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Abstract

Motivated by the fact that broadcast is an expensive, but useful, resource for the real-
ization of multi-party computation protocols (MPC), Cohen, Garay, and Zikas (Eurocrypt
2020), and subsequently Damg̊ard, Magri, Ravi, Siniscalchi and Yakoubov (Crypto 2021),
and, Damg̊ard, Ravi, Siniscalchi and Yakoubov (Eurocrypt 2023), focused on so-called broad-
cast optimal MPC. In particular, the authors focus on two-round MPC protocols (in the
CRS model), and give tight characterizations of which security guarantees are achievable if
broadcast is available in the first round, the second round, both rounds, or not at all.

This work considers the natural question of characterizing broadcast optimal MPC in
the plain model where no set-up is assumed. We focus on four-round protocols, since four
is known to be the minimal number of rounds required to securely realize any functionality
with black-box simulation. We give a complete characterization of which security guarantees,
(namely selective abort, selective identifiable abort, unanimous abort and identifiable abort)
are feasible or not, depending on the exact selection of rounds in which broadcast is available.
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1 Introduction

Secure Multi-party Computation (MPC) [CDv88, GMW87, Yao86] allows a set of mutually
distrusting parties to compute a joint function on their private inputs, with the guarantee that no
adversary corrupting a subset of parties can learn more information than the output of the joint
computation. The study of round complexity of MPC protocols in various settings constitutes
a phenomenal body of work in the MPC literature [ACGJ18, BGJ+18, BL18, CCG+20, GS18,
HHPV18, KO04, MW16]. However, most of the known round-optimal protocols crucially rely
on the availability of a broadcast channel. Informally, a broadcast channel guarantees that when
a message is sent, this reaches all the parties, without ambiguity.

In practice, a broadcast channel can be realized using t+1 rounds of point-to-point commu-
nication, where t denotes the corruption threshold (maximal number of parties the adversary
can corrupt). In fact, t + 1 rounds are necessary for any deterministic protocol that realizes
broadcast [DS83, FL82]. An alternate way of realizing broadcast would be by means of a phys-
ical or external infrastructure, e.g., a public ledger such as blockchain. Both these approaches
of realizing broadcast are quite demanding and expensive; therefore it is important to minimize
its use.

Driven by this motivation, a very recent line of works [CGZ20, DMR+21, DRSY23] studies if
it is plausible to minimize the use of broadcast while maintaining an optimal round complexity,
at the cost of possibly settling for a weaker security guarantee. More specifically, these works
investigate the best achievable guarantees when some or all of the broadcast rounds are replaced
with rounds that use only point-to-point communication. All the above works focused on two-
round MPC protocols where some form of setup assumption (such as a common reference string
(CRS) or public-key infrastructure (PKI)) is required.

We make a study analogous to these works but in the plain model, where no prior setup is as-
sumed 1. Further, we focus on the dishonest majority setting where the adversary can corrupt all
but one party. In this setting, four rounds of communication is known to be necessary [GMPP16]
and sufficient [ACJ17, BGJ+18, BHP17, CCG+20, COWZ22, CRSW22, HHPV18] for secure
computation with black-box security2. Notably, all the round-optimal (four-round) protocols
in this setting use broadcast in every round. This leads us to the following natural question:

What is the trade-off between security and the use of broadcast for 4-round MPC protocols
in the plain model in the dishonest majority setting?

As a first step, let us recall what kinds of security guarantees are achievable in the dishonest
majority setting. The classic impossibility result of [Cle86] showed that it is in general impossi-
ble to achieve the notions of fairness (where either all or none of the parties receive the output)
and guaranteed output delivery (where all the parties receive the output of the computation
no matter what). In light of this, the protocols in the dishonest majority setting allow the
adversary to abort prematurely and still, receive the output (while the honest parties do not).
Below are the various relevant flavors of abort security studied in the MPC literature.

Selective Abort (SA): A secure computation protocol achieves selective abort if every
honest party either obtains the correct output or aborts.

Selective Identifiable Abort (SIA): a secure computation protocol achieves selective
identifiable abort if every honest party either obtains the correct output or aborts, iden-
1The only assumption is that authenticated communication channels are available between the parties (either

broadcast or peer-to-peer channels).
2By black-box security we mean that the simulator has only black-box access to the adversary. As in the

mentioned prior works, all our results are concerning black-box security.
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tifying one corrupt party (where the corrupt party identified by different honest parties may
potentially be different).

Unanimous Abort (UA): A secure computation protocol achieves unanimous abort if
either all honest parties obtain the correct output, or they all (unanimously) abort.

Identifiable Abort (IA): A secure computation protocol achieves identifiable abort if ei-
ther all honest parties obtain the correct output, or they all (unanimously) abort, identifying
one corrupt party.

Of these notions, SA is the weakest, IA the strongest, while SIA (recently introduced in
[DRSY23]) and UA are “in between”, and incomparable.

1.1 Our Contributions

We settle the above question by giving a complete characterization of which of the above four
security guarantees is feasible or not w.r.t. all the possible broadcast communication patterns
that one can have in 4-rounds, namely, if no broadcast is available, if broadcast is available in
just one (two or three) rounds, and in which one(s).

We give a concise overview of our results below, which are described in more detail in
Section 1.2. We recall that our impossibility results hold w.r.t. black-box simulation, which is
also the case for [GMPP16].

No Broadcast: We show that if broadcast is not used in any of the four rounds, then
selective abort is the best notion that can be achieved.

Broadcast in One Round: We show that if broadcast is used in exactly one round, then
unanimous abort can be achieved if it is used in the last round; otherwise selective abort
continues to remain the best achievable guarantee.

Broadcast in Two Rounds: We show that if broadcast is used in exactly two rounds, the
feasibility landscape remains the same as the above.

Broadcast in Three Rounds: We show that if broadcast is used in exactly three rounds,
then selective identifiable abort can be achieved if it is used in the first three rounds; otherwise
it continues to remain impossible. The feasibility of other notions does not change in this
setting.

Broadcast in Four Rounds: If broadcast is used in all four rounds, the strongest notion
of identifiable abort becomes possible [CRSW22].

In Table 1 we summarize our findings.

1.2 Technical Overview

We start by presenting the technical overview of our positive results, and in the next section,
we will provide a high-level idea about how our impossibility proof works.
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Broadcast
Pattern

Possible? Theorem reference

Selective Abort (SA)
P 2P 4 ✓ Theorem 1

Identifiable Abort (IA)
BC4 ✓ [CRSW22]

BC3-P 2P ✗ Theorem 9
Any other
4-round
pattern

✗ Follows from the set on
impossibilities for SIA, see

Table 2 for the
corresponding theorems.

Broadcast
Pattern

Possible? Theorem reference

Unanimous Abort (UA)
BC3-P 2P ✗ Theorem 9
P 2P 3-BC ✓ Theorem 7

Selective Identifiable Abort (SIA)
BC3-P 2P ✓ Theorem 8
Any other
4-round
pattern

✗ See Table 2 for the
corresponding theorems.

Table 1: Complete characterization of feasibility and impossibility for 4-round dishonest majority MPC with different
communication patterns in the plain model. We denote the acronym P 2P (resp. BC) to indicate the peer-to-peer (resp.
broadcast) channel. We use the notation P 2P x (resp. BCx) to indicate x consecutive rounds of peer-to-peer (resp.
broadcast) communications.

Broadcast Pattern Implied Patterns

BC2-P 2P -BC ✗(Theorem 16) BC-P 2P 2-BC, BC-P 2P 3, P 2P -BC-P 2P -BC, P 2P -BC-P 2P 2

BC2-P 2P 2 ✗(Theorem 12)

BC-P 2P -BC2 ✗(Theorem 18) BC-P 2P -BC-P 2P

P 2P -BC3 ✗(Theorem 17) P 2P 2-BC2, P 2P 2-BC-P 2P , P 2P -BC2-P 2P , P 2P 3-BC, P 2P 4

Table 2: Impossibility results for 4-round MPC with SIA security against dishonest majority in the plain model. The
third column “Implied Patterns” means that the patterns in this column are implied by the pattern in the first column
“Broadcast Patterns”. An impossibility in a stronger broadcast pattern setting implies the impossibility in a weaker
broadcast pattern setting, where a broadcast pattern BP1 is weaker than a pattern BP2 if BP1 replaces at least one of the
broadcast rounds in BP2 with a P 2P round (without introducing any additional BC rounds over BP2).

1.2.1 Feasibility Results

P2P4 SA protocol. In our first upper bound, we show that security with selective abort can
be achieved when all the rounds are over P2P channels. In particular, we show how to turn
any protocol that is proven secure assuming that all the messages are sent over a broadcast
channel, into a protocol that is secure even if all the broadcast rounds are replaced with P2P
rounds. As a starting point, note that if a round where a secure protocol uses broadcast (say
round r) is simply replaced with peer-to-peer channels, the main problem is that the adversary
can send different messages (over peer-to-peer channels) to a pair of honest parties in round r
and obtain the honest parties’ responses in round (r + 1), computed with respect to different
round r messages. This potentially violates security as such a scenario would never happen in
the original protocol with broadcast in round r (as the honest parties would have a consistent
view of the messages sent in round r).

To ensure that honest parties’ responses are obtained only if they have a consistent view of
the corrupt parties’ messages, the two-round construction of Cohen et al. [CGZ20] adopts the
following trick: In addition to sending the round r message 3 over a peer-to-peer channel (as
described above), the parties send a garbled circuit which computes their next-round message
(by taking as input round r messages, and using the hard-coded values of input and randomness
of this party) and additively share labels of this garbled circuit. In the subsequent round, parties
send the relevant shares based on the round r messages they received. The main idea is that
the labels corresponding to honest parties’ garbled circuits can be reconstructed to obtain their
round (r + 1) messages only if the adversary sends the same round r message to every honest

3The round r corresponds to the first round in the construction of [CGZ20].
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party.
While [CGZ20] use the above idea to transform a BC-BC protocol into a P2P -P2P protocol,

we extend it to transform a BC4 protocol to P2P 4 protocol. Applying the above trick of sending
the next-message garbled circuits and additive shares in Round 1 and 3 will ensure that if honest
parties manage to evaluate the garbled circuits in Round 2 and 4 respectively, it must be the
case that the honest parties have a consistent view of the Round 1 and Round 3 messages of
corrupt parties. However, there is a slight caveat: The corrupt party could still send different
garbled circuits to different honest parties, say in Round 1. This will make the view of honest
parties inconsistent with respect to Round 2 of the corrupt party. Note that this was not a
concern in [CGZ20] as Round 2 corresponds to the last round of the protocol, unlike our case 4.

To address this, we use ‘broadcast with abort’ [GL05] to realize a ‘weak’ broadcast of garbled
circuits over two peer-to-peer rounds – In the first round, as before, each party sends its garbled
circuit to others. In the second round, parties additionally echo the garbled circuits they received
in Round 1. A party ‘accepts’ a garbled circuit only if it has been echoed by all other parties,
or else she aborts. This ensures that if a pair of honest parties does not abort, they must have
received the same garbled circuit and therefore would have a consistent view of Round 2 of
corrupt parties as well. This approach has still one issue, as it allows the adversary to send
different fourth-round messages to different honest parties. We can argue that this is not a
problem if the input protocol of our compiler admits a simulator that can extract the inputs of
the corrupted parties in the first three rounds. This helps because if the inputs of the corrupted
parties are fixed in the third round, so is the output. Intuitively, this means that no matter
what fourth round the adversary sends, an honest party receiving this fourth round will either
abort or compute the correct output (and all the parties will get an output generated according
to the same corrupted and honest parties’ inputs). Finally, we note that the protocols proposed
in [BGJ+18, CCG+20, HHPV18] all satisfy this property, hence, they can be used as input of
our compiler.

P2P3-BC UA protocol. This upper bound is based on the observation that when the broad-
cast channel is available in the last round, it is possible to upgrade the security of the above
SA protocol (the one enhanced with the garbled circuit that we have described in the previ-
ous paragraph) to UA with the following simple modification: If an honest party is unable
to continue computation during Rounds 1 - 3, she simply broadcasts the signal ‘abort’ in the
last round, which would lead to all honest parties aborting unanimously. (Note that a corrupt
party can also choose to broadcast ‘abort’, this does not violate unanimity as all honest parties
would abort in such a case.). This takes care of any inconsistency prior to Round 4. Lastly,
an adversary cannot cause inconsistency during Round 4, as we make the parties send all their
messages via broadcast in Round 4.

BC3-P2P SIA protocol. To prove this upper bound, we show that a big class of protocols
(i.e., those that admit a simulator that can extract the inputs of the corrupted parties in the
first three rounds) that are secure with identifiable abort (which use broadcast in all rounds)
can be proven to be secure with selective identifiable abort even if the last round is replaced
by peer-to-peer channels. Intuitively, if this is not the case, it means that the adversary can
make honest parties obtain inconsistent outputs by sending different versions of the last round
message. However, this cannot occur since the output of the protocol must have been fixed
before the last round (due to our assumption that the simulator extracts the input in the
first three rounds), and since that, if there exists a fourth round that forces honest parties to

4The consistency of views with respect to the last round follows from input-independence property of the
underlying protocol (elaborated in the relevant technical section).
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compute the wrong output, this message could be used and sent in the last broadcast round
of the original protocol to force honest parties to output an incorrect value. Finally, we note
that the protocol proposed in [CRSW22] admits this special simulator. This observation yields
a protocol that realizes any function with selective identifiable abort when the communication
resources are BC3-P2P .

1.2.2 Impossibility Results

We propose two main categories of impossibility results. In the first category, we show that UA
security is impossible to achieve when the communication in the last round is performed over
P2P . This shows the tightness of our P2P 3-BC UA upper bound, completing the picture for
UA security. The second category comprises a set of four impossibility results that show that
any broadcast pattern that does not use a broadcast channel in each of the first three rounds
cannot achieve SIA. This result implies that any SIA secure protocol must rely on the pattern
BC3-P2P , hence our protocol is tight. This completes the picture for SIA security. Since IA
is stronger than both UA and SIA, both the categories of impossibilities are applicable to IA
as well. In particular, by putting everything together we prove that the pattern BC4 is indeed
minimal for realizing security with IA.

BC3-P2P UA security. The main idea of this impossibility is to show that any protocol that
enjoys security with UA in this setting in the plain model can be turned into a 3-round oblivious
transfer (OT) protocol in the plain model. Since the latter is known to be impossible [HV16],
such a BC3-P2P UA protocol cannot exist. The transformation occurs in two-steps: First, we
show that the BC3-P2P UA protocol must be such that it is possible for a set of n/2 among
the n parties to obtain the output by combining their views at the end of Round 3. Intuitively,
this is because it may happen that the only communication an honest party, say P , receives in
the last round may be from other honest parties. She may still have to compute the output
to maintain unanimity – This is because the last round is over peer-to-peer channels and the
adversary may have behaved honestly throughout all the rounds towards her fellow-honest party
P ′ (while behaving honestly only in the first three rounds to P ). P ′ will compute the output
due to correctness (from the perspective of P ′, this was an execution where everyone behaved
honestly). This lets us infer that the set of honest parties together had enough information
about the output at the end of Round 3 itself, as this information sufficed to let P get the
output at the end of Round 4. Assuming that there are n/2 honest parties, this completes the
first step. Next, we show that one can construct a three-round OT protocol, where the receiver
PR emulates the role of the above set of n/2 parties and the sender PS emulates the role of
the remaining set of n/2 parties. For this, we define the function computed by the n-party
BC3-P2P UA protocol accordingly; and invoke the above claim (of the first step) and security
of this n-party protocol to argue correctness and security of the OT protocol respectively.

SIA security. Here, we give a high-level overview of how we prove that SIA is impossible to
achieve when the communication pattern is of the form BC-BC-P2P -P2P . The impossibility
of the other communication patterns follows by similar arguments. Assume by contradiction
that there exists a three-party protocol Π that can securely compute any efficiently computable
function f with SIA security when the broadcast channel is available only in the first two rounds.
We denote the parties running this protocol with P1, P2, and Pout, and assume that f provides
the output only to the party Pout. We consider now the following two scenarios.

Scenario 1. P ⋆
1 is corrupted (we denote the i-th corrupted party with P ⋆

i ), and the other
parties are honest. P ⋆

1 behaves like P1 would, with the difference that it does not send any
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message to P2 in the third and the fourth round. Further, P ⋆
1 pretends that it did not receive

the third and the fourth round (over the point-to-point channel) messages from P2.

Scenario 2. This time P ⋆
2 is corrupted, and the other parties are honest. P ⋆

2 behaves exactly
like P2, but it does not send any message to P1 in the third and the fourth round. Further,
P ⋆

2 pretends that it did not receive the third and the fourth round (over the point-to-point
channel) messages from P1.

We note that the two scenarios look identical in the eyes of Pout. This is because Pout cannot
access the P2P channel connecting P1 and P2, hence, he cannot detect which of the two parties
did not send a message. In particular, Pout will not be able to detect who is the corrupted party.
By the definition of SIA, if Pout cannot identify the corrupted party, then it must be able to
output the evaluation of the function f . Equipped with this observation, our proof proceeds in
two steps.

