciphertext

polynomial c(s) with coefficients ci ∈ Rq. For decryption, we evaluate a ci-
phertext polynomial in the secret key s and recover the message m with an
additional error e for a known scaling factor t:

c(s) = c0 + c1 · s = m + te.

Obviously, we only publish the coefficients of a ciphertext polynomial and
keep the secret key our secret. Homomorphic addition and multiplication
straightforwardly map to polynomial addition and multiplication of cipher-
texts. Addition adds the messages as c(s) + c′(s) = m+m′ + teadd and multi-
plicationmultiplies them as c(s) ·c′(s) = mm′+temul. But, as straightforward
as it may seem, two issues arise.

Especially for a multiplication, the error grows fast. To accomodate it,
we require a large ciphertext modulus q sized several hundred bits and, as
a consequence, require a large degree N to keep us secure in the RLWE set-
ting. The large parameters result in expensive computations and subpar per-
formance. To speed up computations, implementations employ two strate-
gies: First, they decomposes the ciphertext modulus into ` co-prime qi with
q =

∏
qi enabling computations on the smaller moduli qi; this is known as

residue number system (RNS). Second, they use the forward and inverse
number theoretic transform (NTT) for multiplication inRq. Although these
two strategies ease the computational burden, they do not lift it and large
parameters continue to be a major problem for performance.

The second issue concerns the output ciphertext and its decryption. The
sum

(c + c′)(s) = (c0 + c′0) + (c1 + c′1) · s

only requires s for decryption. The product

(c · c′)(s) = (c0 · c′0) + (c0 · c′1 + c1 · c′0) · s + (c1 · c′1) · s2

on the other hand suddenly requires s2 for decryption and further multipli-
cations would worsen our problem exponentially. BGV-like schemes avoid
this ciphertext expansionwith an internal housekeeping operation called key

Page 3

switching. Key switching transforms

(c1 · c′1) · s2 7→ c̃0 + c̃1 · s + tẽ,

holding the same information at the cost of an additional small error ẽ. The
modified homomorphic multiplication without ciphertext expansion outputs

(c · c′)(s) = (c0 · c′0 + c̃0) + (c0 · c′1 + c1 · c′0 + c̃1) · s + tẽ

and only requires s for decryption. We also switch keys after our third prim-
itive operation, rotations. To rotate an encrypted vector, we apply a permu-
tation π on the ciphertext as

π(c(s)) = π(c0) + π(c1) · π(s).

As with a multiplication, we transform π(c1) · π(s) to c̃0 + c̃1 · s at the cost
of an added error. We control this error with two additional parameters: the
key switching modulus P and the decomposition number ω. Although there
exists a relatively large body of work exploring efficient parameter selection
for the security level λ, polynomial degree N, and the ciphertext modulus q,
the same cannot be said for the key switching parameters P and ω [2, 11, 1,
12, 28].

1.1 Related Work

Key switching is the most expensive primitive in BGV-like scheme. It occu-
pies roughly 40% of execution time during bootstrapping and is 11× slower
compared to a naïve ciphertext multiplication1. But, despite its high costs,
works onkey switching are a rare sight. In the appendix of their extendedver-
sion, Kim, Polyakov, and Zucca [25] explore the current state-of-the-art on
key switching. They describe two different techniques, the BV technique [7]
and the GHS technique [17] as well as their combination to the hybrid tech-
nique (whichwewill refer to as single-decomposition technique). They anal-
yse computational and memory complexity, but do not extend their analysis
from correct parameter selection to optimal parameter selection. Han and
Ki [21] shortly discuss trade-offs for the parameter P on a high-level, but do
not show how to choose parameters optimally. Kim et al. at [26] propose an
extension to the current state-of-the-art with a double-decomposition tech-
nique, butwith onemajor shortcoming: a flawed comparisonwith the single-
decomposition technique.

1.2 Contributions

In this work, we take an in-depth look at key switching and provide answers
to the following open questions:

1 using our benchmarking setup with OpenFHE and fhelib (see also Section 4)

Page 4

1 Do I want to implement the more complex double-decomposition
technique? If yes, when do I want to use it?

2 Do I always want to stick with a given N and q in the single-
decomposition technique? Or can I adjust them to get better per-
formance?

3 How do I set the parameters P and ω for best performance?

In the process, we make the following contributions:

We provide a new perspective on the single-decomposition tech-
nique with the bound O(ω`). We confirm our theoretical results
with benchmarks and introduce new guidelines for parameter se-
lection.

We extend the original work [26] on the double-decomposition
technique with the bound O(ω`/ω̃ + ω̃`/ω) and correct the com-
parison with the single-decomposition technique.

We integrate an idea by Gentry, Halevi, and Smart [18] with key
switching resulting in up to 63% faster execution times.

We highlight new opportunities for foldingmultiplications in key
switching resulting in up to 11.6% faster execution times.

Preliminaries
Section 2

Understanding our contributions requires an understanding of key switching
and related concepts. For experts, we provide a short summary at the end in-
cluding commonly used notation (see Subsection 2.6). For more unfamiliar
readers, we will travel through the world of key switching to reach such an
understanding.

2.1 RLWE Encryption

In the beginning, there simply is a vector of numbers (our message) that we
want to encrypt: integers modulo p for BFV/BGV and approximate numbers
for CKKS. Using different paths for the different schemes, our message ends
up in a plaintext polynomial m ∈ Rq; for each coefficient in the most sig-
nificant bits for BFV and in the least significant bits for BGV and CKKS.
But, while plaintext encoding is an interesting journey in itself [10, 20], our
journey simply starts with the ring Rq = Zq[X]/(XN + 1) and a plaintext
polynomial m ∈ Rq. Our encryption toolbox contains a secret key distribu-
tion χs, an error distribution χe, the error scaling factor t (different for each
scheme2), and the uniform random distribution overRq. We sample a secret

2 For BFV, we set t = 1 and keep the error in the least significant bits. For BGV, we
set t = p and move the error above the message bits. For CKKS, we set t = 1 and

Page 5

key s← χs, a small error e← χe, and a random polynomial a←Rq from our
toolbox and encrypt m:

(c0, c1) = (a · s + te + m,−a) ∈ R2
q .

To decrypt, we evaluate the ciphertext c = (c0, c1) as polynomial in s:

c(s) = c0 + c1 · s = m + te ∈ Rq.

The relevant related works [5, 14, 6, 25, 10, 9, 24] analyze correctness and
security.

A BGV-like public key is an encryption of nothing:

pk = (pk0, pk1) = (a · s + te,−a) ∈ R2
q .

For public key encryption, we sample a temporary secret u ← χs, two small
errors e0, e1 ← χe, and a random polynomial a ← Rq from our toolbox and
encrypt as

(c0, c1) = (pk0 · u + te0 + m, pk1 · u + te1) ∈ R2
q .

As with a secret key encryption, c(s) = m + tepk ∈ Rq with a slightly larger
error epk.

A BGV-like key switching key is an encryption of a secret s′:

ksk = (ksk0, ksk1) = (a · s + te + s′,−a) ∈ R2
q .

Key switching aims to output (c̃0, c̃1) such that

c̃0 + c̃1 · s + tẽ = ci · s′

adding a small key switching error ẽ. To transform cis2 after amultiplication,
we set s′ = s2; to transform ciπ(s) after a rotation π, we set s′ = π(s). In the
following, we will continue our journey with the key switching key in our
pocket and will discover how to switch keys from s′ to s.

2.2 Key Switching

The idea of key switching is rather straightforward:

(c̃0, c̃1) = (ci · ksk0, ci · ksk1).

Then,

c̃(s) = ci · ksk0 + ci · ksk1 · s

= ci · (a · s + te + s′)− ci · a · s

consider the error as part of the approximation.

Page 6

= ci · s′ + tci · e

But, it does not quite work: While e is small, the added error ẽ = ci · e is
not because ci behaves like a random element inRq. Current state-of-the art
employs two strategies to control the error: modulus extension and decom-
position [25]. On our two detours, wewill highlight the changes to naïve key
switching.

For modulus extension, we temporarily compute in RqP with the exten-
sion modulus P. We modify our naïve key switching key to

(ksk0, ksk1) = (a · s + te + Ps′,−a) ∈ RqP

where we sample a ← RqP. We compute key switching as before, but over
RqP, thus:

ci · ksk0 + ci · ksk1 · s = ci · Ps′ + tci · e ∈ RqP.

Finally, we switch back toRq by scaling by 1/P resulting in

ci · s′ + t
ci · e
P
∈ Rq.

