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Abstract. Memory tightness of reductions in cryptography, in addition to the standard tightness related to

advantage and running time, is important when the underlying problem can be solved efficiently with large

memory, as discussed in Auerbach, Cash, Fersch, and Kiltz (CRYPTO 2017). Diemert, Gellert, Jager, and Lyu

(ASIACRYPT 2021) and Ghoshal, Ghosal, Jaeger, and Tessaro (EUROCRYPT 2022) gave memory-tight proofs

for the multi-challenge security of digital signatures in the random oracle model.

This paper studies the memory-tight reductions for post-quantum signature schemes in the quantum random

oraclemodel. Concretely, we show that signature schemes from lossy identification aremulti-challenge secure

in the quantum random oracle model via memory-tight reductions. Moreover, we show that the signature

schemes from lossy identification achieve more enhanced securities considering quantum signing oracles

proposed by Boneh and Zhandry (CRYPTO 2013) and Alagic, Majenz, Russel, and Song (EUROCRYPT 2020).

We additionally show that signature schemes from preimage-sampleable functions achieve those securities

via memory-tight reductions.

Keywords: memory-tight reductions · signature · provable security · post-quantum cryptography · quantum

random oracle model (QROM) · plus-one unforgeability · blind unforgeability
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1 Introduction

Memory-tight reductions: Provable security in cryptography consists of reductions and assumptions; we

assume the hardness of a computational problem, design a cryptographic scheme, and then make a reduction

algorithm  to solve the underlying problem by using an adversary  breaking the security of the scheme.

The tightness of the reduction is measured by how close the resources of  and  are, where resources

are success probability, running time, the number of queries, etc. The tightness of the security reduction is

essential because it impacts the parameters of the cryptographic schemes and, thus, the scheme’s efficiency.

(See e.g., [BR96, Cor00, KM07, CMS12, CKMS16].)

Auerbach, Cash, Fersch, and Kiltz [ACFK17] explicitly put forth memory tightness of the reduction from the

view ofmemory usage.1 This concept is important when the underlying computational problems are memory-

sensitive; the problem can be solved efficiently with large memory. Examples of such problems are factoring,

lattice problems, the lerning-parity-with-noise (LPN) problem, and the multi-collision problem of the hash

function.

After that, memory-tight reductions have gathered much attention and become an active area of cryptogra-

phy: Auerbach et al. [ACFK17] gave several techniques to make security proofs memory-tight.
2
Using those

techniques, they gave a memory-tight reduction for the standard security, the existential unforgeability un-

der chosen-message attacks (EUF-CMA security), of RSA-FDH [RSA78, BR96] in the random oracle model

(ROM) [BR93]. Diemert, Gellert, Jager, and Lyu [DGJL21] studied memory-tight proofs of the strong exis-

tential unforgeability under chosen-message attacks in the multi-challenge setting (msEUF-CMA security),

where an adversary can submit multiple attempts of forgery and it wins if one of them is a ‘new’ forgery.

They gave memory-tight reductions in the ROM for msEUF-CMA security of RSA-PFDH [BR96], the BLS

signature [BLS01], and RFS-LID [AFLT12, FS87], where RFS denotes the Fiat-Shamir transform with random

nonces and LID denotes a lossy identification. Ghoshal, Ghosal, Jaeger, and Tessaro [GGJT22] also gave a

memory-tight proof of the msEUF-CMA security of RSA-PFDH in the multi-challenge setting in the ROM.

Bhattacharyya [Bha20] and Jaeger and Kumar [JK22] gave memory-tight proofs for the security of key en-

capsulation mechanisms based on the variants of the Diffie-Hellman problem in the ROM. There are studies

for symmetric-key cryptography, e.g., [Din20, GJT20, GGJT22], and the lower bound of memory usage of

black-box reductions [ACFK17, WMHT18, GT20, GJT20].

Post-quantum signatures and quantum random oracle model: Post-quantum signatures are an emerging

area of cryptography as NIST had run the standardization of PQC and selected three post-quantum signa-

tures (Falcon, Dilithium, and SPHINCS+) [AAC
+
22] and they started the standardization of additional signa-

ture schemes. The security of those post-quantum signatures is proven in the quantum random oracle model
(QROM) [BDF+11], in which an adversary can make quantum queries to a random oracle. As far as we sur-

veyed, the sEUF-CMA security proof for PSF-DFDH in Boneh et al. [BDF
+
11] is only one memory-tight proof

for signature in the QROM, where PSF is preimage-sampleable functions [GPV08] and DFDH is FDH deran-

domized by a pseudo-random function (PRF). The following natural question arises:

Can we construct memory-tight reductions for the msEUF-CMA security of post-quantum PSF-

based signatures in the QROM?

In addition, the memory-tight security proof of themsEUF-CMA security of the signature scheme from LID in

Diemert et al. [DGJL21] assumes that the underlying LID is perfectly correct and commitment-recoverable
3

and has statistical honest-verifier zero-knowledge (HVZK) with a special simulator
4
and perfect unique re-

sponse property
5
. Moreover, their proof is considered in the ROM. Thus, it is natural to ask the following

question:

Can we construct memory-tight reductions for the msEUF-CMA security of post-quantum LID-

based signatures in the QROM and eliminate the conditions on the underlying LID?

Quantum signing oracles: Furthermore, there are extended security models for signature schemes in the

quantum setting by giving quantum access to the signing oracle. The first one is proposed by Boneh and

Zhandry and dubbed EUF-qCMA security [BZ13b]. But, we call it plus-one unforgeability (PO security in

1
2023-11-20: Bernstein [Ber11] considered a memory-bounded adversary/reduction. There might be other studies consid-

ering memory-bounded adversary/reduction.

2
2023-11-20: Bernstein [Ber11] proposed techniques (e.g., use PRF instead of lazy sampling) to reduce the memory of the

adversary simulating the random oracles.

3
The verification algorithm taking a transcript (𝑤, 𝑐, 𝑧) computes commitment 𝑤′

from challenge 𝑐 and response 𝑧 and

accepts if and only if 𝑤 = 𝑤′
.

4
Their deterministic simulator takes a challenge and a response chosen uniformly at random and outputs a commitment.

5
For any (𝑣𝑘, 𝑤, 𝑐), where 𝑣𝑘 is honestly generated public key, there is at most one response 𝑧 that makes the verifier

accepting. See their proof of the third claim in [DGJL21, Appendix D, ePrint]
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short) following [AMRS20], because, in the security game, an adversary can access the signing oracle with 𝑞
quantum queries and is required to output 𝑞 +1 distinct valid message/signature pairs. The other is proposed

by Alagic, Majenz, Russell, and Song [AMRS20] and dubbed (strong) blind unforgeability (BU/sBU security

in short). In the security game, an adversary can access the signing oracle with quantum queries, while some

signatures are blinded if the corresponding messages are in a filter. The adversary is required to output a valid

signature on a filtered message. Doosti, Delavar, Kashefi, and Arapinis [DDKA21] also gave parametrized

security definitions using quantum signing oracles and showed that some of their definition are equivalent

to the blind unforgeability.

Boneh and Zhandry [BZ13b] showed that the Lamport one-time signature and the Merkle signature are

one-time PO-secure and PO-secure in the standard model, respectively. They further showed that some

weakly-secure signature schemes under classical chosen message attacks can be converted into PO-secure

signature schemes. They also directly showed that PSF-DFDH is PO-secure in the QROM. Chatterjee, Garg,

Hajiabadi, Khurana, Liang, Malavolta, Pandey, and Shiehian [CGH
+
21] defined a PO-like security of ring sig-

nature and proposed a ring signature scheme satisfying their security notion. Chatterjee, Chung, Liang, and

Malavolta [CCLM22] showed that PSF-DFDH is BU-secure in the QROM and their lattice-based signature is

BU-secure in the standard model. They also extended a BU-like security of ring signature and proposed a ring

signature satisfying their BU-like security. Majenz, Manfouo, and Ozols [MMO21] showed that the Lamport

one-time signature and the Winternitz one-time signature are BU-secure in the QROM by extending an ar-

gument in Alagic et al. [AMRS20]. Yuan, Tibouchi, and Abe [YTA23] showed that a variant of SPHINCS+ is

PO-secure in the QROM.

To the best of the authors’ knowledge, there is no memory-tight proof for such enhanced securities for post-

quantum signatures based on PSF and LID. Our third question is:

Can we construct memory-tight reductions for those advanced securities (PO, BU, and sBU) of post-

quantum signatures based on PSF and LID in the QROM?

1.1 Contributions

We affirmatively answer those three questions: The main contributions of this paper are four-fold. First,

we give a memory-tight msEUF-CMA security proof for LID-based signature schemes. We remove the con-

straints on the underlying LID scheme as much as possible, and we can employ lattice-based LID schemes

with imperfect correctness, say, Dilitihium-QROM [KLS18, DFPS23]
6
and G+G [DPS23]. Second, we extend

the msEUF-CMA security proof into (memory-tight) PO and sBU security proofs for LID-based signature

schemes. Those are the first PO and sBU security proof of LID-based signature schemes. Third, we mod-

ify the existing sEUF-CMA, PO, and BU security proofs for PSF-based signature schemes into memory-tight

msEUF-CMA, PO, and sBU security proofs. Fourth, we pointed out a gap between BU security and PO security.

New memory-tight msEUF-CMA security proofs for LID-based signatures: We will give memory-
tight msEUF-CMA, PO, and sBU security proofs for LID-based signature schemes. Our starting point is the

msEUF-CMA security proof, and we extend it into PO and sBU security proofs.

ThemsEUF-CMA security proof for LID-based signatures: We give amemory-tightmsEUF-CMA security

proof for RFS-LID in the QROM, where LID can be imperfectly correct and not commitment-recoverable and

can have ordinal statistical HVZK and computational unique response (CUR) property. AsDiemert et al. [DGJL21],

we first show the msEUF-CMA1 security of FS-LID with memory-tight reduction, where CMA1 denotes

chosen-message attacks in the one-siganture-per-message setting [KLS18] and FS denotes the Fiat-Shamir

transform with bounded aborts [FS87, Lyu09]; we then obtain a memory-tight msEUF-CMA security proof for

RFS-LID by using a lemma in [DGJL21].

Our core contribution is a newmemory-tight security proof of themsEUF-CMA1 security of FS-LID. We care-

fullymerge (and correct) thememory-tightmsEUF-CMA1 security proof in the ROMbyDiemert et al. [DGJL21]

and the memory-loose sEUF-CMA1 security proof in the QROM by Devevey, Fallahpour, Passelègue, and

Stehlé [DFPS23], where the latter is a correction of the history-free programming proof in Abdalla, Fouque,

Lyubashevsky, and Tibouchi [AFLT12] and Kiltz, Lyubashevsky, and Schaffner [KLS18].

Let us briefly remind the Fiat-Shamir with aborts applied to the LID scheme. Let 𝑤, 𝑐, and 𝑧 denote a com-

mitment, a challenge, and a response of the underlying LID scheme, respectively. On a message 𝑚, the signer
generates a commitment 𝑤 and computes challenge 𝑐 = H(𝑚,𝑤), where H is a random oracle, and response 𝑧
until 𝑧 ≠ ⊥, and outputs a signature (𝑤, 𝑧). The verifier verifies the transcript (𝑤, 𝑐, 𝑧) via the LID’s verification
algorithm by computing 𝑐 = H(𝑚,𝑤).
Our proof is summarized as follows: We first derandomize the signing oracle by using the random function.

We next exclude the event that the signing oracle fails to produce a valid signature on the submitted message.

6
We need a statistical HVZK simulator in [DFPS23, Section 4] instead of a non-aborting HVZK simulator in [KLS18].
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This exclusion is required to invoke the CUR property of LID correctly.We then replace the winning condition

that the adversary outputs a new pair of a message𝑚∗
and a valid signature (𝑤∗, 𝑧∗)with the condition that the

adversary’s signature (𝑤∗, 𝑧∗) on𝑚∗
is different from the signature (�̃�, �̃�) the signing oracle produces on𝑚∗

as

Diemert et al. [DGJL21]. This modification allows us to remove the list containing a pair of messages queried

by the adversary and signatures produced by the signing oracle and makes reductions memory-tight. In

order to analyze the effect of this replacement, we will need to analyze the min-entropy of �̃� produced by the

signing oracle carefully for imperfect-correct LID because the random oracle leaks the information of �̃�. After
those modifications, we follow the proof of Devevey et al. [DFPS23] to eliminate some events and simulate

the signing oracle without the signing key. Before replacing the real verification key with the lossy one, we

exclude the event that 𝑤∗
in the adversary’s signature is equivalent to �̃� in the signature produced by the

signing oracle. This event cannot happen if LID has the CUR property. For the details, see Section 4. We then

replace the verification key with a lossy one. In the final game, the adversary cannot win [AFLT12, KLS18].

While merging the proofs carefully and removing the constraints are technical contributions, we have two

additional technical byproducts discussed below.

1: Flaw in the previous sEUF-CMA1 proofs in the QROM: We found a flaw related to the CUR property

in the previous sEUF-CMA1 proof in the QROM [DFPS23]. Roughly speaking, to reduce the sEUF-CMA1

security to the EUF-NMA security of the signature, we want the adversary to output a pair 𝑚∗
and (𝑤∗, 𝑧∗)

such that we do not program the random oracle at (𝑚∗, 𝑤∗). In order to do so, we exclude the event that 𝑤∗ = �̃�
where �̃� is a part of the signature (�̃�, �̃�) produced by the signing oracle on 𝑚∗

and (𝑚∗, �̃�) is programmed.

Devevey et al. [DFPS23] and Barbosa et al. [BBD
+
23] pointed out that programming the randomoracle only on

succeeding signatures introduces a bias on the distribution of the signing oracle and the random oracle and the

existing proofs do not care about the bias. To fix this error in the history-free programming approach [AFLT12,

KLS18], Devevey et al. [DFPS23] programmed the random oracle at (𝑚, �̃�𝑖), where �̃�𝑖 is the commitment for

the 𝑖-th signer’s attempt on the message 𝑚. Unfortunately, they ignored the fact that the adversary would

output a message𝑚∗
and a signature (𝑤∗, 𝑧∗)with𝑤∗ = �̃�. To fix this problem, we exclude the event that𝑤∗ =

�̃�𝑖 for some 𝑖.We are interested especially in the case of𝑤∗ = �̃�. Tomake a reduction to the CUR property, both

the transcript (�̃�, 𝑐, �̃�) generated by the signing oracle and (�̃�, 𝑐, 𝑧∗) generated by the adversary’s signature are
valid. To ensure the validity of (�̃�, 𝑐, �̃�) generated by the signing oracle, we exclude the event that the signing
oracle fails to output a valid signature. Thus, our security bound involves the term related to correctness.

2: The divergence HVZK case: Some LID-based signatures based on lattices employ divergence HVZK in-

stead of statistical HZVK to achieve a smaller signature size. See, e.g., [dPRS23, DPS23]. Roughly speaking,

statistical HVZK requires that the real transcript and the simulated one are statistically close, while diver-

gence HVZK requires that the Rényi divergence of the distribution of the real transcript from that of the

simulated transcript is sufficiently small, say, (1+ 𝑟) ∈ [1,∞]. This paper only considers the Rényi divergence
of infinity order.

The adaptive reprogramming approach for (s)EUF-CMA1 proof reprograms the randomoracle on𝑂(𝑞𝑆) points
with the simulated transcript, where 𝑞𝑆 is the number of the signing queries, and the bound with random ora-

cle reprogrammedwith real transcripts will be (1+𝑟)𝑂(𝑞𝑆 ) ⋅𝜖 due to the property of the Rényi divergence, where
𝜖 is the bound with the random oracle reprogrammed with simulated transcripts. In contrast, the history-free

approach reprograms the random oracle on 𝑂(1) points per message with the simulated transcripts, and the

multiplicative security loss can be (1 + 𝑟)𝑂(𝑀)
, where 𝑀 is the size of the message space.

In this paper, we show other bound (1 + 𝑟)𝑂(1)⋅𝓁(𝜖 + 𝑂(𝑞3)/𝓁) + negl(𝜅) for any positive 𝓁. This allows us to
set 𝓁 = 𝑞3/negl(𝜅), which can be smaller than 𝑀 . Moreover, if we 𝑟 = 1/𝓁, then the multiplicative security

loss can be constant. This result is obtained by extending [BZ13b, Lemma 2.5] for the statistical case into the

Rényi divergence case, which may be of independent interest.

First (memory-tight) PO and sBU security proofs for LID-based signatures: We further extend the

security proof into the PO and sBU securities. We give a memory-loose PO security proof for DFS-LID and

give a memory-tight PO security proof for DFS+-LID, where DFS and DFS+ denote the Fiat-Shamir transform

derandomized by PRF and random oracle, respectively. We also give a memory-tight sBU security proof for

DFS-LID. As far as we know, those are the first direct PO and sBU security proofs for the LID-based signature

schemes in the QROM.

In order to consider memory tightness, we modify the PO security model with the forgery-checking oracle;

the forgery-checking oracle maintains the list  of the pairs of messages and valid signatures the adversary

submits, and the adversary wins if the size of the list is larger than the number of quantum singing queries

𝑞𝑆 , that is, # > 𝑞𝑆 . In the PO security proof, we need to replace this winning condition 𝐴 (# > 𝑞𝑆), which
requires memory of 𝑂(𝑞𝑆) size, with the condition 𝐵 that the adversary’s signature (𝑤∗, 𝑧∗) on 𝑚∗

is different

from (�̃�, �̃�) the signing oracle produced on the 𝑚∗
. To treat this change, we first consider the difference

4



Table 1. Summary of security proofs for LID-based signatures in the QROM. IND, CUR, and PRF in the column “Assumptions”

denote the key indistinguishability of LID, the computational unique response of LID, and the pseudorandomness of PRF,

respectively. The mark ✔ in the column “Adv.” and “Time” indicates the multiplicative loss of advantage and time is 𝑂(1),
respectively. The marks ✔ and x in the column “Mem.” indicate the additive loss of memory usage is 𝑂(1) ⋅poly and 𝑂(𝑞) ⋅poly,
respectively.

Proof Scheme Security Assumptions Adv. Time Mem.

KLS18+DFPS23 [KLS18, DFPS23] FS-LID sEUF-CMA1 IND, CUR ✔ ✔ x

KLS18+DFPS23 [KLS18, DFPS23] DFS-LID sEUF-CMA IND, CUR, PRF ✔ ✔ x

Section 4 FS-LID msEUF-CMA1 IND, CUR ✔ ✔ ✔
Section 4 RFS-LID msEUF-CMA IND, CUR ✔ ✔ ✔
Section 4 DFS-LID msEUF-CMA IND, CUR, PRF ✔ ✔ x

Section 4 DFS+-LID msEUF-CMA IND, CUR ✔ ✔ ✔
Section 6 DFS-LID PO IND, CUR, PRF ✔ ✔ x

Section 6 DFS+-LID PO IND, CUR ✔ ✔ ✔
Section 5 DFS-LID sBU IND, CUR, PRF ✔ ✔ ✔

Table 2. Summary of security proofs for PSF-based signatures in the QROM. CR, INV, OW, and PRF in the column “As-

sumptions” denote the collision resistance, non-invertibility, and one-wayness of PSF and the pseudorandomness of PRF,

respectively. The marks ✔ and x in the columns “Adv.” and “Time” indicate whether the multiplicative loss of advantage and

time is 𝑂(1) or not. The marks ✔ and x in the column “Mem.” indicate whether the additive loss of memory usage is 𝑂(1) ⋅poly
and 𝑂(𝑞) ⋅poly, respectively. In the signing algorithm of PSF-PFDH*, the randomness for PSF is chosen as 1) choose a random

pairwise hash function 𝑄 and 2) compute a randomness by 𝑄(𝑚).

Proof Scheme Security Assumptions Adv. Time Mem.

BDFLSZ11 [BDF
+
11] PSF-DFDH+

sEUF-CMA CR ✔ ✔ ✔
KX24 [KX24] PSF-PFDH EUF-CMA INV x ✔ x

CCLM22 [CCLM22] PSF-DFDH BU CR, PRF ✔ ✔ x

BZ13 [BZ13b] PSF-PFDH* PO OW, CR x x x

BZ13 [BZ13b] PSF-DFDH PO CR, PRF ✔ ✔ x

subsection D.3 PSF-FDH msEUF-CMA1 CR ✔ ✔ ✔
subsection D.3 PSF-PFDH msEUF-CMA CR ✔ ✔ ✔
subsection D.3 PSF-DFDH msEUF-CMA CR, PRF ✔ ✔ x

subsection D.3 PSF-DFDH+
msEUF-CMA CR ✔ ✔ ✔

subsection D.4 PSF-DFDH PO CR, PRF ✔ ✔ x

subsection D.4 PSF-DFDH+
PO CR ✔ ✔ ✔

subsection D.5 PSF-DFDH sBU CR, PRF ✔ ✔ ✔

between the winning condition 𝐴 and the winning condition 𝐴 ∧ 𝐵. Very roughly speaking, if the adversary

makes the difference, it should guess (𝑞𝑆 +1) signatures on distinct messages. The min-entropy of �̃� allows us

to upper-bound this guessing probability. After that, we relax the winning condition as 𝐵. This modification

is the core of our PO security proof. For the details, see Section 6.

The sBU security proof is obtained by following the sEUF-CMA1 security proof, and we omit the details. For

the details, see Section 5.

Newmemory-tight security proofs for PSF-based signatures: Weextend thememory-tight sEUF-CMA

security proof for PSF-DFDH in the QROM in Boneh et al. [BDF
+
11] into a memory-tight msEUF-CMA1 se-

curity proof for PSF-FDH in the QROM. We then obtain a memory-tight msEUF-CMA security proof for

PSF-PFDH in the QROM by using the lemma in [DGJL21] as in the case of RFS-LID. Furthermore, we show a

memory-loose PO security proof of PSF-DFDH and a memory-tight PO security proof of PSF-DFDH+
in the

QROM, where DFDH+
denotes FDH derandomized by a random function. We also give a memory-tight sBU

security proof of PSF-DFDH by modifying a memory-loose BU security proof of PSF-DFDH in the QROM by

Chatterjee et al. [CCLM22]. See Section D for the details.

See the summary and comparison in Table 2.

A gap between PO and BU security: As a byproduct, we found that BU security does not imply PO secu-

rity, which refutes the conjecture that BU security implies PO security of message authentication code (MAC)

5



by Alagic et al. [AMRS20].
7
We exemplify this by constructing a BU-secure but PO-insecure MAC and signa-

ture scheme from a BU-secure MAC and signature scheme, respectively. We observe that PO-secure scheme

should be sEUF-CMA-secure, but BU-secure scheme can be sEUF-CMA-insecure. Thus, making BU-secure

MAC and signature scheme sEUF-CMA-insecure, the new scheme is PO-insecure. We think the conjecture

should be that sBU security implies PO security. See Section C for the details.

Open problems: We have managed the imperfect correctness of LID in the memory-tight security proofs

of LID-based signature schemes by following the history-free approach [KLS18, DFPS23] instead of the adap-

tive reprogramming appraoch [GHHM21, DFPS23, BBD
+
23]. The history-free approach requires LID to have

statistical HVZK.While we extend the above approach into the case of divergence HVZK [dPRS23, DPS23] for

small divergence (1 + negl(𝜅)), we fail to treat large divergence, say, (1 + 1/poly(𝜅)), which will yield shorter

signature sizes. We leave it as an open problem to construct memory-tight security proofs treating large
divergence HVZK and computational HVZK, which would require the adaptive reprogramming approach.

We currently can not give the memory-tight security proofs of the PSF-based signature scheme with im-
perfectly correct PSFs. Kosuge and Xagawa [KX24] gave memory-loose security proofs using the adaptive

reprogramming technique [GHHM21]. We leave it as an open problem to give memory-tight security proof

of signature schemes based on imperfectly-correct PSFs.

Jaeger and Kumar [JK22] gave memory-tight reductions for multi-challenge, multi-user CCA security of

PKE/KEM. It is interesting to consider the multi-challenge, multi-user security of signature schemes with

memory-tight reductions in the ROM and QROM.

1.2 Organization

Section 2 reviews basic notions and notations, quantum computations, and lossy identification. Section 3

reviews digital signatures, their security notions, and LID-based signature schemes. Section 4, Section 5, and

Section 6 show msEUF-CMA, sBU, and PO security of the LID-based signature schemes. Section A proves

the lemma on the Rényi divergence. Section B reviews the instantiations of lossy identifications. Section C

discusses the relationship between PO security and BU security of MAC and signatures. Section D includes

the review of PSF-based signature schemes and shows their msEUF-CMA, PO, and sBU securities.

1.3 Version Notes

– 2023-11-09: This is the original version.

– 2023-11-20: We update the references on the reductions related to memory-bounded adversaries.

– 2023-12-13: We correct errors related to the min-entropy of a signature generated by the singing oracle

and introduce the special correctness of LID. We also correct errors related to the correctness of the

signature and the CUR property of LID.

– 2024-01-09: We modify the proofs to simplify the bounds and remove the restriction on the special cor-

rectness of LID. We also add the lemmas related to divergence HVZK.

– 2024-02-28: We move some sections in the appendix to the main body and modify the bounds slightly.

– 2024-06-07: We correct typos.

2 Preliminaries

The security parameter is denoted by 𝜅 ∈ ℤ+
. We use the standard 𝑂-notations. For 𝑛 ∈ ℤ+

, we let [𝑛] ∶=
{1,… , 𝑛}. For a statement 𝑃 , J𝑃K denotes the truth value of 𝑃 .
Let  and  be two finite sets. Func( ,) denotes a set of all functions whose domain is  and codomain

is  . For a set of disributions over  indexed by 𝑥 ∈  , 𝐷 = {𝐷𝑥 ∶ 𝑥 ∈ }, we define Func , (𝐷) as a
distribution of 𝑓 in Func( ,) such that, for each 𝑥 ∈  , 𝑓 (𝑥) is independently drawn from a ditribution 𝐷𝑥 .

When every 𝐷𝑥 is the same as 𝐷′
on every 𝑥 , we simply write Func , (𝐷′).

For a distribution 𝐷, we often write “𝑥 ← 𝐷,” which indicates that we take a sample 𝑥 according to 𝐷. For a
finite set  , 𝑈 () denotes the uniform distribution over  . We often write “𝑥 ← ” instead of “𝑥 ← 𝑈 ().” If
inp is a string, then “out ← A𝑂(inp)” denotes the output of algorithm A running on input inp with an access to

a set of oracles𝑂. If A and oracles are deterministic, then out is a fixed value and wewrite “out ∶= A𝑂(inp).” We

also use the notation “out ∶= A(inp; 𝑟)” to make the randomness 𝑟 of A explicit. For a probabilistic algorithm

A,A denotes the radnomness space of A.

