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ABSTRACT
Computing the distance between two non-normalized vectors 𝑥
and 𝑦, represented by Δ(𝑥,𝑦) and comparing it to a predefined pub-
lic threshold 𝜏 is an essential functionality used in privacy-sensitive
applications such as biometric authentication, identification, ma-
chine learning algorithms (e.g., linear regression, k-nearest neigh-
bors, etc.), and typo-tolerant password-based authentication. Tack-
ling a widely used distance metric, Nomadic studies the privacy-
preserving evaluation of cosine similarity in a two-party (2PC)
distributed setting. We illustrate this setting in a scenario where
a client uses biometrics to authenticate to a service provider, out-
sourcing the distance calculation to two computing servers. In this
setting, we propose two novel 2PC protocols to evaluate the nor-
malising cosine similarity between non-normalised two vectors
followed by comparison to a public threshold, one in the semi-
honest and one in the malicious setting. Our protocols combine
additive secret sharing with function secret sharing, saving one
communication round by employing a new building block to com-
pute the composition of a function 𝑓 yielding a binary result with a
subsequent binary gate. Overall, our protocols outperform all prior
works, requiring only two communication rounds under a strong
threat model that also deals with malicious inputs via normalisation.
We evaluate our protocols in the setting of biometric authentication
using voice, and the obtained results reveal a notable efficiency
improvement compared to existing state-of-the-art works.

CCS CONCEPTS
• Security and privacy→ Information-theoretic techniques.

KEYWORDS
privacy-preserving protocols, malicious security, function secret
sharing, cosine similarity
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1 INTRODUCTION
Computing distance metrics of sensitive data and comparing to
a predefined public threshold in a privacy-preserving way is an
indispensable building block for a wide range of privacy-sensitive
applications including biometric authentication and identification,
machine learning (e.g., linear regression, matrix multiplication)
as well as typo-tolerant (fuzzy) password based authentication.
However, in the absence of trusted parties it is challenging to eval-
uate thresholded distance metrics over sensitive data. Although
privacy-preserving computations of linear distance metrics have
been widely covered in the literature, protecting non-linear com-
putations (e.g., comparison) are not easy to compute efficiently.

In this paper, we focus on protecting the computation of co-
sine similarity between two vectors, one of the most commonly
employed distance metrics, subsequently comparing the similar-
ity score to a public threshold 𝜏 . We present two novel privacy-
preserving protocols to realize this thresholded distance functional-
ity with high efficiency in a two-party setting (2PC) for outsourced
computation, achieving passive and active security respectively.

As an ideal application of our protocols due to the sensitive
nature of the data, biometric authentication consists of verifying the
identity of a user by comparing a fresh compact representation of
the biometric trait with a pre-existing (claimed) reference provided
during an enrolment phase. The authentication is granted or denied
based on whether or not the obtained similarity score is below a
pre-fixed threshold. Although biometrics hold significant promise
as a convenient authentication method, privacy concerns have
hindered public trust and created obstacles to widespread adoption.
For instance, in August 2019, over 27.8M Records exposed in BioStar
2 Data Breach, including the fingerprints of over 1 million people,
as well as facial recognition information, unencrypted usernames
and passwords, and personal information of employees1.

1https://www.theguardian.com/technology/2019/aug/14/major-breach-found-in-
biometrics-system-used-by-banks-uk-police-and-defence-firms/
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To showcase Nomadic, we implement and evaluate our proto-
cols in a biometric authentication use-case with voice biometrics.
Furthermore, we provide a detailed experimental evaluation of
our proposed protocol by employing benchmark speech recogni-
tion datasets (i.e., VoxCeleb2). Our results show that the proposed
scheme is not only efficient, requiring only two communication
rounds, but also maintains the same accuracy as the plaintext sys-
tems while guaranteeing security under a strong threat model.

Related Work. Several techniques have been proposed in the
literature to address the privacy challenges for the computation of
distance metrics (such as Hamming distance [43], cosine similar-
ity) followed by a comparison with a public threshold, based on
advanced cryptographic primitives like Fully Homomorphic En-
cryption (FHE) [27, 28], Multi-Party Computation (MPC) [29, 56, 64]
and Functional Encryption (FE) [1, 9]. FHE relies on performing an
arbitrary number of arithmetic operations (i.e., additions and mul-
tiplications) between ciphertexts. MPC-based techniques involve
distributing data among non-colluding parties to collectively com-
pute a desired function over the private data, covering two main
security models: semi-honest or malicious depending on whether
the involved parties are assumed to follow the protocol or may
deviate from it. FE are public-key encryption schemes that en-
ables authorized parties to evaluate specific linear functions (e.g.,
inner products [3, 23, 59]) during ciphertext decryption. Efficient
FE-based techniques are restricted to linear function evaluations.

Privacy-preserving comparison: Although linear operations such
as scalar products are efficiently addressed by these techniques [31,
52, 57, 61], non-linear operations like comparisons to a public
threshold are still a challenge and are often inefficient for real-
time applications. Privacy-preserving comparison is possible in
the FHE setting using computationally intensive polynomial ap-
proximations [18, 34]. In contrast, many MPC-based solutions and
frameworks realize privacy-preserving comparison in various set-
tings [36, 40, 53, 63]. Mixed protocols (i.e., protocols that combine
the use of arithmetic circuits with homomorphic encryption, gar-
bled circuits and/or Boolean circuits) compute scalar products using
arithmetic protocols and switch from arithmetic to binary/garbled
circuits in order to compute comparisons [14, 16, 24, 38, 45, 49, 50].
However, the vast majority of these frameworks either requires an
honest majority (3PC, 4PC) to achieve active security (against one
malicious corruption) or settles with security against a semi-honest
or a one-sided malicious corruption in the 2PC setting. Veugen
et al. [62] proposed a 2PC framework that improves comparison
computation in the SPDZ protocol [22] in the presence of ma-
licious parties. However, these two solutions incur in intensive
communication costs (size and/or number of rounds). Recently,
Function Secret Sharing (FSS)-based protocols have been proposed
to efficiently compute the comparison to a public threshold oper-
ation [10, 12, 30, 33, 55]. Nevertheless, the mentioned protocols
focus mainly on the semi-honest model and barely address security
against malicious adversaries.

Privacy-preserving biometrics: Boddeti [8] presented a privacy-
preserving solution for facial recognition based on FHE. The face
similarity score is computed in the encrypted domain using scalar

multiplications and additions. [32] extended FHE-based face iden-
tification to also compute the secure comparison in the FHE do-
main. In [46], the authors made use of an FHE scheme to compute
the Hamming distance for iris authentication. The work proposed
in [51] makes use of FHE to privately compute the cosine similar-
ity for an Automatic Speaker Verification (ASV) system. However,
the authors focused solely on studying the similarity computation,
without carrying out the crucial step of comparing the result to the
threshold. They assumed that the decision score would be received
and decrypted by the client’s device, which could potentially create
a security vulnerability in the event of a malicious client attempting
to modify the score to gain unauthorized access. Kim et al. [35]
presented a fingerprint authentication system using FHE to com-
pute the Square Euclidean Distance between two encrypted vectors,
also performing the threshold comparison in the encrypted domain.
Despite the potential shown by FHE in these works, its utiliza-
tion in real-world applications is still restricted by the significant
computational overheads.

Alternatively, MPC-based techniques have been successfully
used to protect sensitive data like face [4, 33], iris [4, 26], and
voice [48, 60]. Barni et al. [4] introduced a secure multi-modal
biometric authentication, that combines face and iris features, based
on secure two-party computation against one malicious party. The
two non-colluding parties compute the Hamming distance and the
Euclidean distance and later evaluate the comparison of the fused
scores with a public threshold. The work in [26] proposes a secure
two-party computation solution for an iris verification that is secure
in the semi-honest adversary model. The Hamming distance along
with the threshold comparison is computed securely.

Nautsch et al. [48] provided the first computationally feasible
privacy-preserving ASV system with cohort score normalization
based on 2PC. However, this work only provides security against a
semi-honest adversary. In [60], Treiber et al. proposed a 2PC-based
ASV system secure against a malicious client device that can change
the score to get authenticated by the service provider. However, the
2PC servers are assumed to be semi-honest.

Our Contributions. We propose a novel two-party protocol for
secure computation of cosine similarity followed by comparison to
a threshold, leveraging secure 2PC and FSS primitives for both the
semi-honest and the malicious setting. As shown in Table 1, our
protocol outperforms prior work by requiring just two rounds of
communication in the online phase. In addition, and contrary to
prior work that assumes honest normalisation performed by the
client, we allow the client to submit any fresh template and we
incorporate a mechanism to check that the secret sharing of the
fresh (as well as the reference) template was performed correctly.
Our main contributions are:
• A 2PC protocol for thresholded cosine similarity computation
between two vectors relying on authenticated 2PC secret shar-
ing as well as FSS. We develop two variants: one version for
the semi-honest setting and one for the malicious setting. As a
distinguishing feature, the protocol (and not the input holder)
carries out the normalisation of the input vectors, guaranteeing
their well-formedness.
• A new building block, CondEval, to compute the composition
of an input bit and a binary function 𝑓 (evaluated via FSS) i.e.,
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Table 1: Number of communication rounds required by recent MPC protocols to compute, for 𝑙-bit inputs, a Sign, a pre-
normalised thresholded inner product FSign(IP(𝑥,𝑦)−𝜏 ) and a full thresholded cosine similarity FScaledCosAuth. Security covers
one semi-honest / malicious client-only / malicious (+ for fairness, ★ for robustness) corruption. Primitives include
Homomorphic Encryption (HE), Secret Sharing (SS), unbalanced SS (u-SS), Replicated SS (RSS), optimized SS (o-SS), (Correlated)
OT extension (COTe), Garbled Circuits (GC), Binary Adder circuits (BA), Distributed Comparison Function (DCF), Interval
Containment (IC), Zero-Knowledge Proofs (ZKP).

Work Type Security Protocol for IP Protocol for Sign FSign FSign(IP(𝑥,𝑦)−𝜏 ) FScaledCosAuth
Blaze [50] 3PC +

Πdotp, u-3SS Πbitext, GC log2 (𝑙) + 1 log2 (𝑙) + 2 log2 (𝑙) + 4
Falcon [63] 3PC SS ΠWA, Arith. circuit log2 (𝑙) + 3 log2 (𝑙) + 4 log2 (𝑙) + 6
SWIFT [38] 3PC ★

Πdotp, 2SS & u-2SS Πbitext, GC log2 (𝑙) + 1 log2 (𝑙) + 2 log2 (𝑙) + 4
Trident [16] 4PC Π𝐷𝑜𝑡𝑝 , u-4SS [50] log2 (𝑙) + 1 log2 (𝑙) + 2 log2 (𝑙) + 4
Flash [14] 4PC ★

Πdp, 2× u-2SS Πmsb, BA of [45] log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
SWIFT [38] 4PC ★

Πdotp4, 3PC & masks Πbitext4, GC log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
Fantastic Four [21] 4PC ★ Mult, RSS Share splitting, BA log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
Tetrad [39] 4PC ★

Πdotp, RSS & masks Πbitext, BA of [49] log4 (𝑙) + 1 log4 (𝑙) + 2 log4 (𝑙) + 4
ABY [24] 2PC SS GC log2 (𝑙) + 2 log2 (𝑙) + 3 log2 (𝑙) + 5
ABY2.0 [49] 2PC o-SS BitExtraction, mi-BA log4 (𝑙) + 1 log4 (𝑙) + 2 log4 (𝑙) + 4
Cryptflow [40] 2PC SS dReLU, Arith. circuit log2 (𝑙) + 4 log2 (𝑙) + 5 log2 (𝑙) + 7
Cryptflow2 [53] 2PC ΠUmult, COTe ΠMill, OT ext. log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
Muse [41] 2PC Linear layer, o-SS Non-linear layer, GC log2 (𝑙) log2 (𝑙) + 1 log2 (𝑙) + 3
SIMC [15] 2PC ΠLin, HE & ZKP FNon−lin, GC log2 (𝑙) log2 (𝑙) + 2 log2 (𝑙) + 6
AriaNN [54] 2PC SS DCF gate of [12], FSS 1 2 4
Boyle et. al. [10] 2PC SS IC gate, FSS 1 2 4
Llama [30] 2PC Gsmult, FSS FSS IC gate of [10] 1 2 4
Funshade [33] 2PC o-SS IC gate of [10], FSS 1 1 3
Ours 2PC o-SS & CondEval CondEval 1 2 2

𝑠 ◦ 𝑓 (𝑥) for an input value 𝑥 . This building block, proven secure
under both the semi-honest and malicious model, may be of
independent interest for general 2PC secure computation.
• A rigorous security analysis of both protocols of Nomadic as
well as the CondEval primitive.
• An evaluation of the proposed protocols employing voice bio-
metrics as a use case. Comparing to the existing state-of-the-art
(SotA) work, our experiments demonstrate the efficiency im-
provement of our protocols in both the semi-honest and ma-
licious setting thanks to the reduction of one communication
round due to CondEval.

The remaining of this paper is organised as follows. Section 2 de-
scribes the problem statement, introducing the application scenario
alongside the threat model, and outlining a technical overview of
our solution. In Section 3, we revisit the cryptographic 2PC prim-
itives we rely on, namely optimized additive secret sharing and
function secret sharing. Section 4 outlines our technical overview,
then in section 5 we introduce CondEval, a building block that
allows the composition of an input bit and a binary function 𝑓 eval-
uated via FSS, and prove its security in both the semi-honest and
malicious settings. Section 6 covers our two full protocols for the
privacy-preserving computation of thresholded cosine similarity in
the semi-honest and the malicious settings, followed by their cor-
responding security analysis. Section 7 contains our experimental

evaluation, presenting and analyzing our results. We conclude the
paper in Section 8.