As you might have noticed, keeping track of the different rings can get con-
fusing. Implicitely, we will only use Rq and denote other ring moduli ex-
plicitely using the notation [·]qP. Hence, we switch keys with modulus ex-
tension computing

(c̃0, c̃1) =
(
[ci · ksk0]qP

P
,
[ci · ksk1]qP

P

)
.

For P ≈ q, the error ci · e/P is negligibly small and key switching is correct
[25].

For decomposition, we decompose ci with respect to some base; for ex-
ample using a power-of-two β with

ci =

ω−1∑
l=0

βlc(l)i ;

the base is
(
1, β, β2, . . .) and the decomposition D(ci) =

(
c(0)i , c(1)i , c(2)i , . . .

)
.

Next, we modify our naïve key switching key

(ksk0, ksk1) = (al · s + tel + B(s′)l,−al)
ω−1
l=0 ∈

(
R2

q
)ω

with al ← Rq, el ← χe, and B(s′) = (s′, βs′, β2s′, . . .). We also modify key
switching itself:

(c̃0, c̃1) =
(
〈D(ci), ksk0〉, 〈D(ci), ksk1〉

)
.

Then,

c̃(s) =
〈
D(ci), ksk0

〉
+
〈
D(ci), ksk1

〉
· s

Page 7

=
〈
D(ci),B(s′)

〉
+ t
〈
D(ci), (el)

ω−1
l=0

〉
= ci · s′ + t

ω−1∑
l=0

c(l)i · el;

here, c(l)i behaves like a random element inRβ instead ofRq and el is small.
For small β, key switching is correct [25].

Combining both strategies looks like this:

(ksk0, ksk1) =
(
[al · s + tel + PB(s′)l]qP, [−al]qP

)ω−1
l=0 ∈

(
RqP

)ω
and

(c̃0, c̃1) =

([
〈D(ci), ksk0〉

]
qP

P
,

[
〈D(ci), ksk1〉

]
qP

P

)
.

Now, the key switching error is negligible as long as P is roughly as large
as the largest element in D(ci) [25]. Interestingly, for the decomposition,
we only need D(ci) to be small(ish) and 〈D(ci),B(s′)〉 = ci · s′. And luckily,
implementations have another decomposition naturally available thatwe can
use!

2.3 DCRT Representation

In the land of BGV-like implementations, we commonly spot two decompo-
sitions via the Chinese Remainder Theorem (CRT): the residue number sys-
tem (RNS) and the number theoretic transform (NTT). The former enables
native integer arithmetic modulo large q, and the latter speeds up polyno-
mial multiplication. Surprisingly, combining the two CRT representations
is known as Double CRT (DCRT) representation.

Let q =
∏`

i=1 qi with co-prime primes qi. The RNS representation of a
polynomial a ∈ Rq is ai = [a]qi ∈ Rqi . We can perform additions and multi-
plications overRq in each ringRqi individually. Division andmodular reduc-
tion, however, do not generally map to the RNS space. A notable exception
is a scalar γ ∈ Zq which divides each coefficient in a, then a/γ = γ−1a ∈ Rq.
We can reconstruct a ∈ Rq from the individual ai using the CRT:

a =

(∑̀
i=0

[
ai

qi

q

]
qi

q
qi

)
∈ Rq.

The forward and inverse NTT are variants of the Fast Fourier Transform
over a finite field and run in time O(N logN). The forward NTT transforms
a polynomial to the NTT domain, the inverse NTT transforms it back to the
coefficient domain. Multiplication in Rq in the NTT domain corresponds to
coefficient-wise multiplication, hence running in time O(N). Because the
NTT is linear, we can move addition and scalar multiplication around in-
dependent of a polynomial’s domain (within the laws of mathematics, of
course). In combination with the RNS, we perform the forward and inverse

Page 8

NTT for each ringRqi individually. The CRT view on the NTT is as polyno-
mial factorization over Rqi

3. Since the DCRT representation has a signifi-
cant impact on key switching, we have to go back and visit it again.

2.4 Key Switching, Again

Recall our key switching key

(ksk0, ksk1) =
(
[al · s + tel + PB(s′)l]qP, [−al]qP

)ω−1
l=0 ∈

(
RqP

)ω
and key switching itself:

(c̃0, c̃1) =

([
〈D(ci), ksk0〉

]
qP

P
,

[
〈D(ci), ksk1〉

]
qP

P

)
.

For the key switching key, we use the RNS with

q =
∏̀
i=1

qi and P =

k∏
j=1

Pj

computing over each Rqi and RPj , respectively, and store the result in the
NTT domain (we can also sample ak in the NTT domain which is nice). How-
ever, instead of decomposing s′ to a power-of-twobasisβ, we recycle ourRNS
decomposition over q: We split the ` primes qi intoω groups {q̃1, . . . , q̃ω}with
up to d`/ωe primes per group. To keep it simple, we will assume ω | ` for the
remainder of this work; hence, each group has `/ω primes. Conceptually, we
decompose as

D(ci) =

([
ci

q̃1
q

]
q̃1

, . . . ,

[
ci

q̃ω
q

]
q̃ω

)
with q̃l =

`/ω∏
i=1

q(l−1)`/ω+i.

We reconstruct with the CRT, hence

B(s′) =

([
s′

q
q̃1

]
q
, . . . ,

[
s′

q
q̃ω

]
q

)

such that 〈D(ci),B(s′)〉 = ci · s′. The key switching error is negligibly small
with P ≈ q̃l (or simply k = `/ω) and key switching is correct, again [25].
Funnily enough, we can move the factors [q̃l/q]q̃l from D to the key switch-
ing key. Thus, D conceptually transforms the RNS over Rq to the RNS of
eachRq̃l , respectively, but simply reuses the values inRqi [19].

For D, going fromRq toRq̃l is easy because q̃l | q. However, converting
from one RNS basis to another is not always that easy: For [〈D(ci), ksk0〉]qP,

3 For qi = 1 mod 2N, the polynomial XN + 1 splits into N factors X− ξj where ξj are
the 2N-th roots of unity. The NTT is the CRT with respect to these N factors.

Page 9

we need to convert each element in D(ci) from Rq̃l to RqP, but qP - q̃l. In
general, for two RNS bases

E =

n∏
i=1

Ei and E′ =

n′∏
j=1

Ej

and a ∈ RE, the fast base extension

BaseExt(a,E,E′) =

[n∑
i=0

[
ai

Ei

E

]
Ei

E
Ei

]
E′

j

n′

j=1

outputs aj = [a+εE]E′
j
for a small ε using only native integer arithmeticmod-

ulo Ei and E′
j. Often enough, we can consider εE as part of the homomorphic

error. If needed, we remove it using an error correction technique such as
BEHZ [4] or HPS [19]. For a fast base extension, we need the input in the
coefficient domain because we interact between different RNS primes. For
key switching, we base extend each element in the decomposition:

cext = (cext,l)ωl=1 with cext,l = BaseExt(D(ci)l, q̃l, qP).

Here, we can consider εq̃l as part of the negligibly small key switching error
[25]. But, this scaling is a division (sadly not mapping to the RNS space)
which is the last hurdle to clear during our visit to DCRT key switching.

Let c′i be a polynomial inRqP. Our goal is to compute c̃i = [c′i/P]q. While
we could simply multiply by P−1 ∈ Zq if P would divide every coefficient
in c′i, this is not true in general. But, we can make it true: We just add

δi = −t[t−1c′i]P with [c′i + δi]P = 0.

Because t | δi overRq, it only affects the error. It will also be small because it
behaves like a randomelement inRP (roughlyP-sized), whichwe then divide
by 1/P afterward [25]. Now, P divides every coefficient in c′i + δi and

c̃i =
c′i + δi

P
= P−1(c′i + δi).

We now conclude our key switching journey with a final decomposition.

2.5 Decomposing, Again

Until now, we only used one decomposition D. Recently, Kim et al. [26]
suggested a new algorithmic approach using a second decomposition on top.
We therefore use the terms single- and double-decomposition technique to
differentiate between the two (if you guessed that we use the former for key
switching with one decomposition and the latter for key switching with two,
you are correct!). Their idea is rather straightforward and only uses concepts
we already went past.

Page 10

Recall again single-decomposition key switching:

(c̃0, c̃1) =

([
〈cext, ksk0〉

]
qP

P
,

[
〈cext, ksk1〉

]
qP

P

)
.