7
The conference version [AMRS20] claims that BU-secure MAC is also PO-secure, but, the newest version,

‘20230420:091107’ [AMRS18] reported an error in their proof and removed the claim.
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For an algorithm or adversary A, Time(A) and Mem(A) denotes the time and memory complexity of the

algorithm A, respectively. For a scheme S, Time(S) and Mem(S) denotes the maximum time and memory

complexity of the algorithms in the scheme S, respectively.
For any function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, a quantum access to 𝑓 ismodeled as oracle access to unitary𝑂𝑓 ∶ |𝑥⟩ |𝑦⟩ ↦
|𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩. By convention, we will use the notation A|𝑓 ⟩,𝑔

to stress A’s quantum and classical access to 𝑓
and 𝑔 .

Distributions: For two distributions 𝐷,𝐷′
over  , we say that 𝐷 is 𝜖-close to 𝐷′

if the distance |𝐷 − 𝐷′| ∶=
∑𝑦∈ |𝐷(𝑦) − 𝐷′(𝑦)| is at most 𝜖.

Definition 2.1 (Rényi divergence; exponential form). Let 𝑃 and 𝑄 be two discrete distributions such that
Supp(𝑃) ⊆ Supp(𝑄). Let 𝛼 ∈ (0, 1) ∪ (1,∞). The Rényi divergence of order 𝛼 of 𝑃 from 𝑄 is defined as

𝑅𝛼(𝑃 ;𝑄) ∶= (
∑

𝑥∈Supp(𝑄)

𝑃(𝑥)𝛼

𝑄(𝑥)𝛼−1)

1
𝛼−1

.

For 𝛼 = ∞,

𝑅∞(𝑃 ;𝑄) = sup
𝑥∈Supp(𝑃)

𝑃(𝑥)
𝑄(𝑥)

∈ [1,+∞].

Lemma 2.1 ([vEH14]). Let 𝑃 and 𝑄 be two discrete distributions such that Supp(𝑃) ⊆ Supp(𝑄). Let 𝛼 ∈ (0, 1) ∪
(1,∞].
– R1: data processing: For a (randomized) function 𝑓 ,

𝑅𝛼(𝑓 (𝑃); 𝑓 (𝑄)) ≤ 𝑅𝛼(𝑃 ;𝑄).

– R2: probability preservation: For any event 𝐸 ⊆ Supp(𝑄),

𝑃(𝐸) ≤ (𝑄(𝐸) ⋅ 𝑅𝛼(𝑃 ;𝑄))
𝛼−1
𝛼 ≤ 𝑄(𝐸)

𝛼−1
𝛼 ⋅ 𝑅𝛼(𝑃 ;𝑄).

Especially, when 𝛼 = ∞, we have
𝑃(𝐸) ≤ 𝑅∞(𝑃 ;𝑄) ⋅ 𝑄(𝐸).

– R3: Multiplicativity:

𝑅𝛼(∏
𝑖
𝑃𝑖;∏

𝑖
𝑄𝑖) = ∏

𝑖
𝑅𝛼(𝑃𝑖;𝑄𝑖).

We adopt the conventions that 0/0 = 0 and 𝑥/0 = +∞ for 𝑥 > 0.

2.1 Lemmas on Quantum Computations

Lemma 2.2 ([BZ13b, Lemma 2.5, ePrint]). Let  and  be two finite sets. Let 𝐷 = {𝐷𝑥 } and 𝐷′ = {𝐷′
𝑥 } be two

sets of efficiently sampleable distributions over  indexed by 𝑥 ∈  . let  be a quantum adversary making 𝑞
(quantum) queries to an oracle 𝑓 ∶  →  . If for each 𝑥 ∈ 𝑋 , |𝐷𝑥 − 𝐷′

𝑥 | ≤ 𝜖 holds, then |Pr[𝑓 ← Func , (𝐷) ∶
|𝑓 ⟩ = 1] − Pr[𝑓 ← Func , (𝐷′) ∶ |𝑓 ⟩ = 1]| ≤

√
(6𝑞)3𝜖. 8

Lemma 2.3 ([BZ13b, Lemma 2.6, ePrint]). Fix two finite sets  and  . Fix a set 𝐷 of distributions 𝐷𝑥 over
 indexed by 𝑥 ∈  . Let 𝛼 be the minimum over all 𝑥 ∈  of the min-entropy of the distribution 𝐷𝑥 . Now,
let 𝑓 ∶  →  be a function chosen according to Func , (𝐷). Then, any 𝑞-query quantum algorithm can only
produce (𝑞 + 1) input/output pairs of 𝑓 with probability at most (𝑞 + 1)/⌊2𝛼⌋.

Generic quantum search [Zha12a, HRS16, KLS18]: Let  be a finite set. The generic search problem

(GSP, in short) is finding 𝑥 ∈  satisfying 𝑔(𝑥) = 1 given access to an oracle 𝑔 ∶  → {0, 1}, where for

each 𝑥 ∈  , 𝑔(𝑥) is drawn independently according to Ber𝜆, that is, 𝑔 ← Func ,{0,1}(Ber𝜆). Kiltz et al. [KLS18]
generalized this problem by modifying the global distribution Ber𝜆 into Ber𝜆(𝑥) on each 𝑥 , that is, the case that
𝑔 ← Func ,{0,1}({Ber𝜆(𝑥) ∶ 𝑥 ∈ }).

Lemma 2.4 (Generic search problem with bounded probabilities [KLS18]). Let 𝜆 ∈ [0, 1]. For any quantum
algorithm  = (1,2) making at most 𝑞 queries to |𝑔⟩, we have

Pr[GSPB𝜆, = 1] ≤ 8(𝑞 + 1)2𝜆,

where game GSPB𝜆, is defined in Figure 1.

8
The value 63 = 27 ⋅ 8 is composed from 27 in [Zha12a, Corollary 7.5, ePrint] (denoted by 𝐶0 in [BZ13b]) and 8 in [BZ13b,

Lemma 2.5].
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GSPB𝜆,

1 ∶ {𝜆(𝑥)}𝑥∈ ← 1

2 ∶ 𝐢𝐟 ∃𝑥 ∈  s.t. 𝜆(𝑥) > 𝜆 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
3 ∶ 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 𝑥 ∈  ∶ 𝑔(𝑥) ← Ber𝜆(𝑥)

4 ∶ 𝑥 ← |𝑔⟩
2

5 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑔(𝑥)

Fig. 1. The generic search game GSPB𝜆,.

2.2 Adversaries with Access to Random Functions

We adopt an adversary with access to random functions by following [GGJT22, Section 3]. The reductions in

this paper are adversary on the left side, consisting of a set of functions  and algorithm2. We call such

an adversary an  -oracle adversary.

Adversary 𝑂(in)

1 ∶ 𝑓 ← 

2 ∶ out ← 𝑂,|𝑓 ⟩
2 (in)

3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 out

Adversary𝑂
𝐹 (in)

1 ∶ 𝐾 ← 

2 ∶ out ← 𝑂,|𝐹𝐾 ⟩
2 (in)

3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 out

Ghoshal et al. [GGJT22] defined the reduced complexity of  by Time∗() ∶= Time(2) and Mem∗() ∶=
Mem(2). We employ  -oracle adversaries as [GGJT22] for simplicity and clean notation. This approach is

justified by pseudorandom adversary 𝐹 on the right-hand side as long as the game plays is efficient.

Lemma 2.5 ([GGJT22, Lemma 2], quantum version). Let be an  -oracle adversary for a game G. Then, for
any function family F with 𝐹 =  , there exists an adversary 𝐹 such that

|Pr[G()] − Pr[G(𝐹 )]| ≤ Adv
pr
F (𝐹 ),

Time(𝐹 ) = Time∗() + Time(G()),
Mem(𝐹 ) = Mem∗() +Mem(G()),
Query(𝐹 ) = 𝑞,

where 𝑞 is an upper bound on the number of queries2 makes to the oracle |𝑓 ⟩ or |𝐹𝐾 ⟩.

See [ACFK17] and [GGJT22, Lemma 2] for further discussions.

2.3 Pseudorandom Functions

Definition 2.2 (Pseudorandom functions). Let 𝜅 be the security parameter. Let 𝛿 = 𝛿(𝜅) and 𝜌 = 𝜌(𝜅) be two
polynomial functions. Let PRF∶ {0, 1}𝜅 × {0, 1}𝛿 → {0, 1}𝜌 be a deterministic polynomial-time algorithm. We say
that PRF is pseudorandom if for any QPT adversary, its advantage

Adv
pr
PRF,(𝜅) ∶=

||||
Pr[𝐾 ← {0, 1}𝜅 ∶ |PRF(𝐾,⋅)⟩(1𝜅) → 1]

− Pr[RF ← Func({0, 1}𝛿 , {0, 1}𝜌) ∶ |RF(⋅)⟩(1𝜅) → 1]
||||

is negligible in 𝜅.

2.4 Lossy Identification

Abdalla et al. [AFLT12, AFLT16] defined lossy identification as a special case of a (cryptographic) identifica-

tion scheme. A lossy identification scheme involves an additional lossy key-generation algorithm. The syntax

follows:

Definition 2.3 (Lossy identification). A lossy identification scheme LID consists of the following tuple of PPT
algorithms (GenLID, LossyGenLID, P1, P2,V)
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– GenLID(1𝜅) → (𝑣𝑘, 𝑠𝑘): a normal key-generation algorithm that, on input 1𝜅 , where 𝜅 is the security param-
eter, outputs a pair of keys (𝑣𝑘, 𝑠𝑘). 𝑣𝑘 and 𝑠𝑘 are public verification and secret keys, respectively.

– LossyGenLID(1𝜅) → 𝑣𝑘: a lossy key-generation algorithm that on input 1𝜅 outputs a lossy verification key
𝑣𝑘.

– P1(𝑠𝑘) → (𝑤, 𝑠): a first prover algorithm that takes as input signing key 𝑠𝑘 and outputs commitment 𝑤 and
state 𝑠.

– P2(𝑠𝑘, 𝑤, 𝑐, 𝑠) → 𝑧: a second deterministic prover algorithm that takes as input signing key 𝑠𝑘, commitment
𝑤, challenge 𝑐, and state 𝑠, and outputs response 𝑧.

– Vrfy(𝑣𝑘, 𝑤, 𝑐, 𝑧) → true/false: a deterministic verification algorithm that takes as input verification key 𝑣𝑘,
commitment 𝑤, challenge 𝑐, and response 𝑧, and outputs its decision true or false.

We assume that a verification key 𝑣𝑘 defines the challenge space  and the response space .

Definition 2.4 (Completeness). For non-negligible 𝜌 = 𝜌(𝜅), we call LID 𝜌-complete if

Pr [
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅), (𝑤, 𝑠) ← P1(𝑠𝑘),

𝑐 ← , 𝑧 ∶= P2(𝑠𝑘, 𝑤, 𝑐, 𝑠)
∶ V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = true] ≥ 𝜌(𝜅).

We call LID perfecly complete if it is 1-complete.

In order to analyze the completeness carefully, Devevey et al. [DFPS23] introduced another definition as

follows:

Definition 2.5 (Correctness [DFPS23, Definition 2], adapted). Let 𝛾, 𝛽 > 0. We call LID (𝛾, 𝛽)-correct if for
every (𝑣𝑘, 𝑠𝑘) generated by GenLID(1𝜅), the following holds:
– The verifier accepts with probability at least 𝛾 if the response 𝑧 is not ⊥. That is,

Pr [(𝑤, 𝑠) ← P1(𝑠𝑘), 𝑐 ← , 𝑧 ∶= P2(𝑠𝑘, 𝑤, 𝑐, 𝑠) ∶ V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = true ∣ 𝑧 ≠ ⊥] ≥ 𝛾.

– The prover aborts with probability at most 𝛽. That is,

Pr [(𝑤, 𝑠) ← P1(𝑠𝑘), 𝑐 ← , 𝑧 ∶= P2(𝑠𝑘, 𝑤, 𝑐, 𝑠) ∶ 𝑧 = ⊥] ≤ 𝛽.

We note that if LID is (1, 𝛽)-correct, then it is (1 − 𝛽)-complete.

The security properties of a lossy identification scheme are defined as follows:

Definition 2.6 (Key indistinguishability [AFLT16, Definition 16]).We say that LID is key indistinguishable
if for any QPT adversary, its advantage Advind-keyLID, (𝜅) is negligible in 𝜅, where

Adv
ind-key
LID, (𝜅) ∶=

||||
Pr[(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅) ∶ (𝑣𝑘) = 1]

− Pr[𝑣𝑘 ← LossyGenLID(1𝜅) ∶ (𝑣𝑘) = 1]
||||
.

Definition 2.7 (Lossiness [AFLT16, Definition 16], adapted).We say that LID is 𝜖𝓁-lossy if for any unbounded
adversary, its advantage Advimp

LID,(𝜅) is at most 𝜖𝓁, where

Adv
imp
LID,(𝜅) ∶= Pr [

𝑣𝑘 ← LossyGenLID(1𝜅), (𝑤, 𝑠) ← (𝑣𝑘),
𝑐 ← , 𝑧 ← (𝑐, 𝑠) ∶ V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = true] .

Remark 2.1 (On Lossiness). In the original definition, adversary  can access the simulated transcript oracle

to produce (𝑤, 𝑠). However, since the simulated transcript oracle has no access to 𝑠𝑘, we do need to consider

this oracle.

Definition 2.8 (Statistical honest-verifier zero knowledge [DFPS23], adapted). Let (𝑣𝑘, 𝑠𝑘) be a key pair
generated byGenLID(1𝜅). We call LID 𝜖zk-HVZK if there exists a PPT algorithm Sim that takes a public verification
key 𝑣𝑘 and 𝑐 as input and outputs (𝑤, 𝑧) such that the distribution of (𝑤, 𝑐, 𝑧)where 𝑐 ←  and (𝑤, 𝑧) ← Sim(𝑣𝑘, 𝑐)
is 𝜖zk-close to the distribution of the real transcript between honest prover and verifier.

Remark 2.2. In [AFLT16, KLS18], “the distribution of the real transcript” is defined as follows: compute

(𝑤, 𝑐, 𝑧) by using the real prover and verifier; if 𝑧 = ⊥, then return (⊥, ⊥, ⊥); otherwise return (𝑤, 𝑐, 𝑧). De-
vevey et al. [DFPS23] pointed out that this definition is one of the causes of the error in the simulation. They

defined “the distribution of the real transcript” as follows: compute (𝑤, 𝑐, 𝑧) by using the real prover and

verifier and output (𝑤, 𝑐, 𝑧) as it is.

Definition 2.9 (Divergence honest-verifier zero knowledge [DFPS23], simplified). Let (𝑣𝑘, 𝑠𝑘) be a key pair
generated by GenLID(1𝜅). We call LID (1 + 𝜖zk)-divergence HVZK if there exists a PPT algorithm Sim that takes
a public verification key 𝑣𝑘 and 𝑐 as input and outputs (𝑤, 𝑧) such that 𝑅∞((𝑤, 𝑐, 𝑧); (�̃�, 𝑐, �̃�)) ≤ 1 + 𝜖zk holds,
where (𝑤, 𝑐, 𝑧) is the real transcript between an honest prover and verifier and 𝑐 ←  and (�̃�, �̃�) ← Sim(𝑣𝑘, 𝑐).
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Definition 2.10 (Commitment recoverability [KLS18, Defnition 2.4]). We say that LID is commitment-

recoverable if for any (𝑣𝑘, 𝑠𝑘) generated by GenLID(1𝜅), 𝑐 ∈ , and 𝑧 ∈ , there exists a unique 𝑤 such that
V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = true. In addition, we require that this unique 𝑤 can be computed by a deterministic commitment-
recovery algorithm Rec, that is, 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧).

Definition 2.11 (Computational unique response [KLS18, Defnition 2.7]). We also say that LID has the
computational unique response (CUR) property if for any QPT adversary , its advantage defined below is
negligible in 𝜅:

AdvcurLID,(𝜅) ∶= Pr [
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅), (𝑤, 𝑐, 𝑧, 𝑧′) ← (𝑣𝑘) ∶

𝑧 ≠ 𝑧′ ∧ V(𝑣𝑘, 𝑤, 𝑐, 𝑧) ∧ V(𝑣𝑘, 𝑤, 𝑐, 𝑧′) ] .

Definition 2.12 (Min-entropy of commitment [KLS18, Defnition 2.6],modified).We say that LID has (𝛼, 𝜖𝑚)-
min-entropy if

Pr[(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅) ∶ 𝐻∞(𝑤 ∣ (𝑤, 𝑠) ← P1(𝑠𝑘)) ≥ 𝛼] ≥ 1 − 𝜖𝑚.

In the original definition ([KLS18, Defnition 2.6]), 𝜖𝑚 is 2−𝛼 . Devevey et al. [DFPS23, Definition 5] defined the

min-entropy of commitment as (𝛼, 0)-min entropy in the above definition.

3 Digital Signature

The model for digital signature schemes is summarized as follows:

Definition 3.1. A digital signature schemeDS consists of the following triple of PPT algorithms (Gen, Sign,Vrfy):
– Gen(1𝜅) → (𝑣𝑘, 𝑠𝑘): a key-generation algorithm that, on input 1𝜅 , where 𝜅 is the security parameter, outputs

a pair of keys (𝑣𝑘, 𝑠𝑘). 𝑣𝑘 and 𝑠𝑘 are called verification and signing keys, respectively.
– Sign(𝑠𝑘, 𝜇) → 𝜎: a signing algorithm that takes as input signing key 𝑠𝑘 and message 𝜇 ∈  and outputs

signature 𝜎 ∈  .
– Vrfy(𝑣𝑘, 𝜇, 𝜎) → true/false: a verification algorithm that takes as input verification key 𝑣𝑘, message 𝜇 ∈ ,

and signature 𝜎 and outputs its decision true or false.

Definition 3.2 (Completeness). We say that DS is 𝜌-complete if for any message 𝜇 ∈ , we have

Pr[(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅), 𝜎 ← Sign(𝑠𝑘, 𝜇) ∶ Vrfy(𝑣𝑘, 𝜇, 𝜎) = true] ≥ 𝜌.

Security notions: We review the standard security notions of digital signature schemes. The standard se-

curity notion, existential unforgeability against chosen-message attack (EUF-CMA), is captured by the game

Expteuf-cma
DS, (1𝜅) in Figure 2. The multi-challenge version allows an adversary to call Forge freely [ACFK17].

We also consider a strong version, in which the adversary wins if its forgery (𝑚∗, 𝜎∗) is not equal to the pairs
returned by Sign. For signing oracles, we have two variants, one-signature-per-message / many-signature-

per-message versions, which are denoted by CMA1 and CMA, respectively. We note that for deterministic

signature schemes, CMA1 security implies CMA security. The formal definition follows:

Definition 3.3 (Security notions for digital signature schemes). Let DS = (Gen, Sign,Vrfy) be a digital signa-
ture scheme. For any, goal ∈ {euf, seuf,meuf,mseuf}, and atk ∈ {cma, cma1}, we define its goal-atk advantage
against DS as follows:

Adv
goal-atk
DS, (𝜅) ∶= Pr[Exptgoal-atkDS, (1𝜅) = 1],

where Exptgoal-atkDS, (1𝜅) is an experiment described in Figure 2. For GOAL ∈ {EUF, sEUF,mEUF,msEUF} and ATK ∈
{CMA,CMA1}, we say that DS is GOAL-ATK-secure if Advgoal-atkDS, (𝜅) is negligible for any QPT adversary.

Security with respect to quantum signing oracles: Boneh and Zhandry [BZ13b] defined a new security

notion of digital signature schemes with respect to a quantum signing oracle and dubbed it as EUF-qCMA

security. We refer to this security notion as plus-one security (PO security) [AMRS20] because an adversary

in the security game is asked to output 𝑞 + 1 distinct valid message/signature pairs after making 𝑞 quantum
queries to the signing oracle. They defined it in the same spirit as the strong EUF security. In the original

definition, the adversary outputs 𝑞 + 1 pairs at once and stops. We introduce the oracle Forge to the security

game of the PO security since we want to consider memory tightness. The formal definition follows:

Definition 3.4 (Plus-One Security [BZ13b], adapted). LetDS = (Gen, Sign,Vrfy) be a digital signature scheme.
For any, we define its po advantage against DS as follows:

Adv
po
DS,(𝜅) ∶= Pr[ExptpoDS,(1

𝜅) = 1],

where ExptpoDS,(1𝜅) is an experiment described in Figure 3. We say thatDS is PO-secure if AdvpoDS,(𝜅) is negligible
for any QPT adversary.
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Expt
goal-atk
DS, (1𝜅) for goal ∈ {euf, seuf}

(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
 ∶= ∅; win ∶= false

(𝑚∗ , 𝜎∗) ← Sign(𝑣𝑘)
Forge(𝑚∗ , 𝜎∗)
return win

Sign(𝑚) for atk = cma
𝜎 ← Sign(𝑠𝑘, 𝑚)
 ∶=  ∪ {(𝑚, 𝜎)}
return 𝜎

Forge(𝑚∗ , 𝜎∗) for goal ∈ {euf,meuf}
if Vrfy(𝑣𝑘, 𝑚∗ , 𝜎∗) = true then

if ∀𝜎 ∶ (𝑚∗ , 𝜎) ∉  then
win ∶= true

Expt
goal-atk
DS, (1𝜅) for goal ∈ {meuf,mseuf}

(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
 ∶= ∅; win ∶= false

run Sign,Forge(𝑣𝑘)
return win

Sign(𝑚) for atk = cma1
if ∃(𝑚, 𝜎) ∈  then

return 𝜎
𝜎 ← Sign(𝑠𝑘, 𝑚)
 ∶=  ∪ {(𝑚, 𝜎)}
return 𝜎

Forge(𝑚∗ , 𝜎∗) for goal ∈ {seuf,mseuf}
if Vrfy(𝑣𝑘, 𝑚∗ , 𝜎∗) = true then

if (𝑚∗ , 𝜎∗) ∉  then
win ∶= true

Fig. 2. Exptgoal-atkDS, (1𝜅) for goal ∈ {euf, seuf,meuf,mseuf} and atk ∈ {cma, cma1}.

Expt
po
DS,(1

𝜅)
(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
 ∶= ∅
run|Sign⟩,Forge(𝑣𝑘)
return J# > 𝑞𝑆K

Forge(𝑚∗ , 𝜎∗)
if Vrfy(𝑣𝑘, 𝑚∗ , 𝜎∗) = true then

if (𝑚∗ , 𝜎∗) ∉  then
 ∶=  ∪ {(𝑚∗ , 𝜎∗)}

Sign ∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
/generate randomness 𝑟 on each query
/share 𝑟 on every message
𝜎 ∶= Sign(𝑠𝑘, 𝑚; 𝑟)
return 𝜎

Fig. 3. ExptpoDS,(1𝜅). 𝑞𝑆 denotes the number of the signing queries.

Alagic et al. [AMRS20] introduced another new security notion concerning a quantum signing oracle and

called it blind unforgeability (BU security). Let 𝜖 ∈ {0/2𝑝 , 1/2𝑝 ,… , (2𝑝 − 1)/2𝑝} for some 𝑝 = 𝑝(𝜅) be a

parameter. Let 𝐵𝜖 be a random subset of the message space where each 𝑚 ∈  is independently selected

with probability 𝜖. Roughly speaking, an adversary is asked to output a valid signature on a message in 𝐵𝜖

while it can access a quantum signing oracle that returns a signature on a message not in 𝐵𝜖. The strong

version is defined by a subset of the product of the message space  and the signature space  ⊆ {0, 1}𝜆 for
some 𝜆 = 𝜆(𝜅). For 𝑓 ∶  →  , 𝐵 ⊆ , and 𝐵′ ⊆  ×  , we define

𝐵𝑓 (𝑥) ∶=

{
⊥ 𝑥 ∈ 𝐵
𝑓 (𝑥) otherwise

and 𝐵′𝑓 (𝑥) ∶=

{
⊥ (𝑥, 𝑓 (𝑥)) ∈ 𝐵′

𝑓 (𝑥) otherwise.

Remark 3.1. We consider the oracle |𝐵𝑓 ⟩ as a mapping |𝑥⟩ |𝑦⟩ ↦ |𝑥⟩ |𝑦 ⊕ 𝐵𝑓 (𝑥)⟩, where 𝑦 ∈ {0, 1}𝜆+1, 𝑓 (𝑥) is
considered as 𝑓 (𝑥)‖0 ∈ {0, 1}𝜆+1, and ⊥ is considered as 0𝜆‖1 ∈ {0, 1}𝜆+1.
In the security proofs, instead of choosing a random subset 𝐵𝜖, we will consider RF𝐵 ∶  →  , where

 = {0, 1,… , 2𝑝 − 1}, and we will interpret the condition 𝑚 ∈ 𝐵𝜖 as RF𝐵(𝑚) < 𝜖2𝑝 . The cost of this procedure
is denoted by Time(𝐵𝜖) and Mem(𝐵𝜖).

We again introduce the oracle Forge to the security game and consider the multi-challenge situation. The

formal definition follows:

Definition 3.5 (Blind Unforgeability [AMRS20], adapted). Let DS = (Gen, Sign,Vrfy) be a digital signature
scheme. For any , any efficiently computable function 𝜖∶ ℤ+ → [0, 1), and sec ∈ {bu, sbu}, we define its
goal-atk advantage against DS as follows:

AdvsecDS,(𝜅) ∶= Pr[ExptsecDS,,𝜖(1
𝜅) = 1],

where ExptsecDS,(1𝜅) is an experiment described in Figure 4. We say that DS is BU-secure (sBU-secure, resp.) if
AdvbuDS,,𝜖(𝜅) (AdvsbuDS,,𝜖(𝜅), resp.) is negligible for any QPT adversary and any efficiently computable function
𝜖∶ ℤ+ → [0, 1).
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ExptsecDS,(1𝜅) for sec ∈ {bu, sbu}
(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
𝐵𝜖 ← Func,{0,1}(Ber𝜖) /bu
𝐵𝜖 ← Func× ,{0,1}(Ber𝜖) /sbu
win ∶= false

run |𝐵𝜖Sign⟩,Forge(𝑣𝑘)
return win

Sign ∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
/generate randomness 𝑟 on each query
/share 𝑟 on every message
𝜎 ∶= Sign(𝑠𝑘, 𝑚; 𝑟)
return 𝜎

Forge(𝑚∗ , 𝜎∗)
if Vrfy(𝑣𝑘, 𝑚∗ , 𝜎∗) = true then

if 𝑚∗ ∈ 𝐵𝜖 then win ∶= true /bu
if (𝑚∗ , 𝜎∗) ∈ 𝐵𝜖 then win ∶= true /sbu

Fig. 4. ExptbuDS,,𝜖(1𝜅) and ExptsbuDS,,𝜖(1𝜅).