1. First, we construct a new three-party protocol Π′. We denote the parties running this
protocol with P ′

1, P ′
2, and P ′

out. The party P ′
1 behaves exactly like P ⋆

1 described in Scenario
1, and similarly P ′

2 and P ′
out behave respectively like P ′

2 and P ′
out in Scenario 1. We argue

that Π′ is secure with SA security. In fact, it suffices for our argument to show that Π′

is secure for the following two corruption patterns: (a) when P ′
1 and P ′

out are corrupt and
when (b) P ′

2 and P ′
out are corrupt. We refer to the simulators proving security in these

cases as SSIA
1,out and SSIA

2,out respectively.

2. Next, we show an attack that allows an adversary ASA corrupting P ⋆′
2 and P ⋆′

out in Π′

to learn the input of honest P ′
1. This step would complete the proof as it contradicts

the security of Π′ for this corruption setting (which was argued to be secure in the first
step). Broadly speaking, we show that this adversary ASA is able to get access to all
the information that the simulator SSIA

1,out has (which must exists, as argued in the first
step). Intuitively, since the information that SSIA

1,out has must suffice to ‘extract’ the input
of corrupt P ′

1 (in order for the simulation to be successful5), this allows us to argue that
ASA can use this information to learn the input of honest P ′

1.

Before elaborating on each of the above steps, we make the following useful observation:
since P ′

out is the only party getting the output and the security goal of Π′ is SA security, we
can assume without loss of generality that in Π′ (a) P ′

out does not send any message to the
other parties in the last round and (b) there is no communication between P ′

1 and P ′
2 in the

last round.

SA security of Π′. In the first step, one can easily observe that correctness of Π′ holds as
an honest execution of Π′ would result in P ′

out having a view that is identically distributed
to the view of Pout at the end of Scenario 1 (which sufficed to compute the correct output).
Intuitively, privacy holds as there is less room for attack in Π′ as compared to Π, as it involves
fewer messages. To formally argue SA security of Π′ for the case when P ⋆′

2 and P ⋆′
out are corrupt,

we construct a simulator SSA
2,out for Π′. In particular, we need to argue that the messages of P ′

1
can still be simulated, despite the fact that it does not send messages to P ⋆′

2 in the third and the
fourth round. Our simulation strategy works as follows. The simulator SSA

2,out for Π′ internally
runs the SIA simulator SSIA

2,out of Π for the case where P1 is honest (recall that this exists by
definition). SSA

2,out acts as a proxy between SSIA
2,out and the corrupted parties for the first and the

5Note that SSIA
1,out works against an adversary corrupting P ′

1 and P ′
out, and must therefore be able to extract

the input of P ′
1.
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second round, but upon receiving the third round from SSIA
2,out directed to P ⋆

2 , SSA
2,out blocks this

message. At this point, a corrupted P ⋆′
2 may or may not send a reply, but what is important to

observe is that whatever behavior P ⋆′
2 has, P ⋆

2 could have had the same behavior while running
Π. Intuitively, P ⋆′

2 is always weaker than P ⋆
2 . Hence, the security of Π can be used to argue

that the input of P ′
1 remains protected.

We deal with the case where P ′
1 and P ′

out are corrupted in Π′ in a similar way. We refer to
the technical part of the paper for a more detailed discussion.

Attack by ASA. In the second step, our goal is to show an adversary ASA that corrupts P ⋆′
2

and P ⋆′
out and runs the simulator SSA

1,out to extract the input of the honest P ′
1

6 (proofs with a
similar spirit have been considered in [GK96, KO04]). To make the proof go through, we need
to argue that an adversary that runs SSA

1,out is a legit adversary. In particular, this adversary
must not rewind the honest P ′

1. Note that in the plain model and dishonest majority setting,
the only additional power the black-box simulator has compared to an adversary is to perform
rewinds. We show that no matter what rewinds SSA

1,out performs, these rewinds do not affect
the honest party P ′

1. At a very high level, ASA is able to obtain the same information as SSA
1,out

would collect over the rewinds because (a) the rewinds that allow SSA
1,out to obtain new messages

from P ⋆′
out can be locally computed by ASA (as ASA also controls P ⋆′

out) (b) essentially, no rewinds
help to obtain new messages from P ⋆′

1 because P ⋆′
1 does not send any messages to P ′

2 (on whose
behalf SSA

1,out acts) in the last two rounds. In more detail,

Rewinding the second round: P′
2 → P′

1. Changing the second message may influence
the third round that will be computed by P ′

1. However, note that P ′
1 does not send any

message in the third round to P ′
2. Hence, we just need to forward to P ′

1 only one of the
potential multiple second-round messages the simulator generates. The messages we choose
to forward need to be picked with some care. We refer the reader to the technical section
for more detail.

Rewinding the second round: P′
2 → P⋆′

out. Changing the second round messages may
affect the third round that goes from P ⋆′

out to P ⋆′
1 , and as such, it may affect the fourth round

that goes back from P ′
1 to P ⋆′

out. However, the simulator SSA
1,out acting on behalf of P ′

2 will
not see the effect of this rewind, given that in Π′, P ′

2 does not receive any message in the
fourth round. We also note that this rewind would additionally allow SSA

1,out to obtain new
third round messages from P ⋆′

out based on different second round messages of P ′
2. However,

this can be locally computed by ASA in its head, as it controls both P ⋆′
out and P ⋆′

2 .

The above arguments can be easily extended to infer that any rewind performed in the third
round does not affect P ′

1. There is one pattern left, which is the one where the simulator rewinds
the first round.

Rewinding the first round: P′
2 → P′

1. The high-level intuition to argue that the sim-
ulator has no advantage in using these rewinds is that SSA

1,out must be able to work even
against the following adversary. Consider a corrupted P ⋆′

1 who is rushing in the first round
and computes fresh input (and randomness) by evaluating a pseudo-random function (PRF)
on the incoming first-round message from P ′

2. Subsequently, the corrupted P ⋆′
1 uses this in-

put honestly throughout the protocol. It is clear that against such an adversary, a simulator
that rewinds the first round has no advantage. This is because changing the first round
6There are functionalities for which the simulator may not need to extract any input from the adversary. In

our impossibility, we will consider a three-party oblivious transfer functionality (where one party does not have
the input), where the simulator must be able to extract the input of the corrupted parties.
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would change the input the adversary uses on behalf of P ⋆′
1 . Therefore, the information col-

lected across the rewinding sessions cannot help to extract the input used by the adversary
in the simulated thread (which refers to the transcript that is included in the adversary’s
view output by the simulator).
Formalizing the above intuition requires some care, and here we provide a slightly more
detailed overview of how we do that. Our adversary ASA will receive messages of P ′

1. SSA
1,out

(which we recall is run internally by ASA) may rewind the first round multiple times, and
each time ASA must reply with a valid first and second round of P ′

1. We could simply reply
to SSA

1,out every time using the first round message we received from the honest P ′
1. We then

forward the first round received from P ′
out and P ′

2 to P ′
1. P ′

1 now will send the second round,
which we can forward to SSA

1,out. Now, SSA
1,out may decide to rewind P ′

1, by sending a new
first round. At this point, we would need to forward this message to P ′

1, as this is the only
way to compute a valid second round of P ′

1. Clearly, P ′
1 is not supposed to reply to such

queries, and as such, our adversary ASA is stuck. To avoid this problem, we adopt the
following strategy. Let us assume that we know in advance that the simulator SSA

1,out runs
for at most κ steps7. This means that the simulator can open a new session (i.e., rewind
the first round) up to κ times. Our adversary samples a random value i ∈ [κ], and for all
the sessions j ̸= i, the adversary will compute the messages on behalf of P ′

1 using input
and randomness computed by evaluating the PRF on input the messages received from P ′

2.
Only for the i-th session, the adversary will act as a proxy between the messages of P ′

1 and
the simulator SSA

1,out. If the SSA
1,out returns a simulated transcript consistent with the i-th

session, then we also know that the simulator must have queried the ideal functionality with
a value that corresponds to the input of P ′

1. Given that we can guess the index i with some
non-negligible probability, and given that the simulator will succeed with non-negligible
probability as well, our attack would be successful. There is still subtlety though. In the
session with indices j ̸= i, ASA internally runs the algorithm of P ′

1 using an input x1 that is
computed by evaluating a PRF on input the messages generated from P ′

2. The input used
by the honest P ′

1 may have a different distribution, and as such, the simulator may decide
to never complete the simulation of the i-th session. We first note that, formally, the goal
of our adversary ASA is not really to extract the input of the honest P ′

1. But it is about
distinguishing whether the messages that it will receive on behalf of P ′

1 are generated using
the honest procedure of P ′

1, or using the simulated procedure. Note that in such an MPC
security game, the adversary knows, and can actually decide8 what are the inputs of the
honest parties (i.e., what inputs the challenger of the security game will use to compute
the messages of P ′

1). ASA then can internally run SSA
1,out, and when the i-th session comes

generate an input x1 by evaluating the PRF on the messages received on the behalf of P ′
2.

Now that the input of the honest P ′
1 is defined, we start the indistinguishability game with a

challenger that takes as input x1 (and some default input for the corrupted parties). In this
way, we have the guarantee that when the challenger is not generating simulated messages,
all the sessions look identical in the eyes of the simulator SSA

1,out. Hence, we can correctly
state that with some non-negligible probability, it will return a simulated transcript for the
i-th session. Note that SSA

1,out will return x̃1 when querying the ideal functionality in the i-th
session, and we will have that x̃1 = x1 iff the challenger is computing the messages using
the honest procedure of P ′

1. If instead, the challenger was generating simulated messages
7If the simulator has expected polynomial time κ, for some polynomial κ, then our adversary will run the

simulator up to κ steps. This will guarantee that the simulator will terminate successfully with some non-negligible
probability.

8The security of MPC states that security holds for any honest parties’ inputs (decided before the experiment
starts), and these inputs may be known to the adversary.
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on behalf of P ′
1, then the probability that x̃1 = x1 is small9. Hence, this will give a non-

negligible advantage to ASA in distinguishing what the MPC challenger is doing. We refer
to the technical sections of the paper for a more formal treatment of this proof.

Rewinding the first round: P′
2 → P⋆′

out. To argue this case, we note that if SSA
1,out acts

against the rushing adversary defined in the above case (where P ⋆′
1 changes its input based

on the output of PRF applied on the first round message from P ′
2), then the first and second

round messages of P ⋆′
1 obtained during the rewinds can be locally emulated by ASA (as he

controls both P ⋆′
2 and P ⋆′

out).

In summary, we have argued that ASA can internally run the simulator SSA
1,out which enables

the adversary to be able to extract the input of P ′
1.10 We refer to the technical section of the

paper for a much more formal proof, and for the proof of impossibility results related to the
other communication patterns.

1.3 Related Work

The work of [CGZ20] initiated the study of broadcast-optimal MPC. They investigated the
question of the best security guarantees that can be achieved by all possible broadcast patterns
in two-round secure computation protocols, namely no broadcast, broadcast (only) in the first
round, broadcast (only) in the second round, and broadcast in both rounds. Their results
focused on the dishonest majority setting and assumed a setup (such as PKI or CRS) 11. The
works of [DMR+21, DRSY23] investigate the same question for two-round MPC with setup
(such as PKI or CRS), but in the honest-majority setting. We refer the reader to [CGZ20,
DMR+21, DRSY23] for a detailed overview of the state of the art on 2-round MPC and their
use of broadcast. The work of [GJPR21] studies the best achievable security for two-round
MPC in the plain model for different communication models such as only broadcast channels,
only peer-to-peer channels, or both. Unlike the previously mentioned line of work, this work
does not consider communication patterns where broadcast is limited to one of the two rounds.
Going beyond two rounds, the work of [BMMR21] studies broadcast-optimal three-round MPC
with guaranteed output delivery given an honest majority and CRS, and shows that the use of
broadcast in the first two rounds is necessary. None of the above works consider the dishonest
majority setting without setup (i.e. the plain model). In this setting, there are several existing
round-optimal (four round) constructions, namely protocols with unanimous abort in [ACJ17,
BGJ+18, BHP17, CCG+20, HHPV18] and with identifiable abort in [CRSW22]. However, these
works do not restrict the use of broadcast in any round. To the best of our knowledge, we are
the first to investigate the question of optimizing broadcast for round optimal (four-round)
protocols in the dishonest majority setting without setup (i.e. in the plain model).

2 Preliminaries

2.1 Pseudorandom Function

We use the definition of the pseudorandom function (PRF) from [KL14]
9This will depend on the domain size of P ′

1 input and on the type of function we are computing.
10The simulator may be expected polynomial time, hence we need to cut the running time of the simulator to

make sure that ASA remains PPT.
11It is necessary to assume setup for two-round protocols in dishonest majority setting.
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Definition 1 (Pseudorandom function). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient,
length-preserving keyed function. F is a pseudorandom function if for all PPT distinguisher D,
there is a negligible function negl s.t.:∣∣∣∣ Pr[DFk(·)(1λ) = 1]− Pr[Df(·)(1λ) = 1]

∣∣∣∣
where the first probability is taken over uniformly chosen of k ∈ {0, 1}λ and the randomness of
D, and the second probability is taken over uniformly chosen truly random function f , and the
randomness of D

2.2 Garbling scheme

We use the definition of the garbling scheme from [CGZ20].

Definition 2 (Garbling scheme [BHR12, CGZ20, DMR+21]). A projective garbling scheme is
a pair of algorithms (garble, eval), such that:

• (GC, K)← garble(1λ, C): on input the unary representation of the security parameter 1λ

and a boolean circuit C : {0, 1}L → {0, 1}m, the garbling algorithm outputs a garbled circuit
GC and L pairs of garbled labels K = {Kb

α}b∈{0,1},α∈[L]. For simplicity, we assume that for
every α ∈ [L] and b ∈ {0, 1}, it holds that Kb

α ∈ {0, 1}λ.

• y ← eval(GC, {Kα}α∈[L]): on input a garbled circuit GC and L garbled labels {Kα}α∈[L],
the evaluation algorithm output a value y ∈ {0, 1}m.

The scheme has the following two properties:

• Correctness: For any boolean circuit C : {0, 1}L → {0, 1}m, and x = (x1, . . . , xL) ∈ {0, 1}L,
it holds that:

Pr[eval(GC, K[x]) ̸= C(x)] ≤ negl(λ)

where (GC, K) ← garble(1λ, C), with K = (K0
1, K1

1, . . . , K0
L, K1

L) and K[x] = (Kx1
1 , . . . ,

KxL
L ).

• (Adaptive) Privacy: There exists a probabilistic polynomial-time (PPT) simulator simGC,
s.t. for every PPT adversary A:∣∣∣∣ Pr

[
ExptΠ,A,simGC(1λ, 0) = 1

]
− Pr

[
ExptΠ,A,simGC(1λ, 1) = 1

]∣∣∣∣ ≤ negl(λ)

where the experiment ExptΠ,A,simGC(1λ, b) is defined as follows:

– The adversary A specify the boolean circuit C : {0, 1}L → {0, 1}m.
– If b = 0, the challenger C computes (GC, K)← garble(1λ, C), and returns GC.
– If b = 1, the challenger C computes GC← simGC(1λ, ϕ(C), “ckt”), where ϕ(C) denotes

the topology of C12. The challenger returns GC.
– The adversary A specify input x = (x1, . . . , xL) ∈ {0, 1}L.
– If b = 0, the challenger C sets Kα = Kxα

α , for α ∈ L and returns {Kα}α∈L.
12We assume that the topology of a circuit does not reveal hard coded values (as hard-coded values are

essentially fixed input labels for some wires.)
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– If b = 1, computes K1, . . . , KL ← simGC(1λ, C(x), “input”), and returns {Kα}α∈L.
– A outputs a bit b′, and it is the output of the experiment.

• Partial Evaluation Resiliency [DMR+21]: We say that GC satisfies partial evaluation re-
siliency if there exists a simulator simGC such that for every PPT adversary A, it holds
that ∣∣∣∣ Pr

[
ExptPR

Π,A,simGC(1λ, 0) = 1
]
− Pr

[
ExptPR

Π,A,simGC(1λ, 1) = 1
]∣∣∣∣ ≤ negl(λ)

where the experiment ExptPR
Π,A,simGC(1λ, b) is defined as follows:

– The adversary A specify the boolean C : {0, 1}L → {0, 1}m, i ∈ L, and x = (x1, . . . , xL)
∈ {0, 1}L

– If b = 0, the challenger C computes (GC, Kx1
1 , . . . , KxL

L )← garble(1λ, C), and returns
(GC, {Kxα

α }α∈L,α ̸=i)
– If b = 1, the challenger C computes (GC, {Kα}α∈L)← simGC(1λ, C, C(x)), and returns

(GC, {Kα}α∈L,α ̸=i)
– A outputs a bit b′, and it is the output of the experiment.

Instantiation. As shown by Bellare et al. [BHR12], adaptive garbled circuits can be obtained
using Yao’s garbled circuits and one-time pads. We refer to [DMR+21] for details on how any
garbling scheme can be augmented using one-time pads to satisfy partial evaluation resiliency.

2.3 Additive secret sharing scheme

In our work, we will use n-out-of-n secret sharing scheme, which is also referred to as additive
secret sharing scheme. We give the definition here:
Definition 3 (n-out-of-n secret sharing scheme). A n-out-of-n secret sharing scheme is a pair
of algorithms (share, reconstruct), such that:

• share is a randomized algorithm that on input a secret m, outputs a set of n shares
(s1, . . . , sn).

