
Model Stealing Attacks On FHE-based
Privacy-Preserving Machine Learning through

Adversarial Examples

Bhuvnesh Chaturvedi1, Anirban Chakraborty1, Ayantika Chatterjee1, and
Debdeep Mukhopadhyay1

Indian Institute of Technology Kharagpur
{bhuvneshchaturvedi2512,ch.anirban00727,cayantika,debdeep.mukhopadhyay}@gmail.com

Abstract. Classic MLaaS solutions suffer from privacy-related risks since
the user is required to send unencrypted data to the server hosting the
MLaaS. To alleviate this problem, a thriving line of research has emerged
called Privacy-Preserving Machine Learning (PPML) or secure MLaaS
solutions that use cryptographic techniques to preserve the privacy of
both the input of the client and the output of the server. However, these
implementations do not take into consideration the possibility of trans-
ferability of known attacks in classic MLaaS settings to PPML settings.
In this paper, we demonstrate that it is possible to transfer existing
model-extraction attacks using adversarial examples to PPML settings
due to relaxed constraints on the abilities of the adversary. We show a
working example of an end-to-end attack on an image processing applica-
tion built using a popular FHE-based framework, namely Concrete-ML.
We successfully create a cloned model with just 5000 queries, which is,
in fact, 10× less than the size of the training set of the victim model,
while incurring only a 7% loss in accuracy. Further, we incorporate the
well-known defense strategy against such attacks and show that our at-
tack is still able to clone the model. Finally, we evaluate the different
defense rationales that exist in literature and observe that such model
stealing attacks are difficult to prevent in secure MLaaS settings.

Keywords: Fully Homomorphic Encryption · Privacy Preserving Ma-
chine Learning · MLaaS · Adversarial Examples · Model Stealing Attack

1 Introduction
In recent decades, the advent of machine learning (ML) has heralded a paradigm
shift in computational methodologies, revolutionizing the way we approach com-
plex tasks across a myriad of domains. Rooted in the field of artificial intelligence,
machine learning endows computer systems with the capacity to learn and adapt
from data, enabling them to make intelligent decisions or predictions without be-
ing explicitly programmed. This transformative capability has found widespread
applications in diverse sectors including healthcare [36], finance [20], natural
language processing [45], computer vision [40], and more. The proficiency of ma-
chine learning algorithms to discern intricate patterns within vast datasets has

2 B. Chaturvedi et al.

not only propelled the advancement of technology but has also opened avenues
for unprecedented insights and solutions. As the boundaries of its potential con-
tinue to expand, the integration of ML techniques promises to be an instrumental
force in shaping the future of scientific inquiry and technological innovation.

Machine learning often involves training complex models such as Convolu-
tion Neural Network (CNN) [2] and Deep Neural Networks (DNN) [48]. However,
training such models requires collecting a significant amount of labeled data that
is not readily available and takes a lot of effort and resources to collect. Moreover,
processing such raw data consumes a lot of time and money and additionally
requires manpower to correctly annotate the collected data. Additionally, run-
ning complex models requires a lot of computational power, which necessitates
procuring and maintaining costly hardware and associated infrastructure. To al-
leviate this problem, a new thriving field has emerged in recent years where big
organizations with sufficient resources, both in terms of hardware capability as
well as huge volumes of real-world data, train their proprietary ML models and
then offer access to the model as a service to their clients for use. This practice
is referred to as Machine Learning as a Service (MLaaS), where the clients or
users are only given access to the prediction or classification APIs that they use
to query the model on their own inputs.1

In existing MLaaS (which we will refer to as classic MLaaS going forward),
the client queries the model on clear data and also obtains the result in the clear.
This setting gives rise to privacy issues since the data used to query the model
is often sensitive and involves various privacy concerns. In many cases, even the
prediction output from the MLaaS model is required to be kept confidential and
only accessible to authorized parties. For example, a hospital using a pay-per-
use MLaaS model is required to uphold the privacy and anonymity of individual
patients’ data as well as the analytics results from the model. To address this
problem, a new class of MLaaS has emerged in recent times, which is referred
to as Privacy Preserving Machine Learning (PPML) or Secure MLaaS. In these
schemes, both the data used to query the model and its predictive output are
encrypted using the client’s secret key such that no information is leaked to
the server. In other words, the server is considered honest-but-curious wherein
it is expected to perform the required computations judiciously while making
attempts to learn passive information about the client’s data.

The majority of such secure MLaaS schemes use different cryptographic prim-
itives such as Secure Multiparty Computations (SMPC) [24], Fully Homomor-
phic Encryption (FHE) [38], or a hybrid of both [21] to ensure the confidential-
ity of both client’s sensitive data as well as prediction results from the server.
SMPC-only and hybrid solutions require the active participation of clients in the
protocol, which increases communication costs between the server hosting the
model and the client. On the other hand, FHE-only solutions are closer to the
classic MLaaS setting as the client sends its encrypted inputs to the server and
only receives the final (encrypted) prediction results as the output, which can

1 On a commercial scale, the model owner charges the user for each query they make,
which is either paid per query or paid in total at the end of a billing cycle.

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 3

be decrypted only by the client to obtain the final result. Nonetheless, all these
solutions guarantee to protect the privacy of the client’s data from a malicious
server. However, while these schemes inherently assume the client to be an hon-
est user of the service, in practice, the client may itself be actively malicious and
might undertake activities to leak private information from the server. One such
activity is model stealing attack, where the client aims to prepare a clone of the
server’s model by using its prediction services, thereby resulting in the theft of
intellectual property.

Since the collection and labeling of training data incur a huge cost, it is often
considered proprietary information and thus is not made public by the data
owner. Moreover, the training data may also contain sensitive information, such
as financial or medical records, which are required to be kept confidential. This
restricts anyone but the data owner from training their own model. Therefore,
model stealing attacks are practical threats to MLaaS providers with financial
implications. An adversary can simply steal the model at a cost significantly less
than the one spent by the model owner. Once obtained, the adversary is free to
either keep the model for its own usage without paying any fee or may host it as
its own service. While this is detrimental to the business of the original model
owner, the adversary can use the stolen model to carry out further attacks such
as membership inference attacks [28] which involves inferring whether a sample
point belongs to the training data or not, or to generate adversarial examples [51]
to force misclassification by the original model.