The double-decomposition technique performs the dot product over RqP in
another ringRE for a new RNS base E. Initially, we split the `+ k primes in
qP into ω̃ groups (we will assume ω̃ | `+ k). We decompose ksk toward these
ω̃ groups, afterward extending from each group toRE (here, we need to cor-
rect the error when using the fast base extension). During key switching, we
extend each element in D(ci) fromRq̃l toRE (error correction required) and
compute the dot product inRE

4. Then, we extend the result toRqP (no error
correction required) and finish up as before by scaling by 1/P. In the follow-
ing, we will provide algorithmic descriptions of both techniques after sum-
marizing our notation collected along the way. Thus, our journey through
the current state-of-the-art on key switching and its related concepts comes
to an end.

2.6 Summary

Common notation:

Rm, [·]m Rm = Zm[X]/(XN + 1) for a power-of-two degree N
where [·]m denotes arithmetic in Rm (arithmetic in
Rq is mostly implicit)

q, `, b q =
∏`

i=1 qi as ciphertext modulus with ` co-prime
primes qi with b bits each

P, k, β P =
∏k

j=1 Pj as extension modulus with k = `/ω co-
prime primes with β bits each; also co-prime to q

E, r, β̃ E =
∏r

i=1 as double-decomposition modulus with
r co-prime primes Ei with β̃ bits each; also co-prime
to q and P

D, B, ω RNS decomposition D(·) over Rq into ω groups q̃l

such that 〈D(ci),B(s′)〉 = ci · s′

D̃, B̃, ω̃ RNS decomposition D̃(·) over RqP into ω̃ groups Q̃l

such that [〈D̃(ci), B̃(s′)〉]qP = [ci · s′]qP

B upper bound on b, β, and β̃

t the error scaling factor

4 E needs to be able to store the dot product without “overflow modulo E”.

Page 11

Common algorithms:

NTTfwd, NTTinv the forward and inverse NTT, respectively

BaseExt the fast base extension of a ∈ RE toRE′

BaseExt(a,E,E′) =

[∑
i

[
ai

Ei

E

]
Ei

E
Ei

]
E′

j

Single-decomposition key switching5:

key generation ksk =
(
[al · s + tel + PB(s′)l]qP, [−al]qP

)ω−1
l=0

input extension cext =
(
BaseExt(D(ci)l, q̃l, qP)

)ω−1
l=0

dot product c′i =
[
〈NTTfwd(cext), kski〉

]
qP

scaling δi = −tBaseExt(NTTinv([t−1c′i]P),P, q)

c̃i = P−1(NTTinv(c′i) + δi)

Double-decomposition key switching6:

key generation k̃sk =
(
BaseExt(D̃(ksk)l, Q̃l,E)

)ω̃−1
l=0

input extension cext =
(
BaseExt(D(ci)l, q̃l,E)

)ω−1
l=0

dot product c′′i =
[〈
〈B̃(NTTfwd(cext)), k̃ski〉

〉]
E

c′i = BaseExt
(
[NTTinv(c′′i)]E,E, qP

)
scaling δi = −tBaseExt([t−1c′i]P,P, q)

c̃i = P−1(NTTinv(c′i) + δi)

5 We assume that the key switching key ksk is in theNTT domain and do not include
the calls to NTTfwd and NTTinv for key generation. We assume an input ci in the coeffi-
cient domain and output c̃i in the coefficient domain. Wemake the same assumptions
for the double-decomposition technique.

6 With slight abuse of notation,
〈
〈·〉
〉
performs a dot product instead of a multipli-

cation for each pair in the outer dot product.

Page 12

Table 1: Current state-of-the-art on key switching complexity.

Scheme Decomposition

single double

O * O
(
`2
)

O
(
r2
)

ntt
BFV

(ω + 2)(`+ k) (ω + 2ω̃)r
BGV/CKKS

mul
BFV `(`+2ω+2k+5)+2k

r(3`+ 2ωω̃ + 2k)
BGV/CKKS `(`+2ω+2k+7)+4k

ksk * 2ωN(`+ k) 2ωω̃Nr

Key Switching in Theory
Section 3

Our current understanding of key switching complexity mostly stems from
two works. In their extended version, Kim, Polyakov, and Zucca [25] anal-
yse the single-decomposition technique and count the number of forward and
inverse NTTs ntt (each time O(N logN)) as well as the number of multipli-
cations mul, either coefficient-wise with another polynomial or with a scalar
(each time O(N)). They also determine the number of primes ksk in a key
switching key. In general, they differentiate between BFV and BGV for two
reasons:

The default domain for a ciphertext is different for BFV,BGV, and
CKKS. For BFV, a ciphertext is usually in the coefficient domain.
For BGV and CKKS, a ciphertext is usually in the NTT domain.
Across domains, ntt is still the same due to a neat trick that Kim,
Polyakov, and Zucca use [25].

For BFV and CKKS, t = 1 reduces the number of scalar multipli-
cations.

For the double-decomposition technique, Kim et al. [26] also provide ntt,
mul, and ksk. Additionally, they provide asymptotic complexities for both
techniques. We summarize the current state-of-the-art in Table 1. But, there
are several problems:

1 For the single-decomposition technique, the perspective on O is
not optimal.

2 There is no estimate for the number of primes r in E that only
depends on `, ω, and ω̃; this complicates comparing both tech-
niques.

3 We can reduce the number of multiplications mul in both tech-

Page 13

niques. Also, Kim et al. [26] exclude the scaling step from mul.
4 Kim et al. [26] always assume input and output in the coefficient

domain which is only sensible for BFV.

In the following, we will tackle and resolve each issue. Along the way, we
will collect questions to evaluate in Section 4.

3.1 A New Perspective

In BGV-like schemes, security depends on the distributionsχs andχe, the de-
greeN, and the modulus qP. For the distributions, common choices are are a
uniform ternary distribution forχs and a centeredGaussian distributionwith
variance σ = 3.19 for χe [1]. The parameters N, q, and P differ for each use
case. Increasing N increases security, but decreases performance. Increas-
ing q (and hence qP) decreases security, but it increases the space where the
error can grow and thus permits more homomorphic operations before boot-
strapping becomes necessary. In fact, we mostly try to avoid bootstrapping
in BGV-like schemes because it is so expensive, and we instead often choose
a large enough q for a use case [18]. Then, we fix a power-of-twoN as small as
possible for performance, but as large as needed for security7 [28]. Finally,
we choose P and ω such that key switching is correct and secure.

What are the consequences for the key switching parameters P and ω?
Essentially, we need to answer the following question: Given N and q, how
do we set these parameters for best performance? Kim et al. [26] argue as
follows for the single-decomposition key technique (recall that k = `/ω): By
choosing k ∈ O(1), we require ω ∈ O(`) and

(ω + 2)(`+ k) ∈ O
(
`2
)

follows accordingly for ntt. But, this implicitly limits k. We take a new
perspective: We consider ω ≤ ` as parameter in the security level which we
can choose as we desire. Then,

(ω + 2)(`+ k) = ω`+ 3`+
2`
ω

⇒ ntt ∈ O(ω`).

For ω2 = 2, ω1 = 1,

ω2`+ 3`+
2`
ω2

= ω1`+ 3`+
2`
ω1

,

and for ω2 > ω1 > 1,

ω2`+ 3`+
2`
ω2

> ω1`+ 3`+
2`
ω1

.

A simple fact follows: The smaller ω, the better our performance. We also
collect our first question to evaluate: If possible, is it better to use ω = 1 or
ω = 2?

7 This almost works: N impacts error growth and hence q, but not significantly.

Page 14

While the above fact is simple, reality is not, of course. Decreasing ω

increases k = `/ω (and hence P (and hence qP)), thus decreasing security
for fixed N. Luckily, there are two solutions: For fixed N, we choose a se-
cure lower bound W for ω, then set k ∈ O(`/W) large. Or, and this will
sound crazy if you ever implemented and benchmarked a BGV-like scheme,
we consider increasing the degree N. For the degree 2N, we then use ω′ = 1
or ω′ = 2; we choose ω′ = 2. In terms of memory, that is ksk, it is worth it
to increase the degree once

2ωN(`+ k) = 2N(ω`+ `) > 12N` = 4N(ω′`+ `) ⇒ ω > 5.

Considering ntt, the main computational bottleneck, it gets more complex;
we cannot simply use the asymptotic complexity N logN due to the hidden
factors. To keep it simple, we still do: With 2N log(N + 1) ≈ 2N logN, we
get (

ω`+ 3`+
2`
ω

)
N logN > 12`N logN.

We need to solve ω2 − 9ω + 2 > 0 and ω > 8.77 follows. At some point
(and most likely not ω > 8.77), increasing the degree should become worth
it not only in terms of memory, but also in terms of running time. Does it? A
second question to evaluate.