• reconstruct is a deterministic algorithm that on input n shares (s1, . . . , sn), outputs the
secret m.

The scheme needs to satisfy the correctness property if : For any m we have:

Pr
share(m)→(s1,...,sn)

[reconstruct(s1, . . . , sn) = m] = 1

In addition, the scheme satisfies perfect security property if: for all m, m′ the following distri-
butions are indistinguishable:

{(s1, . . . , sn) | (s1, . . . , sn)← share(m)}
{(s′

1, . . . , s′
n) | (s′

1, . . . , s′
n)← share(m′)}

3 Secure Multiparty Computation (MPC) Definitions

3.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security model of Cohen,
Garay and Zikas [CGZ20].
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Real-world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic polynomial-
time (PPT) interactive Turing machines (ITMs), where each party Pi is initialized with input
xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A denote a special PPT ITM that represents
the adversary and that is initialized with input that contains the identities of the corrupt parties,
their respective private inputs, and an auxiliary input.

The protocol is executed in rounds (i.e., the protocol is synchronous). Each round consists
of the send phase and the receive phase, where parties can respectively send the messages from
this round to other parties and receive messages from other parties. In every round parties can
communicate either over a broadcast channel or a fully connected P2P network. We assume
that these channels are private and we assume the channels to be ideally authenticated.

During the execution of the protocol, the corrupt parties receive arbitrary instructions from
the adversary A, while the honest parties faithfully follow the instructions of the protocol. We
consider the adversary A to be rushing, i.e., during every round the adversary can see the
messages the honest parties sent before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output, and the adversary
outputs an arbitrary function of the corrupt parties’ view. The view of a party during the
execution consists of its input, random coins and the messages it sees during the execution.

Definition 4 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party protocol and let
I ⊆ [n], of size at most t, denote the set of indices of the parties corrupted by A. The joint
execution of Π under (A, I) in the real world, on input vector x = (x1, . . . , xn), auxiliary input
aux and the unary representation of the security parameter 1λ, denoted REALΠ,I,A(aux)(x, 1λ), is
defined as the output vector of P1, . . . , Pn and A(aux) resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sa-abort), selective
identifiable abort (si-abort), unanimous abort (un-abort), identifiable abort (id-abort).

Definition 5 (Ideal Computation). Consider type ∈ {sa-abort, un-abort, si-abort, id-abort}. Let
f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let I ⊆ [n], of size at most t, be the
set of indices of the corrupt parties. Then, the joint ideal execution of f under (S, I) on input
vector x = (x1, . . . , xn), auxiliary input aux to S and the unary representation of the security
parameter 1λ, denoted IDEALtype

f,I,S(aux)(x, 1λ), is defined as the output vector of P1, . . . , Pn and
S resulting from the following ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi to the trusted
party. The simulator S may send to the trusted party arbitrary inputs for the corrupt
parties. Let x′

i be the value actually sent as the input of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) = f(x′
1, . . . , x′

n).
If there are no corrupt parties proceed to step 4.

(a) If type ∈ {sa-abort, un-abort, si-abort, id-abort}: The trusted party sends {yi}i∈I to S.

3. Simulator S responds to trusted party:

(a) If type = sa-abort: The simulator S can select a set of parties that will not get the
output as J ⊆ [n] \ I. (Note that J can be empty, allowing all parties to obtain the
output.) It sends (abort,J ) to the trusted party.

(b) If type = un-abort: The simulator can send abort to the trusted party. If it does, we
take J = [n] \ I.
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(c) If type = si-abort: The simulator S can select a set of parties that will not get the
output as J ⊆ [n] \ I. (Note that J can be empty, allowing all parties to obtain the
output.) For each party j in J , the adversary selects a corrupt party i∗

j ∈ I who will
be blamed by party j. It sends (abort,J , {j, i∗

j}j∈J ) to the trusted party.
(d) If type = id-abort: If it chooses to abort, the simulator S can select a corrupt party

i∗ ∈ I who will be blamed, and send (abort, i∗) to the trusted party. If it does, we
take J = [n] \ I.

4. Trusted party answers parties:

(a) If the trusted party got abort from the simulator S,
i. It sets the abort message abortmsg, as follows:

• if type ∈ {sa-abort, un-abort}, we let abortmsg = ⊥.
• if type = si-abort, we let abortmsg = {abortmsgj}j∈J = (⊥, i∗

j )j∈J .
• if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party sends yj to every party Pj, j ∈ [n] \ J .
If type = si-abort, the trusted party then sends abortmsgj to each party Pj, j ∈ J ;
otherwise, the trusted party sends abortmsg to every party Pj, j ∈ J

(b) Otherwise, it sends y to every Pj, j ∈ [n].

5. Outputs: Honest parties always output the message received from the trusted party while
the corrupt parties output nothing. The simulator S outputs an arbitrary function of the
initial inputs {xi}i∈I , the messages received by the corrupt parties from the trusted party
and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 6. Consider type ∈ {sa-abort, un-abort, si-abort, id-abort}. Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-party function. A protocol Π t-securely computes the function f with type
security if for every PPT real-world adversary A with auxiliary input aux, there exists a PPT
simulator S such that for every I ⊆ [n] of size at most t, for all x ∈ ({0, 1}∗)n, for all λ ∈ N,
it holds that

REALΠ,I,A(aux)(x, 1λ) c≡ IDEALtype
f,I,S(aux)(x, 1λ).

3.2 Notation

In this paper, we mainly focus on four-round secure computation protocols. Rather than viewing
a protocol Π as an n-tuple of interactive Turing machines, it is convenient to view each Turing
machine as a sequence of multiple algorithms: frst-msgi, to compute Pi’s first messages to its
peers; nxt-msgk

i , to compute Pi’s (k+1)-th round messages for (1 ≤ k ≤ 3); and outputi, to com-
pute Pi’s output. Thus, a protocol Π can be defined as {(frst-msgi, nxt-msgk

i , outputi)}i∈[n],k∈{1,2,3}.
The syntax of the algorithms is as follows:

• frst-msgi(xi; ri) → (msg1
i→1, . . . , msg1

i→n) produces the first-round messages of party Pi

to all parties. Note that a party’s message to itself can be considered to be its state.

• nxt-msgk
i (xi, {msgl

j→i}j∈[n],l∈{1,2,...,k}; ri)→ (msgk+1
i→1, . . . , msgk+1

i→n) produces the (k + 1)-th
round messages of party Pi to all parties.

• outputi(xi, msg1
1→i, . . . , msg1

n→i, . . . , msgj
1→i, . . . , msgj

n→i; ri) → yi produces the output
returned to party Pi.
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When the first round is over broadcast channels, we consider frst-msgi to return only one
message — msg1

i . Similarly, when the (k + 1)-th round is over broadcast channels, we consider
nxt-msgk

i to return only msgk+1
i . We also note that, unless needed, to not overburden the

notation, we do not pass the random coin r as an explicit input of the cryptographic algorithms.
We denote “← ” as the assigning operator (e.g. to assign to a the value of b we write a← b).
We denote the acronym BC to indicate a round where broadcast is available and the acronym
P2P to indicate a round where only peer-to-peer channels are available. We use the notation
P2P x (BCx) to indicate x rounds of peer-to-peer (broadcast) communications. To strengthen
our results, our lower bounds assume that the BC rounds allow peer-to-peer communication as
well; our upper bounds assume that the BC rounds involve only broadcast messages (and no
peer-to-peer messages).

4 Positive Results

4.1 P2P4, SA, Plain Model, n > t

In this section, we want to demonstrate that it is feasible to construct a 4-round protocol with
SA security, in order to do so we show a compiler that on input a 4-round protocol Πbc with
unanimous abort which makes use of the broadcast channel in the dishonest majority setting
gives us a 4-round protocol ΠSA

p2p4 with the same threshold corruption for selective abort, but
relying only on P2P communication. Further, we assume that the exists a simulator for Πbc
which extracts the inputs of the adversary from the first three rounds. For instance, one can
instantiate Πbc using the protocol of [CCG+20]13.

At a very high level, our compiler follows the approach of Cohen et al. [CGZ20]. The
approach of Cohen et al. focuses on the 2-round setting (using some form of setup) and compiles
a 2-round protocol Πbc which uses broadcast in both rounds into one that works over peer-to-
peer channels. This core idea of the compiler is to guarantee that honest parties have the same
view of the first-round message when they need to compute their second-round message. To
achieve this goal the parties, in the first round, generate a garbled circuit which computes their
second-round message of Πbc and they secret share their labels using additive secret sharing.
The parties send the first-round message of Πbc. In the second round, each party sends her
garbled circuit and for each received first-round message of Πbc she sends her appropriate share
corresponding to the label in everyone else’s garbled circuit. The important observation is that
the labels are reconstructed only when parties send the same first-round message to every other
party. In this work, we extend the following approach for four rounds executing the above
idea for Rounds 1 - 2 and subsequently for Rounds 3 - 4. If at any round a party detects any
inconsistency (e.g., the garbled circuit outputs ⊥, or she did not receive a message from another
party) she simply aborts. Moreover, the protocol requires some changes w.r.t. the original
approach since a corrupted party can send (in the second round) different garbled circuits to
the honest party obtaining different 2nd rounds of Πbc. We need to ensure that honest parties
abort if the adversary does so, to guarantee that the adversary does not obtain honest parties’
responses computed with respect to different versions, in the subsequent rounds. Therefore, the
garbled circuits are sent in the round that they are generated in and echoed in the next round.

In more detail, the security follows from the security of Πbc because of the following: the
only advantage the adversary has in comparison to Πbc is that she can send inconsistent first
(resp., third-round messages) over P2P channels. However, additive sharing of the labels of

13To the best of our knowledge, simulators of all existing 4-round construction in the plain model (e.g.,
[BGJ+18, CCG+20, HHPV18]) have this property of input extraction before the last round. In particular, see
page 42 of [CCG+19] for details regarding input extraction by the simulator of the UA protocol in [CCG+20].
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the honest party’s garbled circuit ensures that the adversary can obtain second round (resp.,
fourth-round) of an honest party only if she sent identical first-round (resp., third-round) to all
honest parties. Therefore, if the honest parties do not abort, it must be the case that they have
a consistent view with respect to the first and third-round messages of the adversary. Further,
since the honest parties also echo the garbled circuits sent by the adversary (computing the
corrupt parties’ second-round messages), if they proceed to evaluate those, it would mean that
the honest parties are agreeing with respect to the second-round messages of the adversary. Note
that this does not constitute an issue in the 4th round. If the adversary manages to send garbled
circuits resulting in honest parties obtaining different valid fourth rounds of Πbc that result in
different outputs, this would violate the security of Πbc. This follows from our assumption
that the simulator of Πbc extracts the input of the adversary in the first three rounds, which
guarantees that the adversarial inputs of Πbc are fixed before the last round. Intuitively, in
the last round of Πbc, the adversary can only decide if the honest parties obtain the output or
not. Finally, it is important to observe that the compiler avoids using zero-knowledge proofs
(as any misbehavior that the adversary does such as garbling an incorrect function can be
translated to the adversary broadcasting the corresponding second and fourth-round message
in the underlying protocol Πbc) and uses only tools that can be instantiated from one-way
functions.

In Figure 4.1 we formally describe our protocol ΠSA
p2p4 .

Figure 4.1: ΠSA
p2p4

Primitives: A four-broadcast-round protocol Πbc that securely computes f
with unanimous abort security against t < n corruptions, and a garbling scheme
(garble, eval, simGC). For simplicity assume that each round message has the same
length and it is ℓ bits long, so each circuit has L = n · ℓ input bits.
Notation: Let Cj

i,x(msgj
1, . . . , msgj

n) denote the boolean circuit with hard-wired values x

that takes as input the j-th round messages msgj
1, . . . , msgj

n and computes nxt-msgj
i . We

assume that when a party aborts she also signals the abort to all other parties.
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.

First round (P2P): Every party Pi does the following:

1. Let msg1
i ← frst-msgi(xi) be Pi’s first round message in Πbc.

2. Compute (GCi, Ki)← garble(1λ, C1
i,xi

), where Ki = {Kb
i,α}α∈[L],b∈{0,1}.

3. For every α ∈ [L] and b ∈ {0, 1}, sample n uniform random strings {Kb
i→k,α}k∈[n],

such that Kb
i,α = ⊕

k∈[n] Kb
i→k,α.

4. Send to every party Pj the message (msg1
i , GCi, {Kb

i→j,α}α∈[L],b∈{0,1})

Second round (P2P): Every party Pi does the following:

1. If Pi does not receive a message from some other party (or an abort message), she
aborts;

2. Otherwise, let (msg1
j→i, GCi, {Kb

j→i,α}α∈[L],b∈{0,1}) be the first round message re-
ceived from Pj .

3. Concatenate all received messages {msg1
j→i}j∈[n] as (µ1

i,1, . . . , µ1
i,L) ←

(msg1
1→i, . . . , msg1

n→i) ∈ {0, 1}L.
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4. Let GCi be the set of garbled circuits received from the other parties in the first
round.

5. Send to all parties the message (GCi, {K
µ1

i,α

j→i,α}j∈[n],α∈[L]).
Third round (P2P): Every party Pi does the following:

1. If Pi does not receive a message from some other party (or receives an abort mes-
sage), she aborts; Otherwise, let ({GCl}l∈[n], {K1→j,α}α∈[L], . . . , {Kn→j,α}α∈[L]) be
the second round message received from party Pj , and let GCj be the garbled circuit
received from Pj in the first round.

2. Check if the set of garbled circuits {GCl}l∈[n] echoed in Round 2 are consistent with
the garbled circuits received in Round 1. If this is not the case, abort.

3. For every j ∈ [n] and α ∈ [L], reconstruct each garbled label by computing Kj,α ←⊕
k∈[n] Kj→k,α.

4. For every j ∈ [n], evaluate the garble circuit as msg2
j ← eval(GCj , {Kj,α}α∈[L]). If

any evaluation fails, aborts. Let msg3
i ← nxt-msg2

i (xi, {msg1
j→i}j∈[n], {msg2

j}j∈[n])
be the Pi’s third round message in Πbc.

5. Compute (G̃Ci, K̃i)← garble(1λ, C3
i,xi

), where K̃i = {K̃b
i,α}α∈[L],b∈{0,1}.

6. For every α ∈ [L] and b ∈ {0, 1}, sample n uniform random strings {K̃b
i→j,α}j∈[n],

such that K̃b
i,α = ⊕

k∈[n] K̃b
i→k,α.

7. Send to every party Pj the message (msg3
i , {K̃b

i→j,α}α∈[L],b∈{0,1})
Fourth round (P2P): Every party Pi does the following:

1. If Pi does not receive a message from some other party (or receives an abort mes-
sage), she aborts;

2. Otherwise, let (msg3
j→i, {K̃b

j→i,α}α∈[L],b∈{0,1}) be the third round message received
from Pj .

3. Concatenate all received messages {msg3
j→i}j∈[n] as (µ2

i,1, . . . , µ2
i,L) ←

(msg3
1→i, . . . , msg3

n→i) ∈ {0, 1}L

4. Send to all parties the message (G̃Ci, {K̃
µ2

i,α

j→i,α}j∈[n],α∈[L])
Output Computation: Every party Pi does the following:

1. If Pi does not receive a message from some other party (or receives an abort
message), she aborts; Otherwise, let (G̃Cj , {K̃1→j,α}α∈[L], . . . , {K̃n→j,α}α∈[L]) be the
fourth round message received from party Pj .

2. For every j ∈ [n] and α ∈ [L], reconstruct each garbled label by computing K̃j,α ←⊕
k∈[n] K̃j→k,α

3. For every j ∈ [n], evaluate the garbled circuits as msg4
j ← eval(G̃Cj , {K̃j,α}α∈[L]).

If any evaluation fails, aborts.

4. Compute and output y ← outputi(xi, {msg1
j→i}j∈[n], {msg2

j}j∈[n], {msg3
j→i}j∈[n],

{msg4
j}j∈[n])
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Theorem 1 (P2P -P2P -P2P -P2P , SA, Plain Model, n > t). Let f be an efficiently computable
n-party function, where n > t. Let Πbc be a BC-BC-BC-BC protocol that securely computes
f with unanimous abort security against t < n corruptions with the additional constraint that
a simulator can extract inputs before the last round. Then, assuming secure garbling schemes
(Definition 2), the protocol from Figure 4.1 can compute f with selective-abort security that uses
only P2P channels against t < n corruptions.
Proof. We prove the protocol from Figure 4.1 computes f securely with selective abort. The
proof follows similarly to arguments lemma 4.9 in [CGZ20], with some modifications since we
are focusing on the plain model.

Let A be the adversary attacking protocol ΠSA
p2p4 , and let I ⊆ [n] be the set of parties

corrupted by A and H the set of honest parties. We assume that A is deterministic, and
its output consists of his view during the protocol (i.e. the auxiliary input, the input of all
corrupted parties, and all the messages it sends and receives). For every honest party Pj , we
define a receiver-specific adversary Aj for the protocol Πbc, and we describe it in Figure 4.2.