Gen(1𝜅)
(𝑣𝑘, 𝑠𝑘) ← Gen′(1𝜅)
return (𝑣𝑘, 𝑠𝑘)

Sign(𝑠𝑘, 𝑚)
𝑛 ← {0, 1}𝜆
𝜎′ ← Sign′(𝑠𝑘, (𝑚, 𝑛))
return 𝜎 ∶= (𝜎′ , 𝑛)

Vrfy(𝑣𝑘, 𝑚, 𝜎)
parse 𝜎 = (𝜎′ , 𝑛)
return Vrfy′(𝑣𝑘, (𝑚, 𝑛), 𝜎′)

Fig. 5. Scheme DS ∶= RDS[DS′, 𝜆]. We require′ =  × {0, 1}𝜆.

3.1 From CMA1 Security to CMA Security

Diemert et al. [DGJL21] shows the following lemma, which is the multi-challenge version of [BPS16, Theo-

rem 5].

Lemma 3.1 ([DGJL21, Theorem 14]). Let DS′ be a signature scheme whose message space is′ = × {0, 1}𝜆
and let DS be RDS[DS′, 𝜆] in Figure 5. Let  be an adversary against the msEUF-CMA security of DS which
queries to Sign 𝑞𝑆 times. Then, there exists an adversary  against the msEUF-CMA1 security of DS′ such that

Advmseuf-cma
DS, (𝜅) ≤ Advmseuf-cma1

DS′ , (𝜅) + 𝑞2𝑆 ⋅ 2
−𝜆,

Time() ≈ Time(), and Mem() = Mem().

If the signature scheme is deterministic, then the CMA1 security implies the CMA security [KLS18]. Thus,

if we derandomize a CMA1-secure signature scheme, the obtained scheme archives CMA security. See, e.g.,

[MNPV99, KM15] for the derandomization by PRF.
9
Unfortunately, the derandomization by PRF is sometimes

annoying when we consider memory-tight reductions.

3.2 Signature from Lossy Identification

We review a signature scheme constructed from a lossy identification scheme with abort [AFLT16, KLS18].

Let LID = (GenLID, LossyGenLID, P1, P2,V) be a lossy idenfitication scheme. The signature scheme obtained by

applying a variant of the Fiat-Shamir transform FS𝐵,𝑤𝑧 is depicted in Figure 6.

One might think if the underlying LID scheme is 𝜌-complete, then the obtained scheme is (1 − (1 − 𝜌)𝐵)-
complete. For the correctness of the general case, Devevey et al. [DFPS23] gave a careful analysis of the

correctness of the obtained signature scheme:

Lemma 3.2 ([DFPS23, Theorem 8], adapted). Let 𝛾 > 0 and 𝛽 ∈ (0, 1). Let 𝐵 > 0. LetH∶ × →  be a hash
function modeled as a random oracle. Let LID be a LID scheme that is (𝛾, 𝛽)-correct and has (𝛼, 𝜖𝑚)-commitment
min-entropy. Let DS = FS𝐵,𝑤𝑧[LID,H]. Then, for any message 𝜇 ∈ , we have

Pr
(𝑣𝑘,𝑠𝑘)←Gen(1𝜅 )

[ Pr[V(𝑣𝑘, 𝑚, Sign(𝑠𝑘, 𝑚)) = true] ≥ 𝜌′(𝛼, 𝛽, 𝛾, 𝐵)] ≥ 1 − 𝜖𝑚,

where the inner probability is taken over the choice of H and the coins of Sign and

𝜌′(𝛼, 𝛽, 𝛾, 𝐵) ∶= 𝛾 ⋅(1 − 𝛽𝐵 −
2−𝛼

(1 − 𝛽)3)
.

9
Let 𝐾 be a secret key of PRF independent of the signing key 𝑠𝑘. Kiltz et al. [KLS18] credited the security proof of a

signature scheme derandomized by PRF(𝐾,𝑚) to Bellare et al. [BPS16]. Unfortunately, the derandomization proposed by

Bellare et al. [BPS16] computes randomness as RF(𝑠𝑘‖𝑚) instead of PRF(𝐾,𝑚) and their proof does not work for the case

of H(𝐾,𝑚).
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Gen(1𝜅)
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅)
return (𝑣𝑘, 𝑠𝑘)

Sign𝑤𝑧(𝑠𝑘, 𝑚)/Sign𝑐𝑧(𝑠𝑘, 𝑚)
𝑘 ∶= 1; 𝑧 ∶= ⊥
while 𝑧 = ⊥ ∧ 𝑘 ≤ 𝐵 do

(𝑤, 𝑠) ← P1(𝑠𝑘)
𝑐 ∶= H(𝑚,𝑤)
𝑧 ∶= P2(𝑠𝑘, 𝑤, 𝑐, 𝑠)
𝑘 ∶= 𝑘 + 1

if 𝑧 = ⊥ then return ⊥
return 𝜎 ∶= (𝑤, 𝑧) /Sign𝑤𝑧
return 𝜎 ∶= (𝑐, 𝑧) /Sign𝑐𝑧

Vrfy𝑤𝑧(𝑣𝑘, 𝑚, 𝜎)
parse 𝜎 = (𝑤, 𝑧)
𝑐 ∶= H(𝑚,𝑤)
return V(𝑣𝑘, 𝑤, 𝑐, 𝑧)

Vrfy𝑐𝑧(𝑣𝑘, 𝑚, 𝜎)
parse 𝜎 = (𝑐, 𝑧)
𝑤′ ∶= Rec(𝑣𝑘, 𝑐, 𝑧)
𝑐′ ∶= H(𝑚,𝑤′)
return J𝑐 = 𝑐′K

Fig. 6. Scheme FS𝐵,𝑤𝑧[LID,H] = (Gen, Sign𝑤𝑧 ,Vrfy𝑤𝑧) and FS𝐵,𝑐𝑧[LID,H] = (Gen, Sign𝑐𝑧 ,Vrfy𝑐𝑧). H∶  × →  is a random

oracle.

For simplicity, in what follows, we just say that the signature scheme is 𝜌′(𝛼, 𝛽, 𝛾, 𝐵)-correct with probability

at least 1 − 𝜖𝑚 over the choice of key.

When the underlying LID is commitment-recoverable, we can apply another variant FS𝐵,𝑐𝑧 depicted in Figure 6

whose signature is of the form (𝑐, 𝑧), which is often shorter than (𝑤, 𝑧). If P1 is derandomized by PRF, say,

P1(𝑠𝑘; PRF(𝐾, (𝑚, 𝑘))), then we call this conversion as DFS instead of FS and denote DFS[LID,H, PRF]. If we
use RF instead of PRF, then we denote it asDFS+[LID,H,RF]. If we apply RDS in subsection 3.1 to the obtained
scheme, then we call the conversion as RFS and denote RFS[LID,H, 𝜆].
In this paper, we employ FS𝐵,𝑤𝑧 to capture generic case, while [DGJL21] only consider FS𝐵,𝑐𝑧 . We can show

the security of FS𝐵,𝑐𝑧 by modifying our proofs for msEUF-CMA, sBU, and PO securities.

4 Multi-Challenge Security of Signature from Lossy Identification

Theorem 4.1 (msEUF-CMA1 security of FS𝐵,𝑤𝑧[LID,H]). Let 𝐵 ≥ 1. Let H∶  × →  be a hash function
modeled as a random oracle. Let LID be a lossy identification scheme that is (𝛾, 𝛽)-correct, 𝜖zk-HVZK, and 𝜖𝓁-lossy,
and has (𝛼, 𝜖𝑚)-commitment min-entropy. Let DS ∶= FS𝐵,𝑤𝑧[LID,H] and let 𝜌′ be the completeness of DS.
Then, for a quantum adversary  breaking the msEUF-CMA1 security of DS that issues at most 𝑞𝐻 quantum
queries to the random oracle H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery
oracle, there exist quantum  -oracle adversariescur against computationally unique response of LID andind

against key indistinguishability of LID such that

Advmseuf-cma1
DS, (𝜅) ≤ AdvcurLID,cur (𝜅) + Adv

ind-key
LID,ind

(𝜅) + 8(𝑞 + 1)2𝜖𝓁

+ 8(𝑞 + 1)2(1 − 𝜌′) + 𝑞𝐹𝐵2−𝛼 + 2𝑞𝐵2−
−𝛼−1
2 + 3𝜖𝑚 +

√
(6𝑞)3𝐵𝜖zk,

Time∗(cur) = Time() + 𝑞 ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(cur) = Mem() + 𝑂(𝐵Mem(LID)),
Time∗(ind) = Time() + 𝑞 ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(ind) = Mem() + 𝑂(𝐵Mem(LID)),

where 𝑞 = 𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 and  = Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],).

Applying Lemma 3.1, we obtain the following corollary.

Corollary 4.1 (msEUF-CMA security of RFS𝐵,𝑤𝑧[LID,H, 𝜆]). For sufficiently large 𝜆 = 𝜔(𝜅), RFS𝐵,𝑤𝑧[LID,H, 𝜆]
has a memory-tight msEUF-CMA security proof.

We also have the following corollary for divergence HZVK.

Corollary 4.2. Let 𝓁 be an arbitrary positive integer. If LID is (1 + 𝜖zk)-divergence HVZK, then the bound is

Advmseuf-cma1
DS, (𝜅) ≤ (1 + 𝜖zk)𝐵𝓁 (AdvcurLID,cur (𝜅) + Adv

ind-key
LID,ind

(𝜅) + 8(𝑞 + 1)2𝜖𝓁 + 27𝑞3/𝓁)

+ 27𝑞3/𝓁 + 8(𝑞 + 1)2(1 − 𝜌′) + 𝑞𝐹𝐵2−𝛼 + 2𝑞𝐵2−
−𝛼−1
2 + 3𝜖𝑚.

Especially, if we can set 𝓁 = 𝑞3/𝛿 for some negligible function 𝛿 and 𝜖zk = 𝛿/𝑞3, then we have

Advmseuf-cma1
DS, (𝜅) ≤ 𝑒𝐵 ⋅ (AdvcurLID,cur (𝜅) + Adv

ind-key
LID,ind

(𝜅) + 8(𝑞 + 1)2𝜖𝓁 + 27𝛿)

+ 27𝛿 + 8(𝑞 + 1)2(1 − 𝜌′) + 𝑞𝐹𝐵2−𝛼 + 2𝑞𝐵2−
−𝛼−1
2 + 3𝜖𝑚.
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G0 ,… ,G12
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅) /G0-G11
𝑣𝑘 ← LossyGenLID(1𝜅) /G12
RFH ← Func( × ,)
RF′H ← Func( × [𝐵],) /G6-
RFP ← Func( × [𝐵],P1 ) /G2-G6
RFSim ← Func( × [𝐵],Sim) /G7-
 ∶= ∅ /G0-G3
win ∶= false

run Sign,Forge,|H⟩(𝑣𝑘)
return win

Sign(𝑚)
if ∃(𝑚, 𝜎) ∈  then return 𝜎 /G0-G1
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-

(𝑤(𝑘) , 𝑐(𝑘) , 𝑧(𝑘)) ← GetTrans(𝑚) /G0{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚) /G1-

if 𝑧(𝑘) = ⊥ then
𝜎 ∶= ⊥

else
𝜎 ∶= (𝑤(𝑘) , 𝑧(𝑘))

 ∶=  ∪ {(𝑚, 𝜎)} /G0-G3
return 𝜎

H∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐′⟩
return 𝑐′ ∶= RFH(𝑚,𝑤) /G0-G4
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚) /G5-

if ∃𝑖 ∶ 𝑤 = 𝑤(𝑖) then 𝑐′ ∶= 𝑐(𝑖) else 𝑐′ ∶= RFH(𝑚,𝑤) /G5-

GetTrans(𝑚)
𝑘 ∶= 1; 𝑧(0) ∶= ⊥
while 𝑧(𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 do

(𝑤(𝑘) , 𝑠) ← P1(𝑠𝑘) /G0-G1

(𝑤(𝑘) , 𝑠) ∶= P1(𝑠𝑘;RFP(𝑚, 𝑘)) /G2-G8

𝑐(𝑘) ∶= RFH(𝑚,𝑤(𝑘)) /G0-G6

𝑐(𝑘) ∶= RF′H(𝑚, 𝑘) /G7-

𝑧(𝑘) ∶= P2(𝑠𝑘, 𝑤(𝑘) , 𝑐(𝑘) , 𝑠) /G0-G8

(𝑤(𝑘) , 𝑧(𝑘)) ∶= Sim(𝑣𝑘, 𝑐(𝑘) ;RFSim(𝑚, 𝑘)) /G9
𝑘 ∶= 𝑘 + 1

𝑘 ∶= 𝑘 − 1 /cancel the last increment

if Coll({𝑤(𝑖)}𝑖∈[𝑘]) = true then return Ⅎ /G6-

return (𝑤(𝑘) , 𝑐(𝑘) , 𝑧(𝑘)) /G0

return
{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] /G1-

Forge(𝑚∗ , 𝜎∗) where 𝜎∗ = (𝑤∗ , 𝑧∗)
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-{
(�̃�(𝑖) , 𝑐(𝑖) , �̃�(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚∗) /G3-

if V(𝑣𝑘, �̃�(𝑘) , 𝑐(𝑘) , �̃�(𝑘)) = false then return Ⅎ /G3-
𝑐∗ ∶= H(𝑚∗ , 𝑤∗)
if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true ∧ (𝑚∗ , 𝜎∗) ∉  then /G0-G3

win ∶= true /G0-G3

if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true ∧ (𝑤∗ , 𝑧∗) ≠ (�̃�(𝑘) , �̃�(𝑘)) then /G4-
win ∶= true /G4-G7

𝑚∗ ∶= {�̃�(𝑖)}𝑖∈[𝑘] ; ′
𝑚∗ ∶= {�̃�(𝑖)}𝑖∈[𝑘−1] /G8-G10

if (𝑤∗ ∉ ′
𝑚∗ ) ∨ (𝑤∗ ∈ ′

𝑚∗ ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗)) then win ∶= true /G8-G9
if (𝑤∗ ∉ 𝑚∗ ) ∨ (𝑤∗ ∈ ′

𝑚∗ ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗)) then win ∶= true /G10

if 𝑤∗ ≠ �̃�(𝑘) ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗) then win ∶= true /G11-

Fig. 7. G𝑖 for 𝑖 ∈ {0, 1,… , 12} for msEUF-CMA1 security.

4.1 Proof of Theorem

Roadmap: We define thirteen games G𝑖 for 𝑖 ∈ {0, 1,… , 12} to show our theorem. Let𝑊𝑖 denote the event that

G𝑖 outputs true. Before describing games, we briefly give intuitions for games. In what follows, GetTrans(𝑚)
denotes the oracle generating at most 𝐵 transcripts invoked from the signing oracle. Let (𝑤(𝑖), 𝑐(𝑖), 𝑧(𝑖)) be the
𝑖-th transcript of GetTrans(𝑚).
While we mainly follow the proof by Devevey et al. [DFPS23], the details are different. We consider the

original game (G0), in which the signing oracle queried on 𝑚 calls GetTrans(𝑚) internally and uses this

real transcript as a signature. After derandomizing in G2, we modify the forgery-checking oracle to out-

put a special symbol if the signature (𝑤(𝑘), 𝑧(𝑘)) generated from {(𝑤(𝑖), 𝑐(𝑖), 𝑧(𝑖))}𝑖∈[𝑘] output by GetTrans(𝑚∗)
yields an invalid signature (G3). We then remove the list  and replace the condition (𝑚∗, (𝑤∗, 𝑧∗)) ∉  with

(𝑤∗, 𝑧∗) ≠ (𝑤(𝑘), 𝑧(𝑘)) in G4 as Diemert et al. [DGJL21]. While the random oracle leaks the information of 𝑤(𝑘)
,

we can show that the min-entropy of 𝑤(𝑘)
is high unless 𝑚∗

is queried to the signing oracle and the adver-

sary’s guessing probability is at most 𝐵2−𝛼 . We then modify the random oracle to patch the hash value on

H(𝑚,𝑤(𝑖)) by 𝑐(𝑖) instead of RFH(𝑚,𝑤(𝑖)), where (𝑤(𝑖), 𝑐(𝑖), 𝑧(𝑖)) is the 𝑖-th transcript of GetTrans(𝑚) (G7). We

further implement GetTrans(𝑚) by the simulator (G9), which removes the use of 𝑠𝑘 in the following games.

We then consider the case that 𝑤∗ = �̃�(𝑘)
in G10, which violates the CUR property. After additional small

modifications, we arrive at G12 in which we replace a normal verification key with a lossy verification key

(G12) as in [AFLT12, KLS18], and this replacement is justified key indistinguishability of LID. Finally, in G12,

the adversary wins with negligible probability as in Kiltz et al. [KLS18] due to 𝜖𝓁-lossiness.
The formal definitions of games follow.

Game G0: This is the original game. See Figure 7 for a concrete definition of G0, where we expand the Sign

algorithm and H is defined as RFH. By the definition, we have

Pr[𝑊0] = Advmseuf-cma1
DS, (𝜅).
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Game G1: In this game, GetTrans outputs all transcripts instead of the last one. The signing oracle also

takes the last one as a candidate for a signature. See G1 in Figure 7 for the detail. Since this is a conceptual

change, we have

G0 = G1.

Game G2: We next derandomize the prover in GetTrans by RFP as in Figure 7. Since we consider one-
signature-per-one-message situation, this derandomization by the random function RFP changes nothing. We

have

G1 = G2.

GameG3: We next modify the forgery-checking oracle as follows: On a query (𝑚∗, 𝜎∗), the oracle Forge first
comptues the transcripts

{
(�̃�(𝑖), 𝑐(𝑖), �̃�(𝑖))

}
𝑖∈[𝑘]. If (�̃�

(𝑘), �̃�(𝑘)) is an invalid signature, then the oracle returns a

special symbol Ⅎ. See G3 in Figure 7 for the details.

We note that GetTrans’s output yields an invalid signature with probability at most 1 − 𝜌′
as discussed in

subsection 3.2. Notice that the adversary can obtain this information via the oracle Sign and the random oracle
H.

Lemma 4.1. Let Bad be the event that the oracle Forge returns the symbol Ⅎ. Suppose that LID is (𝛾, 𝛽)-correct
and has (𝛼, 𝜖𝑚)-commitment min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3]| ≤ Pr[Bad] ≤ 8(𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 + 1)2(1 − 𝜌′) + 𝜖𝑚.

For the proof, see Lemma 5.2 for the sBU security.

Game G4: In this game, we replace the condition (𝑚∗, 𝜎∗) ∉  with the condition (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)). See
G4 in Figure 7.

Lemma 4.2. Suppose that that LID has (𝛼, 𝜖𝑚)-commit min-entropy. Then, we have

|Pr[𝑊3] − Pr[𝑊4]| ≤ 𝑞𝐹 ⋅ 𝐵2−𝛼 + 𝜖𝑚.

Proof. Suppose that the adversary queries 𝑚∗
and 𝜎∗ = (𝑤∗, 𝑧∗) to the oracle Forge.

If 𝑚∗
is queried to the signing oracle before, then there is no difference between the two games: The signing

oracle returns (�̃�(𝑘), �̃�(𝑘)) as a signature on𝑚∗
and, thus, the condition (𝑚∗, 𝜎∗) ∉  and the condition (𝑤∗, 𝑧∗) ≠

(�̃�(𝑘), �̃�(𝑘)) are equivalent.
If 𝑚∗

is not queried to the signing oracle, then the two games might differ if the adversary queries 𝑚∗
and

(𝑤∗, 𝑧∗) = (�̃�(𝑘), �̃�(𝑘)), which implies 𝑤∗ = �̃�(𝑘)
. This means that the adversary succeeds to guess �̃�(𝑘)

on 𝑚∗

without knowing it. Let Bad𝑖 denote the event that 𝑚∗
is not queried before but 𝑤∗

equals to �̃�(𝑘)
happens in

G𝑖. We have

|Pr[𝑊3] − Pr[𝑊4]| ≤ Pr[Bad3].
According to Proposition 4.1, even if we know the whole table of RFH, and �̃�(𝑘)

has min-entropy 𝛼 − lg(𝐵)
with probability 1 − 𝜖𝑚 over choice of (𝑣𝑘, 𝑠𝑘). Therefore, we have Pr[Bad3] ≤ 𝑞𝐹 ⋅ 𝐵2−𝛼 + 𝜖𝑚. ⊓⊔

Proposition 4.1. Fix (𝑣𝑘, 𝑠𝑘) and suppose that the min-entropy of 𝑤 is at least 𝛼. In G3, we have for any 𝑚∗,

max
𝑤∈

Pr[�̃�(𝑘) = 𝑤 ∣ H] ≤ 𝐵 ⋅ 2−𝛼 .

Proof. To simplify the argument, let  = [𝑊 ]. We consider the distribution of the table on H(𝑚∗, ⋅) and let

𝐶1,… , 𝐶𝑊 be random variables representing values of H(𝑚∗, 1),… ,H(𝑚∗, 𝑊 ).
Let 𝑝𝑖 denote the probability that 𝑖 ∈ [𝑊 ] is chosen by the prover. We have ∑𝑖∈[𝑊 ] 𝑝𝑖 = 1. By the definition

of the commitment min-entropy, we have max𝑖∈[𝑊 ] 𝑝𝑖 ≤ 2−𝛼 . Let 𝑞𝑖,𝑐 denote the probability that the prover

outputs 𝑧 = ⊥ when it chooses 𝑖 as the commitment and receives 𝑐 as the challenge.
Let us fix the values of the table H(𝑚∗, ⋅) as 𝒄 = (𝑐1,… , 𝑐𝑊 ) ∈ 𝑊

. This fix allows us to compute the probability

that the prover outputs 𝑧 = ⊥, which is 𝛽𝒄 ∶= ∑𝑖∈[𝑊 ] 𝑝𝑖 ⋅ 𝑞𝑖,𝑐𝑖 ≤ 1. On each try except the last one, �̃�(𝑘) = 𝑖 is
chosen with probability 𝑝𝑖(1− 𝑞𝑖,𝑐𝑖 ). On the last try, �̃�(𝑘) = 𝑖 is chosen with probability 𝑝𝑖. Thus, for any 𝐵 ≥ 1,
we have

Pr[�̃�(𝑘) = 𝑖 ∣ 𝑪 = 𝒄] = 𝑝𝑖(1 − 𝑞𝑖,𝑐𝑖 ) + 𝛽𝒄𝑝𝑖(1 − 𝑞𝑖,𝑐𝑖 ) +⋯ + 𝛽𝐵−2
𝒄 𝑝𝑖(1 − 𝑞𝑖,𝑐𝑖 ) + 𝛽𝐵−1

𝒄 𝑝𝑖

= 𝑝𝑖(1 − 𝑞𝑖,𝑐𝑖 )(1 + 𝛽𝒄 +⋯ + 𝛽𝐵−2
𝒄 ) + 𝑝𝑖𝛽𝐵−1

𝒄

≤ 𝑝𝑖(1 + 𝛽𝒄 +⋯ + 𝛽𝐵−1
𝒄 )

≤ 𝐵 ⋅ 𝑝𝑖,

where we use the inequatlity (1 + 𝑥 + 𝑥2 +⋯ + 𝑥𝐵−1) ≤ 𝐵 for 𝑥 ∈ [0, 1]. This yields that

max
𝑖∈[𝑊 ]

Pr[�̃�(𝑘) = 𝑖 ∣ 𝑪 = 𝒄] ≤ max
𝑖∈[𝑊 ]

𝐵 ⋅ 𝑝𝑖 ≤ 𝐵 ⋅ 2−𝛼

as we wanted. ⊓⊔
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Game G5: We next modify the random oracle as follows: On a query (𝑚,𝑤), the oracle first comptues the

transcripts

{
(𝑤(𝑖), 𝑐(𝑖), 𝑧(𝑖))

}
𝑖∈[𝑘]. If the input 𝑤 is equivalent to one of 𝑤(𝑖)

, then it returns 𝑐′ ∶= 𝑐(𝑖); otherwise,
it returns 𝑐′ ∶= RFH(𝑚,𝑤). See G5 in Figure 7 for the details.

Since 𝑐(𝑖) is defined as RFH(𝑚,𝑤(𝑖)) in GetTrans, this change nothing and we have

G4 = G5.

Game G6: We next introduce a collision check for 𝑤(𝑖)
’s in GetTrans. If GetTrans finds a collision among

𝑤(1),… , 𝑤(𝑘)
, it outputs a special synbol Ⅎ. See G6 in Figure 7.

For each message, the collision probability is at most 𝐵2 ⋅ 2−𝛼−1 if 𝐻∞(𝑤) is 𝛼 [DFPS23, Lemma 11]. Using

the one-sided O2H lemma [AHU19], Devevey et al. showed the following lemma, where we additionally

introduce 𝜖𝑚.

Lemma 4.3. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊5] − Pr[𝑊6]| ≤ 2(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ) ⋅ 𝐵 ⋅ 2
−𝛼−1
2 + 𝜖𝑚.

Game G7: We next modify how to compute 𝑐(𝑘) in GetTrans, in which it is computed as RF′H(𝑚, 𝑘) instead
of RFH(𝑚,𝑤(𝑘)). We note that this does not change the adversary’s view because RF′H is a random function,

and if 𝑤 = 𝑤(𝑖)
for the query (𝑚,𝑤), then consistent 𝑐′ = 𝑐(𝑖) = RF′H(𝑚, 𝑖) is output by H since we already

exclude the collision. Thus, we have

G6 = G7.

Game G8: To ease the notation, let 𝑚∗ ∶= {𝑤(𝑖)}𝑖∈[𝑘] which is the 𝑤 parts of the transcripts generated by

GetTrans(𝑚∗). We additionally define ′
𝑚∗ ∶= {𝑤(𝑖)}𝑖∈[𝑘−1].

In G8, Forge additionally checks if 𝑤∗ ∈ ′
𝑚∗ or not; if so, we additionally checks whether 𝑐∗ = RFH(𝑚∗, 𝑤∗)

or not. See G8 in Figure 7 for the details.

We have the following lemma.

Lemma 4.4. We have
Pr[𝑊7] = Pr[𝑊8].