3.2 Estimating r

Kim et al. [26] provide a lower bound for log2 E based on the infinity norm.
An element a ∈ Rm has coefficients in [−m/2,m/2), thus ‖a‖∞ ≤ m/2. For
a product [a · b]m, we have

‖ab‖∞ ≤ δR‖a‖∞‖b‖∞

for the ring expansion factor δR = N [18]. E needs to be large enough to store
a dot product of ω elements inRq̃l andRQ̃l

. Thus, the bound is

log2 E ≥ log2

(
ωN
4

max q̃l max Q̃l

)
.

By definition, we have maxl q̃l = `b/ω andmaxl Q̃l = (`b+kβ)/ω̃. Assuming
b ≈ β ≈ β̃ ≈ B, we get

r ≥ log2(ωN/4)
B

(
`

ω
+

`+ k
ω̃

)
.

In practice, log2(ωN/4)/B ∈ O(1) is negligibly small. With k = `/ω, a good
estimate is

r =
ω`+ ω̃`+ `

ωω̃
.

For ntt, we get

(ω+2ω̃)r =
(
ω2 + 3ωω̃ + 2ω̃2 + ω + 2ω̃

ωω̃

)
` ⇒ ntt ∈ O(ω`/ω̃+ω̃`/ω).

Page 15

As before, wewant to minimize ntt, the main computational bottleneck.
But, overR, we get negative solutions forω and ω̃ (if you canfigure out how to
negatively decompose, please let us know). Instead, we exhaustively search
for optimal solutions for ` ≤ 200, a generous bound for the number of primes
in q. For ` ≤ 200, we minimize ntt with

ω = ` and ω̃ =

√(
`+ 1
2

)
`.

But choosing ω and ω̃ as above is a double-edged sword: It blows up the num-
ber of primes in the key switching key

2ωω̃Nr = 2(ω`+ ω̃`+ `)N.

In contrast to the single-decomposition technique, we have to usemuchmore
memory to get the best computational complexity. We collect another ques-
tion: For optimal parameters, which technique performs better?

3.3 Multiplication Folding

The number of multiplications mul consists of two types: coefficient-wise
multiplication of two polynomials and scalar multiplication with each coef-
ficient of one polynomial. We need the former only for the dot product with
the key switching key. The latter is either a multiplication with a known
scheme constant (such as t or P−1) or takes place during the fast base exten-
sion

BaseExt(a,E,E′) =

[∑
i

[
ai

Ei

E

]
Ei

E
Ei

]
E′

j

,

one in the source ringRE and one in the destination ringRE′ (we obviously
precompute [Ei/E]Ei and [E/Ei]E′

j
). Hence, a multiplication belongs in one of

four groups:

1 polynomial multiplication with the key switching key;

2 scalar multiplication with a known scheme constant;

3 scalar multiplication during BaseExt in the source ring; and

4 scalar multiplication during BaseExt in the destination ring.

Given the right circumstances, we can merge multiplications. And actually,
we already encountered an example during our journey in Section 2: Mov-
ing the factors [q̃l/q]q̃l from D (group 3) to the key switching key (group 1).
Here, the invidivudal qi for the source rings Rq̃l happen to be all part of the
destination ring RqP and, while conceptually different, they both boil down
to computations over allRqi . In general, the following applies:

We cannot get around the multiplication with the key switch-
ing key (group 1) (and to be fair, anything else would be really
strange).

Page 16

Wecanmove a scalar to the key switching key (group 1) as long as
it is needed in every key switching which uses this key switching
key; especially known scheme constants (group 2).

We canmovemultiplications to and from BaseExt (group 3 and 4)
if they are moved for all used RNS primes.

It also does not matter that we have to transform the result of the fast base
extension from the coefficient to the NTT domain due to the linearity of the
NTTandwenow temporarily remove calls toNTTfwd andNTTinv. Recall single-
decomposition key switching starting at the dot product over RqP, and we
inline the fast base extension BaseExt:

Rq RP

c′i = 〈cext, kski〉 c′i = 〈cext, kski〉

δi,j = t−1c′iPj/P

δi = −t
∑

j δi,jP/Pj

c̃i = P−1(c′i + δi).

Our crucial observation is that we use the result of the dot product c′i
disjointed overRq andRP: We use [c′]q only to compute [̃ci]q and we use [c′i]P
only to compute [δi,j]P. Thus, we can move scalars around differently forRq

andRP, respectively:

Rq RP

c′i =
〈
cext,P−1 kski

〉
δi,j =

〈
cext, t−1Pj/P kski

〉
δi = −t

∑
j δi,j/Pj

c̃i = c′i + δi.

Overall, our insights reduce mul down to

`

(
`+ 2ω + 2

`

ω
+ 3
)

for any t, that is across all schemes. For a given `, we minimize 2ω + 2`/ω,
and hence mul, withω =

√
`. Our next question: Howmuch time dowe gain?

We also apply our folding techniques to the double-decomposition tech-
nique:

Rq RP RE

c′′i,ι = 〈cext,Eι/E kski〉

c′i = P−1∑
ι c

′′
i,ιE/Eι δi,j = t−1Pj/P

∑
ι c

′′
i,ιE/Eι

δi = −t
∑

j δi,j/Pj

c̃i = c′i + δi.

Page 17

Including scaling, we reduce the number of multiplications down to

(`+ 2ωω̃)r + `(2k + 3) = `

(
2ω + 2ω̃ +

3`
ω

+
`

ω̃
+

`

ωω̃
+ 5
)
.

The local minima of ω and ω̃ for ` ≤ 200 are close to
√
`.

3.4 Input and Ouput Domains

Our new foldings have another benefit as part of a bigger picture because we
moved the scaling by P−1 away from the last step:

(c̃0, c̃1) = (c′0 + δ0, c′1 + δ1).

Consider a multiplication where we switch the key of c2 and output

(c0 + c̃0, c1 + c̃1) = (c0 + c′0 + δ0, c1 + c′1 + δ1).

In the single-decomposition technique, c′i is in theNTTdomain and δi is in the
coefficient domain. For BFV, we transform c′i to the coefficient domain and,
for BGV and CKKS, transform δi to the NTT domain to match the respective
input domain. But sometimes, it can be useful to ignore the default domain.
For ci in the coefficient domain, we can choose the output domain:

NTTinv(c′i) + ci + δi or c′i + NTTfwd(ci + δi).

For ci in the NTT domain, the same idea works:

NTTinv(c′i + ci) + δi or c′i + ci + NTTfwd(δi).

Trivially, we can also choose output domains for a rotation where we switch
c1 and output (c0 + c̃0, c̃1). Fun fact: We could even choose different output
domains for each prime qi individually.

For the double-decomposition technique, we also moved scaling by P−1:

(c̃0, c̃1) = (c′0 + δ0, c′1 + δ1);

but now, c′i and δi are both in the coefficient domain. For output in the NTT
domain, we need 2` additional NTTs:(

NTTfwd(c′0 + δ0),NTTfwd(c′1 + δ1)
)
,

possibly adding c0 and/or c1 before performing the forward NTT. To make
things worse, the trick that keeps ntt the same across input domains does
not work for the double-decomposition technique. For BGV and CKKS, we
overall need 3` additional NTTs, 2` forward and ` inverse.

Page 18

3.5 Large Primes, Mostly

So far, we (and all cited literature) assumed b ≈ β ≈ β̃ ≈ B for the primes
in q, P, and E. But is this true? Generally, choosing primes as close to the
upper bound B as possible is beneficial for two straightforward reasons:

Each additional prime increases the number of polynomial oper-
ations during homomorphic evaluation. The larger each prime,
the fewer primes we need, reducing compute and memory costs.

Using small primes typically wastes compute and memory re-
sources: operations are still performed over B-sized numbers.

Given a bound log2 q (or log2 P or log2 E), we ideally want to:

1 Set ` = dlog2 q/Be.
2 Choose b such that log2 q ≈ ` · b.
3 Generate ` primes close to 2b.

For P and E, this is actually exactly what we do! For BFV, this also works
because our input to key switching is always inRq so the size of each qi does
not really matter [25]. For BGV and CKKS, however, we only start inRq and
remove individual primes over time.