Figure 4.2: The Receiver Specific Adversary Aj

Notation: To simplify the notation we assume that if Aj sends an abort message so does
A but we will not write it explicitly in the rest of the description of Aj .
First round:

• Upon receiving the first-broadcast-round message msg1
h from a honest party Ph,

Aj samples a uniformly random string Kb
h→i,α for every i ∈ I, every α ∈ [L] and

every b ∈ {0, 1}. Aj computes GCh ← simGC(1λ, ϕ(C1
h,xh

), “ckt”). Then, Aj sends
(GCh, msg1

h, {Kb
h→i,α}α∈[L],b∈{0,1}) to A, on behalf of the honest party Ph, sends to

each corrupted party Pi over P2P channels in ΠSA
p2p4 .

• A sends the message (GCi, msg1
i→h, {Kb

i→h,α}α∈[L],b∈{0,1}) back, on behalf of every
corrupted party Pi to every honest party Ph in ΠSA

p2p4 . If there exist i ∈ I and
h, h′ ∈ H s.t msg1

i→h ̸= msg1
i→h′ thenAj aborts, otherwiseAj broadcasts the message

msg1
i→j for every corrupted party Pi in protocol Πbc.

Second round:

• Upon receiving the second-broadcast-round message msg2
h from a honest party

Ph in Πbc, Aj invokes the garbling scheme simulator to obtain {Kh,α}α∈[L] ←
simGC(1λ, msg2

h, “input”).

• Concatenate all received messages {msg1
l→h}l∈[n] as: (µ1

h,1, . . . , µ1
h,L) ←

(msg1
1→h, . . . , msg1

n→h) ∈ {0, 1}L. Denote Kh→i,α = K
µi

h,α

h→i,α, and Aj samples Kh→g

for g /∈ I conditioning on Kh,α = ⊕
k∈[n] Kh→k,α.

Aj send message (GCj , {Kj→h,α}j∈[n],α∈[L]) as the second round P2P message for
Ph in ΠSA

p2p4 . A sends back message (GCi, {Kj→i,α}j∈[n],α∈[L]), where GCi is the echo
of the garbled circuits obtained in the first round.
Aj checks if the set of garbled circuits echoed in round 2 by A in ΠSA

p2p4 are consistent
with the garbled circuits received in round 1 in ΠSA

p2p4 . If this is not the case, abort.

• Based on the first round messages from Pi, denote Ki→h,α = K
µ1

h,α

i→h,α, reconstruct
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Ki,α ←
⊕

k∈[n] Ki→k,α, and compute msg2
i→h ← eval(GCi, {Ki,α}α∈[L]). Then Aj

broadcasts the message msg2
i→j for every corrupted party Pi in protocol Πbc.

Third round: After receiving the third-broadcast-round message msg3
h from a honest

party Ph, Aj do steps similar to the first round, and broadcasts the obtained message
msg3

i→j .
Fourth round: After receiving the fourth-broadcast-round message msg4

h, Aj do steps
similar to the second round and broadcast the obtained message msg4

i→j , outputs whatever
A outputs and halts.

By the security of Πbc, for every j ∈ H, there exists a PPT simulator Sj for the adversarial
strategy Aj , such that for every auxiliary input aux, for all x ∈ ({0, 1}∗)n, for all λ ∈ N, it holds
that

REALΠbc,I,Aj(aux)(x, 1λ) c≡ IDEALun-abort
f,I,Sj(aux)(x, 1λ).

Every simulator Sj will start by extracting corrupted parties’ inputs x′
j = {x′

i,j}i∈I , and send
them to the ideal functionality. Upon receiving the output value y, Sj can send a message abort
or not send it to the ideal functionality. Finally, the outputs the simulated view (in Πbc) of the
adversary as follows: viewj = ( ˆauxj , {x̂j

i}i∈I , {m̂sgl,j
k }k∈[n],l∈{1,2,3,4})

We have the following simulator S (in Figure 4.3) that use S ′ = Sj , where j is the minimal
index s.t. j ∈ H, and Aj is the corresponding receiver specific adversary. Note that S runs
expected polynomial time because of the following reasons: (1) Sj is expected polynomial time,
(2) all the other computations made by S are polynomial time.

Figure 4.3: The Simulator S

The simulator S starts by invoking S ′ and let her interact with Aj using (sufficiently
long randomness ρ, in particular for running A -inside Aj- is used randomness ρA) to
invoke S ′ and Aj . During this interaction, S ′ could invoke the ideal functionality w.r.t.
adversarial input x′ = {x′

i}i∈I , in this case, S will forward received messages to the ideal
functionality receiving the output y which is forwarded to S ′. Moreover, S ′ could abort
specifying a set of indices J and so it does S sending an abort message with indices J to
the ideal functionality. In the end of the interaction S ′ produces the following simulated
view: view′ = ( ˆaux, {x̂i}i∈I , {m̂sgl

k}k∈[n],l∈{1,2,3,4}). Then, the simulator S starts A using
randomness ρA and executes the following steps:
First round:

• S samples a uniformly random string Kb
h→i,α for every i ∈ I, every α ∈ [L] and

b ∈ {0, 1}. S computes GCh ← simGC(1λ, ϕ(C1
h), “ckt”) Then S send A the message

(GCh, m̂sg1
h, {Kb

h→i,α}α∈[L]) on behalf of the honest party Ph to every corrupted Pi,
and A sends back (GCi, msg1

i→h, {Kb
i→h,α}α∈[L])

Second round:
• If for every i ∈ I there exists a value m̂sg1

i s.t. m̂sg1
i = msg1

i→h for every h ∈ H (It
means A sends the consistent messages), then

– For every honest party Ph, compute {Kh,α}α∈[L] ← simGC(1λ, m̂sg2
h, “input”).

– Concatenate all messages {m̂sg1
l }l∈[n] as: (µ1

1, . . . , µ1
L)← (m̂sg1

1, . . . , m̂sg1
n). For

every i ∈ I and α ∈ [L], denote Kh→i,α ← Kµ1
α

h→i,α. Then sample uniformly
random strings Kh→j,α for j /∈ I, conditioning on Kh,α = ⊕

k∈[n] Kh→k,α.

20



– Let GCh the set of garble circuits received from the other parties in the first
round.

– Send the message (GCh, {Kj→h,α}j∈[n],α∈[L]) to A as the second round message
in ΠSA

p2p4 .

• If there exists i ∈ I and h, h′ ∈ H s.t. msg1
i→h ̸= msg1

i→h′ (It means A sends the
inconsistent messages), then

– Send (abort,H) to the ideal functionality.
– For every honest party Ph, compute {Kh,α}α∈[L] ← simGC(1λ, C1

h(0L), “input”).
– For every j ∈ H, let msg1

h→j ← m̂sg1
h.

– Concatenate all message {msg1
l→h}l∈[n] as: (µ1

h,1, . . . , µ1
h,L) ←

(msg1
1→h, . . . , msg1

n→h). For every i ∈ I and α ∈ [L], denote Kh→i,α ← K
µ1

h,α

h→i,α.
Then sample uniformly random string Kh→j,α for j ∈ H.

– Let GCh the set of garble circuits received from the other parties in the first
round.

– Send the message (GCh, {Kj→h,α}j∈[n],α∈[L]) to A as the second round message
in ΠSA

p2p4 .

• A sends back message (GCi, {Kj→i,α}j∈[n],α∈[L]). If A echoed inconsistent garble
circuits in the second round abort, otherwise proceeds to the next step.
If A sends consistent first round messages of Πbc, and S ′ does not abort, based on
the first round messages from Pi, denote Ki→h,α = Kµ1

α
i→h,α, reconstruct Ki,α ←⊕

k∈[n] Ki→k,α, and compute msg2
i→h ← eval(GCi, {Ki,α}α∈[L]). Also, check that

Kh→i,α = Kµ1
α

h→i,α. If evaluation or check fails, this honest party Ph is added to the
set J .

• S sends (abort,J ) to the ideal functionality.

Third round: Use message m̂sg3
h and do the steps similar to the first round (aborting

also when honest parties receive different garble circuits w.r.t. some corrupted party Pj).
Fourth round: Perform the steps similar to the second round. S will output whatever
A outputs, and halt.

We use the following hybrid experiments to prove real/ideal indistinguishability:

• Expt0
ΠSA

p2p4 ,I,A: In this experiment, the simulator S0 have the access to the internal state
of the ideal functionality. S0 can see the honest parties input and choose their outputs.
Therefore, S0 emulates the honest parties in the protocol ΠSA

p2p4 based on the inputs, and
also sets the output of each honest parties. REALΠSA

p2p4 ,I,A and Expt0
ΠSA

p2p4 ,I,A are identically
distributed.

• Expt1
ΠSA

p2p4 ,I,A: this experiment is identical to the previous experiment but the simulator S1

invokes S ′ and let her interact with Aj using (sufficiently long randomness ρ, in particular
for running A -inside Aj- is used randomness ρA) to invoke S ′ and Aj . During this
interaction, S ′ could invoke the ideal functionality w.r.t. adversarial input x′ = {x′

i}i∈I ,
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in this case, S will forward received messages to the ideal functionality receiving the
output y which is forwarded to S ′. Moreover, S ′ could abort specifying a set of indices J
and so it does S sending an abort message with indices J to the ideal functionality.
Then, the simulator S starts A using randomness ρA and emulates the honest parties in
the protocol ΠSA

p2p4 , based on their inputs, i.e., the simulator behaves as in the previous
experiment. In particular, S1 performs the following checks. S1 checks if the adversary
sends inconsistent garble circuits in the first round. In this case she sends (abort,H) to
the ideal functionality before the third round. Moreover, S1 checks whether every honest
party can evaluate the garbled circuits with the garbled labels from A in the second
round (and the fourth round). Let J denote the set of honest parties for which the above
checks failed, then S1 sends (abort,J ) to the ideal functionality. The indistinguishability
between the hybrids follows from lemma 2.

• Expt2
ΠSA

p2p4 ,I,A: this experiment is identical to the previous experiment but other than

computing Kb
h→k,α for b ∈ {0, 1}, h ∈ H, k ∈ [n], α ∈ [L], s.t. Kb

h,α = ⊕
k∈[n] Kb

h→k,α, the
simulator S2 sends random shares (in the first round and the third round) on behalf of
every honest party Ph to every corrupted party Pi. Then:

– If A sends consistent messages in the first round, it means every honest party will
receive the same messages from each corrupted party, and we denoted the concate-
nated messages as {µ1

α}α∈[L]. Then denote Kh→i,α ← Kµ1
α

h→i,α, and sample uniformly
random string Kh→j,α for j /∈ I conditioned on Kh,α = ⊕

k∈[n] Kh→k,α. These shares
are used in the second round messages. Similar steps will be done in the third round
to generate the fourth round messages if consistent third round messages are received.

– If A send inconsistent messages (i.e. at least one corrupted party sends different mes-
sages to two honest parties), then denote {µ1

h,α}α∈[L] as the concatenated messages,

and denote Kh→i,α ← K
µ1

h,α

h→i,α. Sample uniformly random string Kh→j,α for j ∈ H
without conditions. These shares are part of the second round message. Similarly, if
A sends inconsistent third-round messages, these steps are done in the fourth round
to generate the fourth-round messages.

The indistinguishability between the hybrids follows from lemma 3.

• Expt3
ΠSA

p2p4 ,I,A: this experiment is identical to the previous experiment but other than gen-
erating garble circuit honestly, the simulator S3 will use simGC to generate garbled circuit.
Specifically, in the first round is computed GCh ← simGC(1λ, ϕ(C1

h,xh
), “ckt”). Then, every

honest party can obtain msg1
h by using received first round messages (and similarly msg3

h).
Then compute {Kh,α}α∈[L] ← simGC(1λ, msg2

h, “input”). Similar operations will also be
performed in the fourth round. The indistinguishability between the hybrids follows from
lemma 4.

• Expt4
ΠSA

p2p4 ,I,A: this experiment is identical to the previous experiment but the simulator S4

will use different inputs for simGC to generate garbled circuit. Denote C1
h as the boolean

circuit for nxt-msg1
h with hard-wired input 0. If at least one corrupted party sends different

messages to two honest parties S4 computes {Kh,α}α∈[L] ← simGC(1λ, C1
h,xh

(0L), “input”)
otherwise she computes {Kh,α}α∈[L] ← simGC(1λ, msg2

h, “input”). Similar operations will
also be performed in the third and the fourth round. The indistinguishability between the
hybrids follows from lemma 5.

22



• Expt5
ΠSA

p2p4 ,I,A: this experiment is identical to the previous experiment but the simulator

S5 will use the simulated messages from S ′. In the first round, Ph will send m̂sg1
h. In the

second round, S5 computes (GCh, {Kh,α}α∈[L])← simGC(1λ, C1
h, m̂sg2

h). Similar operations
will also be performed in the third and the fourth round. In this case, S5 does not need
to access to the internal state of the ideal functionality, and it is exactly the same as S,
so Expt5

ΠSA
p2p4 ,I,A is indistinguishable from IDEALsa-abort

f,I,S . The indistinguishability between
the hybrids follows from lemma 6.

Lemma 2. Expt0
ΠSA

p2p4 ,I,A
c= Expt1

ΠSA
p2p4 ,I,A: This relies on the security of Πbc and the correctness

of the garbling scheme.

• If A sends inconsistent first round (or third round) messages, in Expt0
ΠSA

p2p4 ,I,A, all honest

parties will abort; in Expt1
ΠSA

p2p4 ,I,A, S1 will send (abort,H) to the ideal functionality, and

achieve the same results as in Expt0
ΠSA

p2p4 ,I,A.

• If A sends the consistent first round (and third round) messages, A can reconstruct the
second round (fourth round) messages in Πbc, and then send garbled circuits and garbled
labels to honest party. If honest parties failed to evaluate the garbled circuits, the echoed
garbled circuits were inconsistent, or A sent incorrect shares for honest parties’ garbled
labels, they will abort, and S1 sends (abort,J ) to the ideal functionality, where J contains
the set of indices for which the checks fail. Otherwise, by the correctness of the garbling
scheme, the honest parties will receive the correct second round (fourth round) messages.
In this case, if is possible to distinguish between Expt0

ΠSA
p2p4 ,I,A and Expt1

ΠSA
p2p4 ,I,A, it is

possible to distinguish between the output of S ′ and one of the receiver-specific adversary
Aj , which contradicts the security of Πbc.

• It is important to note that A can send inconsistent garbled circuits for instance GCi

and GC′
i which outputs two different second round messages. If this is the case we could

construct a reduction that violates the security of Πbc, which aborts in the end of the
second round since inconsistent garbled circuits are sent and this is detected by honest
parties in the protocol at the beginning of the third round.
A similar reduction can be performed if different garbed circuits (and therefore different
4th round messages) are sent in the last round. Note that this reduction crucially relies
on the assumption that S1 extracts the input of the adversary from the first three rounds,
and from the fact that S1 does note need the 4th round of the adversary to generate the
honest party fourth round since the adversary could be rushing.

Lemma 3. Expt1
ΠSA

p2p4 ,I,A
p= Expt2

ΠSA
p2p4 ,I,A: This relies on the perfect security of additive secret

sharing.

If A sends inconsistent first round messages, In Expt1
ΠSA

p2p4 ,I,A, the adversary can choose which

share (i.e. K0
h,α and K1

h,α for honest party Ph) to see, however A can not recover the garbled
label correctly because it does not receive sufficient amount of shares; If A send inconsistent
first round messages in Expt2

ΠSA
p2p4 ,I,A, the adversary receives random shares that are irrelevant

to the actual garbled labels. Due to the perfect security of additive secret sharing the hybrids
are perfectly indistinguishable.
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Lemma 4. Expt2
ΠSA

p2p4 ,I,A
s= Expt3

ΠSA
p2p4 ,I,A: This relies on the security of garbling schemes.

We need to prove it through 2n + 2 different hybrids. In hybrid 0, it is equivalent to
Expt2

ΠSA
p2p4 ,I,A. In the hybrid Hj

i for 0 < i < n, the party Ph for h < i use simGC to obtain

the garbled circuits in the j-th round (with j = 2 and j = 4), other parties generate the
garbled circuits honestly. In hybrid n, it is equivalent to Expt3

ΠSA
p2p4 ,I,A. Assuming there exists

an adversary AD can distinguish between hybrid hj
i and hybrid hj

i+1 , then we can construct
A′

D that can break the security of the garbling scheme by the following reduction (the reduction
consider the case with j = 2, the one for j = 4 works in a very similar therefore omitted):

• A′
D sends to the challenger C1

i obtaining GCi.

• On behalf of other honest parties, A′
D runs the first round according to both hj

i and hj
i+1

while for the for i-th party uses GCi. A′
D receives first-round messages from AD.

• A′
D computes msg2

h as S2 would do and sends it to the challenger obtaining {Ki,α}α∈[L].

• On behalf of other honest parties, A′
D runs the second round according to both hj

i and
hj

i+1 while for the for i-th party uses {Ki,α}α∈[L].

• A′
D does the third rounds and fourth rounds according to both hj

i and hj
i+1, and output

what AD outputs.

We now observe that if C provide the garbled circuit and the garbled labels from real execution,
then we are in hybrid hj

i , otherwise, we are in hybrid hj
i+1

14. Because it works for all hybrids,
it implies Expt2

ΠSA
p2p4 ,I,A

c= Expt3
ΠSA

p2p4 ,I,A.