2 PROBLEM STATEMENT
2.1 Notation
Throughout this work, we denote 𝜀 as an empty string, [𝑛] as the
set of integers {1, 2, . . . , 𝑛} for a positive integer 𝑛, 𝑠 [𝑖] as the 𝑖th
bit of a binary string 𝑠 where 𝑖 ≤ |𝑠 |, and 𝑎𝑖 as the 𝑖th element of a
vector 𝑎 where 𝑖 < |𝑎|. Our notation choices include:

IP(𝑥,𝑦) Inner product of two vectors 𝑥,𝑦.
Prod(𝑥,𝑦) Element-wise product of two vectors 𝑥,𝑦.
Shift(𝑥, 𝜌, ℓ) Encoding in Z2ℓ of |𝜌 | left/right logical shifting bits

over 𝑥 depending on if 𝜌 < 0 or 𝜌 > 0.
Sign(𝑥) Outputs 1 if 𝑥 ≥ 0 and 0 otherwise.
𝑀𝑏 ← FOT (𝑏, (𝑀0, 𝑀1)) Given a pair of messages (𝑀0, 𝑀1) from

a sender and a choice bit 𝑏 ∈ {0, 1} from a receiver, it returns
𝑀𝑏 to the receiver.

𝑟 ← Frand (1𝜆, 𝑛,U𝑁 ) Given a security parameter 𝜆, a positive
integer 𝑛 and a pre-defined input domain U𝑁 , it outputs a
random vector 𝑟 ∈ U𝑛

𝑁
.

FPermu (𝜋, {𝑎0, 𝑎1}) Given a list {𝑎0, 𝑎1} and a permutation bit
𝜋 ∈ {0, 1}, it outputs {𝑎0, 𝑎1} if 𝜋 = 0 and {𝑎1, 𝑎0} otherwise.

[𝑥]B Boolean secret sharing of 𝑥 ∈ Z2.
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[𝑥]A Arithmetic secret sharing of 𝑥 ∈ U𝑁 where U𝑁 indicates a
pre-defined input domain.

⟨𝑥⟩A Optimized arithmetic secret sharing of 𝑥 ∈ U𝑁 where U𝑁
indicates a pre-defined input domain.

[𝑥]A
𝑏
, [𝑥]B

𝑏
, ⟨𝑥⟩A

𝑏
Share of 𝑥 held by party 𝑏.

2.2 Application Scenario
Let us examine a scenario in which a client C requests access to a
service, such as an online bank, that uses a biometric-based authen-
tication system. During the authentication process, the client’s fresh
biometric template is compared to the stored reference biometric
template using the cosine similarity distance, and the authentica-
tion decision is taken based on a pre-determined threshold. This
application scenario is depicted in Fig. 1.

For privacy reasons, the client does not want to disclose his
biometric data in clear to any party, considering their sensitive
nature and the high risk of a data breach in a centralised database.
We therefore consider two outsourced non-colluding servers, S0 and
S1, in charge of collecting and privately storing the secret shares of
the clients’ reference templates upon their registration during the
enrollment phase, performing the biometric verification process
(i.e., matching of the templates) and disclosing the decision output
to the service provider B (i.e., the bank).

Figure 1: Privacy-preserving biometric authentication system
based on cosine similarity in the 2PC setting.

2.3 Threat Model and System Design
In this paper, we assume that the client has already registered
and submitted her biometric data (e.g., voice reference template)
in a privacy-preserving manner to the two non-colluding servers.
Then, in the authentication process the comparison between the
fresh biometric template and the registered reference template is
performed by the two servers. Note that neither any server nor
the service provider have access to any biometric templates in

cleartext. We also assume that the protocol is running through
secure channels providing security against any external adversary
that can compromise the transmission.

In our considered setting of Fig. 1, we have four players play-
ing three different roles. We assume a semi-honest dealer (e.g.,
the central bank B) distributing reliable correlated randomness to
two computing servers in the setup phase. We consider that the
client may act maliciously i.e., may attempt to impersonate a legiti-
mate user and deduce information for the corresponding templates.
Thus, in the input phase, we require the client to submit a non-
normalised reference template and we incorporate a mechanism to
check that the secret sharing of the fresh (as well as the reference)
template have been secret shared correctly.

Then, we consider an outsourced online secure evaluation among
two non-colluding servers, where we assume both semi-honest
servers in a semi-honest setting as well as a malicious setting
that there is at most one active adversary deviating from the correct
execution of the protocol (i.e., perform wrong computation in the
matching process between the fresh and stored template and/or
try to infer information about the fresh and/or stored biometric
templates). Finally, the secret sharing of the evaluation result is
returned to the bank for reconstruction in the semi-honest setting,
or validation and reconstruction in the malicious setting.

2.4 Cosine Similarity for Authentication
Let 𝑥 and 𝑦 of dimension 𝑛 denote the fresh template received from
the user requesting to authenticate and the reference template sub-
mitted upon enrolment, respectively. The cosine similarity metric
between them would then be computed as:

𝑐𝑜𝑠 (𝑥,𝑦) = IP(𝑥,𝑦)
∥𝑥∥ · ∥𝑦∥ =

∑𝑛
𝑖=1 𝑥𝑖 · 𝑦𝑖√︃∑𝑛

𝑖=1 𝑥
2
𝑖
·
√︃∑𝑛

𝑖=1 𝑦
2
𝑖

(1)

To authenticate the owner of 𝑥 against the reference 𝑦, the re-
sulting score of 𝑐𝑜𝑠 (𝑥,𝑦) would then be compared with a public
threshold 𝜏 ∈ [−1, 1]. If the similarity score is greater than or equal
to 𝜏 , then the user is successfully authenticated, otherwise, the
authentication fails. Overall, we can define the biometric authenti-
cation functionality as:

FCosAuth (𝑥,𝑦, 𝜏) = Sign(𝑐𝑜𝑠 (𝑥,𝑦) − 𝜏) (2)

In designing a privacy-preserving protocol for this functionality,
we tweak FCosAuth to avoid expensive non-linear operations (di-
vision, square-root), obtaining an equivalent MPC-friendly circuit
𝑐 = C(𝑥,𝑦, 𝜏) as follows:

𝑐1 = Sign( [IP(𝑥,𝑦)]A)

𝑐2 = Sign( [1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)]A)

𝑐 =


𝑐1 ∧ 𝑐2 if 𝜏 > 0
𝑐1 if 𝜏 = 0

𝑐1 ∨ ¬𝑐2 if 𝜏 < 0

(3)

One can easily verify the equivalence C ≡ FCosAuth. For the
remainder of this paper, w.l.o.g., we assume 𝜏 > 0, and define the
following functionality accordingly:

FScaledCosAuth (𝑥,𝑦, 𝜏) = Sign(IP(𝑥,𝑦))∧
Sign(1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦))

(4)
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3 PRELIMINARIES
3.1 Two-Party Secure Computation
Secure two-party computation allows two non-colluding parties
𝑃0 and 𝑃1 to compute a function 𝑓 on their private inputs (e.g., 𝑥
and 𝑦) without revealing any information beyond the final value of
𝑓 (𝑥,𝑦). 2PC protocols are based on either: (i) Secret Sharing (SS)
techniques i.e., arithmetic SS, like additive SS [5] and replicated
SS [2], or Boolean SS like GMW [44]; or (ii) Garbled Circuits (CG)
like Yao’s GCs [64], BMR [6].

Optimized Additive SS. We make use of an optimized additive
SS with function dependent pre-processing as our building block [7].
In the setup phase, correlated random offset shares are generated
for input wires and output wires of each gate of the arithmetic
circuit. These shares are input-independent and can be executed at
any time before the online/data-dependent phase where the actual
function 𝑓 is evaluated. In the evaluation phase, efficient online
secure computation is performed. We denote by ⟨𝑥⟩A the optimized
additive SS of a secret 𝑥 in a two-party setting of S0, S1, where
∀𝑏 ∈ {0, 1}, S𝑏 holds partial shares

⟨𝑥⟩A
𝑏

: (𝛿𝑥 , [𝑟𝑥 ]A𝑏 )

in which 𝛿𝑥 = 𝑥 + 𝑟𝑥 , [𝑟𝑥 ]A is the associated random offset of
the secret value 𝑥 . One share alone does not disclose any infor-
mation about 𝑥 but when summed together, they reconstruct it
(𝑥 = 𝛿𝑥 − [𝑟𝑥 ]A0 − [𝑟𝑥 ]

A
1 ). The parties interact with each other to

compute any desired function from the input secret shares. We
denote by FReveal ( [𝑥]A) the functionality that inputs an arithmetic
secret sharing of 𝑥 from two servers and outputs 𝑥 . Given ⟨𝑥⟩A and
⟨𝑦⟩A, we demonstrate how addition and multiplication gates are
performed in the following.

Addition. It requires no communication between the two parties.
The two parties simply locally add the shares they hold. More
precisely, each party 𝑏 ∈ {0, 1} computes:

⟨𝑥 + 𝑦⟩A
𝑏
= (𝛿𝑥 + 𝛿𝑦, [𝑟𝑥 ]A𝑏 + [𝑟𝑦]

A
𝑏
)

Multiplication. It requires interaction between the two parties
and relies on additional input-independent but function-dependent
random pre-computed secret shares named Beaver’s triples [6]. To
compute [𝑧]A where 𝑧 = 𝑥𝑦, with the corresponding Beaver’s triples
[𝑟𝑥 ]A,[𝑟𝑦]A, [𝑟𝑥𝑟𝑦]A generated in the setup phase, the parties are
able to locally compute the additive secret shares of 𝑧. i.e., ∀𝑏 ∈
{0, 1}, S𝑏 holds {⟨𝑥⟩A

𝑏
= (𝛿𝑥 , [𝑟𝑥 ]A𝑏 ), ⟨𝑦⟩

A
𝑏

= (𝛿𝑦, [𝑟𝑦]A𝑏 ), [𝑟𝑥𝑟𝑦]
A
𝑏
}

in which 𝛿𝑥 = 𝑥 + 𝑟𝑥 , 𝛿𝑦 = 𝑦 + 𝑟𝑦 . Then, 𝑆𝑏 computes:

[𝑧]A
𝑏
= 𝑏 · 𝛿𝑥𝛿𝑦 − 𝛿𝑥 [𝑟𝑥 ]A𝑏 − 𝛿𝑦 [𝑟𝑦]

A
𝑏
+ [𝑟𝑥𝑟𝑦]A𝑏 . (5)

However, to conform the multiplication output to an optimized
secret sharing format, the parties locally compute [𝑧 + 𝑟𝑧]A and
reveal 𝑧+𝑟𝑧 in one round, where 𝑟𝑧 is a pre-generated random output
wire offset in the setup phase. Thus, obtaining ⟨𝑧⟩A = (𝑧+𝑟𝑧 , [𝑟𝑧]A).

Throughout this paper, we denote [𝑥]A ← SS.Share(𝑥,Z2ℓ )
as the algorithm dividing a secret into secret sharing in the do-
main Z2ℓ , where 𝑥 can be a single value or an 𝑛-sized vector;
SS.MUL(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑟𝑥𝑟𝑦]A) as the multiplication process shown

in Eq. 5, SS.IP(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑢]A) as the inner product of two vec-
tors 𝑥,𝑦 where 𝑢 is the corresponding correlated randomness.

SPDZ2k protocol. The SPDZ2k protocol [20] is a MPC protocol
that works in a dishonest majority setting. We utilize this protocol
in a two-party computation (2PC) context in this work. It ensures
secure operations by using authenticated secret sharing in a ring
structure and detects any cheating attempts through a secret mes-
sage authentication key that is shared between the two servers,
denoted as Δ. Throughout this paper, in the context of 2PC, we
define an authenticated arithmetic secret sharing of a secret 𝑥 as

J𝑥KA : ( [𝑥]A, [Δ · 𝑥]A)
and ⟨⟨𝑥⟩⟩A as the authenticated optimized arithmetic secret sharing
of 𝑥 . Naturally, we use notations J𝑥KA

𝑏
and ⟨⟨𝑥⟩⟩A

𝑏
to denote the share

held by S𝑏 . After the online secure computation, two servers work
together to verify the integrity of every revealed value in the secure
computation by using a final MAC verification algorithm, as shown
in Fig.6 of [20]. In the case when the verification fails, malicious
behaviors are detected and the parties abort the protocol.

When working with authenticated optimized secret sharing
in the malicious setting, we use same notation SS.MUL(⟨⟨𝑥⟩⟩A,
⟨⟨𝑦⟩⟩A, J𝑟𝑥𝑟𝑦KA) and SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑢KA) to denote secure
multiplication and secure inner product, respectively.

3.2 Secure Truncation
Given an arithmetical secret sharing [𝑥]A where 𝑥 ∈ Z2ℓ and a trun-
cation parameter 𝜌 ∈ Z+, a secret sharing based truncation opera-
tion aims to compute the truncated secret sharing [Shift(𝑥, 𝜌, ℓ)]A.
In the proposed protocols of section 6, we applied a secure trunca-
tion operationwithin our final implementation in the pre-processing
model. We employ the truncation pair (𝑟, Shift(𝑟, 𝜌, ℓ)) introduced
in [45]. More precisely, the life cycle of a truncation pair (𝑟, Shift(𝑟 ,
𝜌, ℓ)) are as follows:
(1) In the setup phase, a random offset 𝑟 ∈ Z2ℓ is generated, both
[𝑟 ]A and [Shift(𝑟, 𝜌, ℓ)]A are distributed among S0 and S1;

(2) In the evaluation phase, to truncate a secret sharing [𝑥]A
where 𝑥 ∈ Z2ℓ , the servers run Freveal ( [𝑥 +𝑟 ]A) to obtain 𝑥 +𝑟 ,
∀𝑏 ∈ {0, 1} then S𝑏 computes Shift(𝑥+𝑟, 𝜌, ℓ)−[Shift(𝑟, 𝜌, ℓ)]A

𝑏

as [Shift(𝑥, 𝜌, ℓ)]A
𝑏
.