We already encountered the idea of removing primes in a specific version:
the scaling by 1/P during key switching, also known as modulus switching.
In BGV, we usemodulus switching to reduce the absolute error after a multi-
plication. We scale by one of the primes qi and remove it from the ciphertext
modulus q/qi = q′. Afterward, we continue in the ringRq′ . Relative to q′, the
error has the same size as before. But the absolute size is scaled by 1/qi and,
for properly chosen qi, we stop the error from growing exponentially in the
following multiplications [6]. In CKKS, we solve a different problem with
rescaling. During amultiplication, the approximatemessagemoves from the
least significant bits of the ciphertext modulus q into higher bits. We then
scale by 1/qi to move it back to the least significant bits, also removing qi

from the ciphertext modulus. Here, the size of the primes qi is evenmore im-
portant than for BGV because scaling has to be pretty precise [9]. For both
schemes, scaling by roughly 2B may not be what we need.

We therefore need to show that we can actually assume b ≈ β ≈ β̃ ≈ B,
at least mostly. Luckily, Gentry, Halevi, and Smart already describe an idea
which solves our problem: We choosemostly large primes for q; additionally,
we choose a few small primes which we constantly switch in and out of q to
precisely control scaling [18]. Sadly, they are very sparse on the details. And
obviously, their idea is not free and we have to figure out its additional costs.
To do so, we will introduce some additional notation for modulus switching,
also known as rescaling, up and down scaling, or scaling and rounding.

Page 19

Switching the modulus.

We scale and round a ∈ Rq to the modulus q′ with

a′ =
[⌈

q′

q
a
⌋

t

]
q′

where d·ct rounds to the nearest integer coefficients which are [0]t; this keeps
the message intact for BFV and BGV. The RNS-friendly version is[⌈

q′

q
a
⌋

t

]
q′

=

[
q′a + δ

q

]
q′

=

[
q′a− t[t−1q′a]q

q

]
q′

with [δ]t = 0 and q | (q′a+ δ) by definition. This scales either the error (BFV
and BGV) or the approximate message (CKKS) by roughly q′/q. We will use
modulus switching to remove specific primes qi from q. To easily exclude
primes from q, we denote qx,y =

∏y
i=x qi with q = q1,`.

Switching primes in and out.

For ` = `′−µ+κ and log2 q ≈ (`′+µ)b, we use `′−κ primes close to 2b aswell
as κ > µ smaller primes, each close to 2µb/κ. For b ≈ B, we continuously
scale by 2µb/κ as follows:

1 Receive a fresh encryption from the client.

2 Perform the desired homomorphic operations until we need to
scale.

3 Switch the modulus using one of the κ small primes.

4 Repeat steps (2) and (3) until all κ small primes are gone.

5 Perform homomorphic operations, during the last key switching
before scaling, replace anyµ large primeswith theκ small primes.

6 Continue with step (3) using the small primes we switched back
in.

Integrating prime switching with key switching.

If we want to replace the primes {q`−µ, . . . , q`} with {q1, . . . , qκ}, we switch
the modulus of a ∈ Rqκ+1,` as[⌈

q1,`−µ

qκ+1,`
a
⌋

t

]
q1,`−µ

=

[
q1,`−µa− t[t−1q1,`−µa]qκ+1,`

qκ+1,`

]
q1,`−µ

=

[
q1,κa− t[t−1q1,κa]q`−µ,`

q`−µ,`

]
q1,`−µ

.

We then integrated with either key switching technique during the scaling
step by switching in the small primes {q1, . . . , qκ} and switching out the large
primes {q`−µ, . . . , q`,P1, . . . ,Pk}:[⌈

q1,`−µ

qκ+1,`P1,k
a
⌋

t

]
q1,`−µ

=

[
q1,κc′i − t[t−1q1,κc′i]q`−µ,`P1,k

q`−µ,`P1,k

]
q1,`−µ

.

Page 20

In the single-decomposition technique, the number of inverse NTT increases
from 2k to 2(µ + k) for base extending δi = −t[t−1q1,κc′i]q`−µ,`P1,k . However,
we also save 2µNTT operations on either c′i or δi since we reduce the number
of primes for the modulus switching output from ` to ` − µ. In the double-
decomposition technique, we are in the coefficient domain anyway after base
extending from E. Hence, for output in the coefficient domain, switching
primes in and out requires no additional NTT operations. For output in the
NTT domain, we need to perform 2κ additional forward NTT operations for
both techniques, κ per δi. As κ ∈ O(1) is usually very small (think κ = 2 or
κ = 3), this is only a very small overhead. But how large is it in practice?
Another question to evaluate.

Choosing the primes.

Wemodify the parameter selection process as follows:

1 Choose b ≈ B, µ, and κ to scale by qscale = 2µb/κ.

2 Set q = qL
scale+qdec for L available scalings and a decryption cush-

ion qdec. Also set `′ = dlog2 q/Be.
3 Generate `′ − µ primes close to 2b.

4 Generate κ primes close to qscale.

5 Set ` = `′ − µ+ κ.

Compared to the more naïve approach, we reduce ` as long as⌈
log2 q
µb/κ

⌉
≈
⌈

`′

µ/κ

⌉
> ` ⇔ κ`′ − µ` ≥ µ ⇔ ` ≥ κ+

µ

κ− µ
.

For example, with B = 60, we consider a use case scaling by qscale ≈ 236.
Then, with b = 54 ≈ B, µ = 2, and κ = 3, we reduce the overall number
of primes as soon as ` ≥ 5 (equivalent to log q > 144). We collect a final
question: How large are our improvements choosing (mostly) large primes?

3.6 Summary

We started with four issues to resolve:

1 For the single-decomposition technique, the perspective on O is
not optimal.

2 There is no estimate for the number of primes r in E that only
depends on `, ω, and ω̃; this complicates comparing both tech-
niques.

3 We can reduce the number of multiplications mul in both tech-
niques.

4 Kim et al. [26] always assume input and output in the coefficient
domain, which usually only holds for BFV, and exclude the scal-
ing step for mul.

In addition to solving these issues, we also showed that we can mostly as-

Page 21

Table 2: Our update for key switching analysis.

Scheme Decomposition

single double

O * O
(
ω`
)

O
(
ω`/ω̃ + ω̃`/ω

)
ntt

BFV
ω`+ 3`+ 2`/ω

ω2+3ωω̃+2ω̃2+ω+2ω̃
ωω̃ `

BGV/CKKS nttBFV + 3`

mul
BFV

`(`+ 2ω + 2`/ω + 3) `(2ω + 2ω̃ + ω`+3ω̃`+`
ωω̃ + 5)

BGV/CKKS

ksk * 2(ω`+ `)N 2(ω`+ ω̃`+ `)N

sume b ≈ β ≈ β̃ ≈ B. We update the previous state-of-the-art from Table 1
with our new analysis in Table 2.

Key Switching in Practice
Section 4

In the previous section, we posed six questions to evaluate:

1 Isω = 1 orω = 2 better if we can choose (single-decomposition)?

2 Can increasing N actually be worth it (single-decomposition)?

3 Is the single- or the double-decomposition technique better?

4 How large is the speed-up from constant folding?

5 How costly is replacing large with small primes?

6 How large is the speed-up using mostly large primes?

We do so on an Ubuntu 20.04.5 with an Intel Core i9-7900X at 3.3 GHz and
64 GiB of available memory. We disable Intel turbo boost and pin program
execution to a single core. Our implementation8 uses the open-source library
fhelib [13] which uses the state-of-the-art library HEXL [22] for fast polyno-
mial arithmetic. We average execution times over all combinations of input
and output domain. If not otherwise noted, we use the single-decomposition
technique with our folding improvements, B = 60, b ≈ B, β ≈ B, and
β̃ ≈ B. For N ∈ {214,215,216,217}, we use the respective upper bounds
log2 qP ≤ {443,867, 1735,3470} for at least 128 bit security [28].

4.1 Is ω = 1 or ω = 2 better if we can choose (single-decomposition)?

To be able to choose between ω = 1 and ω = 2, we need q ≈ P and thus log2 q
needs to use ≤ 50% of the available space for log2 qP. For each N, we use

8 https://github.com/Chair-for-Security-Engineering/owl

Page 22

https://github.com/Chair-for-Security-Engineering/owl

Table 3: Execution times for ω = 1 and ω = 2 where q uses 50 % of the
available modulus space. We also report the speed-up in percent.

Parameters Time (ms) Speed-up

log2 N log2 q ω = 1 ω = 2

14 216 3.5 3.6 -2.7 %
15 432 19.2 19.1 0.5 %
16 855 118.0 113.3 4.1 %
17 1711 762.1 671.0 13.6 %

Table 4: Execution times for parameter setswhere quses 90% or 95%. Each
parameter set has a sibling with degree 2N and ω′ = 2. We also report the
speed-up of 2N compared to N in percent.