Lemma 5. Expt3
ΠSA

p2p4 ,I,A
c= Expt4

ΠSA
p2p4 ,I,A: This relies on the security of garbling schemes.

This reduction is similar to the one above, where we need also 2n + 2 hybrids, but every
hybrids only change the garbled circuits’ output. Assuming there exists an adversary AD can
distinguish between 2 hybrids hj

i and hj
i+1, then A′

D can break the security of the garbling
scheme by the following reduction:

• A′
D sends to the challenger C1

i obtaining GCi.

• On behalf of other honest parties, A′
D runs the first round according to both hj

i and hj
i+1

while for the for i-th party uses GCi. A′
D receives first-round messages from AD.

• A′
D computes msg2

h as S2 would do and sends (msg2
h, 0L) to the challenger obtaining

{Ki,α}α∈[L].

• On behalf of other honest parties, A′
D runs the second round according to both hj

i and
hj

i+1 while for the for i-th party uses {Ki,α}α∈[L].

• A′
D does the third rounds and fourth rounds according to both hj

i and hj
i+1, and output

what AD outputs.
14The reduction to run in strictly polynomial time cut the running time of the simulator S2 similar to what

describe in Theorem 16.
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We now observe that if C provide the garbled circuit and the garbled labels from simGC with
circuit C1

h,xh
, then we are in hybrid hj , otherwise we are in hybrid hj

i+1
14. Because it works for

all hybrids, it implies Expt3
ΠSA

p2p4 ,I,A
c= Expt4

ΠSA
p2p4 ,I,A.

Lemma 6. Expt4
ΠSA

p2p4 ,I,A
c= Expt5

ΠSA
p2p4 ,I,A: This relies on the security of Πbc.

Note that only when the adversary sends consistent messages we are generating the cor-
responding next honest message invoking the underlying simulator Sj of Πbc. Moreover, if A
sends inconsistent messages in the first 3 rounds Aj aborts. In this way, we ensure that the
messages used by S ′ are the one from which Sj extracts the corrupted parties’ inputs in the
first 3 rounds. therefore, if there exists an adversary that can distinguish between Expt4

ΠSA
p2p4 ,I,A

and Expt5
ΠSA

p2p4 ,I,A, it can be used to distinguish the output between S ′ and Aj , which violates
the security of Πbc.

By the above demonstrations, we know Expt0
ΠSA

p2p4 ,I,A
c= Expt5

ΠSA
p2p4 ,I,A, therefore we can

conclude that REALΠSA
p2p4 ,I,A

c= IDEALsa-abort
f,I,S .

4.2 P2P3-BC, UA, Plain Model, n > t

The protocol described in Figure 4.1 achieves unanimous abort security (against the same
corruption threshold) when the last round is executed over the broadcast channel.

The security follows intuitively from the fact that in this case, the honest parties rely on
the last round (over broadcast) to recover the output unanimously. In more detail, if any
inconsistency is detected in any round before the last round, the honest party aborts signaling
to abort to everybody else. Instead, if the last round is executed then the additive shares
corresponding to the fourth-round next-message garbled circuits are being broadcast (instead
of being sent over peer-to-peer channels), and the adversary can no longer enable only a strict
subset of honest parties to evaluate the garbled circuits successfully and obtain the output.
Lastly, we point that unlike the case of P2P 4, SA protocol in Figure 4.1, we need not assume
that Πbc is such that its simulator can extract inputs before the last round. This is because in
this case, the last round of the UA protocol is over broadcast. Therefore any attack in the last
round of this protocol directly translates to an attack in the last round of Πbc.

More formally, we have the following theorem.

Theorem 7 (P2P -P2P -P2P -BC, UA, Plain Model, n > t). Let f be an efficiently computable
n-party function, where n > t. Let Πbc be a BC-BC-BC-BC protocol that securely computes
f with unanimous abort security against t < n corruptions. Then, assuming secure garbling
schemes (Definition 2), the protocol from Figure 4.1 can compute f with unanimous-abort secu-
rity by a four-round protocol, where the broadcast channel is used only in the last round (while
the first three rounds use peer-to-peer channels).

Proof. The proof proceeds similarly to the one described in Theorem 1, detail follows.
The description of the receiver-specific adversary is the same. Also, the description of the

simulator is the same, but in case of an abort, the simulator does not specify any index but
instructs the ideal functionality to abort for all the honest parties.

The hybrids described in the proof of Theorem 1 are the same (but also the hybrid in case
of an abort , instructs the ideal functionality to abort for all the honest parties).
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The indistinguishability between Expt0
ΠSA

p2p4 ,I,A and Expt1
ΠSA

p2p4 ,I,A follows similar arguments
to the proof of indistinguishability in Theorem 1, but in this case, we need to argue that the
honest parties unanimously abort or recover the output. This follows from the subsequent
observations:

• If A sends inconsistent first round (or third round) messages, in Expt0
ΠSA

p2p4 ,I,A, all honest

parties abort; in Expt1
ΠSA

p2p4 ,I,A, and the simulator of Expt1
ΠSA

p2p4 ,I,A (called S1) sends abort

to the ideal functionality, and achieve the same results as in Expt0
ΠSA

p2p4 ,I,A.

• If A sends the consistent first round or (third round) messages, A can reconstruct the
second round (fourth round) messages in Πbc, and then send garbled circuits and garbled
labels to honest party. If in the second round, an honest party failed to evaluate the labels,
or A sends incorrect shares for honest parties’ garbled labels, then the honest party aborts
signaling to abort to everybody else. If one of the above-described failures happens in
the 4th round then all the parties unanimously abort since they received the same set of
shares for reconstructing the labels (due to the fact that the 4th round is over broadcast).
Therefore, in both cases the simulator can instruct the ideal functionality to abort for
all the honest parties. Otherwise, by the correctness of the garbling scheme, the honest
parties will receive the correct second-round (fourth-round) messages. In this case, if is
possible to distinguish between Expt0

ΠSA
p2p4 ,I,A and Expt1

ΠSA
p2p4 ,I,A, it is possible to show a

reduction against the security of Πbc.

• It is important to note that A can send inconsistent garbled circuits for instance GCi

and GC′
i which outputs two different second round messages. If this is the case we could

construct a reduction that violates the security of Πbc, which aborts in the end of the
second round since inconsistent garbled circuits are sent.
The 4th round is over broadcast therefore all the honest parties abort or recover the
output unanimously, since all the parties receive the same version of the garbled circuits.
In this case, if it is possible to distinguish between Expt0

ΠSA
p2p4 ,I,A and Expt1

ΠSA
p2p4 ,I,A, it is

possible to distinguish between the output of S ′ and one of the receiver-specific adversary
Aj breaking the security of Πbc.

The indistinguishability between the other hybrids follows the proof of Theorem 1.

4.3 BC3-P2P, SIA, Plain Model, n > t

Let us consider a protocol Πbc which is a 4-round (where the broadcast channel is available in
each round) IA MPC protocol secure against a dishonest majority. Moreover, let us assume
that there exists a simulator for Πbc which extracts the inputs of the adversary from the first
three rounds. For instance, one can instantiate Πbc using the protocol of [CRSW22]15.

Starting from Πbc we can construct a SIA protocol Π in the same setting, where Π is defined
exactly as Πbc but where the last round is executed over the peer-to-peer channel. Intuitively,
Π achieves SIA security since by our assumptions on Πbc the simulator extracts the inputs of

15The protocol of [CRSW22] lifts an UA protocol to achieve IA security (where the simulator of the IA
protocol uses the simulator of the UA protocol). If we consider, for instance, the simulator of the UA protocol
constructed in [CCG+20], this simulator extracts the inputs of the adversary from the first 3 rounds (see page
42 of [CCG+19]). Therefore, for instance, by instantiating [CRSW22] with [CCG+20] we obtain Πbc with the
desired property.
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the adversary in the first three rounds, and therefore the adversarial inputs are fixed before the
last round. Indeed, in the last round, the adversary can only decide if an honest party gets the
output or learns the identity of cheaters (depending on the version of the last round message
the adversary sends privately), but two honest parties can not obtain a different output (which
is non-⊥). It can happen that different honest parties identify different cheaters and others
recover (the same) outputs, but this is sufficient for SIA security. Finally, we note that a similar
result was shown by [DRSY23], but only for the two rounds setting. We prove the following
theorem.

Theorem 8 (BC-BC-BC-P2P , SIA, Plain Model, n > t). Let f be an efficiently computable
n-party function, where n > t. Let Πbc be a BC-BC-BC-BC protocol that securely computes
f with identifiable abort security against t < n corruptions with the additional constraint that
a simulator can extract inputs before the last round. Then, f can be computed with selective
identifiable-abort security by a four-round protocol, where the first three-rounds use broadcast
channels and the last round uses peer-to-peer channels.

Proof (Sketch). This proof proceeds similarly to the one shown in [DRSY23], we recall it for
correctness making the appropriate modifications.

Consider a protocol Π (with an associate simulator S) which is described as Πbc, with the
only difference being that the last round is sent over peer-to-peer channels. Let I be the set of
dishonest parties and H be the set of honest parties, moreover let Sbc be the simulator for Πbc.

The simulator S is described as follows.
For the first three rounds S runs internally Sbc emulating for her an adversary Abc of Πbc

(and the ideal functionality) while interacting as the honest parties w.r.t. the adversary A in the
execution of Π (in particular if Sbc wants to rewind the adversary, then S rewinds A). At the
end of the third round, by our assumptions, the simulator Sbc has extracted the inputs of the
corrupted parties (or sends an abort identifying some corrupted parties) and queries the ideal
functionality. S queries the (real) ideal functionality forwarding the message of Sbc, obtaining
the output y in case an abort did not occur. If an abort did not occur the simulation continues
as follows. S sends y to Sbc in order to obtain the last round for the honest parties which she
sends to A in Π.
S needs now to instruct the honest parties if they recover the output or not, note that since

the last round is over the peer-to-peer channel the adversary on behalf of the corrupted party
Pj , for all j ∈ I, can send different messages to different honest parties. Let m⃗sg4

h be the set of
messages for honest party Ph that A sent in the last round.
S has the following strategies, for each honest party Ph with h ∈ H:

1. If the adversary does not send a message to honest party Ph on behalf of any corrupted
party Pj then S queries the ideal functionality with abortj for party Ph.

2. Otherwise, S pretending to be the adversary Abc of Πbc sends messages m⃗sg4
h to Sbc in the

broadcast round. If Sbc sends abortj for some j ∈ I, then S queries the ideal functionality
with abortj for party Ph. Otherwise, S instructs the ideal function to let Ph recover the
output. At this point, S rewinds Sbc at the end of the 4th round (i.e., just before S
received m⃗sg4

h) and repeats the same steps (1),(2) for the other honest parties P ′
h, with

h′ > h and h′ ∈ H.

The indistinguishability between the real game and the simulated game follows from the
security of Πbc and since Sbc is expected polynomial time so is S.
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5 Negative Results

5.1 BC3-P2P, UA, Plain Model, n > t

At a high-level, we show that any BC3-P2P protocol achieving UA against dishonest majority
implies a three-round oblivious transfer (OT) protocol in the plain model, which is known to
be impossible [HV16].

Theorem 9 (BC-BC-BC-P2P , UA, n > t). There exists function f such that no n-party
four-round protocol can compute f with unanimous-abort security against t < n corruptions,
such that the first three rounds use broadcast and point-to-point channels and the last round
uses only point-to-point channels.

Proof. For our proof, we use the function fmot defined below. Let P1 takes as input a bit
b ∈ {0, 1}. Parties Pi (2 ≤ i ≤ n − 1) hold as input ⊥, and party Pn takes as input a pair
of λ-bit strings, denoted as Xn = (x0, x1). The function fmot outputs xb to parties P1 and
P2 and ⊥ to other parties. (i.e. parties Pi (3 ≤ i ≤ n) do not learn an output). Essentially,
fmot(b,⊥,⊥, . . . ,⊥, (x0, x1))→ (xb, xb,⊥, . . . ,⊥) denotes the function.

Towards a contradiction, assume there exists a four-round protocol Π that does not use a
broadcast channel in the last round and computes fmot with unanimous abort security. The
main idea of the proof is that Π can be transformed into a three-round two-party protocol Πot

realizing the oblivious transfer (OT) functionality in the plain model (which is known to be
impossible) 16.

Let µ = 1 − negl(λ) denote the overwhelming probability with which security of Π holds,
where the probability is defined over the random coins used by the parties. Consider an execu-
tion where everyone behaves honestly. Let bci

j and msgi
j→k denote Pj ’s broadcast message and

the point-to-point message sent by Pj to Pk in the ith round, in such an execution. Next, we
present the following useful lemma.

Lemma 10. Protocol Π must be such that the combined view of parties {P1, P2, . . . , P n
2
} at the

end of Round 3 suffices to compute the output of fmot with overwhelming probability.

Proof. Consider a scenario in an execution of the protocol, where the adversary corrupts parties
{P n

2 +1, . . . , Pn} (for simplicity, assume n to be an even number) and does the following.

Rounds 1 to 3: On behalf of the corrupt parties, she behaves honestly until and including
Round 3. In more detail, the adversary sends messages bci

j and {msgi
j→k}k∈[n] as per an honest

execution on behalf of each corrupt Pj for Rounds i = 1 to 3.
Round 4: In the last round, the adversary sends point-to-point messages only to party P2, and
is silent otherwise. In more detail, the adversary sends msg4

j→2 on behalf of each corrupt Pj but
does not send any other messages.

First, we claim that P2 must output the correct output xb in the above scenario with
overwhelming probability p. This follows directly from the correctness of Π (which holds with
probability µ) because P2’s view in the above scenario is identical to her view in an execution
where everyone behaves honestly. Based on our assumption that Π achieves unanimous abort
security (with probability at least µ), it must be the case that honest P1 also outputs xb with
overwhelming probability µ× µ = µ2.

16We point that one of the impossibility results in [PRS20] also reduces to the impossibility of three-round OT
protocol in the plain model, but the starting point of their transformation is a best-of-both-worlds protocol that
achieves fairness in honest majority and unanimous abort in dishonest majority. This makes their transformation
different than ours as their transformation exploits the property of fairness.
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Note that the only messages P1 receives in the last round are from parties {P2, . . . , P n
2
} (as

she receives no communication from the other parties {P n
2 +1, . . . , Pn} in the last round). The

fourth round point-to-point messages of honest parties {P2, . . . , P n
2
} to P1 must be computed

based on their view at the end of Round 3. Therefore, we can conclude that the combined
view of parties {P1, P2, . . . , P n

2
} at the end of Round 3 subsumes (i.e. contains at least as much

information as) the view of an honest P1 at the end of the execution, in the above scenario.
Since P1 obtained the output xb with overwhelming probability µ2 in the above scenario, we

can conclude that the combined view of parties {P1, P2, . . . , P n
2
} at the end of Round 3 must

suffice to compute the output of fmot with overwhelming probability as well.

Transformation to a three-round two-party OT protocol. Next, we show how protocol
Π can be used to design a three-round two-party OT protocol Πot between a sender PS (with a
pair of messages (m0, m1) as the input) and receiver PR (having a choice bit c as input). The
idea is to let PS emulate the role of parties {P n

2 +1, . . . , Pn} using input (x0, x1) = (m0, m1) on
behalf of Pn (and input ⊥ on behalf of others), while PR emulates the role of parties {P1, P2, . . . ,
P n

2
} using input b = c on behalf of P1 (and input ⊥ on behalf of others). In more detail, in the

i-th round (i ∈ [3]), PS sends messages {bci
j , {msgi

j→k}k∈{1,..., n
2 }}j∈{ n

2 +1,...,n} to PR. Similarly,
PR sends messages {bci

j , {msgi
j→k}k∈{ n

2 +1,...,n}}j∈{1,..., n
2 } to PS in the ith round. Next, we argue

that Πot is an OT protocol (realizing the OT functionality 17).

Lemma 11. Πot is a secure two-party three-round protocol that realizes the oblivious transfer
(OT) ideal functionality.

Proof. First, we argue that the three-round protocol Πot is correct. This holds if the receiver
PR is able to compute the correct output i.e. mc with overwhelming probability at the end of
Πot. This is indeed the case, as PR’s view at the end of Πot corresponds to the combined view
of parties {P1, P2, . . . , P n

2
} at the end of Round 3 of Π, which suffices to compute the correct

output xb = mc with overwhelming probability (Lemma 10).
Next, we argue security of Πot . Consider the case where PR is corrupt. Since we assume

that Π is secure against any adversary corrupting a subset of parties (with size at most n−1), it
must hold that it is secure against an adversary corrupting {P1, P2, . . . , P n

2
}. More specifically,

such an adversary’s view does not reveal any information about honest Pn’s input, beyond the
output xb. Since PR in Πot emulates the role of {P1, P2, . . . , P n

2
} in Π, we can infer that corrupt

PR in Πot does not learn any information beyond the output xb = mc (specifically, PR does not
learn Pn’s input m1⊕c). More formally, we can construct a simulator for Πot corresponding to
the case of corrupt PR by simply running the steps of simulator of Π (until Round 3) for the
case when the adversary corrupts {P1, P2, . . . , P n

2
}.