1.1 Motivation

While model stealing attacks using adversarial examples have been proposed in
literature [13, 52], the threat model and underlying assumptions of such works
do not directly apply to secure MLaaS settings. For example, in the context of
computer vision, adversarial examples are generated by adding perturbations to
the original images while ensuring that these perturbations remain impercep-
tible to the human eye.2 However, in the context of secure MLaaS, the model
operates over encrypted data in order to preserve the privacy of the client inputs.
The underlying encryption schemes guarantee that the ciphertexts received by
the model provider do not leak any information about the underlying plaintext.
A side-effect of this guarantee is that the ciphertexts also hide the information
about any perturbations being added to the original inputs. In other words, from
the perspective of the server, the encryption of the original image looks similar
to the encryption of the perturbed image. Thus, unlike classic MLaaS, where
the adversary needs to carefully add perturbations to an original image, in se-
cure MLaaS, the adversary is free to add random perturbations while remaining
undetected.

The majority of existing defense mechanisms against model-stealing attacks
depend on the ability to detect adversarial inputs [22,29,33,35]. While a number
of such defenses are available for classic MLaaS applications, to the best of our

2 In the context of MLaaS, this human can be a system administrator of the server
on which the model is running.

4 B. Chaturvedi et al.

knowledge, the applicability and efficacy of these defense mechanisms have not
been evaluated in the context of secure MLaaS. Most of these defenses depend
on operations over the input features, which are encrypted in secure MLaaS
setting. Moreover, the output of these operations also remains encrypted and
can only be decrypted by the secret key which is unavailable to the server.3 This
motivates us to examine the existing defenses and their capability to defend
against model-stealing attacks on secure MLaaS.

1.2 Contributions

In this paper, we first highlight the existing methods of generating adversarial
examples and discuss how the constraints that are required to generate these
examples are not applicable to secure MLaaS. We then show a demonstration
of a model stealing attack on a simple Fully Connected Network (FCN) built
using a well-known FHE-only framework, where the accuracy of our stolen model
turned out to be 89% while requiring only 4000 queries to the victim model. It
is worth mentioning that we focus on an FHE-only framework for secure MLaaS
as these schemes provide end-to-end encryption and do not require interference
from the client. Alternative schemes like SMPC-only solutions or hybrid ones are
costly in terms of communication rounds and data exchanges. In addition, hybrid
solutions are themselves known to be vulnerable to model stealing attacks [7,26].
Moreover, FHE-only solutions are often proposed as potential countermeasures
against attacks on hybrid solutions [7]. Finally, we evaluate the existing defenses
against model stealing using adversarial examples and highlight their relevance
in the context of secure MLaaS.

1.3 Organization

The rest of the paper is organized as follows: Section 2 provides a brief back-
ground of the concepts of machine learning, fully homomorphic encryption, and
adversarial examples along with the brief working of an FHE-based ML frame-
work that we use to demonstrate the possibility of model stealing attacks on
secure MLaaS. Section 3 provides an overview of model-stealing attacks through
adversarial examples in the context of secure MLaaS. Section 4 shows a demon-
stration of a model stealing attack on an FHE-only FCN model. Section 5 pro-
vides our evaluation of existing countermeasures against model stealing attacks
using adversarial examples and their relevance in the context of secure MLaaS.
Section 6 concludes our paper.

2 Preliminaries and Background

In this section, we provide the necessary background related to our work, starting
with an introduction to ML model followed by an overview of FHE and an FHE-
based ML framework. Finally, we introduce the concept of adversarial examples.
3 The client controls both encryption and decryption using its secret key.

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 5

2.1 Machine Learning Model

A machine learning model can be viewed as a mapping function f : X → Y,
that maps the input feature space X to the output space Y. An input x ∈ X to
the model is a d-dimensional vector. The actual inputs to the model come from
a space M, such as images or text, and the features are extracted by a function
ef : M → X . In classic MLaaS, this feature extraction can be done either at the
client or server end since both can see the original input in the clear. However,
in secure MLaaS, feature extraction takes place only on the client’s end and the
extracted features are encrypted before being sent to the server.

In this work, we primarily focus on classification setting, where the output of
f is a single class label (termed as hard label in literature) that belongs to a set
of classes Zc, i.e., Y ∈ Zc. In certain applications, the labels are accompanied by
confidence scores which signify the confidence of the model on each of the output
labels. One application where the confidence scores come in handy is disease
prediction, which takes the symptoms as inputs and outputs multiple disease
labels along with the confidence scores of each. In this scenario, f outputs a
vector of label-confidence pairs (termed as soft labels in literature), either for all
labels (all possible diseases) or for top-k labels4 (most probable diseases).

In literature, model training is done either in a supervised or unsupervised
mode of learning. In supervised learning, the training data consists of input-
output pairs (x, y) ∈ X × Y, upon which a training algorithm T is run. To
ensure that the model is trained correctly, it is required that the training input
x is labeled correctly. In practice, this label annotation is carried out by human
experts and it consumes a significant cost. Coming back to the training process,
each execution of T is a model f that consists of parameters such as weights and
biases. In essence, f learns a mapping between the known input-output pairs,
which it later applies to unseen data. The architecture of f can be divided into
linear and non-linear layers. The output feature zi of ith linear layer is defined
as zi = wi · xi + bi, where xi is the input feature vector and wi and bi are
the corresponding weights and biases. The output of a linear layer is then fed
into a non-linear layer that consists of activation functions such as ReLU [32],
Hyperbolic Tangent (tanh), Sigmoid, and others, which decides the features that
are to be propagated to the next levels.

2.2 Fully Homomorphic Encryption

Unlike traditional encryption schemes, FHE allows an entity to perform arbi-
trary computations directly over encrypted data while ensuring that the result
also remains encrypted. This allows a client to encrypt its input before sending
it to the model provider to run an inference service on it. It finally receives the
inference result, still in encrypted form, and then decrypts it to obtain the result
in clear. The security of existing FHE schemes [3,9] is based on the idea of noise,
a random value that is added to the ciphertexts, which increases with each homo-
morphic encryption. Once it breaches a pre-defined threshold, the correctness of

4 top-k labels are k < c with highest confidence values sorted in descending order.

6 B. Chaturvedi et al.

decryption cannot be guaranteed. To mitigate this, existing constructions either
limit the depth of the circuit [3] or reduces the noise using bootstrapping [9].