Parameters Time (ms) Speed-up

log2 N log2 q ω ω′ N 2N

15 780 10 2 98.6 80.7 22.2 %
16 1560 10 2 457.9 564.6 -18.9 %
16 1624 19 2 785.3 626.5 25.3 %
17 3120 9 2 2072.6 3172.6 -34.7 %
17 3300 19 2 3532.2 3462.4 2.0 %

exactly 50%of the availablemodulus space for q. Using the results inTable 3,
we recommend to use ω = 2; it performs better most of the time. This is
somewhat expected because ω = 2 usually results in less multiplications
(minimal for

√
ω). The exception is N = 214 with log2 q = 216 where ` =

dlog2 q/Be = 4 is rather small, and thus also the number of multiplications.
Also, for ω = 2, the key switching key is larger than for ω = 1 and reading it
from memory impacts running time more if ntt and mul are small.

4.2 Can increasing N actually be worth it (single-decomposition)?

Increasing the degree N only makes sense for rather large ω. We only get
rather large ω if the ciphertext modulus q uses most of the available modulus
space. For evaluation, we use two parameter set for each degree occupying
90% and 95% of the available space, respectively. We also create a sibling set
with the degree 2N and ω′ = 2. We exclude N = 214, the available modulus
space is way too small, and we exclude one set for N = 215 where ω is the
same for 90 % and 95%. Table 4 shows that, contrary to current folklore,
increasing the degree can actually be worth it. But, doing so has also costs
outside of key switching: memory-wise, a larger public encryption key and
larger ciphertexts and compute-wise, more coefficients to compute on for all

Page 23

other homomorphic operations. We believe that increasing the degree is only
worth it if

1 ω is large;

2 the main bottleneck of the use case is the key switching opera-
tion;

3 the use case requires many different rotations, and each rotation
has its own unique key switching key; and

4 the key switching operation is memory-bound.

The last point is especially interesting in the context of hardware accelera-
tors where the hardware for a larger degree might already exist and be oth-
erwise unused. Also, hardware accelerators of BGV-like schemes tend to be
memory-bound reading the key switching key and reducing the key size (al-
ready smaller for ω > 5) could be more significant.

4.3 Is the single- or the double-decomposition technique better?

Kimet al. [26] already compare both techniques using a comprehensive set of
benchmarks. They find that the double-decomposition techniquemostly out-
performs the single-decomposition technique. And this is true if you choose
the same decomposition parameters for both techniques. But this is not how
we would choose parameters: Given N and q, we would actually choose ω

for the single-decomposition technique optimal or ω and ω̃ for the double-
decomposition technique. Also, we want to cover a large possible set of
use cases: We generate parameter sets using 50%, 65 %, 75 %, 80 %, 85 %,
90%, and 95% of the available modulus space for each degree N. For each
technique, we choose the decomposition parameters optimal with respect to
the number of NTTs ntt. In Figure 1, we compare the single-decomposition
and double-decomposition technique, lower times are better. As we can see,
the double-decomposition technique only gets competitive close to the max-
imum modulus size for q. In fact, the single-decomposition technique out-
performs the double-decomposition technique for all parameter sets except
for N = 216 with log2 q = 1624. Our answer to the question: In almost all
cases, the single-decomposition technique is the better choice.

4.4 How large is the speed-up from constant folding?

As before, we want to cover many parameter sets to measure our improve-
ments with constant folding. We reuse the parameters from Subsection 4.3
using 50%, 65 %, 75 %, 80 %, and 85% of the available modulus space for
each degree N. In Table 5, we compare a non-optimized implementation
(naïve) and with an optimized implementation (folded). We improve exe-
cution times by up to 11.6 % and, on average, by 4.8 %.

Page 24

N = 214

%
55 65 75 85 95

ms

5
10
15
20

N = 215

%
55 65 75 85 95

ms

25
50
75

100

N = 216

%
55 65 75 85 95

ms

200
350
500
650

N = 217

%
55 65 75 85 95

ms

1000
2000
3000
4000

Figure 1: Execution times for the single-decomposition and double-
decomposition technique. Given N and q, we choose parameters optimal
with respect to the number of NTTs, respectively.

Page 25

Table 5: Execution times for parameter sets where q uses 50%, 65%, 75%,
80%, and 85% of the available modulus space. We also report the speed-up
of folded compared to naïve in percent.

Parameters Time (ms) Speed-up

log2 N log2 q ω naïve folded

14 216 1 3.9 3.5 11.6 %
14 280 2 5.3 4.9 8.3 %
14 324 3 6.8 6.4 6.6 %
14 342 5 9.3 9.0 3.5 %

15 432 1 20.9 19.2 8.8 %
15 560 2 26.6 24.8 7.4 %
15 649 3 33.0 31.5 4.8 %
15 684 5 45.2 43.1 4.8 %
15 728 6 54.5 53.2 2.5 %

16 855 1 125.5 118.0 6.3 %
16 1121 2 159.2 152.3 4.5 %
16 1298 3 227.0 220.1 3.1 %
16 1380 5 275.6 269.0 2.4 %
16 1475 6 335.6 330.1 1.7 %

17 1711 1 801.5 762.1 5.2 %
17 2242 2 996.4 970.5 2.7 %
17 2580 3 1207.5 1176.4 2.7 %
17 2760 5 1444.6 1411.2 2.4 %
17 2940 6 1665.0 1647.7 1.0 %

Page 26

Table 6: Execution times for parameter setswhere quses 50%, 66%, and 75%
of the available modulus space. For each parameter set, we choose mostly
primes with 54 bit, but at least κ = 3 primes with 36 bit. We also report the
absolute overhead in ms of switch compared to folded.

Parameters Time (ms)

log2 N log2 q folded switch overhead

14 252 4.0 4.7 0.7
14 288 5.0 5.7 0.7
15 396 15.9 18.1 2.2
15 540 21.9 24.3 2.4
15 612 29.4 32.1 2.7
16 828 95.7 104.9 9.2
16 1116 170.1 178.2 8.1
16 1260 209.8 216.5 6.7
17 1692 783.0 818.0 35.0
17 2268 1013.1 1046.0 32.9
17 2556 1262.1 1302.6 40.5

4.5 How costly is replacing large with small primes?

To find out how costly replacing primes is, we compare execution times for
our optimized implementation (folded) with an optimized implementation
replacing µ large primes with κ small primes with the single-decomposition
technique (switch). We generate parameter sets using 50%, 66%, and 75%
of the available modulus space for q with b = 54, κ = 3, and µ = 2. We use
at least κ 36 bit primes, all other primes are 54 bit. For example, forN = 216

and log q = 1116, example, we use 4 primes with 36 bit and 18 primes with
54 bit. We report execution times and the absolute overhead of key switching
replacing primes (switch) to the one without (folded) in Table 6. Overall,
replacing primes does indeed have a low overhead. As expected, the relative
overhead gets smaller the more primes we use.

4.6 How large is the speed-up using mostly large primes?

We re-use the parameter sets from Subsection 4.5 using 50%, 66 %, and 75%
of the available modulus space for q with b = 54, κ = 3, and µ = 2 with
at least κ 36 bit primes, all other primes are 54 bit. Additionally, we gen-
erate a corresponding set using only small primes with 36 bit. As shown
in Table 7, the speed-ups can be massive for using mostly large primes: On
average, we speed up key switching by 36.9 % across all measured parameter
sets. Since the speed-ups here aremuch larger than the overhead of replacing
primes, using mostly large primes is highly effective for high performance.

Page 27

Table 7: Execution times for parameter setswhere q uses 50%, 66 %, and 75%
of the availablemodulus space. For eachwithmostly large primes parameter
set, we choose mostly primes with 54 bit, but at least κ = 3 primes with
36 bit. For parameter sets with small primes, we only use 36 bit primes. We
also report the speed-up of usingmostly large primes compared to only small
primes in percent.

Parameters Time (ms) Speed-up

log2 N log2 q small large

14 252 4.7 4.0 17.5 %
14 288 5.9 5.0 18.0 %
15 396 18.8 15.9 18.2 %
15 540 29.3 21.9 33.8 %
15 612 38.3 29.4 30.3 %
16 828 156.4 95.7 63.4 %
16 1116 241.1 170.1 41.7 %
16 1260 301.9 209.8 43.9 %
17 1692 1065.6 783.0 36.1 %
17 2268 1529.5 1013.1 51.0 %
17 2556 1917.1 1262.1 51.9 %

We therefore recommend that libraries of BGV-like schemes implement key
switching with support for switching primes in and out.