Remarkably, using such a truncation pair results in an approxi-
mate result, meanwhile it requires a significant gap between the
modulus and the maximum size of the underlying secret 𝑥 . More-
over, as noted in [42], this type of probabilistic truncation protocol
introduces a security vulnerability. This issues arises because the
same randomness is employed both to protect the privacy of the
secret value to be truncated, and sample the 1-bit rounding error
for the truncated value probabilistically, which makes the protocol
not simulatable in terms of security. Despite these concerns, when
evaluating the final efficiency of our full protocols, in order to use
function secret sharing with a relatively short input domain, uni-
versally we apply this building block into our protocols as well as
other existing state-of-the-arts.

3.3 Function Secret Sharing
Function Secret Sharing (FSS) was first introduced by Boyle et
al. [11] as a cryptographic primitive that secretly shares a function
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𝑓 . Informally, in a two party setting with a function 𝑓 : D → R,
FSS comprises a key generation algorithm Gen𝑓 (1𝜆) producing a
key pair (𝑘0, 𝑘1), and an evaluation algorithm Eval𝑓 , which takes
in one shared key and a value 𝑥 , ensuring that ∀𝑥 ∈ D that the sum
of Eval𝑓 (𝑘0, 0, 𝑥) and Eval𝑓 (𝑘1, 1, 𝑥) is equal to 𝑓 (𝑥).

Shortly after, a secure computation scheme with pre-processing
via FSS was proposed by Boyle et al. [12]. In this scheme, nonlin-
ear gates (e.g., for equality tests, integer comparison, etc.) can be
computed with a relatively small amount of communication in one
round. We give an example how in this model a secure equality
check is conducted between S0 and S1.

Let us consider the case of a point function 𝑓𝑎 : {0, 1}ℓ → {0, 1}
corresponding to a special point 𝑎 ∈ {0, 1}ℓ , ∀𝑥 ∈ {0, 1}ℓ that
outputs 1 if 𝑥 = 𝑎 and outputs 0 otherwise. In the pre-processing
phase, a trusted dealer distributes S0, S1 additive secret shares 𝑟0, 𝑟1
of a random mask value 𝑟 ← {0, 1}ℓ and FSS key shares 𝑘0, 𝑘1
correspond to the random point function 𝑓𝑟 . In the online phase,
∀𝑖 ∈ {0, 1}, 𝑃𝑖 holds 𝑥𝑖 , 𝑟𝑖 and 𝑘𝑖 , and 𝑃𝑖 exchanges 𝑥𝑖 +𝑟𝑖 with 𝑃1−𝑖 .
After revealing the masked value 𝑥 + 𝑟 , ∀𝑖 ∈ {0, 1}, 𝑃𝑖 computes
𝑓𝑟,𝑖 (𝑥 + 𝑟 − 𝑎) and thus, obtains secret shares of 𝑓𝑎 (𝑥). Boyle et al.
also proposed FSS schemes for comparison functions in [11, 13].

In constructing all our protocols, we make use the interval con-
tainment function secret sharing (IC-FSS) ([10], Section 4.1) as our
secure comparison primitive, as the same as in Funshade [33].

Definition 1. Interval containment function secret sharing. There
is a key generation algorithm Gen[𝑝,𝑞 ]

ℓ
(·), and an evaluation al-

gorithm Eval[𝑝,𝑞 ]
ℓ
(·), given an interval containment [𝑝, 𝑞] where

𝑝, 𝑞 ∈ Z2ℓ and 𝑝 < 𝑞, ∀𝛼 ∈ Z2ℓ , ∀𝛽1, 𝛽2 ∈ U𝑁 ,

(𝑘0, 𝑘1) ← Gen[𝑝,𝑞 ]
ℓ
(1𝜆, 𝛼, 𝛽1, 𝛽2,U𝑁 )

for ∀𝑥 ∈ Z2ℓ denote 𝛿𝑥 = 𝑥 + 𝛼 , it holds that:
1∑︁

𝑏=0
Eval[𝑝,𝑞 ]

ℓ
(𝑘𝑏 , 𝑏, 𝛿𝑥 ) =

{
𝛽1, if 𝑥 ∈ [𝑝, 𝑞]
𝛽2, if 𝑥 not in [𝑝, 𝑞]

4 TECHNICAL OVERVIEW
To realize FScaledCosAuth with passive security, we study its required
components and immediately reach two preliminary protocols,
ΠNaiveSH and ΠOptimSH. Further enhancements in this paper will
later lead to our novel Nomadic protocols. The online evaluation
steps for all the protocols described in this section are outlined in
Table 2, with associated online costs detailed in Table 3.

As a first approach [10, 30, 54], ΠNaiveSH employs additive SS
and FSS. This protocol requires four communication rounds.

Next, we follow the guidelines of Funshade [33] to get ΠOptimSH,
introducing optimized secret sharing paired with FSS compari-
son gates. By its online phase, ΠOptimSH necessitates pre-prepared,
circuit-dependent correlated randomness, generated offline by a
dealer and distributed to two computing servers. As highlighted in
Funshade [33], this approach improves communication efficiency
over ΠNaiveSH in terms of rounds and data volume. For instance,
computing [𝑐1]B of FScaledCosAuth in ΠOptimSH requires only one
round and a single group element exchange, compared to ΠNaiveSH
(two rounds and 2𝑛 group elements). Consequently, ΠOptimSH re-
duces to three communication rounds: the first for 𝑐1, the second
for 𝑐2, and the third for the final output 𝑐 = 𝑐1 ∧ 𝑐2.

Further refining ΠOptimSH, we decrease communication rounds
to two using a novel component, CondEval. This new primitive
introduces a conditional evaluation gate: (𝑐, 𝑥, 𝑓 ,∧) → 𝑐 ∧ 𝑓 (𝑥),
traditionally executed in two rounds but here accomplished in one.
It is designed for computing the composition of a function 𝑓 (𝑥)
with a logical AND (∧) or OR (∨) operation, integrating optimized
secret sharing and novel FSS key generation steps. This innovation
enables efficient computation of 𝑐 = 𝑐1 ∧ 𝑐2 in the second round,
thus saving a communication round.

We specify and prove the security of the CondEval primitive
in the semi-honest setting, incorporating it to the full protocol in
ΠNomadicSH. As a result, ΠNomadicSH encompasses the following
four distinct phases:

(1) Setup: Generating correlated randomness for FScaledCosAuth.
(2) Input: Both the client and entity B independently input their

secret vectors, x and y, respectively.
(3) Evaluation: Conducted by two servers, this phase includes:
• First round: Computation of a Boolean sharing [𝑐1]B.
• Second round: Computation of the final Boolean sharing
[𝑐]B = [𝑐1]B ∧ 𝑓 (𝑥). In a malicious setting, this includes
generating [𝑐]B and a proof [𝜎]A for verification.

(4) Reveal: The service provider B constructs the value of 𝑐 in
clear-text. In a malicious context, B also validates [𝑐]A and
assesses the proof [𝜎]A.

Additionally, we extend the construction and security proof of
CondEval to the malicious setting. To provide active security in
the FSS gates we resort to the parallel execution of multiple in-
stances for the conditional evaluation gate with independent FSS
keys. A subset of these instances, chosen at FSS key generation
and unknown to the computing servers, act as "trap" instances,
allowing the detection of malicious behavior in a single comput-
ing server. For a fully maliciously-secure protocol ΠNomadicM, we
employ homomorphic MACs when using additive secret shares (as
in the SPDZ2k protocol [20] but we use a simplified variant). The
full maliciously-secure protocol ΠNomadicM follows a similar online
evaluation pipeline to what in ΠNomadicSH, thus, we do not repeat
it in Tab. 2.

5 REALIZING CONDEVAL IN 2PC
We introduce CondEval as key element to optimize our thresholded
cosine similarity protocols. Following circuit C (Eq. 3), the eval-
uation of a biometric matching protocol splits into (i) computing
shares of boolean values 𝑐1 and 𝑐2 (see Equation 3) and (ii) comput-
ing 𝑐1 ∧ 𝑐2 or 𝑐1 ∨¬𝑐2 depending on the value of 𝜏 . FSS can be used
to efficiently compute the Sign for 𝑐1 and 𝑐2. Computing the last
boolean gate (∧ or ∨) in secret shares would require at least one
communication round. CondEval integrates this boolean gate into
the FSS evaluation of 𝑐2, saving up one communication round in
the pre-processing model. We formalize this functionality as:

[𝑠 ◦ 𝑓 (𝑥)]B ← CondEval(◦,K◦, [𝑠]B, [𝑥]A)

where we compute a two-input boolean gate with a bit 𝑠 and
a function 𝑓 (𝑥) (instantiated with FSS). We would then apply
CondEval to FScaledCosAuth by setting 𝑠 = 𝑐1 and 𝑓 (𝑥) = 𝑐2 =

Sign( [1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)]A).
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Table 2: Online steps of protocols for FScaledCosAuth.

Round-1 Round-2 Round-3 Round-4

ΠNaiveSH

[IP(𝑥,𝑦)]A [𝑐1]B ← Sign( [IP(𝑥,𝑦)]A)

[𝑐2]B ← Sign( [𝑢]A) [𝑐]B ← [𝑐1 ∧ 𝑐2]B
[IP(𝑥,𝑥)]A [𝑢1]A ← [IP(𝑥,𝑥) · IP(𝑦,𝑦)]A
[IP(𝑦,𝑦)]A [𝑢2]A ← [IP(𝑥,𝑦)2]A

[𝑢]A ← [𝑢1 − 1/𝜏2 · 𝑢2]A

ΠOptimSH

[IP(𝑥,𝑦)]A [𝑢1]A ← [IP(𝑥,𝑥) · IP(𝑦,𝑦)]A

[𝑐]B ← [𝑐1 ∧ 𝑐2]B -[IP(𝑥,𝑥)]A [𝑢2]A ← [IP(𝑥,𝑦)2]A
[IP(𝑦,𝑦)]A [𝑢]A ← [𝑢1 − 1/𝜏2 · 𝑢2]A
[𝑐1]B ← Sign( [IP(𝑥,𝑦)]A) [𝑐2]B ← Sign( [𝑢]A)

ΠNomadicSH

[IP(𝑥,𝑦)]A [𝑢1]A ← [IP(𝑥,𝑥) · IP(𝑦,𝑦)]A

- -[IP(𝑥,𝑥)]A [𝑢2]A ← [IP(𝑥,𝑦)2]A
[IP(𝑦,𝑦)]A [𝑢]A ← [𝑢1 − 1/𝜏2 · 𝑢2]A
[𝑐1]B ← Sign( [IP(𝑥,𝑦)]A) [𝑐]B ← CondEval( [𝑐1]B, Sign( [𝜇]A))

Table 3: Comparative overview of online costs for ΠNaiveSH, ΠOptimSH, ΠMal1, ΠNomadicSH and ΠNomadicM. Here "Comm." refers to
the total communication volume among two servers, 𝑛 is the length of the input vector, ℓ the length of the operational ring, 𝐿
the communication volume for a single evaluation of CondEval, and 𝜅 the amount of parallel CondEval executions in ΠNomadicM.

Model Primitive Comm. #Rounds
ΠNaiveSH SH SS + FSS 6𝑛ℓ + 4𝑛ℓ + 2ℓ + 2 4
ΠOptimSH SH Optimized SS + FSS 6ℓ + 2 3
ΠNomadicSH SH Optimized SS + CondEval 7ℓ + 𝐿 2
ΠNaiveM M Authenticated (Optimized SS + FSS) 6ℓ + 2 3

ΠNomadicM M Authenticated (Optimized SS + CondEval) 6ℓ + 𝜅 (ℓ + 𝐿) 2

In the reminder of this section, w.l.o.g., we consider the ∧ op-
eration and we describe how CondEval computes 𝑠 ∧ 𝑓 (𝑥) in a
symmetric 2PC setting in both the semi-honest and malicious mod-
els, we ignore on the ∨ operation since 𝑠 ∧ 𝑓 (𝑥) = ¬(¬𝑠 ∧ ¬𝑓 (𝑥)).
It is worth noting that CondEval can be used as an independent
building block to compute the boolean composition of a bit 𝑠 and a
function 𝑓 (𝑥) evaluated with FSS for 2PC protocols.

5.1 High-level Overview
CondEval seeks to evaluate 𝑠 ∧ 𝑓 (𝑥) using FSS with two computing
servers S0 and S1. The inputs to this protocol are mainly secret
shares of a bit 𝑠 and an input 𝑥 know to both parties. To avoid the
additional communication round that the ∧ gate would require, we
aim to merge it with the FSS evaluation of 𝑥 . Indeed, from Table 4
(which corresponds to the truth table of 𝑠∧ 𝑓 (𝑥)), we observe that if
𝑠 = 0, then the output is 0 and if 𝑠 = 1 then the output is the actual
output of 𝑓 (𝑥). In cases where the output range is in Z2, 𝑓 (𝑥) is
obtained when each server S𝑏 (𝑏 ∈ {0, 1}) runs Eval𝑓 (𝑘𝑏 , 𝑥) and the
output would reconstruct with an XOR of these. If each server runs
Eval𝑓 over the same keys, the reconstructed output would become
0, which corresponds to the case when 𝑠 = 0. Hence, the overall
idea is to make sure that when running Eval, the two servers use
the same FSS key if 𝑠 = 0 and different FSS keys if 𝑠 = 1. This is
illustrated in the 2PC setting (note that 𝑠 is secretly shared among
the two servers as well) in Table 4. Each server must retrieve the
correct FSS key according to 𝑠 , without leaking any information
neither about 𝑠 , nor the other FSS key.

Table 4: Truth table of [𝑠 ∧ 𝑓 (𝑥)]B.