A major problem with implementing ML models with FHE schemes is that
they can only evaluate the linear layers, as they can be represented using poly-
nomial operations which the FHE schemes natively support. On the other hand,
it is difficult to evaluate non-linear layers since they require non-polynomial op-
erations [15]. Earlier constructions chose to side-step this issue by replacing the
non-linear layers with a polynomial approximation of the same [46]. However,
this approach suffers from two major drawbacks. Firstly, they require retraining
of the model with a new architecture where the non-linear layers are replaced
by their polynomial approximations [46]. Secondly, this approximation causes
a decrease in the accuracy of the model. Recent constructions based on boot-
strappable FHE schemes do not suffer from these drawbacks as they can directly
evaluate non-linear layers without the need for any approximations. Their con-
struction is based on the idea of programmable bootstrapping (PBS), which
allows the evaluation of an arbitrary function during the bootstrapping step it-
self [11]. This provides the benefit that no re-training is required and a previously
trained model on clear data can be utilized to run inference on the encrypted
data [12] without a significant drop in accuracy.

2.3 Concrete-ML
Concrete ML [30] is a privacy-preserving ML inference framework built upon
TFHE [9] that operates over Boolean or Integer data. The framework provides
a set of tools that allows the model owner to directly convert their trained
model to work over encrypted data without the need for retraining. Moreover,
the user is required to have minimal knowledge of the inner workings of this
framework for them to use it. This allows the model owners to easily and swiftly
transition to secure MLaaS without incurring significant overhead. However,
this framework requires quantizing the input features, model weights, and any
intermediate values to integers during inference since the underlying FHE scheme
can operate only on integers. Moreover, non-linear layers are evaluated using
programmable bootstrapping [11] which is the slowest step during the whole
execution of the model. Thus, the total inference time is mostly dependent on
the number of non-linear layers to be evaluated, which increases with the depth
of the network and the number of nodes in each layer. Additionally, the accuracy
of the model is dependent on the number of bits that are used to quantize the
inputs, weights, and intermediate values.

2.4 Adversarial Examples
In literature, adversarial examples are defined as specially crafted inputs that
cause misclassification by a victim model [17]. The process of generating these ex-
amples often starts with taking an original input to the model and then adding
perturbations, either random or targeted, to the whole or part of the inputs.
Adversarial examples are generated to either force the victim model to out-
put a specific label (targeted attacks) or any label apart from the original one
(untargeted attacks). However, they are crafted in a manner that they remain
imperceptible to humans lest they get detected.

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 7

In adversarial attacks, the attacker is assumed to have either white-box access
or black-box access to the victim model [27]. In white-box attacks, the adver-
sary has knowledge about the victim model, including the model architecture,
parameters and hyperparameters, and the training data. In black-box attacks,
the adversary has no knowledge about the victim model and it can only access
the model through prediction APIs. There is also a third category of attacks
called the gray-box attacks where the adversary knows some information about
the victim model, such as model architecture [42].

3 Model Stealing Through Adversarial Examples
The accuracy of a model is dependent on the quality of the dataset upon which
it is trained. However, having access to the labeled dataset is itself a challenge
due to two reasons. First, it involves the collection of unlabeled data, which
often contains private information and thus is required to be kept confidential.
Secondly, the collected data need to be properly labeled, which is a cumbersome
process and requires manual intervention. However, the adversary (which is the
client in this case) can be in possession of some of its own properly labeled dataset
that it can use to verify the quality of service by the server. Such scenario can
be considered as analogous to Known Answer Test (KAT) used in cryptographic
schemes to verify the correctness of the scheme.5

It must be noted that such labeled datasets are usually small in size and do
not contain enough samples to properly train a model. Moreover, the motivation
for model stealing also includes the fact that training sophisticated models on
large datasets requires lots of resources in terms of hardware, time and power.
In literature, it has been shown that an adversary can utilize these samples to
conduct model-stealing attacks in classic MLaaS settings [22,50]. The adversary
first obtains the prediction values on the original samples by querying the target
model. Next, it generates synthetic data points using existing adversarial example
generation methods [22] and obtains their corresponding prediction values by
querying the target model on these synthetic data points. Once enough samples
are obtained, the adversary uses them as its training set to train a local model.
However, this approach poses two major challenges to the adversary. First, the
adversary is required to pay the victim model for each query made. Thus, a
constraint is imposed on the adversary to carry out the attack at the minimum
possible cost. There exist works like [41, 49, 50] that propose methods to carry
out the attack with minimum cost. However, this constraint is not necessarily
required in practice. The reason is that the incurred cost can be amortized
after the model has been stolen since the adversary will no longer need to pay
the victim model to avail of its service [41]. Moreover, it can host the stolen
model as its own pay-per-use service and thus recover the cost [43]. Secondly,
and more importantly, it is assumed in the literature that an adversary that
is trying to steal the model often queries the model on similar inputs over a
5 Cryptographic algorithms are often accompanied by a set of test vectors that aid in

verifying the correctness of the implementation of the algorithm by ensuring whether
the “random looking” outputs of these algorithms are indeed correct or not.

8 B. Chaturvedi et al.

(a) Classic MLaaS (b) Secure MLaaS

Fig. 1: View of the original image and perturbed image from the server’s per-
spective in (a) Classic MLaaS, where the server can see the images in clear, and
(b) Secure MlaaS settings, where the server only sees the encrypted images.

period of time. For example, in the case of image processing tasks, the adversary
often queries the model with similar images with a small difference in added
perturbation. In classic MLaaS, such similar inputs can often be detected by the
victim model. However, such challenges do not apply in secure MLaaS scenarios.
Since the server hosting the model receives the inputs in encrypted form, it
cannot observe the similarities between the inputs. We highlight this difference in
Fig. 1, where the left and right pairs of images show the view of these images from
the perspective of the server in classic and secure MLaaS settings, respectively.
Due to the inability of the model to differentiate between an original and a
perturbed image, or even between two original images, the adversary is free to
query the model on any image of its choice, including similar ones. This also
holds true for other input domains.

4 Model-Stealing Attack on Secure MLaaS Application

In this section, we elaborate on our threat model and demonstrate model stealing
attack on FHE-only secure MLaaS applications.