Proof. The two games differ if the adversary queries 𝑤∗ = 𝑤(𝑖)
for some 𝑖 < 𝑘 but 𝑐∗ = 𝑐(𝑖) ≠ RFH(𝑚∗, 𝑤∗). We

call this event in G𝑖 as Bad𝑖. We have

|Pr[𝑊7] − Pr[𝑊8]| ≤ Pr[Bad7] ≤ |Pr[Bad7] − Pr[Bad6]| + Pr[Bad6].

We have Pr[Bad6] = 0 because 𝑐∗ = RFH(𝑚∗, 𝑤∗) always holds in G6. Since G6 = G7, we have Pr[Bad7] =
Pr[Bad6]. Hence, we have Pr[𝑊7] = Pr[𝑊8]. ⊓⊔

Game G9: We next modify GetTrans to use the simulation algorithm. On a query 𝑚, the oracle comptues

𝑐(𝑖) ∶= RF′H(𝑚, 𝑖) and (𝑤(𝑖), 𝑧(𝑖)) ∶= Sim(𝑣𝑘, 𝑐(𝑖);RFSim(𝑚, 𝑖)). SeeG9 in Figure 7 for the details. Since the real tran-

script and the simulated one is 𝜖zk-close, each invocation ofGetTrans is𝐵𝜖zk-close. AsDevevey et al. [DFPS23],
we have the following lemma by using Lemma 2.2.

Lemma 4.5. Suppose that LID is 𝜖zk-HVZK. Then, we have

|Pr[𝑊8] − Pr[𝑊9]| ≤
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝐵𝜖zk.

Lemma 4.6. Suppose that LID is (1 + 𝜖zk)-divergence HVZK. Then, for any positive integer 𝓁, we have

Pr[𝑊8] ≤ (1 + 𝜖zk)𝐵𝓁(Pr[𝑊9] + 27𝑞3/𝓁) + 27𝑞3/𝓁.

We note that the Rényi divergence of the distribution of GetTrans(𝑚) using the real transcripts from that

using the simulator is at most (1 + 𝜖zk)𝐵 , since each divergence of the real transcript from the simulated one

is at most 1 + 𝜖 and the total number of transcripts is at most 𝐵 on each invocation of GetTrans. Applying

Lemma A.1 instead of Lemma 2.2, we obtain the lemma.
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Game G10: We next treat the case 𝑤∗ = �̃�(𝑘)
as a special case. To do so, we replace the condition 𝑤∗ ∉ ′

𝑚∗

with 𝑤∗ ∉ 𝑚∗ . See G10 in Figure 7 for the details.

Because of this modification, if the adversary queries (𝑚∗, (𝑤∗, 𝑧∗)) satisfying (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)), 𝑤∗ = �̃�(𝑘)
,

and Vrfy(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗) = true, then two games may differ. Fortunately, this event is easily treated by the CUR

property.

Lemma 4.7. There exists a quantum  -oracle adversary cur such that

|Pr[𝑊9] − Pr[𝑊10]| ≤ AdvcurLID,cur (𝜅),
Time∗(cur) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(cur) = Mem() + 𝑂(𝐵Mem(LID)),

where  = Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

Proof. Suppose that the queried forgery is (𝑚∗, 𝜎∗) with 𝜎∗ = (𝑤∗, 𝑧∗). Consider the computation in Forge

and assume that (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)) and V(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗) = true for 𝑐∗ = H(𝑚∗, 𝑤∗) and the flag win is set true

in G9.

Notice that there are no collisions among �̃�(1),… , �̃�(𝑘)
and, thus, 𝑚∗ = ′

𝑚∗ ∪ {�̃�(𝑘)}. We have the following

two cases to analyze G10:

– If 𝑤∗ ≠ �̃�(𝑘)
, then the flag win is set true in G10 also.

– If 𝑤∗ = �̃�(𝑘)
, then 𝑐∗ ∶= 𝑐(𝑘). Since 𝑤∗ = �̃�(𝑘)

, the flag win is unchanged in G10. However, the check

(𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)) forces 𝑧∗ ≠ �̃�(𝑘), and this 𝑧∗ leads to break the CURproperty by outputting (𝑤∗, 𝑐∗, 𝑧∗, �̃�(𝑘)).
Upon the above observation, we can construct a quantum  -oracle adversary cur straightforwardly. The

analysis of advantage, running time, and memory usage in the lemma are straightforwardly obtained. ⊓⊔

Remark 4.1. We note that V(�̃�(𝑘), 𝑐(𝑘), �̃�(𝑘)) = true holds by the check we introduced in G3 into Forge. This

check is fatal for the above proof because, if �̃�(𝑘) = ⊥ or V(�̃�(𝑘), 𝑐(𝑘), �̃�(𝑘)) = false, then the reduction algorithm

fails to output the collision (𝑤∗, 𝑐∗, 𝑧∗, �̃�(𝑘)) breaking the CUR property.

Game G11: We again modify the conditions in Forge in G10: Forge checks if V(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗) = true for

𝑐∗ = H(𝑚∗, 𝑤∗), (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)), 𝑤∗ ≠ �̃�(𝑘)
, and 𝑐∗ = RFH(𝑚∗, 𝑤∗) or not. If so, the flag is set as true. See

G11 in Figure 7 for the details.

Lemma 4.8. We have G10 = G11.

Proof. Let us consider a forgery (𝑚∗, (𝑤∗, 𝑧∗)) satisfying V(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗) = true for 𝑐∗ = H(𝑚∗, 𝑤∗) and

(𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)). Let us consider three cases:
– If 𝑤∗ ∈ ′

𝑚∗ , then there is no diference on the condition 𝑐∗ = RFH(𝑚∗, 𝑤∗) in both games.

– If 𝑤∗ = �̃�(𝑘)
, then win is kept in both games.

– If 𝑤∗ ∉ 𝑚∗ , then Forge sets win as true immediately in G10 but sets win as true if 𝑐∗ = RFH(𝑚∗, 𝑤∗) in G11.

We note that 𝑐∗ ∶= RFH(𝑚∗, 𝑤∗) in Forge since 𝑤∗ ∉ 𝑚∗ . Thus, Forge in G11 also sets win ∶= true and

there are no differences.

Thus, both games are the same. ⊓⊔

Game G12: We finally replace a normal verification key with a lossy verification key. See G12 in Figure 7 for

the details.

Lemma 4.9. There exists a quantum  -oracle adversaryind such that

|Pr[𝑊11] − Pr[𝑊12]| ≤ Adv
indkey
LID,ind

(𝜅),

Time∗(ind) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(ind) = Mem() + 𝑂(𝐵Mem(LID)),

where  = Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

Proof. We construct ind straightforwardly. The analysis of advantage, running time, and memory usage in

the lemma are straightforwardly obtained. ⊓⊔

Lemma 4.10. Suppose that LID is 𝜖𝓁-lossy. Then, we have Pr[𝑊12] ≤ 8(𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 + 1)2𝜖𝓁.

Since the proof is the same as that in Kiltz et al. [KLS18], we omit it. See the proof of the case for sBU security

(Lemma 5.11).
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5 Strong Blind Unforgeability of Signature from Lossy Identification

The security proof for msEUF-CMA1 security can be used to show sBU security of DFS𝐵,wz[LID,H, PRF] as
follows:

Theorem 5.1 (sBU security of DFS𝐵,wz[LID,H, PRF]). Let 𝐵 ≥ 1. Let H∶  ×  →  be a hash function
modeled as a random oracle. Let LID be a lossy identification scheme that is (𝛾, 𝛽)-correct, 𝜖zk-HVZK, and 𝜖𝓁-
lossy, and has (𝛼, 𝜖𝑚)-commitment min-entropy. Let DS ∶= DFS𝐵,wz[LID,H, PRF] and let 𝜌′ be the completeness
of DS.
Then, for a quantum adversary  breaking the sBU security of DS that issues at most 𝑞𝐻 quantum queries to
the random oracle H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-checking
oracle, there exist a quantumprf-oracle adversaryprf against pseudorandomness of PRF and quantum -oracle
adversaries ind against key indistinguishability of LID and cur against computationally unique response of
LID such that

AdvsbuDS,(𝜅) ≤ Adv
pr
PRF,prf

(𝜅) + AdvcurLID,cur (𝜅) + Adv
ind-key
LID,ind

(𝜅) + 8(𝑞 + 1)2𝜖𝓁

+ 8(𝑞 + 1)2(1 − 𝜌′) + 𝑞𝐹𝐵2−𝛼 + 2𝑞𝐵2−
−𝛼−1
2 + 3𝜖𝑚 +

√
(6𝑞)3𝐵𝜖zk,

Time∗(prf) = Time() + (𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + Time(𝐵𝜖))
Mem∗(prf) = Mem() + 𝑂(Mem(LID)) + 𝑂(Mem(𝐵𝜖))
Time∗(ind) = Time() + 𝑞 ⋅ 𝑂(𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖))
Mem∗(ind) = Mem() + 𝑂(𝐵Mem(LID)) + 𝑂(Mem(𝐵𝜖))
Time∗(cur) = Time() + 𝑞 ⋅ 𝑂(𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖))
Mem∗(cur) = Mem() + 𝑂(𝐵Mem(LID)) + 𝑂(Mem(𝐵𝜖)),

where 𝑞 = 𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 , prf = Func( ×  × ,) × Func( ×  ,), and  = Func( ×  × ,) ×
Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

5.1 Proof of Theorem

We define thirteen games G𝑖 for 𝑖 ∈ {0, 1,… , 12} to show our theorem. Let 𝑊𝑖 denote the event that the

experiment outputs true in G𝑖.

Roadmap: The proof of sBU security involves quantum singing oracle and the filter 𝐵𝜖. Fortunately, we can

take the same approach as the proof of msEUF-CMA1 security (Theorem 4.1).

The original security game is denoted byG0, inwhich the prover inGetTrans is derandomized by PRF. Hence,

we replace this PRFwith RF inG1. Wemodify the games as in the previous proof. InG4, wemodify thewinning

condition as whether V(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗), where 𝑐∗ = H(𝑚∗, 𝑤∗), and (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖, and (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘))
or not. We can argue that this modification introduces only a negligible change, as in the previous proof.

After that, we continue to modify the games as in the proof of the msEUF-CMA1 security.

Game G0: This is the original game. See Figure 8 for a concrete definition of G0, where we expand the Sign

algorithm and H is implemented by a random function RFH. We have

Pr[𝑊0] = AdvsbuDS,(𝜅).

Game G1: We replace PRF with RFP in the prover in GetTrans.

By straightforward argument, we have the following lemma:

Lemma 5.1. There exists a quantum  -oracle adversaryprf such that

|Pr[𝑊0] − Pr[𝑊1]| ≤ Adv
pr
PRF,prf

(𝜅),

Time∗(cur) = Time() + (𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + Time(𝐵𝜖))
Mem∗(cur) = Mem() + 𝑂(Mem(LID)) + 𝑂(Mem(𝐵𝜖)),

where  = Func( ×  ×,) × Func( × ,).

Game G2: We next let GetTrans output all transcripts instead of the last one. The signing oracle also takes
the last one as a candidate for a signature. We have

G1 = G2.
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G0 ,… ,G12
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅) /G0-G11
𝑣𝑘 ← LossyGenLID(1𝜅) /G12
𝐾 ← {0, 1}𝜅 /G0
RF𝐵 ← Func( × ×,)
RFH ← Func( × ,)
RF′H ← Func( × [𝐵],) /G6-
RFP ← Func( × [𝐵],P1 ) /G2-G6
RFSim ← Func( × [𝐵],Sim) /G7-
win ∶= false

run |𝐵𝜖Sign⟩,Forge,|H⟩(𝑣𝑘)
return win

𝐵𝜖Sign∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-

(𝑤(𝑘) , 𝑐(𝑘) , 𝑧(𝑘)) ← GetTrans(𝑚) /G0-G1{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚) /G2-

if 𝑧(𝑘) = ⊥ ∨ (𝑚, (𝑤(𝑘) , 𝑧(𝑘))) ∈ 𝐵𝜖 then
𝜎 ∶= ⊥

else
𝜎 ∶= (𝑤(𝑘) , 𝑧(𝑘))

return 𝜎

H∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐′⟩
return 𝑐′ ∶= RFH(𝑚,𝑤) /G0-G4
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚) /G5-

if ∃𝑖 ∶ 𝑤 = 𝑤(𝑖) then 𝑐′ ∶= 𝑐(𝑖) else 𝑐′ ∶= RFH(𝑚,𝑤) /G5-

GetTrans(𝑚)
𝑘 ∶= 1; 𝑧(0) ∶= ⊥
while 𝑧(𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 do

(𝑤(𝑘) , 𝑠) ← P1(𝑠𝑘; PRF(𝐾, (𝑚, 𝑘))) /G0

(𝑤(𝑘) , 𝑠) ∶= P1(𝑠𝑘;RFP(𝑚, 𝑘)) /G1-G8

𝑐(𝑘) ∶= RFH(𝑚,𝑤(𝑘)) /G0-G6

𝑐(𝑘) ∶= RF′H(𝑚, 𝑘) /G7-

𝑧(𝑘) ∶= P2(𝑠𝑘, 𝑤(𝑘) , 𝑐(𝑘) , 𝑠) /G0-G8

(𝑤(𝑘) , 𝑧(𝑘)) ∶= Sim(𝑣𝑘, 𝑐(𝑘) ;RFSim(𝑚, 𝑘)) /G9
𝑘 ∶= 𝑘 + 1

𝑘 ∶= 𝑘 − 1 /cancel the last increment

if Coll({𝑤(𝑖)}𝑖∈[𝑘]) = true then return Ⅎ /G6-

return (𝑤(𝑘) , 𝑐(𝑘) , 𝑧(𝑘)) /G0-G1

return
{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] /G2-

Forge(𝑚∗ , 𝜎∗) where 𝜎∗ = (𝑤∗ , 𝑧∗)
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-{
(�̃�(𝑖) , 𝑐(𝑖) , �̃�(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚∗) /G3-

if V(𝑣𝑘, �̃�(𝑘) , 𝑐(𝑘) , �̃�(𝑘)) = false then return Ⅎ /G3-
𝑐∗ ∶= H(𝑚∗ , 𝑤∗)
if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true ∧ (𝑚∗ , (𝑤∗ , 𝑧∗)) ∈ 𝐵𝜖 then

win ∶= true /G0-G3

if (𝑤∗ , 𝑧∗) ≠ (�̃�(𝑘) , �̃�(𝑘)) then /G4-
win ∶= true /G4-G7

𝑚∗ ∶= {�̃�(𝑖)}𝑖∈[𝑘] ; ′
𝑚∗ ∶= {�̃�(𝑖)}𝑖∈[𝑘−1] /G8-G10

if (𝑤∗ ∉ ′
𝑚∗ ) ∨ (𝑤∗ ∈ ′

𝑚∗ ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗)) then win ∶= true /G8-G9
if (𝑤∗ ∉ 𝑚∗ ) ∨ (𝑤∗ ∈ ′

𝑚∗ ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗)) then win ∶= true /G10

if 𝑤∗ ≠ �̃�(𝑘) ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗) then win ∶= true /G11-

Fig. 8. G𝑖 for 𝑖 ∈ {0, 1,… , 12} for sBU security.
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1
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅)
compute 𝑠𝑘,𝐵 ⊆ 𝑠𝑘,𝐵 ⊆ (P1 × )

𝐵

∀𝑚 ∈ , 𝜆𝑠𝑘(𝑚) ∶= 𝜆𝑠𝑘 = #𝑠𝑘,𝐵/#𝑠𝑘,𝐵
return {𝜆𝑠𝑘(𝑚)}𝑚∈ , 𝑣𝑘, 𝑠𝑘

|𝑔⟩
2 (𝑣𝑘, 𝑠𝑘)

RF𝐵 ← Func( × ×,)
RF′′H ← Func( × ,)
RFU ← Func(,U)
win ∶= false; �̂� ∶= ⊥
simulate 𝐵𝜖Sign, Forge, and H

run |𝐵𝜖Sign⟩,Forge,|H⟩(𝑣𝑘)
return �̂�

Samp∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝛾⟩
if 𝑔(𝑚) = 1 then

((𝑟1 , 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∶= U(𝑠𝑘,𝐵 ;RFU(𝑚))
else

((𝑟1 , 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∶= U(𝑠𝑘,𝐵 ⧵ 𝑠𝑘,𝐵 ;RFU(𝑚))
return 𝛾 ∶= ((𝑟1 , 𝑐1),… , (𝑟𝐵 , 𝑐𝐵))

RFP ∶ |𝑚, 𝑘⟩ |𝑦⟩ ↦ |𝑚, 𝑘⟩ |𝑦 ⊕ 𝑟⟩
((𝑟1 , 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∶= Samp(𝑚)
return 𝑟𝑘

RFH ∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐⟩
((𝑟1 , 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∶= Samp(𝑚)
comptue 𝑤𝑖 ∶= P1(𝑠𝑘, 𝑟𝑖) for 𝑖 = 1,… , 𝐵
if ∃𝑖 ∶ 𝑤𝑖 = 𝑤 then

return 𝑐𝑖
else

return 𝑐 ∶= RF′′H (𝑚,𝑤)

H∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐⟩
return 𝑐 ∶= RFH(𝑚,𝑤)

𝐵𝜖Sign∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚)

if 𝑧(𝑘) = ⊥ ∨ (𝑚, (𝑤(𝑘) , 𝑧(𝑘))) ∈ 𝐵𝜖 then
return 𝜎 ∶= ⊥

else
return 𝜎 ∶= (𝑤(𝑘) , 𝑧(𝑘))

GetTrans(𝑚)
𝑘 ∶= 1; 𝑧(0) ∶= ⊥
while 𝑧(𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 do

(𝑤(𝑘) , 𝑠) ∶= P1(𝑠𝑘;RFP(𝑚, 𝑘))
𝑐(𝑘) ∶= RFH(𝑚,𝑤(𝑘))
𝑧(𝑘) ∶= P2(𝑠𝑘, 𝑤(𝑘) , 𝑐(𝑘) , 𝑠)
𝑘 ∶= 𝑘 + 1

𝑘 ∶= 𝑘 − 1 /cancel the last increment

return
{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘]

Forge(𝑚∗ , 𝜎∗) where 𝜎∗ = (𝑤∗ , 𝑧∗){
(�̃�(𝑖) , 𝑐(𝑖) , �̃�(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

if V(𝑣𝑘, �̃�(𝑘) , 𝑐(𝑘) , �̃�(𝑘)) = false then
�̂� ∶= 𝑚∗ /detect Bad
return Ⅎ

𝑐∗ ∶= H(𝑚∗ , 𝑤∗)
if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true then

if (𝑚∗ , (𝑤∗ , 𝑧∗)) ∈ 𝐵𝜖 then
win ∶= true

Fig. 9.Adversarygspb = (1,2) against GSPB for Lemma 5.2. The set of consistent sequences 𝑠𝑘,𝐵 , the set of bad sequences

𝑠𝑘,𝐵 , and an algorithm U are defined in the proof text.

Game G3: We next modify the forgery-checking oracle as follows: Before checking the validity of submitted

query (𝑚∗, 𝜎∗), it generates its own signature (�̃�(𝑘), 𝑐(𝑘), �̃�(𝑘)) by using GetTrans(𝑚∗). If GetTrans(𝑚∗) fails
to output a valid signature, then the forgery-checking oracle returns the special symbol Ⅎ.

Lemma 5.2. Let Bad be the event that the oracle Forge returns the symbol Ⅎ. Suppose that LID is (𝛾, 𝛽)-correct
and has (𝛼, 𝜖𝑚)-commitment min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3]| ≤ Pr[Bad] ≤ 8(𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 + 1)2(1 − 𝜌′) + 𝜖𝑚.

We give the concrete proof since we omitted the corresponding proof in msEUF-CMA1 security (Lemma 4.1).

We note that the above lemma is for general LID and we do not need special correctness.

Proof. To make a proof simple, we first eliminate the bad event that the key generation algorithm outputs

a bad key pair (𝑣𝑘, 𝑠𝑘) making the min-entropy of commitment less than 𝛼. This elimination introduces an

additional difference 𝜖𝑚.
We define some terminology. In order to simulate RFP and RFH, we consider an algorithm Samp that takes 𝐵
samples of a pair of randomness of P1 and challenge in (P1 ×)𝐵 . For a signing key 𝑠𝑘, we say that a sequence
of 𝐵-samples ((𝑟1, 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∈ (P1 × )𝐵 is consistent if

∀𝑖, 𝑗 ∈ [𝐵] ∶ 𝑤𝑖 = 𝑤𝑗 ⟹ 𝑐𝑖 = 𝑐𝑗 , where (𝑤𝑖, 𝑠𝑖) ∶= P1(𝑠𝑘, 𝑟𝑖).

Let 𝑠𝑘,𝐵 be the set of all consistent sequences. We say that a consistent sequence is bad if 1) the signing

algorithm using it fails to generate a signature with 𝑧 ≠ ⊥ or 2) the signing algorithm using it succeeds to

output a signature but the signature is invalid. Let 𝑠𝑘,𝐵 be the set of all bad sequences. Formally, it is defined

as

𝑠𝑘,𝐵 ∶=
⎧⎪⎪
⎨⎪⎪⎩

((𝑟1, 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∈ 𝑠𝑘,𝐵 ∣
(𝑤𝑖, 𝑠𝑖) ∶= P1(𝑠𝑘, 𝑟𝑖), 𝑧𝑖 ∶= P2(𝑠𝑘, 𝑤𝑖, 𝑐𝑖, 𝑠𝑖) ∶

(∀𝑖 ∈ [𝐵] ∶ 𝑧𝑖 = ⊥) ∨ (∃𝑖 ∈ [𝐵] ∶ 𝑧𝑖 ≠ ⊥ ∧ V(𝑣𝑘, 𝑤𝑖, 𝑐𝑖, 𝑧𝑖) = false)

⎫⎪⎪
⎬⎪⎪⎭
.
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By the definition of (𝛾, 𝛽)-correctness of LID and the discussion in subsection 3.2, we have

Exp
(𝑣𝑘,𝑠𝑘)

[#𝑠𝑘,𝐵/#𝑠𝑘,𝐵] ≤ 1 − 𝜌′.

For a finite set  , U is a probabilistic sampling algorithm that returns 𝑠 ←  . For convenience, we define the
output of U(∅) as ⊥.10
Let us construct an unbounded adversary gspb = (1,2) against GSPB defined in Figure 9. The first ad-

versary1 outputs a set of bounds {𝜆𝑠𝑘(𝑚)}, 𝑣𝑘, 𝑠𝑘, where 𝜆𝑠𝑘(𝑚) = 𝜆𝑠𝑘 = #𝑠𝑘,𝐵/#𝑠𝑘,𝐵 . The value of function

𝑔 on 𝑚 is selected according to Ber𝜆𝑠𝑘 . The second adversary2 tries to output 𝑚∗
on which GetTrans fails

to output a valid signature.

We first consider the success probability of gspb by fixing (𝑣𝑘, 𝑠𝑘) and H. Let us verify the distributions of

𝑟1,… , 𝑟𝐵 in RFP and 𝑐1,… , 𝑐𝐵 ∈ RFH. In Samp, if we took a random sample of a sequence from the set 𝑠𝑘,𝐵 , then

the distributions were perfectly simulated. Instead of this, we check the value of 𝑔(𝑚), and if it is 1, then we

take a bad sequence uniformly at random; otherwise, we take a good sequence uniformly at random. Since

the probablity that 𝑔(𝑚) takes 1 with probability 𝜆𝑠𝑘 = #𝑠𝑘,𝐵/#𝑠𝑘,𝐵 , the distribution of Samp is perfect and

the distribution of RFP and RFH are the same as those in G2 and G3.

We then check ’s forgery. If �̂� is set as 𝑚∗
, then the adversary submits 𝑚∗

such that 𝑚∗
induces a bad

sequence. Hence, 𝑔(𝑚∗) = 1 andgspb wins the game. Thus, we have

Pr[Bad ∣ 𝑣𝑘, 𝑠𝑘] = Pr[GSPB𝜆𝑠𝑘 ,gspb = 1 ∣ 𝑣𝑘, 𝑠𝑘] ≤ 8(𝑞 + 1)2𝜆𝑠𝑘 ,

where 𝑞 is the number of queries to 𝑔 of2, which is 𝑞 ≤ (𝑞𝑆+𝑞𝐹 )⋅(# of queries by GetTrans)+𝑞𝐻 ≤ (𝑞𝑆+𝑞𝐹 )⋅
2𝐵+ 𝑞𝐻 . We note that we can reduce the number of queries to 𝑔 by preparing ((𝑟1, 𝑐1),… , (𝑟𝐵 , 𝑐𝐵)) ∶= Samp(𝑚)
at the first steps of GetTrans and Forge and the best bound is 𝑞 ≤ 𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 .
Averaging this inequality over keys, we obtain

Pr[Bad] ≤ 8(𝑞 + 1)2 ⋅ Exp
(𝑣𝑘,𝑠𝑘)

[𝜆𝑠𝑘] ≤ 8(𝑞 + 1)2 ⋅ (1 − 𝜌′)

Since |Pr[𝑊2] − Pr[𝑊3]| ≤ Pr[Bad], we obtain the bound in the lemma as we wanted. ⊓⊔

Game G4: We next modify the winning condition in Forge: After checking V(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗), where 𝑐∗ =
H(𝑚∗, 𝑤∗), it sets flag win as true if (𝑚∗, (𝑤∗, 𝑧∗)) ∉ 𝐵𝜖 and (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)). See G4 in Figure 8.

We note that this modified condition equals that introduced in G4 for the msEUF-CMA1 security (Theo-

rem 4.1). Thus, similarly, we obtain the following lemma.

Lemma 5.3. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊3] − Pr[𝑊4]| ≤ 𝑞𝐹 ⋅ 𝐵2−𝛼 + 𝜖𝑚.

Proof. The difference occurs if the adversary queries a valid pair of message and signature (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖

such that (𝑤∗, 𝑧∗) = (�̃�(𝑘), �̃�(𝑘)). If (𝑚∗, (�̃�(𝑘), �̃�(𝑘))) is not in 𝐵𝜖, then this contradicts with the requirement

(𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖. Thus, (𝑚∗, (�̃�(𝑘), �̃�(𝑘))) should be blinded by 𝐵𝜖. This means that the adversary cannot

obtain the signature (�̃�(𝑘), �̃�(𝑘)) on 𝑚∗
from the blinded signing oracle 𝐵𝜖Sign. Thus, the adversary succeeds

to guess 𝑤∗ = �̃�(𝑘) without knowing �̃�(𝑘)
.