𝑠 𝑠 ∧ 𝑓 (𝑥) 𝑠0 𝑠1 [𝑦]B0 [𝑦]B1 [𝑦]B0 ⊕ [𝑦]
B
1

0 0 0 0 Eval𝑓 (𝑘0, 0, 𝛿𝑥 ) Eval𝑓 (𝑘0, 0, 𝛿𝑥 ) 0
1 1 Eval𝑓 (𝑘1, 1, 𝛿𝑥 ) Eval𝑓 (𝑘1, 1, 𝛿𝑥 )

1 𝑓 (𝑥) 1 0 Eval𝑓 (𝑘0, 0, 𝛿𝑥 ) Eval𝑓 (𝑘1, 1, 𝛿𝑥 )
𝑓 (𝑥)

0 1 Eval𝑓 (𝑘1, 1, 𝛿𝑥 ) Eval𝑓 (𝑘0, 0, 𝛿𝑥 )

Such a protocol can be designed if the two FSS keys 𝑘0 and 𝑘1
generated by the bank2 were randomly mapped to the values of 𝑠
(𝑘1−𝑠 if 𝑠 = 0, 𝑘𝑠 if 𝑠 = 1). Then, each server would run a private
information retrieval protocol with the bank to retrieve the actual
key corresponding to its share without revealing the actual share.
In order not to involve an additional party on the computation
and save in the number of communication rounds, we propose
to store these two keys at both servers in an encrypted manner.
More precisely, server S0 will store the two FSS keys, encrypted
beforehand and will receive one decryption key from server S1
based on its share of 𝑠 and vice versa. Hence, the key required to
decrypt the FSS key (stored on one server) is stored on the other
server. This implies that each server S𝑏 will store both encrypted
FSS keys but will only be able to decrypt one of them according to
the value of 𝑠 . The goal is to receive and decrypt the correct FSS
key, without disclosing 𝑠 nor the FSS key not used by S𝑏 .

Now, we need to prevent any leakage about [𝑠]B
𝑏
from S1−𝑏 , and

the other FSS key not used by S1−𝑏 (where 𝑏 ∈ {0, 1}):

2The entity in charge of generating pre-processing material (Fig. 1).
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• since Eval𝑓 also takes as input the index of the FSS key (0 or
1), this index should not leak any information about 𝑠 . Hence,
the mapping between the FSS key index and [𝑠]B

𝑏
needs to be

protected as well, this is realized by set the initial FSS key pair
as (𝑘𝑡 , 𝑘1−𝑡 ) where 𝑡 ←$ {0, 1}.
• to protect [𝑠]B

𝑏
, a random permutation is applied to (𝑘𝑡 , 𝑘1−𝑡 );

• to protect the unused FSS key, the permuted keys are one-time-
pad encrypted before their storage and only one decryption key
will be sent from S𝑏 to S1−𝑏 in the key decryption step.
Overall, CondEval is thus specified with four algorithms:
• During the setup phase, a trusted dealer generates the key-
ing material using CondEval.KeyGen and protects the FSS key
pair with CondEval.KeyEnc. These encrypted FSS keys and the
keying material are distributed to the servers;
• During the online phase, each server who has received the
share of 𝑠 and the randomized input 𝛿𝑥 = 𝑥 + 𝑟 , will send
the correct decryption key 𝑠𝑘 according to its share of 𝑠 to
the other server. Once the correct FSS key is decrypted using
CondEval.KeyDec, the server finishes the protocol by running
CondEval.Eval to obtain the share of the output 𝑠 ∧ 𝑓 (𝑥).

Note that, while we only demonstrate the construction ofCondEval
for 𝑠∧ 𝑓 (𝑥), the protocol for computing 𝑠∨ 𝑓 (𝑥) is defined similarly
and can be performed either by using

𝑠 ∨ 𝑓 (𝑥) = ¬(¬𝑠 ∧ ¬𝑓 (𝑥)).

5.2 CondEval in the Semi-Honest setting
We propose the building block CondEval, designed to securely
evaluate 𝑠 ∧ 𝑓 (𝑥) in a semi-honest setting. It works in the pre-
processing model, and is composed of two functionalities:

K∧ ← CondEval.Setup(∧, 1𝜆, ℓ) and

[𝑦]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A)

that are run respectively in the setup and online phase. The construc-
tion ofCondEval.Setup is shown in Table 5.CondEval.Setup, inputs
a security parameter 1𝜆 and outputsK∧. After KeyGen and KeyEnc,
it outputs correlated random keys which are then distributed to
the two servers. CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) inputs K∧ gen-
erated by CondEval.Setup as well as [𝑠]B, [𝑥]A. Then, within one
round of communication, 𝛿𝑥 is revealed and one clear-text FSS key
is obtained from both servers with KeyDec being performed, and
finally it outputs [𝑦]B.

Theorem 1. Correctness. If two servers follow CondEval.Eval(
∧,K∧, [𝑠]B, [𝑥]A) honestly, then it outputs [𝑦]B = [𝑠 ∧ 𝑓 (𝑥)]B.

Proof. If 𝑠 = 0, then ( [𝑠]B0 , [𝑠]
B
1 ) is equal to either (0, 0) or

(1, 1). Thus, in the online phase after the decryption of FSS keys,
the servers obtain either {𝑘𝑡 , 𝑘𝑡 } or {𝑘1−𝑡 , 𝑘1−𝑡 }, which implies:

𝑦 =

{
Eval𝑓 (𝑘0, 0, 𝛿𝑥 ) ⊕ Eval𝑓 (𝑘0, 0, 𝛿𝑥 ) or
Eval𝑓 (𝑘1, 1, 𝛿𝑥 ) ⊕ Eval𝑓 (𝑘1, 1, 𝛿𝑥 ) .

In either case, 𝑦 = 0, as desired. On the other hand, if 𝑠 = 1, then
( [𝑠]B0 , [𝑠]

B
1 ) equals either (0, 1) or {1, 0}, which implies that 𝑦 =

⊕1
𝑡=0Eval

𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥 ). In either case, we obtain 𝑦 = 𝑓 (𝑥), as desired.
Thus, 𝑦 = 𝑠 ∧ 𝑓 (𝑥). □

Table 5: The construction ofK∧ ← CondEval.Setup(∧, 1𝜆, ℓ) in
the semi-honest setting, where 𝜆 is the security parameter
used in generating FSS keys, ℓ defines the domain of the
secret sharing.

KeyGen

𝑟 ←$Z2ℓ , [𝑟 ]A ← SS.Share(𝑟,Z2ℓ )
(𝑘0, 𝑘1) ← Gen𝑓 (1𝜆, 𝑟 , 1, 0,Z2) ( |𝑘0 | = |𝑘1 | = 𝐾);

𝑡 ←$Z2, 𝜋0 ←$Z2, 𝜋1 ←$Z2;𝐿 := 𝐾 + 1;
sk(0)0 ∥sk

(0)
1 ∥sk

(1)
0 ∥sk

(1)
1 ←$ {0, 1}4𝐿,

|sk(0)0 | = |sk
(0)
1 | = |sk

(1)
0 | = |sk

(1)
1 | = 𝐿.

KeyEnc

𝑚0 = {sk(0)0 ⊕ (𝑘𝑡 ∥𝑡), sk(0)1 ⊕ (𝑘1−𝑡 ∥(1 − 𝑡))}
𝐶0 = FPermu (𝜋0,𝑚0); SK0 = {(sk(1)0 , sk(1)1 ), 𝜋1}
𝑚1 = {sk(1)0 ⊕ (𝑘𝑡 ∥𝑡), sk(1)1 ⊕ (𝑘1−𝑡 ∥(1 − 𝑡))}
𝐶1 = FPermu (𝜋1,𝑚1); SK1 = {(sk(0)0 , sk(0)1 ), 𝜋0}
Outputs K∧ = {𝐶𝑖 , SK𝑖 , [𝑟 ]A𝑖 }𝑖∈{0,1}

Functionality [𝑠 ∧ 𝑓 (𝑥)]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A)
Players: S0, S1.
Functionality: [𝑠 ∧ 𝑓 (𝑥 ) ]B ← CondEval.Eval(∧,K∧, [𝑠 ]B, [𝑥 ]A ) .
Input: [𝑠 ]B, [𝑥 ]A from two servers, and K∧ prepared in the setup phase as

shown in Table 5 where K∧ = {𝐶𝑏 , SK𝑏 , 𝑟𝑏 }𝑏∈{0,1} , more specifically
each S𝑏 (𝑏 ∈ {0, 1}) inputs {𝐶𝑏 , SK𝑏 , 𝑟𝑏 }. (Note that (𝑟0, 𝑟1 ) consti-
tutes [𝑟 ]A).

Output: [𝑠 ∧ 𝑓 (𝑥 ) ]B.
1: 𝛿𝑥 ← FReveal ( [𝑥 ]A + [𝑟 ]A )
2: for 𝑏 = 0 to 1 do
3: S𝑏 : 𝑝 (1−𝑏) ← [𝑠 ]B𝑏 ⊕ 𝜋1−𝑏 , sk(1−𝑏) ← sk(1−𝑏)

[𝑠 ]B
𝑏

.

4: S𝑏 : Sends 𝑝 (1−𝑏) ∥sk(1−𝑏) to S1−𝑏 . ⊲ Key decryption
5: for 𝑏 = 0 to 1 do
6: S𝑏 : 𝑘 (𝑏) ∥ id(𝑏) ← 𝐶𝑏 [𝑝 (𝑏) ] ⊕ sk(𝑏)

7: S𝑏 : [𝑦 ]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿𝑥 )
8: Outputs [𝑦 ]B.

Theorem 2. Security. In the presence of a passive PPT adver-
saryA corrupting one of the two servers in CondEval.Eval (∧,K∧,
[𝑠]B, [𝑥]A), we assert that A learns nothing about the inputs 𝑥 , 𝑠 ,
nor about the output 𝑠 ∧ 𝑓 (𝑥).

Proof. After online evaluation, for each 𝑏 ∈ {0, 1} we denote
S𝑏 ’s transcript view as:

View𝑏 := {[𝑟 ]A
𝑏
, 𝛿𝑥 , 𝑘𝑡⊕[𝑠 ]B1−𝑏

∥(𝑡 ⊕ [𝑠]B1−𝑏 ), [𝑠]
B
1−𝑏 ⊕ 𝜋𝑏 }

From this transcript, {𝑘𝑡⊕[𝑠 ]B1−𝑏 , [𝑟 ]
A
𝑏
, 𝛿𝑥 } correspond to the FSS

evaluation in the pre-processing model, and we resort to the secu-
rity proof in [12] (Definition 2) of Boyle et al. to argue the compu-
tational indistinguishability of the ideal and real-world executions;
Regarding the remaining items of the view transcripts, since both 𝜋𝑏
and 𝑡 are uniformly selected, both [𝑠]B1−𝑏⊕𝜋𝑏 and 𝑡⊕[𝑠]

B
1−𝑏 provide

information-theoretic secrecy for [𝑠]B1−𝑏 . Therefore, from View𝑏 ,
A learns nothing about the input 𝑥 , 𝑠 , nor the output 𝑠 ∧ 𝑓 (𝑥). □
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5.3 CondEval in the Malicious Setting
We extend the setting to an active adversary. Since the two servers
are symmetric, for the sake of clarity, we consider that S0 is ma-
licious. Assume we run CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) in the
malicious setting where S0 is malicious and K∧ is the output of
CondEval.Setup(∧, 1𝜆,Z2ℓ ), then we report three disruptions from
S0 that might flip the final authentication bit:
• S0 may dishonestly report [𝑥 + 𝑟 ]A0 when revealing 𝑥 + 𝑟 to
introduce errors and thus disrupt the computation;
• During the online evaluation phase, S0 may flip [𝑠]B0 during the
key decryption step, thus potentially flipping [𝑦]B to be equal
to [¬(𝑠 ∧ 𝑓 (𝑥))]B.
• After the online evaluation, S0 may submit ¬[𝑦]B0 to B, poten-
tially resulting in a flipped authentication bit 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)).
To counter the first attack, we incorporate a homomorphic MAC

scheme from the spdz2k framework [20]. More specifically, dur-
ing the setup phase, a trustworthy dealer generates random offset
shares and the corresponding authenticated shares. This enables
an additional verification step to be performed over all partially
disclosed intermediate values at the end of the online evaluation
phase. The final output is only deemed valid if the verification is
successful, thereby deterring any fraudulent disclosure of secret
sharing. In order to safeguard against the remaining attacks, we
require a separate scheme that protects Boolean secret sharings.
As a solution, we propose the use of authenticated Boolean secret
sharing defined as below.

Definition 2. An authenticated Boolean secret sharing (𝑣)𝑚 of bit
𝑣 ∈ {0, 1} is a list of Boolean secret shares defined with a secret
authentication key𝜓 ∈ {0, 1}𝑚,𝑚 ∈ Z+, denoted as:

(𝑣)𝑚 : {[𝑣1]B, · · · , [𝑣𝑚]B}

where ∀𝑖 ∈ [𝑚] that 𝑣𝑖 = 𝑣 · (1 −𝜓 [𝑖]).