Similarly, the case when PS is corrupt in Πot translates to the case when the adversary
corrupts {P n

2 +1, . . . , Pn} in Π. Since Π is assumed to be secure against such an adversary, it
holds that such an adversary learns nothing about the input bit b of P1. This lets us infer
that corrupt PS in Πot learns nothing about the choice bit b = c of PR. This is because we
can construct a simulator for Πot corresponding to the case of corrupt PS by simply running
the steps of the simulator of Π (until Round 3) for the case when the adversary corrupts
{P n

2 +1, . . . , Pn}. This completes the proof that Πot is a secure three-round protocol that realizes
the OT functionality.

171-out-of-2 Oblivious Transfer (OT) is a two-party functionality involving a sender with input (m0, m1) and
a receiver with input c ∈ {0, 1}. Informally, the security is that the receiver should learn mc (and nothing else)
and the sender should learn nothing.

29



Note that Πot involves both PS and PR sending messages in each round of the three-round
protocol, therefore the OT protocol obtained in the above transformation is bidirectional. Such
a bidirectional OT protocol can be further transformed to an alternating-message OT protocol
Π̃ot in a round-preserving manner [CCG+20], where each round comprises of a message from
either PS or PR (but not both). However, such a protocol Π̃ot cannot exist due to the known
impossibility of three-round alternating-message OT in the plain model [HV16] with black-box
simulation; which is the final contradiction.

5.2 SIA Impossibility Results

Theorem 12 (BC-BC-P2P -P2P , SIA, Plain Model, n > t). Assume the existence of pseu-
dorandom functions. There exists function f such that no n-party four-round protocol (in the
plain model) can compute with selective identifiable-abort security, against t < n corruptions,
while in the protocol, the first two rounds use broadcast channels and the last two rounds use
peer-to-peer channels.

Proof. We start the proof assuming that the four-round protocol Π is run by three parties only,
and we extend the proof to the n-party case in the end. By contradiction, assume that there
exists a three-party protocol Π that can compute any function f with selective identifiable-abort
security where just one party Pout gets the output18 and the broadcast channel is accessible only
in the first two rounds. Let us denote the three parties running the protocol Π with P1, P2,
and Pout.

Consider the following adversarial strategy of Figure 5.1. In summary, in this scenario,
corrupted P1 behaves like an honest party, with the difference that it does not send the third
and the fourth message to P2, and it pretends that it does not receive the third message and
the fourth message from P2.

Figure 5.1: Scenario 1

Setting: P1 is corrupted party P2 and Pout are honest parties.
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.

First round (BC):
Every party Pi samples the randomness ri from uniform distribution D, computes msg1

i ←
frst-msgi(xi; ri), and sends the message over the broadcast channel.
Second round (BC):
Every party Pi computes msg2

i ← nxt-msg1
i (xi, {msg1

j}j∈{1,2,out}; ri), and sends it over the
broadcast channel.
Third round (P2P):

1. Every party Pi computes ({msg3
i→j}j∈{1,2,out}) ←

nxt-msg2
i (xi, {msgk

j }j∈{1,2,out},k∈{1,2}; ri).

2. P1 sends msg3
1→out to Pout. Pout sends msg3

out→1 to P1, and sends msg3
out→2 to P2.

P2 sends msg3
2→1 to P1, and sends msg3

2→out to Pout.

Fourth round (P2P):
1. P1 sets msg3

2→1 = ⊥ and computes ({msg4
1→j}j∈{1,2,out}) ←

nxt-msg3
1(x1, {msgk

j }j∈{1,2,out},k∈{1,2}, {msg3
j→1}j∈{1,2,out}; r1).

18We are assuming implicitly this requirement on f thought the rest of the proof.
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2. Pout computes ({msg4
2→j}j∈{1,2,out}) ← nxt-msg3

out(xout, {msgk
j }j∈{1,2,out},k∈{1,2},

{msg3
j→out}j∈{1,2,out}; rout).

3. P2 computes ({msg4
2→j}j∈{1,2,out}) ← nxt-msg3

2(x2, {msgk
j }j∈{1,2,out},k∈{1,2},

{msg3
j→2}j∈{2,out}; r2).

4. P1 sends msg4
1→out to Pout. Pout sends msg4

out→1 to P1, and sends msg4
out→2 to P2.

P2 sends msg4
2→out to Pout and msg4

2→1 to P1.

Given the above adversarial strategy, we proceed now in a series of steps in order to reach
a contradiction.

Step 1: Pout can not abort identifying the corrupted party. We prove that, if Pout
aborts, it can not identify that P1 aborted. We prove this by contradiction. Consider the
scenario of Figure 5.2. In this, the corrupted P2 behaves like an honest party, and he does not
send the third and the fourth round message to P1. At the same time, it pretends that it does
not receive the third round and fourth message from P1. P1 behaves honestly, sending all the
messages that the protocol Π prescribes. In summary, P2 behaves like P1 behaves in Scenario
1.

Figure 5.2: Scenario 2

Setting: P2 is corrupted party. P1 and Pout are honest parties.
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.

First round (BC):
Every Pi samples the randomness ri from uniform distribution D, computes msg1

i ←
frst-msgi(xi; ri), and sends the message over the broadcast channel.
Second round (BC):
Every party Pi computes msg2

i ← nxt-msg1
i (xi, {msg1

j}j∈{1,2,out}; ri), and sends it over the
broadcast channel.
Third round (P2P):

1. Every party Pi computes ({msg3
i→j}j∈{1,2,out}) ←

nxt-msg2
i (xi, {msgk

j }j∈{1,2,out},k∈{1,2}; ri).

2. P2 sends msg3
2→out to Pout. Pout sends msg3

out→1 to P1, and sends msg3
out→2 to P2.

P1 sends msg3
1→out to Pout, and sends msg3

1→2 to P2.

Fourth round (P2P):

1. P1 computes ({msg4
1→j}j∈{1,2,out}) ← nxt-msg3

1(x1, {msgk
j }j∈{1,2,out},k∈{1,2},

{msg3
j→1}j∈{1,out}; r1).

2. Pout computes ({msg4
out→j}j∈{1,2,out}) ← nxt-msg3

out(xout, {msgk
j }j∈{1,2,out},k∈{1,2},

{msg3
j→out}j∈{1,2,out}; rout).

3. P2 sets msg3
1→2 = ⊥ and computes ({msg4

2→j}j∈{1,2,out}) ←
nxt-msg3

2(x2, {msgk
j }j∈{1,2,out},k∈{1,2}, {msg3

j→2}j∈{1,2,out}; r2).

4. P2 sends msg4
2→out to Pout. Pout sends msg4

out→1 to P1, and sends msg4
out→2 to P2.

P1 sends msg4
1→out to Pout and msg4

1→2 to P2.
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Intutively, in Scenario 1 (in Figure 5.1), P2 can potentially report P1’s misbehaviour to Pout
earliest in round 4 (since P1 behaved honestly in round 1 and round 2 ). This means that Pout
cannot identify the corrupted party (and abort) until all the four rounds are received. However,
a corrupted P1 is pretending that P2 did not send the third round message. Hence, none of the
messages that Pout receives in the fourth round would help him. In particular, Pout sees P1 and
P2 blaming each other. In addition, Pout can not see what happened on P2P channel between
P1 and P2, therefore, Pout can not identify the corrupted party correctly.

Formally, if in Scenario 1 Pout aborts, then based on the definition of selective identifiable-
abort, Pout identifies P1 as the corrupted party. However, the view of Pout in the Scenario 1 is
identical to the view of Pout in Scenario 2 (in Figure 5.2). Because the view of Pout is identical
in the two scenarios, then Pout has the same behavior in both scenarios. Hence, Pout identifies
P1 as the corrupted party. However, in Scenario 2, P1 is honest, and this contradicts the SIA
security of Π. From the above, we can conclude that Pout does not abort in Scenario 1, hence,
it must be able to compute the output.

In addition, by generalizing Step 1 above, we have the following lemma:

Lemma 13. Let f be an efficiently computable three-party function and we denote the three
party as (P1, P2, Pout). Assume there exists a three-party protocol Π that securely computes f
with selective-identifiable-abort security where the party Pout recovers the output, for any com-
munication pattern {BC, P2P , BC}-BC (one of the first three rounds is using P2P channels).
Then when running Π against the corrupted P1 (or P2), whose malicious behaviors are only not
sending and pretending not to receive messages from P2 (resp. P1) in P2P rounds, Pout can
not abort and identify the correct corrupted party, and it must obtain the output.

Proof. The proof is similar to Step 1 of Theorem 12. More in detail, we can construct two
scenarios, that in the first scenario P1 behaves honestly in BC rounds. It does not send the
message to P2 and pretends not to receive from P2 in the P2P round. In the second scenario,
P2 behaves honestly in BC rounds. It does not send the message to P1 and pretends not to
receive from P1 in the P2P round. Then the views of Pout are identical in these two scenarios,
and if it aborts, it can not identify the correct corrupted party, which means it must obtain the
output.

Step 2: Constructing an SA secure protocol (only for two corruption patterns).
We now consider a new protocol, that we denote with Π′ (and denote the parties running
the protocol with P ′

1, P ′
2 and P ′

out). This protocol works exactly like Π, with the following
differences:

• The honest P ′
1 does not send the third message to P ′

2.

• No fourth messages between P ′
1 and P ′

2.

• P ′
out does not send any fourth round to P ′

1 and P ′
2.

We prove that this protocol is secure with selective abort. Informally, this is possible because
the honest parties send fewer messages compared to Π, and the party P ′

out will still be able to
compute the output due to the argument given above. Moreover, given that we just want to
obtain SA security, we can remove the messages that Pout sends in the last round. Formally, we
prove that if Π is SIA secure, then Π′ (that we propose in Figure 5.3) is secure with selective
abort (SA) for two corruption patterns. Namely, we prove that the protocol is secure when
either P ′

1 and P ′
out are corrupted or when P ′

out and P ′
2 are corrupted. Looking ahead, we focus

only on these corruption patterns, because proving the security of Π′ only in these cases would
be enough to reach our final contradiction. Below, we provide a more formal argument.
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Figure 5.3: The new protocol Π′

Primitives: A three-party four-round protocol Π =
{(frst-msgi, {nxt-msgk

i }k∈{1,2,3}, outputi)}i∈{1,2,out} that securely computes any f
with selective identifiable-abort security against t < n corruptions, where the first two
rounds use the broadcast channels to exchange messages, and last two rounds use P2P
channels.
Private input: Every party P ′

i has a private input xi ∈ {0, 1}∗.

First round (BC):
Every party P ′

i samples the randomness ri from uniform distribution D, computes msg1
i ←

frst-msgi(xi; ri), and sends the message over the broadcast channel.
Second round (BC):
Every party P ′

i computes msg2
i ← nxt-msg1

i (xi, {msg1
j}j∈{1,2,out}; ri), and sends it over the

broadcast channel.
Third round (P2P):

1. Every party P ′
i computes ({msg3

i→j}j∈{1,2,out}) ←
nxt-msg2

i (xi, {msgk
j }j∈{1,2,out},k∈{1,2}; ri).

2. P ′
1 sends msg3

1→out to P ′
out. P ′

out sends msg3
out→1 to P ′

1, and sends msg3
out→2 to P ′

2.
P ′

2 sends msg3
2→1 to P ′

1, and sends msg3
2→out to P ′

out.

Fourth round (P2P):

1. P ′
1 sets msg3

2→1 = ⊥ and computes ({msg4
1→j}j∈{1,2,out}) ←

nxt-msg3
1(x1, {msgk

j }j∈{1,2,out},k∈{1,2}, {msg3
j→1}j∈{1,2,out}; r1).

2. P ′
out computes ({msg4

out→j}j∈{1,2,out}) ← nxt-msg3
out(xout, {msgk

j }j∈{1,2,out},k∈{1,2},
{msg3

j→out}j∈{1,2,out}; rout).

3. P ′
2 computes ({msg4

2→j}j∈{1,2,out}) ← nxt-msg3
2(x2, {msgk

j }j∈{1,2,out},k∈{1,2},
{msg3

j→2}j∈{2,out}; r2).

4. P ′
1 sends msg4

1→out to P ′
out. P ′

2 sends msg4
2→out to P ′

out.

Output Computation:

1. P ′
out compute and output y ← outputout(xout, {msgk

j }j∈{1,2,out},k∈{1,2},

{msgk
j→out}j∈{1,2,out},k∈{3,4}; rout)

The security of the SIA protocol Π ensures us that there exist corresponding simulators
for (all) the corruption patterns, we will exploit those simulators to construct the simulators
for proving the security of Π′. Let SSIA

1,out and SSIA
2,out be the simulators of Π for, respectively,

corrupted P1 and Pout and for corrupted P2 and Pout. We construct two new simulators SSA
1,out

and SSA
2,out which, respectively, make use of SSIA

1,out and SSIA
2,out, and use them to prove the security

of Π′ in the above-mentioned corruption patterns.
To formally do that, we need to transform an adversary ASA attacking Π′ into an admissible

adversaryMintf of Π (we need to do that since the simulators SSIA
1,out and SSIA

2,out only work against
adversaries attacking the protocol Π). Mintf runs internally ASA and acts as a proxy for the
messages between the simulator SSIA

1,out (resp. SSIA
2,out) and ASA, withholding the messages that
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honest party P ′
1 is not supposed to send in Π′. The Figure 5.4 formally describes Mintf . In

this, we denote as the left interface, the interface where the adversary sends and receives the
protocol messages.

Figure 5.4: The adversary Mintf

Notation: Let H be the set of indices of the honest parties and I be the indices of the
corrupted parties. Mintf internally runs the adversary ASA, and is equipped with a left
interface, where it receives the messages computed on behalf of the honest parties and
sends the messages computed on the behalf of the corrupted parties.

First round (BC):

1. Upon receiving msg1
h on the left interface with h ∈ H, Mintf forwards the message

to ASA in Π′.

2. Upon receiving the messages sent by ASA,Mintf forwards them to the left interface,
where it is acting as a corrupted party for Π.

Second round (BC):

1. Upon receiving msg2
h on the left interface, where h ∈ H,Mintf forwards the message

to ASA.

2. Upon receiving the messages sent by ASA in Π′,Mintf forwards them, acting as the
corrupted parties in Π.

Third round (P2P):

1. Upon receiving msg3
h→j in the left interface, where h ∈ H and j ∈ I,Mintf forwards

the message msg3
h→out (and the message msg3

2→1 in the case where 2 ∈ H) to ASA.

2. Upon receiving the messages sent by ASA,Mintf forwards them to the left interface
acting as the corrupted parties in Π.

Fourth round (P2P):

1. Upon receiving msg4
h→j on the left interface, where h ∈ H and j ∈ I,Mintf forwards

the message msg4
h→out to ASA (if any).

2. Upon receiving the messages sent by ASA,Mintf forwards them to its left interface.

We are now ready to show how the simulator SSA
1,out of Π′ for the case where P ′

1 and P ′
out are

corrupted. The simulator SSA
1,out is formally described in Figure 5.5.

Figure 5.5: SSA
1,out

SSA
1,out performs the following steps:

• Invoke SSIA
1,out for the adversaryMintf , querying and receiving responses to and from

its left interface.

• Work as a proxy between the ideal functionality and SSIA
1,out.
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In the end, SSA
1,out output whatever SSIA

1,out outputs, and halt.

For the case where P ′
2 and P ′

out are corrupted, we can define the simulator SSA
2,out similarly to

SSIA
1,out, but using SSIA

2,out. If an adversary ASA attacking Π′ is able to distinguish between when
it is receiving messages produced by SSA

1,out (resp. SSA
2,out) from the case when the messages are

generated from an honest party running Π′, then we can show an adversary that contradicts
the SIA security of Π. In the reduction ASIA simply runs internallyMintf , which in turn it will
run ASA.

Step 3: Modifying adversary ASA. As a stepping stone toward proving the final result,
we consider first another adversary APRF

1,out, which corrupts P ′
1 and P ′

out and acts as follows.
The corrupted parties P ′

1 and P ′
out act like the honest parties running Π′ would, except

that they are rushing in the first round (i.e., they wait to receive the honest party’s message
before sending their first round), and compute their input and randomness by evaluating a
PRF on input the message received from the honest party. More formally, APRF

1,out samples two
different keys (k1, k2) for a PRF F. Upon receiving the first round msg1

2 from the honest P ′
2,

the adversary computes x1 ← Fk1(msg1
2), r1 ← Fk2(msg1

2). Then APRF
1,out use (x1, r1) and original

input and randomness of P ′
out to finish all four round interactions with the honest party P ′

2. We
define APRF

2,out similarly.
We need to prove even against such an adversary there exists a simulator, that can success-

fully extract the input from a corrupted P ′
1. A simulator for APRF

1,out trivially exists due to the SA
security of Π′, hence, we need to argue that such a simulator does query the ideal functionality,
hence, it extracts the input of the corrupted parties (this will be crucial for the last step of our
impossibility proof). To prove that this is indeed the case, we start by observing that, trivially,
when all the parties are honest then Π′ terminates and P ′

out computes the output, with no party
triggering an abort. Consider now an adversary Ar

1,out, that corrupts the parties with index 1
and out, and instructs these parties to be rushing in the first round, and non-rushing in the
remaining rounds, without any other change in the behaviors of corrupted parties.