4.1 Threat model
We assume that the adversary has gray-box access to the victim model where
it only knows the architecture of the model [42]. The adversary has access to
a small set of its own labeled samples. Such labeled datasets are available to
the adversary (which is the client for a secure MLaaS setting) in practice either
as a proprietary dataset or, in certain cases, the model providers often supply
the clients with a few test samples with correct labels, that may be part of the
validation dataset, which they can use to first test the accuracy of the model for
free before availing the service. Such assumptions are in line with previous works
in literature [16] in the context of malware detectors and objectionable content
detectors. In the first case, the adversary possesses known malware samples that
it wants to perturb in order to get them misclassified as a benign sample. In
the second case, the adversary is in possession of known objectionable content
that it wants to perturb in order to get them misclassified as normal images so
that they can be uploaded on some website without getting censored. In both
these examples, the adversary already knows the correct label of the samples
it possesses, which it can use to steal the model. We further assume that the
model only outputs the predicted class label and not the associated confidence

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 9

Algorithm 1 Model Stealing using Adversarial Samples

1: X := matrix of original samples
2: y := vector of labels corresponding to original samples
3: ϵ := perturbation to be added
4: bgcol := colour corresponding to background pixel
5: fv := victim model
6: fs := stolen model
7: pert_type := random or targeted
8: function getPerturbedSample(x, ϵ, bgcol, pert_type)
9: x′ := ∅

10: for x in x do
11: if pert_type == “random” then ▷ All pixels are perturbed
12: x← x+ ϵ
13: end if
14: if pert_type == “targeted” then ▷ Specific pixels are perturbed
15: if x != bgcol then ▷ Pixel is not part of background
16: x← x+ ϵ
17: end if
18: end if
19: x′ ← x′||x
20: end for
21: return x′

22: end function
23: function runAttack(X, y, ϵ, bgcol, fv, pert_type)
24: X′ := ∅, y′ := ∅
25: for x in X do
26: x′ ← getPerturbedSample(x, ϵ, bgcol, pert_type)
27: y′ ← fv(x

′)
28: X′ ← X′||x′

29: y′ ← y′||y′

30: end for
31: fs ← T rain(X||X′,y||y′) ▷ T rain is some training algorithm
32: return fs
33: end function

values. We note that this assumption makes it difficult for the adversary to clone
a model as providing extra information to the adversary, apart from the class
labels, makes it easier to steal the model with fewer queries, as shown in previous
works in the context of classic MLaaS [41].

4.2 Attack Methodology

We now demonstrate a model-stealing attack on an existing secure MLaaS ap-
plication built using the Concrete-ML framework [30]. However, we would like
to highlight that our attack is not dependent on the intricacies of the targeted
framework, which is chosen due to its public availability, and it can be carried
out on any FHE-based ML framework. Coming back to our attack, the applica-

10 B. Chaturvedi et al.

Fig. 2: Our end-to-end attack process. The adversary (i) perturbs a clean image
using some algorithm Pert, (ii) encrypts the perturbed image, (iii) sends it to
the server and receives the encrypted result, (iv) decrypts it to obtain predicted
label in clear, (v) once enough samples are obtained, the original and adversarial
samples along with corresponding labels are fed into some training algorithm
T rain to obtain the stolen model.

tion6 we target is based on handwritten digit identification, which is trained on
the MNIST [14] dataset. The model outputs a hard label that corresponds to the
digit in the input image. The application uses a 2 layer FCN that uses Sigmoid
as its activation function. The inputs and weights are quantized7 using 4 bits
while the size of the intermediate accumulator is set to 15 bits, one short of the
maximal value of 16 bits currently supported by Concrete-ML. The adversary
is aware of the number of bits used to quantize the inputs since quantization
takes place on the client’s side and the quantized inputs are then encrypted.
Moreover, the adversary may assume the number of bits used by the server to
quantize its weights to be the same as that was used to quantize the inputs.
The assumption is valid since each linear layer computation in the model takes
place over a pair consisting of a client input and a model weight. Finally, the
adversary can safely assume that the victim model uses the highest possible size
of the accumulator. The reason is that this accumulator is used by the server to
store the intermediate results of a linear layer before a non-linear operation can
be performed. Moreover, the server does not know the exact number of bits that
will be required to represent the underlying plaintext value of the corresponding
intermediate value, since the server cannot see it in the clear. Thus, to prevent
the chance of any overflows, it is better to use the highest possible bit-length
that is currently supported by the framework. We now explain the methodology
to generate the adversarial samples and then show the results in terms of the
number of queries required and the accuracy of the stolen model. The end-to-end
process of our attack is shown in Fig. 2 and explained in Algorithm 1.

We assume wlog that the first 1000 images of the labeled dataset are available
to the adversary as part of the validation dataset. The samples are first pre-
processed before adding any perturbations. This is done by first scaling down
each pixel value of the images by the maximum pixel value, which is originally

6 It can be found at https://github.com/zama-ai/concrete-ml/blob/release/1.1.x/
docs/advanced_examples/FullyConnectedNeuralNetworkOnMNIST.ipynb

7 Quantization is required to convert the real-valued inputs and weights to integer
values since FHE schemes currently operate only on integer data.

https://github.com/zama-ai/concrete-ml/blob/release/1.1.x/docs/advanced_examples/FullyConnectedNeuralNetworkOnMNIST.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/1.1.x/docs/advanced_examples/FullyConnectedNeuralNetworkOnMNIST.ipynb

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 11

255. The mean value is then subtracted from each pixel value, and the obtained
value is further scaled down by the standard deviation. The final post-processed
values are obtained by rounding the scaled-down pixels to 4 places of decimal.
These pre-processing steps are the same as defined in the original application.
Once we obtain the set of post-processed images X along with their original labels
y, we proceed with perturbing these images to generate adversarial samples. This
is done by adding perturbation values ϵ ranging from 0.1 to 1.0, in increments
of 0.1, to each of the post-processed images x to obtain perturbed version x′.

We adopt two different strategies to generate the adversarial samples. In
the first strategy, we perform random perturbations by adding the perturbation
values in all the pixels (including the ones defining the background) as shown
in lines 11 − 13 of Algorithm 1. In the second strategy, we perform targeted
perturbation by adding the perturbation values in only those pixels that form
part of the digit and are not part of the background as shown in lines 14 − 18.
Contrary to [16] where the authors perturb the background pixels, we target the
pixels representing the digits. Since the background of the MNIST images is set
to black, all the corresponding pixels in the post-processed image consist of the
same value, which is denoted as bgcol (ref. Algorithm 1). We thus identify the
pixels that form the part of the digit to be those whose value is not equal to
bgcol. Once the adversarial image set X′ is obtained, we query the victim model
fv on them to obtain their predicted class labels y′.