LetBad𝑖 be the event that inG𝑖 the adversary submit (𝑚∗, (𝑤∗, 𝑧∗)) such thatV(𝑣𝑘, 𝑤∗𝑐,∗ , 𝑧∗) = true, (𝑚∗, (𝑤∗, 𝑧∗)) ∈
𝐵𝜖, and (𝑤∗, 𝑧∗) = (�̃�(𝑘), �̃�(𝑘)) which implies 𝑤∗ = �̃�(𝑘)

. As in the proof of Lemma 4.4, we have

|Pr[𝑊3] − Pr[𝑊4]| ≤ Pr[Bad3].

As Lemma 4.2, we have Pr[Bad3] = 𝑞𝐹 ⋅ 𝐵2−𝛼 + 𝜖𝑚 because the min-entropy of �̃�(𝑘)
is at least 𝛼 − lg(𝐵) with

probability at least 1 − 𝜖𝑚 over the choice of keys. ⊓⊔

Game G5: We next modify the random oracle as follows: On a query (𝑚,𝑤), the oracle first computes the

transcripts. If the input 𝑤 is equivalent to one of 𝑤(𝑖)
, then it returns 𝑐′ ∶= 𝑐(𝑖); otherwise, it returns 𝑐′ ∶=

RFH(𝑚,𝑤). See G4 in Figure 8 for the details. Since 𝑐(𝑖) = RFH(𝑚,𝑤(𝑖)) in GetTrans, this modification changes

nothing and we have

G4 = G5.

Game G6: The next game introduces a collision check for 𝑤(𝑖)
’s in GetTrans. Since the min-entropy of 𝑤(𝑖)

is 𝛼-bit with probability 1−𝜖𝑚, on each invocation of GetTrans, the collision occurs with probability at most

𝐵2 ⋅ 2−𝛼−1. As Lemma 4.3, we have the following lemma using the one-sided O2H lemma.

Lemma 5.4. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have that

|Pr[𝑊5] − Pr[𝑊6]| ≤ 2(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ) ⋅ 𝐵 ⋅ 2
−𝛼−1
2 + 𝜖𝑚.

10
But, this never occurs.
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Game G7: We next modify how to compute 𝑐(𝑘) in GetTrans, in which it is computed as RF′H(𝑚, 𝑘) instead
of RFH(𝑤(𝑘), 𝑚). We note that this does not change the adversary’s view because RF′H is a random function,

and if 𝑤 = 𝑤(𝑖)
for the query (𝑚,𝑤), then consistent 𝑐′ = 𝑐(𝑖) = RF′H(𝑚, 𝑖) is output by H. (Note that excluding

the collision is crucial [DFPS23].) We have

G6 = G7.

Game G8: To ease the notation, let 𝑚∗ ∶= {𝑤(𝑖)}𝑖∈[𝑘] which are the 𝑤 parts of the transcripts generated

by GetTrans(𝑚∗). We additionally define ′
𝑚∗ ∶= {𝑤(𝑖)}𝑖∈[𝑘−1]. We again modify the game as follows: Let

(𝑚∗, (𝑤∗, 𝑧∗)) be a submitted query to Forge. The oracle additionally checks if ′
𝑚∗ ; if so, it requires 𝑐∗ =

RFH(𝑚∗, 𝑤∗) as defined in ??. As Lemma 4.4, we have the following lemma:

Lemma 5.5. We have that
Pr[𝑊7] = Pr[𝑊8].

Proof. The two games may differ if the adversary queries 𝑤∗ = 𝑤(𝑖)
for 𝑖 < 𝑘 but 𝑐∗ ≠ RFH(𝑚∗, 𝑤∗). We call

this event Bad𝑖 in G𝑖. As in the proof of Lemma 4.4, we have

|Pr[𝑊7] − Pr[𝑊8]| ≤ Pr[Bad7] ≤ |Pr[Bad7] − Pr[Bad6]| + Pr[Bad6] ≤ Pr[Bad6].

Notice that, in G6, 𝑐∗ = RFH(𝑚∗, 𝑤∗) always holds and Bad6 never occurs. Thus, we have Pr[𝑊7] = Pr[𝑊8] as
we wanted. ⊓⊔

Game G9: We next modify GetTrans to use the simulation algorithm. See G9 in Figure 7 for the details. As

Lemma 4.5 and Lemma 4.6, we have the following lemmas:

Lemma 5.6. Suppose that LID is 𝜖zk-HVZK. Then, we have

|Pr[𝑊8] − Pr[𝑊9]| ≤
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝐵𝜖zk.

Lemma 5.7. Suppose that LID is (1 + 𝜖zk)-divergence HVZK. Then, for any positive integer 𝓁, we have

Pr[𝑊8] ≤ (1 + 𝜖zk)𝐵𝓁(Pr[𝑊9] + 27𝑞3/𝓁) + 27𝑞3/𝓁.

Game G10: We then treat the case 𝑤∗ = �̃�(𝑘)
as a special case to exclude CUR. To do so, we replace the

condition 𝑤∗ ∉ ′
𝑚∗ with 𝑤∗ ∉ 𝑚∗ . See G10 in Figure 8 for the details.

Because of this modification, if the adversary queries (𝑚∗, (𝑤∗, 𝑧∗)) satisfying (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)), 𝑤∗ = �̃�(𝑘)
,

then two games differ. This is easily treated by the CUR property.

Lemma 5.8. There exists a quantum  -oracle adversary cur such that

|Pr[𝑊9] − Pr[𝑊10]| ≤ AdvcurLID,cur (𝜅),
Time∗(cur) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖)),
Mem∗(cur) = Mem() + 𝑂(𝐵Mem(LID)) + 𝑂(Mem(𝐵𝜖)),

where  = Func( ×  ×,) × Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

Since the proof is straightforwardly obtained, we omit it.

Game G11: We again modify the conditions in Forge in G10: Forge checks if (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖, (𝑤∗, 𝑧∗) ≠
(�̃�(𝑘), �̃�(𝑘)), 𝑤∗ ≠ �̃�(𝑘)

, and 𝑐∗ = RFH(𝑚∗, 𝑤∗) or not. If so, the flag is set as true. See G11 in Figure 8 for the

details.

Lemma 5.9. We have G10 = G11.

Proof. Let us consider a valid forgery (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 satisfying (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)).
If 𝑤∗ ∈ ′

𝑚∗ , then there is no diference on the condition 𝑐∗ = RFH(𝑚∗, 𝑤∗) in both games. If 𝑤∗ = �̃�(𝑘)
, then

win is kept the same in both games. If 𝑤∗ ∉ 𝑚∗ , then we have 𝑐∗ = RFH(𝑚∗, 𝑤∗); both flags in G10 and G11 are

set true because 𝑐∗ = RFH(𝑚∗, 𝑤∗). Summarizing those three cases, both games are the same. ⊓⊔
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1
𝑣𝑘 ← LossyGenLID(1𝜅)
foreach 𝑤 ∈  do

compute 𝑣𝑘(𝑤) ⊆ 
𝜆′𝑣𝑘(𝑤) ∶= #𝑣𝑘(𝑤)/#
foreach 𝑚 ∈  do 𝜆𝑣𝑘(𝑚,𝑤) ∶= 𝜆′𝑣𝑘(𝑤)

return {𝜆𝑣𝑘(𝑚,𝑤)}𝑚∈,𝑤∈ , 𝑣𝑘

RFH ∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐⟩
if 𝑔(𝑚,𝑤) = 1 then

return 𝑐 ∶= U(𝑣𝑘(𝑤);RFU(𝑚,𝑤))
else

return 𝑐 ∶= U( ⧵ 𝑣𝑘(𝑤);RFU(𝑚,𝑤))

H∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐′⟩
if GetTrans(𝑚) = Ⅎ then return Ⅎ{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚)

if ∃𝑖 ∶ 𝑤 = 𝑤(𝑖) then 𝑐′ ∶= 𝑐(𝑖) else 𝑐′ ∶= RFH(𝑚,𝑤)
return 𝑐′

𝐵𝜖Sign∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
if GetTrans(𝑚) = Ⅎ then return Ⅎ{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚)

if 𝑧(𝑘) = ⊥ ∨ (𝑚, (𝑤(𝑘) , 𝑧(𝑘))) ∈ 𝐵𝜖 then
return 𝜎 ∶= ⊥

else
return 𝜎 ∶= (𝑤(𝑘) , 𝑧(𝑘))

|𝑔⟩
2 (𝑣𝑘)

RF𝐵 ← Func( × ×,)
RF′H ← Func( × [𝐵],)
RFSim ← Func( × [𝐵],Sim)
RFU ← Func(,U)
win ∶= false; �̂� ∶= ⊥; �̂� ∶= ⊥
simulate 𝐵𝜖Sign, Forge, and H

run |𝐵𝜖Sign⟩,Forge,|H⟩(𝑣𝑘)
if win = true then

return (�̂�, �̂�)
else

return ⊥

GetTrans(𝑚)
𝑘 ∶= 1; 𝑧(0) ∶= ⊥
while 𝑧(𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 do

𝑐(𝑘) ∶= RF′H(𝑚, 𝑘)
(𝑤(𝑘) , 𝑧(𝑘)) ∶= Sim(𝑣𝑘, 𝑐(𝑘) ;RFSim(𝑚, 𝑘))
𝑘 ∶= 𝑘 + 1

𝑘 ∶= 𝑘 − 1
𝑚 ∶= {𝑤(𝑖)}𝑖∈[𝑘]
if Coll(𝑚) then return Ⅎ
return

{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘]

Forge(𝑚∗ , 𝜎∗) where 𝜎∗ = (𝑤∗ , 𝑧∗)
if GetTrans(𝑚) = Ⅎ then return Ⅎ{
(�̃�(𝑖) , 𝑐(𝑖) , �̃�(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

if V(𝑣𝑘, �̃�(𝑘) , 𝑐(𝑘) , �̃�(𝑘)) = false then return Ⅎ
if ∃𝑖 ∶ 𝑤∗ = �̃�(𝑖) then 𝑐∗ ∶= 𝑐(𝑖) else 𝑐∗ ∶= RFH(𝑚∗ , 𝑤∗)
if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true ∧ (𝑚∗ , (𝑐∗ , 𝑧∗)) ∈ 𝐵𝜖 ∧ (𝑤∗ , 𝑧∗) ≠ (�̃�(𝑘) , �̃�(𝑘)) then

if 𝑤∗ ≠ �̃�(𝑘) ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗) then /detect Bad
�̂� ∶= 𝑚∗

; �̂� ∶= 𝑤∗ win ∶= true /detect Bad

Fig. 10. Adversarygspb = (1,2) against GSPB for Lemma 5.11. The set of good challenges 𝑣𝑘(𝑤) and an algorithm U are

defined in the proof text.

Game G12: We finally replace a normal verification key with a lossy verification key. See G12 in Figure 8 for

the details.

Lemma 5.10. There exists a quantum  -oracle adversaryind such that

|Pr[𝑊11] − Pr[𝑊12]| ≤ Adv
indkey
LID,ind

(𝜅),

Time∗(ind) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖)),
Mem∗(ind) = Mem() + 𝑂(𝐵Mem(LID)) + 𝑂(Mem(𝐵𝜖)),

where  = Func( ×  ×,) × Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

Since the proof is obtained by a straightforward reduction, we omit it.

Lemma 5.11. Suppose that LID is 𝜖𝓁-lossy. Then, we have

Pr[𝑊12] ≤ 8(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 + 1)2𝜖𝓁.

While we omit the proofs for the cases of msEUF-CMA1 and PO securities because the proofs are the same

as in [KLS18], we here include the proof for sBU security for completeness.

Before giving the proof, we review some terminology.

For a verification key 𝑣𝑘 and commitment 𝑤 ∈  , we define the set of good challenges as

𝑣𝑘(𝑤) ∶= {𝑐 ∈  ∣ ∃𝑧 ∈  ∶ V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = true}. (1)

In [KLS18, Section 2.3], Kiltz et al. discussed that

Adv
imp
LID,(𝜅) ≤ Exp

𝑣𝑘←LossyGenLID(1𝜅 )
[max
𝑤∈ ( Pr

𝑐←
[∃𝑧 ∈  ∶ V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = true])]

= Exp
𝑣𝑘←LossyGenLID(1𝜅 )

[max
𝑤∈

(#𝑣𝑘(𝑤)/#)]
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and the equality holds when the adversary is optimal by choosing the best 𝑤 ∈  . Thus, if LID is 𝜖𝓁-losy, we
have

Exp
𝑣𝑘←LossyGenLID(1𝜅 )

[max
𝑤∈

(#𝑣𝑘(𝑤)/#)] ≤ 𝜖𝓁. (2)

Proof. We follow the proof by Kiltz et al. [KLS18, Theorem 3.4]. For a finite set  , U is a probabilistic sampling

algorithm that returns 𝑠 ←  . For convenience, we define the output of U(∅) as ⊥.11
Let us construct an unbounded adversary gspb = (1,2) against GSPB. The first adversary 1 outputs a

set of bounds {𝜆𝑣𝑘(𝑚,𝑤)} and 𝑣𝑘. The value of function 𝑔 on (𝑚,𝑤) is selected according to Ber𝜆𝑣𝑘 (𝑚,𝑤). The

second adversary 2 tries to output (𝑚∗, 𝑤∗) as in Figure 10. We first consider the success probability of

gspb by fixing 𝑣𝑘. Let us verify the distribution of 𝑐 in RFH. We note that 𝑔(𝑚,𝑤) = 1 with probability

𝜆𝑣𝑘(𝑚,𝑤) = #𝑣𝑘(𝑤)/#. We have

Pr[𝑐 = 𝑐] =

{
𝜆𝑣𝑘(𝑚,𝑤) ⋅ 1

#𝑣𝑘 (𝑤)
(𝑐 ∈ #𝑣𝑘(𝑤))

(1 − 𝜆𝑣𝑘(𝑚,𝑤)) ⋅ 1
#−#𝑣𝑘 (𝑤)

o.w.,

which is 1/# in both cases. Hence, the distribution of 𝑐 in RFH is uniform over  (as in G12). We then check

’s forgery. Since V(𝑣𝑘, 𝑤∗, 𝑐∗, 𝑧∗) = true, where 𝑐∗ = RFH(𝑚∗, 𝑤∗), 𝑐∗ should be a good challenge in 𝑣𝑘(𝑤∗).
This means that 𝑔(𝑚∗, 𝑤∗) = 1 andgspb wins the game. Thus, we have

Pr[𝑊12 ∣ 𝑣𝑘] = Pr[GSPB𝜆𝑣𝑘 ,gspb = 1 ∣ 𝑣𝑘] ≤ 8(𝑞 + 1)2𝜆𝑣𝑘 ,

where 𝜆𝑣𝑘 ∶= max(𝑚,𝑤)∈× 𝜆𝑣𝑘(𝑚,𝑤) and 𝑞 is the number of queries to 𝑔 . We note that 𝑔 is queried by H and

Forge. Thus, we have 𝑞 ≤ 𝑞𝐻 + 𝑞𝐹 ≤ 𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 .
Averaging this inequality over 𝑣𝑘 generated by LossyGenLID(1𝜅), we obtain

Pr[𝑊12] ≤ 8(𝑞 + 1)2 ⋅ Exp
𝑣𝑘←LossyGenLID(1𝜅 )

[𝜆𝑣𝑘] ≤ 8(𝑞 + 1)2 ⋅ 𝜖𝓁

as we wanted, where we used 𝜆𝑣𝑘 = max(𝑚,𝑤) 𝜆𝑣𝑘(𝑚,𝑤) = max𝑤(#𝑣𝑘(𝑤)/#) and Equation 2. ⊓⊔

6 Plus-One Unforgeability of Signature from Lossy Identification

Theorem 6.1 (PO security ofDFS𝐵,wz[LID,H, PRF]). Let 𝐵 ≥ 1. LetH∶ × →  be a hash function modeled
as a random oracle. Let LID be a lossy identification scheme that is (𝛾, 𝛽)-correct, 𝜖zk-HVZK, and 𝜖𝓁-lossy, and
has (𝛼, 𝜖𝑚)-commitment min-entropy. Let DS ∶= DFS𝐵,wz[LID,H, PRF] and let 𝜌′ be the completeness of DS.
Then, for a quantum adversary breaking the PO security of DS that issues at most 𝑞𝐻 quantum queries to the
random oracle H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-checking oracle,
there exists a quantum prf-oracle adversary prf against pseudorandomness of PRF and quantum  -oracle
adversaries ind against key indistinguishability of LID and cur against computationally unique response of
LID such that

Adv
po
DS,(𝜅) ≤ Adv

pr
PRF,prf

(𝜅) + AdvcurLID,cur (𝜅) + Adv
ind-key
LID,ind

(𝜅) + 8(𝑞 + 1)2𝜖𝓁

+ 8(𝑞 + 1)2(1 − 𝜌′) +
(𝑞𝑆 + 1)
⌊2𝛼/𝐵⌋

+ 2𝑞𝐵2−
−𝛼−1
2 + 3𝜖𝑚 +

√
(6𝑞)3𝐵𝜖zk,

Time∗(prf) = Time() + 𝑞𝑆 ⋅ 𝑂(𝐵Time(LID)) + 𝑞𝐹 ⋅ 𝑂(Time(LID)),
Mem∗(prf) = Mem() + 𝑂(𝐵Mem(LID)) + 𝑞𝐹 ⋅ 𝑂(Mem(LID)) + 𝑂(lg(𝑞𝑆)),
Time∗(ind) = Time() + 𝑞 ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(ind) = Mem() + 𝑂(𝐵Mem(LID)),
Time∗(cur) = Time() + 𝑞 ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(cur) = Mem() + 𝑂(𝐵Mem(LID)),

where 𝑞 = 𝑞𝐻+𝑞𝑆+𝑞𝐹 ,prf = Func(× ,), and = Func(× ,)×Func(×[𝐵],)×Func(×[𝐵],Sim).

As a corollary, when we employ a random function RFP directly, the above proof can be modified into a

memory-tight one.

Corollary 6.1 (PO security of DFS+𝐵,wz[LID,H,RFP]). DFS+𝐵,𝑤𝑧[LID,H,RFP] has a memory-tight proof for the
PO security.

11
But, this never occurs.
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G0 ,… ,G12
(𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅) /G0-G11
𝑣𝑘 ← LossyGenLID(1𝜅) /G12
𝐾 ← {0, 1}𝜅 /G0
RFH ← Func( × ,)
RF′H ← Func( × [𝐵],) /G6-
RFP ← Func( × [𝐵],P1 ) /G2-G6
RFSim ← Func( × [𝐵],Sim) /G7-
 ∶= ∅ /G0-G4.0
win ∶= false /G4.0-

run |Sign⟩,Forge,|H⟩(𝑣𝑘)
return J# > 𝑞𝑆K /G0-G3
return J# > 𝑞𝑆K ∧ win /G4.0
return win /G4.1−

Sign∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-

(𝑤(𝑘) , 𝑐(𝑘) , 𝑧(𝑘)) ← GetTrans(𝑚) /G0-G1{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚) /G2-

if 𝑧(𝑘) = ⊥ then
𝜎 ∶= ⊥

else
𝜎 ∶= (𝑤(𝑘) , 𝑧(𝑘))

 ∶=  ∪ {(𝑚, 𝜎)} /G0-G4.0
return 𝜎

H∶ |𝑚,𝑤⟩ |𝑦⟩ ↦ |𝑚,𝑤⟩ |𝑦 ⊕ 𝑐′⟩
return 𝑐′ ∶= RFH(𝑚,𝑤) /G0-G4.1
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚) /G5-

if ∃𝑖 ∶ 𝑤 = 𝑤(𝑖) then 𝑐′ ∶= 𝑐(𝑖) else 𝑐′ ∶= RFH(𝑚,𝑤) /G5-

GetTrans(𝑚)
𝑘 ∶= 1; 𝑧(0) ∶= ⊥
while 𝑧(𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 do

(𝑤(𝑘) , 𝑠) ← P1(𝑠𝑘; PRF(𝐾, (𝑚, 𝑘))) /G0

(𝑤(𝑘) , 𝑠) ∶= P1(𝑠𝑘;RFP(𝑚, 𝑘)) /G1-G8

𝑐(𝑘) ∶= RFH(𝑚,𝑤(𝑘)) /G0-G6

𝑐(𝑘) ∶= RF′H(𝑚, 𝑘) /G7-

𝑧(𝑘) ∶= P2(𝑠𝑘, 𝑤(𝑘) , 𝑐(𝑘) , 𝑠) /G0-G8

(𝑤(𝑘) , 𝑧(𝑘)) ∶= Sim(𝑣𝑘, 𝑐(𝑘) ;RFSim(𝑚, 𝑘)) /G9
𝑘 ∶= 𝑘 + 1

𝑘 ∶= 𝑘 − 1 /cancel the last increment

if Coll({𝑤(𝑖)}𝑖∈[𝑘]) = true then return Ⅎ /G6-

return (𝑤(𝑘) , 𝑐(𝑘) , 𝑧(𝑘)) /G0-G1

return
{
(𝑤(𝑖) , 𝑐(𝑖) , 𝑧(𝑖))

}
𝑖∈[𝑘] /G2-

Forge(𝑚∗ , 𝜎∗) where 𝜎∗ = (𝑤∗ , 𝑧∗)
if GetTrans(𝑚) = Ⅎ then return Ⅎ /G6-{
(�̃�(𝑖) , 𝑐(𝑖) , �̃�(𝑖))

}
𝑖∈[𝑘] ← GetTrans(𝑚∗) /G3-

if V(𝑣𝑘, �̃�(𝑘) , 𝑐(𝑘) , �̃�(𝑘)) = false then return Ⅎ /G3-
𝑐∗ ∶= H(𝑚∗ , 𝑤∗)
if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true ∧ (𝑚∗ , 𝜎∗) ∉  then /G0-G4.0

 ∶=  ∪ {(𝑚∗ , 𝜎∗)} /G0-G4.0

if V(𝑣𝑘, 𝑤∗ , 𝑐∗ , 𝑧∗) = true ∧ (𝑤∗ , 𝑧∗) ≠ (�̃�(𝑘) , �̃�(𝑘)) then /G4.0-
win ∶= true /G4.0-G7

𝑚∗ ∶= {�̃�(𝑖)}𝑖∈[𝑘] ; ′
𝑚∗ ∶= {�̃�(𝑖)}𝑖∈[𝑘−1] /G8-G10

if (𝑤∗ ∉ ′
𝑚∗ ) ∨ (𝑤∗ ∈ ′

𝑚∗ ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗)) then win ∶= true /G8-G9
if (𝑤∗ ∉ 𝑚∗ ) ∨ (𝑤∗ ∈ ′

𝑚∗ ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗)) then win ∶= true /G10

if 𝑤∗ ≠ �̃�(𝑘) ∧ 𝑐∗ = RFH(𝑚∗ , 𝑤∗) then win ∶= true /G11-

Fig. 11. G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4.0, 4.1, 5, 6,… , 12} for PO security.

6.1 Proof of Theorem

We define fourteen games G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4.0, 4.1, 5, 6,… , 12} to show our theorem. Let𝑊𝑖 denote the event

that the experiment outputs true in G𝑖.

Roadmap: Before describing games, we briefly give intuitions for games.

In the PO security game, the game handles  which contains distinct valid pairs of messages and signatures.

The adversary wins if # > 𝑞𝑆 by submitting forgeries to the forgery-checking oracle Forge. As in the case

of msEUF-CMA1 security, we start from the original game G0 and go to G3, in which the forgery-checking

oracle outputs a special symbol if its own signature on𝑚∗
is invalid.Wewant tomodify the winning condition

that the adversary outputs at least 𝑞𝑆 + 1 forgeries with the adversary succeeds in submitting (𝑚∗, (𝑤∗, 𝑧∗))
satisfying (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)). We manage the latter condition by a flag win as in msEUF-CMA1 security. In

G4.0, we introduce this flag win and the game returns true if the adversary outputs at least 𝑞𝑆 + 1 distinct valid
pairs of message/signature (# > 𝑞𝑆) and the flag win is true. If a difference occurs between two games, then

the adversary correctly guesses at least 𝑞𝑆 + 1 signatures produced by GetTrans on distinct 𝑞𝑆 + 1messages.

This means that the adversary correctly guesses 𝑞𝑆 +1 commitments 𝑤 on distinct 𝑞𝑆 +1messages. According

to Proposition 4.1, the min-entropy of commitments is at least 𝛼 − lg(𝐵) even if we know the whole table of

the random oracle. Combining this with Lemma 2.3, we can show the bound on this event. In G4.1, we then

remove  by modifying the output of the game as win instead of J# > 𝑞𝑆K ∧win. Since the adversary cannot

detect this relaxation, the advantage in G4.1 at least the advantage in G4.0, i.e., Pr[𝑊4.1] ≥ Pr[𝑊4.0].
After that, we continue to modify the games as msEUF-CMA1 security. Since the adversary can access the

quantum signing oracle, there are minor differences on the bound.

Game G0: This is the original game. See Figure 11 for a concrete definition of G0, where we expand the Sign

algorithm. We have

Pr[𝑊0] = Advmseuf-cma1
DS, (𝜅).
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Game G1: We then replace PRF in P1 of GetTrans with RFP . The straightforward argument shows the

following lemma. Unfortunately, this part is memory-loose because the reduction algorithm should maintain

the forgery list .

Lemma 6.1. There exists a quantum  -oracle adversary prf such that

|Pr[𝑊0] − Pr[𝑊1]| ≤ Adv
pr
PRF,prf

(𝜅),

Time∗(PRF) = Time() + 𝑞𝑆 ⋅ 𝑂(𝐵Time(LID)) + 𝑞𝐹 ⋅ 𝑂(Time(LID)),
Mem∗(PRF) = Mem() + 𝑂(𝐵Mem(LID)) + 𝑞𝐹 ⋅ 𝑂(Mem(LID)) + 𝑂(lg(𝑞𝑆)),

where  = Func( × ,).

Game G2: We next make GetTrans output all transcripts instead of the last one. This modification does not

change anything, and we have

G1 = G2.

Game G3: We next modify the forgery-checking oracle as follows: Before checking the validity of submitted

query (𝑚∗, 𝜎∗), it generates its own signature (�̃�(𝑘), 𝑐(𝑘), �̃�(𝑘)) by using GetTrans(𝑚∗). If the verification fails,

that is, V(𝑣𝑘, �̃�(𝑘), 𝑐(𝑘), �̃�(𝑘)) = false, then the forgery-checking oracle returns the special symbol Ⅎ.
The adversary differentiates between the two gamesG2 andG3 if it submits such (𝑚∗, 𝜎∗) onwhichGetTrans(𝑚∗)
fails to output a valid signature. We can connect this event to the generic search problem with 𝜆 = 1−𝜌′

. We

here skip the proof and see the proof of sBU security (Lemma 5.2) for the detail.