Also in this case, it is easy to see that the honest party will not abort and that P ′
out will

compute the output. What remains to prove is that the view of the honest party stays the same
when interacting with APRF

1,out instead of Ar
1,out. To do that, we prove the following lemma, which

holds due to the security of the PRF.

Lemma 14. Let APRF
1,out(aux) and Ar

1,out be the adversaries described above. Assume that PRFs
exist, then, for every auxiliary input aux, for all x ∈ ({0, 1}∗)3, for all λ ∈ N, it holds that the
probability that the honest party aborts in REALΠ,{1,out},APRF

1,out(aux)(x, 1λ) is negligible-close to the
probability that the honest party aborts in REALΠ,{1,out},Ar

1,out(aux)(x, 1λ) .

We also prove that the same lemma holds for the case where the indices of the corrupted
parties are {2, out}.

Proof. Let us consider the following adversary ASA
1,out, which is rushing in the first round and

having oracle access to two different random functions. ASA
1,out queries the functions on the

first round message from the honest P2 obtaining the values x1, r1, and it also has the input
xout and the randomness rout for corrupted party Pout. Then, adversary uses x1, r1, xout, rout
to compute its first-round messages, in particular, it runs {frst-msgi(xi; ri)}i∈{1,out} to obtain
{msg1

i }i∈{1,out}. For the remaining rounds, it acts as per protocol Π′ specification.
We argue that in the eye of honest P2, interacting with Ar

1,out is indistinguishable from inter-
acting with ASA

1,out. The reason behind is that the honest party does not rewind the adversary.
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It can not tell whether the adversary use a random input or not. At the same time, when the
input is randomly sampled, it is indistinguishable from the output of a random function.

We will prove then that the honest P2 still completes the protocol when ASA
1,out has access to

PRFs instead of a random functions. In order to do so, we define a set of 3 hybrids {Hj}j∈[3]
where in H1 the adversary ASA

1,out is executed, and in each subsequent hybrid, we substitute and
invocation of the random function with a PRF computation. The indistinguishability between
the two consecutive hybrids follows from the security of PRF. More in detail, assuming there
exists a distinguisher D that can distinguish between experiments H1 and H2, then we can use
the following procedure to build a distinguisher for PRF:

• Query the challenger of PRF with first round of the honest P2 in Π, and receive back a
value (either the output of a random function or the output of the PRF), and parse it as
the input x1.

• Compute {frst-msgi(xi; ri)}i∈{1,out} to obtain {msg1
i }i∈{1,out}, where xout, r1, rout are

generated as H1 (respectively as H2).

• Run the protocol Π′, use the message {msg1
i }i∈{1,out} as the first round messages from

ASA
1,out, and finish the protocol by using ASA

1,out (which acts identically in H1 and H2).

• Use D on the transcripts of the protocol, and output what D outputs.

We now observe that if the challenger provides the output of the random function, we are
in H1, otherwise, we are in H2. This implies H1 ≈ H2. The proofs of the indistinguishability
for the other hybrids work similarly.

The proof for the corruption pattern {2, out} is nearly identical to the proof above.

We then prove the following lemma, which in summary states that Π remains secure even
against such PRF adversaries.

Lemma 15. Let f be an efficiently computable three-party function. Assume that there exists a
three-party protocol Π that securely computes f with selective-abort security when parties P1 and
Pout are corrupted, for every PPT real-world adversary ASA

1,out with auxiliary input aux. Then
for the same corruption pattern I, for the same auxiliary input aux, for all x ∈ ({0, 1}∗)3, for
all λ ∈ N, it holds that {REALΠ,I,APRF

1,out(aux)(x, 1λ)} c≡ {IDEALsa-abort
f,I,S1,out(aux)(x, 1λ)}. We also prove

that it works for the corruption pattern {2, out}

Proof. Because Π is SA secure against any adversary corrupting parties P1 and Pout, therefore
Π′ is secure also against APRF

1,out.
The proof for the corruption pattern {2, out} similar to the proof above.

Step 4: Constructing an adversary that breaks the SA security of Π′. We prove that
there exists an adversary A′

SA that can use the simulator SSA
1,out to extract the input from an

honest P ′
1. This would contradict the SA security of Π′. This adversary A′

SA (formally described
in Figure 5.6) controls the parties P ′

2 and P ′
out and runs internally the simulator SSA

1,out
19. Note

that SSA
1,out expects to interact with an adversary which corrupts P ′

1 and P ′
out in an execution of

Π′, hence A′
SA needs to make sure that SSA

1,out can be executed correctly, despite the party P ′
1

19Note that the simulator is expected polynomial time, hence we need to cut its running time to make sure
that A′

SA remains PPT.
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being honest. In particular, we need to argue that the simulator can work properly (i.e., the
simulator extracts the input P ′

1) while P ′
1 is not rewound.

Figure 5.6: The adversary A′
SA

• Define and initialize j ← −1 and sample k1, k2 ← {0, 1}λ. Run SSA
1,out, which denotes

the simulator of Π′ for the case where P ′
1 and P ′

out are corrupted. SSA
1,out is run until

it performs up to κ steps (recall that SSA
1,out needs κ = poly(λ) expected number

steps).

• Sample i ← [κ]. Any time that SSA
1,out opens a new session by sending a new first-

round m (m here denotes all the messages received over broadcast in the first round)
to the honest P ′

1 then set j ← j + 1 and do the following.

– If j = i compute xi
1 ← Fk1(m), where xi

1 will denote the input of the honest
party P ′

1 used in the MPC indistinguishability gamea.
– If j ̸= i then reply to all the queries of SSA

1,out, acting as the honest P ′
1 would

act using the input xj
1 and the randomness rj

1, where xj
1 ← Fk1(m) and rj

1 ←
Fk2(m).

• In the i-th session act as a proxy between the MPC challenger and SSA
1,out with respect

to all the messages related to P ′
1. Note that the messages from the challenger will

either be simulated or generated by running the honest party P ′
1 with the input xi

1.

• For every message that SSA
1,out sends to P ′

1 in the session j ̸= i, reply as the honest
party P ′

1 would using the input xj
1 and the randomness rj

1.

• Act as an honest P ′
out would act with the only difference that P ′

out sends the third
round to P ′

1 in the session i only after that SSA
1,out has stopped and it has returned

a transcript consistent with the i-th session.

• Whenever SSA
1,out tries to send a second round in the i-th session, forward this message

only to P ′
out. When SSA

1,out stops and returns its transcript, forward to P ′
1 the second

round message that appears in the transcript.

• When SSA
1,out attempts to query the ideal functionalityb with a value x̃1 = (x̃0, x̃1),

A′
SA records this value, and sends back to the simulator x̃x2 (here the adversary acts

as the ideal functionality would for the simulator SSA
1,out). When SSA

1,out stops, and
returns its output, check if the output transcript is consistent with the messages
generated in the i-th session. If this is the case then do the following

– If x̃1 = xi
1 then return 1 (this is to denote that the challenger generated a

transcript using the honest procedure for P ′
1).

– If x̃1 ̸= xi
1 then return 0 (this is to denote that the messages computed by the

challenger on behalf of P ′
1 were simulated)

If instead the output transcript of SSA
1,out is not consistent with the i-th session, then

return a random bit.
aNote that in the security experiment of MPC protocol must hold for any x1. In particular, this

means that the security must hold for a value x1 chosen by the adversary prior to the beginning of the
experiment.
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bWe consider the oblivious transfer functionality, where P ′
1’s input is x1 = (x0 ∈ {0, 1}λ, x1 ∈ {0, 1}λ)

and P ′
2’s input is x2 ∈ {0, 1}, while P ′

out does not have any input. We are going to explain why we choose
this functionality later.

In other words, we need to prove that any rewind made by the simulator SSA
1,out can be

emulated by A′
SA without rewinding the honest P ′

1. Finally note that P ′
out is corrupted, hence

A′
SA can emulate any interaction between SSA

1,out and P ′
out. This means that we can rewind P ′

out,
but at the same time need to make sure that any rewind performed on P ′

out, does not implicitly
rewind also P ′

1. To make sure this does not happen, we instruct A′
SA to be rushing in the first

round and non-rushing in other rounds. We examine now all the possible rewinding patterns,
to show that our adversary does not need to rewind P ′

1. We do so using different figures (for
each pattern), where we use a straight line to denote messages on the P2P channel, a dashed
line to denote messages on the broadcast channel and a dotted line to denote rewind messages
and corresponding new messages. We also use the number to indicate which round message it
is.

We start by considering the scenario where SSA
1,out is attempting to rewind (what he sees as a

malicious) P ′
1 in the first BC round. Because we cut the running time of SSA

1,out, we can assume
that SSA

1,out will rewind the first BC round for at most κ times, for some polynomial κ. To deal
with this situation, our adversary samples a random index i← [κ], and forwards to the external
challenger only the message generated by SSA

1,out related to the i-th session. To define the input
x1 that will be used in the indistinguishability experiment, we evaluate a PRF on input the first
round messages received from SSA

1,out. Note that the security of Π′ must hold for any choice of
x1, even for an adversarially chosen one.

For all the other sessions, our adversary will answer the messages generated by SSA
1,out acting

as the honest P ′
1 would, using as input and randomness the output of a PRF evaluated on

the messages received from SSA
1,out. By applying Lemma 15, we can argue that SSA

1,out is secure
against APRF, which means even when the input and randomness are computed by using the
PRF, the simulator is still able to extract the input from the corrupted party, with non-negligible
probability.

We mentioned that in the i-th session, A′
SA acts as a proxy between the external challenger

and SSA
1,out for all the messages related to P ′

1. Note that SSA
1,out can also rewind the second, third,

and fourth rounds in the i-th session. Consider the case where SSA
1,out rewinds the second round

that goes from P ′
2 to P ′

out. This action, in turn, causes P ′
out to send multiple third rounds to

P ′
1. We observe that there is no need to forward all these multiple third rounds to P ′

1, as we
can just block all of them except the message that will appear in the final simulated session.
Note that the simulator must work well even with this modification since the simulator does not
see the effect of the rewinds implicitly performed to P ′

1 due to the fact that the simulator has
no access to the fourth P2P round messages that P ′

1 may compute as a consequence of these
rewinds (recall that P ′

out is non-rushing and that it does not send any message to P ′
2). We refer

to Figure 5.7 for a pictorial description.
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Figure 5.7: Pattern 2: SSA
1,out rewinds the second BC round

Figure 5.8: Pattern 3: SSA
1,out rewinds the third P2P round for P ′

1

Figure 5.8 reflects the scenario where SSA
1,out is attempting to rewind (what he sees as a

malicious) P ′
1 in the third P2P round. By the definition of Π′, P ′

1 does not react on the third
round that comes from P ′

1, hence, we can just forward to P ′
1 only one message, which corresponds

to the message the simulator returns in its final simulated transcript.

Figure 5.9: Pattern 4: SSA
1,out rewinds the third P2P round for P ′

out

reflects the scenario where SSA
1,out is attempting a rewind to P ′

out in the third P2P round.
By construction of Π′, P ′

out does not send any fourth message. Hence, we can simply allow this
rewind as the adversary A′

SA controls P ′
out.

Figure 5.10: Pattern 5: SSA
1,out rewinds the fourth P2P round for P ′

out

Figure 5.10 reflects the scenario where SSA
1,out is attempting a rewind P ′

out in the fourth P2P
round. Also in this case, it is easy to see that this action does not implicitly rewind P ′

1.
We have argued our adversary can run SSA

1,out, without perturbing its behavior, while at
the same time making sure that P ′

1 is not rewound. This means that the SSA
1,out will, with non-
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negligible probability, return some value that corresponds to the input of P ′
1 (when the messages

of P ′
1 are computed accordingly to Π′, and are not simulated by the external challenger). Note

that SSA
1,out may complete a session, where P ′

1 is fully under the control of the adversary. This
happens when the simulated transcript corresponds to some session i′ ̸= i. However, we can
argue that with non-negligible probability, the simulated transcript returned by SSA

1,out does
correspond to the i-th session. Once we have argued that, we can claim that SSA

1,out will return
the input of P ′

1, when the MPC challenger computes the messages on behalf of P ′
1 using the

input xi
1. To reach a contradiction, we need to consider a function that does not implicitly

leak the input of P ′
1 to the adversary. For this, we consider the oblivious transfer functionality,

where P ′
1’s input is x1 = (x0 ∈ {0, 1}λ, x1 ∈ {0, 1}λ) and P ′

2’s input is x2 ∈ {0, 1}, while P ′
out

does not have any input.:

f(x1, x2,⊥) = xx2

Finally, given that the probability that A′
SA guess the session i correctly is non-negligible,

and given that the simulator run internally by A′
SA will succeed with non-negligible probability,

we can claim that our adversary A′
SA breaks the SA security Π′ with non-negligible advantage.

Our theorem can be extended to n-party cases. Assuming there exists a n-party four-round
protocol that can compute f with selective identifiable-abort security, against t < n corruptions.
We denote the n parties running the protocol with (P1, . . . , Pn), then we let P1 take the input
x1, P2 take the input x2, and other parties take no input. If such a protocol would be secure,
then we can easily construct a 3-party protocol (where all the parties that have no input are
emulated by a single entity) to compute f with selective identifiable-abort security, which would
contradict our claim.

Theorem 16 (BC-BC-P2P -BC, SIA, Plain Model, n > t). Assume the existence of pseudo-
random functions. There exists function f such that no n-party four-round protocol (in the plain
model) can compute f with selective identifiable-abort security, against t < n corruptions, while
in the protocol, the first two rounds use broadcast channels and the third one uses peer-to-peer
channels and the last round uses broadcast channels.

Proof. The proof is similar to the proof of Theorem 12 with some differences in Step 1 and Step
2; detail follows.

By contradiction, assume that there exists a three-party protocol Π that can compute any
function f with selective identifiable-abort security. Let us denote the three parties running
the protocol Π with (P1, P2, Pout). We proceed now in a series of steps in order to reach a
contradiction.

Step 1: Pout can not abort and identify the corrupted party. This step follows from
Lemma 13 which implies that Pout must obtain the output.

Step 2: Constructing a SA secure protocol (only for some corruption patterns).
We prove that if Π is SIA secure, then we can construct a new protocol Π′ that is SA secure,
for some particular corruption patterns, namely when parties P ′

1 and P ′
out are corrupted or

when parties P ′
2 and P ′

out are corrupted. We denote three parties running the protocol Π′ with
(P ′

1, P ′
2, P ′

out).
The protocol Π′ that we construct in this proof is the same as the one of Figure 5.3. Note

that since only P ′
out obtains output, the last round can be replaced by using P2P channels.

More specifically, in Π′ of Figure 5.3, in the last round, P ′
1 and P ′

2 only send messages to P ′
out,
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and P ′
out does not send any message. Therefore, these messages can be sent also privately to

P ′
out since we are restricted to prove that Π′ satisfies SA security.

The proofs of the remaining steps are exactly identical to Theorem 12.

Theorem 17 (P2P -BC-BC-BC, SIA, Plain Model, n > t). Assume the existence of pseudo-
random functions. There exists function f such that no n-party four-round protocol (in the plain
model) can compute f with selective identifiable-abort security, against t < n corruptions, while
in the protocol, the first round uses the peer-to-peer channels and the remaining three rounds
use broadcast channels.

Proof. The proof of this theorem is similar to the proof of Theorem 12. Here, we follow the
same proof approach, and we only formally describe the part that has major differences.

By contradiction, assume that there exists a three-party protocol Π that can compute any
function f with selective identifiable-abort security. Let denote the three parties running the
protocol Π with (P1, P2, Pout). We proceed now in a series of steps in order to reach a contra-
diction.

Step 1: Pout can not abort and identify the corrupted party. This step follows from
Lemma 13 which implies that Pout must obtain the output.

Step 2: Constructing a SA secure protocol (only for some corruption patterns).
We prove that if Π is SIA secure, then we can construct a new protocol Π′ (in Figure 5.11)
which is SA secure for two corruption patterns. Applying the same reasoning of Theorem 16,
we focus on the case where the last round of Π′ is over P2P channel.

This protocol Π′ (executed between parties P ′
1, P ′

2 and P ′
out) works exactly like Π, with the

following differences:

• The honest P ′
1 does not send the third message to P ′

2.

• No fourth messages between P ′
1 and P ′

2.

• P ′
out does not send any fourth round to P ′

1 and P ′
2.

We prove that this protocol is secure with selective abort. Informally, this is possible because
the honest parties send fewer messages compared to Π, and the party P ′

out will still be able to
compute the output due to the argument given above. We proceed more formally below.

Figure 5.11: The new protocol Π′

Primitives: A three-party four-round protocol Π =
{(frst-msgi, {nxt-msgk

i }k∈{1,2,3}, outputi)}i∈{1,2,out} that securely computes any f
with selective identifiable-abort security against t < n corruptions, where the first round
uses the P2P channels to exchange messages, and last three rounds use the broadcast
channels.
Private input: Every party P ′

i has a private input xi ∈ {0, 1}∗.