4.7 Additional Remarks

In the beginning of our work, we mentioned that key switching occupies
roughly 40% of execution time during bootstrapping and is 11× slower com-
pared to a naïve ciphertext multiplication. In the following, we want to ex-
pand on how and why key switching is considered the most significant bot-
tleneck for most homomorphic use cases. We would argue there are three
main reasons:

1 Most use cases require many key switching, even if the number
of levels is rather low. Recall that BGV-like schemes encrypt a
vector of integers or approximate numbers. We can only oper-
ate on numbers in different slots using rotations, each of which
requires a key switching afterward. For example, homomorphic
matrix multiplication [27] spends 50% of execution time switch-
ing keys on our benchmarking setup. It encodes one matrix per
ciphertext in vector form, but for multiplication, all elements in
the encoded vector have to interact which needs many rotations.

2 On the server side, modulus switching and key switching are the

Page 28

only homomorphic operations that require forward and inverse
NTTs, the main computational bottleneck for FHE. As we have
shown earlier, we can mostly integrate modulus switching with
key switching, and hence key switching remains as an expensive
bottleneck.

3 Reading key switching keys from memory is expensive, and we
only use them for a single multiplication; usually, we then throw
them away because the cache holds other data. This is especially
relevant for hardware accelerators where reading the keys from
memory becomes the main bottleneck [8, 15].

Improving key switching boosts performance for almost all homomorphic
use cases. Thus, our work significantly impacts performance for BGV-like
schemes.

4.8 Limitations and Future Work

We want to mention three limitations of our work:

1 For the single-decomposition technique, choosing ω ≥ 2 is opti-
mal and will (mostly) result in best performance. For the double-
decomposition technique, the trade-off between the number of
NTTs and the key switching key size complicates parameter se-
lection. Optimally, we would benchmark the individual opera-
tions (NTTfwd, NTTinv, coefficient-wise polynomial multiplication,
coefficient-wise scalarmultiplication, fetching ksk frommemory)
and optimize parameters specifically to an implementation on the
target platform. But, doing so is hard to scale and we would still
expect similar results when comparing both techniques.

2 Weuse theHPSmethod [19] for correcting the error after BaseExt
if needed; the HPSmethod tends to perform better [3]. However,
benchmarking results using the BEHZ method [4] would still be
interesting.

3 An open problem is finding closed formulas for an optimal multi-
plication complexity in the double-decomposition technique, our
best approximation remains roughly

√
`.

A great opportunity for future work is comparing the single- and double-
decomposition techniques in hardware. Hardware accelerators shifts more
costs to reading the key switching keys. We expect the single-decomposition
technique to also perform better in hardware as it tends to have smaller keys,
but it warrants an investigation nonetheless.

Page 29

Conclusion
Section 5

In this work, we deep dive into the current state-of-the-art in key switch-
ing and thoroughly analyse its complexity. Along the way, we provided a
new perspective on the asymptotic complexity with the bounds O(ω`) and
O(ω`/ω̃+ω̃`/ω) for the single- and double-decomposition technique, respec-
tively. We also provide an estimate for the number of primes r in E (double-
decomposition technique), reduce the number of scalarmultiplications (both
techniques), and correct the number of NTTs for BGV and CKKS (double-
decomposition technique). We also revisit an idea by Gentry, Halevi, and
Smart [18], integrate it with key switchingwith low overhead, and show that
b ≈ β ≈ β̃ ≈ B is a reasonable assumption in practice. Our results are not
only theoretical, we confirm themwith benchmarks: Reducing the number of
multiplication speeds up key switching by up to 11.6 % and choosing mostly
large primes by up to 63%. In the beginning, we also promised answers to
three questions. Here they are:

1 Do I want to implement the more complex double-decomposition
technique? If yes, when do I want to use it?

Probably not. In most cases, the single-decomposition technique
outperforms the double-decomposition technique. But please im-
plement it if you want to, after all, it is a cool idea and maybe
future work can improve upon it.

2 Do I always want to stick with a given N and q in the single-
decomposition technique? Or can I adjust them to get better per-
formance?

Yes and no. You most likely do not want to increase N. But
you definitely want to adjust q for BGV and CKKS: Use as many
large primes as possible! Add some small ones for scaling and re-
place themwith large ones during key switching; it canmassively
boost performance.

3 How do I set the parameters P and ω for best performance?

It is actually rather easy: Given N and q, simply choose ω ≥ 2 as
small as possible within your security requirements.

References

[1] Martin R. Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin E. Lauter,
Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sa-

Page 30

hai, and Vinod Vaikuntanathan. “Homomorphic Encryption Standard”. In: IACR
Cryptol. ePrint Arch. 2019.939 (2019). URL: https://eprint.iacr.org/2019/939.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness of
Learning with Errors”. In: J. Math. Cryptol. 9.3 (2015), pp. 169–203. URL: http:
//www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-
0016.xml.

[3] Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli, and
Kurt Rohloff. “Implementation and Performance Evaluation of RNS Variants of
the BFV Homomorphic Encryption Scheme”. In: IEEE Trans. Emerg. Top. Com-
put. 9.2 (2021), pp. 941–956. DOI: 10.1109/TETC.2019.2902799. URL: https:
//doi.org/10.1109/TETC.2019.2902799.

[4] Jean-Claude Bajard, Julien Eynard, M. AnwarHasan, and Vincent Zucca. “A Full
RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes”. In: Se-
lected Areas in Cryptography - SAC 2016 - 23rd International Conference, St.
John’s,NL,Canada,August 10-12, 2016,RevisedSelectedPapers. Ed. byRoberto
Avanzi and Howard M. Heys. Vol. 10532. Lecture Notes in Computer Science.
Springer, 2016, pp. 423–442. DOI: 10.1007/978-3-319-69453-5_23. URL:
https://doi.org/10.1007/978-3-319-69453-5_23.

[5] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP”. In: Advances in Cryptology - CRYPTO 2012 - 32nd An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings. Ed. by Reihaneh Safavi-Naini and RanCanetti. Vol. 7417. Lecture Notes
in Computer Science. Springer, 2012, pp. 868–886. DOI: 10.1007/978-3-642-
32009-5_50. URL: https://doi.org/10.1007/978-3-642-32009-5_50.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Ho-
momorphic Encryption without Bootstrapping”. In: ACMTrans. Comput. Theory
6.3 (2014), 13∶1–13∶36. DOI: 10.1145/2633600. URL: https://doi.org/10.1145/
2633600.

[7] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomorphic Encryption
from Ring-LWE and Security for Key Dependent Messages”. In: Advances in
Cryptology - CRYPTO2011 - 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings. Ed. by Phillip Rogaway. Vol. 6841.
Lecture Notes in Computer Science. Springer, 2011, pp. 505–524. DOI: 10.1007/
978-3-642-22792-9_29. URL: https://doi.org/10.1007/978-3-642-22792-
9%5C_29.

[8] Leo de Castro, Rashmi Agrawal, Rabia Tugce Yazicigil, Anantha P. Chan-
drakasan, Vinod Vaikuntanathan, Chiraag Juvekar, and Ajay Joshi. “Does Fully
Homomorphic Encryption Need Compute Acceleration?” In: IACR Cryptol.
ePrint Arch. 2021.1636 (2021). URL: https://eprint.iacr.org/2021/1636.

[9] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
“A Full RNSVariant of Approximate Homomorphic Encryption”. In: Selected Ar-
eas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers. Ed. by Carlos Cid and
Michael J. Jacobson Jr. Vol. 11349. Lecture Notes in Computer Science. Springer,
2018, pp. 347–368. DOI: 10.1007/978-3-030-10970-7_16. URL: https://doi.
org/10.1007/978-3-030-10970-7_16.

Page 31

https://eprint.iacr.org/2019/939
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9%5C_29
https://doi.org/10.1007/978-3-642-22792-9%5C_29
https://eprint.iacr.org/2021/1636
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. “Homomorphic
Encryption for Arithmetic of Approximate Numbers”. In: Advances in Cryptol-
ogy - ASIACRYPT 2017 - 23rd International Conference on the Theory and Ap-
plications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Vol. 10624. Lecture Notes in Computer Science. Springer, 2017, pp. 409–437.
DOI: 10.1007/978-3-319-70694-8_15. URL: https://doi.org/10.1007/978-3-
319-70694-8_15.