For our experiment, we added a perturbation value of 0.1 to each of our
1000 (without loss of generality) samples and queried the victim model fv to
obtain the corresponding labels. We repeated this process to obtain 10 batches
of adversarial samples, each of size 1000. The first batch was obtained by adding a
perturbation value of 0.1, and for the rest of the batches, the perturbation value
was consecutively incremented by 0.1. Finally, we trained 10 different models
using the same training algorithm T rain (ref. Algorithm 1). The first model
was trained on the augmented set of size 2000 that consists of original 1000
samples and the first batch of 1000 adversarial samples, which was obtained by
adding a perturbation value of 0.1. For the second model, we further augmented
the second batch of 1000 adversarial samples, which was obtained by adding a
perturbation value of 0.2, to the previously augmented dataset which increased
the size of the overall dataset to 3000. This process was repeated to obtain all
10 models, after which the model with the highest accuracy was chosen as the
stolen model fs. We updated the architecture of the stolen model by increasing
the number of fully connected layers and the number of bits for quantizing inputs
and weights to 4 and 6 from the original 2 and 4, respectively. We chose these
values as they provided good accuracy of the stolen model without increasing
the depth of the network by much.

4.3 Experimental Results
Fig. 3 shows the accuracy of the stolen model with random (shown in green) and
targeted (shown in red) perturbations, respectively. For the first case, we obtain
the maximum accuracy of 85% when the added perturbation ranges from 0.1 to
0.3 (both inclusive), thus requiring 3000 queries in total to the victim model.

12 B. Chaturvedi et al.

Fig. 3: Plot of the accuracy of the stolen model in random (green) vs. targeted
(red) perturbations. The added perturbations are cumulated when going from
left to right along the x-axis.

For the second case, we obtain the maximum accuracy of 88% when the added
perturbation ranges from 0.1 to 0.4 (both inclusive), thus requiring 4000 queries
in total to the victim model. We would like to highlight that while we require
an additional 1000 queries in the second case, these extra queries resulted in
an increase of 3% in the accuracy of the stolen model. It is worth mentioning
that the client can make as many queries as it wants after making the requisite
payment, as is the case for any pay-per-use service. Moreover, since all the input
queries are encrypted, each query appears as distinct to the server. To calculate
the accuracy of the cloned model, we perform inference (testing) on the cloned
model using the training set of the original model. One must note that the attack
does not require the availability of original training set to the adversary. It is
only used to calculate the accuracy of the stolen model. To compare the loss of
accuracy, we obtained the accuracy score of the victim model over the testing
data, which turned out to be 96%. However, we would like to highlight that
the victim model was trained on 50000 clean samples. On the other hand, we
obtained a stolen model with far fewer training samples, totaling 5000, of which
1000 are clean samples and the rest 4000 are adversarially generated, with a loss
of 7% in accuracy over the original dataset.

4.4 Attack against Robust ML models

To increase the robustness of the model against adversarial attacks, i.e., to pre-
vent misclassification of adversarial samples by the victim model, a number of
works [17, 29, 33, 39] proposed to augment adversarial examples in the training
dataset. The adversarial samples are generated by perturbing a clean sample
using known adversarial example generation techniques, which are then classi-
fied with the labels of the original sample. This ensures that the model learns
the relationship between an adversarial sample and its original label so that any
future query with an adversarial sample is responded with the correct label and
not the wrong one. However, the impact of this augmentation on the accuracy
of the stolen model has not been studied in the literature. To evaluate the same,
we performed two more experiments. In the first experiment, we first train the
victim model using the original training samples. We then use the first 10000
training points to generate local adversarial samples, assuming that the victim
model knows the sample generation technique of the adversary. Similar to the

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 13

Fig. 4: Plot of the accuracy of the stolen model when the victim model incorpo-
rates adversarial examples with queried labels (green) vs. when it incorporates
adversarial examples with original labels (red). The added perturbations are cu-
mulated when going from left to right along the x-axis.

previous attack method, we generate the adversarial samples by adding pertur-
bations into the pixels corresponding to the digit in increments of 0.1 in the
range 0.1 to 1.0. Thereafter, these adversarial samples are labeled with that of
their corresponding original samples. Next, we train a model over the original
training data along with these adversarial samples. More specifically, we train 10
different models, with the first model trained on original training data plus the
adversarial data obtained by adding the perturbation value of 0.1, the second
one on original training data plus the adversarial data obtained by adding the
perturbation values of 0.1 and 0.2, and so on. Each model was tested over the
original testing dataset. We obtained the highest accuracy of 97% after incorpo-
rating the adversarial samples obtained by adding the perturbation values from
0.1 to 0.9 (inclusive).

Considering the newly generated model as the target model, we repeat the
model stealing attack process as per Algorithm 1. Additionally, we perform the
second experiment in a similar manner, with the only difference being that we
first train the victim model using only the original training data upon which
we query the adversarial samples to obtain their labels, and then we retrain
the victim model on both the original as well as the adversarial samples. The
motivation behind the second experiment is to study the impact on the accuracy
of the stolen model when the victim model contains the adversarial samples along
with their misclassified labels. Fig. 4 shows the accuracy of the stolen model
when the victim model incorporated adversarial examples with the original labels
(shown in green) and when the victim model incorporated adversarial examples
with labels obtained by querying the original model (shown in red). For the
first case, we obtained the highest accuracy of 89% when using samples with
perturbation values ranging from 0.1 to 0.3, thus requiring a total of 3000 queries
to the victim model. For the second case, we obtained the highest accuracy of
90% when using samples with perturbation values ranging from 0.1 to 0.8, thus
requiring a total of 8000 queries to the victim model.

From Fig. 3 and Fig. 4, we can observe that incorporating adversarial samples
during training of the victim model does not affect the accuracy of the stolen
model. Moreover, we observe that augmenting the adversarial samples in the
victim model leads to an increase in the accuracy of the stolen model by 1%

14 B. Chaturvedi et al.

when they were labeled with that of their corresponding clean samples, and
2% when the adversarial samples are labeled according to the prediction results
of the original model, albeit requiring an increase in the number of queries to
the victim model. Even with a lower number of queries, we observed that the
accuracy of the stolen model is similar irrespective of whether the adversarial
samples were augmented in the stolen model or not. This shows that augmenting
adversarial samples during the training of the victim model does not hamper the
accuracy of the stolen model. On the contrary, it may even lead to an increase
in the accuracy of the stolen model.