Lemma 6.2. Suppose that LID is (𝛾, 𝛽)-correct and has (𝛼, 𝜖𝑚)-commitment min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3]| ≤ Pr[Bad𝑚∗ ] ≤ 8(𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 + 1)2(1 − 𝜌′) + 𝜖𝑚.

Game G4.0: We replace the winning condition of  as follows: We introduce a flag win which is set true by

Forge when the adversary queries (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)). The challenger outputs J# > cnt𝑠K ∧ win. See G4.0

in Figure 11.

Lemma 6.3. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊3] − Pr[𝑊4.0]| ≤ (𝑞𝑆 + 1)/⌊2𝛼/𝐵⌋ + 𝜖𝑚.

Proof. The two games differ if the adversary queries at least (𝑞𝑆 + 1) valid signatures on distinct messages

to Forge such that (𝑤∗, 𝑧∗) = (�̃�(𝑘), �̃�(𝑘)) on each 𝑚∗
. This is because if two valid signatures share the same

message, then two signatures should be equivalent.

Let Bad𝑖 be the event that the adversary in G𝑖 queries (𝑞𝑆 + 1) valid signatures on distinct messages to Forge

such that 𝑤∗ = �̃�(𝑘)
on each 𝑚∗

. By routine calculation, we have

|Pr[𝑊3] − Pr[𝑊4.0]| ≤ Pr[Bad3].

Proposition 4.1 shows that the min-entropy of �̃�(𝑘)
on 𝑚∗

is at least 𝛼 − lg(𝐵) even if we know the whole

table of the random oracle H with probability 1 − 𝜖𝑚 over the choice of keys. Hence, we have Pr[Bad3] ≤
(𝑞𝑆 + 1)/⌊2𝛼/𝐵⌋ + 𝜖𝑚 by invoking Lemma 2.3. ⊓⊔

Game G4.1: We then replace the output of the game. In G4.1, the game just outputs the flag win instead of

J# > cnt𝑠K ∧ win. See G4.1 in Figure 11. This modification allows us to forget .
Since we relax the condition and the adversary cannot detect this modification, we have

Pr[𝑊4.0] ≤ Pr[𝑊4.1].

Game G5: We next modify the random oracle as follows: On a query (𝑚,𝑤), the oracle first computes the

transcripts {(𝑤(𝑖), 𝑐(𝑖), 𝑧(𝑖))} via GetTrans. If the input 𝑤 is equivalent to one of 𝑤(𝑖)
, then it returns 𝑐′ ∶= 𝑐(𝑖);

otherwise, it returns 𝑐′ ∶= RFH(𝑚,𝑤). See G4 in Figure 11 for the details. Since 𝑐(𝑖) is computed as RFH(𝑚,𝑤(𝑖)),
this modification changes nothing and we have

G4.1 = G5.

Game G6: The next game introduces a collision check for 𝑤(𝑖)
’s in GetTrans. As Lemma 4.3, we have the

following lemma.

Lemma 6.4. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊5] − Pr[𝑊6]| ≤ 2(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ) ⋅ 𝐵 ⋅ 2
−𝛼−1
2 + 𝜖𝑚.
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Game G7: We next modify how to compute 𝑐(𝑘) in GetTrans, in which it is computed as RF′H(𝑚, 𝑘) instead
of RFH(𝑚,𝑤(𝑘)). We note that this does not change the adversary’s view because RF′H is a random function,

and if 𝑤 = 𝑤(𝑖)
for the query (𝑚,𝑤), then consistent 𝑐′ = 𝑐(𝑖) = RF′H(𝑚, 𝑖) is output by H. (Note that excluding

the collision is crucial [DFPS23].) By this argument, we have

G6 = G7.

Game G8: We then modify the condition in Forge.

To ease the notation, let𝑚∗ ∶= {𝑤(𝑖)}𝑖∈[𝑘] which are the𝑤 parts of the transcripts generated byGetTrans(𝑚∗).
We additionally define ′

𝑚∗ ∶= {𝑤(𝑖)}𝑖∈[𝑘−1].
In G8, Forge additionally checks if 𝑤∗ ∈ ′

𝑚∗ or not; if so, it also checks if 𝑐∗ = RFH(𝑚∗, 𝑤∗) or not as in
Figure 11. As Lemma 4.4, we have the following lemma.

Lemma 6.5. We have
Pr[𝑊7] = Pr[𝑊8].

Game G9: We next modify GetTrans to use Sim instead of P1 and P2. See G9 in Figure 11 for the details.

As Lemma 4.5 and Lemma 4.6 we have the following lemmas:

Lemma 6.6. Assume that LID is 𝜖zk-HVZK. Then, we have

|Pr[𝑊8] − Pr[𝑊9]| ≤
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝐵𝜖zk.

Lemma 6.7. Suppose that LID is (1 + 𝜖zk)-divergence HVZK. Then, for any positive integer 𝓁, we have

Pr[𝑊8] ≤ (1 + 𝜖zk)𝐵𝓁(Pr[𝑊9] + 27𝑞3/𝓁) + 27𝑞3/𝓁.

Game G10: We then treat the case 𝑤∗ = �̃�(𝑘)
as a special case. To do so, we replace the condition 𝑤∗ ∉ ′

𝑚∗

with 𝑤∗ ∉ 𝑚∗ as in G10 in Figure 11. This is easily reduced to the CUR property.

Lemma 6.8. There exists a quantum  -oracle adversary cur such that

|Pr[𝑊9] − Pr[𝑊10]| ≤ AdvcurLID,cur (𝜅),
Time∗(cur) = 𝑂(Time()) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(cur) = 𝑂(Mem()) + 𝑂(𝐵Mem(LID)),

where  = Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

Since the proof is the same as that of Lemma 4.7, we omit it.

Game G11: We again modify the conditions in Forge: Forge checks if (𝑤∗, 𝑧∗) ≠ (�̃�(𝑘), �̃�(𝑘)), 𝑤∗ ≠ �̃�(𝑘)
, and

𝑐∗ = RFH(𝑚∗, 𝑤∗) or not. If so, the flag is set as true. See G11 in Figure 11 for the details. As Lemma 4.8, this

modification does not change anything and we have

G10 = G11.

Game G12: Finally, we replace a normal verification key with a lossy verification key. See G12 in Figure 11

for the details.

As Lemma 4.9, we have the following lemma:

Lemma 6.9. There exists a quantum  -oracle adversaryind such that

|Pr[𝑊11] − Pr[𝑊12]| ≤ Adv
indkey
LID,ind

(𝜅),

Time∗(ind) = 𝑂(Time()) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(𝐵Time(LID) + 𝐵2),
Mem∗(ind) = 𝑂(Mem()) + 𝑂(𝐵Mem(LID)),

where  = Func( × ,) × Func( × [𝐵],) × Func( × [𝐵],Sim).

Wealso have the following lemma as Kiltz et al. [KLS18]. See the proof of the case for sBU security (Lemma 5.11).

Lemma 6.10. If LID is 𝜖𝓁-lossy, then we have

Pr[𝑊13] ≤ 8(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 + 1)2𝜖𝓁.
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A Lemma for the Rényi Divergence

To treat the divergence HVZK, we show a variant of Lemma 2.2 to treat the Rényi divergence.

Lemma A.1 (A variant of Lemma 2.2). Let  and  be two finite sets. Let 𝐷 = {𝐷𝑥 } and 𝐷′ = {𝐷′
𝑥 } be two

sets of efficiently sampleable distributions over  indexed by 𝑥 ∈  . Let  be a quantum algorithm making
𝑞 queries to an oracle 𝐻 ∶  →  . Suppose that there exists some rational 𝜖 ∈ [0,+∞) such that for each
𝑥 ∈ 𝑋 , 𝑅∞(𝐷𝑥 ;𝐷′

𝑥) ≤ (1 + 𝜖) holds. Then, there exists a universal constant 𝐶0 < 27 such that, for any positive 𝓁,
Pr[𝐻 ← Func , (𝐷) ∶ |𝐻 ⟩ = 1] ≤ (1 + 𝜖)𝓁(Pr[𝐻 ← Func , (𝐷′) ∶ |𝐻 ⟩ = 1] + 𝐶0𝑞3/𝓁) + 𝐶0𝑞3/𝓁 holds.

Before giving the proof of the lemma, we quickly review the proof of Lemma 2.2.

Quick review of the proof of Lemma 2.2: The strategy of Boneh and Zhandry [BZ13b] is summarized as

follows: First, they showed that Lemma 2.2 for the sets 𝐷 and 𝐷′
of rational distributions and rational 𝜖. Sec-

ond, for general distributions, they considered the sets of sequences of rational distributions approximating

the target sets of distributions 𝐷 and 𝐷′
. To show the former, they used the following definition and lemma

to prove Lemma 2.2.

Definition A.1 ([BZ13b, Definition 2.3] taken from [Zha12b]). Fix sets  ,  and a distribution 𝐷 on  . Fix
an integer 𝑟 . Let 𝒚 = (𝑦1,… , 𝑦𝑟 ) be a list of 𝑟 samples from 𝐷 and let 𝑃 be a random function from  to [𝑟]. The
distributions on 𝒚 and 𝑃 induce a distribution on functions 𝐻 ∶  →  defined by 𝐻 (𝑥) ∶= 𝒚[𝑃(𝑥)] = 𝑦𝑃(𝑥).
This distribution is called a small-range distribution with 𝑟 samples of 𝐷.

Lemma A.2 ([BZ13b, Lemma 2.4] taken from [Zha12b]). There is a universal constant 𝐶0 = 27 such that, for
any sets  and  , distribution 𝐷 on  , any integer 𝓁, and any quantum algorithm  making 𝑞 queries to an
oracle 𝐻 ∶  →  , the following two cases are indistinguishable, except with probability less than 𝐶0𝑞3/𝓁:
– 𝐻 (𝑥) = 𝑦𝑥 where 𝒚 is a list of samples of 𝐷 of size # .
– 𝐻 is drawn from the small-range distribution with 𝓁 samples of 𝐷.

To show Lemma 2.2 for the sets𝐷 and𝐷′
of rational distributions and rational 𝜖, they defined two distributions

𝐸 and 𝐸′
over a set [𝐾 ] and a set of functions 𝑓 = {𝑓𝑥 ∶ [𝐾 ] → } such that 𝐷𝑥 = 𝑓𝑥 ◦ 𝐸, 𝐷′

𝑥 = 𝑓𝑥 ◦ 𝐸′
, and

|𝐸 − 𝐸′| ≤ 𝜖. Using them, they defined four games as follows:

– G0: Choose 𝒛 ← 𝐸#
; for each 𝑥 , define 𝑔(𝑥) ∶= 𝒛[𝑥] and 𝐻 (𝑥) ∶= 𝑓𝑥(𝑔(𝑥)); return |𝐻 ⟩

.

– G1: Choose 𝒛 ← 𝐸𝓁
; choose 𝑃 ← Func( , [𝓁]); for each 𝑥 , define 𝑔(𝑥) ∶= 𝒛[𝑃(𝑥)] and 𝐻 (𝑥) ∶= 𝑓𝑥(𝑔(𝑥));

return|𝐻 ⟩
.

– G2: Choose 𝒛 ← (𝐸′)𝓁; choose 𝑃 ← Func( , [𝓁]); for each 𝑥 , define 𝑔(𝑥) ∶= 𝒛[𝑃(𝑥)] and𝐻 (𝑥) ∶= 𝑓𝑥(𝑔(𝑥));
return|𝐻 ⟩

.

– G3: Choose 𝒛 ← (𝐸′)# ; for each 𝑥 , define 𝑔(𝑥) ∶= 𝒛[𝑥] and 𝐻 (𝑥) ∶= 𝑓𝑥(𝑔(𝑥)); return|𝐻 ⟩
.

By those definitions, we can see 𝑔 in G1 and G2 are drawn from the small-range distribution with 𝓁 samples

of 𝐸 and 𝐸′
. Applying Lemma A.2 to G0 and G1 (and G2 and G3, resp.), we have |Pr[𝐸0]−Pr[𝐸1]| ≤ 𝐶0𝑞3/𝓁 (and

|Pr[𝐸2] − Pr[𝐸3]| ≤ 𝐶0𝑞3/𝓁, resp.). The distance between G1 and G2 is at most 𝓁 ⋅ |𝐸 − 𝐸′| ≤ 𝓁𝜖.
Taking 𝓁 =

√
2𝐶0𝑞3/𝜖, the distance betweenG0 andG3 is at most 𝓁𝜖+2𝐶0𝑞3/𝓁 =

√
2𝐶0𝑞3𝜖+

√
2𝐶0𝑞3𝜖 =

√
8𝐶0𝑞3𝜖.

This proved Lemma 2.2 for the sets 𝐷 and 𝐷′
of rational distributions and rational 𝜖.

Our proof: Following their proof strategy, we proved Lemma A.1 for the sets 𝐷 and 𝐷′
of rational distribu-

tions and rational 𝜖.

Proposition A.1 (Lemma A.1, Rational Distributions). Suppose that the probabilities in each distribution in 𝐷
and 𝐷′ are rational and 𝜖 is rational. Then, there exists a universal constant 𝐶0 < 27 such that, for any positive
𝓁, we have Pr[𝐻 ← Func , (𝐷) ∶ |𝐻 ⟩ = 1] ≤ (1 + 𝜖)𝓁(Pr[𝐻 ← Func , (𝐷′) ∶ |𝐻 ⟩ = 1] + 𝐶0𝑞3/𝓁) + 𝐶0𝑞3/𝓁.

Proof. By the assumption, for any 𝑥 and 𝑦, 𝐷𝑥(𝑦) and 𝐷′
𝑥(𝑦) is rational.

We take large enough integers 𝐾 and 𝐾 ′ ∶= (1+𝜖)𝐾 such that 𝐾 ⋅𝐷𝑥(𝑦) and 𝐾 ′ ⋅𝐷′
𝑥(𝑦) are also integers for all 𝑥

and 𝑦. For ease of notation, we let 𝑝𝑥,𝑦 = 𝐾 ⋅𝐷𝑥(𝑦) and 𝑝′
𝑥,𝑦 = 𝐾 ⋅𝐷′

𝑥(𝑦), which implies (1+𝜖)𝑝′
𝑥,𝑦 = 𝐾 ′⋅𝐷′

𝑥(𝑦) ∈ ℤ.
We design 𝑓𝑥 , 𝐸, and 𝐸′

as follows: Define 𝐸 and 𝐸′
as the uniform distributions over [𝐾 ] and [𝐾 ′], respectively.

For each 𝑥 ∈  , define 𝑓𝑥 ∶ [𝐾 ′] → 𝑌 as follows:

– for 𝑖 ∈ [𝐾 ]: we assign 𝑝𝑥,𝑦 elements for each 𝑦 ∈  .

– for 𝑖 ∈ {𝐾 + 1,… , 𝐾 ′}: we assign (1 + 𝜖)𝑝′
𝑥,𝑦 − 𝑝𝑥,𝑦 elements for each 𝑦 ∈  .

We have 𝑝𝑥,𝑦 ≤ (1+𝜖)𝑝′
𝑥,𝑦 since𝑅∞(𝐷𝑥 ;𝐷′

𝑥) = sup𝑦∈Supp(𝐷𝑥 ) 𝐷𝑥(𝑦)/𝐷′
𝑥(𝑦) = sup(𝑝𝑥,𝑦/𝐾)/(𝑝′

𝑥,𝑦/𝐾) = sup 𝑝𝑥,𝑦/𝑝′
𝑥,𝑦 ,

which is at most 1 + 𝜖. Hence, 𝑓𝑥 is well-defined. By the definition, 𝑓𝑥 ◦ 𝐸 and 𝑓𝑥 ◦ 𝐸′
are equivalent to 𝐷𝑥 and

𝐷′
𝑥 , respectively, as we wanted. In addition, the definitions of 𝐸 and 𝐸′

yield that 𝑅∞(𝐸; 𝐸′) = (1/𝐾)/(1/𝐾 ′) =
(1 + 𝜖).
Using them, we define four games as follows:
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– G0: Choose 𝒛 ← 𝐸#
; define 𝐻 (𝑥) ∶= 𝑓𝑥(𝒛[𝑥]); return |𝐻 ⟩

.

– G1: Choose 𝒛 ← 𝐸𝓁
; choose 𝑃 ← Func( , [𝓁]); define 𝐻 (𝑥) ∶= 𝑓𝑥(𝒛[𝑃(𝑥)]); return|𝐻 ⟩

.

– G2: Choose 𝒛 ← (𝐸′)𝓁; choose 𝑃 ← Func( , [𝓁]); define 𝐻 (𝑥) ∶= 𝑓𝑥(𝒛[𝑃(𝑥)]); return|𝐻 ⟩
.

– G3: Choose 𝒛 ← (𝐸′)# ; define 𝐻 (𝑥) ∶= 𝑓𝑥(𝒛[𝑥]); return |𝐻 ⟩
.

For any event 𝐸𝑖 in G𝑖, we have

– |Pr[𝐸0] − Pr[𝐸1]| ≤ 𝐶0𝑞3/𝓁 from Lemma A.2,

– Pr[𝐸1] ≤ 𝑅∞(𝐸; 𝐸′)𝓁 Pr[𝐸2] ≤ (1 + 𝜖)𝓁 Pr[𝐸2] from Lemma 2.1, and

– |Pr[𝐸2] − Pr[𝐸3]| ≤ 𝐶0𝑞3/𝓁 from from Lemma A.2.

Combining them, we obtain

Pr[𝐸0] ≤ Pr[𝐸1] + 𝐶0𝑞3/𝓁
≤ (1 + 𝜖)𝓁 Pr[𝐸2] + 𝐶0𝑞3/𝓁
≤ (1 + 𝜖)𝓁(Pr[𝐸3] + 𝐶0𝑞3/𝓁) + 𝐶0𝑞3/𝓁.

⊓⊔

For example, if we take 𝜖 = 𝑎/𝓁 for some positive constant 𝑎, we have (1+ 𝜖)𝓁 = (1+ 𝑎/𝓁)𝓁 → 𝑒𝑎 with 𝓁 → +∞.

By letting 𝓁 = 𝐶0𝑞3/𝛿 for some negligible 𝛿, we have

Pr[𝐸0] ≤ (1 + 𝜖)𝓁(Pr[𝐸3] + 𝐶0𝑞3/𝓁) + 𝐶0𝑞3/𝓁 ≤ 𝑒𝑎(Pr[𝐸3] + 𝛿) + 𝛿.

Let 𝛿 be a negligible function. We then set 𝓁 = 𝐶0𝑞3/𝛿 and 𝜖 = 𝛿 ⋅ 𝑎/𝐶0𝑞3, which is negligible in 1𝜅 .

B Instantiations of Lossy Identification

We review three instantiations of lossy identification schemes from post-quantum assumptions.

B.1 Lossy Identification Scheme based on Pseudorandom Group Action

Bläser et al. [BCD
+
22] gave a lossy identification scheme, which is an abstraction of IDenCh

ls in [EKP20], based

on pseudorandom group action. We briefly review cryptographic group action [ADMP20].

Definition B.1 (Group action). Let 𝐺 be a group with identity element 1𝐺 . Let 𝑋 be a set. A map ⋆∶ 𝐺×𝑋 → 𝑋
is a group action if, for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 , 1𝐺 ⋆ 𝑥 = 𝑥 and (𝑔ℎ) ⋆ 𝑥 = 𝑔 ⋆ (ℎ ⋆ 𝑥).

In this section, we assume that 𝐺 and 𝑋 are finite. For the security of the LID scheme, we require the hardness

of the following problem, which is an adapted version of [BCD
+
22, Definition 6].

Definition B.2 (𝑆-pseudorandomproblem, adapted). Let 𝑆 be a positive integer. Let (𝐺, 𝑋, ⋆) be a group action.
The 𝑆-pseudorandom problem with parameter 𝑆 asks to distinguish between the following two distributions:
– (𝐸, 𝑔1 ⋆ 𝐸, 𝑔2 ⋆ 𝐸,… , 𝑔𝑆 ⋆ 𝐸), where 𝐸 ← 𝑋 and 𝑔1,… , 𝑔𝑆 ← 𝐺.
– (𝐸, 𝐸1, 𝐸2,… , 𝐸𝑆) where 𝐸, 𝐸1,… , 𝐸𝑆 ← 𝑋 .

For CUR property, we will use the following problem [BCD
+
22, Definition 7]:

Definition B.3 (Stabilizer problem). Let (𝐺, 𝑋, ⋆) be a regular group action. The stabilizer problem is, given
a random element 𝐸 ← 𝑋 , finding a non-trivial stabilizer 𝑔 ∈ 𝐺 ⧵ {1𝐺} satisfying 𝑔 ⋆ 𝐸 = 𝐸. The Stab(𝐺,𝑋,⋆)

assumption states that for any QPT adversary, its advantage

AdvStab,(𝜅) ∶= Pr[𝐸 ← 𝑋, 𝑔 ← (𝐺, 𝑋, ⋆, 𝐸) ∶ 𝑔 ⋆ 𝐸 = 𝐸 ∧ 𝑔 ∈ 𝐺 ⧵ {1𝐺}]

is negligible in 𝜅.

The description of the scheme follows:

Public parameter: The public parameter is a cryptographic group action (𝐺, 𝑋, ⋆). We have  ∶= 𝑋 𝑡
and

 ∶= 𝐺𝑡
.

Key generation: GenLID uniformly samples 𝐸0 ← 𝑋 and 𝑔1,… , 𝑔𝑆 ← 𝐺, lets 𝑔0 ∶= 1𝐺 , and outputs

𝑣𝑘 = (𝐸0, 𝐸1,… , 𝐸𝑆) and 𝑠𝑘 = (𝑣𝑘, 𝑔0, 𝑔1,… , 𝑔𝑆),

where 𝐸𝑖 ∶= 𝑔𝑖 ⋆ 𝐸0 for 𝑖 = 1,… , 𝑆.
Lossy key generation: LossyGenLID uniformly samples 𝐸0,… , 𝐸𝑆 ← 𝑋 and outputs

𝑣𝑘 = (𝐸0, 𝐸1,… , 𝐸𝑆).
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Challenge space: The challenge space is  ∶= {0, 1,… , 𝑆}𝑡 .
Prover: The prover’s algorithms are defined as follows:

– P1(𝑠𝑘) uniformly samples 𝑟1,… , 𝑟𝑡 ← 𝐺 and returns a commitment 𝑤 = (𝑊1,… , 𝑊𝑡), where 𝑊𝑖 ∶=
𝑟𝑖 ⋆ 𝐸0 for 𝑖 = 1,… , 𝑡, and outputs a state information 𝑠 ∶= (𝑟1,… , 𝑟𝑡).

– P2(𝑠𝑘, 𝑤, 𝑐, 𝑠), where 𝑐 = (𝑐1,… , 𝑐𝑡) and 𝑠 = (𝑟1,… , 𝑟𝑡), computes 𝑧𝑖 ∶= 𝑟𝑖 ⋅ 𝑔−1
𝑐𝑖 ∈ 𝐺 for 𝑖 = 1,… , 𝑡 and

returns 𝑧 = (𝑧1,… , 𝑧𝑡).
Reconstruction: Rec(𝑣𝑘, 𝑐, 𝑧) computes 𝑊𝑖 = 𝑧𝑖 ⋆ 𝐸𝑐𝑖 for 𝑖 = 1,… , 𝑡 and returns 𝑤 = (𝑊1,… , 𝑊𝑡).
Verifier: V(𝑣𝑘, 𝑤, 𝑐, 𝑧) checks if 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧) or not.
Simulator: Sim(𝑣𝑘, 𝑐) uniformly samples 𝑧 = (𝑧1,… , 𝑧𝑡) ← 𝐺𝑡

and outputs 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧).
The signature scheme is obtained by applying DFS1,𝑐𝑧 to the above lossy identification scheme.

The protocol is 𝜖𝓁-lossy with 𝜖𝓁 = 1
(𝑆+1)𝑡 ⋅ ∏𝑖∈[𝑆]

|𝑋 |−𝑖|𝐺|
|𝑋 | + (1 − ∏𝑖∈[𝑆]

|𝑋 |−𝑖|𝐺|
|𝑋 | ) [BCD+

22, Lemma 4]. This 𝜖𝓁 is
negligible in 𝜅 when 𝑆 is constant, 𝑡 = 𝜔(lg(𝜅)), and |𝑋 | ≫ |𝐺|. Key indistinguishability follows from the

hardness of the 𝑆-pseudorandom problem of the underlying group action. In addition, parameters of the

commitment min-entropy are 𝛼 = 𝑡 ⋅ lg(𝑁 ) and 𝜖𝑚 = 0. The protocol achieves perfect correctness and perfect
HVZK.

We give the proof of CUR to check the memory usage of the reduction algorithm. The underlying problem is

the stabilizer problem,

Lemma B.1. The protocol has the CUR property under the Stab(𝐺,𝑋,⋆) assumption: Precisely speaking, for a quan-
tum adversary  breaking the CUR property of the identification protocol, there exists a quantum adversary
stab against the Stab(𝐺,𝑋,⋆) assumption such that

AdvcurLID,(𝜅) ≤ AdvStab,stab (𝜅),
Time∗(stab) = Time() + 𝑆 ⋅ 𝑂(|𝐺|, |𝑋 |),
Mem∗(stab) = Mem() + 𝑆 ⋅ 𝑂(|𝐺|, |𝑋 |).

Proof. We constructstab as follows: Given 𝐸 chosen from 𝑋 , it samples 𝑔1,… , 𝑔𝑆 ← 𝐺, computes 𝐸𝑖 ∶= 𝑔𝑖 ⋆𝐸,
and runs  on input (𝐸0 ∶= 𝐸, 𝐸1, 𝐸2,… , 𝐸𝑆). The adversary  outputs 𝑤, 𝑐, 𝑧 and 𝜁 . Since 𝑧 ≠ 𝜁 , there exists
𝑖 ∈ [𝑡] satisfying 𝑧𝑖 ≠ 𝜁𝑖.stab outputs 𝑓 ∶= 𝑔−1

𝑐𝑖 𝜁
−1
𝑖 𝑧𝑖𝑔𝑐𝑖 if it is not 1𝐺 .