By extending the semi-honest CondEval constructions with the
above two authentication schemes, we realize CondEval in a mali-
cious setting which contains three functionalities:

K∗∧ ← CondEval.Setup∗ (∧, 1𝜆, ℓ0, ℓ1,𝑚),

(𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) and

𝑧 ← CondEval.Verify((𝑦)𝑚, [𝜎]A,𝜓 )

CondEval.Setup∗ is shown in Table 6, where a trustful dealer pre-
pares 𝑚 instances of FSS key pairs based on a uniform random
string 𝜓 ←$ {0, 1}𝑚 . More precisely, for all 𝑖 ∈ [𝑚], let us denote
𝐾𝑖 as the 𝑖th FSS key pair prepared. Then, if 𝜓 [𝑖] = 0, the dealer
outputs 𝐾𝑖 as a normal FSS key pair, which means that the evalua-
tion result is equal to 𝑠 ∧ 𝑓 (𝑥); Otherwise, if 𝜓 [𝑖] = 1, the dealer
outputs 𝐾𝑖 as a trap FSS key pair which guarantees that the corre-
sponding evaluation result will be equal to 0 for whatever value of
𝑥 . Furthermore CondEval∗ .Setup generates additional proof string
differently due to the FSS key type (normal or trap) which are ap-
pended at each FSS key. With these designs, any manipulation from
A in the KeyDec step of CondEval.Eval∗ will be captured with high
probability (assuming that A does not know 𝜓 ). As a result, the
probability that A flips (𝑠 ∧ 𝑓 (𝑥))𝑚 to (¬(𝑠 ∧ 𝑓 (𝑥)))𝑚 without
being detected is in negligible probability. In conclusion, compared

with the construction of CondEval.Eval, this extended construction
CondEval.Eval∗ comes at a cost of𝑚 times the computation time
and communication volume when dealing with FSS gates; Never-
theless this malicious construction retains the advantage of the
optimized one round communication.

The concrete construction of CondEval.Eval∗ is shown in the
following pseudo code, where it takes in the desired operation ∧,
as well as K∗∧, (𝑠)𝑚, J𝑥KA from the two servers; During the online
evaluation, for each 𝑖 ∈ [𝑚], within one round of communica-
tion 𝛿𝑥𝑖 is revealed, and simultaneously one clear-text FSS key is
obtained by each of the two servers by decrypting one FSS key
from other party’s choice; By line 16 of CondEval.Eval∗, we run
FMacVryGen in Fig. 4 to generate a proof to verify that each mask
value 𝛿𝑥 (𝑖 ) for 𝑖 ∈ [𝑚] is revealed honestly. Finally, CondEval.Eval∗
outputs (𝑦)𝑚 and an associated proof [𝜎]A which can only be vali-
dated if they could pass the verification procedure in functionality
CondEval.Verify as shown below.

Functionality (𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA)
Players: S0, S1.
Functionality: (𝑦)𝑚, [𝜎 ]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠 )𝑚, J𝑥KA ) .
Input: For each 𝑏 ∈ {0, 1} that K∗∧ [𝑏 ] = {{𝐶𝑖,𝑏 , SK𝑖,𝑏 , J𝑟𝑖KA𝑏 }𝑖∈ [𝑚] ,
[𝜓 ]B

𝑏
, [Δ]A

𝑏
} are obtained by S𝑏 in the setup phase, and authenticated

secret sharing (𝑠 )𝑚 whose secret authentication key is equal to𝜓 in
K∗∧.

Output: ( (𝑠 ∧ 𝑓 (𝑥 ) )𝑚, [𝜎 ]A ) .
1: ({ [𝑠1 ]B, · · · , [𝑠𝑚 ]B}) ← (𝑠 )𝑚
2: 𝑉 ← [∅]𝑚
3: for 𝑏 = 0 to 1 do
4: [𝜎 ]A

𝑏
← 0

5: {𝐶𝑏 , SK𝑏 , J𝑟KA
𝑏
, [𝜓 ]B

𝑏
} ← K∗∧ [𝑏 ]

6: for 𝑖 = 1 to𝑚 do
7: J𝛿

𝑥 (𝑖 ) K
A ← J𝑥KA + J𝑟𝑖KA

8: 𝛿
𝑥 (𝑖 ) ← FReveal ( [𝛿𝑥 (𝑖 ) ]

A )
9: 𝑉 [𝑖 ] ← (𝛿

𝑥 (𝑖 ) , [Δ · 𝛿𝑥 (𝑖 ) ]
A )

10: for 𝑏 = 0 to 1 do
11: S𝑏 : Sends { [𝑠𝑖 ]B𝑏 ⊕𝜋1−𝑏 , sk

(1−𝑏)
[𝑠𝑖 ]B𝑏

} to S1−𝑏 as {𝑝 (1−𝑏) , sk(1−𝑏) }

⊲ Key decryption
12: for 𝑏 = 0 to 1 do
13: S𝑏 : 𝑘 (𝑏) ∥ id(𝑏) ∥𝜉 (𝑏) ← 𝐶𝑖,𝑏 [𝑝 (𝑏) ] ⊕ sk(𝑏)

14: [𝜎 ]A
𝑏
← [𝜎 ]A

𝑏
+ 𝜉 (𝑏)

15: [𝑦𝑖 ]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿
𝑥 (𝑖 ) )

16: [𝜍 ]A ← FMacVryGen ( [Δ]A,𝑉 )
17: [𝜎 ]A ← [𝜍 ]A + [𝜎 ]A
18: (𝑦)𝑚 ← {[𝑦1 ]B, · · · , [𝑦𝑚 ]B}
19: Output (𝑦)𝑚, [𝜎 ]A

We have the theorem of correctness, security and soundness for
CondEval that work in the malicious setting in the following, how-
ever, due to page limit, we have attached their associated proofs
in Appendix A. It is important to note that there may be a po-
tential integrity attack on our scheme from S0, which could go
undetected by our CondEval.Verify procedure. This type of attack
might occur if S0 maliciously modifies 𝑧 < 𝑚 partial decryption
keys before transferring them to S1. Specifically, if these altered
keys cause all corresponding decrypted Function Secret Sharing
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Table 6: The construction of K∗∧ ← CondEval.Setup∗ (∧, 1𝜆, ℓ0, ℓ1,𝑚) in the malicious setting, it inputs a security parameter 𝜆, ℓ0
and ℓ1, where ℓ0 is both used in generating FSS keys and it also defines the domain of the input secrets, ℓ1 defines the domain of
authenticated secret key Δ,𝑚 ∈ Z+ defines the secret key for authenticated Boolean secret sharing.

Let𝜓 ←$ {0, 1}𝑚, [𝜓 ]B0 ←$ {0, 1}𝑚, [𝜓 ]B1 ← 𝜓 ⊕ [𝜓 ]B0 ;Δ←$Z2ℓ1 , [Δ]A ← SS.share(Δ,Z2ℓ0+ℓ1 )
then it does KeyGen and KeyEnc for each 𝑖 ∈ [𝑚] as follows:

KeyGen

If𝜓 [𝑖] = 0 (Normal) Otherwise if𝜓 [𝑖] = 1 (Trap)
𝛽1 ← 1, 𝛽2 ← 0 𝛽1 ← 0, 𝛽2 ← 0

𝑟𝑖 ←$Z2ℓ0 , [𝑟𝑖 ]A ← SS.share(𝑟𝑖 ,Z2ℓ0+ℓ1 ), J𝑟𝑖KA ← {[𝑟𝑖 ]A, SS.share(𝑟𝑖 · Δ,Z2ℓ0+ℓ1 )};
(𝑘0, 𝑘1) ← Gen(1𝜆, 𝑟𝑖 , 𝛽1, 𝛽2,Z2) ( |𝑘0 | = |𝑘1 | = 𝐾)

𝑡 ←$Z2, 𝜋0 ←$Z2, 𝜋1 ←$Z2;𝜔 ←$Z2; 𝜉1 ←$Z2ℓ0+ℓ1 , 𝜉2 ←$Z2ℓ0+ℓ1 ;𝐿 := 𝐾 + ℓ0 + ℓ1 + 1;
sk(0)0 ∥sk

(0)
1 ∥sk

(1)
0 ∥sk

(1)
1 ←$ {0, 1}4𝐿, |sk(0)0 | = |sk

(0)
1 | = |sk

(1)
0 | = |sk

(1)
1 | = 𝐿

KeyEnc

𝑀𝑖,0 = {𝑘𝑡 ∥𝑡 ∥𝜉1, 𝑘1−𝑡 ∥(1 − 𝑡)∥𝜉1} 𝑀𝑖,0 = {𝑘𝑡 ∥𝑡 ∥𝜉1, 𝑘1−𝑡 ∥(1 − 𝑡)∥𝜉2}
𝑀𝑖,1 = {𝑘𝑡 ∥𝑡 ∥(−𝜉1), 𝑘1−𝑡 ∥(1 − 𝑡)∥(−𝜉1)} 𝑀𝑖,1 = {𝑘𝑡 ∥𝑡 ∥(−𝜉1), 𝑘1−𝑡 ∥(1 − 𝑡)∥(−𝜉2)}
𝐶𝑖,0 = FPermu (𝜋0, {𝑀𝑖,0 [0] ⊕ sk(0)0 , 𝑀𝑖,0 [1] ⊕ sk(0)1 }), SKi,0 = {(sk

(1)
0 , sk(1)1 ), 𝜋1}

𝐶𝑖,1 = FPermu (𝜋1, {𝑀𝑖,1 [0] ⊕ sk(1)0 , 𝑀𝑖,1 [1] ⊕ sk(1)1 }), SKi,1 = {(sk
(0)
0 , sk(0)1 ), 𝜋0}

Outputs𝜓,K∗∧ = {{𝐶𝑖, 𝑗 , SK𝑖, 𝑗 , J𝑟𝑖KA}𝑖∈[𝑚], 𝑗∈{0,1} , [Δ]A}

Functionality 𝑧 ← CondEval.Verify((𝑦)𝑚, [𝜎]A,𝜓 )
Players: S0, S1,B.
Functionality: 𝑠 ← CondEval.Verify({ ( (𝑦)𝑚

𝑏
, [𝜎 ]A

𝑏
) }𝑏∈{0,1},𝜓 ) .

Input: ( (𝑦)𝑚
𝑏
, [𝜎 ]A

𝑏
) from S𝑏 for each 𝑏 ∈ {0, 1}, and𝜓 from B.

Output: 𝑧 ∈ {−1, 0, 1,⊥}.
1: 𝑧 ← −1
2: if 𝜓 ≠ {1}𝑚 then
3: if [𝜎 ]A0 + [𝜎 ]A1 = 0 then
4: for 𝑖 = 1 to𝑚 do
5: 𝑦𝑖 ← [𝑦𝑖 ]B0 ⊕ [𝑦𝑖 ]B1
6: if 𝜓 [𝑖 ] = 0 then
7: if 𝑧 = −1 then
8: 𝑧 ← 𝑦𝑖

9: else
10: if 𝑦𝑖 ≠ 𝑠 then
11: 𝑧 ← ⊥, abort
12: else
13: if 𝑦𝑖 ≠ 0 then
14: 𝑧 ← ⊥, abort
15: else
16: 𝑧 ← ⊥, abort
17: Outputs 𝑧.

(FSS) keys—despite having partially flipped bits—to produce the
same evaluation result as the original, unaltered FSS keys, the attack
could succeed without detection. Notably, the probability of such
an integrity attack succeeding decreases as the number 𝑧 of altered
keys increases. However, this potential vulnerability does not affect
the overall correctness or soundness of our scheme, and therefore,
we have not addressed it further in this discussion.

Theorem 3. Correctness. Assuming all servers indeed honestly
follow CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA), i.e., none of the servers
deviate from the protocol description, then they obtain ((𝑦)𝑚, [𝜎]A).
Denote 𝑝 the probability that CondEval.Verify((𝑦)𝑚, [𝜎]A, 𝜓 ) is
equal to 𝑠 ∧ 𝑓 (𝑥), we claim 𝑝 = 1 − 1/2𝑚 .

Theorem 4. Security. In the presence of an active PPT adversaryA
among two servers in CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA), where

K∗∧ comes from the output of functionality CondEval.Setup∗, we
assert that A learns no information about 𝑥 , 𝑠 , 𝑠 ∧ 𝑓 (𝑥) or𝜓 .

Theorem5. Soundness. Assuming the existence of an active PPT ad-
versaryA (S0 or S1) when performingCondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚 ,
J𝑥KA) that outputs ((𝑦)𝑚, [𝜎]A). We denote by 𝑝 the probability
that CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓 ) = ¬(𝑠 ∧ 𝑓 (𝑥)). We claim

𝑝 < 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1 )

where ℓ1 denotes the length of the message authentication key.

6 SECURE COSINE SIMILARITY
COMPUTATION AND VERIFICATION

In this section, we provide comprehensive constructions for co-
sine similarity back-end verification (matching fresh and reference
templates) in both semi-honest and malicious settings, utilizing
building blocks from Section 4. For example, in the semi-honest
setting within a pre-processing model, our proposed protocol ini-
tially calculates a Boolean secret sharing [𝑐1]B and an arithmetic
secret sharing [𝑧]A using optimized secret sharing and FSS. Then, it
employsCondEval.Eval(∧, [𝑐1]B, [𝑥]A) to compute [𝑐1∧Sign(𝑧)]B
as the final authentication bit.

The solutions we propose for evaluating FScaledCosAuth in a 2PC
model has the dual objectives of minimizing the number of commu-
nication rounds and communication volume. Our method leverages
optimized secret sharing and CondEval to perform secure addition,
multiplication, and comparison operations within FScaledCosAuth.
The online evaluation process requires two communication rounds,
with a communication cost of four ring elements (corresponds
to the four times of Freveal invocations) and two decryption keys
transmitted for decrypting the FSS keys.

When using floating-point numbers as input for a secure com-
putation framework, these secret floating-point numbers need to
be converted to fixed-point representation by multiplying them
by a precision parameter 2𝜌 . This process occurs before entering
the secure computation framework, where 𝜌 defines the preserved
precision in the fraction part. In a standard way, a secure truncation
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operation is required to obtain the same precision when performing
one multiplication over two fixed point values. This is meaningful
in the sense of performing an operation within a smaller ring and
also outputs an arithmetical result with the same precision. How-
ever, in our actual evaluation of FScaledCosAuth, where the input
vectors are small float point numbers, as already mentioned in 3.2
in order to reduce the cost of the underlying FSS module, we per-
form truncation once over 1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦) in
FScaledCosAuth, such that it results in a smaller input domain of FSS.