5 Evaluation of Existing Defense Methods

In this section, we evaluate existing countermeasures against model-stealing at-
tacks using adversarial examples in the context of secure MLaaS. We first discuss
the countermeasures that are deployed to detect whether an adversary is query-
ing the model on adversarial samples. We then discuss the methods that are used
to detect whether a suspect model is a stolen version of some victim model or not.
We further categorize the works based on their underlying primary assumption.

5.1 Defenses based on query distributions
This class of defenses is based on the assumption that the adversary queries the
model using only the adversarial samples to reduce its number of queries [49].
Moreover, it is assumed that the inputs look almost the same in case they are im-
ages [8]. Finally, it is assumed that the distribution from which these adversarial
samples are drawn is different from the distribution from which the actual in-
puts are drawn [37]. Thus these defenses try to measure the statistical difference
between the adversarial and its corresponding natural inputs or between two
consecutive inputs to check whether they are too far or too close, respectively.

Authors in [22] proposed DefenseNet, a network that analyzes the distribu-
tion of queries to victim models by analyzing the difference between the dis-
tributions of features between the adversarial and benign images. The features
were extracted from each hidden layer’s output. However, this defense does not
work on secure ML applications. The reason is that FHE ensures that the results
of some homomorphic computation over encrypted data also remain encrypted.
This implies that the extracted features are themselves encrypted since they
are the results of homomorphic operations over encrypted inputs. Moreover, any
distance computation over them results in encrypted statistics that can only be
decrypted by the owner of the secret key, which is the adversary itself.

Similarly, [35] proposed a method that is based on identifying a sparse set of
features that defines the output prediction result and altering which can easily
alter the prediction value. They do so by searching for the closest decision bound-
aries of a point in the feature space that is most important for the prediction
result and then using these points to train a surrogate model that approximates
these boundaries. However, this method will not work in secure MLaaS for the
same reason that running the search on encrypted points will result in encrypted
boundary values that the server cannot observe directly. Moreover, the current

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 15

frameworks for secure MLaaS only support training over cleartext data and not
encrypted ones, which ensures that the server cannot train the surrogate model
over the encrypted decision boundary values.

Another work [29] proposed training a set of models for individual layers of
the network. The models try to predict how a set of activated neurons in one
layer causes a change in the set of activated neurons in the next layer, where
these changes vary when the input features are adversarial and when they are
clean. However, this requires training on encrypted values which the current
secure MLaaS frameworks do not support. Moreover, the decision as to whether
the input sample is adversarial or clean is taken based on the prediction results of
these models, which themselves are encrypted and not observable by the server.

Based on the assumption that black-box model-stealing attacks make a se-
quence of similar queries, where each input differs from the next one by a small
distance, [8] proposed a similarity-detector neural network model that can iden-
tify these query patterns. Their idea is to temporarily record and store each
query in a buffer, and then for each new query, compute the distance between
this query and the previously stored ones. They flag a query if the distance falls
below a pre-defined threshold. However, in the context of secure MLaaS, this
computation of distance needs to be done homomorphically over encrypted data
with the computed distance itself being encrypted and not observable by the
server without access to the secret key of the adversary.

Recently, [33] proposed a method that is based on the concept of denoising,
which aims to reduce the noise in the input sample. Once done, they compute
the difference between the original adversarial sample and its approximation. It
identifies the input sample to be adversarial if this difference breaches a certain
threshold. However, in the secure MLaaS setting, this difference will be computed
homomorphically and thus will be encrypted, requiring access to the secret key
for decrypting and observing the value in the clear.

Another recent work [1] proposed training two different models, one on the
original images and one on the transformed images. They then query both the
models on the received input to obtain two prediction results. Finally, they
compare the two results and denote the received input to be adversarial if they
are different, otherwise, they consider it to be benign. The intuition behind their
method is that the decision boundary of both models will be different since they
are trained on different datasets, which will make it difficult for the adversary to
come up with a single adversarial sample that gets misclassified to the same label
by both models. However, this method will not work in the secure MLaaS setting
since the outputs of both models will be encrypted, and thus their similarity or
dissimilarity will not be observable by the server.

5.2 Defenses based on perturbing probability values
These defenses are based on the fact that providing the adversary with addi-

tional information in the form of confidence values can lead to model stealing
attacks with a reduced number of queries [25]. Thus these defenses aim to per-
turb the confidence values, without changing the accompanying class labels, in
order to force the adversary to only use the class labels.

16 B. Chaturvedi et al.

Authors in [23] proposed a heuristic-based technique that builds upon the
technique of [25] but used a different function to calculate the perturbation to
be added since the original technique added a high perturbation that affected
the transparency of the model. Once obtained, they injected the noise in only
the probabilities with low values since they symbolize the low confidence of the
model on the accompanying class label. However, this method will not work in
the secure MLaaS setting since the server cannot see which probability values
are high and which are low, since the values will be encrypted. [19] proposed
two methods of altering the final confidence values without affecting the class
labels. They do so by either changing the temperature coefficient of the final
softmax layer or adding noise values drawn from a normal distribution with
some variance. They highlight that the strength of the defense increases with
an increase in the variance. [44] proposed adding perturbation to the confidence
score vector of the final layer instead of the final probability vector. To generate
these perturbation values, they train a local model on adversarial samples and
then use its gradient to find these values. Their goal is to maximize the distance
between the original and perturbed confidence values, which ensures that the
highest probability value still remains highest.

However, the aforementioned methods are reserved for only those models that
output confidence values along with the class labels. Moreover, we have already
highlighted in Section 3 that increasing the cost of the attack, which forms the
foundation of these defenses by forcing the adversary to use only class labels,
is not a major constraint since the adversary can recover the incurred cost by
hosting the stolen model and offer it as a service. Finally, while perturbing the
output is allowed in the classic MLaaS setting, it is not allowed in the secure
MLaaS setting. The reason is that this setting considers the server to be semi-
honest which is not allowed to tamper with the final output, or for that matter
any data involved in the computation. If allowed to do so, a malicious server can
utilize it to perform interactive key-recovery attacks [5, 10] which will cause a
breach in confidentiality of the data of an honest client.

5.3 Defenses based on identifying stolen models

These are not defenses per se, as these methods are invoked after the model
has already been stolen and are used to confirm whether a suspect model is a
stolen one or a homologous one [34].8 These defenses make use of either wa-
termarking techniques or decision boundary identifications. In this work, we
only focus on methods that use the decision boundary identification techniques
since the watermarks can be easily removed from the stolen model by an ad-
versary [18]. Before proceeding, we would like to highlight that the decision
boundary identification-based methods assume that DNNs can be character-
ized by their unique classification boundaries. This suggests that a stolen model
will share its decision boundaries with the victim model, which will produce the
same class labels when queried upon with the same adversarial samples [43]. The

8 A homologous model is one which is trained on the same training dataset as the
victim model but differs in terms of decision boundaries.