Let us check that 𝑓 is a stabilizer. If (𝑤, 𝑐, 𝑧) and (𝑤, 𝑐, 𝜁 ) are valid, then we have𝑊𝑖 = 𝑧𝑖 ⋆𝐸𝑐𝑖 = 𝜁𝑖 ⋆𝐸𝑐𝑖 . Putting

𝐸𝑐𝑖 = 𝑔𝑐𝑖 ⋆ 𝐸, we have (𝑧𝑖𝑔𝑐𝑖 ) ⋆ 𝐸 = (𝜁𝑖𝑔𝑐𝑖 ) ⋆ 𝐸. Thus, 𝑓 ⋆ 𝐸 = ((𝜁𝑖𝑔𝑐𝑖 )−1 ⋅ (𝑧𝑖𝑔𝑐𝑖 )) ⋆ 𝐸 = 𝐸 and 𝑓 is a stabilizer for

𝐸. It is easy to check that this 𝑓 is non-trivial: Since 𝑧𝑖 ≠ 𝜁𝑖, we have 𝑧𝑖𝑔𝑐𝑖 ≠ 𝜁𝑖𝑔𝑐𝑖 and 𝑓 = (𝜁𝑖𝑔𝑐𝑖 )−1 ⋅ 𝑧𝑖𝑔𝑐𝑖 ≠ 1𝐺
as we wanted. Hence, the advantage ofstab is equivalent to that of. ⊓⊔

B.2 Lossy Identification Scheme based on CSIDH

We recall a lossy identification scheme IDdenCh
ls in Lossy CSI-FiSh proposed by El Kaafarani, Katsumata, and

Pintore [EKP20], which is based on the hardness of the decisional Diffie-Hellman problems in the CSIDH

setting.

We briefly review cryptographic group action [ADMP20] and quadratic twist.

Definition B.4 (Regulality of group action). We say that a group action (𝐺, 𝑋, ⋆) is regular if the following
two conditions hold: (transitive:) for every 𝑥, 𝑥′ ∈ 𝑋 , there exists 𝑔 ∈ 𝐺 satisfying 𝑥′ = 𝑔 ⋆ 𝑥 . (free:) for each
group element 𝑔 ∈ 𝐺, 𝑔 = 1𝐺 if and only if there exists some element 𝑥 ∈ 𝑋 such that 𝑥 = 𝑔 ⋆ 𝑥 .

In what follows, we assume that 𝐺 = ⟨𝑔⟩ of cardinality 𝑁 . In the CSIDH setting, given 𝐸 = 𝑔𝑎 ⋆ 𝐸0, we can

compute its quadratic twist twist(𝐸), which is 𝑔−𝑎 ⋆ 𝐸0 [CLM
+
18, BKV19, EKP20].

For the security of the LID scheme, we require the hardness of the following problem, which is an adapted

version of [EKP20, Definition 4.1].

Definition B.5 (Fixed-Curve Multi-Decisional GADH problem). Let 𝑆 be a positive integer. Suppose that
𝐺 = ⟨𝑔⟩ of cardinarity 𝑁 and 𝑋 be a finite set. Let (𝐺, 𝑋, ⋆) be a regular group action. The fixed-curve multi-

decisional group-action Diffie-Hellman (FCMD-GADH) problem with parameter 𝑆 asks to distinguish between
the following two distributions:
– (𝐸, 𝐻, 𝑔𝑎1 ⋆ 𝐸, 𝑔𝑎1 ⋆ 𝐻,… , 𝑔𝑎𝑆 ⋆ 𝐸, 𝑔𝑎𝑆 ⋆ 𝐻 ), where 𝐸, 𝐻 ← 𝑋 and 𝑎1,… , 𝑎𝑆 ← ℤ𝑁 .
– (𝐸, 𝐻, 𝐸′

1, 𝐻 ′
1 ,… , 𝐸′

𝑆 , 𝐻 ′
𝑆) where 𝐸, 𝐻, 𝐸′

1, 𝐻 ′
1 ,… , 𝐸′

𝑆 , 𝐻 ′
𝑆 ← 𝑋 .

If 𝑆 = 1, the problem is said to be the decisional group-action Diffie-Hellman (D-GADH) problem.

The description of the scheme follows:

Public parameter: The public parameter is a cryptographic group action (𝐺, 𝑋, ⋆). Let 𝐸0 ∈ 𝑋 be a fixed

element in 𝑋 . We have ∶= (𝑋 2)𝑡 and  ∶= ℤ𝑡
𝑁 .
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Key generation: GenLID uniformly samples 𝑎1,… , 𝑎𝑆 , 𝑏1, 𝑏2 ← ℤ𝑁 , lets 𝑎0 ∶= 0, and outputs

𝑣𝑘 = {(𝐸(𝑖)
1 , 𝐸(𝑖)

2 )}𝑖∈{0,…,𝑆} and 𝑠𝑘 = (𝑣𝑘, 𝑎0, 𝑎1,… , 𝑎𝑆 , 𝑏1, 𝑏2),

where 𝐸(0)
1 ∶= 𝑔𝑏1 ⋆ 𝐸0, 𝐸(0)

2 ∶= 𝑔𝑏2 ⋆ 𝐸0, 𝐸(𝑖)
0 = 𝑔𝑎𝑖 ⋆ 𝐸(0)

0 , and 𝐸(𝑖)
1 = 𝑔𝑎𝑖 ⋆ 𝐸(0)

1 for 𝑖 = 1,… , 𝑆. For ease of
notation, for 𝛽 ∈ {1, 2} and 𝑖 ∈ [𝑆], we define 𝐸(−𝑖)

𝛽 ∶= twist(𝐸(𝑖)
𝛽 ).

Lossy key generation: LossyGenLID uniformly samples 𝑎1,… , 𝑎𝑆 , 𝑎′1,… , 𝑎′𝑆 , 𝑏1, 𝑏2 ← ℤ𝑁 and outputs

𝑣𝑘 = {(𝐸(𝑖)
1 , 𝐸(𝑖)

2 )}𝑖∈{0,…,𝑆},

where 𝐸(0)
1 ∶= 𝑔𝑏1 ⋆ 𝐸0, 𝐸(0)

2 ∶= 𝑔𝑏2 ⋆ 𝐸0, 𝐸(𝑖)
0 = 𝑔𝑎𝑖 ⋆ 𝐸(0)

0 , and 𝐸(𝑖)
1 = 𝑔𝑎′𝑖 ⋆ 𝐸(0)

1 for 𝑖 = 1,… , 𝑆.
Challenge space: The challenge space is  ∶= {−𝑆,−𝑆 + 1,… , 𝑆 − 1, 𝑆}𝑡 .
Prover: The prover’s algorithms are defined as follows:

– P1(𝑠𝑘) unformly samples 𝑟1,… , 𝑟𝑡 ← ℤ𝑁 and returns a commitment𝑤 = (𝑤1,… , 𝑤𝑡) = {(𝐹 (𝑘)
1 , 𝐹 (𝑘)

2 )}𝑖∈[𝑡],
where (𝐹 (𝑘)

1 , 𝐹 (𝑘)
2 ) ∶= (𝑔 𝑟𝑘 ⋆ 𝐸(0)

1 , 𝑔 𝑟𝑘 ⋆ 𝐸(0)
2 ) and outputs a state information 𝑠 ∶= (𝑟1,… , 𝑟𝑡).

– P2(𝑠𝑘, 𝑤, 𝑐, 𝑠), where 𝑐 = (𝑐1,… , 𝑐𝑡) and 𝑠 = (𝑟1,… , 𝑟𝑡), computes, for 𝑘 ∈ [𝑡], 𝑧𝑘 = 𝑟𝑘 − 𝑎𝑐𝑘 ∈ ℤ𝑁 if

𝑐𝑘 ≥ 0 and 𝑧𝑘 = 𝑟𝑘 + 𝑏1 + 𝑏2 + 𝑎|𝑐𝑘 | otherwise and returns 𝑧 = (𝑧1,… , 𝑧𝑡).
Reconstruction: Rec(𝑣𝑘, 𝑐, 𝑧) computes, for 𝑘 ∈ [𝑡],𝑤𝑘 = (𝑔𝑧𝑘 ⋆𝐸(𝑐𝑘 )

1 , 𝑔𝑧𝑘 ⋆𝐸(𝑐𝑘 )
2 ) if 𝑐 ≥ 0 and (𝑔𝑧𝑘 ⋆𝐸(𝑐𝑘 )

2 , 𝑔𝑧𝑘 ⋆𝐸(𝑐𝑘 )
1 )

otherwise and returns 𝑤 = (𝑤1,… , 𝑤𝑡).
Verifier: V(𝑣𝑘, 𝑤, 𝑐, 𝑧) checks if 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧) or not.
Simulator: Sim(𝑣𝑘, 𝑐) uniformly samples 𝑧 = (𝑧1,… , 𝑧𝑡) ← ℤ𝑡

𝑁 and outputs 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧).
The signature scheme Lossy CSI-FiSh is obtained by applyingDFS1,𝑐𝑧 to the above lossy identification scheme.

El Kaafarani et al. showed that the protocol is 𝜖𝓁-lossy with 𝜖𝓁 = 1
(2𝑆+1)𝑡 ⋅∏𝑖∈[𝑆]

𝑁−𝑖
𝑁 + (1 −∏𝑖∈[𝑆]

𝑁−𝑖
𝑁 ) [EKP20,

Lemma 4.7]. This 𝜖𝓁 is negligible in 𝜅 when 𝑆 is constant and 𝑡 = 𝜔(lg(𝜅)). Key indistinguishability follows

from the hardness of the FCMD-GADH problem. The protocol achieves perfect correctness, perfect HVZK,

and perfect unique response. In addition, parameters of the commitment min-entropy are 𝛼 = 𝑡 ⋅ lg(𝑁 ) and
𝜖𝑚 = 0.

B.3 Lossy Identification Scheme based on Lattices

As an example of lossy identification based on lattices, we take a new scheme G+G proposed by Devevey,

Passelègue, and Stehlé [DPS23] instead of [Lyu09, Lyu12, DFPS22]. We first define the Gaussian function with

covariance parameter 𝛴 ∈ ℝ𝑘×𝑘
, which is a positive-definite symmetric matrix, and center parameter 𝑐 ∈ ℝ𝑘

as

𝜌𝛴,𝑐(𝑥) = exp (−𝜋(𝑥 − 𝑐)⊤𝛴−1(𝑥 − 𝑐)) .

For a lattice𝛬 ⊆ Span(𝛴), the Gaussian distribution over𝛬with covariance parameter 𝛴 and center parameter

𝑐 is defined by a probability mass function

𝐷𝛬,𝛴,𝑐(𝑥) =
𝜌𝛴,𝑐(𝑥)

∑𝑦∈𝛬 𝜌𝛴,𝑐(𝑦)
for 𝑥 ∈ 𝛬.

Definition B.6 (Learning With Errors (LWE), Hermite Normal Form). Let 𝑚, 𝑘, 𝑞 ∈ ℤ+ with 𝑞 ≥ 2. Let 𝜒
be a distribution over ℤ. The LWE𝑚,𝑘,𝓁,𝑞,𝜒 assumption states that for any QPT adversary , the following two
distributions are computationally indistinguishable:

𝐷1 ∶ 𝐴 ← ℤ𝑚×𝑘
𝑞 ; 𝑆 ← 𝜒 𝑘×𝓁; 𝐸 ← 𝜒𝑚×𝓁; return (𝐴, 𝐴𝑆 + 𝐸),

𝐷2 ∶ 𝐴 ← ℤ𝑚×𝑘
𝑞 ;𝑈 ← ℤ𝑚×𝓁

𝑞 ; return (𝐴, 𝑈 ).

Definition B.7 (Short Integer Solution). Let𝑚, 𝑘, 𝑞 ∈ ℤ+ with 𝑞 ≥ 2. Let 𝛾 > 0. The SIS𝑚,𝑘,𝑞,𝛾 assumption states
that for any QPT adversary , its advantage

AdvSIS,(𝜅) ∶= Pr[𝐴 ← ℤ𝑚×𝑘
𝑞 , 𝑥 ← (𝐴) ∶ 𝐴𝑥 ≡ 0 (mod 𝑞) ∧ 𝑥 ≠ 0 ∧ ‖𝑥‖ ≤ 𝛾]

is negligible in 𝜅.

The description of the LID scheme follows:

Public parameter: The public parameters are 𝑚 ≥ 𝓁 > 0, 𝑘 > 𝑚 + 𝓁, and  ⊆ ℤ𝓁
2, odd modulus 𝑞, a bound

𝛾 ∈ ℝ+
, a distribution 𝜒 overℤ, Gaussian parameters 𝑠 and 𝜎. Define 𝛴 ∶ ℤ𝑘×𝓁 → ℝ𝑘×𝑘

as 𝑆 ↦ 𝜎2𝐼𝑘−𝑠2𝑆𝑆⊤.
Let 𝐽 ∶= [𝐼𝑚 ∣ 0𝑚×(𝑘−𝑚)]𝑇 ∈ ℤ𝑘×𝑚

. Let ∶= ℤ𝑚
2𝑞 and  ∶= {𝑧 ∈ ℤ𝑘 ∣ ‖𝑧‖ ≤ 𝛾}.

Key generation: GenLID computes 𝑣𝑘 and 𝑠𝑘 as follows: 𝐴1 ← ℤ𝑚×(𝑘−𝑚−𝓁)
𝑞 ; (𝑆1, 𝑆2) ← 𝜒 (𝑘−𝑚−𝓁)×𝓁 × 𝜒𝑚×𝓁

; 𝐵 ∶=
𝐴1𝑆1 + 𝑆2 mod 𝑞; 𝐴 ∶= [𝑞𝐽 − 2𝐵 ∣ 2𝐴1 ∣ 2𝐼𝑚] ∈ ℤ𝑚×𝑘

2𝑞 ; 𝑆 ∶= [𝐼𝓁 ∣ 𝑆⊤1 ∣ 𝑆⊤2 ]⊤ ∈ ℤ𝑘×𝓁
; 𝑣𝑘 ∶= 𝐴; 𝑠𝑘 ∶= 𝑆; outputs

𝑣𝑘 and 𝑠𝑘.
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Lossy key generation: LossyGenLID compute 𝑣𝑘 as follows: 𝐴1 ← ℤ𝑚×(𝑘−𝑚−𝓁)
𝑞 ; 𝐵 ← ℤ𝑚×𝓁

𝑞 ; 𝐴 ∶= [𝑞𝐽 −2𝐵 ∣ 2𝐴1 ∣
2𝐼𝑚] ∈ ℤ𝑚×𝑘

2𝑞 ; outputs 𝑣𝑘 ∶= 𝐴.
Challenge space: The challenge space is  ⊆ ℤ𝓁

2. See [DPS23] for the parameter choices.

Prover: The prover’s algorithms are defined as follows:

– P1(𝑠𝑘) samples 𝑦 ← 𝐷ℤ𝑘 ,𝛴(𝑆),0 and computes 𝑤 ∶= 𝐴𝑦 mod 2𝑞. It also samples seed for a seed of P2. It

outputs 𝑤 and st ∶= (𝑦, seed).
– P2(𝑠𝑘, 𝑤, 𝑐, st) samples 𝑘 ← 𝐷ℤ𝓁 ,𝑠2𝐼𝓁 ,−𝑐/2 (with seed seed) and computes 𝑧 ∶= 𝑦 + 2𝑆𝑘 + 𝑆𝑐. It outputs 𝑧.

Reconstruction: Rec(𝑣𝑘, 𝑐, 𝑧) returns 𝑤 = 𝐴𝑧 − 𝑞𝐽 𝑐 mod 2𝑞. (Note: Rec implicitly checks whether 𝑧 ∈  or

not.)

Verifier: V(𝑣𝑘, 𝑤, 𝑐, 𝑧) checks if 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧).
Simulator: Sim(𝑣𝑘, 𝑐) samples 𝑧 ← 𝐷ℤ𝑘 ,

√
2𝜎 and outputs 𝑤 = Rec(𝑣𝑘, 𝑐, 𝑧).

The protocol achieves (1−negl(𝜅), 0)-correctness [DPS23, Theorem 2], statistical HVZK and the high commit-

ment min-entropy [DPS23, Theorem 3] with careful choice of parameters. It also 𝜖𝓁-lossy with appropriate

parameter settings, and its key indistinguishability follows from the decisional LWE assumption [DPS23,

Theorem 4]. The computational unique response follows from the SIS assumption and the LWE assumption

as follows:

Lemma B.2. Let 𝑚 ≥ 𝓁 > 0 and 𝑘 > 𝑚 + 𝓁. Let 𝑎 be a positive integer. Let 𝑞 be the odd modulus and let 𝛾 ∈ ℝ+

be bound. Let 𝜒 be a distribution over ℤ. The protocol has the CUR property under the SIS𝑚,𝑘+𝑎,𝑞,2𝛾 assumption
and the LWE𝑘−𝑚−𝓁,𝑚,𝓁,𝜒 ,𝑞 assumption.
Precisely speaking, for a quantum adversary  breaking the CUR property of the identification protocol, there
exist a quantum adversary lwe against the LWE𝑘−𝑚−𝓁,𝑚,𝓁,𝜒 ,𝑞 assumption and a quantum adversary sis against
the SIS𝑚,𝑘+𝑎,𝑞,2𝛾 assumption such that

AdvcurLID,(𝜅) ≤ AdvLWE,lwe (𝜅) + AdvSIS,sis (𝜅) + 2𝑚𝑞−(𝑎+1),
Time∗(lwe) = Time() + 𝑂(Time(LID)),
Mem∗(lwe) = Mem() + 𝑂(Mem(LID)),
Time∗(sis) = Time() + 𝑂((𝑘 + 𝑎)3 log3 𝑞),
Mem∗(sis) = Mem() + 𝑂(𝑚(𝑘 + 𝑎) log 𝑞).

Proof. Let us consider two games: The first one is G0 in which the challenger generates (𝑣𝑘, 𝑠𝑘) ← GenLID(1𝜅),
runs the adversary on input 𝑣𝑘 and receives (𝑤, 𝑐, 𝑧, 𝑧′) from the adversary, and returns J𝑧 ≠ 𝑧′∧V(𝑣𝑘, 𝑤, 𝑐, 𝑧)∧
V(𝑣𝑘, 𝑤, 𝑐, 𝑧′)K. The second one G1 is the same game G0 except that 𝑣𝑘 ← LossyGenLID(1𝜅).
By definition, we have

Pr[G0 ⇒ true] = AdvcurLID,(𝜅).

It is easy to construct an adversary lwe such that

|Pr[G0 ⇒ true] − Pr[G1 ⇒ true]| ≤ AdvLWE,lwe (𝜅),
Time∗(lwe) = Time() + 𝑂(Time(LID)),
Mem∗(lwe) = Mem() + 𝑂(Mem(LID)).

By using an adversary  in G1, we construct an adversary sis as follows: Given �̃� = [�̃�1 ∣ �̃�2] ← ℤ𝑚×(𝑘+𝑎)
𝑞

with �̃�1 ∈ ℤ𝑚×(𝑘−𝑚)
𝑞 and �̃�2 ∈ ℤ𝑚×(𝑚+𝑎)

𝑞 ,sis tries to find a set of 𝑚 linearly independent vectors �̃�𝑖1 ,… , �̃�𝑖𝑚 from

�̃�2. This set exists with probability at least 1 − 2𝑚𝑞−(𝑎+1) (see Lemma B.3 below). Let �̂� = [�̂�1 ∣ �̂�2] ∶= [�̃�1 ∣
�̃�𝑖1 … �̃�𝑖𝑚 ] = �̃� ⋅𝑃 , where �̂�1 ∈ ℤ(𝑘−𝑚)×𝑚

𝑞 , �̂�2 = [�̃�𝑖1 … �̃�𝑖𝑚 ] ∈ ℤ𝑚×𝑚
𝑞 , and 𝑃 is a corresponding matrix in {0, 1}(𝑘+𝑎)×𝑘 .

Notice that the Hamming weight of the columns of 𝑃 is 1, and the Hamming weight of the rows of 𝑃 is at

most 1. It then computes 𝐴 ∶= 2((2�̂�2)−1 ⋅ �̂� mod 𝑞) + [𝑞𝐽 ∣ 𝑂] mod 2𝑞 and feeds it to . The distribution of

this lossy verification key is perfect.  outputs (𝑤, 𝑐, 𝑧, 𝑧′). If 𝑧 ≠ 𝑧′ and V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = V(𝑣𝑘, 𝑤, 𝑐, 𝑧′) = true,

thensis output 𝑃(𝑧 − 𝑧′) as the solution of the SIS problem.

If we have (𝑤, 𝑐, 𝑧, 𝑧′) such that 𝑧 ≠ 𝑧′ and V(𝑣𝑘, 𝑤, 𝑐, 𝑧) = V(𝑣𝑘, 𝑤, 𝑐, 𝑧′) = true, then we have the relations

‖𝑧‖ ≤ 𝛾 ∧ ‖𝑧′‖ ≤ 𝛾 ∧ 𝑤 ≡ 𝐴𝑧 − 𝑞𝐽 𝑐 ≡ 𝐴𝑧′ − 𝑞𝐽 𝑐 (mod 2𝑞).

The bounds on the norms imply ‖𝑧 − 𝑧′‖ ≤ 2𝛾 and the condition 𝑧 ≠ 𝑧′ implies 𝑧 − 𝑧′ ≠ 0. The last equation
with the fact that 𝑞 is odd implies 𝐴(𝑧 − 𝑧′) ≡ 0 (mod 𝑞) (instead of 2𝑞). Therefore, we have

𝐴(𝑧 − 𝑧′) ≡ 2(2�̂�2)−1�̂� ⋅ (𝑧 − 𝑧′) ≡ �̂�−1
2 ⋅ �̃� ⋅ 𝑃(𝑧 − 𝑧′) ≡ 0 (mod 𝑞)

Multiplying �̂�2 to the both sides, we have

�̃� ⋅ 𝑃(𝑧 − 𝑧′) ≡ 0 (mod 𝑞).
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Due to the property of 𝑃 , we have 𝑃(𝑧 − 𝑧′) ≠ 0 and ‖𝑃(𝑧 − 𝑧′)‖ = ‖𝑧 − 𝑧′‖ ≤ 2𝛾 . Thus, 𝑃(𝑧 − 𝑧′) is the solution
of an instance �̃� of the SIS problem.

Thus, we have

Pr[G1 ⇒ true] ≤ AdvSIS,sis (𝜅) + 𝑂(𝑞−𝑚),
Time∗(sis) = Time() + 𝑂(𝑘3 log3 𝑞),
Mem∗(sis) = Mem() + 𝑂(𝑚𝑘 log 𝑞).

Lemma B.3. Let 𝑚, 𝑎 be a positive inteters. We have

Pr
𝐷←ℤ𝑚×(𝑚+𝑎)

𝑞

[rank(𝐷) < 𝑚] ≥ 2𝑚𝑞−(𝑎+1).

While the above bound is well-known, we include the proof for completeness.

Proof. By the formula in [Bel93, MMO04, FG15], we have

Pr
𝐷←ℤ𝑚×(𝑚+𝑎)

𝑞

[rank(𝐷) = 𝑚 − 𝑟] =
1

𝑞𝑟(𝑎+𝑟)
⋅
∏𝑚+𝑎

𝑖=1 (1 − 𝑞−𝑖)∏𝑚
𝑖=𝑟+1(1 − 𝑞−𝑖)

∏𝑚−𝑟
𝑖=1 (1 − 𝑞−𝑖)∏𝑎+𝑟

𝑖=1 (1 − 𝑞−𝑖)
.

Since we consider the case 𝑟 = 0, the probability is

Pr
𝐷←ℤ𝑚×(𝑚+𝑎)

𝑞

[rank(𝐷) = 𝑚] =
∏𝑚+𝑎

𝑖=1 (1 − 𝑞−𝑖)∏𝑚
𝑖=1(1 − 𝑞−𝑖)

∏𝑚
𝑖=1(1 − 𝑞−𝑖)∏𝑎

𝑖=1(1 − 𝑞−𝑖)
=

∏𝑚+𝑎
𝑖=1 (1 − 𝑞−𝑖)

∏𝑎
𝑖=1(1 − 𝑞−𝑖)

=
𝑚+𝑎

∏
𝑖=𝑎+1

(1 − 𝑞−𝑖) ≥ (1 − 𝑞−(𝑎+1))𝑚 ≥ 1 − 2𝑚𝑞−(𝑎+1).

Thus, the lemma follows. ⊓⊔

C Relation Between Blind Unforgeability and Plus-One Unforgeability

Alagic et al. showed that there exists a PO-secure but BU-insecure MAC scheme by assuming a random

function or qPRF [AMRS20, Section 8.1]. In the original version of [AMRS20], Alagic et al. insisted that BU

security implies PO security (for MAC), but this claim was retracted in Apr. 2023. They weakened their claim

as that their BU security implies quadratic PO security, where an adversary is required to output 𝑐𝑘2 forgeries
with probability 1 by making 𝑘 quantum queries for a fixed constant 𝑐 [AMRS18, Section 5.2.3].

Here, we give a simple example of BU-secure but PO-insecure signature assuming the existence of BU-secure

signature. Our example exploits the fact that PO security is a quantum version of strong existential unforge-
ability, but BU security does not.

Lemma C.1 (BU ⇏ PO). Suppose that there exists a BU-secure MAC/signature scheme. We then have a BU-
secure but PO-insecure MAC/signature scheme.

In the proof, we only consider the signature schemes. The lemma for MAC is obtained similarly.

Proof. Suppose that we have a BU-secure SIG = (Gen, Sign,Vrfy) whose signature space is  ⊆ {0, 1}𝜆 for

some 𝜆 = 𝜆(𝜅). We construct a new BU-secure signature scheme SIG′ = (Gen, Sign′,Vrfy′) as follows:
– Sign′(𝑠𝑘, 𝑚): Generate 𝜎 ← Sign(𝑠𝑘, 𝑚), and output 𝜎′ ∶= (𝜎, 0).
– Vrfy′(𝑣𝑘, 𝑚, 𝜎′): Parse 𝜎′ = (𝜎, 𝑏) with 𝑏 ∈ {0, 1} and output dec ∶= Vrfy(𝑣𝑘, 𝑚, 𝜎).

Note that the new signature space is  ′ ⊆ {0, 1}𝜆+1.