Full protocol in the semi-honest setting. In the semi-honest
setting, our final full protocol ΠNomadicSH comprises of three sub-
protocols: Setup, FInput and Eval, executed in the Setup, Input, and
Evaluation phases, respectively. Sub-protocol 1 details the setup
phase, integrating CondEval.Setup and generating correlated ran-
domness depends on FScaledCosAuth. Next, the client and B input
their secret vectors 𝑥,𝑦 by running FInput in Fig. 5. Lastly, with cor-
related randomness and input prepared, Eval produces the Boolean
secret sharing of the desired authentication bit [𝑦]B, where𝑦 = Sign
(cos(x, y) − 𝜏). Please refer to the complete full protocol construc-
tion and its corresponding correctness/security analysis in the semi-
honest setting in Appendix B.1.

Full protocol in themalicious setting. Due to page limitations,
please refer to Appendix B.2 for the complete protocol ΠNomadicM,
which implements FScaledCosAuth in a malicious setting.

7 EXPERIMENT
In this section, we aim to test the improved efficiency ofΠNomadicSH
over the naive protocol ΠOptimSH in the semi-honest setting, as well
as ΠNomadicM over the naive protocol ΠNaiveM in the malicious
setting. To achieve that, we implement all four protocols in Python
3.10 [17] and have performed assessments of them through a use
case of voice biometric authentication. In the following, we first
describe the dataset being used, then the experimental setting, and
finally present the performance comparison of all protocols.

7.1 Data
We employ a pre-trained model 3 from ECAPA-TDNN [25] to ex-
tract speaker embeddings. The model was trained using the devel-
opment part of the VoxCeleb2 dataset [19] with 5994 speakers. The
datasets RIR [37] and MUSAN [58] were also used for data augmen-
tation. The model is composed of 3 SE-Res2Block modules. The
channel size and the dimension of the bottleneck in the SEBlock
are set to 1024 and 256, respectively. The entire utterance is fed into
the ECAPA-system to finally obtain a vector of 192-dimensional
speaker embedding. We get our experiments’ input from the test set
of VoxCeleb1-E [47], which consists of 37720 pairs of enrolment and
verification ECAPA-TDNN embeddings, in which we have approxi-
mately half target and half non-target speakers. It is important to
note that the resulting threshold 𝜏 in FScaledCosAuth was established
at a point where the False Acceptance Rate (FAR) is 1.15%, the False
Rejection Rate (FRR) is 1.14%, and the Equal Error Rate (EER) is
1.15%.

3https://github.com/TaoRuijie/ECAPA-TDNN

7.2 Setting
We have performed all experiments on a relatively low-spec ma-
chine with 12th Gen Intel(R) Core(TM) i7-12700K processor, and 2
x 16 GB dual-channel DDR5 4400 MHz RAM. The hosting machine
runs Ubuntu 22.04 LTS. We separately compared the performance
of all protocols in the offline and online phase. Specifically, for the
evaluation of the online phase, we created three simulated net-
work environments using traffic control tools to emulate real-world
network conditions.

To adapt the raw data from the ECAPA-TDNN embeddings [47]
with float-point numbers to our protocols that deal with integers, we
multiply the floating-point numbers with 28 (𝜌 = 8) and keep only
the integer digits of the multiplication result to maintain precision
in the fractional part of the raw data. We remark that employing a
conversion parameter of 𝜌 = 8 yields a non-significant deviation
(0.003%) in terms of false acceptance rate (FAR) and false rejection
rate (FRR), when compared to directly using floating-point numbers.

Regarding the FSS module underlying our protocols, which in-
cludes the interval containment FSS that implements Sign and our
CondEval, we have universally set the security parameter 𝜅 = 128.
The input domain is configured as {0, 1}32, which sufficiently covers
our use case, and we do implementation of the interval containment
FSS gate as per in Fig.3 of [10].

Specifically, we perform all the secure computation operation in
a ring of 64 bits for protocols ΠOptimSH and ΠNomadicSH in the semi-
honest setting; in the malicious setting we perform all operations in
a ring of 64 + 32 bits, where 64 bits covers the circuit computation
and 32 bits is the size of the secret authentication parameter 𝛼 we
selected. Additionally, in the implementation of ΠNomadicM we set
𝑚 = 30 which is marginally smaller than the length of the secret
authentication parameter 𝛼 , according to Theorem 5 it gives us a
soundness 𝑝 < 2−26.

7.3 Results
We measured the offline computation time and communication
volume as illustrated in Fig. 2, required by executing each pro-
tocol once. These results are quantified per server; specifically,
the communication volume represents the data transmitted from
the dealer to each server, while the computation time pertains to
the duration required to generate correlated randomness data for
each server. It is important to note that, across all four protocols,
the dealer distributes correlated randomness in accordance with
FScaledCosAuth. This distribution is independent of the actual inputs
used later in the online phase. Therefore, it is typically accept-
able to incur higher costs during the offline phase. As depicted
in Fig. 2, when comparing our protocol ΠNomadicSH with proto-
col ΠOptimSH, ΠNomadicSH incurs a marginally higher cost in both
computation time and communication volume. In contrast, for our
protocol ΠNomadicM compared to ΠOptimSH, there is a noticeable
increase in both computation time and communication volume.
This escalation is attributed to the utilization of multiple FSS keys
in computing 𝑐1 and 𝑐2 of FScaledCosAuth, and is considered an ac-
ceptable trade-off for the offline phase.

Fig. 3 presents the online execution time to run FScaledCosAuth
with one pair of enrolment (reference) and verification (fresh) vec-
tors as input in different network settings for all protocols. These

https://github.com/TaoRuijie/ECAPA-TDNN
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(a) Generation time (ms) (b) Comm. volume (KB)

Figure 2: Offline costs measured per server

Figure 3: Online performance comparison of Nomadic proto-
cols VS existing protocols for local/LAN/WAN networks.

measurements started from the moment all input secret sharing was
in place and continued until the final secret sharing of the output
bit 𝑐 of FScaledCosAuth was obtained. Here, the execution time for
each protocol is further divided into two parts, the local computa-
tion time and communication time. We have set up three common
network settings with different network latency and bandwidth,
which are denoted as LAN (10ms, 1Gbps), WAN1 (80ms, 100Mbps)
and WAN2 (500ms, 10Mbps). The cost is measured for 20 runs on
average. The online communication volume measured from our ex-
periments are 0.09 KB, 0.69 KB, 0.21 KB, and 20.77 KB respectively
for protocol ΠOptimSH, ΠNomadicSH, ΠNaiveM and ΠNomadicM.

In the semi-honest setting, ΠNomadicSH demonstrates a signifi-
cant improvement in efficiency over the naive protocol ΠOptimSH.
Specifically, ΠNomadicSH achieves a 31% reduction in online execu-
tion time compared to ΠOptimSH, even though it costs more commu-
nication volume (0.69 KB) than what in ΠOptimSH (0.09 KB). This
efficiency is attributed to the reduced number of rounds required;
ΠNomadicSH operates in two rounds, as opposed to ΠOptimSH that
requires three rounds.

In the malicious setting, ΠNomadicM requires less communication
time compared to the naive protocolΠNaiveM in each of the network
settings, however, it does not exhibit efficiency gains over the naive

protocol ΠNaiveM in total except for the WAN2 setting. This perfor-
mance characteristic primarily results from the use of multiple FSS
keys, specifically𝑚 = 30 in our experiments. Our tests revealed a
total computational cost of approximately 45ms for completing eval-
uations of 𝑐1 and 𝑐 in our protocol ΠNomadicM. This computational
burden, however, is not intractable. One approach, as demonstrated
in Funshade [33], involves using an efficiency-focused program-
ming language. Their C implementation, for instance, requires a
local computation time of just 0.55 ms, including the evaluation of
one interval containment gate and a local inner product. Based on
this, the local computation time for the multiple FSS components
in our protocol ΠNomadicM is estimated to be no more than 16.5ms
if implemented in C. Alternatively, using more powerful hardware
can certainly reduce the computation overhead.

Considering that reducing wide area network latency will likely
remain challenging in the near future, our ΠNomadicM protocol
becomes a preferable choice. This is due to one round reduction
compared to ΠNaiveM, making it more effective despite potentially
higher computational demands. In summary, our experimental re-
sults demonstrate an online evaluation efficiency improvement for
our proposed protocols over the SotA when computing the cosine
similarity functionality in the squared domain, especially in the
WAN setting, where the network latency is a bottleneck for efficient
secure computation, making it suitable for real-world applications.

8 CONCLUSION
Privacy-preserving cosine similarity computation and comparison
to a predefined threshold is an important building block that has
multiple applications (e.g., biometric authentication and identifi-
cation, privacy-preserving machine learning). In this paper, we
introduce two novel protocols to compute the cosine similarity and
compare to a threshold in a privacy-preservingway, i.e.,ΠNomadicSH
for the semi-honest setting, and ΠNomadicM the malicious setting.
Both ΠNomadicSH and ΠNomadicM rely on the recent advances of
FSS [10, 12]. And ΠNomadicM additionally relies on 2PC authenti-
cated secret sharing and our proposed use of multiple instances of
random FSS keys (either normal or trap). All our protocols are based
on a new primitive CondEval that allows computing the composi-
tion of an input bit 𝑠 and a binary function 𝑓 (evaluated via FSS) on
an input 𝑥 i.e., 𝑠 ◦ 𝑓 (𝑥). CondEval is provably secure under both the
semi-honest and malicious setting, is general and of independent
interest; Thus, could be used in general 2PC computations.

Furthermore, we provide a detailed security analysis of the pro-
posed protocols, introduced building blocks and evaluate the pro-
posed protocols for the use of biometric authentication. Our results
show that the proposed protocols are not only round-efficient, ne-
cessitating merely two communication rounds, but also proved to
exhibit enhanced efficiency though our bench-marking in compari-
son to SotA.
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A SUPPLEMENT FOR CONDEVAL IN THE
MALICIOUS SETTING

A proof of theorem 3. Assume all servers follow CondEval.Eval∗ (
∧,K∗∧, (𝑠)𝑚, J𝑥KA) honestly. ∀𝑖 ∈ [𝑚], if𝜓 [𝑖] = 0. From Theorem 1,
we know [𝑦𝑖 ]B is equal to [𝑠 ∧ 𝑓 (𝑥)]B as expected. Otherwise if
𝜓 [𝑖] = 1, since [𝑠]B0 , [𝑠]

B
1 is either {0, 0} or {1, 1}, which implies

𝑦𝑖 = Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥 )⊕Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥 ) or𝑦𝑖 = Eval𝑓 (𝑘1−𝑡 , 1−𝑡, 𝛿𝑥 )⊕
Eval𝑓 (𝑘1−𝑡 , 1−𝑡, 𝛿𝑥 ), then [𝑦𝑖 ]B is equal to [0]B. Thus, the function-
ality outputs a valid authenticated Boolean secret sharing. However,
in the case of𝜓 = {0, 1}𝑚 which has a probability of 1/2𝑚 the pro-
tocol CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓 ) outputs −1. Thus, 𝑝 is equal
to 1 − 1/2𝑚 .

A proof of theorem 4. After online evaluation, for each 𝑏 ∈
{0, 1}, S𝑏 ’s transcript view is composed of transcript views of

CondEval.Eval(K∗∧ [𝑖], [𝑠𝑖 ]B, [𝑥]A) for each 𝑖 ∈ [𝑚]. From The-
orem 2, we know that CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) does not
leak any information about 𝑥 , 𝑠 , or 𝑠 ∧ 𝑓 (𝑥). Furthermore, owing
to the computational indistinguishability of FSS keys from entirely
random keys, based on the security of the pseudorandom genera-
tor [10], a probabilistic polynomial-time (PPT) the probability that
A distinguishes between a trap key instance, a completely random
key, or a normal key instance is negligible. Consequently, A gains
no information about𝜓 .

A proof of theorem 5. If CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓 ) =
¬(𝑠 ∧ 𝑓 (𝑥)), w.l.o.g., we assume S0 is the malicious server in the
functionality CondEval∗. The actual computation can be performed
in the following two ways, only:
• Case 1: S0 honestly follows CondEval.Eval∗ (∧, K∗∧, (𝑠)𝑚,

J𝑥KA).
• Case 2: S0 arbitrarily deviates from CondEval.Eval∗ (∧, K∗∧,
(𝑠)𝑚 , J𝑥KA),
– either by flipping [𝑠𝑖 ]B0 (𝑖 ∈ [𝑚]) when performing the
KeyDec step OT,

– or, by dishonestly flipping partial shares when reporting
(𝑠)𝑚 to the receiver.

We denote by 𝑝1 and 𝑝2 the probability thatCondEval.Verify ((𝑦)𝑚 ,
[𝜎]A,𝜓 ) = ¬(𝑠 ∧ 𝑓 (𝑥)) under cases 1 and 2, respectively.

In the first case, from Theorem 3 we know that the protocol
outputs −1 with probability 1/2𝑚 , and 𝑠 ∧ 𝑓 (𝑥) with probability of
1 − 1/2𝑚 it outputs. Thus, the protocol never outputs ¬(𝑠 ∧ 𝑓 (𝑥))
and hence, 𝑝1 = 0.

In the second case, we claim there are three events A, B, C in
which S0 that could manipulate the protocol and thus, which may
result in outputting a flipped authentication bit (¬(𝑠 ∧ 𝑓 (𝑥)))𝑚 :

(1) 𝐴: S0 reports one or more incorrect arithmetic shares, sub-
mits a manipulated proof 𝜎∗0 such that, still, 𝜎∗0 + 𝜎1 = 0, and
resulting to a valid flipped authenticated bit (𝑦∗)𝑚 where
𝑦∗ = ¬(𝑠 ∧ 𝑓 (𝑥)).