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 17

methods we evaluate here only differ in the way they generate the adversarial
samples, which we provide here for brevity.

Authors in [43] generated the target samples by first randomly selecting n
points that are closest to the decision boundary of a chosen class label t. They
then add minimal perturbations to these random values such that querying
their model on these perturbed samples outputs t as the class label. On the
contrary, [6] starts with a clean sample x and then adds a large, random per-
turbation to it such that querying its model on this perturbed sample x′′ causes
a misclassification and outputs a different label. They then perform a binary
search between x and x′′ to obtain the target sample x′ on the decision bound-
ary. [34] first generates a universal adversarial perturbation [31] (UAP) for its
own model. They then perform a k-means clustering on the representation vec-
tors of its training data to cluster them into n clusters. Finally, they pick one
data point from each cluster and add the UAP to it to obtain the adversarial
sample x′. [47] first decides a specific class t with a fixed confidence value c,
and then uses a modified version of C & W method [4] to obtain the adversarial
sample x′ that classifies to t.

In all the aforementioned methods, the pair (x′, t), where x′ is the adversarial
sample and t is the original label, acts as the model fingerprint. To verify whether
a suspect model is stolen or not, it is queried on multiple such pairs to obtain
a vector of labels t′, after which the similarity between the vectors t and t′ is
computed. The suspect model is deemed to be stolen if the similarity score turns
out to be large, otherwise, it is deemed to be a homologous model [34]. The
reason the aforementioned methods work in the secure MLaaS setting is that
the roles of the adversary and the victim model are reversed, as now the stolen
model acts as the victim model while the owner of the victim model acts as the
adversary. Moreover, the stolen model is queried over encrypted data which hides
the adversarial samples, since the detection techniques deployed by the stolen
model will not work for reasons already highlighted in Section 5.1 and 5.2.

6 Conclusion
This paper highlights that model stealing is possible in even secure MLaaS set-
tings. We highlight that existing techniques for model stealing using adversarial
samples that work in the classic MLaaS settings also apply to secure MLaaS
settings. Moreover, we show that the existing constraints applicable to model
stealing in classic MLaaS can be relaxed in the context of secure MLaaS as the
encryption of inputs allows us to do so. Finally, our extensive review of existing
countermeasures for classic MLaaS shows that they are not sufficient to prevent
model stealing attacks in secure MLaaS. This warrants further study into possi-
ble countermeasures to detect these attacks in secure MLaaS-based applications
since these applications are almost gearing up for production deployment.

References

1. Alam, M., Datta, S., Mukhopadhyay, D., Mondal, A., Chakrabarti, P.P.: Resist-
ing adversarial attacks in deep neural networks using diverse decision boundaries.

18 B. Chaturvedi et al.

arXiv preprint arXiv:2208.08697 (2022), https://arxiv.org/abs/2208.08697
2. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural

network. In: 2017 international conference on engineering and technology (ICET).
pp. 1–6. Ieee (2017)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. vol. 6, pp. 1–36. ACM New York, NY, USA (2014)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. Ieee (2017)

5. Chaturvedi, B., Chakraborty, A., Chatterjee, A., Mukhopadhyay, D.: vr2fhe- se-
curing fhe from reaction-based key recovery attacks. Cryptology ePrint Archive,
Paper 2023/561 (2023), https://eprint.iacr.org/2023/561

6. Chen, J., Jordan, M.I.: Boundary attack++: Query-efficient decision-based adver-
sarial attack. arXiv preprint arXiv:1904.02144 2(7) (2019), http://arxiv.org/abs/
1904.02144

7. Chen, S., Fan, J.: Seek: model extraction attack against hybrid secure inference
protocols (2022), https://eprint.iacr.org/2022/1200

8. Chen, S., Carlini, N., Wagner, D.: Stateful detection of black-box adversarial at-
tacks. In: Proceedings of the 1st ACM Workshop on Security and Privacy on Ar-
tificial Intelligence. pp. 30–39 (2020)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

10. Chillotti, I., Gama, N., Goubin, L.: Attacking fhe-based applications by soft-
ware fault injections. Cryptology ePrint Archive, Paper 2016/1164 (2016), https:
//eprint.iacr.org/2016/1164

11. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptography
and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings 5. pp. 1–19. Springer (2021)

12. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptography
and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings 5. pp. 1–19. Springer (2021)

13. Correia-Silva, J.R., Berriel, R.F., Badue, C., De Souza, A.F., Oliveira-Santos, T.:
Copycat cnn: Are random non-labeled data enough to steal knowledge from black-
box models? Pattern Recognition 113, 107830 (2021)

14. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012)

15. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In: International conference on machine learning. pp. 201–210. PMLR
(2016)

16. Gilmer, J., Adams, R.P., Goodfellow, I., Andersen, D., Dahl, G.E.: Motivating the
rules of the game for adversarial example research (2018)

17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014), http://arxiv.org/abs/1412.6572

18. Guo, S., Zhang, T., Qiu, H., Zeng, Y., Xiang, T., Liu, Y.: Fine-tuning is not
enough: A simple yet effective watermark removal attack for dnn models. In: Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21. pp. 3635–3641. International Joint Conferences on Artificial Intelligence
Organization (2021), https://doi.org/10.24963/ijcai.2021/500

https://arxiv.org/abs/2208.08697
https://eprint.iacr.org/2023/561
http://arxiv.org/abs/1904.02144
http://arxiv.org/abs/1904.02144
https://eprint.iacr.org/2022/1200
https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2016/1164
http://arxiv.org/abs/1412.6572
https://doi.org/10.24963/ijcai.2021/500

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 19

19. He, X., Lyu, L., Sun, L., Xu, Q.: Model extraction and adversarial transferability,
your bert is vulnerable! In: Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies. pp. 2006–2012 (2021)

20. Huang, J., Chai, J., Cho, S.: Deep learning in finance and banking: A literature
review and classification. Frontiers of Business Research in China 14, 1–24 (2020)