BU security: This new signature scheme is stillBU-secure becausewe can construct an adversary breaking

the BU security of SIG if there exists an adversary′
breaking the BU security of SIG′

. is defined as follows:

On input 𝑣𝑘, it runs′
on input 𝑣𝑘. For a hash query to the random oracle, it passes the query to its random

oracle and returns the result. It also implements the blinded signing oracle |𝐵𝜖Sign
′⟩ for′

as follows: For a

signing query |𝑚⟩ |𝑦⟩ |𝑦′
0⟩ |𝑦′

1⟩ to 𝐵𝜖Sign
′
, where 𝑦 ∈ {0, 1}𝜆, 𝑦′

0, 𝑦′
1 ∈ {0, 1},

1. query |𝑚⟩ |𝑦⟩ |𝑦′
1⟩ to its signing oracle |𝐵𝜖Sign⟩

2. receive |𝑚⟩ |𝑦 ⊕ 𝜎⟩ |𝑦′
1 ⊕ 𝑏𝜎⟩, where 𝜎‖𝑏𝜎 is 𝜎‖0 or ⊥ = 0𝜆‖1

3. return |𝑚⟩ |𝑦 ⊕ 𝜎⟩ |𝑦′
0⟩ |𝑦′

1 ⊕ 𝑏𝜎⟩.
This perfectly simulates 𝐵𝜖Sign

′
. If′

outputs 𝑚 and (𝜎, 𝑏) with 𝑏 ∈ {0, 1},  outputs 𝑚 and 𝜎 as a forgery.
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PO insecurity: On the other hand, this new signature scheme is PO-insecure: If we obtain a signature 𝜎′ =
(𝜎, 0) on a message 𝑚 by querying to |Sign⟩, we can output two valid distinct pairs of message and siganture,

(𝑚, (𝜎, 0)) and (𝑚, (𝜎, 1)). ⊓⊔

Remark C.1. On their security definition of MAC, Boneh and Zhandry [BZ13a] wrote that “After issuing 𝑞
quantum chosen message queries the adversary wins the game if it can generate 𝑞+1 valid classical message-

tag pairs.” just before Definition 1 (EUF-qCMA). While there is an ambiguity of distinctness, we treat it as

𝑞 + 1 distinct pairs, since they reviewed sEUF-CMA security of MAC as the classical security definition.

Refuting that BU implies quadratic PO: The above example can be used to show that there exists BU-seucre

but quadratic PO-insecure MAC, while Alagic et al. showed that BU implies quadratic PO [AMRS18].

Let 𝑎 = 𝜔(lg(𝜅)). Suppose we have a BU-secure MAC scheme MAC = (Gen, Sign,Vrfy). We then construct a

new BU-secure MAC scheme MAC′ = (Gen, Sign′,Vrfy′) as follows:
– Sign′(𝑠𝑘, 𝑚): Generate 𝜎 ← Sign(𝑠𝑘, 𝑚), and output 𝜎′ ∶= (𝜎, 0).
– Vrfy′(𝑠𝑘, 𝑚, 𝜎′): Parse 𝜎′ = (𝜎, 𝑏) with 𝑏 ∈ {0, 1}𝑎 and output dec ∶= Vrfy(𝑠𝑘, 𝑚, 𝜎).

This new signature scheme is still BU-secure because we can construct an adversary breaking the BU security

of MAC if there exists an adversary breaking the BU security of MAC′
. On the other hand, given 𝑘 pairs of

distinct messages and corresponding tags, it is easy to construct 𝑐𝑘2 (≤ 𝑘2𝑎) distinct valid pairs of messages

and tags when 𝑐𝑘 ≤ 2𝑎 = 2𝜔(lg(𝜅)).

Summary: As we exemplified, BU security does not imply PO security. What we should ask is the relation

between sBU security and PO security and the relation between BU security and weakened PO security,

where the adversary is required to output 𝑞 + 1 distinct messages and their corresponding signatures/tags.

D Memory-Tight Proofs for PSF-(P)FDH

D.1 Preimage Sampleable Functions

We review the syntax of preimage sampleable functions.

Definition D.1 (Preimage sampleable function [GPV08]).A family of preimage sampleable functions consists
PSF of the following quadruple of PPT algorithms (GenPSF, F, Inv, Sample):
– GenPSF(1𝜅) → (𝑣𝑘, 𝑠𝑘): a key-generation algorithm that on input 1𝜅 outputs a pair of keys (𝑣𝑘, 𝑠𝑘).
– F(𝑣𝑘, 𝑥) → 𝑦: a deterministic evaluation algorithm that takes as input 𝑣𝑘 and 𝑥 ∈  and outputs 𝑦 ∈  .
– Sample(𝑣𝑘) → 𝑥 : a sampling algorithm that takes as input 𝑣𝑘 and outputs 𝑥 ∈  .
– Inv(𝑠𝑘, 𝑦) → 𝑥 : a preimage-sampling algorithm that takes as input 𝑠𝑘 and 𝑦 ∈  and outputs 𝑥 ∈  .

We then define properties of PSF.

Definition D.2 (Simulatability [CCLM22]).We say that PSF is 𝜖-simulatable if the following two distributions
are 𝜖-close:

𝐷1 ∶ 𝑦 ←  ; 𝑥 ← Inv(𝑠𝑘, 𝑦); return (𝑥, 𝑦)
𝐷2 ∶ 𝑥 ← Sample(𝑣𝑘); 𝑦 ∶= F(𝑣𝑘, 𝑥); return (𝑥, 𝑦).

Definition D.3 (Preimage min-entropy).We say that PSF has 𝛼-preimage min-entropy if for each 𝑦 ∈  , the
conditional min-entropy of 𝑥 ← Sample(𝑣𝑘) given F(𝑣𝑘, 𝑥) = 𝑦 is at least 𝛼.

Definition D.4 (Collision resistance). We say that PSF is collision-resistant if for any QPT adversary , the
following advantage is negligible in 𝜅:

AdvcrPSF,(𝜅) ∶= Pr [
(𝑣𝑘, 𝑠𝑘) ← GenPSF(1𝜅); (𝑥, 𝑥′) ← (𝑣𝑘) ∶

𝑥 ≠ 𝑥′ ∧ F(𝑣𝑘, 𝑥) = F(𝑣𝑘, 𝑥′) ] .

D.2 Signature based on PSF

We review a signature scheme constructed from preimage-sampleable functions (PSF) [BR96, GPV08]. Let

PSF = (GenPSF, F, Inv, Sample) be a family of preimage sampleable functions. The signature scheme obtained

by applying the Full-Domain Hash FDH is depicted in Figure 12. If Inv is derandomized by PRF, then we call

this conversion as DFDH and denote DFDH[PSF,H, PRF]. If we use RF instead of PRF, then we denote it as

DFDH+[PSF,H,RF]. If we apply RDS in subsection 3.1 to the obtained scheme, then we call the conversion as

PFDH and denote PFDH[PSF,H, 𝜆].
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Gen(1𝜅)
(𝑣𝑘, 𝑠𝑘) ← GenPSF(1𝜅)
return (𝑣𝑘, 𝑠𝑘)

Sign(𝑠𝑘, 𝑚)
ℎ ∶= H(𝑚)
𝜎 ← Inv(𝑠𝑘, ℎ)
return 𝜎

Vrfy(𝑣𝑘, 𝑚, 𝜎)
ℎ ∶= H(𝑚)
ℎ′ ∶= F(𝑣𝑘, 𝜎)
return Jℎ = ℎ′K

Gen(1𝜅)
(𝑣𝑘, 𝑠𝑘) ← GenPSF(1𝜅)
𝐾 ← {0, 1}𝜅
return (𝑣𝑘, (𝑠𝑘, 𝐾))

Sign((𝑠𝑘, 𝐾), 𝑚)
ℎ ∶= H(𝑚)
𝑟 ∶= PRF(𝐾,𝑚)
𝜎 ∶= Inv(𝑠𝑘, ℎ; 𝑟)
return 𝜎

Vrfy(𝑣𝑘, 𝑚, 𝜎)
ℎ ∶= H(𝑚)
ℎ′ ∶= F(𝑣𝑘, 𝜎)
return Jℎ = ℎ′K

Fig. 12. FDH[PSF,H] (upper) and DFDH[PSF,H, PRF] (lower).

D.3 Multi-Challenge Security for PSF-(P/D)FDH

While we can use both approaches of Diemert et al. [DGJL21] and Ghoshal et al. [GGJT22], we here use the ap-

proach of Diemert et al. [DGJL21]: We show the msEUF-CMA1 security of FDH[PSF,H] by slightly modifying

the sEUF-CMA proof of DFDH[PSF,H, PRF] in Boneh et al. [BDF
+
11] or the BU proof of DFDH[PSF,H, PRF]

in Chatterjee et al. [CCLM22] and apply Lemma 3.1 to show the msEUF-CMA security of PFDH[PSF,H] =
RDS[FDH[PSF,H], 𝜆] via memory-tight reductions.

Theorem D.1 (msEUF-CMA1 security of FDH[PSF,H]). Let H∶  →  be a random oracle. Let PSF be a
family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let DS ∶=
FDH[PSF,H]. Then, for a quantum adversary  breaking the msEUF-CMA1 security of DS taht issues at most
𝑞𝐻 quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-checking
oracle, there exists a quantum  -oracle adversarycr such that

Advmseuf-cma1
DS, (𝜅) ≤ AdvcrPSF,cr (𝜅) +

√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖 + 𝑞𝐹 ⋅ 2−𝛼 ,

Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF)),

where  = Func(,Sample).

Applying Lemma 3.1, we obtain the following corollary.

Corollary D.1 (msEUF-CMA security of PFDH[PSF,H, 𝜆]). Let H∶  × {0, 1}𝜆 →  be a random oracle. Let
PSF be a family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let
DS ∶= PFDH[PSF,H, 𝜆]. Then, for a quantum adversary breaking the msEUF-CMA security of DS that issues
at most 𝑞𝐻 quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-
checking oracle, there exists a quantum  -oracle adversarycr such that

Advmseuf-cma
DS, (𝜅) ≤ AdvcrPSF,cr (𝜅) +

√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖 + 𝑞𝐹 ⋅ 2−𝛼 + 𝑞2𝑆 ⋅ 2

−𝜆,
Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF)),

where  = Func(,Sample).

Game G0: This is the original game of the msEUF-CMA1 security. See G0 in Figure 13. By definition, we have

Pr[𝑊0] = Advmseuf-cma1
DS, (𝜅).

Game G1: Next, we derandomize the signing oracle using a random function RFI. By this modification, we

do not need to maintain the list in the signing oracle. We have

G0 = G1.
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G𝑖 for 𝑖 ∈ {0, 1, 2, 3}
(𝑣𝑘, 𝑠𝑘) ← GenPSF(1𝜅)
𝐾 ← {0, 1}𝜅 /G0

RFH ← Func(,) /G0-G1

RFI ← Func(,Inv) /G1

RFS ← Func(,Sample) /G2-
 ∶= ∅ /G0-G2

win ∶= false

run Sign,Forge,|H⟩(𝑣𝑘)
return win

Sign(𝑚)
if ∃(𝑚, 𝜎) ∈  then /G0

return 𝜎 /G0

𝜎 ← Inv(𝑠𝑘,H(𝑚)) /G0

𝜎 ∶= Inv(𝑠𝑘,H(𝑚);RFI(𝑚)) /G1

𝜎 ∶= Sample(𝑣𝑘;RFS(𝑚)) /G2-
 ∶=  ∪ {(𝑚, 𝜎)} /G0-G2

return 𝜎

H∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ ℎ⟩
return ℎ ∶= RFH(𝑚) /G0-G1

return ℎ ∶= F(𝑣𝑘, Sample(𝑣𝑘;RFS(𝑚))) /G2-

Forge(𝑚∗, 𝜎∗)
ℎ′ ∶= H(𝑚∗) /G0-G2

𝜎′ ∶= Sample(𝑣𝑘;RFS(𝑚∗)) /G3

ℎ′ ∶= F(𝑣𝑘, 𝜎′) /G3

ℎ∗ ∶= F(𝑣𝑘, 𝜎∗)
if ℎ∗ = ℎ′ then /Vrfy passed
if (𝑚∗, 𝜎∗) ∉  then /G0-G2

win ∶= true /G0-G2

if 𝜎∗ ≠ 𝜎′ then /G3

win ∶= true /G3

Fig. 13. G𝑖 for 𝑖 ∈ {0, 1, 2, 3} for msEUF-CMA1 security.

Game G2: We next modify the signing oracle and the random oracle. In this game, the signing oracle given

𝑚 returns Sample(𝑣𝑘,RFS(𝑚)) and the random oracle given 𝑚 returns F(𝑣𝑘, Sample(𝑣𝑘,RFS(𝑚))). By applying

Lemma 2.2 with 𝜖-simulatability, we have

|Pr[𝑊1] − Pr[𝑊2]| ≤
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖.

Game G3: We finally modify how to update the flag win. In G3, the flag is set true if the submitted forgery 𝜎∗

differs from the expected one 𝜎′
.

Lemma D.1. Suppose that PSF has 𝛼-preimage min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3]| ≤ 𝑞𝐹 ⋅ 2−𝛼 .

Proof. Suppose that an adversary  submits a valid pair (𝑚∗, 𝜎∗). let 𝜎′ ∶= Sample(𝑣𝑘;RFS(𝑚∗)). Let us con-
sider two cases:

1. If 𝑚∗
is already queried to Sign, then (𝑚∗, 𝜎′) should be contained in . Thus the condition (𝑚∗, 𝜎∗) ∉ 

is equivalent to 𝜎∗ ≠ 𝜎′
and the flags win are the same in the both games.

2. If 𝑚∗
is not queried to Sign, then the two games differ if the adversary submits (𝑚∗, 𝜎′) in G2. Since the

min-entropy of 𝜎′ = Sample(𝑣𝑘;RFS(𝑚∗)) given ℎ∗ = F(𝑣𝑘, Sample(𝑣𝑘;RFS(𝑚∗))) is at least 𝛼, this event
happens with probability at most 𝑞𝐹 ⋅ 2−𝛼 .

Thus, we obtain the bound. ⊓⊔

Now, making a memory-tight reduction for collision-resistance of PSF is easy.

Lemma D.2. There exists a quantum  -oracle adversary cr such that

Pr[𝑊3] ≤ AdvcrPSF,cr (𝜅),
Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF)),

where  = Func(,Sample).

Since the reduction is straightforward, we omit it.
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G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}
(𝑣𝑘, 𝑠𝑘) ← GenPSF(1𝜅)
𝐾 ← {0, 1}𝜅 /G0

RFH ← Func(,) /G0-G1

RFI ← Func(,Inv) /G1

RFS ← Func(,Sample) /G2-
 ∶= ∅ /G0-G3

win ∶= false /G3-
run |Sign⟩,Forge,|H⟩(𝑣𝑘)
return J# > 𝑞𝑆K /G2

return J# > 𝑞𝑆K ∧ win /G3

return win /G4

Sign∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
𝜎 ∶= Inv(𝑠𝑘,H(𝑚); PRF(𝐾,𝑚)) /G0

𝜎 ∶= Inv(𝑠𝑘,H(𝑚);RFI(𝑚)) /G1

𝜎 ∶= Sample(𝑣𝑘;RFSim(𝑚)) /G2

return 𝜎

H∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ ℎ⟩
return ℎ ∶= RFH(𝑚) /G0-G1

return ℎ ∶= F(𝑣𝑘, Sample(𝑣𝑘;RFSim(𝑚))) /G2-

Forge(𝑚∗, 𝜎∗)
ℎ′ ∶= H(𝑚∗) /G0-G2

ℎ∗ ∶= F(𝑣𝑘, 𝜎∗)
if ℎ∗ = ℎ′ then /Vrfy passed
if (𝑚∗, 𝜎∗) ∉  then /G0-G3

 ∶=  ∪ {(𝑚∗, 𝜎∗)} /G0-G3

if 𝜎∗ ≠ Sample(𝑣𝑘;RFSim(𝑚∗)) then /G3-G4

win ∶= true /G3-G4

Fig. 14. G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4} for PO security.

D.4 Plus-One Security for PSF-DFDH

The following theorem is obtained by modifying the proof of Boneh and Zhandry [BZ13b, Theorem 3.19].

Theorem D.2 (PO security of DFDH[PSF,H, PRF]). Let H∶  →  be a random oracle. Let PSF be a family of
preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimagemin-entropy. LetDS ∶= DFDH[PSF,H, PRF].
Then, for a quantum adversary  breaking the PO security of DS that issues at most 𝑞𝐻 quantum queried to
H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-checking oracle, there exist a
quantum prf-oracle adversaryprf and a quantum cr-oracle adversarycr and such that

Adv
po
DS,(𝜅) ≤ Adv

pr
PSF,prf

(𝜅) + AdvcrPSF,cr (𝜅)

+
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖 + (𝑞𝑆 + 1)/⌊2𝛼⌋,

Time∗(prf) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(prf) = Mem() + 𝑂(𝑞𝐹Mem(PSF)),
Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF)),

where prf = Func(,) and cr = Func(,Sample).

The proof becomes memory-tight if we derandomize with the random function RF.

Corollary D.2 (PO security ofDFDH+[PSF,H,RF]). Let H∶  →  be a random oracle. Let PSF be a family of
preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimagemin-entropy. LetDS ∶= DFDH+[PSF,H,RF].
Then, for a quantum adversary  breaking the PO security of DS that issues at most 𝑞𝐻 quantum queried to
H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-checking oracle, there exists a
quantum cr-oracle adversary cr and such that

Adv
po
DS,(𝜅) ≤ AdvcrPSF,cr (𝜅) +

√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖 + (𝑞𝑆 + 1)/⌊2𝛼⌋,

Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF)),

where cr = Func(,Sample).

Game G0: This is the original game of the PO security. See G0 in Figure 14. By definition, we have

Pr[𝑊0] = Adv
po
DS,(𝜅).
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Game G1: We next replace PRF with RF in G1. The straightforward reduction shows the following lemma,

which is memory-loose since we need to maintain .
Lemma D.3. There exists a quantum  -oracle adversary prf such that

|Pr[𝑊0] − Pr[𝑊1]| ≤ Adv
pr
PRF,prf

(𝜅),

Time∗(prf) = 𝑂(Time()) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(prf) = 𝑂(Mem()) + 𝑞𝐹 ⋅ 𝑂(Mem(PSF)),

where  = Func(,).

GameG2: We next modify the signing oracle and the random oracle. In this game, the signing oracle given𝑚
returns 𝜎 = Sample(𝑣𝑘,RFS(𝑚)) and the random oracle given𝑚 returns F(𝑣𝑘, Sample(𝑣𝑘,RFS(𝑚))). By applying
Lemma 2.2 with 𝜖-simulatability, we have

|Pr[𝑊1] − Pr[𝑊2]| ≤
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖.

Game G3: We next modify the winning condition as follows: We introduce a flag win which is set true if

(𝑚∗, 𝜎∗) is valid and 𝜎∗ ≠ Sample(𝑣𝑘;RFS(𝑚∗)) in the oracle Forge. The challenger outputs J# > cnt𝑠K ∧ win

instead of J# > cnt𝑠K. We have the following lemma as Lemma 6.2 by following the argument in the proof

of [BZ13b, Theorem 3.19].

Lemma D.4. Suppose that PSF has 𝛼-preimage min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3]| ≤ (𝑞𝑆 + 1)/⌊2𝛼⌋.

Proof. The two games differ if the adversary submits at least (𝑞𝑆 + 1) distinct pairs of message/signature

{(𝑚∗
𝑖 , Sample(𝑣𝑘;RFS(𝑚∗

𝑖 )))}𝑖. Since PSF has 𝛼-preimagemin-entropy, even if the adversary knows ℎ∗ = H(𝑚∗) =
F(𝑣𝑘, Sample(𝑣𝑘;RFS(𝑚∗))), the min-entropy of Sample(𝑣𝑘;RFS(𝑚∗)) is at least 𝛼. Thus, applying Lemma 2.3,

this event happens with probability at most (𝑞𝑆 + 1)/⌊2𝛼⌋. ⊓⊔

Game G4: The challenger outputs the flag win in this game. We can remove the list . Since we relax the

condition and this relaxation cannot be detected by the adversary, we have

Pr[𝑊3] ≤ Pr[𝑊4].

Constructing an adversary finding a collision for F(𝑣𝑘, ⋅) is easy.
Lemma D.5. There exists a quantum  -oracle adversary cr such that

Pr[𝑊4] ≤ AdvcrPSF,cr (𝜅),
Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF)),

where  = Func(,Sample).
Since the reduction is straightforward, we omit it.

D.5 Strong Blind Unforgeability for PSF-DFDH
While Chatterjee et al. [CCLM22] showed the BU security of PSF-DFDH via memory-loose reductions, we

here show stronger security (sBU security) with memory-tight reduction. The proof is obtained by slightly

modifying their proof for the BU security.

Theorem D.3 (sBU security of DFDH[PSF,H, PRF]). Let H∶  →  be a random oracle. Let PSF be a
family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let DS ∶=
DFDH[PSF,H, PRF]. Then, for a quantum adversary  breaking the sBU security of DS that issues at most 𝑞𝐻
quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery-checking
oracle, there exist a quantum prf-oracle adversaryprf and a quantum cr-oracle adversary cr such that

AdvsbuDS,(𝜅) ≤ Adv
pr
PRF,prf

(𝜅) + AdvcrPSF,cr (𝜅)

+
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖 + 𝑞𝐹 ⋅ 2−𝛼 ,

Time∗(prf) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF) + Time(𝐵𝜖)),
Mem∗(prf) = Mem() + 𝑂(Mem(PSF)) +Mem(𝐵𝜖)),
Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF) + Time(𝐵𝜖)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF) +Mem(𝐵𝜖)),

where prf = Func( ×  ,) × Func(,) where cr = Func( ×  ,) × Func(,Sample).
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G𝑖 for 𝑖 ∈ {0, 1, 2, 3}
(𝑣𝑘, 𝑠𝑘) ← GenPSF(1𝜅)
𝐾 ← {0, 1}𝜅 /G0

RF𝐵 ← Func( ×  ,)
RFH ← Func(,) /G0-G1

RFI ← Func(,Inv) /G1

RFS ← Func(,Sample) /G2-
win ∶= false

run |Sign⟩,Forge,|H⟩(𝑣𝑘)
return win

𝐵𝜖Sign∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
𝜎 ∶= Inv(𝑠𝑘,H(𝑚); PRF(𝐾,𝑚)) /G0

𝜎 ∶= Inv(𝑠𝑘,H(𝑚);RFI(𝑚)) /G1

𝜎 ∶= Sample(𝑣𝑘;RFSim(𝑚)) /G2

if (𝑚, 𝜎) ∈ 𝐵𝜖 then
return 𝜎 ∶= ⊥

else
return 𝜎

H∶ |𝑚⟩ |𝑦⟩ ↦ |𝑚⟩ |𝑦 ⊕ ℎ⟩
return ℎ ∶= RFH(𝑚) /G0-G1

return ℎ ∶= F(𝑣𝑘, Sample(𝑣𝑘;RFSim(𝑚))) /G2-

Forge(𝑚∗, 𝜎∗)
ℎ′ ∶= H(𝑚∗) /G0-G2

𝜎′ ∶= Sample(𝑣𝑘;RFS(𝑚∗)) /G3

ℎ′ ∶= F(𝑣𝑘, 𝜎′) /G3

ℎ∗ ∶= F(𝑣𝑘, 𝜎∗)
if ℎ∗ = ℎ′ then /Vrfy passed
if (𝑚∗, 𝜎∗) ∈ 𝐵𝜖 then /G0-G2

win ∶= true /G0-G2

if (𝑚∗, 𝜎∗) ∈ 𝐵𝜖 ∧ 𝜎∗ ≠ 𝜎′ then /G3

win ∶= true /G3

Fig. 15. G𝑖 for 𝑖 ∈ {0, 1, 2, 3} for sBU security.

Game G0: This is the original game of the sBU security. See G0 in Figure 15. By definition, we have

Pr[𝑊0] = AdvsbuDS,(𝜅).

Game G1: We next replace PRF with RFI in G1. The straightforward reduction shows the following lemma.

Lemma D.6. There exists a quantum  -oracle adversary prf such that

|Pr[𝑊0] − Pr[𝑊1]| ≤ Adv
pr
PRF,prf

(𝜅),

Time∗(prf) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF) + Time(𝐵𝜖)),
Mem∗(prf) = Mem() + 𝑂(Mem(PSF) +Mem(𝐵𝜖)),

where  = Func( ×  ,) × Func(,).

GameG2: We next modify the signing oracle and the random oracle. In this game, the signing oracle given𝑚
returns𝜎 = Sample(𝑣𝑘,RFS(𝑚)) (on unfiltered𝑚) and the randomoracle given𝑚 returns F(𝑣𝑘, Sample(𝑣𝑘,RFS(𝑚))).
By applying Lemma 2.2 with 𝜖-simulatability, we have

|Pr[𝑊1] − Pr[𝑊2]| ≤
√
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 ))3𝜖.

Game G3: We finally modify how to update the flag win. In G3, the flag is set true if the submitted forgery 𝜎∗

is different from the expected one 𝜎′
and (𝑚∗, 𝜎∗) ∉ 𝐵𝜖.

Lemma D.7. Suppose that PSF has 𝛼-preimage min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3]| ≤ 𝑞𝐹 ⋅ 2−𝛼 .
Proof. Let (𝑚∗, 𝜎∗) be a query to Forge the adversary made. Let 𝜎′ ∶= Sample(𝑣𝑘;RFS(𝑚∗)). The two games

differ if the adversary submits a valid pair (𝑚∗, 𝜎∗) ∈ 𝐵𝜖 but 𝜎∗ = 𝜎′
. Let us consider two cases:

1. If (𝑚∗, 𝜎′) ∉ 𝐵𝜖, then this contradicts with (𝑚∗, 𝜎′) = (𝑚∗, 𝜎∗) ∈ 𝐵𝜖. Thus, we do not need to consider this

case.

2. If (𝑚∗, 𝜎′) ∈ 𝐵𝜖, then the adversary cannot know 𝜎′
from 𝐵𝜖Sign. Due to 𝛼-preimage min-entropy of PSF,

the probability that 𝜎∗ = 𝜎′
is at most 𝑞𝐹 ⋅ 2−𝛼 .

Thus, we obtain the bound. ⊓⊔

Now, making a memory-tight reduction for collision-resistance of PSF is easy.

Lemma D.8. There exists a quantum  -oracle adversarycr such that

Pr[𝑊3] ≤ AdvcrPSF,cr (𝜅),
Time∗(cr) = Time() + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 ) ⋅ 𝑂(Time(PSF) + Time(𝐵𝜖)),
Mem∗(cr) = Mem() + 𝑂(Mem(PSF) +Mem(𝐵𝜖)),

where  = Func( ×  ,) × Func(,Sample).
Since the reduction is straightforward, we omit it.
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