[11] Ana Costache and Nigel P. Smart. “Which Ring Based Somewhat Homomorphic
Encryption Scheme is Best?” In: Topics in Cryptology - CT-RSA2016 - The Cryp-
tographers’ Track at the RSA Conference 2016, San Francisco, CA, USA, Febru-
ary 29 -March4, 2016, Proceedings. Ed. byKazue Sako.Vol. 9610. LectureNotes
in Computer Science. Springer, 2016, pp. 325–340. DOI: 10.1007/978-3-319-
29485-8_19. URL: https://doi.org/10.1007/978-3-319-29485-8_19.

[12] Anamaria Costache, Kim Laine, and Rachel Player. “Evaluating the Effective-
ness of Heuristic Worst-Case Noise Analysis in FHE”. In: Computer Security -
ESORICS 2020 - 25th European Symposium on Research in Computer Security,
ESORICS2020,Guildford,UK, September 14-18, 2020, Proceedings, Part II. Ed.
by LiqunChen,Ninghui Li, Kaitai Liang, and SteveA. Schneider. Vol. 12309. Lec-
ture Notes in Computer Science. Springer, 2020, pp. 546–565. DOI: 10.1007/
978-3-030-59013-0_27. URL: https://doi.org/10.1007/978-3-030-59013-
0_27.

[13] Cryptography Research Centre. fhelib. https://github.com/Crypto-TII/fhelib.
2023.

[14] Junfeng Fan and FrederikVercauteren. “Somewhat Practical FullyHomomorphic
Encryption”. In: IACR Cryptol. ePrint Arch. (2012), p. 144. URL: http://eprint.
iacr.org/2012/144.

[15] Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Ver-
bauwhede, Frederik Vercauteren, and David W. Archer. “BASALISC: Flexible
Asynchronous Hardware Accelerator for Fully Homomorphic Encryption”. In:
IACR Cryptol. ePrint Arch. 2022.657 (2022). URL: https : / / eprint . iacr . org/
2022/657.

[16] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda,MD,USA,May 31 - June 2, 2009. Ed. byMichaelMitzenmacher. ACM,
2009, pp. 169–178. DOI: 10.1145/1536414.1536440. URL: https://doi.org/10.
1145/1536414.1536440.

[17] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Fully Homomorphic Encryp-
tion with Polylog Overhead”. In: Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by
David Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in Computer
Science. Springer, 2012, pp. 465–482. DOI: 10.1007/978-3-642-29011-4_28.
URL: https://doi.org/10.1007/978-3-642-29011-4_28.

Page 32

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-030-59013-0_27
https://doi.org/10.1007/978-3-030-59013-0_27
https://doi.org/10.1007/978-3-030-59013-0_27
https://doi.org/10.1007/978-3-030-59013-0_27
https://github.com/Crypto-TII/fhelib
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/657
https://eprint.iacr.org/2022/657
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28

[18] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation of the
AESCircuit”. In:Advances inCryptology - CRYPTO2012 - 32ndAnnualCryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. Ed.
by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer
Science. Springer, 2012, pp. 850–867. DOI: 10.1007/978-3-642-32009-5_49.
URL: https://doi.org/10.1007/978-3-642-32009-5_49.

[19] Shai Halevi, Yuriy Polyakov, and Victor Shoup. “An Improved RNSVariant of the
BFVHomomorphicEncryptionScheme”. In: Topics inCryptology -CT-RSA2019
- The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA,
USA, March 4-8, 2019, Proceedings. Ed. by Mitsuru Matsui. Vol. 11405. Lecture
Notes in Computer Science. Springer, 2019, pp. 83–105. DOI: 10.1007/978-3-
030-12612-4_5. URL: https://doi.org/10.1007/978-3-030-12612-4_5.

[20] ShaiHalevi andVictor Shoup. “Design and implementation ofHElib: a homomor-
phic encryption library”. In: IACR Cryptol. ePrint Arch. (2020), p. 1481. URL:
https://eprint.iacr.org/2020/1481.

[21] Kyoohyung Han and Dohyeong Ki. “Better Bootstrapping for Approximate Ho-
momorphic Encryption”. In: Topics in Cryptology - CT-RSA 2020 - The Cryptog-
raphers’ Track at the RSA Conference 2020, San Francisco, CA, USA, February
24-28, 2020, Proceedings. Ed. by Stanislaw Jarecki. Vol. 12006. Lecture Notes
in Computer Science. Springer, 2020, pp. 364–390. DOI: 10.1007/978-3-030-
40186-3_16. URL: https://doi.org/10.1007/978-3-030-40186-3_16.

[22] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, Vinodh Gopal, et
al. Intel HEXL (release 1.2). https://github.com/intel/hexl. Sept. 2021.

[23] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. “Secure Out-
sourced Matrix Computation and Application to Neural Networks”. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. Ed. by David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang. ACM, 2018,
pp. 1209–1222. DOI: 10.1145/3243734.3243837. URL: https://doi.org/10.
1145/3243734.3243837.

[24] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. “Approximate Homo-
morphic Encryption with Reduced Approximation Error”. In: Topics in Cryptol-
ogy - CT-RSA2022 - Cryptographers’ Track at the RSAConference 2022, Virtual
Event,March 1-2, 2022, Proceedings. Ed. byStevenD.Galbraith.Vol. 13161. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 120–144. DOI: 10.1007/
978-3-030-95312-6_6. URL: https://doi.org/10.1007/978-3-030-95312-
6%5C_6.

[25] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. “Revisiting Homomorphic En-
cryption Schemes for Finite Fields”. In: Advances in Cryptology - ASIACRYPT
2021 - 27th International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, December 6-10, 2021, Proceedings,
Part III. Ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13092. Lecture Notes
in Computer Science. Springer, 2021, pp. 608–639. DOI: 10.1007/978-3-030-
92078-4_21. URL: https://doi.org/10.1007/978-3-030-92078-4_21.

[26] Miran Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.Accelerating HE Op-
erations fromKeyDecomposition Technique. June 2023. URL: https://eprint.iacr.
org/2023/413.

Page 33

https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/978-3-030-40186-3_16
https://github.com/intel/hexl
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1007/978-3-030-95312-6_6
https://doi.org/10.1007/978-3-030-95312-6_6
https://doi.org/10.1007/978-3-030-95312-6%5C_6
https://doi.org/10.1007/978-3-030-95312-6%5C_6
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://eprint.iacr.org/2023/413
https://eprint.iacr.org/2023/413

[27] JohannesMono and TimGüneysu. “Implementing andOptimizingMatrix Triples
with Homomorphic Encryption”. In: Proceedings of the 2023 ACM Asia Confer-
ence on Computer and Communications Security, ASIA CCS 2023, Melbourne,
VIC, Australia, July 10-14, 2023. Ed. by Joseph K. Liu, Yang Xiang, Surya Nepal,
and Gene Tsudik. ACM, 2023, pp. 29–40. DOI: 10.1145/3579856.3590344.
URL: https://doi.org/10.1145/3579856.3590344.

[28] Johannes Mono, Chiara Marcolla, Georg Land, Tim Güneysu, and Najwa Aaraj.
“Finding and Evaluating Parameters for BGV”. In: Progress in Cryptology -
AFRICACRYPT 2023 - 14th International Conference on Cryptology in Africa,
Sousse, Tunisia, July 19-21, 2023, Proceedings. Ed. by Nadia El Mrabet, Luca
De Feo, and Sylvain Duquesne. Vol. 14064. Lecture Notes in Computer Science.
Springer, 2023, pp. 370–394. DOI: 10.1007/978-3-031- 37679-5_16. URL:
https://doi.org/10.1007/978-3-031-37679-5_16.

[29] Ronald Rivest, LenAdleman, andMichael Dertouzos.OnDataBanks andPrivacy
Homomorphism. 1978.

Page 34

https://doi.org/10.1145/3579856.3590344
https://doi.org/10.1145/3579856.3590344
https://doi.org/10.1007/978-3-031-37679-5_16
https://doi.org/10.1007/978-3-031-37679-5_16

	Introduction
	Related Work
	Contributions

	Preliminaries
	RLWE Encryption
	Key Switching
	DCRT Representation
	Key Switching, Again
	Decomposing, Again
	Summary

	Key Switching in Theory
	A New Perspective
	Estimating r
	Multiplication Folding
	Input and Ouput Domains
	Large Primes, Mostly
	Summary

	Key Switching in Practice
	Is = 1 or = 2 better if we can choose (single-decomposition)?
	Can increasing N actually be worth it (single-decomposition)?
	Is the single- or the double-decomposition technique better?
	How large is the speed-up from constant folding?
	How costly is replacing large with small primes?
	How large is the speed-up using mostly large primes?
	Additional Remarks
	Limitations and Future Work

	Conclusion