21. Huang, Z., Lu, W.j., Hong, C., Ding, J.: Cheetah: Lean and fast secure {two-party}
deep neural network inference. In: 31st USENIX Security Symposium (USENIX
Security 22). pp. 809–826 (2022)

22. Juuti, M., Szyller, S., Marchal, S., Asokan, N.: Prada: protecting against dnn model
stealing attacks. In: 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 512–527. IEEE (2019)

23. Khaled, K., Dhaouadi, M., de Magalhães, F.G., Nicolescu, G.: Efficient defense
against model stealing attacks on convolutional neural networks. arXiv preprint
arXiv:2309.01838 (2023), https://arxiv.org/abs/2309.01838

24. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: Crypt-
flow: Secure tensorflow inference. In: 2020 IEEE Symposium on Security and Pri-
vacy (SP). pp. 336–353. IEEE (2020)

25. Lee, T., Edwards, B., Molloy, I., Su, D.: Defending against neural network model
stealing attacks using deceptive perturbations. In: 2019 IEEE Security and Privacy
Workshops (SPW). pp. 43–49. IEEE (2019)

26. Lehmkuhl, R., Mishra, P., Srinivasan, A., Popa, R.A.: Muse: Secure inference re-
silient to malicious clients. In: 30th USENIX Security Symposium (USENIX Secu-
rity 21). pp. 2201–2218 (2021)

27. Li, Y., Guo, Y., Xie, Y., Wang, Q.: A survey of defense methods against adversarial
examples. In: 2022 8th International Conference on Big Data and Information
Analytics (BigDIA). pp. 453–460. IEEE (2022)

28. Li, Z., Zhang, Y.: Membership leakage in label-only exposures. In: Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security.
pp. 880–895 (2021)

29. Ma, S., Liu, Y., Tao, G., Lee, W.C., Zhang, X.: Nic: Detecting adversarial samples
with neural network invariant checking. In: 26th Annual Network And Distributed
System Security Symposium (NDSS 2019). Internet Soc (2019)

30. Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bredehoft, R., Montero,
L., Kherfallah, C.: Concrete ML: a privacy-preserving machine learning library
using fully homomorphic encryption for data scientists (2022), https://github.com/
zama-ai/concrete-ml

31. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 1765–1773 (2017)

32. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th international conference on machine learning
(ICML-10). pp. 807–814 (2010)

33. Pauling, C., Gimson, M., Qaid, M., Kida, A., Halak, B.: A tutorial on adversarial
learning attacks and countermeasures (2022)

34. Peng, Z., Li, S., Chen, G., Zhang, C., Zhu, H., Xue, M.: Fingerprinting deep neu-
ral networks globally via universal adversarial perturbations. In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 13420–
13429. IEEE Computer Society (2022)

https://arxiv.org/abs/2309.01838
https://github.com/zama-ai/concrete-ml
https://github.com/zama-ai/concrete-ml

20 B. Chaturvedi et al.

35. Renard, X., Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: In: Workshop on
Recent Advances in Adversarial Learning (Nemesis) of the European Conference on
Machine Learning and Principles of Practice of Knowledge Discovery in Databases
(ECML-PKDD) (2018)

36. Shailaja, K., Seetharamulu, B., Jabbar, M.: Machine learning in healthcare: A
review. In: 2018 Second international conference on electronics, communication
and aerospace technology (ICECA). pp. 910–914. IEEE (2018)

37. Song, Y., Kim, T., Nowozin, S., Ermon, S., Kushman, N.: Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples. arXiv
preprint arXiv:1710.10766 (2017), http://arxiv.org/abs/1710.10766

38. Stoian, A., Frery, J., Bredehoft, R., Montero, L., Kherfallah, C., Chevallier-Mames,
B.: Deep neural networks for encrypted inference with tfhe. In: International
Symposium on Cyber Security, Cryptology, and Machine Learning. pp. 493–500.
Springer (2023)

39. Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and gener-
alization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 6976–6987 (2019)

40. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2818–2826 (2016)

41. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction {APIs}. In: 25th USENIX security symposium
(USENIX Security 16). pp. 601–618 (2016)

42. Vivek, B., Mopuri, K.R., Babu, R.V.: Gray-box adversarial training. In: Proceed-
ings of the European conference on computer vision (ECCV). pp. 203–218 (2018)

43. Wang, S., Chang, C.H.: Fingerprinting deep neural networks-a deepfool approach.
In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1–5.
IEEE (2021)

44. Wen, J., Yiu, S.M., Hui, L.C.: Defending against model inversion attack by adver-
sarial examples. In: 2021 IEEE International Conference on Cyber Security and
Resilience (CSR). pp. 551–556. IEEE (2021)

45. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016), https://arxiv.org/abs/1609.08144

46. Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K., Naehrig, M.:
Crypto-nets: Neural networks over encrypted data. arXiv preprint arXiv:1412.6181
(2014), http://arxiv.org/abs/1412.6181

47. Xue, M., Sun, S., He, C., Zhang, Y., Wang, J., Liu, W.: Activeguard: An active dnn
ip protection technique via adversarial examples. arXiv preprint arXiv:2103.01527
(2021), https://arxiv.org/abs/2103.01527

48. Yi, H., Shiyu, S., Xiusheng, D., Zhigang, C.: A study on deep neural networks
framework. In: 2016 IEEE Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC). pp. 1519–1522. IEEE
(2016)

49. Yu, H., Yang, K., Zhang, T., Tsai, Y.Y., Ho, T.Y., Jin, Y.: Cloudleak: Large-scale
deep learning models stealing through adversarial examples. In: NDSS (2020)

50. Yuan, X., Ding, L., Zhang, L., Li, X., Wu, D.O.: Es attack: Model stealing against
deep neural networks without data hurdles. IEEE Transactions on Emerging Topics
in Computational Intelligence 6(5), 1258–1270 (2022)

http://arxiv.org/abs/1710.10766
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1412.6181
https://arxiv.org/abs/2103.01527

Model Stealing Attacks On FHE-based PPML through Adversarial Examples 21

51. Zhou, M., Wu, J., Liu, Y., Liu, S., Zhu, C.: Dast: Data-free substitute training for
adversarial attacks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 234–243 (2020)

52. Zhu, Y., Cheng, Y., Zhou, H., Lu, Y.: Hermes attack: Steal {DNN} models with
lossless inference accuracy. In: 30th USENIX Security Symposium (USENIX Secu-
rity 21) (2021)

	Model Stealing Attacks On FHE-based Privacy-Preserving Machine Learning through Adversarial Examples