(2) B: S0 manages to flip the computation result (𝑦)𝑚 to (¬𝑦)𝑚
by flipping [𝑠𝑖 ]B0 for all𝜓 [𝑖] = 0, 𝑖 ∈ [𝑚] when performing
the KeyDec step, and also presents a correct proof that passes
the final verification.

(3) C: ∀𝑖 ∈ [𝑚], S0 manages to flip each [𝑦𝑖 ]B0 for𝜓 [𝑖] = 0, and
keeps [𝑦𝑖 ]B0 unchanged for𝜓 [𝑖] = 1 . In the end, S0 submits
his manipulated sharing of (𝑦)𝑚 to B.

Each event is considered independently. Concerning event 𝐴,
according to [20], it is known that the probability that event 𝐴
occurs is no greater than 2−ℓ1+log (ℓ1+1) .

Regarding event 𝐵, the final outcome is altered when 𝑓 (𝑥) = 1
and only when all the normal indexes (𝜓 [𝑖] = 0) are flipped during
the KeyDec step. We analyse the probability that S0 successfully
flips all normal indexes without being detected as follows: First, we
distinguish two complementary events 𝐵1 and 𝐵2 that are covered
by 𝐵. We denote by 𝐵1 the event that S0 manages to flip the corre-
sponding bit [𝑠𝑖 ]B0 for each 𝑖 ∈ [𝑚] where𝜓 [𝑖] = 0, and keeps the
corresponding bit [𝑠𝑖 ]B0 unchanged for each 𝑖 ∈ [𝑚] where𝜓 [𝑖] = 1.
On the other hand, 𝐵2 corresponds to the event when S0 manages
to flip the corresponding bit [𝑠𝑖 ]B0 for each 𝑖 ∈ [𝑚] where𝜓 [𝑖] = 0,
and at least one of the corresponding bit [𝑠𝑖 ]B0 is wrongly flipped
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FUNCTIONALITY [𝜍]A ← FMacVryGen ( [Δ]A, 𝐿)
Players: S0, S1.
Input: An arithmetic secret sharing of the MAC authentication

key [Δ]A, along with a list 𝐿 = (𝑥𝑖 , [Δ · 𝑥𝑖 ]A)𝑖∈[𝑛] , in which
∀𝑖 ∈ [𝑛] that 𝑥𝑖 , 𝑟𝑖 is public and [Δ ·𝑥𝑖 ]A is the arithmetic secret
sharing over Δ · 𝑥𝑖 .

Output: [𝜍]A
1: for 𝑏 = 0 to 1 do
2: [𝜍]A

𝑏
← 0

3: for 𝑖 = 1 to 𝑛 do
4: [𝜍]A

𝑏
← [𝜍]A

𝑏
+ [Δ]A

𝑏
· 𝑥𝑖 − [Δ · 𝑥𝑖 ]A𝑏

5: S0 and S1 re-randomize [𝜍]A locally.
6: Outputs [𝜍]A

Figure 4: Our Homomorphic MAC Verification proof genera-
tion in the malicious setting.

for 𝜓 [𝑖] = 1, i.e., S0 does not perfectly correctly guesses all 𝜓 [𝑖]
where𝜓 [𝑖] = 1, instead S0 wrongly determines𝜓 [𝑖] = 0 by at least
one index 𝑖 where in fact 𝜓 [𝑖] is equal to 1. The reason why we
distinguish 𝐵1 from 𝐵2 is because for event 𝐵1 the adversary S0 does
not need to do anything to pass the verification. However, for event
𝐵2 the adversary S0 needs to select a random offset value 𝑒 added to
[𝜎]A0 to pass the verification (it happens with probability 2−(ℓ0+ℓ1 ) ),
the reason is because in event 𝐵2 that S0 wrongly assumed𝜓 [𝑖] = 0
by at least one index 𝑖 for𝜓 [𝑖] = 1, under this case servers obtain
an associated secret share of a non-zero random value.

Because we know𝜓 is uniformly generated, say S0 flips each bit
[𝑠𝑖 ]B0 independently for each 𝑖 ∈ [𝑚] with probability 𝑞. Then, we
have the probability of event 𝐵1

𝑃 (𝐵1) =
(𝑞
2
+ 1 − 𝑞

2
)𝑚

= 2−𝑚,

and the probability of event 𝐵2

𝑃 (𝐵2) =
( (𝑞

2
+ 1

2
)𝑚 − 𝑃 (𝐵1)

)
· 2−(ℓ0+ℓ1 ) < 2−(ℓ0+ℓ1 ) .

Let 𝑝∗ ∈ [0, 1] be the probability when the input 𝑓 (𝑥) is equal
to 1, then we have

𝑃 (𝐵) = 𝑃∗ · (𝑃 (𝐵1) + 𝑃 (𝐵2)) < 𝑃∗ · (2−𝑚 + 2−(ℓ0+ℓ1 ) )

Denote 𝑃 (𝐵∗) the probability that an occurrence of event 𝐵 results
in an flipped result 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)), which we know it happens
only when𝜓 ≠ {1}𝑚 , so we have 𝑃 (𝐵∗) < 𝑃 (𝐵).

For event C, 𝑃 (𝐶) = 1/2𝑚 . Thus,

𝑝2 < 𝑃 (𝐴) + 𝑃 (𝐵∗) + 𝑃 (𝐶)
< 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶)

< 2−ℓ1+log (ℓ1+1) + 𝑝
∗ + 1
2𝑚

+ 2−(ℓ0+ℓ1 )

< 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1 ) .

In conclusion,

𝑝 = 𝑝1 + 𝑝2 < 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1 ) .

FUNCTIONALITY ⟨𝑥⟩A or ⊥ ← FInput (𝑥, [𝑟in]A):
Players: A client C, S0 and S1.
Input: A secret 𝑥 from C, and [𝑟in]A from S0, S1.
Output: ⟨𝑥⟩A or ⊥.
1: ∀𝑏 ∈ {0, 1}, S𝑏 sends [𝑟in]A𝑏 to C.
2: ∀𝑏 ∈ {0, 1}, C returns 𝛿𝑏𝑥 = 𝑥 + [𝑟in]A0 + [𝑟in]

A
1 to S𝑏 .

3: ∀𝑏 ∈ {0, 1}, S𝑏 exchanges 𝛿𝑏𝑥 with S1−𝑏 to check if 𝛿𝑏𝑥 is equal
to 𝛿1−𝑏

𝑥 . If both the verification pass, denote 𝛿𝑥 = 𝛿0
𝑥 = 𝛿1

𝑥 , then
servers output ⟨𝑥⟩A = (𝛿𝑥 , [𝑟in]A𝑏 ), otherwise output ⊥.

Figure 5: Input validation protocol in the semi-honest server
setting.

B FULL PROTOCOL CONSTRUCTIONS FOR
BIOMETRIC AUTHENTICATION AND
THEIR ANALYSIS

In the following, we present the full protocol construction and
corresponding analysis for biometric authentication respectively
in the semi-honest setting and malicious setting.

B.1 Full protocol in the semi-honest setting
B.1.1 FInput for FScaledCosAuth in the semi-honest setting. Fig. 5
details the client input validation protocol in a semi-honest server
setting. The protocol ensures the validity of the client’s input by
having the client broadcast a masked value 𝛿𝑥 to both servers. The
servers, which gain no knowledge of the actual input 𝑥 , verify the
consistency of 𝛿𝑥 with each other to detect any potential malicious
client.

B.1.2 Correctness. From Theorem 1 we know that Protocol 2 out-
puts [𝑐]B where 𝑐 = 𝑐1∧𝑐2, 𝑐1 = Sign(IP(𝑥,𝑦)) and 𝑐2 = Sign(1/𝑡2 ·
IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)), thus computes Sign (cos(x, y) − 𝜏)
as shown in Eq. 3.

B.1.3 Security. Our goal is to prove that sub-protocols 1 and 2
provide a secure implementation of FScaledCosAuth when faced with
a semi-honest PPT adversary A in a 2PC setting. We assert that,
with the correlated randomness provided in sub-protocol 1, and
following the online evaluation of sub-protocol 2,A learns nothing
about the input 𝑥, 𝑦, or Sign(cos(𝑥,𝑦) − 𝜏).

Proof. By applying Theorem 2, we ensure that there is no infor-
mation leakage from the internal view tapes of CondEval.Evaltrunc
(∧, K̄∧, [𝑐1]B, [𝑧]A). However, we need to consider the other view
transcripts View𝑏 for each 𝑏 ∈ {0, 1}, where:

View𝑏 := {𝑘 (1)
𝑏
, 𝛿𝑢 , 𝛿𝑣, 𝛿𝑤}

As 𝛿𝑣 and 𝛿𝑤 hide the correlated intermediate values of 𝑥 and
𝑦, we argue that the view 𝑘

(1)
𝑏

is pseudo-random (computation-
ally indistinguishable from the real random key) as proved in Fig.
1 from [10], thereby concealing the information of 𝛼 (1) that is
contained in (𝑘 (1)0 , 𝑘

(1)
1 ) from A. □
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Protocol 1 ( [R]A,K∧,K0) ← Setup(1𝜆, ℓ, 𝜌)
Players: The central bank B.
Functionality: ( [R]A,K) ← Setup(1𝜆, ℓ, 𝜌 ) .
Input: A security parameter 𝜆, element encoding length ℓ , and a truncation

parameter 𝜌 ∈ Z+ where 𝜌 < ℓ .
Output: ( [R]A,K) .
1: (𝑥𝑖𝑛,𝑦𝑖𝑛 ) ←$Z2𝑛

2ℓ ,𝑢𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑦𝑖𝑛 )
2: 𝑣𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑥𝑖𝑛 ),𝑤𝑖𝑛 ← Prod(𝑦𝑖𝑛,𝑦𝑖𝑛 )
3: K∧ ← CondEval.Setup(∧, 1𝜆, ℓ )
4: {𝐶𝑖 , SK𝑖 , [𝑟 ]A𝑖 }𝑖∈{0,1} ← K∧
5: 𝛼 (2) ← [𝑟 ]A0 + [𝑟 ]A1
6: 𝑣 ←$Z2𝜌 , [𝜂 ]A ← SS.Share(Shift(𝛼 (2) , −𝜌, ℓ ) + 𝑣,Z2ℓ+𝜌 )
7: K̄∧ ← {𝐶𝑖 , SK𝑖 , [𝜂 ]A𝑖 }𝑖∈{0,1}
8: 𝛼 (1) ←$Z2ℓ

9: (𝑘0, 𝑘1 ) ← Gen[0,2
ℓ−1 ]

ℓ (1𝜆, 𝛼 (1) , 1, 0,Z2 )
10: R ← {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2 ), 𝛼 (1) , (𝛼 (1) )2}
11: K0 ← {𝑘0, 𝑘1}
12: Outputs ( [R]A, K̄∧,K0 )

Protocol 2 [𝑐]B ← Eval( [R]A, K̄∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A, 𝜏, 𝜌, ℓ)
Players: S0, S1.
Functionality: [𝑐 ]B ← Eval( [R]A, K̄∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A, 𝜏, 𝜌, ℓ ) .
Input: [R]A,K∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A from S0 and S1 respectively. A public

threshold 𝜏 ∈ (0, 1], element encoding length ℓ ∈ Z+, and a truncation
parameter 𝜌 ∈ Z+ where 𝜌 < ℓ .

Output: [𝑐 ]B
1: {𝑘0, 𝑘1} ← K0
2: {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2 ), 𝛼 (1) , (𝛼 (1) )2} ← R
3: [𝑢 ]A ← SS.IP(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑢𝑖𝑛 ]A )
4: [𝑣 ]A ← SS.IP(⟨𝑥⟩A, ⟨𝑥⟩A, [𝑣𝑖𝑛 ]A )
5: [𝑤 ]A ← SS.IP(⟨𝑦⟩A, ⟨𝑦⟩A, [𝑤𝑖𝑛 ]A )
6: 𝛿𝑢 ← FReveal ( [𝑢 + 𝛼 (1) ]A ) ⊲ First round
7: ⟨𝑢 ⟩A ← (𝛿𝑢 , [𝛼 (1) ]A )
8: ⟨𝑣⟩A ← (FReveal ( [𝑣 + 𝑟1 ]A ), [𝑟1 ]A ) ⊲ First round
9: ⟨𝑤⟩A ← (FReveal ( [𝑤 + 𝑟2 ]A ), [𝑟2 ]A ) ⊲ First round
10: for 𝑏 = 0 to 1 do
11: [𝑐1 ]B𝑏 ← Eval[0,2

ℓ−1 ]
ℓ (𝑘𝑏 , 𝑏, 𝛿𝑢 )

12: 𝑇 ← Shift( 1
𝜏2 , −𝑝, ℓ ) ⊲ after shifting,𝑇 ∈ Z2ℓ

13: [𝑧 ]A ← 𝑇 · SS.MUL(⟨𝑢 ⟩A, ⟨𝑢 ⟩A, [ (𝛼 (1) )2 ]A )
14: [𝑧 ]A ← [𝑧 ]A − 2𝜌 · SS.MUL(⟨𝑣⟩A, ⟨𝑤⟩A, [𝑟1𝑟2 ]A )
15: [𝑐 ]B ← CondEval.Evaltrunc (∧, K̄∧, [𝑐1 ]B, [𝑧 ]A ) ⊲ Second round
16: Outputs [𝑐 ]B

B.2 Full protocol for FScaledCosAuth in the
malicious setting

We present sub-protocols 3 and 4 which evaluate FScaledCosAuth in a
stronger threat model, with one malicious server whomight deviate
from the protocol description in sub-protocol 2. More specifically:

• In sub-protocol 3, B first runs CondEval∗ .Setup(1𝜆), then
from those results it obtains Δ and𝜓 , which are secret keys
for authenticating an arithmetical revelation and a Boolean
revelation in the later online evaluation. Afterwards, B addi-
tionally generates an authenticated random secret sharing
I𝑥 ,I𝑦 to be used in input phase. It also generates a function
dependent authenticated correlated random secret sharing

JRKA from Δ, and random FSS keysK0 from𝜓 for computing
𝑐1;
• After the setup phase, whenever the input is ready, (i.e., the
client provides her fresh template 𝑥), the client and the two
servers coordinately run:

⟨⟨𝑥𝑖 ⟩⟩A ← FInput∗ (𝑥𝑖 , [Δ]A, J𝑟 (𝑥)𝑖𝑛
[𝑖]KA, J𝑥𝑖𝑛 [𝑖]KA)

where FInput∗ is shown in Fig. 6;
• Then in the evaluation phase, the two servers evaluate the on-
line sub-protocol 4 Eval∗ in which we incorporate a variant
version of CondEval.Eval∗ denoted as CondEval.Eval∗trunc,
whose sole difference to the former is to perform a local
truncation after each 𝛿𝑥 is revealed (similarly to the process
applied in the semi-honest setting);
• After completing the evaluation phase in Protocol 4, the
servers obtain a final authenticated boolean secret sharing
(𝑦)𝑚 and an associated proof [𝜎]A.
• Upon receiving (𝑦)𝑚 and [𝜎]A from the servers, with value
𝜓 already known in the setup phase, B runs CondEval.Verify
((𝑦)𝑚, [𝜎]A,𝜓 ) and outputs a symbol 𝑧 ∈ −1, 0, 1,⊥. B ac-
cepts the authentication bit as 𝑧 if 𝑧 is not in {−1,⊥}.