First round (P2P):

1. Every party P ′
i samples the randomness ri from uniform distribution D, computes

({msg1
i→j}j∈{1,2,out})← frst-msgi(xi; ri)
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2. P ′
1 sends msg1

1→out to P ′
out, P ′

out sends msg1
out→1 to P ′

1, and sends msg1
out→2 to P ′

2.
P ′

2 sends msg1
2→1 to P ′

1, and sends msg1
2→out to P ′

out.

Second round (BC):

1. P ′
1 sets msg1

2→1 = ⊥, and computes msg2
1 ← nxt-msg1

1(x1, {msg1
j→1}j∈{1,2,out}; r1),

P ′
out computes msg2

out ← nxt-msg1
out(xout, {msg1

j→out}j∈{1,2,out}; rout), P ′
2 computes

msg2
2 ← nxt-msg1

2(x2, {msg1
j→2}j∈{2,out}; r2).

2. Every party P ′
i sends the message over the broadcast channel.

Third round (BC):

1. P ′
1 computes msg3

1 ← nxt-msg2
1(x1, {msg1

j→1}j∈{1,2,out}, {msg2
j}j∈{1,2,out}; r1), P ′

out
computes msg3

out ← nxt-msg2
out(xout, {msg1

j→out}j∈{1,2,out}, {msg2
j}j∈{1,2,out}; rout),

P ′
2 computes msg3

2 ← nxt-msg2
2(x2, {msg1

j→2}j∈{2,out}, {msg2
j}j∈{1,2,out}; r2).

2. Every party P ′
i sends the message over the broadcast channel.

Fourth round (P2P):

1. P ′
1 computes msg4

1 ← nxt-msg3
1(x1, {msg1

j→1}j∈{1,2,out}, {msgk
j }j∈{1,2,out},k∈{2,3}; r1),

P ′
out computes msg4

out ← nxt-msg3
out(xout, {msg1

j→out}j∈{1,2,out}, {msgk
j }j∈{1,2,out},k∈{2,3};

rout), P ′
2 computes msg4

2 ← nxt-msg3
2(x2, {msg1

j→2}j∈{2,out}, {msgk
j }j∈{1,2,out},k∈{2,3}; r2).

2. P ′
1 sends msg4

1 to P ′
out, P ′

2 sends msg4
2 to P ′

out.

Output Computation:

1. P ′
out compute and output y ← outputout(xout, {msg1

j→out}j∈{1,2,out},

{msgk
j }j∈{1,2,out},k∈{2,3,4}; rout)

We now prove that Π′ is secure when 1) P ′
1 and P ′

out are corrupted or when 2) P ′
2 and P ′

out
are corrupted. In order to do so we consider the simulators of Π SSIA

1,out (for corrupted P1 and
Pout), and SSIA

2,out (for corrupted P2 and Pout) and we construct to new simulators SSA
1,out and SSA

2,out
which will be used to prove the security of Π′ in the above mentioned corruption patterns. In
order to do so we build now an adversary Mintf (Figure 5.12) which acts as an adversary of Π
(and does so internally running ASA) for SSIA

1,out (res. SSIA
2,out). In this, we denote as left interface

the interface where the adversary sends and receives the protocol messages.

Figure 5.12: The adversary Mintf

Notation: Let H be the set of indices of the honest parties and I be the indices of the
corrupted parties. Mintf internally runs the adversary ASA, and is equipped with a left
interface, where it receives the messages computed on behalf of the honest parties and
sends the messages computed on the behalf of the corrupted parties.

First round (P2P):

1. Upon receiving msg1
h→j where h ∈ H and j ∈ I from the left interface, Mintf

forwards the message msg1
h→out (and the message msg1

2→1 in the case where 2 ∈ H)
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to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA,Mintf forwards them to the left interface,
where it is acting as a corrupted party for Π.

Second round (BC):

1. Upon receiving msg2
h from the left interface where h ∈ H,Mintf forwards the message

to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA,Mintf forwards them to the left interface,
where it is acting as a corrupted party for Π.

Third round (BC):

1. Upon receiving msg3
h from the left interface where h ∈ H,Mintf forwards the message

to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA,Mintf forwards them to the left interface,
where it is acting as a corrupted party for Π.

Fourth round (P2P):

1. Upon receiving msg4
h where h ∈ H from the left interface,Mintf forwards the message

msg4
h to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA,Mintf forwards them to the left interface,
where it is acting as a corrupted party for Π.

Then we formally describe SSA
1,out in Figure 5.13.

Figure 5.13: SSA
1,out

SSA
1,out performs the following steps:

• Invoke SSIA
1,out for the adversary Mintf .

• Work as a proxy between the trusted party and SSIA
1,out.

In the end, SSA
1,out output whatever SSIA

1,out outputs, and halt.

We can construct the simulator SSA
2,out by using SSIA

2,out similarly. The remaining proof is
identical to this part of the proof in Theorem 12.

After we prove the SA security of Π′, we are going to show how to construct a SA adversary
A′

SA to break the SA security of Π′ to reach a contradiction. Note that Step 3 works similarly to
the proof of Theorem 12, with the only difference that the adversarial P ′

1 is also rushing in the
second round (while is non-rushing in the remaining 3rd and 4th round) and applies the PRF
to compute the second round to P ′

2 of the protocol Π′ (recall P ′
1 does not send a first-round

message to P ′
2).

Step 4: Constructing a specific adversary that breaks the SA security of Π′. A′
SA

uses nearly the same procedure of Figure 5.6, and the invoked simulator is the one of Figure 5.13.
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The difference is that (in the internal emulated session) A′
SA computes the second round between

P ′
1 and P ′

2 by applying the PRF on the new first and second round sent by SSA
1,out (on behalf of

P ′
2).

Crucially, we need to argue that when the adversary A′
SA corrupts parties P ′

2 and P ′
out, then

it can run SSA
1,out emulating for her an execution of Π′ were parties P ′

1 and P ′
out are the one

corrupted. It is very important to argue that in this execution the rewinds made by SSA
1,out

(acting as P ′
2) are not useful for extracting the input of P ′

1, since A′
SA is interacting with an

honest P ′
1 and can not perform rewind on an honest player. In other words, any rewind made

by the simulator SSA
1,out can be emulated by A′

SA without rewinding the honest P ′
1. Finally note

that P ′
out is corrupted so A′

SA can emulate any interaction between SSA
1,out and P ′

out, so we only
analyze when this interaction can indirectly rewind P ′

1.
We examine now all the possible rewinding patterns using the same notation as in Theo-

rem 12.

• Pattern 1: SSA
1,out rewinds the first P2P round for P ′

1. In Pattern 1, there is no new
message generated by P ′

1, since based on Figure 5.11, P ′
1 ignores the first round message

from P ′
2 (and therefore from the simulator acting as P ′

out). We can conclude that this
pattern can be emulated by A′

SA while interacting with SSA
1,out.

• Pattern 2: SSA
1,out rewinds the first P2P round for P ′

out, this follows with a similar argu-
ment to the one explained for Pattern 1 in Theorem 12.

• Pattern 3: SSA
1,out rewinds the second BC round. First observe that Lemma 15 (with

minor modification) still holds, and the proof follows similar arguments. Therefore this
pattern follows with a similar argument to the one explained for Pattern 1 in Theorem 12.
Roughly speaking A′

SA can prepare required messages for the simulator emulating all the
sessions internally except for the i-th in which is interacting with the honest P ′

1 without
rewinding it.

• Pattern 4: SSA
1,out rewinds the third BC round. Since, by description of Figure 5.11,

there is no incoming 4th round message for P ′
2 (and therefore from the simulator acting

as P ′
2), we can conclude that this pattern can be emulated by A′

SA while interacting with
SSA

1,out.

• Pattern 5: SSA
1,out rewinds the fourth P2P round (which is sent only to P ′

out), this follows
from the same arguments explained for Pattern 5 in Theorem 12.

Therefore, we can conclude that all the patterns can be emulated by A′
SA while interacting

with SSA
1,out.

By using the same ideal functionality and following the same procedures in Theorem 12, we
reach a contradiction, and this result can be extended to n-party cases similar to Theorem 12.

Theorem 18 (BC-P2P -BC-BC, SIA, Plain Model, n > t). Assume the existence of pseudo-
random functions. There exists function f such that no n-party four-round protocol (in the plain
model) can compute f with selective identifiable-abort security, against t < n corruptions, while
in the protocol, the first round uses broadcast channels and the second one uses peer-to-peer
channels and the last two rounds use broadcast channels.

Proof. For this theorem, we also follow the same proof strategy of Theorem 12.
By contradiction, assume that there exists a three-party protocol Π that can compute any

function f with selective identifiable-abort security. Let denote the three parties running the
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protocol Π with (P1, P2, Pout). We proceed now in a series of steps in order to reach a contra-
diction.

Step 1: Pout can not abort and identify the corrupted party. This step follows from
Lemma 13 which implies that Pout must obtain the output.

Step 2: Constructing a SA secure protocol (only for some corruption patterns).
We prove that if Π is SIA secure, then we can construct a new protocol Π′ (in Figure 5.14)
which is SA secure for two corruption patterns. Applying the same reasoning of Theorem 16,
we focus on the case where the last round of Π′ is over P2P channel.

This protocol Π′ (executed between parties P ′
1, P ′

2 and P ′
out) works exactly like Π, with the

following differences:
• The honest P ′

1 does not send the third message to P ′
2.

• No fourth messages between P ′
1 and P ′

2.

• P ′
out does not send any fourth round to P ′

1 and P ′
2.

We prove that this protocol is secure with selective aborts. Informally, this is possible
because the honest parties send fewer messages compared to Π, and the party P ′

out will still be
able to compute the output due to the argument given above. We proceed more formally below.

Figure 5.14: The new protocol Π′

Primitives: A three-party four-round protocol Π =
{(frst-msgi, {nxt-msgk

i }k∈{1,2,3}, outputi)}i∈{1,2,3} that securely computes any f
with selective identifiable-abort security against t < n corruptions, where the first
round uses the broadcast channels to exchange messages, the second round use the P2P
channels, and last two rounds use the broadcast channels.
Private input: Every party P ′

i has a private input xi ∈ {0, 1}∗.

First round (BC):
Every party P ′

i samples the randomness ri from uniform distribution D, computes msg1
i ←

frst-msgi(xi; ri), and sends the message over the broadcast channel.
Second round (P2P):

1. Every party P ′
i computes {msg2

i→j}j∈{1,2,out} ← nxt-msg1
i (xi, {msg1

j}j∈{1,2,out}; ri).

2. P ′
1 sends msg2

1→out to P ′
out, P ′

out sends msg2
out→1 to P ′

1, and sends msg2
out→2 to P ′

2.
P ′

2 sends msg2
2→1 to P ′

1, and sends msg2
2→out to P ′

out.

Third round (BC):

1. P ′
1 sets msg2

2→1 = ⊥, and computes msg3
1 ←

nxt-msg2
1(x1, {msg1

j}j∈{1,2,out}, {msg2
j→1}j∈{1,2,out}; r1), P ′

out computes
msg3

out ← nxt-msg2
out(xout, {msg1

j}j∈{1,2,out}, {msg2
j→2}j∈{1,2,out}; r2), P ′

2 computes
msg3

2 ← nxt-msg2
2(x2, {msg1

j}j∈{1,2,out}, {msg2
j→2}j∈{2,out}; r2).

2. Every party P ′
i sends the computed message over the broadcast channel.

Fourth round (P2P):
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1. P ′
1 computes msg4

1 ← nxt-msg3
1(x1, {msgk

j }j∈{1,2,out},k∈{1,3}, {msg2
j→1}j∈{1,2,out}; r1),

P ′
out computes msg4

out ← nxt-msg3
out(xout, {msgk

j }j∈{1,2,out},k∈{1,3}, {msg2
j→out}j∈{1,2,out};

rout), P ′
2 computes msg4

2 ← nxt-msg3
2(x2, {msgk

j }j∈{1,2,out},k∈{1,3}, {msg2
j→2}j∈{2,out};

r2).

2. P ′
1 sends msg4

1 to P ′
2, P ′

3 sends msg4
3 to P ′

2.

Output Computation:

1. P ′
out compute and output y ← outputout(xout, {msgk

j }j∈{1,2,out},k∈{1,3,4},
{msg2

j→out}j∈{1,2,out}; rout)

We now prove that Π′ is secure when 1) P ′
1 and P ′

out are corrupted or when 2) P ′
2 and P ′

out
are corrupted. In order to do so we consider the simulators of Π SSIA

1,out (for corrupted P1 and
Pout), and SSIA

2,out (for corrupted P2 and Pout) and we construct to new simulators SSA
1,out and SSA

2,out
which will be used to prove the security of Π′ in the above mentioned corruption patterns. In
order to do so we build now an adversary Mintf (Figure 5.15) which acts as an adversary of Π
(and does so internally running ASA) for SSIA

1,out (res. SSIA
2,out). Let us denote with left interface,

the interface where the adversary sends and receives the protocol messages.

Figure 5.15: The adversary Mintf

Notation: Let H be the set of indices of the honest parties and I be the indices of the
corrupted parties. Mintf internally runs the adversary ASA, and is equipped with a left
interface, where it receives the messages computed on behalf of the honest parties and
sends the messages computed on the behalf of the corrupted parties.

First round (BC):

1. Upon receiving msg1
h from the left interface where h ∈ H,Mintf forwards the message

to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA in Π′, Mintf forwards them to the left
interface, where it is acting as a corrupted party for Π.

Second round (P2P):

1. Upon receiving msg2
h→j where h ∈ H and j ∈ I from the left interface, Mintf

forwards the message msg2
h→out (and the message msg2

2→1 in the case where 2 ∈ H)
to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA in Π′, Mintf forwards them to the left
interface, where it is acting as a corrupted party for Π.

Third round (BC):

1. Upon receiving msg3
h from the left interface where h ∈ H,Mintf forwards the message

to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA in Π′, Mintf forwards them to the left
interface, where it is acting as a corrupted party for Π.

Fourth round (P2P):
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1. Upon receiving msg4
h→out where h ∈ H in the execution of Π, Mintf forwards the

message msg4
h→out to ASA in the execution of Π′.

2. Upon receiving the messages sent by ASA in Π′, Mintf forwards them to the left
interface, where it is acting as a corrupted party for Π.

Then we formally describe SSA
1,out in Figure 5.16.

Figure 5.16: SSA
1,out

SSA
1,out performs the following steps:

• Invoke SSIA
1,out for the adversary Mintf .

• Work as a proxy between the trusted party and SSIA
1,out.

In a similar way we can construct the simulator SSA
2,out, but making use of SSIA

2,out. Proving
that Π′ enjoys SA security (for the considered corruption patterns) works similar to the proof
in Theorem 12.

After we prove the SA security of Π′, we are going to show how to construct a SA adversary
A′

SA to break the SA security of Π′ to reach a contradiction (Step 3 works similar to the proof
of Theorem 12).

Step 4: Constructing a specific adversary that breaks the SA security of Π′. A′
SA

uses the same procedure of Figure 5.6, and the invoked simulator is the one of Figure 5.16.
Crucially, we need to argue that when the adversary A′

SA corrupts parties P ′
2 and P ′

out, then
he can run SSA

1,out emulating for him an execution of Π′ were parties P ′
1 and P ′

out are the one
corrupted. It is very important to argue that in this execution the rewinds made by SSA

1,out
(acting as P ′

2) are not useful for extracting the input of P ′
1, since A′

SA is interacting with an
honest P ′

1 and can not perform rewind on an honest player. In other words, any rewind made
by the simulator SSA

1,out can be emulated by A′
SA without rewinding the honest P ′

1. Finally note
that P ′,⋆

out is corrupted so A′
SA can emulate any interaction between SSA

1,out and P ′,⋆
2 , so we only

analyze when this interaction can indirectly rewinding P ′
1.

We examine now all the possible rewinding patterns using the same notation as in Theo-
rem 12.

• Pattern 1: SSA
1,out rewinds the first round. This pattern is equivalent to the Pattern 1 of

Theorem 12, and we follow exactly the same proof.

• Pattern 2: SSA
1,out rewinds the second P2P round for P ′

1. In Pattern 2, there is no new
message generated by P ′

1, since based on Figure 5.14, P ′
1 ignores the 2nd round message

from P ′
2 (and therefore from the simulator acting as P ′

2). We can conclude that this
pattern can be emulated by A′

SA while interacting with SSA
1,out.

• Pattern 3: SSA
1,out rewinds the second round P2P round for P ′

out. Because the adversary
behaves (and therefore parties P ′

2 and P ′
out) in a non-rushing way in all rounds except the

first, a new second round received by P ′
out will affect only the 4th round message sent by

P ′
1, however P ′

2 (and therefore the simulator acting as P ′
2) does not receive any message

in the 4th round in Π′. We can conclude that this pattern can be emulated by A′
SA while

interacting with SSA
1,out for a similar reason to the one described in Theorem 12.
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• Pattern 4: SSA
1,out rewinds the third round. This pattern is equivalent to the Pattern 4

of Theorem 17, and we follow exactly the same proof.

• Pattern 5: SSA
1,out rewinds the fourth round. This pattern is equivalent to the Pattern 5

of Theorem 17, and we follow exactly the same proof.

Then with the above patterns, we show that A′
SA is able to extract input from honest P ′

1. By
using the same ideal functionality and following the same procedures in Theorem 12, we reach
a contradiction, and this result can be extended to n-party cases similar to Theorem 12.
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