We note here that via sub-protocol 4, we are able to capture a
client who may act maliciously i.e., may attempt to impersonate
a legitimate user and deduce information for the corresponding
templates. Thus, we incorporate a mechanism to check that the
secret sharing of the fresh (as well as the reference) template have
been secret shared correctly.

Protocol 3 (I𝑥 ,I𝑦, JRKA, K̄∗∧,K0) ← Setup∗ (1𝜆,𝑚, ℓ0, ℓ1, 𝜌)
Players: B.
Functionality: (I𝑥 , I𝑦, JRKA, K̄∗∧,K0 ) ← Setup∗ (1𝜆,𝑚, ℓ0, ℓ1, 𝜌 ) .
Input: A security parameter 𝜆, ℓ, ℓ1, 𝜌 ∈ Z+.
Output: (I𝑥 , I𝑦, JRKA, K̄∗∧,K0 ) .
1: K∗∧ ← CondEval∗ .Setup(∧, 1𝜆, ℓ0, ℓ1,𝑚)
2: {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝑟𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓 ]B, [Δ]A} ← K∗∧
3: Δ← [Δ]A0 + [Δ]A1 ,𝜓 ← [𝜓 ]A0 ⊕ [𝜓 ]A1
4: 𝑟 (𝑥)

𝑖𝑛
←$Z𝑛2ℓ , J𝑟

(𝑥)
𝑖𝑛

KA ← SS.Share({𝑟 (𝑥)
𝑖𝑛

,Δ · 𝑟 (𝑥)
𝑖𝑛
},Z2ℓ0+ℓ1 )

5: 𝑟 (𝑦)
𝑖𝑛
←$Z𝑛2ℓ , J𝑟

(𝑦)
𝑖𝑛

KA ← SS.Share({𝑟 (𝑦)
𝑖𝑛

,Δ · 𝑟 (𝑦)
𝑖𝑛
},Z2ℓ0+ℓ1 )

6: (𝑥𝑖𝑛,𝑦𝑖𝑛 ) ←$Z2𝑛
2ℓ , 𝑢𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑦𝑖𝑛 )

7: 𝑣𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑥𝑖𝑛 ),𝑤𝑖𝑛 ← Prod(𝑦𝑖𝑛,𝑦𝑖𝑛 )
8: (𝑟1, 𝑟2 ) ←$Z2

2ℓ
9: for 𝑖 = 1 to𝑚 do
10: 𝛼 (1,𝑖 ) ←$Z2ℓ
11: 𝑟 ←$Z2𝜌

12: 𝛼 (2,𝑖 ) ← [𝑟𝑖 ]A0 + [𝑟𝑖 ]A1
13: 𝜂𝑖 ← Shift(𝛼 (2,𝑖 ) , −𝜌, ℓ ) + 𝑟
14: (𝑘 (1,𝑖 )0 , 𝑘

(1,𝑖 )
1 ) ← Gen[0,2

ℓ−1 ]
ℓ (1𝜆, 𝛼 (1,𝑖 ) , 1 −𝜓 [𝑖 ], 0,Z2 )

15: J𝜂𝑖KA ← (SS.Share(𝜂𝑖 ,Z2ℓ0+ℓ1 ), SS.Share(Δ · 𝜂𝑖 ,Z2ℓ0+ℓ1 ) )
16: K̄∗∧ ← {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝜂𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓 ]B, [Δ]A}
17: R ← {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2 ), (𝛼 (1,1) )2}
18: JRKA ← (SS.Share(R,Z2ℓ0+ℓ1 ), SS.Share(R · Δ,Z2ℓ0+ℓ1 ) )
19: K0 ← {𝑘 (1,𝑖 )0 , 𝑘

(1,𝑖 )
1 }𝑖∈ [𝑚]

20: I𝑥 ← (J𝑟 (𝑥)𝑖𝑛
KA, J𝑥𝑖𝑛KA ), I𝑦 ← (J𝑟 (𝑦)𝑖𝑛

KA, J𝑦𝑖𝑛KA )
21: Outputs (I𝑥 , I𝑦, JRKA, K̄∗∧,K0 )
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FUNCTIONALITY ⟨⟨𝑥⟩⟩A or ⊥ ← FInput∗ (𝑥, [Δ]A, J𝑟KA, J𝑟inKA):
Players: A client C, S0 and S1.
Input: A secret 𝑥 from C, and J𝑟KA, J𝑟inKA from S0, S1.
Output: ⟨⟨𝑥⟩⟩A
1: ∀𝑏 ∈ {0, 1}, S𝑏 sends [𝑟 ]A

𝑏
to C.

2: ∀𝑏 ∈ {0, 1}, C returns 𝛿𝑏𝑥 = 𝑥 + [𝑟 ]A0 + [𝑟 ]
A
1 to S𝑏 .

3: ∀𝑏 ∈ {0, 1}, S𝑏 computes

J𝑥KA
𝑏
= (𝑏 · 𝛿𝑏𝑥 − [𝑟 ]A𝑏 , [Δ]

A
𝑏
· 𝛿𝑥 − [Δ · 𝑟 ]A𝑏 )

4: Servers run FReveal ( [𝑥 + 𝑟in]A) and obtain 𝑥 + 𝑟in. After that,
∀𝑏 ∈ {0, 1} S𝑏 computes

⟨⟨𝑥⟩⟩A
𝑏
= (𝑥 + 𝑟in, J𝑥KA𝑏 , J𝑟inK

A
𝑏
)

5: Outputs ⟨⟨𝑥⟩⟩A

Figure 6: Input validation protocol in the malicious setting.

Protocol 4 ((𝑦)𝑚, [𝜎]A) ← Eval∗ (JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A,K̄∗∧,K0,
𝜏, 𝜌)
Players: S0, S1.
Functionality: ( (𝑦)𝑚, [𝜎 ]A ) ← Eval∗ (JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A,K̄∗∧,K0,

𝜏, 𝜌 ) .
Input: Secret sharing [Δ]A, JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A and K1 from S0, S1, K2

from B, a public threshold 𝜏 ∈ (0, 1] and a truncation parameter 𝜌 ∈ Z+.
Output: ( (𝑦)𝑚, [𝜎 ]A ) .
1: 𝑝← [∅]𝑚+2
2: J𝑢KA ← SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑢𝑖𝑛KA )
3: J𝑣KA ← SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑥⟩⟩A, J𝑣𝑖𝑛KA )
4: J𝑤KA ← SS.IP(⟨⟨𝑦⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑤𝑖𝑛KA )
5: 𝛿𝑣 ← FReveal ( [𝑣 + 𝑟1 ]A ) ⊲ First round
6: 𝛿𝑤 ← FReveal ( [𝑤 + 𝑟2 ]A ) ⊲ First round
7: 𝑝[1] ← (𝛿𝑣, [Δ · 𝛿𝑣 ]A ),𝑝[2] ← (𝛿𝑤 , [Δ · 𝛿𝑤 ]A )
8: ⟨⟨𝑣⟩⟩A ← (𝛿𝑣, J𝑣KA, J𝑟1KA )
9: ⟨⟨𝑤⟩⟩A ← (𝛿𝑤 , J𝑤KA, J𝑟2KA )
10: {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝑟𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓 ]B, [Δ]A} ← K∗∧
11: {𝑘 (1,𝑖 )0 , 𝑘

(1,𝑖 )
1 }𝑖∈{0,1} ← K0

12: for 𝑖 = 1 to𝑚 do
13: J𝛿

𝑢 (𝑖 ) K
A ← J𝑢KA + J𝛼 (1,𝑖 ) KA

14: 𝛿
𝑢 (𝑖 ) ← FReveal ( [𝛿𝑢 (𝑖 ) ]

A ) ⊲ First round
15: for 𝑏 = 0 to 1 do
16: [𝑠𝑖 ]B𝑏 ← Eval[0,2

ℓ−1 ]
ℓ (𝑘 (1,𝑖 )

𝑏
, 𝑏, 𝛿

𝑢 (𝑖 ) )
17: 𝑝[2 + 𝑖 ] ← (𝛿

𝑢 (𝑖 ) , [Δ · 𝛿𝑢 (𝑖 ) ]
A )

18: (𝑠 )𝑚 ← {[𝑠1 ]B, · · · , [𝑠𝑚 ]B}
19: 𝑇 ← Shift( 1

𝜏2 , −𝜌, ℓ )
20: J𝑧KA ← 𝑇 · SS.MUL(⟨⟨𝑢 (1) ⟩⟩A, ⟨⟨𝑢 (1) ⟩⟩A, J(𝛼 (1,1) )2KA )
21: J𝑧KA ← J𝑧KA − 2𝜌 · SS.MUL(⟨⟨𝑣⟩⟩A, ⟨⟨𝑤⟩⟩A, J𝑟1𝑟2KA )
22: ( (𝑦)𝑚, [𝜎 ]A ) ← CondEval.Eval∗trunc (∧, K̄∗∧, (𝑠 )𝑚, J𝑧KA ) ⊲ Second

round
23: [𝜍 ]A ← FMacVryGen ( [Δ]A,𝑝)
24: [𝜎 ]A ← [𝜎 ]A + [𝜍 ]A
25: Outputs ( (𝑦)𝑚, [𝜎 ]A ) .

B.2.1 Soundness. In sub-protocol 4, assuming an active adver-
sary A, the soundness of functionality CondEval.Eval∗trunc has

been proven in Theorem 5. Furthermore, thanks to the protec-
tion provided by the MAC scheme of other operations using au-
thenticated arithmetic sharing, let 𝑝 represent the probability that
CondEval.Verify((𝑦)𝑚 , [𝜎]A, [𝜓 ]B) = 1−Sign(cos(𝑥,𝑦) −𝜏). Con-
sequently, we can deduce

𝑝 < 2−ℓ1+log (ℓ1+1) + 21−𝑚 + 2−(ℓ0+ℓ1 ) .

B.2.2 Security. We assert that, sub-protocols 3 and 4 provide a
secure implementation of FScaledCosAuth when faced with an ac-
tive PPT A in the 2PC setting. Specifically, with the correlated
randomness provided in Protocol 3, following the online evalua-
tion of sub-protocol 4, A learns nothing about the inputs 𝑥, 𝑦, or
Sign(cos(𝑥,𝑦) − 𝜏).

Proof. From Theorem 4, we first exclude information leak-
age within CondEval.Eval∗trunc (∧, K̄∗∧, (𝑠)𝑚, J𝑧KA). Still, we need
to prove that the view transcript

View𝑏 := {{𝑘 (1,𝑖 )
𝑏

, 𝛿𝑢 (𝑖 ) }𝑖∈[𝑚] , 𝛿𝑣, 𝛿𝑤}
of S𝑏 for each 𝑏 ∈ {0, 1} does not leak any information. This is true,
as 𝛿𝑣, 𝛿𝑤 ∼ U𝑁 information theoretically hide the associated inter-
mediate computation results; Nevertheless, for {(𝑘 (1,𝑖 )

𝑏
, 𝛿𝑢 (𝑖 ) )}𝑖∈[𝑚]

which are correlated, we argue that A has only the view 𝑘
(1,𝑖 )
𝑏

which is pseudo-random (computationally indistinguishable from
a real random key) as proved in Fig. 1 in [10]; Thus, hiding the
information of 𝛼 (1,𝑖 ) contained in (𝑘 (1,𝑖 )0 , 𝑘

(1,𝑖 )
1 ) from A. □

B.2.3 Truncating 𝛿𝑥 . Note that while executing Eval, a variant
version of CondEval.Eval which we denote as CondEval.Evaltrunc
is incorporated whereby 𝛿𝑥 is truncated additionally. Namely, it
performs

𝛿𝑥 ← Shift(𝛿𝑥 , 4𝜌, ℓ)
in CondEval.Evaltrunc while the remaining steps in CondEval.Eval
remain unchanged. Previously, when dealing with the truncation
of [𝑥]A, [𝜂]A was generated and corresponds to the secret sharing
result of the sum of the shifting of 𝑟 to the left by 𝜌 and a random
value 𝑣 ∈ Z2𝜌 ; In the above equation, the fractional part of 𝛿𝑥 is
truncated by 4𝜌 bits due to the accumulation of the three multiplica-
tions over secret sharing and one multiplication over a public scalar
value (𝑇, 2𝜌 resp. in line 12,14). Such a truncation does not imply
any additional communication round and is performed during the
second communication round. Furthermore, as it will be shown in
section 7.3, such a truncation has almost no impact on the actual
accuracy of the protocol.
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